

Nuno Pedro de Jesus Silva

An Empirical Approach to Improve the Quality and
Dependability of Critical Systems Engineering

PhD Thesis in Doctoral Program in Information Science and Technology,

 supervised by Professor Marco Vieira
and presented to the Department of Informatics Engineering

of the Faculty of Sciences and Technology
of the University of Coimbra

August 2017

An Empirical Approach to

Improve the Quality and

Dependability of Critical

Systems Engineering

Nuno Pedro de Jesus Silva

Thesis submitted to the University of Coimbra

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
August 2017

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

 iii

 v

This research has been developed as part of the requirements of the Doctoral Program

in Information Science and Technology of the Faculty of Sciences and Technology of

the University of Coimbra. This work is within the Dependable Systems specialization

domain and was carried out in the Software and Systems Engineering Group of the

Center for Informatics and Systems of the University of Coimbra (CISUC).

This work was supported financially by the Top-Knowledge program of CRITICAL

Software, S.A. and carried out partially in the frame of the European Marie Curie

Project FP7-2012-324334-CECRIS (Certification of CRItical Systems).

This work has been supervised by Professor Marco Vieira, Full Professor (Professor

Catedrático), Department of Informatics Engineering, Faculty of Sciences and

Technology, University of Coimbra.

 vi

 vii

“Safety is not an option!”

James H. Miller

Miller, James H. "2009 CEOs Who "Get It"" Interview. Safety and Health

Magazine.” February 1, 2009. Accessed October 13, 2016.

http://www.safetyandhealthmagazine.com/articles/2009-ceos-who-get-it-16.

and

“Failure is not an option”

Bill Broyles, attributed to Apollo 13 crew of NASA

 viii

 ix

To my family,

to my friends

 x

 xi

Abstract

Critical systems, such as space, railways and avionics systems, are developed under

strict requirements envisaging high integrity in accordance to specific standards. For

such software systems, generally an independent assessment is put into effect (as a

safety assessment or in the form of Independent Software Verification and Validation

- ISVV) after the regular development lifecycle and V&V activities, aiming at

identifying and correcting residual faults and raising confidence in the software. These

systems are very sensitive to failures (they might cause severe impacts), and even if

they are today reaching very low failure rates, there is always a need to guarantee higher

quality and dependability levels. However, it has been observed that there are still a

significant number of defects remaining at the latest lifecycle phases, questioning the

effectiveness of the previous engineering processes and V&V techniques.

This thesis proposes an empirical approach to identify the nature of defects (quality,

dependability, safety gaps) and, based on that knowledge, to provide support to

improve critical systems engineering. The work is based on knowledge about safety

critical systems and how they are specified/developed/validated (standards, processes

and techniques, resources, lifecycles, technologies, etc.). Improvements are obtained

from an orthogonal classification and further analysis of issues collected from real

systems at all lifecycle phases. Such historical data (issues) have been studied,

classified and clustered according to different properties and taking into account the

issue introduction phase, the involved techniques, the applicable standards, and

particularly the root causes. The identified improvements shall be reflected in the

development and V&V techniques, on resources training or preparation, and drive

standards modifications or adoption.

The first and more encompassing contribution of this work is the definition of a defects

assessment process that can be used and applied in industry in a simple way and

independently from the industrial domain. The process makes use of a dataset collected

from existing issues reflecting process deficiencies, and supports the analysis of these

data towards identifying the root causes for those problems and defining appropriate

measures to avoid them in future systems.

As part of the defect assessment process activities, we propose an adaptation of the

Orthogonal Defect Classification (ODC) for critical issues. In practice, ODC was

used as an initial classification and then it was tuned according to the gaps and

difficulties found during the initial stages of our defects classification activities. The

refinement was applied on the defect types, triggers and impacts. Improved taxonomies

for these three parameters are proposed.

A subsequent contribution of our work is the application and integration of a root

cause analysis process to show the connection of the defects (or issue groups) with the

 xii

engineering properties and environment. The engineering properties (e.g. human and

technical resources properties, events, processes, methods, tools and standards) are, in

fact, the principal input for the classes of root causes. A fishbone root cause analysis

was proposed, integrated in the process and applied to the available dataset.

A practical contribution of the work comprises the identification of a specific set of

root causes and applicable measures to improve the quality of the engineered

systems (removal of those causes). These root causes and proposed measures allow the

provision of quick and specific feedback to the industrial engineering teams as soon as

the defects are analyzed. The list/database has been compiled from the dataset and

includes the feedback and contributions from the experts that responded to a

process/framework validation survey. The root causes and the associated measures

represent a valuable body of knowledge to support future defects assessments.

The last key contribution of our work is the promotion of a cultural change to

appropriately make use of real defects data (the main input of the process), which shall

be appropriately documented and easily collected, cleaned and updated. The regular

use of defects data with the application of the proposed defects assessment process will

contribute to measure the quality evolutions and the progress of implementation of the

corrective actions or improvement measures that are the essential output of the process.

Keywords:

Orthogonal defect classification, critical systems, defect, classification; root cause

analysis, dependability, failure, safety.

 xiii

Resumo

Os sistemas críticos, tais como os sistemas espaciais, ferroviários ou os sistemas de

aviónica, são desenvolvidos sob requisitos estritos que visam atingir alta integridade

ao abrigo de normas específicas. Para tais sistemas de software, é geralmente aplicada

uma avaliação independente (como uma avaliação de safety ou na forma de uma

Verificação e Validação de Software Independente - ISVV) após o ciclo de

desenvolvimento e as respetivas atividades de V&V, visando identificar e corrigir

falhas residuais e aumentar a confiança no software. Estes sistemas são muito sensíveis

a falhas (pois estas podem causar impactos severos), e apesar de atualmente se

conseguir atingir taxas de falhas muito baixas, há sempre a necessidade de garantir a

maior qualidade dos sistemas e os maiores níveis de confiabilidade. No entanto,

observa-se que ainda existe um número significativo de defeitos que permanecem nas

últimas fases do ciclo de desenvolvimento, o que nos leva a questionar a eficácia dos

processos de engenharia usados e as técnicas de V&V aplicadas.

Esta tese propõe uma abordagem empírica para identificar a natureza dos defeitos (de

qualidade, confiabilidade, lacunas de safety) e com base nesse conhecimento

proporcionar uma melhoria da engenharia de sistemas críticos. O trabalho é baseado

em conhecimento sobre os sistemas críticos e na forma como estes são especificados /

desenvolvidos / validados (normas, processos e técnicas, recursos, ciclo de vida,

tecnologias, etc.). As recomendações de melhorias para os sistemas críticos são obtidas

a partir de uma classificação ortogonal e posterior análise de dados de defeitos obtidos

de sistemas reais cobrindo todas as fases do ciclo de vida. Estes dados históricos

(defeitos) foram estudados, classificados e agrupados de acordo com diferentes

propriedades, considerando a fase de introdução do defeito, as técnicas envolvidas, as

normas aplicáveis e, em particular, as possíveis causas fundamentais (ou raiz). As

melhorias identificadas deverão refletir-se nas técnicas de desenvolvimento / V&V, na

formação ou preparação de recursos humanos e orientar alterações ou adoção de

normas.

A primeira e mais abrangente das contribuições deste trabalho é a definição de um

processo de avaliação de defeitos que pode ser usado e aplicado na indústria de forma

simples e independente do domínio industrial. O processo proposto baseia-se na

disponibilidade de um conjunto de dados de problemas que refletem deficiências de

processo de desenvolvimento e suporta a análise desses dados para identificar as suas

causas raiz e definir medidas apropriadas para evitá-los em sistemas futuros.

Como parte das atividades do processo de avaliação de defeitos, é proposta uma

adaptação da Classificação Ortogonal de Defeitos (ODC) para sistemas críticos.

Na prática, a ODC foi usada como uma classificação inicial e depois ajustada de acordo

com as lacunas e dificuldades encontradas durante os estágios iniciais das atividades

de classificação de defeitos. O refinamento foi aplicado aos tipos de defeito, aos

 xiv

eventos que levaram a esses defeitos e aos seus impactos. Neste trabalho, são propostas

versões melhoradas das taxonomias para esses três parâmetros.

Uma contribuição subsequente é a aplicação e integração de um processo de análise

de causas raiz para relacionar os defeitos (ou grupos de problemas) com as

propriedades e o ambiente de engenharia. As propriedades de engenharia (por exemplo,

recursos humanos e técnicos, eventos, processos, métodos, ferramentas e normas) são,

de facto, as principais fontes para a identificação das classes de causas raiz. A análise

de causas de raiz proposta é baseada em diagramas fishbone, tendo sido integrada no

processo e aplicada ao conjunto de dados disponíveis.

Uma contribuição prática do nosso trabalho é a identificação de um conjunto

específico de causas raiz e de medidas aplicáveis para melhorar a qualidade dos

sistemas de engenharia (eliminação dessas causas). As causas e as medidas propostas

permitem um retorno rápido e específico logo que os defeitos são analisados. A lista /

base de dados foi compilada a partir do conjunto de dados de defeitos e inclui os

comentários e contribuições de especialistas que responderam a um formulário de

validação do processo. As causas raiz e as medidas associadas representam um

conjunto valioso de conhecimento que pode suportar futuras análises de defeitos.

A última contribuição chave do nosso trabalho é a promoção de uma mudança

cultural para fazer uso apropriado de dados de defeitos reais (principal fonte do

processo), os quais devem ser devidamente documentados e facilmente recolhidos,

tratados e atualizados. O uso regular de dados sobre defeitos através da aplicação do

processo de análise de defeitos proposto contribuirá para medir a evolução da qualidade

e o progresso da implementação das ações corretivas ou medidas de melhoria que são

o principal resultado do processo.

Palavras-chave:

Classificação ortogonal de defeitos, sistemas críticos, defeito, classificação, análise

de causas, confiabilidade, falha, safety.

 xv

Acknowledgements

I will never be able to thank enough and everybody who somehow supported me during

these years. These acknowledgements will be necessarily short and thus not complete.

I would like to thank everybody who crossed my path during these last years and that

gave me motivation to work during the different phases of the studies and the research.

I am truly grateful and will never be able to pay back all the support received.

I would like to start by thanking Professor Marco Vieira for his guidance through the

entire path that led me to this point. We had a very hard time in meeting since we both

work full time, we travel a lot, so time was always short and precious, but Marco never

ceased believing, supporting, motivating and providing very detailed reviews to

improve and advance the research work.

I would also like to give two special thanks for professor Henrique Madeira and

Professor João Carlos Cunha, the first for inspiring me and motivating me in entering

this adventure, many years ago when we did a visit to NASA IVV center in West

Virginia, and the second for his support and insightful contributions and reviews to the

improvement of my work.

I would also like to give a special thanks to all the PhD professors and classes

colleagues. To the researchers at DEI/CISUC, that have not seen much of me, but that

were always there ready for anything.

An enormous gratitude goes to my employer, CRITICAL Software, for supporting my

studies and giving me some time to achieve the objectives, particularly during the first

year and over the periods just before the articles submissions. Thank You CRITICAL.

I would like to thank also my co-workers for their interested and their support to the

research topics and for their patience over the last years. I have also a few ex-co-

workers to thanks, especially Rui (UK) and Diogo (Germany) for their prompt and

insightful help.

Another special thanks goes to all the CECRIS project partners. This European

Commission FP7 research project allowed me to extend and develop my research and

to meet very knowledgeable researchers. I cannot name all here, but special thanks

need to go to Domenico, Stefano, Christian, Marcello, Roberto P., Roberto N.,

Domenico (DiLeo), Antonio (La Legenda), Fabio, Dario, Anna, Alma, Francesca, and

more at CINI Napoli; then Dr. Pataricza, László, Ágnes, Ákos, Imre, Zoltán, Ábel and

Gábor from BME in Budapest; also to Dr. Bondavalli, Andrea (Ceccarelli), Nicola,

Francesco and others from CINI Firenze and Resiltech in Pontedera.

I also need to thank Ram Chillarege for his support during 2016 with all his knowledge

about ODC and with all his contagious energy.

 xvi

The most important thanks, however, needs to go to my wife, Daniela. For her

unconditional love and support, for her indefatigable patience and understanding, for

all the long moments where we could not be together because I was working or

traveling, for being her and always supporting and motivating me, for always believing

in me, especially in the difficult times occurred over the past years.

I need to also thank my parents, Fernando and Fernanda, who were far away most of

the time, one ocean distant, but who recently became much closer. For the time that I

could not dedicate to them over these years and for giving me the grounds to achieve

this milestone in my life, I owe them a lot.

Likewise, I want to thank my sisters Cintia and Suzi, one in Portugal, the other in

Canada, my brother-in-law Alcino, my nephews Laura and Afonso, particularly for

their energy, for making me be a “crazy children” on weekends, for the smiles and the

plays.

Another thanks need to go to my in-laws, Jaime and Maria Isabel, and all the family

back in Angola (and not only) for their understanding of my absences in these busy

years.

To the rest of my family, especially aunts, uncles and cousins, I would like to thank all

of them for the great moments spent together over the past years, and I hope to have

now the chance to be more present.

I also thank all the anonymous reviewers that helped me to improve this work with

their comments, and the conference contacts that provided feedback and engaged in

very fruitful conversations.

A particular “thank you” to my other friends, spread around this world. I need to give

them a heads up: I will have more time to you from now on, so, all those in Brazil,

Canada or Europe, beware, we will surely get together more often, particularly Pedro

and Sandra (in Montreal), all my cousins and family in São Paulo (you are great), and

Lubomir and his 3 “girls” (currently in Switzerland).

I would like to give a special thanks to Agnė, my co-worker, my gym partner, who

became a good friend over time listening to my stories (too many), having a renewable

patience and providing me courage and positive energy, support and many inspiring

smiles to motivate me in the final phase of the process. Ačiū Agnė!

To all the people I met during these last 4 years in Coimbra, in Portugal, and around

the world, hoping to see most of them again soon. I would like to thank all because

without them I would not be me, and I would not have met this milestone.

I could not forget to mention one of my passions, Associação Académica de Coimbra,

for all the emotions provided at the football matches, we went from Europa League

down to Second League relegations, but the passion has only grown, and that proved

that we do not explain love, we just love. Académica will continue being special and

different. Força Briosa!

To the angels and those who left in the meantime (2013-2017), you will always be in

my heart, thank you for being part of my life and part of my success.

 xvii

Agradecimentos

Nunca seria possível agradecer o suficiente e a todos os que de alguma forma me

apoiaram durante estes anos. Estes agradecimentos serão necessariamente curtos e,

portanto, não completos. Gostaria de agradecer a todos os que atravessaram o meu

caminho durante estes últimos anos e que me deram motivação adicional para continuar

e trabalhar durante as diferentes fases dos estudos e da investigação. Estou realmente

grato e nunca conseguirei retribuir todo o apoio recebido.

Gostaria de começar por agradecer ao Professor Marco Vieira pela sua orientação

durante todo o período que me trouxe a este ponto. Foi complicado por vezes reunir,

estado ambos sempre ocupados profissionalmente, ou em viagem, sendo que o tempo

era sempre pouco e precioso, mas o Marco nunca deixou de acreditar, apoiar, motivar

e fornecer revisões muito detalhadas para melhorar e avançar o trabalho de pesquisa.

Gostaria de agradecer, em particular, ao professor Henrique Madeira e ao professor

João Carlos Cunha, o primeiro por me ter inspirado e motivado a abraçar esta aventura,

há muitos anos, quando fizemos uma visita ao centro IVV da NASA, o segundo pelo

seu apoio e contribuições técnicas e revisões para a melhoria do meu trabalho.

Gostaria também de agradecer especialmente a todos os professores e colegas do

programa de doutoramento. Agradeço igualmente aos pesquisadores do DEI / CISUC,

que não viram muito de mim, mas que estavam sempre prontos para qualquer

eventualidade.

Tenho uma enorme dívida de gratidão para o meu empregador, a CRITICAL Software,

por apoiar os meus estudos e dar-me algum tempo para atingir os objectivos,

particularmente durante o primeiro ano e durante os períodos imediatamente antes das

submissões de artigos. Obrigado CRITICAL.

Gostaria também de agradecer aos meus colegas de trabalho pelo interesse e apoio

relativo aos temas de investigação e pela sua paciência nos últimos anos. Existem

igualmente alguns ex-colegas de trabalho aos quais devo agradecer, especialmente o

Rui (UK) e o Diogo (Alemanha) pela sua ajuda pronta e eficaz.

Outro agradecimento especial vai para todos os parceiros do projeto CECRIS. Este

projecto de investigação da Comissão Europeia permitiu alargar e desenvolver a minha

investigação. Não posso citar todos os nomes aqui, mas envio agradecimentos especiais

para Domenico, Stefano, Christian, Marcello, Roberto P., Roberto N., Domenico

(DiLeo), Antonio (La Legenda), Fabio, Dario, Anna, Alma, Francesca, e outros mais

do CINI em Nápoles; o Dr. Pataricza, László, Ágnes, Ákos, Imre, Zoltán, Ábel e Gábor

da BME em Budapeste; também para o Dr. Bondavalli, Andrea (Ceccarelli), Nicola,

Francesco e outros do CINI em Florença e da Resiltech em Pontedera.

Também devo agradecer ao Ram Chillarege pelo seu apoio durante o ano de 2016 com

todo seu conhecimento sobre ODC e com toda sua energia contagiosa.

 xviii

Os agradecimentos mais importantes vão, no entanto, para a minha esposa, Daniela.

Pelo seu amor e apoio incondicionais, pelas suas infatigáveis paciência e compreensão,

por todos os longos momentos em que não pudemos estar juntos porque eu estava a

trabalhar ou a viajar, por ser ela e sempre me apoiar e motivar, por sempre acreditar em

mim, especialmente nos tempos difíceis dos últimos anos.

Preciso de agradecer aos meus pais, Fernando e Fernanda, que estavam longe a maior

parte do tempo, a um oceano de distância, mas que recentemente se aproximaram,

retornando a Portugal. Pelo tempo que não lhes pude dedicar ao longo destes anos e

por me terem dado as bases para atingir este marco na minha vida, eu devo-lhes imenso.

Da mesma forma, quero agradecer às minhas irmãs Cintia e Suzi, uma em Portugal, a

outra no Canadá, ao meu cunhado Alcino, aos meus sobrinhos Laura e Afonso,

particularmente pela sua energia, por me fazerem ser uma "criança louca" nos fins de

semana, pelos sorrisos e as brincadeiras.

Outro agradecimento vai para os meus sogros, Jaime e Maria Isabel, e toda a família

em Angola (e não só) pela compreensão das minhas ausências nestes anos.

Ao resto da minha família, especialmente tias, tios e primos, gostaria de agradecer a

todos eles pelos grandes momentos que partilhámos nos últimos anos, e espero ter

agora a oportunidade de estar mais presente.

Agradeço também a todos os revisores anónimos por terem contribuído para melhorar

o meu trabalho com os seus comentários, e também aos contatos dos seminários

internacionais que forneceram feedback e participaram em conversas muito frutíferas.

Um especial "obrigado" aos meus outros amigos, espalhados por este mundo fora.

Aviso: vou ter mais tempo para vocês a partir de agora, portanto, todos os que estão no

Brasil, Canadá ou na Europa, vamos certamente encontrar-nos mais vezes,

particularmente o Pedro e a Sandra (Montreal), todos os meus primos e restante família

em São Paulo (vocês são especiais), e o Lubomir e as suas 3 "meninas" (na Suíça).

Gostaria de agradecer especialmente à Agnė, minha colega de trabalho, minha parceira

de ginásio, que se tornou uma boa amiga ao longo do tempo por ouvir as minhas

histórias (demasiadas), ter uma paciência renovável e dar-me energia positiva e muitos

sorrisos inspiradores para me motivar na fase final deste processo. Ačiū Agnė!

A todas as pessoas que conheci nestes últimos 4 anos em Coimbra, em Portugal e em

todo o mundo. Gostaria de agradecer a todos porque sem eles eu não seria eu.

Não posso deixar de mencionar uma das minhas paixões, a Associação Académica de

Coimbra, por todas as emoções proporcionadas nos jogos de futebol, fomos da Liga

Europa até à descida de divisão para a Segunda Liga, mas a paixão só cresceu e isso

provou que não se explica o amor, apenas se ama. A Académica continuará a ser

especial e diferente. Força Briosa!

Para os anjos e aqueles que nos deixaram entretanto (2013-2017), vocês estarão sempre

no meu coração, obrigado por fazerem parte da minha vida e parte do meu sucesso.

 xix

List of Publications

This thesis relies on the published scientific research presented in the following peer

reviewed papers:

[1] Nuno Silva and Marco Vieira. “Towards Making Safety-Critical Systems Safer:

Learning from Mistakes”, ISSRE2014, 3-6- November 2014, Naples, Italy.

[2] Nuno Silva, Marco Vieira, “Experience Report: Orthogonal Classification of Safety

Critical Issues”, ISSRE2014, 3-6- November 2014, Naples, Italy.

[3] Nuno Silva, Marco Vieira, Dario Ricci, Domenico Cotroneo, “Consolidated View

on Space Software Engineering Problems – An empirical study”, DASIA 2015, 19-

21 May, 2015, Barcelona, Spain.

[4] Nuno Silva, Marco Vieira, Dario Ricci, and Domenico Cotroneo. "Assessment of

Defect Type influence in Complex and Integrated Space Systems: Analysis Based

on ODC and ISVV Issues." In Dependable Systems and Networks Workshops

(DSN-W), 2015 IEEE International Conference on, pp. 63-68. IEEE, 2015.

[5] Nuno Silva and Marco Vieira, “Software for Embedded Systems: A Quality

Assessment based on improved ODC taxonomy”, SAC ACM 2016, April 04-08,

2016, Pisa, Italy, DOI: http://dx.doi.org/10.1145/2851613.2851908.

[6] Nuno Silva, João Carlos Cunha, Marco Vieira, A field study on root cause analysis

of defects in space software, Reliability Engineering & System Safety, Available

online 24 August 2016, ISSN 0951-8320,

http://dx.doi.org/10.1016/j.ress.2016.08.016.

[7] Nuno Silva and Marco Vieira. 2016. “Adapting the Orthogonal Defect

Classification Taxonomy to the Space Domain.” In Computer Safety, Reliability,

and Security: 35th International Conference, SAFECOMP 2016, Trondheim,

Norway, September 21-23, 2016, Proceedings, edited by Amund Skavhaug,

Jérémie Guiochet, and Friedemann Bitsch, 296–308. Cham: Springer International

Publishing. http://dx.doi.org/10.1007/978-3-319-45477-1_23.

[8] Nuno Silva, Marco Vieira, João Cunha and Ram Chillarege, “Evaluating a Corpus

of Root Causes and Measures to guide RCA processes in Critical Software”, 2017

IEEE 18th International Symposium on High Assurance Systems Engineering,

HASE 2017, January 12th-14th, 2017, Singapore.

http://dx.doi.org/10.1016/j.ress.2016.08.016
http://dx.doi.org/10.1007/978-3-319-45477-1_23

 xx

Other published works with authorship or contributions from the author during the

period:

[9] Andrea Ceccarelli, Nuno Silva, “Qualitative comparison of aerospace standards: an

objective approach”, WoSoCer 2013, ISSRE 2013, 4-7 November 2013, Pasadena,

CA, USA

[10] Nuno Silva, Alexandre Esper, Ricardo Barbosa, Johan Zendin, Claudio

Monteleone, “Reference Architecture for High Dependability On-Board

Computers”, WoSoCer 2013, ISSRE 2013, 4-7 November 2013, Pasadena, CA,

USA (Presented by myself)

[11] Nuno Silva, Marco Vieira, “Certification of Embedded Systems: Quantitative

analysis and irrefutable evidences”, ISSRE 2013 – Fast Abstracts, 4-7 November

2013, Pasadena, CA, USA (Presented by myself)

[12] Sun, Linling, Nuno Silva, and Tim Kelly. 2014. “Rethinking of Strategy for

Safety Argument Development.” In Computer Safety, Reliability, and Security:

SAFECOMP 2014 Workshops: ASCoMS, DECSoS, DEVVARTS, ISSE,

ReSA4CI, SASSUR. Florence, Italy, September 8-9, 2014. Proceedings, edited by

Andrea Bondavalli, Andrea Ceccarelli, and Frank Ortmeier, 384–395. Cham:

Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-10557-

4_42.

[13] Ceccarelli, Andrea, and Nuno Silva. 2015. “Analysis of Companies Gaps in the

Application of Standards for Safety-Critical Software.” In Computer Safety,

Reliability, and Security: SAFECOMP 2015 Workshops, ASSURE, DECSoS.

ISSE, ReSA4CI, and SASSUR, Delft, The Netherlands, September 22, 2015,

Proceedings, edited by Floor Koornneef and Coen van Gulijk, 303–313. Cham:

Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-24249-

1_26.

 xxi

Table of Contents

Chapter 1 Introduction .. 1

1.1 Engineering Safety Critical Systems .. 3

1.2 Contributions of the Work .. 5
1.3 Structure of the Thesis ... 7

Chapter 2 Background and related work .. 9

2.1 Background Concepts and Motivation ... 10

2.1.1 General Concepts .. 10

2.1.2 Systems and Software Growth and Complexity 11

2.2 Independent Software Verification and Validation (ISVV) 14

2.2.1 ISVV Introduction .. 14

2.2.2 ISVV Technologies, Techniques and Methods 17

2.3 Defects Classification Schemes .. 22

2.3.1 Defects Classifications Studies Background .. 22

2.3.2 Orthogonal Defects Classification (ODC) .. 26

2.4 Root Cause Analysis ... 27

2.4.1 Fishbone diagrams .. 30

2.4.2 Five Whys ... 31

2.4.3 Failure Mode and Effects Analysis ... 32

2.4.4 Fishbone (cause and effects, Ishikawa) diagrams 33

2.4.5 SIPOC ... 34

2.5 Failure Analysis, Engineering Improvements and Empirical Studies .. 35
2.6 Final Remarks .. 37

Chapter 3 Process for Defects Assessment ... 39

3.1 Overview of the Process ... 40
3.2 Data Collection and Preparation .. 43

3.3 Defects Classification ... 44

3.4 Defects Root Cause Analysis ... 44

3.5 Improvements and Validation ... 45
3.6 Final Remarks .. 46

Chapter 4 Data Collection and Preparation .. 47

4.1 Overview of the Process ... 48
4.2 Data Collection ... 49

4.3 Data Preparation .. 52
4.4 Defects in the Dataset ... 54

 xxii

4.5 Final Remarks ... 56

Chapter 5 Defects Classification ... 58

5.1 Overview of the Process ... 59

5.2 ODC Classification Results .. 62
5.3 Proposed Adaptations (ODC Enhancements) .. 63

5.3.1 ODC Attributes – Activity .. 63

5.3.2 ODC Attributes – Type ... 64

5.3.3 ODC Attributes – Trigger .. 65

5.3.4 ODC Attributes – Impact .. 67

5.4 Enhanced ODC Classification Results .. 69

5.4.1 Defect Type Results .. 70

5.4.2 Defect Trigger Results ... 72

5.4.3 Defect Impact Results ... 73

5.4.4 Combined Results .. 75

5.5 Validation of the Enhanced ODC .. 82
5.6 Final Remarks ... 84

Chapter 6 Defects Root Cause Analysis .. 86

6.1 Overview of the Process ... 87
6.2 Root Cause Analysis Results .. 88

6.2.1 Enhanced ODC Defect Type RCA .. 88

6.2.2 Enhanced ODC Defect Trigger RCA .. 90

6.2.3 Late Detection RCA .. 94

6.2.4 Prioritization of the Root Cause Analysis ... 96

6.2.5 Improvements Suggestions .. 97

6.3 Effort Spent on the Root Cause Analysis Activities 100
6.4 Final remarks .. 101

Chapter 7 Process Validation and Application in Multiple Domains 103

7.1 Overview of the Process ... 104

7.1.1 Definition and Validation of the Questionnaire 104

7.1.2 Distribution of the Questionnaire .. 106

7.1.3 Characterization of the Respondents ... 106

7.2 Validation Results ... 107

7.2.1 Relevance of RCA ... 107

7.2.2 Feedback on the Defects Assessment Process 108

7.2.3 Evaluation of the Quality of the Root Causes 110

7.2.4 Evaluation of the Quality of the Measures .. 116

7.3 Application to Multiple Domains .. 120
7.4 Process Improvements as a Result of the Process Validation Activities

 122

7.4.1 Data Collection and Preparation Improvements 122

7.4.2 Defects Classification Improvements .. 123

7.4.3 Root Cause Analysis Improvements ... 124

7.4.4 General Process Improvements ... 125

 xxiii

7.5 Final remarks .. 125

Chapter 8 Conclusions and Future Work .. 127

8.1 Discussion .. 128

8.2 Threats to Validity ... 130
8.3 Future work .. 131

References .. 133

Annex A. Defects Assessment Questionnaire .. 143
A. General Questions .. 148

B. Defect Analysis Process .. 151
C. Defect Development Causes ... 154

D. Defect Detection Causes ... 155

E. Defect Avoidance Measures ... 156
F. V&V Measures ... 157

Annex B. Defects Analysis Textual Responses .. 162

Annex C. Summary of the Results of the Survey .. 191

Annex D. Example of Data Collection Template .. 196

 xxiv

List of Figures

Figure 1: V-model example ... 10
Figure 2: International standards for safety critical systems 11
Figure 3: Software increases and software related failures in space systems 12
Figure 4: US Aircraft Software Dependence .. 12

Figure 5: Risk Categorization of systems according to interactions and coupling 13
Figure 6: Growth of Airborne Software .. 13
Figure 7: ISVV phases .. 15

Figure 8: Fishbone diagram analysis example .. 31
Figure 9: Overview of the proposed process ... 40
Figure 10: General Process Definition .. 41
Figure 11: Data collection and preparation procedure .. 48

Figure 12: Defect type versus defect impact ... 78
Figure 13: Defect triggers versus defect impacts .. 79

Figure 14: Defect triggers versus defect types .. 81
Figure 15: Root Cause Analysis Overview ... 87
Figure 16: Process Recommendation Distribution .. 108

Figure 17: Development Defects Root Causes .. 112

Figure 18: Failure of Detecting Defects Root Causes ... 114
Figure 19: Development Measures .. 117
Figure 20: V&V Measures .. 119

Figure 21: Defect Assessment Process .. 152

file:///C:/Users/nsilva/Dropbox/Phd/FINAL_THESIS/phd-thesis-nuno-silva-v15.docx%23_Toc491726746
file:///C:/Users/nsilva/Dropbox/Phd/FINAL_THESIS/phd-thesis-nuno-silva-v15.docx%23_Toc491726747

 xxv

List of Tables

Table 1: ISVV Severity Levels ... 16
Table 2: ISVV Issues results ... 17
Table 3: Techniques referred in standards .. 19
Table 4: Main testing techniques referred in aerospace standards 21

Table 5: ODC attributes description ... 27
Table 6: Example of simple FMEA headers ... 32
Table 7: Fishbone Common/Proposed Categories .. 34

Table 8: Template of SIPOC Diagram .. 35
Table 9: Generic caracterization of the subsystems contributing to the dataset 50
Table 10: Dataset of ISVV defects ... 55
Table 11: ISVV original defect types classification ... 56

Table 12: Mapping between activities and triggers .. 61
Table 13: Original ODC classification results (731 defects) 63

Table 14: Standard ODC Type to Adapted Taxonomy .. 65
Table 15: Standard ODC Trigger to Adapted Taxonomy ... 67
Table 16: Standard ODC Impact to Adapted Taxonomy .. 68

Table 17: Enhanced ODC classification results (1070 defects) 69

Table 18: Specific Impact distribution for every defect type 70
Table 19: Specific Impact distribution for every defect trigger 72
Table 20: Phase of introduction versus phase of detection ... 76

Table 21: Defects detected late, after Implementation ... 77
Table 22: Defect types with high impact (Capability, Reliability and Maintenance) 78

Table 23: Defect triggers with high impact .. 80
Table 24: Defect triggers detecting specific defect types ... 82

Table 25: Effort Spent for the different ODC related activities 84
Table 26: Root Causes vs Defect Types with real examples 89
Table 27: Phase of introduction versus phase of detection ... 95

Table 28: Defects detected late, after Implementation ... 96
Table 29: Summary of root causes for main defect types ... 98

Table 30: Summary of root causes for main defect triggers 99

Table 31: Effort Spent for the root cause analysis activities 101

Table 32: General Questions Summary .. 107
Table 33: Experts Background knowledge Questions .. 108
Table 34: Amount of the Proposed Root Causes and Measures 111
Table 35: Difference between Aerospace experts answers and others for Q14 113
Table 36: Difference between Aerospace experts answers and others for Q16 115

Table 37: Amount of the Proposed Measures ... 116
Table 38: Difference between Aerospace experts answers and others for Q18 118
Table 39: Difference between Aerospace experts answers and others for Q20 119

 xxvi

Chapter 1

Introduction

"If builders built buildings the way computer programmers write

programs, the first woodpecker that came along would have destroyed all

civilization" -- Gerald Weinberg

Software is becoming more and more ubiquitous and the importance and complexity

of software systems in the safety critical domains are constantly increasing. A safety

critical system is a system where a failure might result in the loss of human life, damage

the environment or cause a severe incident/accident.

Safety critical systems, which strongly rely on software, are nowadays an essential

component of all aerospace, automotive, railways, nuclear, defense and medical

systems. However, in the past 30 years, there has been a significant number of software

problems that caused accidents and failures with severe impact within safety-critical

systems, e.g., Therac-25 [14], the Ariane 5 explosion [15], the Boeing 777-200 accident

(registered 9M-MRG) [16] or the Boeing 787 Dreamliner integer overflow bug that

could shut down the electrical power [17], and the Toyota Prius break problems [18]

or Toyota's electronic throttle control system (ETCS) that had bugs that could cause

sudden unintended acceleration [19], [20].

Safety and mission critical systems rely nowadays on more and more complex software

and are difficult to control while guaranteeing the highest levels of quality and

dependability. These systems must deal with the effects of faults and failures and, even

with the maturity and advances of software engineering, it is not possible to create

“perfect” systems nor software [21]. However, safety and mission critical industries

have kept an impressive safety record (compared to the complexity and size growth)

mostly due to the large effort spent on developing and validating their systems and to

the application of mature international standards and strict guidelines [22] and heavy

use of standard-based Verification and Validation (V&V) methodologies [23]. In fact,

these systems are developed according to very strict rules and guidelines, mostly due

to the need to be qualified and certified: for human safety it is not uncommon to require

Chapter 1

 2

the system to be designed to lose less than one life per billion (109) hours of operation,

and consequently it needs to follow specific and strict development standards [22] that

recommend or force techniques and processes, dedicated personnel training and

extensive domain expertise.

When critical systems fail and accidents cannot be effectively avoided lives are in

danger, extremely expensive systems are lost or damaged, and there are significant

economic and negative company exposure impacts. In fact, data and lessons learned

collected over several years of industrial experience have shown that safety critical

systems engineering is not perfect, and relevant issues are still transferred from phase

to phase [22], [24], [25]. Even in very strict engineering processes (such has the railway

and aerospace domains) these issues have critical impacts, might mask other issues,

and become costly to correct and maintain, while providing lower trust in the system.

Ebert states that “Applications that enter testing with an excessive volume of defects

cannot exit the testing phase because they don’t work” [22].

Safety critical systems require stable requirements and have several inflexible

requirements (constraints) to be fulfilled [26]. These systems are also known for the

demanding integration and validation efforts (on average, 40% of the software

engineering effort as per [27]), as they are not only generally embedded but also require

evidences to guarantee high dependability levels.

The increased importance and complexity of safety-critical systems is imposing new

objectives in terms of safety and dependability (quality), and at the same time

revealing that the current engineering techniques and applicable standards are

probably not enough to reach the safety levels required by society. In fact, these

systems are still causing (too many) severe accidents and failures keep being

propagated and introduced in all the lifecycle phases (for a concrete real example

survey see [28]).

Informally, we can define safety as “nothing bad will happen”. Leveson, in her book

Safeware [14], defines safety as the “freedom from accidents or losses”. Storey, in

Safety-Critical Computer Systems [29], defines a safety-critical system as a system

that “will not endanger human life or the environment”. Despite all the possible similar

and generic definitions of safety, in the frame of our work we consider safety as the

“freedom from the occurrence or risk of danger, injury or loss”. No system can be

completely “safe”, thus engineering needs to focus on making it safe enough, knowing

that there are constraints like budget, time, and resources. Two strategies have been

followed to achieve these goals in industry: i) focusing on eliminating end effects of

accidents rather than risks [14]; and ii) focusing on removing hazards rather before the

actual accidents [29].

This work addresses the problem of systematically studying the existing problems in

safety critical projects, and analyzing them, by identifying the potential root causes and

proposing solutions for avoiding their recurrence and, consequently, a negative impact

on the system.

Introduction

 3

1.1 Engineering Safety Critical Systems

Processes for developing critical systems are usually based on the waterfall/V-model.

The V-model defines a development process that is an extension of the waterfall model,

but instead of having the phases moving down linearly, the V-model process steps start

from the conceptual phase, moves to the requirements, architectural and

implementation (coding) phases and then bends upwards to the testing phases and the

operations and maintenance. In the V-model, there is not only traceability between

subsequent phases, but also horizontal traceability along the V, between the testing

phases and the development phases. This traditional model, which is normally

connected to the applicable international standards, provides the basic phases of the

engineering process, guides the structure of development and V&V, and is sequential

(waterfall). The sequential nature of engineering of these systems is considered

essential for managing communications, scale and complexity, integrating

multidisciplinary teams and managing the integration by well-defined phases, and

promoting traceability between the phase artefacts to facilitate certification (as required

by the safety critical standards).

Safety critical systems are very sensitive to failures, and the ultimate goal is to avoid

them at all costs, as “failure is not an option”. Since empirical research helps in

integrating research and practice, and empirical data and knowledge are essential to

understand and respond adequately to the dynamics of engineering, to build upon what

is already known and to act in order to adjust and correct situations that caused the

issues, the importance of empirical data is undeniable.

Empirical data includes not only the knowledge of the development frameworks and

processes, but also the actual data from failures, defects and identified issues, as well

as the analysis of what led to these defects in the first place (be it a human, a process

or a technology related root-cause). However, studying defects of safety critical

systems seems to be different from non-critical systems, not only because the nature of

the defects is different, but also due to the fact that the frequency of these defects is

rather different, for example:

 Industry average: "about 15-50 errors per 1000 lines of delivered code" [14];

 Microsoft applications: "about 10-20 defects per 1000 lines of code during in-

house testing, and 0.5 defect per KLOC in released product” [14];

 Space: as low as 3 defects per 1000 lines of code during in-house testing and

0.1 defect per 1000 lines of code in the released product [30];

 Best code: 0.5 to 1 defect per KLOC [31];

 NASA: down to 0.004 defects per KLOC, but a cost of 1000$/LOC compared

to 25$/LOC for commercial code [31].

The general idea is that a fault density of 1 fault per thousand Lines of Code (KLOC),

for safety critical systems is a world class value [32], and some studies do provide an

insight on the real values. For example, the Space Shuttle software [33] reaches fault

Chapter 1

 4

densities lower than 0.1 per KLOC, but this is considered an exceptional result, and its

development costs are higher than any other documented software development. In the

aeronautics domain, the C130J software, developed according to DO178B [34], had a

retrospective static analysis funded by the UK MoD (Ministry of Defense) that

concluded the existence of about 1.4 safety critical faults per KLOC (the overall flaw

density was about 23 per KLOC [35]). In commercial software, however, the fault

density is commonly higher, usually up to 10 faults per KLOC, while pre-release fault

densities can go up to 30 per KLOC [36], [37]. Other studies determine that the typical

values for commercial software are up to 4 faults per KLOC, and confirm that the best

fault densities possible for safety critical software are between 0.1-1.0 per KLOC (in-

line with the values presented before) [38]. Lastly, in one of our studies [25], with data

collected from 10 years of Independent Software Verification and Validation (ISVV),

the fault density prior to ISVV for space systems is at least 0.97 defects per thousand

lines of code. Although the fault density might not be stable when safety critical

systems become large and complex, if we consider a stable rate of 1 per KLOC for a

system with 100 KLOC, we are already talking about 100 safety critical faults.

In what concerns software failure rates, its estimation and collection is a bit harder than

for software fault density. Ellims [39] has studied the failure rates in automotive

industry, where most accidents are caused by driver action, and from those, the majority

has mechanical causes. Based on 0.1% of the recalls due to software, Ellims has

estimated that software issues (severe) cause a maximum of 5 deaths and 300 injuries

annually in the UK. Taking into account the 5 million vehicles in the road and 300

hours of driving time per year, failure rate for software becomes 0.2 x 10-6 failures/hour

(causing injury or death). Shooman [40] did a software fault analysis for the aviation

industry where he reaches a value of 10-7 failures/hour, and McDermid [32] also

calculated a value of 10-7 fatal accidents/hour for the aviation industry for software

causes.

The safety critical industry relies on strict rules and application of international

standards. An example of comparison of some of the most important standards has

been performed with particular focus on Verification and Validation [23]: we have

concluded that the basic contents and guidelines of these standards are common, and

some industries provide only particular additions in what concerns the techniques and

the way of presenting the evidences (with safety cases, or evidences format, for

example). Several of these standards have, in fact, common roots, and reuse the lessons

learned from the application of other standards in different domains.

The safety critical standards are generally mature, well established and most of the

times updated regularly (although DO-178B [34] is from the 1990’s, DO-178C [41] is

already available and in use). However, they might be too generic and become outdated

considering the new technologies, systems complexity and new software

responsibilities (e.g. FPGA, ASIC, more intelligence, safety, reconfiguration, security,

emergent behaviors, etc.).

For the safety critical industries, the application of standards is not optional, and all

development must strictly follow them. Some industries have a “certification” body

that needs to ensure that the full system is developed according to the requirements in

Introduction

 5

the standards. Other industries are less strict and do not require a formal certification

by an authorized body, but still use the standards as mandatory guidelines for the

development and acceptance of the systems. Examples of the first case are the aviation

and the railway industries, which need to have all systems certified by the certification

authorities before any market usage. In the second case, we can include the space

industry where certification is not required but following the applicable standards is

highly recommended and the systems are qualified before the acceptance phase by the

International Space Agencies.

Examples of safety critical standards for different domains are (some of these have

been used during this research, as we will see later): Space Domain - European

Cooperation for Space Standardization (ECSS) series (e.g. [42] and [43]), and NASA

Standards (e.g. [44]); Airborne Domain - DO-178B/C (software related) [34], [41],

DO-254 (hardware related) [45], ARP-4761 [46], ARP-4754 [47]; Automotive Domain

- ISO-26262 [48]; Railway Domain - CENELEC EN-50126 [49], EN-50128 [50], EN-

50129 [51]; Automation Domain - IEC-61508 [52], IEC 61511 [53], [54], [55], IEC-

62061 [56]; Medical Domain - IEC-62304 [57]; and Nuclear Energy Domain - IEC-

60880 [58];

Some standards last much longer than technology (e.g. D0-178B, ARP), while others

are not yet mature and widely accepted (ISO-26262). Practical experience and feedback

from the ECSS working groups show how these standards evolve, and this evolution is

not in a systematic and structured way (due to pressure from tool suppliers, influent

companies forcing, technology preferences or experience influences/preferences, etc.).

A recent case is DO-178C that has evolved the B version due to technology evolutions

and trends (object oriented programming, use formal methods, improve the testing

requirements, and industrial/commercial pressure).

In summary, engineering critical systems with a very low defect rates is a challenging

objective. The existing technological domains follow different standards and processes,

and are integrated in different development cultures, which leads to diverse defect rates

and different types of problems. Engineers can learn from the most successful domains

but it will certainly come with a cost. Alternatively, they can learn from the mistakes

and problems in their own domain, and improve gradually on the base of real defects

and real deficiencies. Within each domain, these issues can be related to the maturity

or suitability of the standards, the culture of development, V&V or safety, the applied

techniques, processes and tools, the engineers experience and training levels, and the

managerial constraints (time, cost, customer). The study of these concrete problems

(and the related solutions) for a specific domain is what is intended by this work.

1.2 Contributions of the Work

The goal of this research is to propose an approach to identify quality gaps and

consequently improve systems engineering based on the data available from

engineering execution quality. This approach is hereby called an assessment process

or assessment framework. In practice, the three main pillars of the work are the use of

Chapter 1

 6

empirical data about defects and issues from critical systems, the root cause

identification and relation of these issues and defects to the engineering processes, and

the measurable improvement in reducing the frequency and severity of issues and

defects in critical systems.

The usage of empirical data about defects and issues from critical systems enables

the provision of factual background intelligence about the dependability of systems,

provides concrete evidence of issues, defects and discrepancies and their nature, and

allows to confirm or deny the idea that critical systems based on strict requirements

and international standards achieve generally very high quality.

Root cause identification and relating the issues and defects to the engineering

process components is key to pinpoint what effectively contributed to the existence

of discrepancies, to determine the full (and sometimes, complex) chain of events,

resources and processes that lead to the problems, and to provide specific solutions to

avoid the issues and defects in the future.

The measurable improvement in reducing the frequency and severity of issues

and defects for critical systems is a central goal to demonstrate quantitatively that

the systems have improved, to clearly measure the impact of changing resources or

processes (either positive impact or negative/no impact), and to provide concrete

feedback to the framework and thus help in improving the whole systems engineering

and validation processes.

In detail, the main contributions of this research can be summarized as follows:

 The definition of a defects assessment process/framework that can be used

and applied in industry in a simple way and independently from the industrial

domain. The framework makes use of a dataset collected from existing issues

and process deficiencies, and supports the analysis of these data towards

identifying the root-causes for those problems and defining appropriate

measures to avoid them in future developments.

 The adaptation of the Orthogonal Defect Classification (ODC) [92] for critical

issues (integrated in the process/framework). In practice, ODC (from IBM) was

used as an initial classification and then it was refined according to the gaps and

difficulties found during the initial stages of our defects classification. The

refinement was applied on the defect types, defects triggers and defect impacts.

Improved taxonomies for these three parameters are proposed.

 The integration of a root cause analysis process to relate the issues (or issue

groups) with the engineering properties. The engineering properties (e.g.

human and technical resources properties, events, processes, methods, tools and

standards) are, in fact, the principal input for the classes of root causes. A

fishbone root cause analysis is proposed, integrated in the process/framework

and applied to the available dataset.

 The identification of a dynamic set of root causes and applicable measures

to improve the quality of the engineered systems. These allow the provision of

quick and specific feedback to the industrial engineering teams as soon as

the root causes are identified. The list/database has been compiled from the

Introduction

 7

dataset and includes the feedback and contributions from the experts that

responded to the process/framework validation survey.

 The promotion of a cultural change to appropriately use real defects data,

which are the main input of the process/framework, and that shall be easily

collected, cleaned and updated. The regular use of defects data will contribute

to measure the quality evolutions and the progress of implementation of the

corrective actions or improvement measures that are the output of the

process/framework.

These contributions are described in this thesis with concrete results and a specific case

study application. In practice, the central contribution is the defects assessment

process/framework (reusable across different domains or industries) that supports

analysts and engineers in the classification of issues with a defined (adapted)

orthogonal issues classification and allows the identification of the relevant root causes,

that are mapped to the systems engineering elements in order to provide measures and

improvement recommendations (these cover suggestions to improve the standards,

development and V&V techniques, training to the human resources or modifications to

the organization or project lifecycles and management). The assessment

process/framework is flexible enough to be updated and receive feedback from the

implementation of the measures or from judgement of experts. The classification

schemes and the root cause analysis techniques applied are not necessarily attached to

the process and other techniques can be applied if deemed necessary or if proved more

efficient.

As a practical result of the work, a dataset including European space engineering issues

has been collected and used through the full cycle of the process/framework. The

feedback obtained can be provided to the community in order to improve the

development and V&V processes (some of these results have already been provided to

European space industries). The resulting root causes identified and measures proposed

can be used by the space industry, but also by other safety critical industries, to adapt

and improve existing standards (ESA ISVV Guide, ECSS, DO-178, ISO26262,

CENELEC, etc.), in particular by identifying the missing V&V activities and

promoting a regular/enforced application of the proposed measures.

1.3 Structure of the Thesis

This chapter introduced the context, the problem and the main contributions of the

thesis.

Chapter 2 presents background concepts relevant for the current work as well as

existing related works. It covers the dataset sources (namely ISVV activities), defects

classification schemes, types of procedures for root cause analysis, and background

studies on defects/failures analysis and engineering improvements studies.

Chapter 3 depicts and details the approach for defects assessment. The chapter

overviews the proposed approach, then details the process/framework steps one by one,

Chapter 1

 8

and finally presents a generalization of the utilization and outcomes of the

process/framework in order to make it usable in any industrial domain.

Chapter 4 explains the defects data collection and data preparation procedures. In

practice, the chapter presents an overview of the data collection and preparation

process, then details the data collection and the data preparation, and discusses some

data quality, confidentiality and availability issues. Furthermore, the dataset used in

this work is described.

Chapter 5 describes the defects data classification procedures that lead from the original

ODC taxonomy into the Enhanced ODC proposed for critical systems in the frame of

this work. The Enhanced ODC taxonomy is explained and justified in this chapter,

which contains an overview of the adaptation procedure, a detailed description of the

modifications proposed to the original ODC taxonomy, and the validation strategy

applied to the new taxonomy.

Chapter 6 presents the detailed results of the application of the Enhanced ODC

proposed in Chapter 5 and of the Process for Defects Assessment defined in Chapter 3.

The results support the characterization of the problem types, triggers and impacts

associated to the defects under analysis. Based on these results, this chapter also

discusses the root cause analysis derived from the study of the defects while presenting

hints on how the root cause analysis and the obtained results can be extended/applicable

to different critical systems domains.

Chapter 7 presents the procedure used to validate the results of the defects assessment

process and how the root causes resolution can be verified in the long term and applied

to any critical systems domain. In practice, this chapter presents the results of a survey

submitted to a significant number of experts where the procedure to analyze defects,

derive root causes and identify solutions was tested and commented.

Finally, Chapter 8 concludes the thesis, summarizing the lessons learned, evidencing

the potential of the proposed solutions, and presenting the weaknesses that we believe

should be tackled as future work.

This document contains 4 annexes. Annex A contains the details of the survey provided

to the experts for validation of the defects assessment process and the obtained results.

Annex B provides the textual responses provided by the experts, including comments

on the process and additional root causes and measures proposed. Annex C includes

the results of the answers to the quantifiable questions of the survey. Annex D presents

the description of the data collection elements as used for our dataset collection and

preparation.

 9

Chapter 2

Background and related work

In this chapter, we present relevant background concepts and related work. The first

topic covered is related to the methodology used to collect and detect defects. In

particular, in this work we used defects identified by a team independent from the

development/design/validation ones, applying Independent Software Verification

and Validation (ISVV) techniques. Any other defects detection and collection

techniques and method can be applied as long as the defects contain enough detail to

be analyzed.

The second topic described in this chapter covers the defects classification methods.

This is also the second step of our process and is important to allow grouping of the

defects types and triggers in order to better define generic corrections and

improvements. During our work we have improved the selected classification method

that is described later in this document.

The third topic covers root cause analysis methodologies. This is the process part

where solutions are identified and improvements are proposed. We provide an

overview of the existing background and related work and describe the applied root

cause analysis in our process description later on this document.

The next topic in the chapter summarizes the failure analysis related studies that

provided a background for this work. These studies, including academic and industrial

studies, are an essential part of the work as they provided inspiration for the structure

of our proposed overall approach.

The fifth covered topic is about software engineering improvements studies. The

objective is to study what is being proposed and how it is being proposed so far in order

to adapt also our process in the best way to have real improvements in software

engineering.

The last topic described in this chapter is related to empirical analysis for critical

systems. Empirical studies are quite important as they are the most realistic sources of

corrections and improvements, though they are quite difficult to be made available

publicly due to confidentiality issues.

Chapter 2

 10

This chapter is composed by a short background and motivation description, then we

describe the ISVV activities, next we cover the defect classification schemes studied,

followed by the root cause analysis techniques considered, the failure analysis and

engineering improvements studies analyzed and some final remarks concerning these

topics.

2.1 Background Concepts and Motivation

This section presents two general concepts applicable to our study and some motivation

for the work performed in the rest of the report.

2.1.1 General Concepts

Most of the traditional systems are still developed according to the generic V-model

(Figure 1) which is adapted on a case-by-case situation by the companies to their needs

and according to their experience. Most of the concepts used in this work consider a

similar development lifecycle, but can be applied to any other lifecycle as can be seen

in our conclusions. This V-model encompasses the different phases that ranges from

System Concept down to System Operations, and our defects analysis process can be

applied to defects arising from any of these phases.

Figure 1: V-model example

Figure 2 depicts a set of important industry standards and shows some relations

between them, for example, several standards have been based on the more “generic”

IEC 61508 standard. As shown, there are several (overlapped and complementary)

standards for each domain. On one side, IEC 61508 is a quite generic and high level

Background and related work

11

standard that was used to derive very specific and focused standards. From this list, the

latest one the ISO-26262 that is still not contextualized in a certification process, as it

does not exist for the automotive domain. The airborne set of standards are

complementary (e.g. DO-178 for software, DO-254 for hardware, ARP-4762 for

safety), and the same is true for the ECSS and NASA standards for space, as they are

composed by a set of different standards and handbooks covering different areas of the

engineering processes.

Figure 2: International standards for safety critical systems

2.1.2 Systems and Software Growth and Complexity

The best safety critical software fault densities (between 0.1-1.0 per KLOC) are still

not enough since these systems cannot fail, nor contain faults that can cause incidents,

accidents or loss of human life (whenever we less expect it). Typical values for

commercial software are a few times higher (up to 30 faults per KLOC) [38]. With the

growing size, complexity and percentage of software in safety-critical systems, the

opportunities for software related problems also increase, thus the development and

V&V techniques must also be improved.

Chapter 2

 12

Figure 3: Software increases and software related failures in space systems

Figure 3 presented at the ESA Software Initiative [59], data originally collected by

Cheng [60], states that over half of the last three shown years of failures involved

software. FSW SLOC indicated the Flight Software lines of code. These graphs show

exponential growth patterns both for the size and for the software-related issues

occurrence. It gets even more complicated (or extremely costly) if we think that the

recent Mars Rover contained about 3.8 million lines of code [61]. For the aircraft

software the trend is similar. Figure 4, from [62], shows that by year 2000, about 80%

of an US aircraft functions are already performed by software, 40 years before this

dependence was only 10%.

Figure 4: US Aircraft Software Dependence

Background and related work

13

NASA has also performed a detailed study about Flight Software Complexity [63], this

study confirms the growth tendency, but also relates the size with the complexity (for

example software interactions and urgency of development) as shown in Figure 5 from

[63]. The more complex (and critical systems) are the safety critical ones, such as

nuclear and chemical, aerospace and military.

Figure 5: Risk Categorization of systems according to interactions and coupling

The safety critical code tends to be small (to be controllable, maintainable and simple)

but that is not always possible. In fact, the airborne software size has grown from about

10 thousand lines of code in 1980 to over 10 million of lines of code nowadays [64] as

shown in Figure 6.

Figure 6: Growth of Airborne Software

Chapter 2

 14

2.2 Independent Software Verification and Validation

(ISVV)

ISVV stands for Independent Software Verification and Validation, and it is composed

by a set of activities performed by and independent team that assesses the software and

the system artefacts in order to improve the quality of critical systems and detect

defects. This section presents an introduction to ISVV and some details about the ISVV

techniques and methods.

2.2.1 ISVV Introduction

Any techniques that allow the detection of defects can be applied in software

engineering in order to improve its quality. We might think about the traditional

verification and validation (V&V) activities that are essential to any software

engineering lifecycle. These are, commonly, tasks that identify issues and allow their

“immediate” correction, most of the time not improving the software engineering

process nor the organization, but the product under development. We hereby have used

defects detected during independent assessment activities, after the regular V&V

activities have been performed and the found issues corrected.

ISVV is particularly targeted at critical software systems and intends to be an additional

tool to increase the quality of software products, thereby reducing risks and costs

through the operational life of the software-based systems. ISVV supports engineers

by providing assurance that software performs according to the defined requirements,

to the specified level of confidence and safety, and within its designed and intended

parameters.

ISVV activities are performed by independent engineering teams, not involved in the

software development process, to assess the engineering processes and the resulting

software products. The ISVV team independency shall be financial, managerial and

technical.

ISVV intends to go far beyond “traditional” V&V techniques, applied by project

engineering teams. While the latter aim mainly to ensure that the software performs

well against the nominal requirements, ISVV is especially focused on non-functional

requirements such as safety, performance, robustness and reliability, and on conditions

that can lead the software or system failures. ISVV results and findings are fed back to

the development teams for correction and improvement and these modifications are

later confirmed by the ISVV teams (acting similarly to independent safety assessors).

ISVV is a set of structured engineering activities supported by tools that allow

independent analysts to evaluate the quality of the software engineering artefacts

produced at each phase of the engineering lifecycle. ISVV is commonly performed on

mature artefacts, which follow strict engineering standards (due to the nature of the

domains where ISVV is applied), and that have been previously verified and validated

as part of the regular engineering processes. It provides an additional layer of

confidence and is not expected to find a large number of severe defects. ISVV produces

Background and related work

15

evidences that support measuring the quality of the engineering processes, of the

software and of the human and organizational resources involved in the software

engineering processes. ISVV is referenced in several international standards: a) ISVV

guide from the European Space Agency (ESA) [65]; b) ISO Software Lifecycle

Processes (ISO/IEC 12207) [66]; c) IEEE Software V&V (IEEE 1012) [67], NASA

IV&V Quality Manual [68], and mentioned in DO-178B [34].

ISVV includes six basic phases that can be executed sequentially or selected/adapted

as the result of a tailoring process based on a criticality analysis [65]. These phases are

(see Figure 7):

 ISVV Planning: planning of the activities to be performed 8based on the size

and complexity estimations), definition of the ISVV level that will impact the

set of techniques to be applied, System Criticality Analysis (through a set of

Reliability, Availability, Maintainability and Safety – RAMS – activities), and

selection of the appropriate methods and tools to be applied.

 Specification/Requirements Verification: verification activities for

completeness, correctness, consistency, testability, etc.

 Architectural/Design Verification: verification of design adequacy and

conformance to software requirements and interfaces, internal and external

consistency checks and verification of feasibility and maintenance.

 Source Code Verification: verification of the code for completeness,

correctness, consistency and traceability through code inspections, code metrics

analysis, coding standards compliance verification and static code analysis.

 Test Specification/Results Verification: verification of the test artefacts,

which might include test specifications, procedures, results and reports, as well

as traceability verifications and completion of test areas.

Figure 7: ISVV phases

Chapter 2

 16

 Independent Validation: validation activities based on the identification of

unstable components/functionalities and missing testing areas to promote

validation focused on Error-Handling.

According to the ESA ISVV Guide [65], ISVV engineers classify defects considering

three severity levels as described in Table 1.

Table 1: ISVV Severity Levels

Severity Description

Comment The discrepancy found does not present any threat to the system. The issue was

raised as a recommendation that aims at improving the quality of the affected item.

Minor The discrepancy found is a minor issue. Although it does not present a major threat

to the system, its correction should be done.

Major The discrepancy found refers to the lack of pertinent information or presents a threat

to the system. The correction and/or clarification of the discrepancy are pertinent.

Each ISVV defect is also classified according to an ISVV defect type:

 External consistency: differences between implementation of artefacts

between phases or with other applicable or reference artefacts (e.g. inconsistent

documentation);

 Internal consistency: inconsistency against another part of the same artefact

(e.g. different code for similar purpose, differences within the same document

or architectural components);

 Correctness: item incorrectly implemented or with technical issues (e.g.

erroneous implementation, wrong documentation description, bad architectural

definition);

 Technical feasibility: item not technically feasible with the actual constraints

(e.g. unattainable or impossible requirement, architecture nor viable);

 Readability and Maintainability: item hard to understand and/or maintain

(e.g. lack of comments or no description, requirements too complex or too

generic);

 Completeness: item not completely defined or insufficient details provided

(e.g. missing details, missing architectural components, insufficient

requirements, not all requirements coded);

 Superfluous: item that is a repetition or brings no added value to the artefact

(e.g. repeated requirements, copy-pasted code doing the same actions);

 Improvement: suggestion to improve any property of the artefact usually not

related to a single of the other classification types (e.g. efficiency, simplicity,

readability);

Background and related work

17

 Accuracy: the item does not describe with precision or follows the applicable

standard (e.g. measurement precision, calculation precision, exact

implementation).

Some previous studies, based on ISVV results and data collection, have analyzed

metrics, efficiency and efficacy of the ISVV results and techniques used within ISVV

to identify the defects in critical projects [69], [70], [71], [72] and [73]. The essential

conclusions from these studies are that ISVV still finds a significant amount of issues

even after the regular V&V activities have been carried out as seen in Table 2 from

[71] (0.69 issues per requirement, 0.97 issues per 1000 lines of code, 0.32 issues per

test case), the identified issues are accepted by the customer with over 80% of

acceptance rate, and all ISVV phases contribute effectively to find defects from

specification analysis down to the very important independent test analysis.

However, none of these studies considered their observations and results to classify or

group the defects and improve the development processes, techniques, tools, or

standards at large, they have been used to correct each individual issue one by one.

Table 2: ISVV Issues results

Metric Requirements Design Code Test TOTAL

RIDs per Requirement 0.25 0.2 0.14 0.1 0.69

RIDs per 1000 SLOCs N/A N/A 0.24 0.73 0.97

RIDs per Test N/A N/A N/A 0.32 0.32

RIDs per hour 0.15 0.22 0.15 0.21 -

% Major Issues 21% 15% 21% 21% -

These previous studies have shown that existing standards and good engineering

practices are not enough to guarantee the required levels of safety and dependability of

Critical Systems. Independence of V&V avoids author bias and is often more effective

at finding defects and failures. It can be managerial, financial and technical, it brings

separation of concerns, complementarity, second/alternative opinions, and it also has

the merit of pushing development and in-house V&V teams to focus on the quality of

their work. The role of independence at early development phases is highlighted in [74]

and clearly stated in the requirements of several standards such as CENELEC [75]

(depending on the SIL level), and DO-178 [34] (where for example, for the most critical

level -A-, 33 out of the 71 objectives/requirements of the standard must be satisfied

with full independence).

2.2.2 ISVV Technologies, Techniques and Methods

This section presents a summary list of commonly used techniques for ISVV of critical

systems, focused in aerospace (aeronautics and space) standards. These techniques are

Chapter 2

 18

referred in the safety critical standards presented in Table 3, which are one of the targets

for the assessment process suggested improvements, because this list and the current

practice are not complete, some techniques are not properly applied or not applied at

all in some domains, and some standards only suggest the use of some techniques in a

very generic way.

Table 3 illustrates the main applicable V&V techniques that have been identified in the

standards, organized in 12 groups. ECSS-E-ST-10-06C [76] is reported although it

does not describe V&V processes, but it does mention some V&V techniques. ECSS-

E-ST-10-03C [77] and ECSS-Q-ST-20-10C [78] are not reported in table as they

provide little or no relevance to specific techniques. We note that all standards have

elements from group 1 and group 11, that is, analysis, reviews, traceability and testing

are common keywords of all V&V processes and related aerospace standards surveyed.

From this classification, the DO-254 [45] is the standard which mentions the highest

number of techniques, followed by ARP and ECSS-Q-ST-30C [79]. A marginal note

is that FAA HDBK006A [80] mentions Reliability Modelling, but specifying that

“Reliability modelling requirements [..] should be limited to simple combinatorial

availability models […]; Complex models intended to predict the reliability of

undeveloped software […] generate a false sense of complacency.” This sentence

merges reliability and availability, but also addresses the difficulties in predicting

software reliability, currently another open research problem. Finally, we note that little

emphasis is devoted to the schedulability analysis technique, even for safety-critical

systems.

Background and related work

19

Table 3: Techniques referred in standards

A
R

P
4

7
5
4

-A
 +

 A
R

P
4

7
6
1

D
O

1
7
8

-B
 +

 F
A

A

8
1
1
0

.4
9

D
O

2
5
4

D
o

-1
7

8
C

 +
 su

p
p

le
m

e
n

ts

E
D

-1
5

3

F
A

A
 H

D
B

K
 0

0
6
°

E
C

S
S

-E
-S

T
-1

0
C

E
C

S
S

-E
-S

T
-1

0
-0

2
C

E
C

S
S

-E
-S

T
-1

0
-0

6
C

E
C

S
S

-E
-S

T
-4

0
C

E
C

S
S

-Q
-S

T
-3

0
C

E
C

S
S

-Q
-S

T
-4

0
C

E
C

S
S

-Q
-S

T
-8

0
C

T
O

T
A

L

1

reviews, inspections

(Fagan, walk-through,

…), analysis

(traceability, static

code analysis, HW/SW

interaction, …)

x x x x x x x x x x x x x 13

2
FMEA, FMECA,

FMES
x x x x x x x x 8

3 Hazard Assessment x x x x x 5

4

modeling (SW

reliability models,

Finite state machine,

Petri Nets, Finite State

Machines, Markov

models, …)

x x x x x x x x x x 10

5
Fault Trees,

Dependence diagrams
x x x x x x x x 8

6 prediction methods x x x 3

7

Common Cause

Analysis (CCA),

Common Mode

Analysis

x x x x x x 6

8
Functional Failure

Path Analysis (FFPA)
 x 1

9
Formal methods,

model checking
 x x x x x 5

1

0
Schedulability analysis x 1

1

1
Testing x x x x x x x x x x x x x 13

1

2

Similarity, service

experience, failure

statistics

x x x x x x x x x 9

 TOTAL 8 6 11 5 7 6 5 3 2 7 8 7 7

Table 4 also presents the main testing techniques identified in the aerospace standards.

Some standards as the ARP-4754A [47] where attention to identify punctual testing

techniques is minimal are not reported. DO-254 [45] is not reported, as its testing

techniques are hardware specific (built-in, system bench, aircraft testing). We note the

Chapter 2

 20

following: FAA HDBK006A [80] mentions reliability growth testing for software

systems (not reported in Table 2), which by its description seems simply meaning that

fault removal process should be applied on the developed software. ECSS-Q-ST-30C

[79] discusses reliability, availability and maintainability testing, but no indications are

reported on the specific techniques to perform these tests (probably these are robustness

and fault injection, but still not clarified). As it could be expected, the testing techniques

that are most mentioned are interface and functional testing, and integration testing,

followed by input-based testing, unit testing and stress testing. Timing testing is

mentioned explicitly only once, in the ECSS-E-ST-40C [42] (which also mentions the

schedulability analysis).

Apart the information in the table, we also observe that ECSS-E-ST-10-03C [77]

explicitly mentions test accuracy, tolerance, margin in tests results and inaccuracies,

and that ECSS-E-ST-40C [42] discusses intrusiveness of the environment specifying

“testing that the software product can perform successfully in a representative

operational and non-intrusive environment”.

Background and related work

21

Table 4: Main testing techniques referred in aerospace standards

 Avionics Space

 Test name

D
O

1
7
8

-B
 +

 F
A

A

8
1
1
0

.4
9

D
O

-1
7
8

C
 +

su
p

p
le

m
e
n

ts

E
D

-1
5

3

F
A

A
 H

D
B

K
 0

0
6

A

E
C

S
S

-E
-S

T
-1

0
-

0
6

C

E
C

S
S

-E
-S

T
-1

0
-

0
3

C

E
C

S
S

-E
-S

T
-4

0
C

E
C

S
S

-Q
-S

T
-3

0
C

E
C

S
S

-Q
-S

T
-4

0
C

E
C

S
S

-Q
-S

T
-8

0
C

T
o

ta
l

1 requirements-based x x x 3

2 (hw/sw, sw/sw) integration x x x x x 5

3
input-based (extensive inputs,

normal-range, boundary, ...)
x x x x

4

4 interface and functional x x x x x 5

5 unit x x x 3

6 white box 0

7 black-box x 1

8 grey-box x 1

9 fault tolerance diagnostic x 1

10 fault injection --, failure -- x x 2

11 robustness x x 2

12 stress x x x 3

13 performance x x 2

14 structure x x 2

15 low-level x x 2

16 implementation x 1

17 isolation x 1

18 closed loop 0

19 periodic --- during storage, x 1

20
destructive tests (e.g., Burst

test)
 x

1

21
reliability, availability,

maintainability
 x 1

22 usability x 1

23 mechanical, thermal, electrical x 1

24 timing/schedulability x 1

TOTAL 5 5 8 2 0 6 8 2 1 7

Another relevant source of V&V techniques for aerospace application is the ESA ISVV

Guide [65]. During the time of production of this guide we have surveyed also other

domains and we have collected a list of relevant, non-exhaustive, techniques that could

be useful for independent verification and validation. The surveyed domains included

space, aeronautics and nuclear. This guide contains all independent verification and

Chapter 2

 22

validation activities detailed per lifecycle phase and according to component criticality,

a suggested list of applicable methods and suggested checklists.

The main methods/techniques described in the guide are:

 Formal Methods

 Inspection

 Modelling

 Data Flow Analysis

 Control Flow Analysis

 Real-Time Properties Verification

 Reverse Engineering

 Simulation (Design execution)

 Software Failure Modes, Effects and Criticality Analysis (SFMECA)

 Static Code Analysis

 Traceability Analysis

The impact of methods and techniques in the quality and dependability of software-

based systems is undeniable, and we could go on in listing more V&V and development

techniques that influence somehow the engineering process.

2.3 Defects Classification Schemes

One of the first areas that were considered important for the research was the issues (or

defects) classification. This is an essential part of the defined process since it directs all

the subsequent process phases and the results are dependent on a proper classification.

The main topics that were researched concerning this topic include: defect

classification, orthogonal defect classification, empirical data analysis and

classification taxonomies. This section presents these studies and then focuses on the

orthogonal defects classification topic.

2.3.1 Defects Classifications Studies Background

From the different possible defects classification taxonomies (e.g. as described in [81],

[82] and [83]), the one who has been adopted and consistently used by industry is ODC

[84]. The list of taxonomies is extensive, sometimes connected to a specific engineering

phase, and commonly questioned by the practitioners that tend to propose some

adjustments. These taxonomies are often complex (Kaner, Falk and Nguyen’s

Taxonomy [85] contains about 400 types of defects). Some examples of considered

defect classification taxonomies are:

1) Beizer's Taxonomy [86],

Background and related work

23

2) Kaner, Falk and Nguyen's Taxonomy [85],

3) Robert Binder's Taxonomy [87],

4) Whittaker's "How to Break Software" Taxonomy [81], [82],

5) Vijayaraghavan's eCommerce Taxonomy [81], [82],

6) Hewlett Packard Taxonomy [88],

7) IEEE Standard Classification for Software Anomalies [89], [90],

8) Orthogonal Defect Classification [84], [91] and [92].

Some researchers have compared different taxonomies, such as in [83] where the

authors presented a framework for comparing six of the previous defect taxonomies,

the results of the evaluation and concluded that all of them presented deficiencies. The

Freimut report [93] presents the aspects of a defect that have been measured in the

literature and possible structures of a defect classification scheme with examples of

frequently used defect classification schemes. It also presents general methods to

analyze defect classification as reported in the literature as well as concrete analyses

for a variety of purposes.

The Vallespir [83] analysis has shown that only two of the six analyzed taxonomies

(from the list above: 1.2, 3, 6, 7 and 8) guarantee orthogonality:

 The IEEE Standard Classification for Software Anomalies, and

 The Orthogonal Defect Classification (ODC).

The IEEE Standard Classification for Software Anomalies [90] provides a uniform

approach to the classification of software anomalies, regardless of when they originate

or when they are encountered within the project, product, or system life cycle. Data

thus classified may be used for a variety of purposes, including defect causal analysis,

project management, and software process improvement. However, this IEEE

taxonomy might lead to quite extensive taxonomies to be easily applicable in an

industrial and recurrent context. Yet, this taxonomy has not been extensively used in

industrial defects assessment.

ODC [84], [91] and [92] is one of the more adopted defect classification approaches,

originally proposed by IBM. In ODC a defect is classified across several dimensions:

(1) type, (2) source, (3) impact, (4) trigger, (5) phase found, and (6) severity. There are

only eight options for the defect type making it easy and still covering the defect type

space. Defect triggers represent a limited list of detection techniques for finding the

defects, connecting defect types and triggers. ODC is quite generic and applicable to

different domains but mostly oriented to design, implementation and testing originated

defects.

From the multitude of studies and reports where defects classification has been applied

and studied we have selected some of the most important and relevant ones that are

presented and summarized hereafter.

Chapter 2

 24

Orthogonal defect classification using defect data to improve software

development [94]: This paper describes ODC and illustrates how ODC can be used to

measure development progress with respect to product quality and identify process

problems. The paper presents the results of a feasibility study conducted by the

Motorola Corporate Software Center, Software Solutions Lab and the Cellular

Infrastructure Group, GSM Products Division's Base Station Systems software

development group using ODC.

The repeatability of code defect classifications [95]: This paper evaluates an

adaptation of ODC with the Kappa statistic. Defect data from code inspections

conducted during a development project was used. The results indicate classification

repeatability, in general. Improvements are suggested to improve classes of defects

categorization. The author notes that defect classifications are subjective and this is

why it is necessary to ensure that the classifications are repeatable (classification not

dependent on the individual).

Using defect patterns to uncover opportunities for improvement [96]: This paper

presents the application of Bellcore tool Efficient Defect Analyser (EDA) that supports

ODC to three case studies, identifies the main pitfalls of the classification (incomplete

data, wrong classification, etc.) and provides some future directions.

Improving software testing via ODC: Three case studies [97]: This paper presents

the results of applying ODC to three case studies in order to improve software testing.

For the first case study, with a high maturity development process, the study has

provided specific testing strategies to reduce field defects. For second one, a

middleware project, it identified areas of system test that needed to be improved. For

the third, a small project, small team and inadequate testing strategy, the study made

the team acknowledge the project risks, schedule delays and proposed necessary

missing testing scenarios. The authors claim that ODC helps the identification of

actions to increase the efficiency and effectiveness of development and test.

Classification and evaluation of defects in a project retrospective [98]: This study

consists of three investigations: a root-cause defect analysis (RCA) study, a process

metric study, and a code complexity investigation on an optical network project. The

authors made a correlation between the classification and the root-cause analysis and

the adherence to the applicable development process.

Empirical analysis of safety-critical anomalies during operations [99]: This paper

presents some results from applying ODC to analyze about 200 hundred operational

anomalies from seven different spacecraft systems. They found interesting

(unexpected) classification patterns and lead to identification of proposed

improvements to the software, the development process and the operational procedures.

Defect categorization: making use of a decade of widely varying historical data
[100]: This paper describes the results of an aggregation of historical datasets

containing inspection defect data (with different categorization schemes). By using

historical data and ODC-based classification the authors intended to create models to

guide future development projects. A very interesting set of recommendations for

classification of defects is provided in the paper.

Background and related work

25

Defect Classifications and Defect Types Revisited [101]: This short position paper

summarizes the work of defect classification as applied in academia and industry with

similar classification schemes but none widely accepted. The paper identifies a set of

challenges and proposes generic directions in order to get a more widely accepted and

common classification.

A systematic literature review to identify and classify software requirement errors
[102]: This paper presents a systematic literature review to develop taxonomy of errors

(i.e., the sources of faults) that may occur during the requirements phase of software

lifecycle. Improvement of the requirements engineering and the overall software

quality are the goals of this new taxonomy. The study identified 149 papers from

different domains related to requirements faults. The authors provided a categorization

of the sources of faults into a formal taxonomy that provides a starting point for future

research into error-based approaches to improving software quality.

Using orthogonal defect classification in a Norwegian software company [103]:

This report presents the work of a defect analysis and orthogonal classification made

at a Norwegian company (not disclosed) by applying statistical methods. The authors

found issues with the completeness of the defect report data, and analyzed the injection

phase and time to fix of the defects. They have suggested some improvements but

mostly to the defect reporting process.

Software Defect Analysis - An Empirical Study of Causes and Costs in the

Information Technology Industry [104]:This master thesis report, by collecting

defect reports from three different types of projects, represents the results of a

quantitative and qualitative analysis (root-cause analysis). The authors concluded that

there are differences among project types with regard to root causes for defects, and

differences similar between different levels of effort required to correct defects. It was

not possible in this study to measure how the differences influenced the root causes.

Quality Evaluation and Improvement Framework for Database Schemas - Using

Defect Taxonomies [105]: This paper proposes a defective patterns taxonomy for

database schemas. The authors identify four main classes of defects, namely complex

constructs, redundant constructs, foreign constructs and irregular constructs. They

develop some representative examples and discuss ways of improvement against three

quality criteria: simplicity, expressiveness and evolvability. The proposed taxonomy

and framework is applicable to quality assessment and improvement.

AutoODC: Automated generation of Orthogonal Defect Classifications [106]: This

paper presents an approach and tool for automating ODC classification by casting it as

a supervised text classification problem. The authors seek to acquire a better ODC

classification system by integrating experts' ODC experience and domain knowledge

into the learning process via proposing a novel Relevance Annotation Framework. The

case study was from the social network domain and allowed reduction of manual

classification with an accuracy of about 80%.

Classification of defect types in requirements specifications: Literature review,

proposal and assessment [107]: The authors made a literature analysis about

requirements defects classification taxonomy, they do mention ODC but conclude that

it is more indicated to classify code defects, they proposed a modified classification for

Chapter 2

 26

requirements defect types. The new classification was found to be essential to the

analysis of the root-causes of the defects and to their resolution. They have also

concluded that his new classification might still not be consensual, i.e. might have

different interpretations.

Classification of Software Defect Detected by Black-Box Testing: An Empirical

Study [108], is a study and an ODC adaptation for black box testing activities only. Li

et al effectively made a detailed analysis for black box types of tests, but the defects

detection methods and techniques can be much larger as the ones in our used datasets.

All the papers and reports introduced above are somehow related to the research work

we developed. They use defect classification schemes and taxonomies and some of

them clearly point out that these schemes are not perfect, while suggesting

improvements. Some papers go a bit beyond and identify root-causes and propose

improvements either to the classifications, to the defect reporting processes or to the

development/validation processes. None of these studies clearly studies safety-critical

defects and map them up to the characteristics of these systems, namely the influence

of the standards and certification processes. We feel, however, that all these works are

a valuable input for our work.

2.3.2 Orthogonal Defects Classification (ODC)

The Orthogonal Defect Classification (ODC), originally proposed by IBM (Chillarege

et al. [92]), is one of the most used defects classification approaches. It is intended to

be generic and applicable to different technology domains, but it is mostly oriented to

design, code and testing defects. ODC defines eight attributes for defects classification,

divided into two main groups: a) opener, and b) closer. Three attributes (Activity,

Trigger and Impact) classify the defect when it has been discovered and so they are

part of the opener group. The other five attributes (Target, Type, Qualifier, Age and

Source) are used when the defect is resolved, being thus part of the closer group. The

full taxonomies for each attribute can be obtained from the ODC v5.2 specification

[92]. A description of ODC attributes is summarized in Table 5.

Background and related work

27

Table 5: ODC attributes description

ODC Attribute Description

Activity

The actual activity that was being performed at the time the defect was

discovered. The main activities applicable to this work are: Requirements

verification, design verification, code verification, test verification and test

execution.

Trigger
A trigger represents the environment or condition that had to exist for the

defect to surface.

Impact
The impact is the effect that the team who is classifying the defect thinks it

would have on the system if not corrected.

Target Represents the high level identity of the entity that was fixed.

Type

The defect type is defined according to the fix that is necessary to remove it

from the system. For that reason, it is best classified by a team/person who

applied the fix to the defect.

Qualifier Captures the element of a non-existent, wrong or irrelevant implementation.

Age
Categorizes the age of the defect, whether if it is new or surfaced from a

previous defect.

Source Describes the source of the defect in terms of its developmental history.

As for several of the previous works about defects classification taxonomies, we had

to tailor the taxonomy for the attributes Trigger, Impact and Target, as described later

in this document and presented in [1], [2] and [7], that allow ODC to better comply

with the needs of space critical software systems. In those works, we have analyzed the

original ODC attributes and, with simplification in mind, as well as usefulness for root

cause analysis, we have picked those three as the essential attributes for our process.

2.4 Root Cause Analysis

Once the defects properly are classified, we can perform a root cause analysis (RCA)

in order to identify what were the sources and events that lead to the defects occurrence

or detection. RCA supports the identification of why an issue occurred contrary to only

identifying or reporting the issue itself, it also allows the identification of the

underlying cause(s) of the issues and helps in preventing additional rework and

proactively address future recurrences of the issues.

Some examples of root cause analysis techniques are [109]:

Five Whys: The “5 Why’s” can show how causes connect; and it really simplifies the

cause and effect relationship into a linear progression and typically focuses on the

Action causes.

Failure mode and effects analysis (FMEA): FMEA is a systematic procedure and

tool that helps identify every possible failure mode of a process or product, to determine

its effect locally or globally. The FMEA also ranks and prioritizes the possible causes

of failures of a process or product and can determine the frequency and impact of the

Chapter 2

 28

failure as well as suggest and implement preventative actions and compensating

provisions.

SIPOC (Suppliers, inputs, processes, outputs, customers) diagram: SIPOC is a

high level tool that simplifies the variables of any given process into five segments: S

for suppliers, I for inputs, P for process, O for output and C for customers. During

brainstorming sessions, team members determine the variables that are relevant to a

given process under analysis.

Flowcharting of the process flow, system flow, and data flow: Performed by flow

charting the process, system and data flow, and assembling a group of experts to

analyze the situation, while drafting a new version of the flow chart with the

information related to the events, facts and justifications.

Fishbone diagrams: The Fishbone method is a simple tool to identify the sources of

cause: Man, Machine, Method, Material, and Environment (there are variations of the

categories used on the Fishbone, another is: People, Procedure, Hardware and Nature).

The Fishbone diagram is not intended to show how all these causes interact with each

other, unless the analyst has experience in interaction analysis.

Critical to quality metrics: Critical to quality metrics are relevant measures of

attributes of a part, product, or process that is critical to quality or that has a direct and

significant impact on the actual or perceived quality.

Pareto chart: By studying and understanding data in the format of bar graphs that

categorizes the frequency of a certain type of event.

Statistical Correlation: Identify relationships (correlations) between variables where

they exist and discount them where they don’t by using regression analysis and taking

appropriate decisions.

Design of Experiments (DoE): DoE helps improving the capability of a process by

identifying the process and product variables that effect the mean and the variance of

the quality characteristics of a product.

The fact is that we do need to control the causes of problems [110] as a main objective,

and problems cannot be solved without solving their causes [111]. To do this project

analysis, called retrospectives are used, they are step-by-step processes [112]:

 Problem identification;

 Problem causes identification (using RCA) – the why [111];

 Cause-and-effect relationships are also identified;

 Root causes detection [111];

 Improvement suggestions for the identified root causes.

RCA is performed more or less frequently for every domain, for software engineering,

besides some of the articles already mentioned in section 2.3 and that are related to the

defect classification schemes we can highlight the survey made by Lehtinen et al [113]

where they propose a new tool for RCA but they surveyed another 35 existing tools to

Background and related work

29

perform on-line RCA. They separate their analysis in Software project retrospectives,

RCA and distributed retrospectives and the actual comparison of the 35 + 1 tools, but

their goal was to tackle the on-line and distributed properties of software projects

teams.

For the purpose of this work we have surveyed some relevant research works. Besides

the already mentioned papers, the following papers and books present relevant inputs

for the part of our process where root cause analysis is applied and applicable.

Review of Root Causes of Accidents due to Design [28]: A Safbuild project report

produced by Eurocontrol providing the results of a review study from different industry

databases of the proportion of accidents that have their root causes in design. It includes

accidents from aviation, railway and nuclear industries and concludes that about half

of them are root caused to the design phase by providing the more frequent root causes

identified.

Root Cause Defect Classification (RCDC) for Documentation Defects [114]: Rao has

made an industry study about root cause defect classification for documentation

defects, analyzing a few dozen defects on a monthly basis.

Defect Analysis and Prevention for Software Process Quality Improvement [115]:

Kumaresh et al conducted a study with data from a few hundreds of collected defects,

where these defects have been classified and the corresponding root causes have been

proposed to the learning of the projects as preventive ideas.

A case study in root cause defect analysis [116]: This paper presents a retrospective

root cause defect analysis based on defects identified during different phases of a

transmission network product. The authors present an RCA approach and classification

and the results obtained as well as lessons learned. This work is related to [98].

Quantitative Analysis of Faults and Failures in a Complex Software System [117]:

This paper presents the results of quantitative study of faults and failures of two releases

of a commercial system. They studied correlations and fault prediction metrics and

identified or denied some evidences and connections between components complexity

and size and fault density, for example.

Using defect analysis feedback for improving quality and productivity in iterative

software development [118]: This paper deals with defect analysis as a feedback

mechanism to improve the quality and productivity in a software project developed

iteratively. The authors discuss how defects found in one iteration can provide feedback

for defect prevention in later iterations.

Root Cause Analysis: Simplified Tools and Techniques [119]: This book, first edited

in 1999, describes the basic techniques and tools for root cause analysis.

Root Cause Analysis: Improving Performance for Bottom-Line Results [120]: This

book describes RCA as a structured investigation of a problem to detect which

underlying causes need to be solved.

Root Cause Analysis of Product Service Failure Using Computer

Experimentation Technique [121]: In this paper, the authors propose a methodology

of performing RCA and corrective actions in design by linking warranty failures with

Chapter 2

 30

product design parameters. An analytical approach based on computer experimentation

technique performs RCA of product failures (linking warranty failure modes with

design parameters) and identifies the analytical relationship between them. They

perform the identification of root cause(s) to address in tolerance product design faults.

The case study used was an automotive ignition switch.

Applying Root Cause Analysis to Software Defects [122]: In this short article

Kaushal highlights the importance of RCA that it needs to get commitment from the

institution champions and managers and that is an investment that must focus on

finding solutions to improve the overall processes.

The analyzed articles and books present RCA and Retrospective analysis as the way to

identify the root causes of faults or problems and address them instead of treating the

symptoms or effects. In safety-critical systems we do need to take into account both,

we can never ignore the symptoms and effects and we care about reducing possible

causes of faults at a minimum (e.g. RAMS analysis for safety-critical systems). RCA

has been a process and a set of tools that grew out of accident/incident investigations

and became a standard feature of modern engineering, still no so frequently applied in

industry. If something is failing, instead of just fixing it at the point of discovery, RCA

allows investigation and supports fixing the underlying causes at the point of origin.

2.4.1 Fishbone diagrams

Some of the previous studies seem to conclude that there is not perfect or preferred root

cause analysis techniques, instead a set of tools together will produce better results. We

hereby describe the commonly used Fishbone (also called Ishikawa) diagram analysis

that can be complemented by any of the other analysis to support correlation analysis

between the different attributes.

The fishbone diagram, also called Ishikawa or cause and effect diagram helps, through

brainstorming, to identify lists of causes of a problem and in grouping the causes into

relevant categories. A fishbone diagram is a visual tool to look at causes and effects. It

is a structured approach for brainstorming causes of a problem (more structured than

e.g., the Five Whys tool). The problem or effect is displayed at the head or mouth of

the fish, then possible contributing causes are listed on the smaller “bones” under

various pre-defined cause categories. A fishbone diagram is helpful in identifying

possible causes for a problem that might not otherwise be considered by directing the

analysts to look at all the pre-defined categories and think of alternative causes. The

analysts must be experienced in the problem domain ad be also aware of the process

and other systems involved in the event to be investigated.

The main steps to conduct and appropriate fishbone diagram analysis can be

summarized as follows (see Figure 8 for a simple example):

Problem statement: Clearly define the problem or the event/effect that is being

analyzed. Position this problem (or effect) at the head or mouth of the “fish.” Make

sure the problem is not a solution and is clear for all the involved experts.

Background and related work

31

Categories definition: The lists of categories for the causes of the problems is a key

step. Common categories often include: equipment or supply factors, environmental

factors, rules/policy/procedure factors, and people/staff factors. Common examples of

main categories are: Man, Machine, Method, Material, and Environment, or People,

Procedure, Hardware and Nature.

Brainstorm: Brainstorm the possible causes of the problem (leading to the effect). Ask

“Why does this happen?” Note down the causes proposed by the participants in the

brainstorming as a separate branch of the main category (causes can relate to more than

one main category and so must be written under several categories).

Keep asking Why: Similar to the five Whys keep asking “Why does this happen?” for

all the identified causes. Note down the proposed sub-causes related to each cause.

2.4.2 Five Whys

The 5 Whys is a technique used in the Analyze phase of the Six Sigma DMAIC (Define,

Measure, Analyze, Improve, Control) methodology. .It is applied by repeatedly asking

and refining the question “Why” (five is simply a good rule of thumb), and this way

the different levels of symptoms are identified, eventually leading to the root cause of

a problem.

The 5 Whys can be used individually or as a part of the fishbone (also known as the

cause and effect or Ishikawa) diagram. Thus supporting in the exploration all causes

that result in a single defect or failure. The 5 Whys technique can be applied to drill

down to the root causes once all inputs are established on the fishbone.

Figure 8: Fishbone diagram analysis example

Chapter 2

 32

An example of 5 drilled down questions attributed to the creator of the 5 whys

techniques, Talichi Ohno, is:

1) “Why did the robot stop?” - The circuit has overloaded, causing a fuse to blow.

2) “Why is the circuit overloaded?” - There was insufficient lubrication on the

bearings, so they locked up.

3) “Why was there insufficient lubrication on the bearings?” - The oil pump on the

robot is not circulating sufficient oil.

4) “Why is the pump not circulating sufficient oil?” - The pump intake is clogged

with metal shavings.

5) “Why is the intake clogged with metal shavings?” - Because there is no filter

on the pump.

2.4.3 Failure Mode and Effects Analysis

The Failure mode and effects analysis (FMEA) process is a proactive process used to

systematically analyze specific or vulnerable areas of a system or process. It is

commonly used for system assessment and development and not like the other root

cause analysis techniques that are applied once the problem occurs.

The FMEA supports in preventing defects and problems by identifying early in the

lifecycle phases the causes that might be hazardous and might cause these problems.

The FMEA also provide detection, mitigation and elimination measures that can be

implemented before any of the analyzed failures actually occur.

The FMEA is usually managed in a tabular format, where each row represents one

specific failure mode (a failure situation) and the columns contain, for example, the

contents specified in Table 6.

Table 6: Example of simple FMEA headers

Column Heading Description

Item No. A unique identifier for each row in the analysis

Name The name of the component

Function Brief explanation of component functionality

Failure Mode Description of how the component could fail

Local Effects Description of how the component will react if the failure occurs

System Effects Description of how system will react if the failure occurs

Fault Detection How the failure will be recognized as having occurred

Failure Management Methods (design or process) to manage the failure mode

Background and related work

33

2.4.4 Fishbone (cause and effects, Ishikawa) diagrams

The fishbone diagram, also called Ishikawa (named after its originator Kaoru Ishikawa)

or cause and effect diagram helps, through brainstorming, to identify lists of causes of

a problem and in grouping the causes into relevant categories. A fishbone diagram is a

visual tool to look at causes and effects. It is a structured approach for brainstorming

causes of a problem (more structured than e.g., the Five Whys tool). The problem or

effect is displayed at the head or mouth of the fish, then possible contributing causes

are listed on the smaller “bones” under various pre-defined cause categories (see Table

7 for a few examples). A fishbone diagram is helpful in identifying possible causes for

a problem that might not otherwise be considered by directing the analysts to look at

all the pre-defined categories and think of alternative causes. The analysts must be

experienced in the problem domain ad be also aware of the process and other systems

involved in the event to be investigated.

The tasks involved in constructing a Fishbone diagram can be summarized in three

main groups:

 1. Define the problem

o Problem statement: Clearly define the problem or the event/effect that

is being analyzed. Position this problem (or effect) at the head or mouth

of the “fish.” Make sure the problem is not a solution and is clear for all

the involved experts.

o Categories definition: The lists of categories for the causes of the

problems is a key step. Common categories often include: equipment or

supply factors, environmental factors, rules/policy/procedure factors,

and people/staff factors. Common examples of main categories are:

Man, Machine, Method, Material, and Environment, or People,

Procedure, Hardware and Nature.

 2. Brainstorm

o Brainstorm: Brainstorm the possible causes of the problem (leading to

the effect). Ask “Why does this happen?” Note down the causes

proposed by the participants in the brainstorming as a separate branch

of the main category (causes can relate to more than one main category

and so must be written under several categories).

 3. Identify causes

o Keep asking Why: Similar to the five Whys keep asking “Why does

this happen?” for all the identified causes. Note down the proposed sub-

causes related to each cause.

In particular, the Categories definition is an important step to support the brainstorming

and to direct the causes identification. Table 7 presents a few commonly used sets of

Chapter 2

 34

categories and also the applied set of categories for this work, that comes from a merge

of the other categories (in column 4 of Table 7).

Table 7: Fishbone Common/Proposed Categories

Services Industry

(4 Ps)

Manufacturing

Industry

(6 Ms)

Business Industry

(6 Ms)

Proposed set of

Categories for

Software Systems

Policies

Procedures

People

Plant/Technology

Machines

Methods

Materials

Measurements

Mother Nature

(Environment)

Manpower (People)

Method

Man

Management

Measurement

Material

Machine

Method

Man/People

Management

Measurement

Material

Machine

Policies/Procedures

Technology

Environment

2.4.5 SIPOC

SIPOC (suppliers, inputs, process, outputs, customers) is a visual way for documenting

a process from beginning to end. SIPOC diagrams are also referred to as high level

process maps because they do not contain much detail.

SIPOC diagrams are useful for focusing a discussion and helping team members agree

upon a common language and understanding of a process for supporting continuous

improvement. In Six Sigma, for example, SIPOC can be used during the “Define”

phase of the DMAIC improvement steps.

To create the SIPOC table (see example of Table 8), the following steps are required:

1) Name the process. It is suggested to use a Verb and a Noun (e.g. Read Memory

Location);

2) Define the process Outputs. The outputs are the results created by the process

(e.g. 100 bytes, a report);

3) Define the process Customers. The customers are the consumers of the outputs,

all outputs must have a customer;

4) Define the process Inputs. The inputs are the actions or triggers to the process

(e.g. a timer, a customer request)

5) Define the process Suppliers. The suppliers provide the process inputs,

suppliers can also be costumers.

6) Define the sub-processes composing the process. The sub-processes use the

inputs to create the outputs.

Background and related work

35

Table 8: Template of SIPOC Diagram

Process Name

Supplier Input Process Output Customer

Entity providing

each input

Trigger to the

process

Sub-process Result of the

process

Received of the

output

2.5 Failure Analysis, Engineering Improvements and

Empirical Studies

A literature review has been performed during the duration of the research activities in

order to find what the status of failure analysis research was. This review is presented

in detail in the following sections we can conclude that some of these papers, books

and reports have commonalities with our research work, although none of them fully

covers the cycle from empirical data (historical data containing critical issues) to

improvements up to the engineering, organization and standards level. Some activities

have been performed for a much smaller scope and quite rarely to safety critical

systems covering all the system lifecycle phases. Some researchers have focused on

specific bounded problems, some have covered defects data from a particular lifecycle

phase (e.g. requirements, source code, testing). However, some research work must be

mentioned in this section especially due to the applicability to our research and

commonalities that have been explored.

Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems
[123]: This paper from Dr. Robyn Lutz, analyses the root causes of safety-related

software errors in safety-critical, embedded systems. She concluded that software

errors identified as potentially hazardous to the system tend to be produced by different

error mechanisms (non-safety-related software errors). They arise from discrepancies

between the documented requirements specifications and the requirements needed for

correct functioning of the system and misunderstandings of the software's interface

with the rest of the system. The paper contains the identification of some methods by

which requirements errors can be prevented. The objective is also to reduce safety-

related software errors and to improve the safety of complex, embedded systems.

In-process improvement through defect data interpretation [124]: This paper

presents an approach for the interpretation of defect data by the project teams to help

correcting the software engineering process during development in order to improve

quality and productivity. The authors use examples of corrections to evaluate and

evolve the approach, and to inform and train those who will use the approach in

software development.

Software System Defect Content Prediction from Development Process and

Product Characteristics [125]: The PhD dissertation from Dr. Nikora had the

objective of ensuring reliability for the ever growing, in size and complexity, software

space systems by developing new techniques to measure and predict system’s

reliability and thus influence the development process and change the system’s

Chapter 2

 36

structure. He has developed a model for predicting the rate at which defects are inserted

into a system, using measured changes in a system’s structure and development process

as predictors, and show how to estimate the number of residual defects in any module

at any time and determine whether additional resources should be allocated to finding

and repairing defects in a module.

Defect Analysis and Prevention for Software Process Quality Improvement [115]:

This paper represents the results of a quantitative analysis of defects that occurred in

the software development process for five similar projects and from the classification

of various defects using first level of ODC, then finding these defects root causes and

use the learning of the projects as preventive suggestions. The paper also shows the

improvement in terms of reduction of defects once the preventive suggestions are

implemented in other projects.

Defect data analysis as input for software process improvement [126]: this paper

describes the results of an analysis of 11879 software defects that have been classified

and analyzed in order to determine the defect distributions and what are the most

common defect types (defect from 3 companies). The authors noted that functional

defects are, by far, the most common (65.5%), they concluded that unclear

requirements or documentation only contribute to a residual percentage of defects

(under 0.5%). The results of this study can be used to support the engineering process

improvement.

Using defect analysis feedback for improving quality and productivity in iterative

software development [118]: This paper deals with defect analysis as a feedback

mechanism to improve the quality and productivity in a software project developed

iteratively. The authors discuss how defects found in one iteration can provide feedback

for defect prevention in later iterations.

Using Defect Analysis as an Approach to Software Process Improvement [127]:

This presentation (and several other similar papers and presentations from the same

author) demonstrate a way to classify bugs (problem reports), according to Beizer’s

taxonomy [86]. This taxonomy contains nine main categories, which are further

detailed in up to four levels. The author claims that categorizing each bug takes about

five minutes. The improvements inspired by this defect analysis lead to better products

(less defects after release, higher customer satisfaction).

Digital Engineering Institute: Lessons Learned - klabs.org [128]: This webpage

presents a scientific study of the problems of digital engineering for space flight

systems, with a view to their practical solution. It contains links to the NASA Lessons

Learned Information System. The website contains lessons learned from design,

analysis, verification, and test of digital systems. It presents several reports with flight

problems and the relevant solutions, it might be a good input for the improvement

suggestions.

The Top Ten Things that have been Proven to Affect Software Reliability [129]:

The work performed by Ann Marie Neufelder includes analysis of field failures and

correlation to the engineering development characteristics (a total of 679

characteristics). The data comer from 75 complete datasets and 54 incomplete datasets.

Another study (Rome Laboratory model) contained 50 datasets and 220 parameters,

Background and related work

37

only. She uses correlation analysis and does sensitivity analysis and can rank the

development characteristics according to their contribution to field defects and use the

most influential characteristics to run a predictive model.

A Literature Survey of the Quality Economics of Defect-Detection Techniques
[130] and A Model and Sensitivity Analysis of the Quality Economics of Defect-

Detection Techniques [131] study and propose an analytical model for quality

economics with a focus on defect-detection techniques. These apply to mainly system

tests, defects over document types, the removal of costs in the field, but the authors

also admit that these have not been extensively empirically analyzed.

Requirements discovery during the testing of safety-critical software, Software

Engineering [132], Analyzing Software Requirements Errors in Safety-Critical,

Embedded Systems [133], and Operational Anomalies as a Cause of Safety-Critical

Requirements Evolution [134] represent the results of the analysis of failures related to

the requirements and the requirements phase as introduction phase.

Software Engineering: Are we getting better at it? [135], is a survey and study where

M. Jones provides an interesting analysis about space failures in the frame of the

European Space Agency missions, but simply concluded that the main cause for all the

accidents was lack of testing. Although better testing could have detected some of the

problems, their origin (or cause) could be traced to other engineering deficiencies.

An Analysis of Causation in Aerospace Accidents [136] presents a new model to

evaluate the causal factors in a mission interruption of the SOHO (SOlar Heliospheric

Observatory) spacecraft. The authors conclude that the causes of that specific accident

are quite similar to causes found in other software- related aerospace accidents.

2.6 Final Remarks

This chapter presented the topics related to our research as relevant background and

related work. Four main areas of research have been surveyed and used for our work.

Firstly, we covered the Independent Software Verification and Validation, as one

methods that provides techniques to detect defects. Any defect detection method,

technique or tool can be applied as long as the defects are properly defined and

documented. Secondly, we studied the Defects Classification Schemes, to support on

the classification of the defects and enable the analysis of the causes. For the purpose

of this work Orthogonal Defects Classification was considered the most applicable and

mature scheme. Thirdly, we covered the Root Cause Analysis, where the defect data

(types, triggers) are traced back to the causes and enable definition and application of

solutions both in the form of better or earlier detection of elimination of the problems

themselves. Lastly, we analyzed Failure Analysis techniques, Engineering

Improvements and Empirical Studies, as a set of activities that take empirical quality

data from defects or failures (from the engineering of critical systems), studies them by

identifying under what conditions and what caused them, or what could detect them at

an earlier phase of their engineering, and by defining solutions and improvements for

the quality measured by the reduction of defects or accidents over time).

Chapter 2

 38

The extensive amount of literature about these subjects demonstrates the importance of

the topics, and the fact that industry is still striving to keep up with the technology

advancements required by the society while improving the quality of the dependability

of the developed systems shows that defect avoidance is a key aspect of critical

systems. In fact, the defects or failure rates achieved today are still high and still cause

unacceptable failures. Thus, the need to merge the advantages of these topics (defect

or failure detection methods, classification, root cause analysis), and to build up on

previous research work and lessons learned to endow industry with appropriate

processes to learn from past mistakes and continuously improve the engineering

processes, and consequently the engineering products in what concerns dependability,

safety, security and so on.

 39

Chapter 3

Process for Defects Assessment

There are several stages for the definition of an appropriate and widely acceptable

process for defects assessment. Not only the process must be able to help in solving the

existing problems, but it must also be based on proven methodologies and technologies

and shall be able to integrate with the existing engineering processes. To define our

defects assessment process, we started by drafting and applying a workflow (based on

empirical data) that, iteratively, led to the process detailed definition. This workflow is

depicted in Figure 9, which shows not only the relation between the different research

topics covered (defects classification, root cause analysis, issues correlation, process

feedback, engineering lifecycle feedback), but also the importance of the integration of

the defects data and the engineering applied processes, as described in the following

paragraphs.

From left to right of Figure 9, we find the existing engineering practices (in red,

depicted as Processes for each safety critical domain, since every domain applies

specific processes, standards and tools), the objective, which is to improve these

processes quality and dependability, and the existing knowledge (the actual data from

defects and engineering processes performance).

For a specific Process (way of doing engineering for a particular domain) we need to

collect, sanitize and study data (mostly, defects classification to start). The

classification and aggregation or clustering of the classification classes are performed

to support the root cause analysis of groups of issues (instead of an analysis per issue),

leading to some issue pattern identification, which makes the resolution of the problems

more efficient. Then, the identified root-causes are mapped to the engineering

processes and all that influences the engineering (General Engineering Process

Framework in Figure 9), and an analysis is done on how to avoid or eliminate the root

causes for future applications.

The process summarized in Figure 9 has been adapted and adjusted according to the

available data and has evolved to the more detailed process described in Section 3.1.

Section 3.2 details the data collection and preparation. The defects classification

activities are described in Section 3.3. The relevant root cause analysis tasks are

Chapter 3

 40

detailed in Section 3.4. Section 3.5 presents the tasks related to improvements and

validation of both the process and the defects data. Finally, Section 3.6 concludes the

chapter with some key remarks.

Figure 9: Overview of the proposed process

3.1 Overview of the Process

The defects assessment process needs to cover the data collection and preparation, data

analysis and relevant feedback identification. Our proposal can be divided in four main

phases (refer to Sections 3.2 to 3.5 and Figure 10 for details):

1) Data Collection and Preparation: defects data collection and preparation,

aggregation of other data if necessary, such as complexity metrics, lifecycle

data, etc. In practice, the issues (defects data) and the phase of issue

introduction, the phase of correction, the type of project, etc., represent the main

process inputs.

2) Defects Classification: classification of individual defects according to an

orthogonal defects classification schema/taxonomy to identify the defect types,

triggers and impacts. Note that the classification taxonomy can be adapted for

specific domains and technology purposes.

3) Defects Root Cause Analysis: based on three perspectives (defect type, trigger

and impact), identification of the root causes of the defect groups (e.g. per type,

per trigger). Several root cause analysis techniques can be used (alone or

Process for Defects Assessment

41

complementary) and the analysis can be applied only to the data on defect types,

to the defect triggers, to the introduction versus detection phase information, or

to any other combination.

4) Improvements and Validation: act upon the identified root causes, at a

process, organizational or resources (human and techniques/tools) level, and

measure the effects of the implemented actions. It is recommended to propose

improvements to the systems under analysis (both environment/organization

and processes) and also to the defects classification process in order to make it

evolve and more applicable to the domain under analysis.

Based on the empirical analysis conducted and the lessons learned and feedback

collected during the course of our research, we have refined the approach for root cause

analysis of critical software, enabling the continuous improvement of engineering

implementation and V&V at all levels (processes, techniques, tools, personnel,

application of standards, organization, and so on). Although our dataset (details on the

dataset are presented in Section 4.4) and our experience is mainly from space software,

our approach can be used to support the evaluation and root cause analysis of any

critical system, independently from the domain. Figure 10 depicts the general approach,

which includes the data collection and preparation, the defects classification, the root

cause analysis and a continuous improvement procedure.

Figure 10: General Process Definition

Out of the 4 phases in our process, we highlight the particular importance of the work

performed during phase 2 (Defects Classification) and phase 3 (Defects Root Cause

Analysis). The following paragraphs discuss these two phases from a broad perspective,

while sections 3.2 to 3.5 provide further details about the four phases of the process.

Chapter 3

 42

The defects classification is based on an orthogonal classification taxonomy, and can

start once the defects data are collected and prepared. In practice, the ODC

classification is performed on the organized dataset, taking the defects one by one.

Enhancements and adaptations to the ODC taxonomy can be useful depending on the

nature of the defects and the domain, however, these enhancements should be quite

precise. The results of the classification will give the engineer a first view of the types

of defects, of the main triggers that lead to the identification of these defects, and on

the possible impacts distribution.

Root Cause Analysis (RCA) refers to determining how each defect was introduced

and identifying the defect source. Identifying the defect source helps in preventing the

root cause recurrence and finding process improvements. In practice, root cause

analysis can be summarized as the process of finding the activity, process or action that

caused the defects and supporting in eliminating/reducing the related effects by

providing remedial measures. Two main principles drive the defect root cause analysis:

 Analysis done/performed by experts: internal resources with expertise to

understand what went wrong must support the analysis of the processes

prevalent in the organization, but also independent experts shall be involved.

This way, all possibilities are reviewed, analyzed and the best possible actions

are defined.

 Reduction of the defects to improve the system quality: the RCA must drive

changes in processes, tools or human resources that improve the defect

prevention at the earliest stage possible (defect origin) and ensure the early

detection in case of recurrence.

The analysis of the enhanced ODC application (defects classification) to the dataset of

defects is complemented by the identification of the root causes for the majority of the

defects based on the classification results and the knowledge of the technological

domain and environment, processes, methods and tools. The reasoning is that it may

be quite expensive to identify the root cause for every single defect, thus we focus on

the more frequent and more severe defect types – other strategies can also be applied.

One possible strategy could be to start by analyzing the more frequent and more severe

defect types to determine their causes (origins). The set of causes obtained, once solved,

would influence the severity and the recurrence of the remaining defects. There are

several techniques and tools that can be used to facilitate the root cause analysis

process, such as Fishbone (Ishikawa) diagrams, Pareto charts, change analysis or 5

Whys analysis.

Note that the root causes are not identified at the moment of resolution of the issues but

at the moment of the analysis using the ODC or an enhanced ODC. In practice, they

are the result of the analysis done on the defects by experts (in the present work,

performed by the authors and complemented and reviewed by the industrial partners).

Note also that several defects do not have a clear and unique root cause but a set of

related root causes.

Process for Defects Assessment

43

The root causes analysis shall include the root causes that originated the identified

defect types (these are related with development issues) and also defect issues

according to defect triggers, which represent the V&V weaknesses. In a subsequent

step, the sets of root causes will lead to a dedicated list of measures to tackle both sets

of root causes (development and V&V).

3.2 Data Collection and Preparation

The approach is based on defects data analysis and software engineering knowledge.

Thus, it is important to fulfil some prerequisites prior to the efficient and correct

application of the process, namely (refer to Figure 10 for each activity and to Chapter

4 for further details about the data collection and preparation tasks):

1. Data Collection: to successfully perform the analysis of the defects, the data

collected (A. Defects Data and B. Other Project Data, in Figure 10) should contain the

relevant and necessary information. This includes basic requirements, such as: a)

detailed information about each defect and its fix; b) knowledge about defect

environment conditions, such as tools, personnel, constraints; c) engineer’s assessment

of the defect causes; and d) phase when the defect was introduced and phase when the

defect was detected.

Complementary prerequisites are also essential for a successful application of the

process. The first one includes training on the involved techniques depicted in Figure

10, such as defects classification (e.g. ODC) and root cause analysis. The second

includes rules and guidelines (such as a standards, templates) for defects description or

defect data collection. For the proper application of the process it is essential that the

collected defects contain a minimum of information, including: reference artefact,

defect title and defect detailed description, phase where the defect was identified, phase

where the defect was introduced, activity that detected the defect, defect author, and

defect severity.

2. Data Preparation: once we have the necessary data it is important to organize it

and perform some anonymization when required (when the process is applied internally

in an organization this step is obviously not necessary). Data organization is essential

for the next steps, since it is important to have the data in a searchable and manageable

manner. It is also important to confirm the completeness of the data, from a defects

description perspective, but also from all the complementary engineering information

(life-cycle phase, techniques applied that lead to the defect detection, impact analysis,

etc.).

In the case where some missing information that would affect the classification or the

RCA is detected, this phase shall promote the completion and collection of that

information using as source the defect author or the referenced artefacts (documents,

tools, code, tests, etc.).

Chapter 3

 44

3.3 Defects Classification

To efficiently and concretely tackle the important problems of critical software

engineering, the first set of dynamic analysis activities shall focus on an orthogonal

classification of the sets of defects (see Chapter 5 for further details about the defects

classification task):

3. ODC Classification: perform the ODC classification on the organized dataset (the

completed set of defects). Enhancements and adaptations to the ODC taxonomy can be

useful depending on the nature of the defects and the domain, however, these

enhancements should be quite precise. Other classification taxonomies can be used if

they are appropriate, well known by the user and provide relevant information

(grouping, prioritization, clustering) to support the root cause analysis.

4. ODC Analysis: the goal is to analyze the classification results and provide a

summary of the main findings, in particular in what concerns the distributions of

defects types and triggers. This information gives the first hints about the quality of the

dataset (defects frequencies, impacts, distributions), which can provide some quick

feedback to the implementation (defect types results) and V&V teams (defects triggers

results).

3.4 Defects Root Cause Analysis

The proposed root cause analysis is composed by several steps that include analysis of

the defect types, the triggers allowing defect detection, the defects that could have been

detected earlier, and later prioritization and consolidation of these root causes leading

to concrete proposed improvements (see Chapter 6 for our results):

5. Defect Type RCA: the classification of the defect types will define which are the

most common/frequent types of defects. If these defects are also mapped to high

severity impacts, their prevention can efficiently reduce the impacts. With this data

from the defects classification we can identify what caused the specific defects with

the more common types, try to aggregate them, identify common root causes and

common solutions.

6. Defect Trigger RCA: similarly, when the defects classification provides the most

common defect triggers, it is possible to quickly conclude that those activities have not

been efficient in detecting the defects earlier (in case they could be detected earlier),

but also, the results provide the list of triggers that actually detect them and that can be

applied from now on by the V&V teams to detect further defects as early as possible.

These results support the identification of the causes and V&V techniques or triggers

that allow the defects detection at the current phase.

7. Late Detection RCA: when relevant information is made available and it is possible

to determine at what point in the lifecycle the defect was introduced (either generated

or not detected) it is interesting to determine why certain defects have not been spotted

and solved before, and why they have slipped through phases. The root cause analysis

Process for Defects Assessment

45

of these specific slipped defects helps in identifying the causes of the failures in the

V&V and ISVV techniques that allowed the defects to propagate until a later stage in

the lifecycle.

8. RCA Consolidation: defects prioritization can be done to simplify the RCA and to

make it more efficient. It can be done to tackle the defects with high impact on the

system, or simply to analyze the defects with more common types or triggers (due to

the large amount of defects and respective causes). Note that, it may happen that defects

of the same type do not have the same causes, but at least the RCA will provide a list

of causes for the majority of the defects and thus provide a quick reduction of defects

when those causes are fixed.

9. Improvements Suggestions: after the prioritization of the lists of root causes from

steps 5, 6 and 7, a root causes consolidation is required. As the list can become very

extensive, causes may be merged (if appropriate) and ordered according to the

prioritization performed, or to another specific root causes prioritization. For the

consolidated root causes, define changes, solutions or modifications to the processes,

techniques, tools, training, resources, environment or application of standards. The

definition of the improvements should come straight forward from the list of root

causes.

3.5 Improvements and Validation

Some of the suggested improvements might be difficult to implement, and their

efficacy may vary from team to team or from organization to organization. They shall

contribute to improve the software quality and reduce the number of defects or prevent

them, but different defects can then surface, and therefore a consistent process

improvement should be in place and shall provide constant feedback:

10. Improvements Implementation: the engineering (development and V&V) teams

must be informed about the required changes or adjustments, and the organization,

management and quality planning shall decide on the improvements to implement for

future projects. This can be provided in the form of process improvements, dedicated

workshop or training sessions, lessons learned sessions, improved guidelines or

standards, etc.

11. Process Validation and Improvements: at every step, it is possible to derive

improvements to the process. Such improvements can be set to adjust to the

organization culture, to the project environment, to the customer requirements, etc.

However, it is essential to measure the effectiveness of the implementation of the

results once the suggestions have been implemented and new defects (or no defects)

have been collected. Note that improvement can and shall also be about the current

process, the defects classification scheme and taxonomies, the root cause analysis

techniques and so on. The proposed process is able to adapt and help in improving itself

and its composing techniques. For the validation of the process see Chapter 7.

Chapter 3

 46

3.6 Final Remarks

The process for assessment of defects has been applied and adapted according to our

empirical study (see Chapter 5 and Chapter 6 for the results). It was also exposed to a

large set of worldwide experts (see Chapter 7) that provided their feedback, even if

most of them were from distinct domains and with a different background. Generally,

the process was accepted with a “recommendation” rate of 60% and “possible

recommendation” rate of 33%, while only 7% would not recommend such a process.

The process described in this chapter contains some strengths and weaknesses that are

summarized here. The strengths are: i) the process itself represents a structured

approach; ii) includes explicitly root cause analysis; iii) is based on an orthogonal

classification scheme; iv) allows the provision of improvements and feedback; and v)

relies on high quality of data. On the weaknesses, we should mention: i) concerns about

how to guarantee the quality of defect data; and ii) large number of steps in the process;

and iii) difficulty in implementing/enforcing such a process and the obtained results.

These remarks are obviously very relevant. First, the process will only work if the

defect data are appropriate, of good quality and complete. For this, we shall relate

weakness i) with weakness iii), as a cultural enforcement must be broader than just the

application of the process, but also cover the defect data collection, the quality checks

of the data, the changes necessary to a certain way of working, and so on. The large

number of steps is required to have the process detailed with simple blocks.

Furthermore, the process contains permanent self-feedback and also feedback to the

development and V&V processes, as a result of the root cause analysis suggestions.

The list of the essential suggestions made by the experts and that would make the

process generic enough to cover different domains and different types of technologies,

include (see Chapter 7): data collection improvements (process, database, quality

guarantee); classification/validation activities and data quality check between phases

of the process; consideration of projects details/specifics and team dynamics (skills,

experience, motivation); and assessment covering also management related issues. In

practice, we can observe that we have suggestions on the environment and

prerequisites, which make absolute sense (data quality, projects details) and also on the

validation of the internal process activities, namely the quality of the classification that

cannot be easily automated as per today’s technologies.

Each group of process tasks (Data Collection and Preparation, Defects Classification,

Defects Root Cause Analysis, and Improvements and Validation) are described in the

subsequent chapters, providing more details and the outcomes of the application of the

process to our case study. In practice, Chapter 4 details the data collection and

preparation processes and activities (steps 1 and 2 of the process), Chapter 5 describes

the defects classification process and taxonomy adaptations (steps 3 and 4), Chapter 6

covers the root cause analysis activities and results (steps 5 to 9), and Chapter 7 presents

the strategy and results of the process validation and implementation (steps 10 and 11).

 47

Chapter 4

Data Collection and

Preparation

Organizations have a challenge related to defect data management. First of all, these

data are usually confidential and sensitive to the organization or the organization

suppliers, and thus not usually available. Secondly, industry tends to not properly and

completely document defects (especially industries with a lower CMMI maturity

level), as they are more concerned about deploying the systems in a short timeframe

and fixing the issues as soon as possible, than on really focusing on measuring and

process improvement. Third, several cultural barriers (as the ones identified by Jäntti

et al [137]) do not ease the implementation and usage of a defects management system,

including data collection, acceptance and communication of the issues, organizational-

wide processes, etc. Therefore, defects data management (collection, preparation,

recording, analysis) is not an easy task. Moreover, the results of the whole defects

management process depend on the quality and availability of data, making data and

the way it is collected the most important step for any defects analysis activity.

Data collection and preparation is a set of complex processes that require organizational

sponsorship, and organization wide processes require data collection rules or training,

as well as standard defects collection contents. Furthermore, the defects data must be

stored, either in a tool/database or in a set of documents, this being also an

organizational strategy that needs to cope with data access and confidentiality issues.

Defects data must be made available and must be complete or provide means to be

completed with additional information (resources, author, documents, references, etc.).

For this work we had access to real defects data that were produced to inform the

stakeholders about the issues with an acceptable detail level. However, for some of the

defects further information was needed, as for example to consult the original artifacts

or documents to better understand the problem and its origin. The data was collected

and prepared according to the format described in this chapter. Important actions had

to be taken to preserve the confidentiality of the data, in particular the projects from

Chapter 4

 48

where they came from and the involved stakeholders, as these would publicly expose

weaknesses of the engineering process of those organizations.

The chapter is organized as follows. Section 4.1 presents a global view of the data

collection and preparation related activities. Section 4.2 provides the details of the data

collection tasks, next we present the applied data preparation and clean-up activities

(Section 4.3), we then provide information about the defects included in our used

dataset (Section 4.4), and we conclude with some final remarks about the data related

tasks (Section 4.5).

4.1 Overview of the Process

The data collection and preparation depends on the completeness and quality of the

input data. For this purpose and in order to use the data for our defects assessment

process we have taken a straight forward approach to collect and prepare those data.

The procedure is depicted in Figure 11 and described next.

Figure 11: Data collection and preparation procedure

Defects can be originated and detected at any of the lifecycle phases, so the first

important activity is to collect information (data collection) about the defects (from

specifications, architecture, design, implementation, testing, operations, and other

phases or V&V activities) in a structured way and with enough information to enable

an orthogonal classification and later support the root cause analysis. This is exactly

why there is also a data preparation phase, where the collected defects data are

structured and completed or complemented with additional information sources (data

completion).

The data collection and preparation phases can be based on a guideline or template to

collect the minimum of defect data required for the next defects assessment activities

Data Collection and Preparation

49

(see the used template in Annex D and the data collection and preparation details in

sections 4.2 and 4.3). Other actions might be applied to the data to make them workable

and available to the following phases of a defects analysis process. For example, we

can apply some data clean-up, removal of unnecessary defects or details, and

particularly data anonymization for data confidentiality assurance, during the data

preparation activities (Section 4.3), if the data are to be made available to third parties.

In the case where the data is being internally analyzed and there is no need to involve

any third-party expert or to reveal the results to any external entity, this step is

simplified and not required. Finally, the processed defects data need to be properly

stored and managed (configuration management). For this, a tool or a dedicated

database can be developed, for example by using Microsoft Access or Excel databases

and manage their configurations with Git1, CVS2 or SVN3 repositories.

4.2 Data Collection

Defects data can come from different sources, including V&V reports, Excel databases,

emails, and bug tracking web based tools. All these sources contain different formats

and different levels of details for the defect data. Furthermore, a selection should be

performed on the data to be collected, in order to include defects from different types

of systems and subsystems, but also to include defects from all the lifecycle phases

(specifications, architecture, design, implementation, testing, and operations).

Our analysis is based on a set of real defects from ISVV activities in space projects.

The projects include subsystems that compose satellite systems for three different

domains: a) scientific exploration; b) earth observations; and c) telecommunications.

These cover different types of software, such as start-up or boot software, on-board

application software, command and control units, payload software, and attitude and

orbit control units. The engineering processes used in the selected missions (and that

drove the engineering lifecycles) were based on the ECSS standards, namely the space

engineering standard E-ST-40 [42] and the quality standard Q-ST-80 [43], which have

a comparable lifecycle and similar strict requirements imposed by the European Space

Agency (ESA).

1 http://www.github.com/
2 http://savannah.nongnu.org/projects/cvs/
3 https://subversion.apache.org/

Chapter 4

 50

Table 9: Generic caracterization of the subsystems contributing to the dataset

Subsystem Domain Software Types

SS01 Earth observation On-Board Start Up / Boot Software

SS02 Scientific exploration On-Board Application Software

SS03 Telecommunications System Software

SS04 Earth observation Payload boot Software

SS05 Earth observation On-Board Application Software

SS06 Earth observation Payload boot Software

SS07 Scientific exploration
Payload Software

Payload boot Software

SS08 Scientific exploration
Payload Software

Payload boot Software

SS09 Scientific exploration
Payload Software

Payload boot Software

SS10 Scientific exploration
Payload Software

Payload boot Software

SS11 Scientific exploration
Payload Software

Payload boot Software

SS12 Scientific exploration
Payload Software

Payload boot Software

SS13 Scientific exploration
Payload Software

Payload boot Software

SS14 Scientific exploration
Payload Software

Payload boot Software

SS15 Scientific exploration Attitude and orbit control unit software

SS16 Scientific exploration Command and control units Software

The subsystems (see Table 9) were developed according to functional and non-

functional requirements mandated from ECSS and mission specifics (by ESA). They

are characterized by the following needs/objectives, which are common to space

critical systems, and that were collected from the ECCS standards [42], [43] and from

the corresponding engineering interpretations of the specification documents from

several missions:

 No crash or hang shall happen at any time;

 No dynamic memory allocation is allowed;

 Communications-Telemetry (TM)/Telecommands (TC) must always be

possible between ground control and the satellite;

 The system must implement a Safe Mode (with basic communications, patch

and dump functionalities);

Data Collection and Preparation

51

 Most systems shall have a very simple and stable start-up software (also called

boot software);

 There must be a watchdog (hardware and/or software) or an alive signal;

 Systems should be built with redundancy (at least hardware);

 Most systems must include FDIR (Fault Detection Isolation and Recovery)

functionalities to account for the environment and external faults;

 The systems must have high autonomy and some self-correction procedures;

 Systems are categorized with a criticality level related to the impact or

consequences of system failures (in this case, the ECSS defined levels are:

Catastrophic, Critical, Major and Minor or Negligible).

The projects could also be characterized by:

 Requirements written in natural language (structured), highly based on

documentation and non-formal processes and languages;

 Documentation in UML/SysML and PDF files, with limited possibilities of

automated verification and formal analysis;

 Programming languages such as C, Ada and Assembly, that are quite mature

and low level languages;

 Unit tests performed using commercial tools (e.g. Cantata++, VectorCast,

LDRA), commonly developed and adapted for the specific projects embedded

systems and environments;

 Integration and system testing performed in a specific validation environment

(Software Validation Facility - SVF) developed for this purpose on a case by

case situation, with hardware emulation and hardware in-the-loop, simulated

instruments, etc.

 A strong quality assurance process, based on the ECSS standards and monitored

by the European Space Agency and complemented by and Independent

Software Verification and Validation (ISVV) activities for the critical areas of

the project;

 A well-defined and mature Software Development Process (SDP).

The defects collected for our study (also called issues or Review Item Discrepancies –

RID) were identified by independent teams in the project development artefacts, after

the development teams have performed their own required verification and validation

activities, as defined in the ECSS SDP. The selection of systems and defects was based

on several criteria, namely (further details about the dataset are presented in

Section 4.4):

 The defects are all confirmed (i.e. no false positives);

Chapter 4

 52

 The systems were developed for different space missions (in this case, 4

different missions, including scientific exploration, earth observation and

telecommunications);

 The systems were developed by diverse prime contractors (3 main European

prime contractors) and multiple software development entities (a dozen

entities);

 Different types and sizes of systems or sub-systems are included (in our case

16, including start-up and boot systems, central control units, attitude and orbit

control systems, payloads control software);

 The defects were originated by different independent assessment activities, and

detected after each of the SDP phases (a total of 1070 defects): 162 defects were

detected after the conclusion of the specification phase, 112 after architecture,

378 after implementation, 398 after testing and 20 after deployment;

 The defects cover different severity categories, as defined in ECSS Q-ST-30

series. In our dataset, 14% of the defects were classified as Major, 66% as

Minor, and 20% as Improvements.

4.3 Data Preparation

The collected defects have been integrated in an Excel database where specific

information was added. Some information required was not possible to import from the

defects data sources (defects reports) and had to be complemented by external sources

and in most cases by consulting the defected artifact or original documentation. This

data was either not existing or not documented in the collected defect reports. It

includes, for example, the year where the issue was raised, the maturity of the

engineering team that generated the issue, or the exact activity (V&V tasks) that

allowed the detection of the issue. Furthermore, the introduction and correction phases

(Phase Detected, Phase Applicable) were also not explicitly stated in the defect reports

but could easily be complemented. The excel spreadsheet has the following structure:

 Number: a unique identifier for the defect, usually the original defect identifier;

 Project: the name of the project from where the defect originated;

 Subsystem: the subsystem or component to which the defect applies – a

subsystem code was used in order to anonymize data for external experts;

 Domain: the technology domain where the defect applies to (e.g. space,

aeronautics, automotive, defense, railway, etc.);

 System Type: a description of the system or component type, which can be

different for every technology domain (e.g. for space systems it can be: on-

board start-up software, payload software, ground control software, on-board

Data Collection and Preparation

53

application software, on-board systems, on-board component, command and

control system, etc.);

 Issue Title: a summarized title for the defect;

 Description: the defect detailed description. This description shall be as

complete as possible to simplify the classification and the root cause analysis.

We have taken the original defect description that would allow full

understanding and resolution of the defect;

 Classification: the original severity classification of the defect, according to the

organization severity classification scheme (e.g. for ISVV there is a

classification scheme that was used and is shown in Section 4.4: Minor, Major

and Comment);

 Problem Type: classification of the defect type according to the original

classification scheme (e.g. for ISVV there is a classification scheme that was

used and is shown in Section 4.4);

 Phase Detected: the lifecycle phase where the defect has effectively been

detected and recorded. This column can be adapted to the applicable lifecycle

phases.

 Phase Applicable: the lifecycle phase where the defect has effectively been

introduced. This column can be adapted to the applicable lifecycle phases.

 Defect Type: the ODC (and later enhanced ODC) defect type classification for

each defect. For details on this classification see Chapter 5;

 Defect Trigger: the ODC (and later enhanced ODC) defect trigger

classification for each defect. For details on this classification see Chapter 5;

 Defect Impact: the ODC (and later enhanced ODC) defect impact classification

for each defect. For details on this classification see Chapter 5;

 Comment: field used to store information about the classification doubts and

suggestions of modifications to the ODC original classification taxonomy. This

information was later extracted and used to propose an enhanced ODC

taxonomy;

 Notes: notes related to the defect understanding or additional defect

information;

 Activity: the review or V&V activity that led to the discovery or detection of

the defect. This is usually the activity that was being performed when the defect

was uncovered;

 Keywords: field reserved for keywords related to the defect in order to enable

future automation of the defects analysis.

Filling this structure was not always straightforward due to the different sources of

defects data (mostly from ISVV reports, defect reports and other excel spreadsheets),

Chapter 4

 54

thus the data preparation included some data harmonization, in particular for the fields:

System Type, Classification, Problem Type, Phase Detected, Phase Applicable, and

Activity. Additional information was also collected but later discarded such as the age

of the defect (year of raising it), the organization responsible for the defect, and

complexity metrics related to the defect subsystem or component. This additional and

complementary information was not adding enough relevant information for the root

cause analysis and was making the process too complex to be easily applied.

With the defects dataset built and filled we had to consider which amount of the data

could go public and which should stay internal to the organization (data

confidentiality assurance in Figure 11). It is natural that defects originated from a

specific team, in particular those that are dealt with internally and during the

engineering lifecycle phases, do not go public. No organization likes to have their

shortcomings revealed publicly, as they deal with them internally, solve them and

present a system or a product with an acceptable level of quality and dependability.

Even when these organization are assessed by independent assessors, this information

is not revealed and is used internally to correct the issues and improve the engineering

methods.

For this purpose, we had to operate some modifications on the dataset in order to

eliminate the possibility of identification of the involved parties. The main fields that

have been hidden or modified are: Number, Project, Issue Title and Description. All

these fields contained sensitive data that could lead to the identification of the

organizations involved in the development and V&V, and thus either they have been

hidden (the two first ones have been replaced by the Subsystem identifier) or reviewed

and anonymized (the two latter ones) in case some sensitive information was included

in the title or the description (e.g. the name of the component, the company, etc.).

4.4 Defects in the Dataset

Table 10 summarizes the 1070 defects included in the dataset, divided by severity

(having a major or minor impact in the system, or just being comments to improve the

engineering) and considering the ISVV activities in which they were found. The defects

have been originated from the analysis of more than 10.000 software requirements,

more than 1 million lines of code (mostly C, Ada95 and some Assembly), and over

3.000 tests4 (some unit tests, some integration tests, some system tests). In practice, the

objective of ISVV was to find issues in the project artefacts, report and classify them

in a clear and consistent way for the customer to act upon immediately and avoid these

issues to slip over subsequent phases.

For the particular set of selected defects, Table 10 shows the results of a typical ISVV

analysis, i.e. issues identified during all the lifecycle phases (Requirements, Design,

Implementation, Testing, and Operations), the large majority of the issues are Minor or

4 The 3000 tests correspond to only part of the requirements and code referred, as not all ISVV activities cover the full set of

artefacts, e.g. for some projects only source code analysis was performed, no tests related to that specific code have been assessed.

Data Collection and Preparation

55

Comments, which is consistent with the strict and mature development and validation

processes applied for the space domain software, and a significant amount of defects is

identified at the implementation and testing phases. This comes from the fact that

source code artefacts and testing specifications, procedures and results are the ultimate

focus of ISVV activities and represent the large majority of items under assessment,

thus generating also a large amount of defects.

Table 10: Dataset of ISVV defects

 ISVV activity

Severity Req.

Verification

Design

Verif.

Code

Verif.

Test

Verif.

Operation

Monit.

Total

Major 27 14 43 62 2 148

Minor 98 84 185 294 18 679

Comment 37 14 150 42 0 243

Total 162 112 378 398 20 1070

The ISVV originally classified the defects with the following classification types (from

[65]):

 External consistency: differences in the implementation of artefacts between

phases or with other applicable or reference artefacts (e.g. inconsistent

documentation);

 Internal consistency: inconsistency against another part of the same artefact

(e.g. different code for similar purpose, differences within the same document

or architectural components);

 Correctness: item incorrectly implemented or with technical issues (e.g.

erroneous implementation, wrong documentation description, bad architectural

definition);

 Technical feasibility: item not technically feasible with the actual constraints

(e.g. unattainable or impossible requirement, architecture not viable);

 Readability and Maintainability: item hard to understand and/or maintain

(e.g. lack of comments or no description, requirements too complex or too

generic);

 Completeness: item not completely defined or insufficient details provided

(e.g. missing details, missing architectural components, insufficient

requirements, not all requirements coded);

 Superfluous: item that is a repetition or brings no added value to the artefact

(e.g. repeated requirements, copy-pasted code doing the same actions);

 Improvement: suggestion to improve any property of the artefact usually not

related to a single of the other classification types (e.g. efficiency, simplicity,

readability);

Chapter 4

 56

 Accuracy: the item does not describe with precision or follows the applicable

standard (e.g. measurement precision, calculation precision, exact

implementation).

The resulting classification of the defects by the ISVV teams is shown in Table 11. The

main types of defects are external consistency, completeness, and correctness. These

three types account for 75% of the total of ISVV defects. Note that the data shown in

Table 11 have been used in an industrial context to provide simple metrics and to help

promoting the immediate correction of the issues (including defects). This

classification has never been intended to determine the defect types (although it

represents generic defect types categories), nor determine the triggers, and only the

severity of the impact has been considered in those cases. Therefore, a classification

that allows to orthogonally classify defect types, triggers and impacts, as well as to

support the analysis of the introduction versus the detection phases, is needed to support

the RCA activity.

Table 11: ISVV original defect types classification

Defect Type Number of Defects Percent

External Consistency 313 29%

Completeness 275 26%

Correctness 213 20%

Internal Consistency 132 12%

Technical Feasibility 3 0%

Readability & Maintainability 84 8%

Superfluous 14 1%

Improvement 34 3%

Accuracy 2 0%

Total 1070 100%

4.5 Final Remarks

The quality of the inputs is key to any process. In order to ensure relevant results from

the application of a defects assessment process, we have collected defects data,

prepared and harmonized the defects, and complemented them whenever required.

Anonymization was also required due to confidentiality of the defects data. The defects

data have been collected in an Excel spreadsheet, which was also used later on for the

individual classification of each defect based on the selected orthogonal defect

classification taxonomy.

We believe that the simple data collection and preparation approach, complemented

with a short training on writing defects and filling the standard defects information can

be an important step into the successful analysis of organizational weaknesses and

reduction of the number of critical defects in the short/medium term.

Data Collection and Preparation

57

Our case study dataset includes 1070 defects from space projects. Data were collected

and harmonized from different sources (ISVV reports, excel spreadsheets with issues

and operational defects), in order to obtain a coherent set of defects, covering different

types of systems and all the lifecycle phases. This dataset is the source for all the

activities and tasks of the defects assessment process (Chapter 3), namely the

definition/adaptation/validation of the defects classification taxonomy, the root cause

analysis based on the results of the defects classification (particularly the defect type,

the defect trigger and the phases where the defect was detected versus the phase where

it had been introduced) and the identification of correction, suggestions and

improvements to both the process and the systems where the defects come from. These

aspects will be addressed in the following chapters.

 58

Chapter 5

Defects Classification

The defects dataset has been first classified with ODC v5.2 [92]. The outcome of this

initial classification of our dataset was that we could not properly classify all the defects

with the existing ODC defect types, defect triggers and defect impacts (see Section 5.1

for the justification of the selection of these attributes). The classification difficulties

were annotated when a specific issue was being classified and there was no

classification fit or agreement. In fact, we experienced that for 31.7% of the defects,

the original ODC taxonomy had some limitations. The issues affected (i.e. the RIDs

that could not properly be classified according the standard ODC taxonomies) have

been set aside and dully noted in order to contribute to the ODC adaptation.

The standard ODC was thus considered not totally fit for this classification because it

was not developed for the specific case of ISVV nor for critical systems, or even to

cover the whole engineering lifecycle - from the 1070 defects classified, 136 defect

types, 76 defects triggers and 201 defect impacts could not be properly mapped to the

standard ODC taxonomy. A fitter ODC taxonomy was possible with some extended

types and triggers that cover in a more efficient and concrete way the specific critical

ISVV issues (e.g. traceability, verifiability, robustness/dependability and safety related

properties).

For example, defects related to tests and requirements specification are not clearly

mapped to an existing ODC defect type and they are quite common sources of the

reported defects from the Independent Test Verification activity. In what concerns the

impacts, we can point out the absence of Testability and Verifiability specific

classifications (as important requirements for critical systems and related standards),

and we have also identified a few defects that would fit into more than one ODC impact

classification (this indicated some orthogonality issues or the need to break the defect

into more than one defect from the ISVV team point of view).

To efficiently and concretely tackle the important problems of critical software

engineering, defects classification includes two main tasks (see Chapter 3), the first

consisting of applying ODC (or an enhanced version of ODC) to the dataset, and the

Defects Classification

59

second focusing on the analyzes of the classification results to provide a summary of

the main findings. This is precisely the goal of this chapter.

The outline of this chapter is the following. Section 5.1 presents an overview of the

process to adapt the standard ODC classification and operate the classification itself.

Section 5.2 presents the original ODC classification and the identification of needed

adaptations. The next section describes the proposed adaptations to the original ODC

taxonomy. Section 5.4 details the obtained results of the enhanced ODC classification

applied to our defects dataset. Section 5.5 provides the results of the validation strategy

of the ODC classification and acceptability of the results. Finally, Section 5.6

summarizes the ODC activities and provides the final remarks concerning the defects

classification related activities.

5.1 Overview of the Process

The adaptation of ODC may lead to changes in the taxonomy of the different attributes

to make them more applicable, more complete and more adjusted to critical systems

defects from all lifecycle phases. Thus, some additions, reductions or merges might be

needed over the original ODC taxonomy. Although the ODC general approach remains

unchanged after adaptation, the attributes themselves were evaluated and adapted when

necessary. In practice, the most relevant inputs for the taxonomy adaptation were the

difficulties felt while applying the standard ODC to the defects in our dataset.

We have not considered all eight attributes provided by the ODC specification, leaving

aside the following ones: target, qualifier, age and source. We did not find the need to

use these to achieve orthogonality, to promote a simple and regularly usable

classification (with only essential attributes) and to avoid very specific code oriented

attributes (not necessary to enable root cause analysis). The selected attributes are the

most important and the candidates for adaptation for critical systems: activity and

trigger represent the defect detection method and activity and can thus influence the

root cause from a V&V perspective, type represents the development defect category

and drives the root cause for all development defects, and impact can be used to

prioritize and cluster groups of defects based on the defects effect on the system and

also on the type of effect – safety, robustness, maintainability, etc. A small justification

for the attributes not used is provided next:

 Target – we claim that this attribute is not needed for orthogonality as the

Activity/Trigger/Type is sufficient to derive what is the target of a defect.

Target simply represents the high-level artifact that was fixed, for example

code, design or requirements. Nonetheless it is additional information that may

provide useful support in some specific situations;

 Qualifier – we opted not to use this qualifier as our source of defects have this

already specified in the description of each defect. Qualifier is simply the type

of code fix: addition of missing code, fixing of existing incorrect code, or the

removal of extraneous code;

Chapter 5

 60

 Age – this attribute seems to be useful when describing defects that occur during

development, but not when classifying defects of an already developed product

such as our case of ISVV, hence we opted to not use it. Age can be useful to

compare the evolution of the defects sets over different releases and to study

the changes of defect types due to the evolution of technologies, design or

programming, languages, etc. This is generally covered by the defects

description;

 Source – this attribute captures the origin of the code that had the defect

(developed in house, reused from a library, etc.) and was not classified because

it captures very specific information that is not useful for root cause analysis of

groups of defects (unless these groups include the software type, but this

information is already include in the defect descriptions anyway).

The above considerations do not imply that these attributes are not useful, as they surely

provide additional information that can be used, although some of that information is

already included in the defects description. However, it is also essential that the

classification process is simple and contains the most relevant attributes to be

efficiently applied in industry and adopted by the engineering teams. Thus, for the

approach to be used by industry in a regular way, it should be kept as simple as possible

and use the essential attributes only.

Our strategy to perform the ODC enhancement started by applying the original

classification to the dataset, then noting the classification difficulties, later aggregating

and clustering these non-classified defects, harmonizing them, and finally defining new

attributes or merging existing ones. A validation of the proposed enhanced taxonomy

(for type, trigger and impact) was conducted to confirm its fit. The set of defects that

were not originally classified or classified with attributes that changed were

classified/reclassified by applying the new taxonomy.

The first step to be performed when an organization decides to implement ODC is, as

specified in ODC v5.2, to map activities to triggers. Although triggers are given by the

ODC specification, the ODC activities are meant to be customizable, defined by each

organization according to their approach in defect detection and removal (e.g.,

workflow, processes and the applicable lifecycles). Table 12 presents a set of activities

performed at industrial levels related to ISVV of critical systems and the mapping to

the set of ODC triggers. The Activity attribute was extracted directly from the ISVV

activities and helps in identifying the introduction phase of the defects. Then, for each

activity a set of triggers is mapped, these triggers are related to the nature of the ISVV

tasks performed for every activity (described in detail in [65]), and have been

harmonized in Table 12 to include the ODC set of triggers. As shown, some activities

are mapped mostly to documentation/inspection related triggers, as for Requirements

and Design, and some others are related to testing or dynamic execution triggers, as is

are the cases of Test Verification and Test Execution.

Defects Classification

61

Table 12: Mapping between activities and triggers

Activity Triggers

Requirements verification Standards conformance

Traceability/Compatibility

Consistency/Completeness

Design verification Design conformance

Standards conformance

Traceability/Compatibility

Logic/Flow

Concurrency

Consistency/Completeness

Code verification Standards conformance

Traceability/Compatibility

Logic/Flow

Concurrency

Consistency/Completeness

Test verification Consistency/Completeness

Logic/Flow

White box path coverage

Test coverage

Test variation

Test sequencing

Test interaction

Workload/Stress

Test execution White box path coverage

Test coverage

Test variation

Test sequencing

Test interaction

Workload/Stress

Blocked test

Operation monitoring Design Conformance

Workload/Stress

Start-up/Restart

HW/SW Configuration

In practice, using ODC consists of applying it to the issues to support the analysis and

feedback of defect data targeting quality issues in software design, code and

documentation. Taking into account information on the issues, ODC identifies a defect

type and the relevant trigger (assessment techniques, testing, analysis methods, etc.)

for each defect identified. The results can be used for statistical quality control (e.g.

measuring improvements), as well as for in-process monitoring and reliability

assessment (required for critical systems). They are also frequently used to promote

specific process and resources improvements by tackling the identified issues directly.

The analysis of the classification results supports the ODC adaptation: once the

classification work has been performed, the obtained classifications are analyzed and

Chapter 5

 62

the results used to propose adaptations of the classification taxonomy, if necessary

(type, trigger and impact) to be aligned with the domain. Classification

recommendations from experts and data clustering analysis can be used to identify

classification patterns.

The results of re-classifying the issues with the newly proposed taxonomy allows to

validate the recommendations. The adaptations proposed for the classification

taxonomy after applied and adjusted to the nature of the critical systems defects shall

lead to more straight forward classifications of the defects and thus simplify the

classification tasks. Further adaptation can be fed back into the classification taxonomy

proposed and lead to a re-classification of the affected issues.

The ultimate goal of the process is to analyze the classification results and provide a

summary of the main findings, in particular in what concerns the distributions of

defects types and triggers. This information gives the first hints about the quality of the

dataset (defects frequencies, impacts, distributions), which can provide some quick

feedback to the implementation (defect types results) and V&V teams (defects triggers

results).

5.2 ODC Classification Results

The ODC classification of the issues identified by the ISVV teams (meaning that the

assessment was made in quite mature software artefacts by independent experts – so

these are not regular software engineering lifecycle issues) and during operation, has

shown that for 1070 ISVV only 731 could be correctly classified considering ODC

type, trigger and impact attributes (the remaining 31.7% justify the improved, more

applicable, ODC taxonomy to be orthogonally classified).

Table 13 presents the results of the classification of the 731 defects using the standard

ODC. We can observe that the main classified types of defects are Documentation

(36.11%), Function/Class/Object (21.34%) and Algorithm/Method (11.35%). These

three defect types (that cover more than two thirds of the defects) arise from the fact

that the systems under analysis are heavily based on documentation and thus the larger

set of defects is naturally of documentation type. Then, several defects are related to

the function and the proper implementation of algorithms, being more “functional”

defects.

The main classified triggers for the defects under analysis are Document

Consistency/Completeness (Internal Document) (22.30%), Test Coverage (19.84%)

and Backward Compatibility (19.29%). These three triggers uncovered almost two

thirds of the defects. It is worth mentioning that while the first trigger is evident due to

the nature of the artefacts under assessment, the second one is related to the fact that

most of the testing activities performed for space systems tend to prove coverage of the

requirements, and the third trigger is related with traceability analysis results (backward

traceability checks).

The impacts identified are Capability (30.23%), Reliability (24.76%), Maintainability

(18.74) and Documentation (18.60%). These impacts cover more than 90% of all the

Defects Classification

63

impacts in the dataset. Capability relates to limited functioning of the system,

Reliability to the dependability properties that are not met, Maintainability is related to

updates, patches and maintenance activities, and Documentation is a minor severity

impact related to documentation imparities.

Table 13: Original ODC classification results (731 defects)

Defect Type
Qt

y
% Defect Trigger

Qt

y
%

Defect

Impact
Qt

y
%

Documentation

264 36.11% Document

Consistency/Completeness

(Internal Document)

163 22.30% Capability 221 30.23%

Function/Class/Object 156 21.34% Test Coverage 145 19.84% Reliability 181 24.76%

Algorithm/Method 83 11.35% Backward Compatibility 141 19.29% Maintainability 137 18.74%

Checking
48 6.57% Operational Semantics

(Understanding flow)

95 13.00% Documentation 136 18.60%

Interface 48 6.57% Design Conformance 86 11.76% Performance 28 3.83%

Understandability 35 4.79% Lateral Compatibility 46 6.29% Usability 19 2.60%

Environment 35 4.79% Combinatorial Path Coverage

(Complex Path)

20 2.74% Migration 6 0.82%

Assignment/Initialization 28 3.83% Rare Situation 15 2.05% Standards 2 0.27%

Timing/Serialization 26 3.56% Language Dependencies 7 0.96% Installability 1 0.14%

Build/Package 8 1.09% Test Sequencing 7 0.96%

 Recovery / Exception 3 0.41%

 Test Interaction 1 0.14%

 Test variation 1 0.14%

 White box path coverage 1 0.14%

Total 731 100% Total 731 100% Total 731 100%

5.3 Proposed Adaptations (ODC Enhancements)

This section presents the proposed adaptations to the original ODC (v5.2) to make the

defect type, defect trigger and defect impact more fit for classifying defects in critical

systems. The distinct backgrounds of the tables in this section highlight the changes

from the standard ODC taxonomy: a) white - unchanged; red - deleted; yellow -

merged; and green - new.

5.3.1 ODC Attributes – Activity

The ODC specification defines activities as defect removal activities. In our

understanding, we benefit to expand this definition to also encompass defects that

appear in field operation, hence we added the activity ‘operation monitoring’.

The list of activities are the ones performed during the ISVV phases described in

section 2.2 and includes operation monitoring: a) Requirements verification; b) Design

Chapter 5

 64

verification; c) Code verification; d) Test verification; e) Test execution; and f)

Operation monitoring. See Table 12 for the full list of considered Activities.

The main divergence to the standard ODC is the inclusion of test verification and

operation monitoring as activities which can be a source of defects. Test verification

was included as it is an activity extensively performed in ISVV and other defect

detection activities, and was not considered in the standard ODC. Operation monitoring

simply represents the issues that have been identified after the system is in operation.

This means, the issues or defects detected during the system execution.

In order to properly accommodate these activities, the taxonomy of the other attributes

was also adapted (such as the Testability/Verifiability impact and the Documentation

type). For more details please refer to the modification descriptions in sections 5.3.2,

5.3.3 and 5.3.4.

5.3.2 ODC Attributes – Type

The type attribute represents where the defect was fixed. Since not all defect types were

possible to determine with the original ODC taxonomy, some gaps have been identified

mostly to simplify the classification and avoid confusions, but also a new type has been

added in order to be able to classify some of the defects. We adapted the ODC v5.2

classification and extended it with the new value when appropriate for our needs, as

follows:

 Algorithm/Method, Checking, Function/Class/Object,

Timing/Serialization, Documentation – same meaning as in the original ODC

5.2.

 Assignment/Initialization – similar to the original ODC v5.2, but extendable

to cases where, for instance, variable names are changed to be in compliance

with coding standards or coding rules (frequently required for critical systems).

 Build/Package/Environment – new classification to be applied in defects

related to the build process, packaging of data/functionality, and environment

setup or configuration. Libraries that are never used or large modules of dead

code should also be classified here. Note that cases of code paths that are never

reached and with a small scope, such as inside a function, should be classified

with the ‘Function/Class/Object’ type, by default.

 Interface – this classification is the result of the merge of ‘Interface’ and

‘Relationship’ into one single type, as both relate to interfacing (internal or

external) and the encountered cases were all related to interface problems –

even when they were a relationship issue.

 Understandability – removed and merged with ‘Documentation’ as this type

raised confusion during the classification activities and all the encountered

examples could be covered by documentation fixes.

Defects Classification

65

Table 14 depicts the mapping of the standard ODC type taxonomy to the proposed

adaptation of the ODC type attribute values.

Table 14: Standard ODC Type to Adapted Taxonomy

Standard ODC Defect

Type

Adapted ODC Defect Type

Algorithm/Method Algorithm/Method

Assignment/Initialization Assignment/Initialization

 Build/Package/Environment

Checking Checking

Documentation Documentation

Understandability

Function/Class/Object Function/Class/Object

Interface Interface

Relationship

Timing/Serialization Timing/Serialization

5.3.3 ODC Attributes – Trigger

Triggers classify what actions or checks can reveal the defect. Some changes to the

triggers were made from the standard ODC specification in order to simplify and

streamline as much as possible (for each trigger a small description provides the

rationale in order to better clarify when to use it):

 Design conformance – trigger that indicates that the defect was detected while

comparing the design, code or test with their specifications and assessing the

design and the specification conversion into design or implementation (similar

to ODC v5.2).

 Standards conformance – this trigger replaces the original ‘Language

Dependency’ trigger, renaming it and broadening the scope to better suit issues

in critical systems (often based on standards). It is applicable to defects that

arise when checking items for standards compliance (which typically do not

exist for the systems for which ODC was originally defined). This includes

requirements not written according to specific rules, and implementation

concerns such deviation from best practices. These issues may arise from

manual or tool assisted inspection.

 Logic/Flow – this trigger identifies incorrect flow of logic or data in the design,

implementation or procedure details (similar to ODC v5.2).

 Traceability/Compatibility – this trigger replaces both ‘Backward

Compatibility’ and ‘Lateral Compatibility’ in the ODC v5.2 specification. It is

applicable in cases where traceability is unclear or missing, or system blocks

have compatibility issues. This merge and adaption was deemed necessary to

Chapter 5

 66

cover specific requirements related to critical systems and requirements

imposed by standards that extensively use traceability.

 Consistency/Completeness – this trigger replaces the ‘Internal Document’

trigger, providing a more appropriate terminology, such as the one critical

systems engineers are used to. Defects related to incorrect information,

inconsistency or incompleteness should be mapped here. This trigger is mostly

related to inspections and assessment activities.

 Rare situation – this trigger is the result of the merge of both ‘Side Effects’ and

‘Rare Situation’ from the ODC v5.2 specification. We did not find relevant to

separate the two in our case study due to their low frequency and similarity.

 White box path coverage – merged ‘Simple path coverage’ and ‘Complex path

coverage’, applicable in unit testing when the tester is trying to exercise specific

code paths, which is very common in testing strategies for critical systems and

generally ruled by the testing strategies. Only path coverage is now considered

without distinguishing between simple and complex because no advantage was

seen and it is not easy to classify the complexity of path coverage

(simplification of the classification).

 Concurrency, Test coverage, Test variation, Test sequencing, Test

interaction, Workload/Stress, Start-up/Restart, Recovery/Exception,

Blocked test – same meaning as ODC v5.2 and no modifications required.

 HW/SW configuration – merged ‘Hardware configuration’ and ‘Software

configuration’ to cover configuration issues at large, as no major difference was

found that require to keep them separate. Also, hardware and software in

embedded systems are strongly coupled, thus making such distinction while

classifying issues may lead to many doubts without relevant added value.

Table 15 shows the mapping of the standard ODC taxonomy for triggers with our

proposed adaptation.

Defects Classification

67

Table 15: Standard ODC Trigger to Adapted Taxonomy

Standard ODC Defect

Trigger

Adapted ODC Defect

Trigger

Design conformance Design conformance

Logic/Flow Logic/Flow

Backward compatibility
Traceability/Compatibility

Lateral compatibility

Concurrency Concurrency

Internal document Consistency/Completeness

Language dependency Standards conformance

Side effects
Rare situation

Rare situation

Simple path
White box path coverage

Complex path

Test coverage Test coverage

Test variation Test variation

Test sequencing Test sequencing

Test interaction Test interaction

Workload/Stress Workload/Stress

Recovery/Exception Recovery/Exception

Start-up/Restart Start-up/Restart

Hardware configuration
HW/SW configuration

Software configuration

Blocked test Blocked test

5.3.4 ODC Attributes – Impact

This attribute depicts the impact that the defect would have had upon the end user if it

was not detected during ISVV (or the defect detection phase), or in the case of defects

detected during operation, what was the impact of the failure. The adaptations proposed

to the impact attribute are the following:

 Capability, Documentation, Installability, Integrity/Security, Migration,

Performance, Reliability, Requirements, Standards, Usability – same

meaning as in ODC v5.2, no modification required.

 Maintenance – merged ‘Serviceability’ into this impact attribute, as for critical

systems the definition of the two is similar and refer to diagnosing issues and

applying corrective/preventive actions.

 Safety – added for the special cases where defects in critical systems can

directly impact the safety of humans or of the environment (these are specific

requirements for many critical systems). There are sets of requirements that are

exclusively related to safety and any misinterpretation or failure of these

Chapter 5

 68

requirements will endanger the system safety, thus these situations need to be

carefully analyzed for these systems.

 Security – new taxonomy element to cover the security and cybersecurity

growing concerns of modern systems. The security analysis are not yet very

common for safety critical systems but there is a growing concern as the

systems become online and interfacing with more and more systems. For the

case of our study we had mostly on-board systems, so no security flaws have

been detected.

 Testability/Verifiability – added to fulfil the need to classify defects with an

impact in testability/verifiability of the systems. This is important to the

applicable standards conformance in critical systems since testability and

verifiability are commonly strict requirements that need to be part of the system.

 Accessibility – removed this impact that was related to ensuring that successful

access to information and use of information technology is provided to people

who have disabilities. For our case study, and for most critical systems, this

impact is not applicable and can be supported by either “Safety” or “Capability”

impacts depending on the situation and applicable requirements.

Table 16 presents the mapping of the standard ODC impact taxonomy to the proposed

adaptation.

Table 16: Standard ODC Impact to Adapted Taxonomy

Standard ODC Defect

Impact

Adapted ODC Defect

Impact

Accessibility

Capability Capability

Documentation Documentation

Installability Installability

Integrity/Security Integrity/Security

Maintenance
Maintenance

Serviceability

Migration Migration

Performance Performance

Reliability Reliability

Requirements Requirements

 Safety

 Security

Standards Standards

 Testability/Verifiability

Usability Usability

Defects Classification

69

5.4 Enhanced ODC Classification Results

The results of the application of the enhanced ODC for space defects are summarized

in Table 17. The top 5 defect types, triggers and impacts cover about 90% of the issues

analyzed. This observation suggests that actions can be taken to quickly improve the

quality of systems, by tackling a limited amount of properties.

Table 17: Enhanced ODC classification results (1070 defects)

Defect Type Qty % Defect Trigger Qty % Defect Impact Qty %

Documentation 515 48.13% Traceability/Compatibility 309 28.88% Capability 308 28.79%

Function/Class/Object 203 18.97% Test Coverage 227 21.21% Maintenance 264 24.67%

Algorithm/Method 96 8.97% Consistency/Completeness 206 19.25% Reliability 252 23.55%

Checking 69 6.45% Logic/Flow 119 11.12% Documentation 157 14.67%

Interface 56 5.23% Design Conformance 119 11.12% Performance 39 3.64%

Build/Package/Environment 52 4.86% Rare Situation 26 2.43% Usability 28 2.62%

Assignment/Initialization 46 4.30% Test Sequencing 16 1.50% Requirements 9 0.84%

Timing/Serialization 33 3.08% Standards Conformance 14 1.31% Migration 8 0.75%

 HW / SW Configuration 13 1.21% Standards 4 0.37%

 Recovery / Exception 10 0.93% Installability 1 0.09%

 Test interaction 4 0.37%

 Test variation 3 0.28%

 Start-up/Restart 2 0.19%

 Concurrency 1 0.09%

 White box path coverage 1 0.09%

Total 1070 100% Total 1070 100% Total 1070 100%

The ‘Documentation’ defect type represents now almost half of the defects and

‘Function/Class/Object’ represents almost 20% of the defects. This can be justified by

the fact that critical systems highly depend on documentation and documented

evidences to prove the accomplishment of requirements and standards and to ensure

qualification/certification of the systems by external entities. Furthermore, some of the

defects not classified in the first round (with the original ODC taxonomy) have now

been classified as ‘Documentation’ type, and those who were supposed to be of

‘Understandability’ defect type are also classified as ‘Documentation’ due to the merge

operated in the enhanced ODC taxonomy. ‘Function/Class/Object’ identifies

functionality implementation deficiencies, especially at implementation level.

For the defect triggers the results are a bit different from the previous as ‘Traceability’

has been clearly identified as a trigger, ‘Traceability/Compatibility’ became the most

frequent trigger (28.88%) as it is also one of the most used defect finding activity for

critical systems, the ‘Test Coverage’ (21.21%) is similar to the previous classification,

and ‘Consistency/Completeness’ (19.25%) is still a quite high trigger due to the fact

that a lot of artefacts under analysis are documents or documented that require

consistency and completeness checks.

Chapter 5

 70

For the defects impacts ‘Capability’ (28.79%), ‘Maintenance’ (24.67%), ‘Reliability’

(23.55%) and ‘Documentation’ (14.67%) still represent over 90% of the impacts

altogether.

Next, we present a detailed analysis of the classification results, providing a summary

of the main findings. As mentioned before, this gives the first hints about the dataset,

which can provide some quick feedback to the implementation and V&V teams.

5.4.1 Defect Type Results

The defect type is classified according to the fix that will remove it. If the defect has

already been fixed (in the moment we did the analysis), then it is quite straight forward

to determine its type. As observed in Table 17, there are 8 different types of defects,

from the most frequent (Documentation) with 48.13% of the cases to the least frequent

(Timing/Serialization) with only 3.08%. However, for the root cause analysis, we focus

in every defect type, even the least frequent, since any failure can compromise a

mission, with severe consequences. Table 18 presents the relation of every defect type

with the classified impacts.

Table 18: Specific Impact distribution for every defect type

IM
P

A
C

T

D
o

c
u

m
e
n

ta
ti

o
n

F
u

n
c
ti

o
n

 /
 C

la
ss

/
O

b
je

c
t

A
lg

o
ri

th
m

 /

M
e
th

o
d

C
h

e
c
k

in
g

In
te

r
fa

ce

B
u

il
d

 /
 P

a
c
k

a
g

e

/
E

n
v

ir
o

n
m

e
n

t

A
ss

ig
n

m
e
n

t
/

In
it

ia
li

z
a

ti
o

n

T
im

in
g

 /

S
e
r
ia

li
za

ti
o

n

Capability 21.56% 51.24% 46.88% 8.82% 26.79% 16.00% 20.45% 43.75%

Reliability 13.97% 24.88% 33.33% 70.59% 23.21% 38.00% 29.55% 21.88%

Maintenance 32.14% 17.41% 11.46% 8.82% 28.57% 38.00% 27.27% 12.50%

Documentation 30.14% 0.50% 1.04% 0.00% 1.79% 4.00% 0.00% 3.13%

Performance 1.60% 2.99% 6.25% 10.29% 0.00% 2.00% 15.91% 12.50%

Usability 0.60% 2.99% 1.04% 1.47% 19.64% 2.00% 6.82% 6.25%

The following paragraphs present an analysis for each type of defect (latter in the thesis

we will identify their primary root causes):

 Documentation (48.13%): Documentation is an essential asset for these

systems and is mandatory according to the standards (ECSS). It represents

essential artefacts for the system implementation that are passed from phase to

phase, starting from system specification and finishing with acceptance,

operation and maintenance. It is important to highlight the defects in

documentation that have an impact in Maintenance – 32.14% (quite important

for space systems due to frequent changes and corrections that are required

when the spacecraft is already in orbit, such as patches and dumps), Capability

– 21.56%, and Reliability – 13.87% (which represent essential properties of

Defects Classification

71

space systems: the correct implementation of functional and non-functional

properties).

 Function/Class/Object (18.97%): This type represents mainly the changes

that need to be applied in system functionality to correct non-compliances with

requirements. In short, it is the defect type that represents implementation

problems. The analysis shows that Function defects are related with the

Capability of the system – 51.24% (this is absolutely natural, since the defect

type indicates a functional error), Reliability – 24.88% (many functionality

problems have consequences in the reliability of critical systems), and

Maintenance – 17.41% (autonomous and dynamic systems frequently require

remote corrections and updates).

 Algorithm/Method (8.97%): These defects are usually the result of efficiency

or correctness problems that affect the task and can be fixed by

(re)implementing an algorithm or a method. They are also related to system

Capability – 46.88%, Reliability – 33.33%, and Maintenance – 11.46%.

 Checking (6.45%): These defects are the result of the omission or incorrect

validation of parameters or data, usually in conditional statements. Checking

defects are related to Reliability – 70.59%, Performance – 10.29%, Capability

– 8.82%, and Maintenance – 8.82%. Since Reliability is mostly achieved

through Fault Detection Isolation and Recovery (FDIR), error checking and

redundancy, checking defects have a profound impact on Reliability.

 Interface (5.23%): These defects are the result of communication problems

between subsystems, modules, components, operating system, or device

drivers, requiring changes, for example, to macros, call statements, control

blocks, parameter lists, or shared memory. Interface defects relate to

Maintenance – 28.57%, Capability – 26.79%, Reliability – 23.21%, and

Usability – 19.64%. The latter is mostly due to the fact that interfaces are related

to operation, control and usability of the system.

 Build/Package/Environment (4.86%): These defects are the result of

problems on the build process and on change management and version control.

They relate to Maintenance – 38.00%, Reliability – 38.00%, and Capability –

16.00%. The processes and tools used for these systems have a significant

impact in such activities.

 Assignment/Initialization (4.30%): Assignment/Initialization defects are the

result of values not assigned or incorrectly assigned, as well as wrong

initializations. These defects relate to Reliability – 29.55%, Maintenance –

27.27%, Capability – 20.45%, and Performance – 15.91%. The main impact is

in the system reliability, as some of these defects might stay undetected until

the occurrence of some very specific functional or non-functional situations.

 Timing/Serialization (3.08%): These defects are the result of timing errors

between systems, modules or components, or problems accessing shared

Chapter 5

 72

resources. They relate mainly with Capability – 43.75% and Reliability –

21.88%, as well as Performance – 12.50% and Maintenance – 12.50%.

5.4.2 Defect Trigger Results

Some of the root causes for the defects detected during ISVV are related with problems

in the efficiency of the verification and validation activities applied during

development. When we look at the triggers of the enhanced ODC, we might question

about the reason why those defects have not been caught earlier by the development or

V&V teams. Some questions arise in this case: has the independence so much

importance that makes it easier to find defects? why the same techniques used by the

ISVV team were not applied at an earlier stage of the project? or have they been

ineffectively applied?

This section provides an analysis of the triggers that detected the 1070 defects at the

ISVV stage of the projects. Since the list of triggers is extensive, we will focus on the

most relevant in terms of number of detected defects. This analysis contributes to

pinpoint the weaknesses of the regular development V&V activities and provide

suggestions to change/improve V&V activities to become more efficient and detect

more problems before they are passed on to the ISVV teams (this will be done

specifically in Chapter 6). Table 19 summarizes the impacts of the defects identified

by specific triggers.

Table 19: Specific Impact distribution for every defect trigger

IMPACT Traceability/

Compatibility

Test Coverage Consistency/

Completeness

Logic/Flow Design

Conformance

Capability 72.28% 25.49% 95.00% 18.95% 35.64%

Reliability 14.98% 37.75% 2.00% 21.05% 36.63%

Maintenance 4.12% 24.51% 1.50% 14.74% 9.90%

Documentation 0.75% 2.45% 0.00% 42.11% 15.84%

Performance 7.87% 9.80% 1.50% 3.16% 1.98%

The following paragraphs present an analysis for each defect trigger:

 Traceability/Compatibility (28.88%): The Traceability/Compatibility trigger

allows the detection of almost one third of all the defects. Such activities look

for inconsistencies of information across phases, incomplete or outdated

traceability matrices, or untraced artefacts. Regular V&V activities should be

enough to detect these defects during the development. Apparently, a clearly

stated and formally implemented traceability analysis is required and, if

supported by the appropriate toolset, it would not require significant additional

effort to the development and V&V teams. This trigger identifies most

Capability defects (72.28%) and some Reliability ones (14.98%).

Defects Classification

73

 Test Coverage (21.21%): Test Coverage is the trigger that evaluates the

completeness of the tests performed to validate the different units or

functionalities by considering different values or possibilities. As expected, a

significant number of defects is uncovered by Test Coverage activities. A

significant number of Reliability (37.75%) impact defects are uncovered, but

also Maintenance (25.51%) and Capability (25.49%) ones.

 Consistency/Completeness (19.25%): Another trigger with significant impact

related to inspections and reviews is Consistency/Completeness. All project

artefacts must be consistent between each other, as well as complete. Due to the

number of artefacts required by the lifecycle process and by the applicable

standards (ECSS), consistency and completeness analysis of these artefacts

very frequently reveal discrepancies. This trigger finds mostly defects with

impact on Capability (95.00%).

 Logic/Flow (11.12%): Logic and Flow analysis are triggers that allow the

detection of control and data flow defects by assessing the logical paths of the

software for program flow and control but also for data and variables flow. This

trigger finds mostly defects with impact on Documentation (42.11%).

 Design Conformance (11.12%): The Design Conformance trigger is a specific

set of activities applied to the architecture that allows the review of design

artefacts versus the specifications and the environment constraints. This trigger

finds mostly Reliability (36.63%) and Capability (35.64%) related defects.

5.4.3 Defect Impact Results

The results of the defect impacts are a reflection of the severity of the defects even if

the majority will never have a real impact because they will be solved and prevented

before. The distributions of the impacts include Capability, Maintenance and

Reliability as the most common ones, then Documentation with still a significant

frequency, and finally Performance, Usability, Requirements, Migration, Installability

and standards, with a much lower frequency.

The ODC Impact analysis can be used to prioritize the defect types/triggers to identify

the development and V&V activities that might conduct to the defects with a high

impact in the system. As “high impact”, we consider equally the impacts in Capability,

Reliability, and Maintenance, as they are the most severe since they represent three

essential requirements of critical space systems: functional quality, non-functional

reliability assurance, and maintainability. For our analysis, we have considered

Capability, Reliability and Maintenance as the most important impact types.

The following paragraphs present an analysis for each defect impact:

 Capability (28.79%): It is normal that Capability (i.e. functionality) is the most

affected property but, in space critical systems, maintenance has a significant

importance as well as the reliability requirements. Capability represents the

Chapter 5

 74

defects that will affect the functionality of the system without having an impact

on the non-functional properties, these can be seen as the normal “bugs” that

will lead the system to work with limitations or not properly, due to wrong

design or wrong implementation affecting the normal functioning.

 Maintenance (24.67%): A large amount of the maintenance defects from an

impact perspective) are originated in the implementation phase (most source

code and source code documentation), thus, the larger the amount of source

code defects the larger this impact will be, as it affects future maintenance of

the source code itself.

 Reliability (23.55%): The defects that have an impact on Reliability are

extremely important as they represent problems that affect one of the essential

properties of safety critical systems (not necessary or not always functional

property). The nature of the systems and defects selected for this work lead to

this high value, as some of the failures could have more than a Capability (or

functional) impact and could affect the dependability properties such as

Reliability and Safety that is also considered to be added as an impact for future

usage of the enhanced ODC. Safety has not been added to the enhanced ODC

taxonomy because the original dataset of defects did not lead to safety impact,

but this was considered during the analysis of the enhanced ODC classification

results as a possibility for future datasets. The same situation may apply to

security-related defects.

 Documentation (14.67%): As in all systems that heavily depend on

documentation, there are some minor defects that will impact simply the

documentation. This is the case for critical systems where documentation is

required at every lifecycle phase as artefacts to specify, design or document

evidences and results of the process.

 Performance (3.64%): Impact of defects that affect the system performance,

namely defects that increase the CPU load, the memory utilization, or increase

the application timings due to extensive or unintended data or control flows

originated from the defect.

 Usability (2.62%): These critical systems have a rather low set of defects that

impact Usability, but they still do exist. Other systems will certainly have larger

percentages for this impact, in particular systems with user interfaces or

command and control consoles. Our dataset was mostly of embedded

automated and autonomous systems, thus this value is quite low.

 Requirements (0.84%): Some of the defects affected the requirements and

their specification. This can happen up to the validation and testing phases, but

these are quite rare cases for critical systems due to the care that is taken to have

mature and stable sets of requirements and milestones to review extensively

those specifications.

 Migration (0.75%): This is a rare impact identified when a system or a

software is reused in a different environment, migrated to different hardware or

configured in a different manner.

Defects Classification

75

 Standards (0.37%): Some impacts are related to the application or

interpretation of standards during the system development lifecycle. There are

several levels of standards that can be involved, namely the domain specific

standards (e.g., the ECSS), the generic level standards (the Quality Assurance

standards or ISO 9001) and the specific engineering standards (requirements

standards, coding standards). Defects with an impact on standards can provide

feedback to improve the standards or make them more precise.

 Installability (0.09%): Impact originated from defects that affect the

installation, the configuration or the modification for safe use of the systems.

5.4.4 Combined Results

The previous sections have presented the main results from the defect type, defect

trigger and defect impact points of view. These results provide a good overview of the

system quality and already indicate some of the weaknesses that need to be tackled to

make the systems better and to avoid or prevent either most of the defects or the defects

with more severe impacts. Next, we will provide a more integrated view of the defects

that have slipped through review and defect detection phases of the lifecycle, and show

how the results presented before integrate as a whole.

5.4.4.1 Defect Introduction vs Detection Phase

To support the RCA, we have analyzed the introduction versus detection phases of the

defects. If a defect is not detected during, or right after, the phase when it was inserted,

that means that the V&V or defect detection activities between at least two different

phases failed. Table 20 presents the ISVV activities that detected the defects introduced

in previous stages and that slipped through detection on at least one defect detection

activity. The top heading (“Phase of Introduction”) represents the development phase

when the defects have been introduced, while the first vertical column contains the

activities (and phases) when the defects have been actually detected. Each row contains

the number of defects that have been detected in the phase specified in the first column

and that have been originated in the phase specified in the first row of the table

(Requirements, Design, etc.).

Chapter 5

 76

Table 20: Phase of introduction versus phase of detection

P
h

a
se

 o
f

In
tr

o
d

u
ct

io
n

R
eq

u
ir

em
e
n

ts

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

U
T

/I
T

S
y

st
em

 T
es

ts

O
p

er
a

ti
o

n

T
o

ta
l

la
te

d
et

ec
te

d

T
o

ta
l

Phase of Detection

Requirements Verification 162 - 162

Design Verification 6 106 6 112

Implementation Verification 10 77 290 87 377

UT/IT Verification 18 0 9 351 27 378

System Tests Verification 2 0 0 9 10

11 21

Operation Monitoring 1 6 0 0 9 4 16 20

Total late detected 37 83 9 9 9 - 147 -

Total 199 189 299 360 19 4 - 1070

The large majority of defects (86%) were detected right after being introduced (shaded

diagonal). However, a large number of defects (147) escaped both V&V and ISVV

(light blue background), being caught by later ISVV activities only. In Table 20 we

divided the testing activities in 2 phases as they provide an additional view showing

that even within the testing activities there are defects that could be caught earlier.

We can observe that a relevant number of defects that escaped previous ISVV or V&V

activities were detected during Implementation Verification (60%) – 10 defects were

introduced during Requirements and 77 during Design. A closer look, shown in Table

21, reveals that almost 80% are Documentation defects and 10% are Function defects,

which is in-line with the overall results presented earlier in this chapter. Thus, tackling

documentation issues might greatly reduce defect propagation.

The most important observation from the results in Table 21 is related with defect

triggers. Traceability/Compatibility accounts for 60% of the detected defects, while

Design Conformance and Consistency/Completeness account for 20% each. As source

code is more detailed and more concrete than architectural design components and

requirements descriptions, it is normal that traces can detect more inconsistencies,

especially missing or incoherent information.

The defects detected during the testing phases that originated from previous phases

include 20 defects injected during requirements specification and 9 defects introduced

during implementation, from which 14 defects are Function/Class/Object defects and

10 are Documentation defects.

Defects Classification

77

Table 21: Defects detected late, after Implementation

Defect Type Design Requirements

Documentation 65 4

Function/Class/Object 7 2

Algorithm/Method 2 3

Checking 1 0

Interface 1 0

Timing/Serialization 1 1

Defect Trigger Design Requirements

Traceability/Compatibility 46 5

Design Conformance 16 2

Consistency/Completeness 15 3

5.4.4.2 Enhanced ODC Defect Type vs Impact Analysis

The defect types that have higher impacts in the system (affecting Capability,

Reliability and Maintenance) are depicted in Figure 12. Defects with impact in

Capability (blue line) are mainly related with Function/Class/Object, Documentation

and Algorithm/Method types, confirming that the functionality

specification/implementation, the documented artefacts and the design decision in what

concerns algorithms and methods to apply are the main contributors to defects that

influence the system capability and normal functionality.

Defects with impact in Reliability (orange line) are originated mostly from

Documentation, Checking, Function/Class/Object and Algorithm/Method defect types.

In this case, there is a new defect type that contributes significantly to reliability issues:

Checking. It is clear that reliability (including redundancy, fault detection/monitoring,

isolation and recovery) is often implemented with checks and verifications for

monitoring and detection of errors and so the importance of avoiding this type of

defects to guarantee higher reliability.

Defects with impact in Maintenance (gray line) originate essentially from the

Documentation defect type. This is an expected result due to the fact that maintenance

depends on source code documentation and comments and documented artefacts that

include installation and download instructions, user and developer manuals, and

maintenance procedures.

Chapter 5

 78

Figure 12: Defect type versus defect impact

Table 22 summarizes the defects that have a high impact in the system (regarding

Capability, Reliability and Maintenance). The defect types are ordered according to the

total number of defects with such impacts. Table 22 shows that the two most frequent

defect types (Documentation and Function/Class/Object) account for almost 50% of all

defects (64% regarding the defects with high impact). Actions to avoid these defects,

such as Technical Writing trainings, improvement of documentation reviews or

automation of verification of documentation issues, could significantly reduce the

number of defects and improve Capability, Reliability and Maintenance.

Table 22: Defect types with high impact

(Capability, Reliability and Maintenance)

Type Capability Reliability Maintenance Total

defects
%

overall

defects

% defects

with high

impact

1. Documentation 108 70 161 339 31.7% 41.2%

2. Function/Class/Object 103 50 35 188 17.6% 22.9%

3. Algorithm/Method 45 32 11 88 8.2% 10.7%

4. Checking 6 48 6 60 5.6% 7.3%

5.

Build/Package/Environment
8 19 19 46 4.3%

5.6%

6. Interface 15 13 16 44 4.1% 5.3%

7. Assignment/Initialization 9 13 12 34 3.2% 4.2%

8. Timing/Serialization 14 7 4 25 2.3% 3.0%

Total 308 252 264 824 77.0% 100%

Defects Classification

79

5.4.4.3 Enhanced ODC Defect Trigger vs Impact Analysis

The defect triggers that allow the detection of the defects with a high impact are

represented in Figure 13. The graph reinforces the importance of the three main triggers

as the most important (frequent) triggers (overall they allowed the detection of 77.0%

of the issues): a) Consistency/Completeness, b) Test Coverage, and c)

Traceability/Compatibility. For this particular case, Reliability can be ensured with

better Traceability/Compatibility analysis, Test Coverage and Logic/Flow analysis.

Capability shall be assessed more efficiently with Test Coverage,

Traceability/Compatibility assessment and Design Conformance Analysis. The

Maintenance defect impact can be mitigated with Traceability/Compatibility and

Consistency/Completeness analysis.

Figure 13: Defect triggers versus defect impacts

Table 23 prioritizes the triggers that detected the defects with high impact. We can

observe that the two triggers that detect the most impacting defects are

Consistency/Completeness analysis and Test coverage, allowing the detection of

57.8% of the high impact defects (44.5% of all defects). Although the list of triggers

that enable detection of high impact defects is extensive, the 5 more meaningful ones

allowed the detection of 91.6% of the defects with high impact (about 70% of all

defects in our dataset). This is the reason why it is efficient to focus on the top 5 triggers,

as shown in Table 23: Consistency/Completeness, Test Coverage, Traceability

/Compatibility, Design Conformance and Logic/Flow.

Chapter 5

 80

Table 23: Defect triggers with high impact

Trigger Capability Reliability Maintenance Total

defects
% overall

defects
% defects

with high

impact

Consistency/Completeness 67 68 139 274 25.6% 33.3%

Test coverage 130 59 13 202 18.9% 24.5%

Traceability/Compatibility 37 20 42 99 9.3% 12.1%

Design conformance 15 55 24 94 8.8% 11.4%

Logic/Flow 37 29 18 84 7.9% 10.3%

Rare situation 8 10 6 24 2.2% 2.9%

Test sequencing 4 5 6 15 1.4% 1.8%

HW/SW Configuration 3 0 6 9 0.8% 1.0%

Standards conformance 0 2 6 8 0.7% 0.9%

Recovery/Exception 4 1 3 8 0.7% 0.9%

Test interaction 2 0 1 3 0.3% 0.4%

Test Variation 0 2 0 2 0.2% 0.3%

Concurrency 0 1 0 1 0.1% 0.1%

Path coverage 1 0 0 1 0.1% 0.1%

Total 308 252 264 824 77.0% 100%

5.4.4.4 Enhanced ODC Defect Trigger vs Type Analysis

It is also interesting to understand which defect triggers lead to the detection of which

defect types. This is what is shown in Figure 14 for the three most frequent defect types.

The graph shows that defect triggers Traceability/Compatibility and

Consistency/Completion allow the detection of a very large number of Documentation

defects (dashed blue line). As these triggers apply mostly to documentation and

documented artefact, this is an expected result. Another observation we can make is

that the Test Coverage trigger allows mostly the detection of Function/Class/Object

defects. In fact, the objective of Test coverage is to cover/test essentially the

specifications, which represent the functionality of the system. Thus, if the

specifications are not totally covered, functionality defects are probable to be missed

(Function/Class/Object). The same trigger (Test Coverage) also allows the detection of

Algorithm/Method defects in a larger scale than the other triggers.

Defects Classification

81

Figure 14: Defect triggers versus defect types

From the overall distribution of which triggers detect the 5 most frequent defect types

(Table 24) we can observe that some triggers are more efficient in detecting some

defect types, such as Design Conformance and Logic/Flow, which are good to detect

Checking defects, and the Test Coverage and Traceability/Compatibility triggers that

detect most of the Interface defects.

Chapter 5

 82

Table 24: Defect triggers detecting specific defect types

Trigger Documen

tation
Function/

Class/Ob

ject

Algorith

m/Metho

d

Checking Interface Total

defects
%

overall

defects

Consistency/Comple

teness
190 4 3 3 200 18.69

%

Test coverage 52 77 50 5 20 204 19.07

%

Traceability/Compat

ibility
193 40 11 2 21 267 24.95

%

Design conformance 36 37 10 16 2 101 9.44%

Logic/Flow 18 20 14 40 3 95 8.88%

Rare situation 6 12 1 3 22 2.06%

Test sequencing 2 4 4 5 15 1.40%

HW/SW

Configuration
2 2 2 6 0.56%

Standards

conformance
7 1 2 10 0.93%

Recovery/Exception 3 6 1 10 0.93%

Test interaction 3 1 4 0.37%

Test Variation 3 3 0.28%

Concurrency 1 1 0.09%

Path coverage 1 1 0.09%

Total 515 203 96 69 56 939 87.76

%

5.5 Validation of the Enhanced ODC

As mentioned, to validate the enhanced ODC taxonomy we re-applied it to our dataset.

In addition to the important fact that no issue was left unclassified with this new

taxonomy and that most of the issues could be classified in an easier way (avoiding

confusions or doubts by merging similar taxonomy elements), the results highlighted

the following:

a) The results with the enhanced ODC taxonomy revealed a higher percentage of

‘Documentation’ when compared to the original ODC classification. This can be

justified by the fact that critical systems highly depend on documentation and

documented evidences to prove the accomplishment of the requirements and the

standards. Furthermore, the classification performed by using the enhanced ODC

taxonomy allowed to consider 339 new defects, most of them previously

classified with the “Documentation” type, but that could not be added to the

results since either trigger of impact where not correctly classified.

b) ‘Traceability/Compatibility’ is the more frequent trigger and even ‘Test

Coverage’ became a trigger more efficient than ‘Consistency and Completeness’.

This suggests that the most efficient defect triggers are the simplest and more

logical ones, namely the ones related to traceability and testing activities.

Defects Classification

83

c) The ‘Maintenance’ defect impact became more frequent than ‘Reliability’, and

the ‘Documentation’ impact frequency has been reduced. In fact, maintainability

is an important property for the systems in our dataset, and the results show that

issues impact more system maintainability than system reliability.

The results also show that the 5 more frequent types, triggers and impacts cover about

90% of the issues analyzed. This does not mean that the others are not important (in

fact, ODC does not take into account the issue severity in its classification scheme) or

that they do not need careful analysis, but, with up to 5 taxonomy values, we are

covering the large majority of the issues, which suggests that actions can be taken to

quickly improve the quality of the systems, which is of extreme importance for the

industry.

These results, however, have not been compiled easily. The effort spent for the 1070

classifications was around 800 man hours (only for the classification task). This effort

includes the original ODC classification that exposed issues with the classification of

31.7% of the defects, the effort of enhancing the ODC attributes values, and the effort

of reclassification. The main noted difficulties during the whole process are related to:

 The amount of ODC classifications possible – even though only 3 ODC

attributes have been selected for the classification effort, the number of

possibilities is still significant – we found the standard taxonomy of the selected

attributes a bit generic when applied to a safety critical domain;

 The lack of fit of the ODC taxonomy for critical systems issues – this lead

to additional effort to try to classify the attribute originally, a need to scan and

check all attributes possibilities and consequent rework;

 The precision, completeness and detail level of the defects description –

some RIDs are very telegraphic, some others are extremely technical, some

include very limited information or lots of references that need to be checked

to perform the correct classifications;

 The lack of uniformity in the description of the defects - due to the fact that

they had been compiled between 2005 and 2014, by different teams of engineers

and they related to different types of systems or subsystems.

 The amount of supporting documentation required – the classification

required often the reference to the original documentation (specifications,

architecture, source code, testing artefacts, etc.) and these artefacts are quite

extensive, exist in different versions, had to be recovered from the projects

archives, and so on.

Table 25 shows that the second round was about twice as fast as the first round with

the original ODC (3.9 defects/hour versus 2.1 defects/hour). This is naturally due to

the fact that the defects were already known, the ODC taxonomy was clearer and the

practice of the analysts had increased. Another exercise, taken later, to classify 120

issues from railway control and management systems support the validation of the

enhanced taxonomy by two facts: a) the 120 defects have all been classified smoothly;

Chapter 5

 84

and b) the effort spent in that classification (defect type, trigger and impact) was 34

hours (3.5 defects/hour).

Table 25: Effort Spent for the different ODC related activities

Activity Description
Effort

(hrs)

Data

preparation

and training

Data collection/clean-up, training. 2 expert engineers in ISVV and

Critical systems and one junior researcher.
110

ODC phase I

Classification of defects and review of the classification. Full

classification of 721 defects, remaining 349 defects have been

partially/doubtfully classified. 2 expert engineers in ISVV and Critical

systems and one junior researcher.

520

Analysis/

Proposal of

ODC

Adaptations

Analysis of the 349 defects have been partially/doubtfully classified in

the previous phase and identification of modifications to the original

ODC taxonomy. 2 expert engineers.

80

ODC phase II
Reclassification and review of the defects (about 33%). The remaining

349 defects have been classified and reviewed. 2 expert engineers.
90

Total 800

5.6 Final Remarks

This chapter presented the defects classification results prior to the root cause analysis.

Both results including the original ODC classification and the enhanced ODC

classification were presented, but only detailed results of the enhanced ODC taxonomy

have been described. The classification issues identified by the ISVV teams using ODC

allowed the classification of 739 issues (out of 1070 defects). The remaining 31.7%

could not be classified and required an improved, more applicable taxonomy, which

was proposed and applied.

The proposed adjustments to the ODC taxonomy had several objectives, namely: to

promote a fit for critical systems issues classification and study, to maintain the

orthogonality of the classifications, to propose only the minimum amount of changes

possible to the ODC taxonomy, to simplify the classification work, and to allow easy

root-cause analysis for the future. The process to determine the adaptations was based

on the missing classification for the ODC defect Type, Trigger and Impacts as

explained before, but also on the difficulty to classify some of the issues according to

these attributes, thus including: a) new types, triggers and impacts; b) merged types,

triggers and impacts; and c) adjustment of some previous classifications due to a better

interpretation of the attributes. While the activity attribute was updated generically to

be adjusted to the commonly used lifecycle phases, the other three attributes (type,

trigger and impact) suffered some enhancements to improve the classification and

reduce the amount of doubts while classifying the defects.

Defects Classification

85

The results presented can help the space industrial community in focusing on the

weakest points of the engineering process to improve them. Also, by using the

enhanced ODC, ISVV teams can work much more efficiently with the triggers that

catch more problems and even develop appropriate and more precise V&V tools or

defect detection processes. As the systems involved cover most of the development

activities performed for those systems, and involve different companies (at geographic,

size and management level), we consider these results to be quite general for this

domain. A similar study for other domains (e.g. aeronautics, railway, automotive) is

foreseen as future work, but it will not be as easy as the existing data might not be as

structured as for space systems. Data confidentiality will be a challenging issue.

The enhanced ODC classification is done based on the opinion and knowledge of

experts and not following precise algorithms or criteria. However, it is important to

note that the original classification (the one that could not classify all the issues) was

performed by two engineers, whose work was also checked by a third space domain

expert. This domain expert also performed the reclassification himself (verified and

discussed with another space domain expert engineer in the case of doubts).

Finally, the results present interesting data to support the root cause analysis, and also

for immediate feedback to the engineering of critical systems, namely, what are the

most frequent defect types, and how they are reflected in terms of impact (severity),

what are the most efficient and frequent defect triggers (and again how they detect

issues with specific impacts), what type of triggers allow the detection of specific defect

types, and what are the defects that have slipped between lifecycle phases without being

detected (in order to identify if it is possible to detect them faster in the near future).

 86

Chapter 6

Defects Root Cause Analysis

"There are a thousand hacking at the branches of evil for one who is striking at

the root, and it may be that he who bestows the largest amount of time and money

on the needy is doing the most by his mode of life to produce that misery which he

strives in vain to relieve." – Henry David Thoreau, 1854.

This chapter presents the root cause analysis process and the results (root causes and

suggested measures) of the enhanced ODC application to the dataset of 1070 defects

from space projects and identifies the root causes for the majority of the defects based

on the ODC results and the knowledge of the space domain environment, processes,

methods and tools. As it is not possible to identify the root cause for every single defect,

we focused on the more frequent and more severe defect types.

The presentation of results and root causes is divided in five main lines of analysis: a)

the enhanced ODC results (the inputs to the RCA); b) the analysis of the defect types

(eventually detects implementation problems); c) the analysis of the defect triggers

(identifies inefficient V&V activities); d) the analysis of the defects identified at a later

SDP phase (inefficient ISVV or V&V activities); and e) the prioritization according to

the defect impacts (Capability, Reliability and Maintainability). Note that the root

causes have not been identified at the moment of resolution of the issues but at the

moment of the analysis of the enhanced ODC results. In practice, they are the result of

an expert analysis done on the defects, performed by the authors and complemented

and reviewed by the industrial partners. Note also that several defects do not have a

clear and unique root cause but a set of related root causes.

The root causes analysis consisted in a structured process based on a fishbone analysis

for the most frequent defect types and defect triggers, and a specific root cause analysis

for the defects that have slipped from detection in the phase where they have been

introduced. We have first analyzed the resulting defect types and identified root causes

related to development issues, then we have identified the main defect issues according

to defect triggers which gave us the V&V weaknesses. In a subsequent step, we have

proposed a dedicated list of measures to tackle both sets of root causes.

Defects Root Cause Analysis

87

6.1 Overview of the Process

A fundamental law in science is the Law of Cause and Effect: it states that every effect

has a cause. From that law follows the Law of Root Causes: stating that all problems

arise from their root causes. This is then the fundamental principle of Root Cause

Analysis, which intends to tackle the root of a problem by finding and resolving its root

causes. Root cause analysis is a kind of problem solving method aimed at identifying

the root causes of problems or events. It is common belief that problems are best solved

by correcting or eliminating their root causes, as opposed to merely addressing the

immediately obvious symptoms, which is common industrial practice.

Root cause analysis also helps on the identification of why an issue or problem occurred

and promotes the creation of a knowledge base that can be used to prevent or reduce

the impact of root causes in the future. When a root cause is permanently or completely

eliminated or controlled, then immediate or remedial rework is avoided and the future

occurrence of the issues caused by the root cause tackled are proactively addressed (or

avoided).

In the frame of this work, the root cause analysis has been designed to fit the process

described in Chapter 3 and to rely on defect classification from three different

perspectives: a) identification of root causes taking into account the more frequent or

more severe defect types; b) identification of root causes based on the more frequent

or more efficient defect triggers; and c) identification of root causes applicable to the

late detection of the defects in the development (or V&V) lifecycle. With the

combination of these three perspectives (see Figure 15) we can ensure a general but

also embracing analysis that is certain to identify the more important root causes and

help in improving the quality for future developments.

Figure 15: Root Cause Analysis Overview

Figure 15 provides a short overview of the root cause analysis as integrated in the

Chapter 3 defects analysis process. With the support of data from the defects

classification, three types of root causes are identified, not necessarily for every single

defect, but more generally to groups of similar defects, by considering defect types, or

Chapter 6

 88

by identifying triggers and V&V techniques that detected the defects, or by peeling off

the root causes of the late defect detection. Root causes can be identified by several

ways and techniques as described later in this chapter. Once the list of root causes is

defined, it can be prioritized based on different criteria (e.g. the amount of defects

caused, the severity of the impact of the caused defects, or removal of specific types of

undesired defects), consolidated by aggregating root causes common to the three

different root cause identification perspectives (defect, type, defect trigger and late

detection) or even similar root causes, and finally, complemented with a step of

matching the root causes to real suggestions for avoiding or eliminating them. The

improvement suggestions should be communicated to the engineering stakeholders,

implemented and monitored in order to confirm that the root causes are

eliminated/reduced for future development and V&V cycles.

For the root cause analysis, several techniques can be applied, as long as they are

mastered and applied by experienced analysts. Examples of techniques include: Five

Whys; Failure mode and effects analysis; Fishbone (cause and effects, Ishikawa)

diagrams; SIPOC (Suppliers, inputs, processes, outputs, customers diagram);

Flowcharting of the process flow, system flow, and data flow; Critical to quality

metrics; Pareto chart; and Statistical Correlation. The most commonly used of these

techniques are detailed in Section 2.4. Fishbone (cause and effects, Ishikawa) diagrams

is the technique used in the remainder of this chapter.

6.2 Root Cause Analysis Results

This subsection presents the results obtained from the root cause analysis activities

performed on the classified defects data. Root causes have been identified according to

the grouped defect types and defect triggers. The same root causes have been also

mapped to the defects that have not been detected within the phase they have been

introduced.

6.2.1 Enhanced ODC Defect Type RCA

The defect type is classified according to the fix that removes it. If the defect has

already been fixed (in the moment we did the analysis), then it is quite straight forward

to determine its type, as information about the fix is available. The defects classification

lead to the identification of 8 different types of defects (refer to Table 17), from the

most frequent (Documentation) covering 48.1% of the cases to the least frequent

(Timing/Serialization) covering only 3% of the defects. However, for the root cause

analysis, we focus in every defect type, even the least frequent, since the number of

defect types is acceptable and it is feasible to perform the analysis for 8 different types.

This way, the following subsections present an analysis for each type of defect, and

identify their primary root causes, based on the knowledge of several experts with many

years in development, V&V and ISVV activities in the space domain.

Defects Root Cause Analysis

89

It is important to note that the root cause analysis was not performed on the individual

defects (due to the amount of work that that would require), but sampling of defects

have been used to confirm the applicability of the defined root causes.

Table 26 presents the summarized and harmonized root causes that apply for each

defect type. These root causes represent the most common causes of the defects of each

type. Some examples from our dataset are also presented (the defect title is simple

enough to be understood without a detailed description). For example, looking at the

“Checking” defect type, the root causes identified include ambiguous/missing/incorrect

architecture and design artefacts; incomplete specifications in what concerns FDIR and

erroneous situations (commonly non-functional specifications), etc. For this case,

several situations where erroneous situations can occur have not been taken into

account, such as the examples presented in Table 26: missing validation of input

parameters and index value not checked.

Table 26: Root Causes vs Defect Types with real examples

Defect Types Root Causes Examples of Defects

Documentation lack of basic documentation skills (e.g. technical

writing); oversimplified documentation planning
procedures; lack of time to produce, review and

accept documentation artefacts (pressure on

schedules); lack of importance given to some
documentation artefacts (prioritization); lack of

completeness and consistency of documentation in

previous phases (ambiguous information, missing
information, incomplete documents); limited

domain knowledge (understanding of the system);

simplification of the product assurance processes
related to documentation artefacts; and limitations

of the tools or toolsets that deal with

documentation, especially across development
lifecycle phases or lack of preparation to use such

tools.

- Insufficient

information to validate

implementation

- Code documentation

not consistent with

implementation and

the design

- Requirement covered

by test procedure not

indicated in test

specification

Function/Class/Object ambiguous/missing/incorrect artefacts
(documentation, requirements, design, tests);

inefficient/insufficient reviews; limited engineers’

domain knowledge – lack of appropriate skills; lack
of system knowledge (to understand the overall

functionalities); lack of tools knowledge,

programming languages, design languages; and

insufficient unitary tests.

- Mismatch between
function

documentation and

design/implementation

- Requirement not

completely validated

Algorithm/Method ambiguous/missing/incorrect artefacts

(documentation, requirements, design, tests);
inefficient/insufficient reviews; limited engineers’

domain knowledge – lack of appropriate skills; lack

of system knowledge (to understand the overall

functionalities); lack of tools knowledge,

programming languages, design languages; and

insufficient unitary tests.

- Inconsistency between

requirement and
function

implementation

- Requirement may not

be validated in test

step

Checking ambiguous/missing/incorrect architecture and

design artefacts; incomplete specifications in what

concerns FDIR and erroneous situations (commonly
non-functional specifications),

inefficient/insufficient reviews; insufficient/wrong

tests (unit, integration, system, fault injection); lack
of system knowledge; and lack of reliability and

safety culture.

- Validate the input

parameters before

writing or reading

from array

- Index value not

checked (Defensive

programming).

Chapter 6

 90

Defect Types Root Causes Examples of Defects

Interface ambiguous/missing/incorrect architecture and

design artefacts; ambiguous/missing/incorrect

Interface Control Documents (ICD) or protocols
definition; incomplete specifications in what

concerns interfaces, environment and

communications; limited definition of the operation,
usability, maintainability requirements (user,

operation, installation manuals);

inefficient/insufficient reviews; insufficient/wrong
tests (unit, integration, system); and lack of system

knowledge (interfaces).

- Incoherence between

requirements, design

and code

- Unused input

parameter

Build/Package/Environment version and configuration management procedures

inappropriately implemented; complexity of the

build, versioning or change control procedures;
complexity of the tools used for build, change or

version control; and lack of knowledge on how to

properly use the tools, build warnings/errors not

resolved.

- Unused macros

- MISRA C Violations:

Functions not defined

Assignment/Initialization lack of specification of initial and default values;

incorrect implementation by forgetting basic
initializations; and lack of checking of values and

results of operations.

- Initialized variables

not found in state,
parameter or

Housekeeping Data

- Output pointer not

validated

Timing/Serialization lack of appropriate architecture detailing the timing

properties; and lack of knowledge of subsystems,

modules, resources, including hardware behavior.

- Housekeeping

execution time is

400ms instead of

500ms

- Transmission rate

inconsistency between

design and code

6.2.2 Enhanced ODC Defect Trigger RCA

Some of the root causes for the defects detected during ISVV reveal problems in the

efficiency of the verification and validation activities applied during development.

When we look at the triggers of the enhanced ODC (refer to Table 17), we might

question the reason why those defects have not been caught earlier by the development

or V&V teams, or simply by the application of those same triggers: has the

independence so much importance that makes it easier to find these defects? why the

same techniques used by the ISVV team were not applied at an earlier stage of the

project? or have they been ineffectively applied?

This section provides a qualitative analysis of the triggers that detected the 1070 defects

at the ISVV stage of the projects (see Table 17). Since the list of triggers is extensive,

we focus on the most relevant in terms of number of detected defects. This analysis

contributes to pinpoint the weaknesses of the regular development V&V activities and

provide suggestions to change/improve V&V activities to become more efficient and

detect more problems before they are passed on to the ISVV teams. From the

identification of triggers that should had been there at the development/V&V activities

we derive root causes in a simple manner.

This listing is presented in a detailed way since the triggers can be more directly and

concretely affected by the removal of the root causes. This means that we can apply

very specifically the recommendations and see an immediate effect, which is usually

Defects Root Cause Analysis

91

the detection of defects at the moment of application of the trigger. We also present the

title of a few defect examples from our dataset in order to demonstrate the type of

defects uncovered by the specific trigger-related root causes.

6.2.2.1 Traceability/Compatibility

The identified generic root causes that lead to Traceability/Compatibility trigger not

being effective before the ISVV detection are:

 Lack of traceability verification culture – most of the development / V&V

engineering activities related to traceability do not use properly the traceability

as the powerful tool it can be. Traceability can be used to support design,

implementation and testing activities, as well as the reviews of the artefacts

between lifecycle phases;

 Lack or inefficient usage of tools that support traceability across lifecycle

phases – the traceability is usually performed either on very simple tabular

format or integrated in other tools without automated/regular checks and

validations, in particular when assessing the artefacts of a specific lifecycle

phase.

Some examples of defects that could have been uncovered with appropriate application

of the Traceability/Compatibility trigger include:

 Inconsistency between Function Comments, Design and Code;

 Inconsistencies between test procedure and test log;

 Traceability mismatch between Procedure and test specification.

6.2.2.2 Test Coverage

The identified generic root causes that lead to a Test Coverage trigger not being

effective before the ISVV detection are:

 Lack of appropriate test planning and test strategy – test strategy and test

planning are commonly misconceived as the activity of defining test procedures

and test cases, implement, debug and execute them and then report the results.

The test strategy is essential as it shall define the testing methodologies, the test

planning, testing types, testing approaches, testing tools, test environment, test

data strategy, staffing needs and trainings, and so on;

 Lack of appropriate testing tools and testing environment support – the

testing tools and the testing environment are quite often deficient, archaic

sometimes, and should provide confidence in the testing, as well as be able to

automated and support the test implementation, execution and reporting

activities;

Chapter 6

 92

 Poor test specification and execution – test procedures specification can also

be limited due to the strategy and the available tools and environments.

However, it is still quite difficult for testing engineers to master the art of

defining appropriate and complete test specifications, while, for example using

full traceabilities to ensure coverage of the requirements or design artefacts.

Special care in the execution and logs collections is also required;

 Insufficient testing – as the test strategy is usually quite weak, the testing team

end up not doing enough testing. This must be defined upfront and later on a

case by case situation based on the particular needs of each requirements in

terms of logic flow or data testing needs to achieve functional and non-

functional coverage of “all” situations.

Some examples of defects that could have been uncovered with appropriate application

of the Test Coverage trigger include:

 Requirement not completely validated;

 Incomplete list of requirements covered by the test;

 Test Steps with no clear validation goal (missing requirement association).

6.2.2.3 Consistency/Completeness

The identified generic root causes that lead to Consistency/Completeness trigger not

being effective before the ISVV detection are:

 Documentation related root causes - lack of basic documentation skills (e.g.

technical writing); oversimplified documentation planning procedures; lack of

time to produce, review and accept documentation artefacts (pressure on

schedules); lack of importance given to some documentation artefacts

(prioritization); lack of completeness and consistency of documentation in

previous phases (ambiguous information, missing information, incomplete

documents); limited domain knowledge (understanding of the system);

simplification of the product assurance processes related to documentation

artefacts; and limitations of the tools or toolsets that deal with documentation,

especially across development lifecycle phases or lack of preparation to use

such tools;

 Review process related root causes – namely review simplifications (due to

lack of time excuse) and inappropriate/no usage of traceability assessments;

 Deficient usage of tools and applicable processes – oversimplification of

documentation processes, verification and validation processes and difficulty to

accept comment on own’ work. The usage of tools is also dependent on the

experience and training acquired in the tool usage and tool features, so, for

Defects Root Cause Analysis

93

several situations, a more appropriate usage and application of available tools

would produce a great improvement;

 Unclear or missing specifications – specifications that do not describe clearly

the requirements (specifications are not specific, measurable,

attainable/achievable/actionable/appropriate, realistic, time-

bound/timely/traceable) or missing specifications about some important steps

that will be left to the designer or implementation teams;

 Lack of domain knowledge – the ignorance of some processes, functional and

non-functional details about the system or the domain are some of the most

common causes for consistency and completeness problems during all phases

of the lifecycle.

Some examples of defects that could have been uncovered with appropriate application

of the Consistency/Completeness trigger include:

 No results in the UT report;

 There is not enough information to validate implementation;

 Inconsistency with (/within) design.

6.2.2.4 Logic/Flow

The identified generic root causes that lead to Logic/Flow trigger not being effective

before the ISVV detection are:

 Incomplete specifications – specifications that do not provide the means to

clearly design the logic or flow of operations/actions or missing specifications

about some important steps that will be left to the designer or implementation

teams;

 Ambiguous or unclear architecture definition – incorrect or incomplete

architecture definition have an effect on the implementation, and in particular

in the interfaces between modules where commonly discrepancies and

problems are identified;

 Lack of usage of tools that support data and control flow analysis – tools to

analyze the systems from a logic or data flow perspective would avoid several

problems related to interfaces or performance, tools similar to static code

analysis tools would be very beneficial for the logic/data flow analysis of

modern systems.

Some examples of defects that could have been uncovered with appropriate application

of the Logic/Flow trigger include:

 Releasing semaphores that haven't been locked;

Chapter 6

 94

 Optimize the validation of the mode transition table;

 Possible incorrect tracking of failed thrusters.

6.2.2.5 Design Conformance

The identified generic root causes that lead to Design Conformance trigger not being

effective before the ISVV detection are:

 Inappropriate architecture support tools or tool usage – tools that automate

checks, in particular for the architecture/design, could support on the checking

of conventions, completeness, interfaces and better assessment of the systems;

 Deficient specification or design artefact that lead to wrong

implementations – these are the common “bugs” from a design perspective, if

the design has flaws they might be replicated in the implementation. This

problem is also related to the expertise and technical knowledge of the designer.

Some examples of defects that could have been uncovered with appropriate application

of the Design Conformance trigger include:

 Code does not follow the design;

 Not validated state variable and documentation inconsistent with code;

 Cyclomatic complexity higher than expected.

6.2.3 Late Detection RCA

There are defects that for some reasons are not detected within the same phase they are

introduced, and this might lead to a severe leakage of the defects over phases. In case

a defect is detected later (it might not be detected) then the effort to fix it is much larger

as several artifacts and several lifecycle phases need to be revisited.

It is then of utmost importance to determine why (the causes) certain defects have not

been spotted and solved before, and why they have slipped through phases. The root

cause analysis of these specific slipped defects helps in identifying specifically the

causes of the failures in the V&V and ISVV techniques that allowed the defects to

propagate until a later stage in the lifecycle without being spotted.

We have analyzed the introduction versus detection phases of the defects. If a defect is

not detected during, or right after, the phase when it was inserted, that means that the

V&V activities from at least 2 phases failed detecting it, and that the ISVV activities

from at least one phase also failed. Table 27 presents the ISVV activities that detected

the defects introduced in some of the previous stages. The top heading (“Phase of

Introduction”) represents the development phase when the defects have been

Defects Root Cause Analysis

95

introduced, while the first vertical column contain the activities (and phases) when the

defects have been actually detected. Each row contains the number of defects that have

been detected in the phase specified in the first column and that have been originated

in the phase specified in the first row of the table (Requirements, Design,

Implementation, Unit Tests and Integration Tests (UT/IT), System Tests, Operation).

Table 27: Phase of introduction versus phase of detection

P
h

a
se

 o
f

In
tr

o
d

u
ct

io
n

R
eq

u
ir

em
e
n

ts

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

U
T

/I
T

S
y

st
em

 T
es

ts

O
p

er
a

ti
o

n

T
o

ta
l

la
te

d
et

ec
te

d

T
o

ta
l

Phase of Detection

Requirements Verification 162 - 162

Design Verification 6 106 6 112

Implementation Verification 10 77 290 87 377

UT/IT Verification 18 0 9 351 27 378

System Tests Verification 2 0 0 9 10

11 21

Operation Monitoring 1 6 0 0 9 4 16 20

Total late detected 37 83 9 9 9 - 147 -

Total 199 189 299 360 19 4 - 1070

The large majority of defects (86.3%) were detected right after being introduced

(shaded diagonal). However, a significant number of defects (147, or 13.7%) escaped

both V&V and ISVV, being caught by later ISVV activities only. In Table 27, we

divided the testing activities in two phases (the Unit/Integration and the System tests)

as they provide an additional view showing that even within the testing activities there

are defects that could have been caught earlier.

We can observe that an important number of defects that escaped previous ISVV or

V&V activities were detected during Implementation Verification (60%) – of these, 10

defects were introduced during Requirements and 77 during Design. A closer look,

depicted in Table 28, reveals that almost 80% of these are Documentation defects, and

10% Function defects, which are in-line with the overall results (Table 17). Thus,

tackling documentation issues might greatly reduce defect propagation (see Sections

6.2.1 and 6.2.2 for the applicable list of root causes). Another important observation is

that the large majority of slipped defects are introduced in the Design phase and not

properly detected by design V&V activities, directing the analysis to indicate design

conformance root causes (Section 6.2.2.5) as the ones to tackle first.

Chapter 6

 96

Table 28: Defects detected late, after Implementation

Defect Type Design Requirements

Documentation 65 4

Function/Class/Object 7 2

Algorithm/Method 2 3

Checking 1 0

Interface 1 0

Timing/Serialization 1 1

Defect Trigger Design Requirements

Traceability/Compatibility 46 5

Design Conformance 16 2

Consistency/Completeness 15 3

Furthermore, analyzing the data from Table 28, the defect triggers

Traceability/Compatibility are accountable for 60% of the detected defects, while

Design Conformance and Consistency/Completeness account for 20% each. As source

code is more detailed and more concrete than architectural design components and

requirements descriptions, it is normal that traces can detect more inconsistencies,

especially missing information. Code analysis (Implementation Verification) is also

largely supported by tools for static, dynamic and metrics analysis, and this is certainly

the main reason why this phase catches a large amount of defects introduced previously

and not detected in the appropriate phase.

The defects detected during the testing phases that originated from previous phases

include 20 defects injected during requirements specification and 9 defects introduced

during implementation, from which 14 defects are Function/Class/Object defects and

10 are Documentation defects. The requirements-related defects are mostly due to

requirements quality root causes, while the defects introduced at implementation

represent generally “bugs” or implementation mistakes, thus the root cause is related

to the experience of the programmers and the efficiency of the code reviews.

This section does not contain a list of root causes but they can be found within sections

6.2.1 and 6.2.2, which contain a very comprehensive list of root causes applicable in

this situation as well. For example, for the defect type related root causes a mapping

with the first row of Table 26 can be performed (Documentation). For the defect trigger

related root causes, the Traceability/Compatibility root causes are listed in Section

6.2.2.1.

6.2.4 Prioritization of the Root Cause Analysis

The prioritization is an optional step that is very practical for industry usage, if, for

example, the objective is to save money and get the best return on investment by

tackling the most important and/or the most frequent defects. It is arguable how we

identify the importance of defects based on a classification that has reduced and

Defects Root Cause Analysis

97

aggregated defects. However, for this purpose the selected Enhanced ODC

classification scheme provides and interesting tool in the form of the Impact

classification.

When we look at the possible impacts, we can identify a list that should get priority

versus the other one due to the possible effect on the critical systems. This way we have

labelled the impacts Capability, Reliability, Maintenance, Safety and Integrity/Security

as the most important, and Documentation, Installability, Migration, Performance,

Requirements, Standards, Testability/Verifiability and Usability as the less important.

As it is quite easy to map the relation between defect types and their foreseen defect

impacts, it is also possible to prioritize the identified root-causes in a similar way.

The defects with impact on Capability, Reliability and Maintenance (in our dataset

there were no defects with impact on Safety nor Integrity/Security), identified in Table

17, represent 77% of the total dataset. From these, if we consider the top 6 defect types

and the top 5 defect triggers we are already covering more than 90% of the high impact

defects. Thus, we can select Capability, Reliability and Maintenance impacts together

with the 6 more frequent types and 5 more frequent defect triggers safely for a more

simplified root cause consolidation process.

The results of the defects types and triggers prioritization are presented in detail in

sections 5.4.4.2 and 5.4.4.3.

6.2.5 Improvements Suggestions

The defects with impact on Capability, Reliability and Maintenance, as referred in

Section 6.2.4 and detailed in sections 5.4.4.2 and 5.4.4.3, represent 77% of the total

dataset. From these, we considered the top 6 defect types and the top 5 defect triggers

(see Table 22 and Table 23), each of them accounting for more than 90% of the defects

with high impact. Then, crossing these defects with the root causes identified in

sections 6.2.1 to 6.2.3, we were able to filter the main root causes for the most important

defect types (Table 29) and the most important defect triggers (Table 30).

This analysis results on a list of the most important causes of the defects identified

during ISVV, and of the most important causes of failure in the verification and

validation activities during the development lifecycle. For defects with high impact,

the listed causes show that software engineering processes, methods and tools require

some adjustments in order to become more efficient to produce more dependable and

safe systems. The identified root causes are all related to existing development and

V&V activities that require more careful application, especially in what concerns

schedule and planning pressures, rigor and caution on the application of engineering

processes, and V&V activities importance. The quality/product assurance strategies

and the guidance from applicable processes and required standards are essential to

ensure that these root causes are minimized.

Chapter 6

 98

Table 29: Summary of root causes for main defect types

Root Cause Defect Types

Inefficient/insufficient reviews Documentation;

Function/Class/Object;

Algorithm/Method; Checking;

Interface

Ambiguous/missing/incorrect artefacts (documentation,

requirements, design, tests)

Function/Class/Object;

Algorithm/Method; Checking;

Interface

Insufficient/Wrong tests (unit, integration, system, fault

injection)

Function/Class/Object;

Algorithm/Method; Checking;

Interface

Limitations of the tools or toolsets that deal with

documentation

Documentation

Lack of Completeness and consistency of system level (or

previous phases) documentation

Documentation;

Function/Class/Object;

Algorithm/Method

Oversimplified documentation planning procedures

Lack of time to produce, review and accept documentation

artefacts

Lack of importance given to some documentation artefacts

Simplification of the product assurance processes related to

documentation artefacts

Documentation

Limited engineers’ domain knowledge – lack of appropriate

skills

Function/Class/Object;

Algorithm/Method

Incomplete specifications in what concerns FDIR and

erroneous situations

Checking

Lack of reliability and safety culture Checking

Incomplete specifications in what concerns interfaces,

environment and communications

Interface

Limited definition of the operation, usability, maintainability

requirements

Interface

Lack of tools knowledge, programming languages, design

languages

Function/Class/Object;

Algorithm/Method

Version and configuration management procedures

inappropriately implemented

Build/Package/Environment

The root causes presented (in Table 29 and Table 30) have been ordered according to

expert knowledge and experience applicable to the high impact defects, and intend to

provide a preliminary ordering in what concerns their contribution to the high defect

impacts.

The identified root causes for defect triggers indicate that improvements to the current

processes, both development (to avoid the introduction of defects) and V&V (to detect

the defects within the phase they are introduced) might be possible. At a higher level,

the leading safety standards might require additional guidance to support development

and V&V in order to reinforce that the product/quality assurance (PA/QA), and safety

Defects Root Cause Analysis

99

and dependability assessments should be properly realized, reducing the number of

defects caught by ISVV. The proposed improvements are guidelines derived directly

from the root causes summarized in Table 29 and Table 30 and from domain and expert

knowledge of the authors and industrial contributors to this work. Their intent is to

fulfil the needs of the development and V&V processes to avoid the most important

and more frequent defects as those in our dataset.

Table 30: Summary of root causes for main defect triggers

Root Cause Defect Trigger

Lack of traceability verification culture

Traceability/Compatibility Lack or inefficient usage of tools that support

traceability across lifecycle phases

Lack of appropriate test planning and test strategy

definition

Test Coverage Lack or inefficient testing tool and testing

environment support

Incomplete tests specification and execution

Review process related root causes
Document Consistency/Completeness

(Internal Document)

Documentation related root causes
Document Consistency/Completeness

(Internal Document)

Deficient usage of tools and applicable processes
Document Consistency/Completeness

(Internal Document)

Unclear or missing/incomplete specifications
Document Consistency/Completeness

(Internal Document); Logic / Flow

Ambiguous or unclear architecture definition Logic / Flow

Lack of usage of tools that support data and

control flow analysis
Logic / Flow

Inappropriate architecture support tools or tool

usage
Design Conformance

Deficient specification or design artefacts Design Conformance

From the development perspective, and based on Table 29, the following measures

(proposed improvements) should be considered to reduce/eliminate the root causes:

 Define/redefine appropriate review methods, processes and tools and enforce

their application at every stage of the SDP;

 Implement automated documentation generation processes and tools to avoid

inconsistencies between artefacts/lifecycle phases;

 Use tools that integrate and manage all the phases of the lifecycle, such as

concept specifications, requirements, architecture, source code, tests, etc.;

 Introduce/use tools with automatic validations (documentation completeness,

design consistency, code analysis, control and data flow analysis);

Chapter 6

 100

 Provide training to the engineering teams, to improve the domain knowledge,

the system or interfacing systems knowledge, standards knowledge and

techniques and tools practice;

 Promote workshops or meetings to present the specifications/requirements, to

discuss and clarify them before advancing to the following phase;

 Introduce additional guidelines or even specific requirements (e.g. by defining

and specifying the reasoning behind the standards requirements and how to

achieve them in full conformance) in the applicable standards (PA/QA, version

and configuration control and development).

From the V&V perspective, and based on the results in Table 30, the following

measures (proposed improvements) should be considered to increase the defects

detection efficiency:

 Define appropriate test plans and strategies, especially unit and integration tests.

The soundness of the test plans and strategies will reflect in the success of the

validation;

 Ensure appropriate (or automated) traceability analysis at every stage of the

development lifecycle;

 Improve the testing completeness, coverage and reviews;

 Implement non-functional tests (fault detection, fault injection, redundancy,

etc.);

 Apply or develop tools to verify and validate the implementation and design

compliance.

6.3 Effort Spent on the Root Cause Analysis Activities

The root cause analysis was a very efficient activity as can be seen in Table 31. In

practice, the dataset root cause analysis was performed in about 2 weeks of effort, and

for any future analysis, the analyst can already reuse the identified root causes and

measures defined, if they still apply. A large amount of the effort was spent on the

brainstorming and identification of root causes for every specific defect type and for

every specific defect trigger. The activity ended with the identification of 26 root causes

(13 from the development perspective and 13 from the V&V perspective) and led to

the suggestion of 12 measures (7 to improve the development part and 5 to improve the

V&V practices).

Defects Root Cause Analysis

101

Table 31: Effort Spent for the root cause analysis activities

Activity Description
Effort

(hrs)

Process Data

Preparation

Collection of the Defect Types and Defect Triggers resulting from the

enhanced ODC classification. Training on the selected root cause

analysis methods (fishbone and 5 Whys).

8

Root Cause

Analysis for

Defect Types

Brainstormings and definition of the possible root causes for the 8 defect

types existent in the defects dataset. Summary of the root causes by

aggregating similar ones and simplifying the resulting list of causes.

Spot check on some defects to confirm the applicability of the defined

root causes.

24

Root Cause

Analysis for

Defect

Triggers

Brainstormings and definition of the possible root causes for the 15

defect triggers existent in the defects dataset. Summary of the root

causes by aggregating similar ones and simplifying the resulting list of

causes.

Spot check on some defects to confirm the applicability of the defined

root causes.

22

Root Cause

Analysis for

the Late

Detected

Defects

Brainstormings and definition of the possible root causes for the late

detected defects. Merging of these root causes with the previous analysis

(for defect type and defect triggers).

6

Prioritization

of the Root

Causes

Analysis of the specific types and triggers and what impacts they

generally cause. Selection of the top 5 most “important” impacts

(Capability, Safety, Reliability, Maintainability and Integrity/Security).

Filtering of the root caused based on this criteria.

8

Consolidation

of the Root

Causes

Simplification and aggregation of root causes in broader sets according

to affinities and similarities. The result = 13 root causes groups for the

defects types and 13 root causes for the defect triggers.

6

Identification

of Measures

Definition of sets of implementation suggestions to the consolidated list

of root causes. Analysis of the 26 resulting root causes.
8

Total 82

6.4 Final remarks

This chapter presented the root cause analysis results, one of the main outcomes of the

defects assessment process defined in Chapter 3. The root cause analysis consisted in

a structured process based on a fishbone analysis for the most frequent/important defect

types and triggers. We have first analyzed the resulting defect types and identified root

causes related to development issues, then we have identified the main defect issues

according to defect triggers which gave us the V&V weaknesses. We have also

(particularly) applied the root cause analysis to the defects that have slipped through at

least one lifecycle phase. In a subsequent step, we have proposed a dedicated list of

measures to tackle both sets of root causes (development and V&V). The applied root

cause analysis could produce manageable results due to the orthogonal classification

provided by the defined enhanced ODC taxonomy. This classification simplified

Chapter 6

 102

(aggregated) the defect types and triggers and allowed the analysis to be focused on

typed subsets (we can consider that we identified common root causes, instead of

individual ones).

From the resulting root causes, the main issues affecting critical systems in the space

domain are related to engineer’s mistakes, requirements and constraints, test strategies

and completeness, and lack of appropriate tools. To solve the problems caused by the

main root causes improvement on review processes, traceability activities and test

plans, strategies and completeness are the most relevant.

The root cause analysis technique used (fishbone + 5 whys), can be replaced by any

other root cause analysis technique as long as it is mastered and efficient and provides

complete results. The set of root causes identified either in the individual analysis (per

defect type or per defect trigger) or after consolidation can perfectly be reused for future

analysis, or simply be used as a starting point to feed the root cause analysis process.

The measures defined can also be reused as they are naturally connected to the

identified root causes. The reuse of root causes and measures will make the process

much more efficient and complete for the next time it is applied, and it will allow also

the organizations to measure the progress by studying the trends in the changes of

defect types and defect triggers (reflected in changes in the root causes).

Finally, even if the root causes defined for a specific dataset are a representation of the

problems that lead to that dataset, and the proposed measure represent the delta or the

improvements that are needed for the engineering teams that produced the systems,

these root causes and measures can be also used as a reference for root cause analysis

on other systems and on other domains. For more details on this topic see the next

chapter that discusses the topics of validation of the defects assessment procedure and

the application of the procedure to other domains.

 103

Chapter 7

Process Validation and

Application in Multiple Domains

“Program testing can be a very effective way to show the presence of bugs, but is

hopelessly inadequate for showing their absence.” - Edsger Dijkstra

The validation of a process shall be performed based on the applicability and

acceptance of the process and of the process results (output). The first part requires the

implementation in an industrial environment, some training and the application of the

defects assessment process to sets of defects. The second part requires the existence of

defects and much larger cycles, as suggested measures for improvement need to be

implemented (this can be done at different levels and require different periods of time:

new or modified engineering processes, techniques or tools, human resources training,

guidelines, templates and standards, and so on) and their results need to be assessed by

a second round of application of the defects assessment process or by the analysis of

the reduction of the number of defects or of their severity. This is very costly and time-

consuming or time dependent, for this reason we followed a different method to

validate the process and the process results.

The method defined to support the validation of the results of our research was to create

a dedicated questionnaire and have it answered by a selected and significant number of

experts. The questionnaire covered the definition and acceptance of the process, and its

applicability, simplicity and the results, and intended to collect the opinion of experts

on the validity of the root cause and measures. The questionnaire also allowed the

experts to share their experience by providing additional root causes and measures that

could be useful for future root cause analysis.

The survey also had the intention to provide to the industry and academia the

understanding of the applicability and need of a RCA based process, to compare and

complete the root causes defined with additional/complementary root causes

experienced by the experts, and to present the obtained measures and collect additional

Chapter 7

 104

ones from the exerts experience. The responses have allowed us to improve and adapt

the defects assessment process, and to rank, in terms of perceived importance, the root

causes and the proposed measures in order to improve software engineering processes.

A side effect of the results obtained, also visible in the textual responses collected in

Annex B, is the enhancement of the root causes and measures with additional common

root causes suggested by the experts. In practice, our root causes and measures together

with the root cause and measures proposed by the experts provide a very complete set

of information that can be used in future root cause analysis, and that support the claim

that the process provides results that are independent from the business domain.

The outline of this chapter is as follows. Section 7.2 presents the detailed results

obtained from the survey provided to the experts and the discussion of these results,

section 7.3 discusses some concerns about the applicability of both the process and the

reutilization of the root causes and measures to multiple business domains. Section 7.4

covers the process improvements as suggested by the experts in the answered surveys

and section 7.5 presents the final remarks about the process validation and the

application to different domains.

7.1 Overview of the Process

The process for validating and collecting the approval of experts concerning very

specific (and sometimes sensitive) topics is not an easy task. We had four main

objectives with our validation questionnaire:

 to confirm that the proposed process is acceptable and usable by industry;

 to confirm the validity of the identified root causes and measures;

 to obtain feedback and promote improvements to the process and to the lists of

root causes and measures, even if those come from different technical domains

(this might be useful in future defect analysis for other datasets); and

 to measure the applicability of the process and results to different business

domains (how generic these can be).

The first activity was to formulate the questions and have the questionnaire validated

(see Section 7.1.1). Next, we selected the target groups of respondents of the survey

(see Section 7.1.2). A large group of experts from academia and industry worldwide

has been contacted, in particular experts working with dependability and critical

systems. Finally, the responses to the questionnaire have been collected and the data

analyzed (see results in Section 7.2).

7.1.1 Definition and Validation of the Questionnaire

Once we have defined the generic objectives (above) and research questions, we have

formulated the survey specific questions. The survey intended essentially to gather the

Process Validation and Application in Multiple Domains

105

view of the industry and academia in what concerns defect analysis of critical systems,

in particular the occurrence of failures in systems and software development and V&V

processes. The research questions included the confirmation of the applicability and

need of a RCA based process (Research Question RQ1), the types of causes that were

experienced by experts (RQ2), and what the challenges are to advance the methods and

practice of RCA (RQ3).

The applicable systems are usually developed with utmost care, under very strict and

mature processes and methods and usually require independent assessment in order to

be fit to the purpose (qualified, certified, and homologated). These systems also follow

well-defined quality assurance rules and originate a great deal of evidences (mostly

documented artifacts) that can be consulted by teams and independent assessors. The

survey operates around the results presented in the previous chapters, but also intends

to collect additional expertise to improve the classification and the root-cause

identification tasks.

The questionnaire (presented thoroughly in Annex A) is composed by the following

parts:

 A short introduction to the topics, a relevant list of acronyms, a note about the

anonymity of the answers, instructions on how and when to deliver the

questionnaire, and a short presentation of the defects analysis process;

 Three core parts:

o A set of General Questions (to quantify the technical domain and

experience, the perceived importance of the role of standards, budget,

schedule, external assessment and defects analysis);

o A set of textual questions collecting feedback about the process

(positive and negative) and a request for additional recommendations

(the results are in Annex B), and questions about the level of

acceptability/recommendation of the proposed defects assessment

process, the strengths and weaknesses identified, and some additional

suggestions to simplify or improve the process;

o Four sets of questions related with: a) defect development root causes

and suggestions; b) root causes and suggestions regarding defect

detection failure; c) defect avoidance measures and suggestions; and d)

V&V measures and suggestions.

 Additional comments to the questionnaire.

Once the draft structure and questions have been formulated, the questionnaire has been

reviewed internally, then provided to a group of 4 experts (two from academia and two

from industry) to have the questionnaire tested, reviewed and commented for

validation. The results of this validation were not used since the questionnaire suffered

some adjustments based on the feedback from the experts. The questions have then

been adjusted and simplified with the feedback from the four experts, as it should be

Chapter 7

 106

complete and straightforward and answerable in less than 1.5 hours, without

compromising confidentiality (ensuring anonymity of the answers).

Further validations have been done on each question in order to simplify the answers,

support the respondents and avoid confusion or misunderstandings while responding.

These validations included: proof reading of all questions, merging of similar

questions, simplification by dividing one complex question into two or more, addition

of helping text and guidelines to guide the answers, and appropriate reordering of the

questions.

7.1.2 Distribution of the Questionnaire

The target audience of the survey has been selected based on the author’s experience

and list of contacts. The industrial background of the author provided a large and

dedicated list of relevant contacts in the Aeronautics, Space, Defense and

Transportation domains. An important tool used to support the selection of industrial

contacts was LinkedIn [138]. A large list of academic experts has also received the

questionnaire. This list was constructed based on contacts acquired over several

international research projects such as Critical Step [139], CECRIS [140], VALCOTS-

RT [141], and AMBER [142], just to name a few, and from the previous participation

in international conferences such as DASIA, ISSRE, DSN, SAFECOMP, etc. These

experts all belong to at least one of the following business domains: aeronautics, space,

automotive, railway, defense, nuclear; and had experience in the following technical

areas: critical systems, dependability, reliability, fault injection, V&V, RAMS.

In practice, the questionnaire was delivered directly by email to 171 experts both in

MS Word and PDF formats and the respondents were given one month to answer. Some

of the experts replied stating that they would not be available to provide feedback or

they did not felt confident to respond to the survey, some others have shown their

interest in the survey and in getting the results of the overall survey at the end. Finally,

36 surveys have been received and compiled, the results have been summarized and

presented (see Section 7.2). We estimate that these experts have spent around 60 hours

overall to provide their feedback.

7.1.3 Characterization of the Respondents

The questionnaire has been answered by 36 experts. Not all experts answered the full

set of questions, or had opinion on every question where a textual response was

required (Annex B). From the responses received, 17 were completely filled, 14 had

more than 92% of the questions answered (corresponding to 20 out of 22 questions),

and 5 had between 56% and 76% of completion of the responses. Some experts had no

opinion concerning either one of the questionnaire areas or some of the proposed root

causes or measures (we cannot conclude that no answer means total agreement with

the proposed root causes/measures, but we can suspect that they had no clear or evident

additions to our list). Overall, all questionnaires have been used to extract useful data.

Process Validation and Application in Multiple Domains

107

In the analysis of the questionnaires we have simplified the domains to Academia,

Transportation, Aerospace and Others. The distribution of respondents that claimed to

work on these domains is: Academia – 19; Transportation – 18; Aerospace – 20; Other

– 15. Only 7 researchers specified that they have experience in Academia, however,

for this metric we have also considered researchers who claimed at least 5 years of

experience in the academic field. Note that several experts have expertise in several

domains, this is why the total adds up to more than 36. These results provide an

interesting base for industrial analysis of the importance and extensibility our work.

The average experience per expert was about 6.7 years for the 7 Academic respondents

and 16.7 years for the 29 Industrial respondents (see Annex C for the experience

distribution).

7.2 Validation Results

The data collected from the 36 questionnaires provided the validation arguments that

we needed to improve and confirm the value of our process and results. The results of

the survey are documented in Annex B and Annex C.

7.2.1 Relevance of RCA

The importance and relevance of application of a root cause analysis based process was

at the center of the objectives of the survey. It is very clear from the answers provided

to the general questions that root cause analysis is considered as extremely relevant.

Most of the experts consider that the usage of standards is extremely important,

consider that budget and schedule restrictions are very important, and that external

assessment (such as ISVV or certifications) as well as root cause analysis are also

extremely important for critical systems. These results clearly confirm that our

motivations for acting upon such systems quality is shared by the community. The

resulting answers are shown in Table 32.

Table 32: General Questions Summary

ER (Extremely Relevant), VR (Very Relevant), SR (Somehow Relevant), NR (Not Relevant), NO (No Opinion)

From questions Q8 and Q9 (Table 33) we observe that 28% of the inquired experts

have already used ODC in the past, and 50% have used some kind of defect analysis

technique. This is quite surprising for such a selected population, since only a little

Questions ER VR SR NR NO

Q3: Standards Importance 53% 33% 11% 0% 3%

Q4: Budget Importance 30% 53% 14% 0% 3%

Q5: Schedule Importance 42% 42% 11% 0% 6%

Q6: External Assessment Importance 56% 30% 11% 0% 3%

Q7: RCA Importance 61% 36% 3% 0% 0%

Chapter 7

 108

more than half has ever used a structured way to study (recurrent) defects. Defects

classification is also not common, but generally it is done with a very simple internal

taxonomy to each organization.

Table 33: Experts Background knowledge Questions

7.2.2 Feedback on the Defects Assessment Process

This subsection presents the critics, suggestions and recommendations from the experts

in what concerns questions Q10, Q11, Q12. Again, the full set of answers is included

in Annex B.

When we asked if the experts would recommend such a process, we got 60% of

recommendations and 33% of possible recommendation, while only 7% would not

recommend such a process (See Figure 16 which does not include the 6 respondents

who did now answered this question).

Figure 16: Process Recommendation Distribution

The comments on the process strengths, weaknesses and suggestions are presented in

the following sub-sections.

Questions YES NO

Q8: Used ODC before? 10 (28%) 26 (72%)

Q9: Used Defect Analysis before? 18 (50%) 18 (50%)

Process Validation and Application in Multiple Domains

109

From the 32 responses (89%) obtained on the process strengths (Q10) we can

highlight the following ones: i) being a structured approach; ii) inclusion of root cause

analysis; iii) inclusion of a classification scheme; iv) provision of improvements and

feedback; and v) relying on high quality of data. These strengths are effectively the

ones we wanted to achieve and demonstrate with the defects assessment process.

From the 32 responses collected on the process weaknesses (Q11) we can summarize

the most relevant/frequent as: i) concerns about how to guarantee the quality of defect

data (also related to strength v); ii) large amount of steps in the process; iii) missing

feedback to the process (identified also as strength iv); and iv) difficulty in

implementing/enforcing such a process.

These comments are all very relevant. First, the process will only work if the defect

data is appropriate. For this, we shall relate comment i) with comment iv), as a cultural

enforcement must be broader than just the application of the process, but also cover the

defect data collection, the quality checks of the data, and so on. The large number of

steps is required to have the process well detailed with simple blocks – the process can

however be simplified as some steps can be considered optional (e.g. 6 – Late Detection

RCA, 7 – RCA prioritization). Furthermore, the process contains feedback to both the

process itself and to the development and V&V processes (strength iv).

Only 7 (19%) experts have not provided any additional process suggestions (Q12).

Overall, out of the three requested suggestions, we obtained a response rate of 58%,

which is a significant amount of comments and suggestions and demonstrates the

interest of the experts in the topics. The main and more commonly agreed process

suggestions include (see Annex B for the complete set):

 Data collection improvements (process, database, quality guarantee) –

some experts have demonstrated concerns about the quality and availability of

good defects data. This topic has also been discussed earlier in Chapter 4;

 Classification/validation activities and data quality checks between phases

of the process – this is a very relevant topic. We had to implement a validation

of the classification of defects due to many classification doubts in early phases.

We have also used the questionnaire to be able to generically validate the root

causes and the measures proposed, but this is a general validation and not a

validation between phases. We believe however that with the appropriate

training, and with expert support, any organization can comfortably implement

such a process and guarantee quality of the results after each phase;

 Consideration of projects details/specifics and team dynamics (skills,

experience, motivation) – these parameters need to be considered mostly

during the root cause analysis and measures definition. If the root causes point

to any of these topics, then actions need to be defined to deal with these less

technical properties;

 Assessment covering also management related issues – the management

cannot be dissociated from the success or failure of the teams, and it can be

included as well in the root causes, if considered necessary. Questions about

Chapter 7

 110

budget and schedule pressures have been included in the survey to measure the

level of influence of management in the success of a critical system project.

We can observe that we have suggestions on the environment and prerequisites, which

make absolute sense (data quality, projects details), and also on the validation of the

internal process activities, namely regarding the quality of the classification, which

cannot be easily automated as per today’s technologies.

7.2.3 Evaluation of the Quality of the Root Causes

The following analysis presents the results and discussion regarding the experts’

opinions on the main results of the application of the defects assessment process to the

1070 ISVV space defects, namely, de development defects root causes (based on defect

types analysis) and the failure of detecting defects root causes (based on defect triggers

analysis). This analysis is based on the 4 questions Q14, Q15, Q16 and Q17. While

Q14 and Q16 represent the classification of the root causes identified and proposed by

us to the experts, Q15 and Q17 represent newly suggested root causes according to the

knowledge and experience of the experts.

The objective of this section is to show that the experts have a common view on the

root causes identified for critical systems. Although the presented root causes are

naturally associated to the defects dataset and the aerospace domain, we intended to

determine if these results were still widely acceptable and potentially recurrent also in

other domains. As we will see, this assumption can be corroborated by the presented

results.

We have analyzed the frequency of words/groups of words and clustered the

suggestions of the experts, and those are presented hereby for all the questions where

a written opinion was requested. For the details on the proposed root causes see Annex

B.

For the questions Q15, Q17, the number of provided suggestions (root causes) can be

observed in Table 34 (we have simplified the questions text to make it fit in the table.

Further textual description can be found in the questionnaire in Annex A). The experts

provided more suggestions to root causes for development problems (62) than for V&V

problems (36), and a relatively similar amount of Extremely Relevant/Frequent and

Very Relevant/Frequent set of overall suggestions (38 and 43). The first observation

that can be made is that the development is naturally more exposed to defects and

experts have seen different types during their career. The V&V activities that are

associated with the “lack of defects detection” are a limited set in terms of causes and

have been quite well captured by our analysis. Moreover, the experts tend to spend time

proving suggestions that they really consider important and relevant, according to their

domains and expertise. As we will see next, although some of their suggestions are

already covered by the results of our analysis, they have expressed them in a slightly

different wording.

Process Validation and Application in Multiple Domains

111

Table 34: Amount of the Proposed Root Causes and Measures

ER (Extremely Relevant/Frequent), VR (Very Relevant/Frequent), SR (Somehow Relevant/Frequent), NR (Not Relevant/Frequent),

NO (No Opinion).

7.2.3.1 Root Causes on Development Defects

We requested the experts’ perception of the frequency of the identified root causes from

a development perspective. These have been identified in the context of our dataset and

for the space domain, but we expect these to be quite well acknowledged by the experts.

Q14 presented the main root causes that we found during the development lifecycle.

Figure 17 shows the order of “preference” or “importance” given by the experts to

those root causes and the distribution of the relevance level. The colors represent the

percentage (the left axis of the image) of responses of each importance/relevance level,

while the green line provides an average of the overall responses for each root cause

based on the weights given to the response (ER = 3, VR = 2, SR = 1, NR = 0, NO =

excluded). The list of root causes is ordered by this average, showing the root causes

considered more important/relevant to the left and the less important/relevant to the

right.

Questions ER VR SR NR NO Total

Q15: Development Defects Root Causes Suggestions 23 26 11 2 46 62

Q17: Failure of Detecting Defects Root Causes Suggestions 15 17 4 0 72 36

TOTAL 38 43 15 2 118

Chapter 7

 112

Figure 17: Development Defects Root Causes

Aerospace experts consider documentation tools limitations (decrease of 21%5) and

lack of tools and programming languages knowledge (increase of 21%) as less relevant

than other experts, and incomplete interface specifications (decrease of 15%) as more

relevant than experts from other domains. Besides these causes both groups classify

the root causes in a very similar way in terms of importance. Table 35 shows the relative

difference between the classifications made by Aerospace experts and experts from

other domains (based on the values presented in Figure 17).

5 This means that for question Q14d: Docu Tools Limitations, Aerospace experts have provided a

lower importance, according to the sum of the weights of NO, NR, SR, VR and ER, to this root cause

than other experts. The difference of the aggregated sum in this case is 21%.

Process Validation and Application in Multiple Domains

113

Table 35: Difference between Aerospace experts answers and others for Q14

Question Difference

Q14a: Inefficient Reviews 9.0%

Q14b: Artefacts Problems 4.5%

Q14c: Incorrect Tests 11.0%

Q14d: Docu Tools Limitations -21.0%

Q14e: Sys Docu Inconsistencies 3.6%

Q14f: Docu Processes Overlooked 10.5%

Q14g: Limited Domain Knowledge 6.7%

Q14h: FDIR Specs Missing 0.3%

Q14i: Lack Reliab. Safety Culture 0.8%

Q14j: Incomplete Interface Specs 15.0%

Q14k: Insufficient Maint, Oper, Usab Specs 6.6%

Q14l: Lack Tools and Languages Knowl -20.8%

Q14m: CM and Versioning Problems -9.3%

In what concerns the causes for defects introduced during “development”, ordered

according to the frequency of occurrence/importance, we can observe that 9 of the 13

root causes achieve an Avg. greater than 1.5, meaning that in overall they were

evaluated at least as relevant/frequent by the set of experts.

We also observe that experts do not seem to consider the lack of domain knowledge,

tools limitations and configuration management problems as the most relevant or

frequent root causes. On the contrary, they consider that wrong implementations,

incomplete reviews, incomplete tests and specifications for the error situations are the

more frequent/important root causes.

As a complement we requested the experts to provide some additional root causes from

their experience (which would not necessarily be applicable to our dataset) in order to

compile a more complete and equilibrated list of root causes that can be used for the

future independently from the business domain.

The aggregated summary of the new root causes (Q15) has been collected from the

suggestions of 27 experts (75% of the total sample). The main topics for new root

causes suggested are:

 Pressures impacting development artefacts (management, schedule/delivery,

budget);

 Development/developers overconfidence or carelessness, as well as skills,

motivation and interest in the project;

 Systems increasing complexity (technical and team sizes);

 Communication issues (customer, developers, V&V, management);

 Constraints on quality, availability of artefacts, and resources skills.

Chapter 7

 114

Several experts suggested root causes similar to the ones proposed in our survey,

making the clustering easy. In fact, we observed that some of the suggested root causes

are related specifically to some of our root causes proposed (described in the

questionnaire), e.g. domain knowledge, poor documentation, Fault Detection, Isolation

and Recovery (FDIR). Others, as those stated in the bullets above, are sometimes quite

broad but constitute an interesting starting point for consideration in future RCA, and

thus to be added to our list of 13 root causes to serve as a reference for future analysis.

7.2.3.2 Root Causes on Failure of Detecting Defects

While analyzing the defect triggers we have identified root causes for failing defect

detection or for demonstrating how V&V activities have failed. The perception of the

frequency/importance of these identified root causes was asked in Q16 and is depicted

in Figure 18. The colors represent the percentage (left axis of the image) of responses

of each importance/relevance level, while the green line provides an average of the

overall responses for each root cause based on the weights given to the response (ER =

3, VR = 2, SR = 1, NR = 0, NO = excluded). The list of root causes is ordered by this

average, showing the root causes considered more important/relevant to the left and the

less important/relevant to the right.

Figure 18: Failure of Detecting Defects Root Causes

Aerospace experts consider defective review processes (increase of 22%), non-

application of traceability support tools (increase of 20%) and incorrect usage of tools

(increase of 16%) as more relevant than experts from other domains. Besides these

Process Validation and Application in Multiple Domains

115

causes both groups classify the root causes in a very similar way in terms of importance.

Table 36 shows the relative difference between the classifications made by Aerospace

experts and experts from other domains (based on the values presented in Figure 18.

Table 36: Difference between Aerospace experts answers and others for Q16

Question Difference

Q16a: No Traceability Culture 6.7%

Q16b: No Traceability Tools 20.2%

Q16c: No Test Planning 7.9%

Q16d: No Testing Tool/Env. 2.1%

Q16e: Incomplete Test Spec 3.1%

Q16f: Defective Review Process 22.4%

Q16g: Defective Docu 11.1%

Q16h: Bad Tools Usage 16.4%

Q16i: Incomplete/Bad Specs 1.2%

Q16j: Defective Architecture -3.1%

Q16k: No Tools for Data Flow Analysis 6.6%

Q16l: Inappropriate arch supp tools -4.2%

Q16m: Deficient Design Specs 10.9%

Experts do not seem to consider that tools (again) are an important source for failing to

detect problems, since the 5 lowest average root causes pointed to tools-related

problems or lack of tools. On the contrary, they consider that specifications-related

problems, test specifications and implementation of planning and review processes lead

to the lack of defects detection much more frequently than the other root causes. From

these values, we can observe that 8 of the 13 root causes achieves an average greater

than 1.5, meaning that in overall they were evaluated at least as relevant/frequent by

the set of experts.

The aggregated summary of the root causes proposed by experts for failure of detecting

defects (Q17) has been collected from the suggestions of 18 experts (50% of the total

sample). The main topics for new root causes suggested are:

 Knowledge limitations (domain, project, environment, faults, constraints,

technologies, safety culture);

 V&V processes and culture (also considering dedicated standards);

 Staff inexperience (lack of testing expertise, lack of verification training);

 Management related issues (planning, pressures, risks, milestones, schedules);

 Size and complexity of systems (untestable requirements, long testing periods

or impossibility of full coverage, lack of early involvement of safety/V&V

teams).

Chapter 7

 116

Some of the root causes suggested are related to specific root causes already in the

questionnaire, e.g. testing planning/strategy, or testing tooling/environment issues (also

problems with tools). Others, as those stated above, can also be allocated to the

development phases but constitute another interesting addition for consideration in

future RCA, and thus to be added to our list of 13 root causes to serve as a reference

for future analysis.

7.2.4 Evaluation of the Quality of the Measures

The following analysis presents the results and discussion regarding the experts’

opinions on the main results of the application of the defects assessment process to the

1070 ISVV space defects, namely, the measures to improve development and V&V.

This analysis is based on the 4 questions Q18, Q19, Q20 and Q21. While Q18 and Q20

represent the classification of the measures identified and proposed by us to the experts,

Q19 and Q21 represent additional measures proposed by the experts.

The objective of this section is to show that the experts have a common view on

required measures for critical systems. Although the presented measures are naturally

associated to the defects dataset and the aerospace domain, we intended to determine

if these results were still widely acceptable and potentially recurrent also in other

domains. As we will see, this assumption can be corroborated by the presented results.

We have analyzed the frequency of words/groups of words and clustered the

suggestions of the experts, and those are presented hereby for all the questions where

a written opinion was requested. For the details on the proposed measures see Annex

B.

For the questions Q19 and Q21, the number of provided suggestions (measures) can be

observed in Table 37 (we have simplified the questions text to make it fit in the table.

Further textual description can be found in the questionnaire in Annex A). The experts

provided an equivalent number of additional measures for development and V&V (40

versus 42). The experts tend to spend time proving suggestions that they really consider

important and relevant, according to their domains and expertise. As we will see next,

although some of their suggestions are already covered by the results of our analysis,

they have expressed them in a slightly different wording.

Table 37: Amount of the Proposed Measures

ER (Extremely Relevant/Frequent), VR (Very Relevant/Frequent), SR (Somehow Relevant/Frequent), NR (Not Relevant/Frequent),

NO (No Opinion).

Questions ER VR SR NR NO Total

Q19: Development Measures Suggestions 21 10 7 2 68 40

Q21: V&V Measures Suggestions 21 13 5 3 66 42

TOTAL 42 23 12 5 134

Process Validation and Application in Multiple Domains

117

7.2.4.1 Development Measures

Following the root cause analysis, we have identified concrete measures to tackle the

most frequent root causes and thus avoid the same type of defects in the future. The

perception of the relevance/importance of these proposed measures was asked in Q18

for the development related root causes. Figure 19 presents the ordering of

importance/relevance of these measures according to the classification performed by

the experts.

Figure 19: Development Measures

We observed that aerospace experts consider that Engineering Training (Q18e) is a

measure that could help in reducing the introduction of defects more than the overall

experts do (Table 38). The difference is about 25% increase in the importance of this

root cause. The proposals of meetings to clarify the specifications, automated

documentation generation and additional standards guidelines are also more

emphasized by the aerospace experts, having about 16% increase in these measures.

Most of the remaining measures are similar between the aerospace and the overall

responses of the experts.

Chapter 7

 118

Table 38: Difference between Aerospace experts answers and others for Q18

Question Difference

Q18a: Better Processes/Review 2.5%

Q18b: Auto Docu Generation 17.0%

Q18c: Tools for full lifecycle 0.9%

Q18d: Auto Validation Tools -5.6%

Q18e: Engineering Training 24.8%

Q18f: Specifications Meetings 16.5%

Q18g: Standards Guidelines 16.3%

Experts do not seem to consider that tools (yet again) are the most important asset for

reducing defects during the lifecycle. On the contrary, they consider that better

processes, more frequent clarification meetings with the customer and dedicated

engineering trainings are the main solutions. From these values, we can observe that 5

out of the 7 measures achieve an average greater than 1.5, meaning that, overall, they

were evaluated at least as relevant/important by the experts.

Additional suggestions regarding development measures have been provided by 20 of

the respondents (56% of the total sample) and allowed the identification of a large set

of new measures:

 Require early results, early quality guarantee of requirements (or formal

specifications);

 Promote defects knowledge and analysis, fault awareness (FDIR) training,

compensations, etc.;

 Simplify systems, technologies, team management, lifecycles;

 Improve communication, meetings efficiency, mile-stones with more quality;

 Traceability simplification and implementation;

 Promote teams training and involvement at different phases;

 Use standards but plan for necessary improvements / additional tasks;

Once again there is a relation between some of the suggestion and measures already

defined, namely the enforcement of strict review processes/development

processes/documentation processes and the topics regarding standards. Moreover,

some of the suggestions would also fit the V&V measures since there are

commonalities, such as the traceability related measures.

Process Validation and Application in Multiple Domains

119

7.2.4.2 V&V Measures

Following the RCA we have performed based on the defect triggers, we also mapped

concrete measures to tackle the lack of defect detection. The perception of the relevance

of these proposed measures was asked in Q20 and is depicted in Figure 21.

Figure 20: V&V Measures

Aerospace experts consider that Q20c Test Coverage (increase of 27%), Q20d non-

existence of non-functional tests (increase of 23%) and Q20b Traceability are more

important tools/measures than non-aerospace experts (depicted in Table 39).

Table 39: Difference between Aerospace experts answers and others for Q20

Question Difference

Q20a: Test Plans 1.3%

Q20b: Traceability 15.2%

Q20c: Test Coverage 26.9%

Q20d: Non-functional Tests 22.8%

Q20e: Tools for design compliance 3.9%

Experts still do not seem to consider that tools are the most important asset for V&V

to help detecting defects. More importantly, experts suggest that better test plans,

improved test coverage criteria and better traceability analysis are the most important

V&V actions to implement. From these values, we can observe that 4 out of the 5

Chapter 7

 120

measures achieve an average much greater than 1.5, meaning that in overall they were

evaluated at least as relevant/important by the set of experts.

Additional suggestions on V&V measures were obtained from 21 of the respondents

(58% of the total sample):

 More customer involvement in testing;

 Experts involvement for requirements testing;

 Tools to support V&V processes, static analysis, automation of testing tasks;

 Better communication between V&V and development;

 Monitor and measure quality;

 Enforce early defect detection (model-driven techniques, formal methods, test

driven development).

As before, there were commonalities between the newly proposed measures and some

of the measures already included in the questionnaire. For example, experts also

proposed better test plans and strategies and more robustness testing (non-functional)

– exploration of informal V&V methods. Moreover, some of the V&V measures

proposed were already covered as part of the development measures on the questions

of the survey (Q18), as is the case of better review processes, better code inspections

and team training, focus, specialization, defects awareness.

7.3 Application to Multiple Domains

Several domains have been depicted in Figure 2 (Chapter 2). All the depicted domains

have in common that they require a controlled and recognized development and V&V

set of processes based on international standards and guidelines. In fact, the differences

between software engineering in different domains is not so significant. Only some

techniques and taxonomies actually differ from domain to domain as confirmed by a

study performed over different safety critical standard [23]. Another study, within

CRITICAL Software, S.A. that operates in different domains, has demonstrated that

the differences of techniques, tools and skills from teams working in one domain to

move on to another domain are very manageable and require and acceptable amount of

effort and time [13]. This shows that a common set of skills, techniques, tools and

practices are totally reusable and so should be the defects assessment process.

Our dataset contains defects from space projects and some defects from aeronautics

(airborne) projects. During the dataset clean-up, we have removed the aeronautics

defects as they did not contained structured nor enough information to be used. Once

the defects assessment process defined in Chapter 3 has been applied to the space

defects (especially with the enhanced ODC taxonomy) and validate it can be applied

to different domains, an on-going activity is being performed with a set of about 150

railway defects. The preliminary results demonstrate that the enhanced ODC taxonomy

is properly adapted to the railway domain, and that the process can be applied to another

Process Validation and Application in Multiple Domains

121

domain with no modifications required. Nonetheless, the process allows for the

modification or replacement of the classification taxonomy, as long as it remains

orthogonal. Thus, a different classification taxonomy can be used or the currently

proposed enhanced ODC can also be adapted if there is the need (for example due to

the impact of the usage of new technologies, emergent behaviors or cybersecurity

issues). Any adaptation, should, at this point, be very precise and localized. Another

area of the process that can use different techniques is the root cause analysis. We have

applied the fishbone diagrams and the 5 whys techniques, but any technique based on

expertise and knowledge of the systems and environment can be used to determine the

root causes.

In order to further collect feedback from the applicability of the process to an enlarged

set of technical domains, we have compiled a questionnaire (see Annex A) that was

delivered to a large set of experts (industry and academia) working in a diverse set of

domains. Both the process and the analysis results, have been widely accepted by the

experts, meaning that the root causes identified for the space defects can also be

applicable for other domains. This has three main reasons: first, the engineering

processes and tools are not that different; second, the guidance or standards have quite

similar objectives; and third, the identified root causes and the associated improvement

measures as identified by our activity have been defined in a very generic and thus

broadly-accepted way.

Since the engineering processes and tools used are very common, the result depends

on the maturity of the organizations and the experience of the engineers, thus some

very pervasive problems occur. The standards and guidance requirements having

common objectives (e. g. safety, security, availability, reliability, dependability,

quality, certification or qualification) also lead to the usage of common processes,

techniques, tools, reuse, and this will again lead to problems that can be found across

domains. Finally, our lists of development root causes, V&V root causes, and the

proposed improvements are not specific to any specific defect (it would be very

extensive to do it for the 1070 defects) and is purposely generic being this way

applicable to any engineering context (engineering domain). This genericity was one

of our essential requirements for this work.

As the implementation is mainly performed by engineers, they tend to make common

mistakes and require the same type of improvements.

The results of the survey, presented in before, have highlighted that the opinion of

experts is not very divergent in what concerns the applicability of the identified roots

causes and the proposed measures. Our dataset contains a diverse set of defects from

all lifecycle phases, form the aerospace domain. Nonetheless, we observed that the

perception of the importance of the root causes for development and V&V is very

similar between aerospace experienced respondents and the global population (as

shown in Table 35, Table 36, Table 38 and Table 39). Besides the differences, none of

them is higher than 30%, we observe only small divergence of opinions. There are only

two proposed root causes where non-aerospace experts have given a higher importance

than the aerospace experts, and these are: Q14d: Documentation Tools Limitations and

Q14l: Lack of Tools and Languages Knowledge. However, these root causes are also

Chapter 7

 122

classified as the least relevant ones for both aerospace and non-aerospace. Similarly,

regarding the measures proposed, the only ones that had a significant difference

between the aerospace and non-aerospace are: Q18e: Engineering Training and Q20c:

Test Coverage. These two measures are however considered among the most relevant,

but aerospace experts consider that they are much more relevant than non-aerospace

experts.

The experts have also expressed their opinion on the process that led to those results.

The acceptance rate was positive and there were no differences observed between

experts of the different domains, nor between academia and industry. The tasks that

compose the process are also generic enough to be applied to any engineering project,

independently from the domain. It is currently being applied to the transportation

domain without any issue. The same process, with the same ODC taxonomy is being

applied to a set of 150 railway train control and management system defects.

We conclude that the process with the Enhanced ODC taxonomy and the root cause

tasks is potentially independent from the domain, so it can be applied generically.

Moreover, the set of root causes and measures seems to be also well accepted by experts

from the different domains. Further suggestions have been proposed but they do not

seem to be connected to any business domain, as they are also very applicable to all

domains.

7.4 Process Improvements as a Result of the Process

Validation Activities

Based on feedback collected from the empirical and practical application of the process

to a large set of space software defects, and then with additional feedback from industry

and academia, we have derived the process depicted in Figure 10. Although our dataset

and our experience is mainly from space software, this generalization can support the

evaluation and root cause analysis of any critical system, independently from the

domain (as confirmed from the set of industry and academic surveys performed).

7.4.1 Data Collection and Preparation Improvements

Data collection seems to be a straight forward activity; however, it is not always easy

to get access to the right or the complete data necessary to classify the defects and to

determine the root causes. Some suggestions that have been included in the defects

analysis procedure are:

 Engineering training on how to properly raise defects – the engineers should

be prepared to promptly and correctly report defects, and to document them

completely in a self-contained manner, with the appropriate references and with

a common and simple language;

 Definition of a template with the basic information required to be collected

for every defect (this can also be implemented on a defect tracking tool) –

Process Validation and Application in Multiple Domains

123

definition of the mandatory information fields required for each defect that is

raised and provide hints or multiple choices whenever possible for the filling of

those fields;

 Procedure for early evaluation of the quality and completeness of the

defects data – define some metrics or develop a tool to evaluate the

completeness and quality of the contents of the defects, the natural language

used, etc.;

 Pre-selection of the defects to decrease analysis effort – with the definition

of a criteria (for example based on the priority and/or severity of the defect)

prioritize and select a subset of the defects to promote the classification and the

root cause analysis on a smaller and more important set of defects;

 Usage/update of a domain specific database of defects – generalize the defect

types or examples and complete the analysis, record it on a database and reuse

it for future occurrence of similar defects of defects related to the same topics.

The contents of the template with the basic information required to be collected shall

include, at least: reference artefact, defect title and defect detailed description, phase

where the defect was identified, phase where the defect was introduced, activity that

detected the defect, defect author, defect severity, and defect relevant keywords.

7.4.2 Defects Classification Improvements

In this work, defects classification was based on the selected orthogonal defect

classification (ODC) and the proposed enhancement. The classification process

depends on the selected scheme and taxonomy (see Chapter 5 for the proposed

classification and relevant details). Some suggestions have been made by industry and

academic experts to our proposed classification process:

 Define and provide training on the classification of defects and on the

applied taxonomy - to make the classification more efficient, easy and

homogeneous, since understanding of the classification taxonomy is essential

for a sound classification;

 Explore the usage/configuration of tools to support the defects

classifications (e.g. JIRA, Bugzilla, …) – tools must support the classifications

and analysis of the defects, as well as the access and storage of the defects data;

 Adapt ODC for object/service/aspect oriented developments and for agile

– to support new development paradigms and be able to cover future needs of

the project teams;

 Promote continuous improvement of ODC taxonomy (from feedback) – as

stated in the process last step (11. Process Validation and Improvement),

regular feedback to the whole process is important to support the technological

changes in system development;

Chapter 7

 124

 Improve confirmation of the proper defect classification (confirmation by

another expert – validation of the classification) – defects classification

validation and confirmation is necessary, and this is commonly done by

additional experts, different solutions for the appropriateness of the

classification shall be explored;

 Use and update the defects database (classified defects) – the usage of a

defects database, and relevant classifications and constant

updates/improvements to that database are required;

 Explore the possibility of getting defects automatically classified with

support of the defect author (e.g. by using keywords) – either by improving

the templates and the guidelines for writing defects or by requesting the defect

author to fill in some additional fields, collect extra information to support on

the defects classification activities.

7.4.3 Root Cause Analysis Improvements

The root cause analysis requires expertise and effort to be properly performed. The

proposed process contains different steps and different root cause analysis activities.

Some of the suggestions made by the industrial and academic experts consulted are:

 Provide root cause analysis training – training and practice on root cause

analysis is important to properly perform the root cause analysis activities and

avoid doing only a high level and flawed analysis;

 Use of a root causes database as a baseline to identifying the defects causes
– the defects database with associated classifications is a key element for future

automation and guidance on classifications of similar defects or groups of

defects;

 Promote some type of automation for the root cause analysis activities –

with additional information provided by the defects authors or with the support

of the classified defects database some automation or classification suggestions

can be performed;

 Define and derive root causes per domain or system type (together with the

database) – the database should have categories or groups of defects (similar

defects, subsystem types, defects from specific lifecycle, phases, etc.) that can

support classification of similar defects in the future;

 Separate root causes depending on target groups (development, V&V,

management) – the root causes separated by type can simplify their

distribution, implementation and acceptance by the target groups;

 Promote a quick comparison with previous defects root causes to see if the

systems are improving – verify that the frequency of previously identified root

causes is reduced and conclude on the suggestions and actions implemented.

Process Validation and Application in Multiple Domains

125

7.4.4 General Process Improvements

The root cause analysis lead to the identification of changes to prevent or avoid defects

from existing or from slipping between lifecycle phases. The implementation of these

changes (improvements) might lead to the expected results, but might also reveal

different type of problems, that will need to be tackled in a subsequent cycle. For

engineering cycles that are long (projects that have, for example, 5 years duration), it

will take some time to measure the effect of the implementation of the improvement,

and some improvements might not be easy to implement because they will depend on

training, cultural changes, technology evolutions, tools that need to be purchased,

guidelines or standards that need to be updated and followed, etc.

Some of the suggestions made by the industrial and academic experts consulted are:

 Discuss and agree the changes with management before presenting them

to the affected groups, to ensure their commitment and sponsorship – a

formal discussion and acceptance of the suggestions based on the identified root

causes is the best way to have the solutions implemented;

 Monitor the improvements implementation, maybe through a simplified

and lighter process that quick confirms the reduction of the defects –

monitor and track the metrics of the defects rate and the root causes occurrences

to conclude in the effectiveness of the implemented measures;

 Define and adopt some metrics to measure the quality of the results – define

specific metrics such as the defects recurrence, the root causes frequency, by

severity, etc., in order to measure the quality and effectiveness of the

implemented modifications.

7.5 Final remarks

We have created a survey to measure the acceptability of the defects analysis process

and to confirm that the obtained results are in-line with the community experience and

background. This survey has been answered by 36 experts and provided us not only a

ranking of the root causes and possible measures but also some feedback on the process

and some additional root causes and measures.

The main outcomes from the survey results were discussed in this chapter. The

community (both academia and industry) considers that defect analysis, external

assessments and the use of standards are of utmost importance. In parallel, budget and

schedule constraints play an important role in the quality of the projects outcomes.

Almost half of the respondents had never performed defect analysis, so this is an area

that really needs improvements to be implemented.

The proposed assessment process got acceptance from a majority of the respondents.

They claimed that the process was structured and could provide valuable feedback;

however, they were concerned about how to obtain good quality of defects data and

how to implement a process with a large number of steps. Some of the proposed

Chapter 7

 126

suggestions were exactly concerning the data quality and how to validate the obtained

results. We claim that usage over the time and monitoring of the defects frequency and

impact will be a good validation method.

The root cause results (development and V&V defects) have allowed the ranking of

our identified root causes, and this has shown that the experts consider wrong software

implementations, incomplete reviews, incomplete tests or test plans and lack of

consideration of error situations to be the most common problems, while lack of

domain knowledge and tools do not seem to be the causes for most defects. This is an

interesting result that shows that the critical software domain is still heavily dependent

on manual actions, on human skills, and on traditional development (from

specifications to tests).

For the ranking of the measures to apply, the most voted were review processes,

improved communications, test plans and tests coverage, better traceability and

engineering trainings. Again, tools and automation are generally the V&V and

development assets that seem less important for the experts. This shows once that the

manual and human based techniques (that are simple) are still the ones the community

is considering more applicable. There is maybe a cultural change to operate in these

areas.

Additional suggestions for root causes and measures have been proposed by the

experts. Although these were very much in-line with those that we proposed based on

our dataset, they also provide an interesting addition for future RCA. The proposed root

causes and measures arise from the specific experience of the experts and provide a

good overview of the problems (and possible solutions) for critical systems at large.

The conclusion we can make is that our process produced a very well accepted set of

root causes and measures, and this supports positively the evaluation of the process and

the methods that compose it.

 127

Chapter 8

Conclusions and Future Work

The topics of quality, dependability, reliability, integrity and safety of critical systems,

such as space, railways and avionics systems, are of utmost importance. These systems

operate vital functions and cannot fail. It is however not possible to have a system that

does not fail or does not contain defects, and this is observed, for example, when

independent assessments of these systems are performed. The significant and frequent

amount of defects (sometimes major defects) is the main motivation to develop a

process to support the engineering teams in reducing the amount of defects by learning

from previous mistakes.

A complete process was defined, applied, validated and refined, in this work, covering

four main phases, from the defect data collection and preparation, to the defects

classification, the root causes analysis and measures identification, to the validation of

the measures implementation. The defects assessment process was applied to a set of

1070 space systems defects, and validated with the support of a survey provided to

different academic and industrial experts. The process can be used and applied in

industry in a simple way and independently from the industrial domain. In practice, the

process takes as input defects identified on the engineered systems, and supports the

analysis of these defects towards identifying their root causes and defining appropriate

measures to avoid them in future systems.

Within the defects assessment process activities, the adaptation of the Orthogonal

Defect Classification (ODC) for critical issues is a key step. The original ODC was

used for an initial classification and then it was tuned according to the gaps and

difficulties found during the defects classification activities. The improvements were

necessary and covered the defect types, defects triggers and defect impacts. Improved

taxonomies for these three parameters have then been devised and applied to the full

set of defects and validated with the support of experts, demonstrating their

appropriateness.

The most important part of the process is, however, the application and integration of

a set of root cause analysis steps. These steps produce results that show the origins of

the defects. The identified causes are related to different parameters, such as human

Chapter 8

 128

and technical resources, events occurred, processes followed, methods applied, tools

used and standards followed. The fishbone root cause analysis proposed and applied to

the defects dataset has proven to be quite effective since the obtained results were well

accepted by the experts during the validation phases.

As a result of the root cause analysis, a specific set of root causes and applicable

measures to improve the quality of the engineered systems (removal of those causes)

have been identified. These root causes and proposed measures allow the provision of

quick and specific feedback to the industrial engineering teams as soon as the defects

are analyzed. A list/database has been compiled from the dataset and includes the

feedback and contributions from the experts that responded to a process validation

survey. The root causes and the associated measures represent a valuable body of

knowledge to support future defects assessments as confirmed by the answers and

classifications of the experts.

The measures proposed to improve systems have shown the importance of using

empirical data (of defects in this case) to contribute to technical and processual

improvements in order to get better overall quality and improved dependability levels

for systems that are critical. In fact, the outcomes of the field study show that, although

critical systems are already guided by appropriate development and V&V techniques

and processes, most of the defects are caused by an inefficient usage or implementation

of these techniques and processes. Appropriate guidance, additional requirements and

constraints, better test strategies and tools that are able to help in the application of the

techniques and processes are essential to obtain better results (less defects).

We can conclude that the main issues affecting critical systems in the space domain are

related to engineer’s mistakes, requirements and constraints, test strategies and

completeness, and lack of appropriate tools. The results also suggest that our process

(supported by the classification scheme and the root cause analysis) allows the

identification of improvements for specific areas and groups of defects, and that review

processes, traceability activities and test plans, strategies and completeness are the most

relevant V&V tasks to be improved/enforced for better detection of the defects in space

systems.

As a result of this study, and due to the industrial cooperation behind it, several parties

have already shown interest in the results of the current analysis to promote internal

awareness and process improvements.

8.1 Discussion

Some topics are worth being mentioned as part of the conclusions and of the obtained

results.

Firstly, the proposed ODC adaptation. The classification scheme is a core element of

the process and we have selected ODC due to its implantation in industry, orthogonality

and comprehensiveness. However, soon we identified difficulties in classifying issues

without ambiguity: we had a first classification with 27% of ambiguous classifications,

but once this classification was reviewed and completed by an expert engineer the

Conclusions and Future Work

129

ambiguity increased to 31.7%. We solved this issue by proposing an adaptation of the

taxonomy, which was based on the study of the ambiguous classifications and on the

judgement of experts.

Secondly, the reduction of the ODC attributes. The selected subset of ODC attributes

come from the fact that not all attributes bring useful information to support RCA. A

key objective was to make the classification easier (for Type, Trigger and Impact) and

to cope with the fact that the classifiers had some troubles categorizing certain defects.

We believe that the proposed taxonomy allows a more efficient and faster classification

(even if losing some specificity), as we are joining some classes that had similarities

(probably removing ambiguity and human error probability, but that is not easy to

validate). The reclassification (with the enhanced ODC taxonomy versus the original

ODC) lead to:

 More ‘Documentation’ defect types being observed (12% increase). We have

classified some of the defects in this category after a deeper analysis of the

defects where we had defect type doubts.

 ‘Traceability/Compatibility’ became the most frequent trigger and even ‘Test

Coverage’ became a trigger which lead to the identification of more defects

than ‘Consistency and Completeness’.

 ‘Maintenance’ defect impact became more frequent than ‘Reliability’, and the

‘Documentation’ impact frequency has been reduced.

Thirdly, the classification certainty/precision. We are aware that such a process cannot

lead to a fully precise classification. Human error/bias shall be taken into account.

Although the classifications have been performed by experienced engineers, and

confirmed/reviewed by a second engineer, some of the classifications are always

arguable – this is due to the understanding of the problem, to the expertise/background

of the engineer, and to the classification taxonomy itself (this was a problem we tried

to tackle). Moreover, the proposed/used adapted taxonomy is meant to be a step

towards a more applicable classification for this type of defects/systems and

demonstrates that such a classification taxonomy can (and will be) adapted in the

future. If we take, for example, the results of the enhanced ODC classification of our

dataset, even with a 20% error interval we can conclude that the two main defect types,

the three main defect triggers and the four main defect impacts would remain the same,

thus giving us a group of consistent taxonomy priorities to tackle for root cause

analysis.

Fourthly, the efficiency and employability of the process. The 850 hours required to

apply the original ODC include the whole process, that means, the data collection and

clean-up, additional data collection (phase, activity), and defects classification, where

several doubts arose (in fact, almost 1/3 of the classifications have been challenged

between the classifier and the reviewer). The classifier had to take note of his doubts

and analyze the defects that could not be classified together with the reviewer, by

aggregating new class types. Later, the not classified defects have been reclassified, the

ODC classification was enhanced with the new class types and rechecked by the

Chapter 8

 130

reviewer. This last part (reclassification and review) took under 100 hours as most of

the effort was in the first pass of the activity.

Fifthly, the empirical Software Engineering nature. The process is based on data, but

actually several of the steps depend on training and expert judgment such as the

classification, the root cause identification, and the suggestion of improvements. We

thus acknowledge that replication of the results will be hardly possible, as they depend

on the experts involved and on their expertise. For this reason, a questionnaire to

validate the process and the results has been defined and answer by a group of academic

and industry experts.

Sixthly, the defined process. The proposed and applied process is heavily dependent

on the availability of good quality data. Data clean-up activities have been performed

not in the sense of removing any defect, but to remove the names of the

projects/missions, companies, systems/sub-systems, customers, in order to avoid that

information to be known publicly for confidentiality reasons. No manipulation or

modifications on the defects text have been performed. The data clean-up was also

enriched by the gathering of additional data and complementing the defects data with

the phase detected, phase introduced, detection activity, etc., for better supporting the

ODC classification. In the future, if guidelines and rules for defect writing are defined

(e.g. with some lessons learned from this work), the data clean-up step might be

simplified or automated.

Seventhly, the obtained results. A list of root causes was identified by the experts, and

not necessarily concrete or recurrent problems. From our knowledge of the systems and

of the defects resolutions, we believe that some of the root causes are more frequent

than others. We can comment on the quality of the systems under analysis and the

application of standards, and this (non-measured) question was what lead to this work

in the first place: as the number of issues was deemed too high for these systems, we

decided to concretely identify why, in order to support the engineering team in

correcting these deficiencies. With this work, we have concrete improvements to avoid

the same issues and reduce their frequency.

Finally, the process validation. The process, the defects classification, the root causes

and the identified measures have been exposed to a group of academic and industrial

experts that expressed their opinions by answering a survey, by prioritizing the root

causes and the measures and by proposing process improvements, suggesting

additional root causes and additional measures according to their expertise. The results

of the survey allowed the validation of the process and of the results themselves.

8.2 Threats to Validity

The main threats to validity of our work (construct, internal and external validity), due

to some limitations and confidentiality issues, are:

 The fact that the issues data cannot be shared nor publicized, as no company

wants their issues exposed, makes this work harder and demands a great effort

Conclusions and Future Work

131

of anonymization. Also, the acceptance of the results may be challenged.

(external validity)

 The space systems involved cover most of the development activities performed

for those systems, and involve different companies (at geographic, size and

management levels), thus we consider the results to be quite general for this

domain. A similar study for other domains (e.g. aeronautics, railway,

automotive) is foreseen as future work, but it will not be so easy since the

existing data is not as structured as for space systems. Again, data

confidentiality will be a challenging issue. (internal and external validity)

 The classification was done based on expert knowledge. However, it is

important to note that the original classification (the one that could not classify

all the issues) was performed by two engineers, whose work was also checked

by a third space domain expert. This domain expert also performed the

reclassification himself (verified and discussed with another space domain

expert). (internal validity)

 Implementation of the suggestions will take a long time as it needs to go through

process improvements and this is foreseen as current/future work. However,

what is important here is the justification of these suggestions and also the

acceptance and acknowledge of them by the involved industries. Once this is

done, they can pay more attention to these root causes, and some months after

that we may try to measure again the defects occurrences, types and triggers.

Note that the provided lists of improvements are already the ones selected for

tackling the most frequent and most critical defects. (construct validity)

 Finally, the adaptations were performed based on the 31.7% of the issues that

could not be classified with ODC. This required several rounds of discussion,

and the majority of changes are merges where terms were not well

distinguishable for these systems. Also, details about the systems requirements

(namely non-functional, safety and dependability, etc.) originated doubts about

the original ODC classification. (internal validity)

8.3 Future work

Specific topics for future work are detailed in Section 7.4, aggregated by group of

process activities, and reflected as improvements to the process and development of

additional tools and guidelines to support the process. Some of these future works are

highlighted hereafter:

 The validation of the process by applying it to datasets from other safety-critical

domains. This will be achieved by doing a similar field study for railway

(already on-going, based on 150 railways train management and control system

defects), and for other domains such as automotive or avionics.

 It might be worthwhile to map the ODC defect triggers with the activities of the

SDP in the lifecycle following the V-model (they should be fully mapped and

Chapter 8

 132

feedback can be provided both ways, to the ODC list of triggers or to the

techniques applied in the lifecycle phases), and also map the ODC defect

impacts with the ISO25010 [143] metrics (they should also be fully mapped

and feedback can be provided both ways, to the ODC list of impacts or the to

the ISO standard).

 By tracing the applicable standards, processes and techniques to the root causes

and the proposed measures, we can work on proposing improved or new

processes, techniques and tools to reduce the amount of issues and the

probability of their occurrence.

 It is worth trying to automate some of the steps of the process, in order to

promote automatic classification of defects or automated suggestions for root

causes that can be stored in a database and associated to the classification

taxonomies.

 The development of templates, guidelines and training to support the different

activities of the process, in order to harmonize the classifications and the root

cause analysis.

 To create and maintain a database or a body of knowledge of the root causes,

associated measures, in order to reuse them or help in future defects analysis.

 The achieved results shall be consolidated to provide feedback to the ESA

ISVV guide [65], regarding the results and triggers efficiency (according to the

V&V techniques efficiency), and to the ECSS standards – to enforce additional

PA/QA activities and evidence analysis that the requirements on the standards

are appropriately being implemented. Note that this guide will be updated to

become and ECSS handbook.

 133

References

[14] N. G. Leveson, Safeware: System Safety and Computers. AddisonWesley,

1995.

[15] J. L. Lions, “ARIANE 5: Flight 501 failure,” Ariane 5 Inquiry Board Report,

Paris, Tech. Rep., 1996.

[16] Australian Government, Australian Transport Safety, Bureau, “In-flight upset

event, 240 km north-west of Perth, WA, Boeing Company 777-200, 9M-MRG”

http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair20050

3722.aspx, August 1, 2005. Visited: 13 October 2016.

[17] Department of Transportation, Federal Aviation Administration,

Airworthiness Directive 2015-10066, May 1, 2015,

http://federalregister.gov/a/2015-10066. Visited: 13 October 2016.

[18] Toyota: Software to blame for Prius brake problems, CNN News,

http://edition.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complaints/index.

html, February 5, 2010. Visited: 13 October 2016.

[19] US Department of Transportation, National Highway Traffic Safety

Administration, “Technical Assessment of Toyota Electronic Throttle Control

(ETC) Systems”, February 2011,

http://www.nhtsa.gov/staticfiles/nvs/pdf/NHTSA-UA_report.pdf. Visited: 13

October 2016.

[20] NASA Engineering and Safety Center, “Technical Support to the National

Highway Traffic Safety Administration (NHTSA) on the Reported Toyota Motor

Corporation (TMC) Unintended Acceleration (UA) Investigation”, January 18,

2011, http://www.nhtsa.gov/staticfiles/nvs/pdf/NASA-UA_report.pdf. Visited: 13

October 2016.

[21] Weinberg, Gerald M. Perfect software--and other illusions about testing. New

York, NY: Dorset House Pub, 2008.

[22] Ebert, C.; Jones, C., "Embedded Software: Facts, Figures, and Future,"

Computer , vol.42, no.4, pp.42.52, April 2009.

http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx
http://federalregister.gov/a/2015-10066
http://edition.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complaints/index.html
http://edition.cnn.com/2010/WORLD/asiapcf/02/04/japan.prius.complaints/index.html
http://www.nhtsa.gov/staticfiles/nvs/pdf/NHTSA-UA_report.pdf
http://www.nhtsa.gov/staticfiles/nvs/pdf/NASA-UA_report.pdf

References

 134

[23] Esposito, C., D. Cotroneo, and N. Silva. 2011. “Investigation on Safety-

Related Standards for Critical Systems.” In Software Certification (WoSoCER),

2011 First International Workshop on, 49–54. doi:10.1109/WoSoCER.2011.9.

[24] W.H. Maisel et al., “Recalls and Safety Alerts Involving Pacemakers and

Implantable Cardioverter-Defibrillator Generators,” JAMA, vol. 286, 15 Aug.

2001, pp. 793-799; http://jama.ama-assn.org/cgi/content/abstract/286/7/793.

[25] Silva, N.; Lopes, R., "10 Years of ISVV: What's Next?," Software Reliability

Engineering Workshops (ISSREW), 2012 IEEE 23rd International Symposium on

, vol., no., pp.361.366, 27-30 Nov. 2012

[26] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the

Perplexed. Addison-Wesley, 2004.

[27] Bennatan, E.M, “On Time Within Budget - Project Management Practices and

Techniques”, 3rd Edition, ISBN: 978-0-471-37644-6, 368 pages, Addison-

Wesley, June 2000.

[28] Eurocontrol, Eurocontrol Experimental Centre, “Review of Root Causes of

Accidents due to Design”, EEC Note No. 14/04, Project Stafbuild, Ocotber 2004,

http://www.eurocontrol.int/sites/default/files/library/027_Root_Causes_of_Accid

ents_Due_to_Design.pdf. Visited: 14 October 2016.

[29] N. Storey, Safety-Critical Computer Systems. Addison-Wesley, 1996.

[30] Richard H. Cobb, Harlan D. Mills: Engineering Software under Statistical

Quality Control, IEEE Software 7(6): 44-54 (1990).

[31] Keating, Michael, The Simple Art of SoC Design, Springer, 2011, 234p.,

ISBN: 978-1-4419-8586-6.

[32] McDermid, J.A. and Kelly, T.P. (2006) 'Software in safety critical systems:

achievement and prediction', Nuclear Future, Thomas Telford Journals.

[33] Barnard, J., The Value of a Mature Software Process, United Space Alliance,

presentation to UK Mission on Space Software, 10th May 1999.

[34] RTCA (1992) DO 178B - Software Considerations in Airborne Systems and

Equipment Certification, Radio and Technical Commission for Aeronautics.

[35] German, A., Mooney, G., Air Vehicle Static Code Analysis - Lessons Learnt,

in Aspects of Safety Management, F Redmill, T Anderson (Eds), Springer Verlag,

2001.

[36] Fenton, N.E., Ohlsson, N., Quantitative Analysis of Faults and Failures in a

Complex Software System, IEEE Transactions on Software Engineering, 26(8),

797-814, 2000.

[37] Reifer, D.J., Industry Software Cost, Quality and Productivity Benchmarks,

2004, https://www.csiac.org/wp-

content/uploads/2016/02/2004_07_01_SoftwareCosts.pdf. Visited: 14 October

2016.

http://www.eurocontrol.int/sites/default/files/library/027_Root_Causes_of_Accidents_Due_to_Design.pdf
http://www.eurocontrol.int/sites/default/files/library/027_Root_Causes_of_Accidents_Due_to_Design.pdf
https://www.csiac.org/wp-content/uploads/2016/02/2004_07_01_SoftwareCosts.pdf
https://www.csiac.org/wp-content/uploads/2016/02/2004_07_01_SoftwareCosts.pdf

References

135

[38] Hatton, L., Estimating Source Lines of Code from Object Code: Windows and

Embedded Control Systems, 2005,

http://www.leshatton.org/Documents/LOC2005.pdf. Visited: 14 October 2016.

[39] Ellims, M., On Wheels, Nuts and Software, in proceedings of the 9th

Australian Workshop on Safety Critical Systems, Australian Computer Society,

August 2004.

[40] Shooman, M.L., Avionics Software Problem Occurrence Rates, in

proceedings of the 7th International Symposium on Software Reliability

Engineering, White Plains, NY, 1996. pp 53-64.

[41] RTCA DO-178C, Software Considerations in Airborne Systems and

Equipment Certification (Washington, DC: RTCA, Inc., December 2011).

[42] ECSS-E-ST-40C, Space engineering - Software, 06/03/2009

[43] ECSS-Q-ST-80, Space Product Assurance - Software Product Assurance,

06/03/2009

[44] NASA-STD-8719-13B: Software Safety Standard – NASA Technical

Standard, NASA Office of Safety and Mission Assurance, 08/07/2004.

[45] RTCA DO-254 (EUROCAE ED-80), Design Assurance Guidance for

Airborne Electronic Hardware, RTCA Inc., Washington, DC, April 2000.

[46] ARP4761; Guidelines and methods for conducting the safety assessment

process on civil airborne systems and equipment. SAE International SC-18. 1996.

[47] ARP4754A; Guidelines for Development of Civil Aircraft and Systems. SAE

International SC-18. 2010.

[48] ISO/DIS 26262, Road vehicles -- Functional safety. International Standard.

2011.

[49] EN 50126:2012; Railway Applications - The specification and demonstration

of Reliability, Availability, Maintainability and Safety (RAMS); CENELEC;

2012

[50] EN 50128:2011; Railway Applications - Software for railway control and

protection systems; CENELEC; 2011

[51] EN 50129:2003; Railway applications - Safety related electronic systems for

signalling; CENELEC; 2003

[52] IEC 61508; Functional safety of electrical/electronic/programmable electronic

safety-related systems; IEC; second edition, 2010.

[53] IEC 61511-1; Functional safety - Safety instrumented systems for the process

industry sector - Part 1: Framework, definitions, system, hardware and software

requirements. First Edition. IEC. Publication date 2003-01-30.

[54] IEC 61511-2; Functional safety - Safety instrumented systems for the process

industry sector - Part 2: Guidelines for the application of IEC 61511-1. First

Edition. IEC. Publication date 2003-07-04.

http://www.leshatton.org/Documents/LOC2005.pdf

References

 136

[55] IEC 61511-3; Functional safety - Safety instrumented systems for the process

industry sector - Part 3: Guidance for the determination of the required safety

integrity levels. First Edition. IEC. Publication date 2003-03-18.

[56] IEC 62061; Safety of machinery - Functional safety of safety-related

electrical, electronic and programmable electronic control systems. First edition.

IEC. Publication date 2005-01-20.

[57] IEC-62304; International Electrotechnical Commission (2006). "Medical

device software – Software life cycle processes". INTERNATIONAL IEC

STANDARD 62304, First edition, 2006-05. IEC.

[58] IEC 60880; Nuclear power plants - Instrumentation and control systems

important to safety - Software aspects for computer-based systems performing

category A functions. INTERNATIONAL IEC STANDARD 60880, Second

edition, 2006-05-09. IEC.

[59] Kjeld Hjortnaes, ESA Software Initiative, May 7, 2003,

http://klabs.org/DEI/References/Software/software.htm. Visited: 14 October

2016.

[60] Paul Cheng: Strategic testing Lessons from Satellite Failures, Feb 3, 2003.

[61] Gerard Holzmann, “Making robust software: the "Mars Code" talk”, USENIX

HotDep '12, October 7th, 2012.

[62] DoD Defense Science Board Task Force on Defense Software, November

2000.

[63] NASA, NASA Office of Chief Engineer, “NASA Study on Flight Software

Complexity”, March 5th, 2009,

https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf. Visited: 14

October 2016.

[64] John A McDermid, “Developing Safety Critical Software: Fact and Fiction”,

http://www.cs.york.ac.uk/hise/seminars/McDermid13Nov.ppt. Visited: 14

October 2016.

[65] European Space Agency , ESA ISVV Guide, issue 2.0, 29/12/2008.

[66] ISO/IEC 12207:2008 Systems and software engineering – Software life cycle

processes.

[67] IEEE Computer Society, IEEE 1012-2004 - IEEE Standard for Software

Verification and Validation.

[68] NASA, NASA IV&V Quality Manual, version Q, August 28th, 2014,

https://www.nasa.gov/sites/default/files/ivv_qm_-_ver_q.doc. Visited: 22 October

2016.

[69] Silva, N.; Lopes, R., Overview of 10 Years of ISVV Findings in Safety-

Critical Systems, Software Reliability Engineering Work-shops (ISSREW), 2012

IEEE 23rd International Symposium on , vol., no., pp.83.83, 27-30 Nov. 2012.

http://klabs.org/DEI/References/Software/software.htm
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
http://www.cs.york.ac.uk/hise/seminars/McDermid13Nov.ppt
https://www.nasa.gov/sites/default/files/ivv_qm_-_ver_q.doc

References

137

[70] Silva, N.; Lopes, R., Independent Assessment of Safety-Critical Systems: We

Bring Data!, Software Reliability Engineering Workshops (ISSREW), 2012 IEEE

23rd International Symposium on , vol., no., pp.84.84, 27-30 Nov. 2012.

[71] Silva, N.; Lopes, R., 10 Years of ISVV: What's Next?, Software Reliability

Engineering Workshops (ISSREW), 2012 IEEE 23rd International Symposium on

, vol., no., pp.361.366, 27-30 Nov. 2012.

[72] Nuno Silva, Rui Lopes, “Independent Test Verification: What Metrics Have a

Word to Say”, 1st International Workshop on Software Certification

(WoSoCER), ISSRE, 30 November 2011, Hiroshima, Japan.

[73] N. Silva, R. Lopes, A. Esper, R. Barbosa, “Results from an independent view

on the validation of safety critical space system”, DASIA 2013, 14-16 May, 2013,

Oporto, Portugal.

[74] Steve EasterBrook, “The Role of Independent V&V in Upstream Software

Development Processes”, in proceedings, 2nd World Conference on Integrated

Design and Process Technology (IDPT) Austin, Texas, December 1-4, 1996.

[75] CENELEC EN 50128: Railway applications - Communication, signalling and

processing systems - Software for railway control and protection systems.

[76] ECSS-E-10-06C - Space engineering - Technical requirements specification,

March 2009.

[77] ECSS-E-ST-10-03C - Space engineering - Testing, June 2012.

[78] ECSS-Q-ST-20-10C - Space product assurance - Off-the-shelf items

utilization in space systems, October 2010.

[79] ECSS-Q-ST-30C - Space product assurance-Dependability, March 2009.

[80] FAA HDBK 006A - Reliability, Maintainability, and Availability (RMA)

Handbook, Jan. 2008.

[81] Copeland L., Software Defect Taxonomies,

http://flylib.com/books/en/2.156.1.108/1/. Visited: 22 October 2016.

[82] Lee Copeland, A Practitioner's Guide to Software Test Design, Artech House,

2004, ISBN: 9781580537322.

[83] Vallespir, Diego, Fernanda Grazioli, and Juliana Herbert. “A Framework to

Evaluate Defect Taxonomies.” In XV Congreso Argentino de Ciencias de La

Computación, 2009. http://sedici.unlp.edu.ar/handle/10915/20983.Visited: 22

October 2016.

[84] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.

Ray, and M.-Y. Wong, 1992. Orthogonal Defect Classification-A Concept for

InProcess Measurements, IEEE Transactions on Software Engineering, vol. 18,

pp. 943-956.

[85] Kaner, C., Falk, J., Nguyen, H.Q.: Testing Computer Software (2nd. Edition).

International Thomson Computer Press (1999).

http://flylib.com/books/en/2.156.1.108/1/
http://sedici.unlp.edu.ar/handle/10915/20983.Visited

References

 138

[86] Beizer B.: Software Testing Techniques. Second Edition, Van Nostrand

Reinhold New York (now: Coriolis Press). (1990).

[87] Binder, R.V.: Testing Object-oriented Systems Models, Patterns, and Tools.

Addison-Wesley (1999)

[88] Grady, R.B.: Practical Software Metrics For Project Management and Process

Improvement. Hewlett-Packard (1992).

[89] IEEE: IEEE 1044-1993 Standard Classification for Software Anomalies.

Institute of Electrical and Electronics Engineers (1993).

[90] IEEE: IEEE 1044-2009 Standard Classification for Software Anomalies.

Institute of Electrical and Electronics Engineers (7 January 2010).

[91] Chillarege, R.: Handbook of Software Reliability Engineering. IEEE

Computer Society Press, McGraw-Hill Book Company (1996).

[92] Orthogonal Defect Classification v 5.2 for Software Design and Code, IBM,

September 12, 2013.

[93] Freimut, B.: Developing and using defect classification schemes. Technical

report, Fraunhofer IESE (2001).

[94] Bridge, Norm, and Corinne Miller. "Orthogonal defect classification using

defect data to improve software development." Software Quality 3, no. 1 (1997):

1-8.

[95] El Emam, Khaled, and Isabella Wieczorek. "The repeatability of code defect

classifications." In Software Reliability Engineering, 1998. Proceedings. The

Ninth International Symposium on, pp. 322-333. IEEE, 1998.

[96] Dalal, Siddhartha, Michael Hamada, Paul Matthews, and Gardner Patton.

"Using defect patterns to uncover opportunities for improvement." In Proc. Int’l

Conf Applications of Software Measurement. 1999.

[97] Butcher, Mark, Hilora Munro, and Theresa Kratschmer. "Improving software

testing via ODC: Three case studies." IBM Systems Journal 41, no. 1 (2002): 31-

44.

[98] Leszak, Marek, Dewayne E. Perry, and Dieter Stoll. "Classification and

evaluation of defects in a project retrospective." Journal of Systems and Software

61, no. 3 (2002): 173-187.

[99] R. Lutz and C. Mikulski. “Empirical analysis of safety-critical anomalies

during operations”, IEEE TSE, vol. 30, no. 3, March, 2004.

[100] Seaman, Carolyn B., Forrest Shull, Myrna Regardie, Denis Elbert, Raimund

L. Feldmann, Yuepu Guo, and Sally Godfrey. "Defect categorization: making use

of a decade of widely varying historical data." In Proceedings of the Second

ACM-IEEE international symposium on Empirical software engineering and

measurement, pp. 149-157. ACM, 2008.

References

139

[101] Wagner, Stefan. “Defect Classification and Defect Types Revisited.” In

Proceedings of the 2008 Workshop on Defects in Large Software Systems, 39–

40. ACM, 2008. http://dl.acm.org/citation.cfm?id=1390829.

[102] Walia, Gursimran Singh, and Jeffrey C. Carver. "A systematic literature

review to identify and classify software requirement errors." Information and

Software Technology 51, no. 7 (2009): 1087-1109.

[103] Kristiansen, J. "Using orthogonal defect classification in a Norwegian

software company." Master project thesis, Norwegian University of Science and

Technology (2009).

[104] Kristiansen, Jan Maximilian Winther. "Software Defect Analysis: An

Empirical Study of Causes and Costs in the Information Technology Industry."

(2010).

[105] J. Lemaitre and J. Hainaut, "Quality Evaluation and Improvement

Framework for Database Schemas - Using Defect Taxonomies"; in Proc. CAiSE,

2011, pp.536-550.

[106] LiGuo Huang; Ng, V.; Persing, I.; Ruili Geng; Xu Bai; Tian, J., "AutoODC:

Automated generation of Orthogonal Defect Classifications," Automated

Software Engineering (ASE), 2011 26th IEEE/ACM International Conference on

, vol., no., pp.412.415, 6-10 Nov. 2011

[107] Lopes Margarido, I., João Pascoal Faria, Raul Moreira Vidal, and Marco

Vieira. "Classification of defect types in requirements specifications: Literature

review, proposal and assessment." In Information Systems and Technologies

(CISTI), 2011 6th Iberian Conference on, pp. 1-6. IEEE, 2011.

[108] N. Li, Z. Li and X. Sun, "Classification of Software Defect Detected by

Black-Box Testing: An Empirical Study," Software Engineering (WCSE), 2010

Second World Congress on, Wuhan, 2010, pp. 234-240. doi:

10.1109/WCSE.2010.28

[109] The Institute of Internal Auditors, Practive Advisory 2320-2: Root Cause

Analysis, Analysis and Evaluation, 2003, http://iia.no/wp-

content/uploads/2016/02/PA_2320-2-Root-cause-Analysis.pdf. Visited: 22

October 2016.

[110] J.J. Rooney, L.N. Vanden Heuvel, Root cause analysis for beginners, Qual.

Prog., 37 (7) (2004), pp. 45–53.

[111] T.O.A. Lehtinen, M.V. Mäntylä, J. Vanhanen, Development and evaluation of

a lightweight root cause analysis method (ARCA method) – field studies at four

software companies, Inf. Softw. Technol., 53 (10) (2011), pp. 1045–1061.

[112] F.O. Bjørnson, A.I. Wang, E. Arisholm, Improving the effectiveness of root

cause analysis in post mortem analysis: a controlled experiment, Inf. Softw.

Technol., 51 (1) (2009), pp. 150–161.

http://iia.no/wp-content/uploads/2016/02/PA_2320-2-Root-cause-Analysis.pdf
http://iia.no/wp-content/uploads/2016/02/PA_2320-2-Root-cause-Analysis.pdf

References

 140

[113] Timo O. A. Lehtinen, Risto Virtanen, Juha O. Viljanen, Mika V. Mäntylä, and

Casper Lassenius. 2014. A tool supporting root cause analysis for synchronous

retrospectives in distributed software teams. Inf. Softw. Technol. 56, 4 (April

2014), 408-437.

[114] Rao, Ramaa, “Root Cause Defect Classification (RCDC) for Documentation

Defects”, 2014, http://www.stc-

india.org/conferences/2014/presentations/Root%20Cause%20and%20Defect%20

Classification%20for%20Documentation%20Bugs%20-%20Ramaa%20Rao.pdf.

Visited: 22 October 2016.

[115] Kumaresh, S, Baskaran, R, “Defect Analysis and Prevention for Software

Process Quality Improvement”, International Journal of Computer Applications

(0975 – 8887), Volume 8– No.7, October 2010.

[116] Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis.

Proceedings of the 22nd international conference on Software engineering (2000).

[117] Fenton, N.E.; Ohlsson, N., "Quantitative analysis of faults and failures in a

complex software system," Software Engineering, IEEE Transactions on, vol.26,

no.8, pp.797.814, Aug 2000.

[118] P. Jalote, N. Agrawal, Using defect analysis feedback for improving quality

and productivity in iterative software development, in: Proceedings of the

Information Science and Communications Technology (ICICT 2005), 2005, pp.

701–714.

[119] B. Andersen, T. Fagerhaug (Eds.), Root Cause Analysis: Simplified Tools and

Techniques, Tony A. William American Society for Quality, Quality Press,

United States, Milwaukee 53203, 2006.

[120] Latino, Robert J., Latino Kenneth, C. and Latino, Mark A., Root Cause

Analysis: Improving Performance for Bottom Line Results. 4th Ed., 2011, c. 280

pp., ISBN: 9781439850923, Taylor & Francis. Boca Raton.

[121] Shrouti, C., Franciosa, P., and Ceglarek, D., 2013,“Root Cause Analysis of

Product Service Failure Using Computer Experimentation Technique”, The 2nd

Through-lifecycle Engineering Services Conference, Procedia CIRP, 11: 44-49.

[122] Kaushal Amin, Applying Root Cause Analysis to Software Defects, Software

Testing Magazine, 25 June 2013,

http://www.softwaretestingmagazine.com/knowledge/applying-root-cause-

analysis-to-software-defects/. Visited: 22 October 2016.

[123] Robyn R. Lutz. 1993. Targeting safety-related errors during software

requirements analysis. In Proceedings of the 1st ACM SIGSOFT symposium on

Foundations of software engineering (SIGSOFT '93), David Notkin (Ed.). ACM,

New York, NY, USA, 99-106.

[124] I. Bhandari et al., "In-process improvement through defect data

interpretation", IBM Systems Journal, Vol. 33, No. 1, 1994.

http://www.stc-india.org/conferences/2014/presentations/Root%20Cause%20and%20Defect%20Classification%20for%20Documentation%20Bugs%20-%20Ramaa%20Rao.pdf
http://www.stc-india.org/conferences/2014/presentations/Root%20Cause%20and%20Defect%20Classification%20for%20Documentation%20Bugs%20-%20Ramaa%20Rao.pdf
http://www.stc-india.org/conferences/2014/presentations/Root%20Cause%20and%20Defect%20Classification%20for%20Documentation%20Bugs%20-%20Ramaa%20Rao.pdf
http://www.softwaretestingmagazine.com/knowledge/applying-root-cause-analysis-to-software-defects/
http://www.softwaretestingmagazine.com/knowledge/applying-root-cause-analysis-to-software-defects/

References

141

[125] Allen Peter Nikora, "Software System Defect Content Prediction from

Development Process and Product Characteristics," PhD Dissertation, Department

of Computer Science, University of Southern California, May 1998.

[126] Raninen, Anu, Tanja Toroi, Hannu Vainio, and Jarmo J. Ahonen. "Defect data

analysis as input for software process improvement." In Product-Focused

Software Process Improvement, pp. 3-16. Springer Berlin Heidelberg, 2012.

[127] Otto Vinter, Using Defect Analysis as an Approach to Software Process

Improvement, http://ottovinter.dk/defana.doc, 2008.

[128] Katz, Richard B., Digital Engineering Institute: Lessons Learned - klabs.org,

http://klabs.org/DEI/lessons_learned/.

[129] Neufelder, A. M., The Top Ten Things that have been Proven to Affect

Software Reliability, 2012 IEEE 23rd International Symposium on, Industrial

Track invited talk, http://www.softrel.com/downloads/TopTen.pdf, 27-30 Nov.

2012.

[130] S. Wagner. A Literature Survey of the Quality Economics of Defect-Detection

Techniques. In Proc. 5th ACM-IEEE International Symposium on Empirical

Software Engineering (ISESE '06). ACM Press, 2006.

[131] S. Wagner. A Model and Sensitivity Analysis of the Quality Economics of

Defect-Detection Techniques. In Proc. International Symposium on Software

Testing and Analysis (ISSTA '06), pages 73-83. ACM Press, 2006.

[132] Lutz, R.R.; Mikulski, I.C., Requirements discovery during the testing of

safety-critical software, Software Engineering, 2003. Proceedings. 25th

International Conference on, vol., no., pp.578, 583, 3-10 May 2003.

[133] R. Lutz, Analyzing Software Requirements Errors in Safety-Critical,

Embedded Systems, Proc IEEE Intl Symp Req Eng, IEEE CS Press, 1993, pp.

126- 133.

[134] R. Lutz and I. C. Mikulski, Operational Anomalies as a Cause of Safety-

Critical Requirements Evolution, The Journal of Systems and Software, vol. 65

(2003), pp. 155–161.

[135] Software Engineering: Are we getting better at it?, Michael Jones, ESA

Bulletin 121, February 2005, pp. 52-57.

[136] K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and M. Stringfellow, “An

Analysis of Causation in Aerospace Accidents,” Space, 2001, Aug., 2001.

[137] Jäntti, Marko, Tanja Toroi, and Anne Eerola. 2006. “Difficulties in

Establishing a Defect Management Process: A Case Study.” In Proceedings of the

7th International Conference on Product-Focused Software Process Improvement,

142–150. PROFES’06. Berlin, Heidelberg: Springer-Verlag.

doi:10.1007/11767718_14.

[138] LinkedIn, https://www.linkedin.com/, visited: 28 January 2017.

https://www.linkedin.com/

References

 142

[139] CRITICAL Software Technology for an Evolutionary Partnership

(CRITICAL STEP), Marie-Curie Industry-Academia Partnerships and Pathways

(IAPP), FP7-PEOPLE-2008-IAPP, http://www.critical-step.eu/, visited: 28

January 2017.

[140] CECRIS (CErtification of CRItical Systems), Marie-Curie Industry-Academia

Partnerships and Pathways (IAPP), FP7-PEOPLE-2012-IAPP, http://www.cecris-

project.eu/, visited: 28 January 2017.

[141] VAL-COTS-RT - Validation of Real-Time COTS products,

https://www.cisuc.uc.pt/projects/show/56, visited: 28 January 2017.

[142] AMBER - Assessing, Measuring, and Benchmarking Resilience,

https://www.cisuc.uc.pt/projects/show/98, visited: 28 January 2017.

[143] ISO/IEC 25010:2011: Systems and software engineering -- Systems and

software Quality Requirements and Evaluation (SQuaRE) -- System and software

quality models.

http://www.critical-step.eu/
http://www.cecris-project.eu/
http://www.cecris-project.eu/
https://www.cisuc.uc.pt/projects/show/56
https://www.cisuc.uc.pt/projects/show/98

 143

Annex A. Defects Assessment

Questionnaire

Annex A

 144

Introduction

Dear respondent,

This survey blossoms in a very particular situation. It intends to gather the view of the

industry and academia in what concerns defect analysis of critical systems, in particular

the occurrence of failures in systems and software development and V&V processes.

It is essential to keep in mind that we are considering systems currently developed

with utmost care, under very strict and mature processes and methods and that

usually require independent assessment in order to be fit to purpose (qualified,

certified, homologated, …). These systems also follow well-defined quality assurance

rules and originate a great deal of evidences that can be consulted by teams and

independent assessors.

In this context, previous work [1] on the analysis of the defects identified at a late

development stage (either at the end of a development lifecycle phase or at the end of

the validation) has shown that some defects are still not caught by the traditional V&V

and QA activities. These defects have been classified with ODC [2] and some

improvement suggestions have been identified, to both improve the development and

avoid the defects, and to improve the efficacy of the V&V activities and thus identify

them within the project internal quality assurance tasks. This survey operates around

some of these results, but intends to also grab additional expertise to improve the

classification and the root-cause identification tasks.

Note when answering that we are not looking for basic development methods, nor basic

V&V processes, but to go beyond them, although, sometimes, the simplest solutions

are known and wrongly applied. Consider the defects as defects found at a near

deployment phase or after deployment.

Defects Assessment Questionnaire

145

Acronyms and Definitions

Relevant list of acronyms and definitions:

ISVV: Independent Software Verification and Validation

ODC: Orthogonal Defect Classification. ODC is a methodology that extracts

information and provides feedback about a development process from the defects that

occur during the development lifecycle. (Developed at IBM Research circa 1991)

PA: Product Assurance

QA: Quality Assurance

RCA: Root Cause Analysis

SDP: Software Development Process

SW: Software

V&V: Verification and Validation

Annex A

 146

Anonymity

In order to protect individual and organization privacy, the answers to this

questionnaire will remain anonymous and will not in any way be used to identify the

respondents. The survey data will not identify and will not be used, either alone or with

other information, to identify survey participants.

Defects Assessment Questionnaire

147

Instructions

Please respond to the following 22 questions by editing this MS Word document or the

PDF version and deliver your responses preferably before April 15th, 2016 to the

following email:

nsilva@criticalsoftware.com

Please feel free to request clarifications and thank you very much for supporting me in

this analysis.

Coimbra, March 24th, 2016

Nuno Silva

Critical Software SA / University of Coimbra

Coimbra, Portugal

mailto:nsilva@criticalsoftware.com

Annex A

 148

Questions

A. General Questions

Q1: Years of Academic/Research Experience or Years of Industry experience.

[If both, please indicate both separately, e.g.: Academic: 5y; Industry: 10y]

R1: Academic/Research: ____________________ Industry: ___________________

Q2: Industries where you (the expert) have been involved? Aeronautics, Space,

Defense, Automotive, Railway, Energy, Others.

[Indicate in which industries/domains you have been involved for more than one year.

Academic researchers might not have this distinction, thus use “Academia”]

R2: ___

Q3: Level of importance that you give to standards utilization (according to impact in

software/system development).

[Leave blank if you have no opinion]

☐ 1 - Extremely Important

☐ 2 - Very Important

☐ 3 - Somehow Important

☐ 4 – Not relevant

Q4: Level of importance of budget/financial restrictions.

[Indicate how important are budgetary restrictions when you have to develop a critical

system. Leave blank if you have no opinion or don’t have experience on critical

systems development]

☐ 1 - Extremely Important

☐ 2 - Very Important

☐ 3 - Somehow Important

☐ 4 – Not relevant

Q5: Level of importance of schedule/timings restrictions.

Defects Assessment Questionnaire

149

[Indicate how important are schedule restrictions when you have to develop a critical

system. Leave blank if you have no opinion or don’t have experience on critical

systems development]

☐ 1 - Extremely Important

☐ 2 - Very Important

☐ 3 - Somehow Important

☐ 4 – Not relevant

Q6: Level of importance External Assessment of the developed systems or software

[When a critical system is developed, up to what level do you consider the importance

of independent assessments and the certification/qualification processes that are

commonly imposed in certain domains (e.g. railway, aerospace, nuclear)? Leave blank

if you have no opinion]

☐ 1 - Extremely Important

☐ 2 - Very Important

☐ 3 - Somehow Important

☐ 4 – Not relevant

Q7: Level of importance of analysing software/system errors or failures and identify

their root causes

[When developing or updating a critical system and issues, bugs, failures are detected,

how important do you consider that industry should go beyond just correcting the

issues, for example by analysing and understanding what lead to these problems (root

cause)?]

☐ 1 - Extremely Important

☐ 2 - Very Important

☐ 3 - Somehow Important

☐ 4 – Not relevant

Q8: Have you ever used Orthogonal Defect Classification (ODC)?

☐ Yes

☐ No

Q9: Have you ever used defect analysis approaches?

Annex A

 150

☐ Yes

☐ No

Defects Assessment Questionnaire

151

B. Defect Analysis Process

Considering the following process composed by four main phases:

 Prerequisites: Defects data collection and preparation, aggregation of other data

if necessary, such as complexity metrics, lifecycle data, etc. A (the issues) and

B (the phase where the issue was found, the phase it was corrected, the type of

project, etc.) represent process inputs.

 Defects Classification: Classification of individual defects according to ODC

in order to identify the defect types, defect triggers and defect impacts. Note

that ODC can be adapted for specific domain and technology purposes.

 Defects Root Cause Analysis: Based on the three perspectives (defect types,

triggers and impact) identify the root cause analysis of the defect groups (e.g.

per type, per trigger or even per impact). Steps 4 to 6 might be considered

“optional”, i.e. we can apply one, two or the three root cause analysis.

 Improvements and Validation: Act upon the identified root causes, at a process,

organizational or resources (human and techniques/tools) level. Measure the

effects of the implemented actions. Step 10 represents the actual improvements

to the systems under analysis (both environment/organization and processes).

Step 11 represents adaptations and improvements to the classification process

of the issues.

Note: For a more detailed description of each process step refer to Annex 1 at the end

of this questionnaire.

Annex A

 152

Figure 21: Defect Assessment Process6

Q10: What is the main strength you can point in such a defect analysis process?

[Point out and comment the main strength in the proposed tasks or the overall process]

R10:___

__

__

Q11: What is the main weakness you identify in the proposed defect analysis process?

[Point out an important weakness in the proposed tasks or the overall process]

R11:___

__

__

Q12: According to your experience, highlight up to three missing/important

activities/steps that should be part for such a defect analysis process.

[You might highlight activities that you already perform and that bring added value to

the process or you might propose the replacement of some activities in the defect

analysis process]

6 This figure is slightly different from the final process presented in Figure 10 since after the survey

results have been collected we have operated modifications to the process presented in this figure.

Defects Assessment Questionnaire

153

R12.1:___

__

R12.2:___

__

R12.3:___

__

Q13: Would you recommend such a defect analysis process to be used in your

organization?

[Leave blank if you have no opinion]

☐ 1 – Strongly Recommend

☐ 2 - Recommend

☐ 3 – Maybe Recommend

☐ 4 – Would Not Recommend

Annex A

 154

C. Defect Development Causes

Q14: From your experience and expert judgement, classify the following causes for

defects introduced during “development”, according to the frequency of occurrence.

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no

opinion, leave the line blank]
Defect “Development” Cause Classification

 1 2 3 4

Inefficient/insufficient reviews

Ambiguous/missing/incorrect artefacts (documentation, requirements, design, tests)

Insufficient/Wrong tests (unit, integration, system, fault injection)

Limitations of the tools or toolsets that deal with documentation

Lack of Completeness and consistency of system level (or previous phases) documentation

Oversimplified documentation planning procedures

Lack of time to produce, review and accept documentation artefacts

Lack of importance given to some documentation artefacts

Simplification of the product assurance processes related to documentation artefacts

Limited engineers domain knowledge – lack of appropriate skills

Incomplete specifications in what concerns FDIR and erroneous situations

Lack of reliability and safety culture

Incomplete specifications in what concerns interfaces, environment and communications

Limited definition of the operation, usability, maintainability requirements

Lack of tools knowledge, programming languages, design languages

Version and configuration management procedures inappropriately implemented

Q15: Provide up to 3 examples of additional causes for defects introduced during

“development”, according to your experience and knowledge of critical systems.

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no

opinion, leave the line blank]
Additional Defect “Development” Cause Classification

 1 2 3 4

R13.1:

R13.2:

R13.3:

Defects Assessment Questionnaire

155

D. Defect Detection Causes

Q16: From your experience and expert judgement, classify the following causes for

failing the detection of defects during development, according to the frequency of

occurrence.

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no

opinion, leave the line blank]
Defect “Detection” Cause Classification

 1 2 3 4

Lack of traceability verification culture

Lack or inefficient usage of tools that support traceability across lifecycle phases

Lack of appropriate test planning and test strategy definition

Lack or inefficient testing tool and testing environment support

Incomplete tests specification and execution

Review process related root causes

Documentation related root causes

Deficient usage of tools and applicable processes

Unclear or missing/incomplete specifications

Ambiguous or unclear architecture definition

Lack of usage of tools that support data and control flow analysis

Inappropriate architecture support tools or tool usage

Deficient specification or design artefacts

Q17: Provide up to 3 examples of additional defect “detection” causes according to

your experience and knowledge of critical systems.

[The examples can include techniques applied by you or simply known. Please place

an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-Somehow

Frequent; 4 – Not Frequent. If you don’t understand the cause or have no opinion, leave

the line blank]
Additional Defect “Detection” Cause Classification

 1 2 3 4

R17.1:

R17.2:

R17.3:

Annex A

 156

E. Defect Avoidance Measures

Q18: From a development perspective, classify the following measures that could

avoid the introduction of defects, according to the perceived importance.

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no

opinion, leave the line blank]
 “Development” Measure Classification

 1 2 3 4

Define/redefine appropriate review methods, processes and tools and enforce their application at

every stage of the SDP;

Implement automated documentation generation processes and tools to avoid inconsistencies

between artefacts/lifecycle phases;

Use tools that integrate and manage all the phases of the lifecycle, such as concept specifications,

requirements, architecture, source code, tests, etc.;

Introduce/use tools with automatic validations (documentation completeness, design consistency,

code analysis, control and data flow analysis);

Provide training to the engineering teams, to improve the domain knowledge, the system or

interfacing systems knowledge, standards knowledge and techniques and tools practice;

Promote workshops or meetings to present the specifications/requirements, to discuss and clarify

them before advancing to the following phase;

Introduce additional guidelines or even specific requirements (e.g. by defining and specifying the

reasoning behind the standards requirements and how to achieve them in full conformance) in the

applicable standards (PA/QA, version and configuration control and development).

Q19: Provide up to 3 examples of additional defect avoidance measures according to

your experience and knowledge of critical systems.

[The examples can include measures applied by you or simply known. Please place an

X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-Somehow

Frequent; 4 – Not Frequent. If you don’t understand the cause or have no opinion, leave

the line blank]
Additional “Development” Measures Classification

 1 2 3 4

R19.1:

R19.2:

R19.3:

Defects Assessment Questionnaire

157

F. V&V Measures

Q20: From the V&V perspective, classify the following measures according to the

perceived importance in detecting defects.

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no

opinion, leave the line blank]
“V&V” Measure Classification

Define appropriate test plans and strategies, especially unit and integration tests. The soundness of

the test plans and strategies will reflect in the success of the validation;

1 2 3 4

Ensure appropriate (or automated) traceability analysis at every stage of the development lifecycle;

Improve the testing completeness, coverage and reviews;

Implement non-functional tests (fault detection, fault injection, redundancy, etc.);

Apply or develop tools to verify and validate the implementation and design compliance.

Q21: Provide up to 3 examples of additional effective V&V measures according to

your experience and knowledge of critical systems.

[The examples can include measures applied by you or simply known. Please place an

X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-Somehow

Frequent; 4 – Not Frequent. If you don’t understand the cause or have no opinion, leave

the line blank]
Additional “V&V” Measures Classification

 1 2 3 4

R21.1:

R21.2:

R21.3:

Q22:

Thank you for your time answering this questionnaire. If you have any additional

suggestions or any relevant observations please feel free to expose them. In case you

would like to receive the results of this questionnaire by email when they become

available please indicate so.

R22:___

__

__

__

__

Annex A

 158

References

[1] Silva, N.; Lopes, R., Overview of 10 Years of ISVV Findings in Safety-Critical Systems, Software Reliability

Engineering Work-shops (ISSREW), 2012 IEEE 23rd International Symposium on , vol., no., pp.83.83, 27-30 Nov.

2012.

[2] Orthogonal Defect Classification v 5.2 for Software Design and Code, IBM, September 12, 2013.

Defects Assessment Questionnaire

159

Acknowledgements

This work is being partially supported by the European Project FP7-2012-324334-

CECRIS (CErtification of CRItical Systems): http://www.cecris-project.eu/.

PEOPLE

IAPP MARIE CURIE ACTION

http://www.cecris-project.eu/

Annex A

 160

Annex 1. Defects Analysis Process Description

This annex provides a general approach for root cause analysis of critical software

issues, enabling the continuous improvement of implementation and V&V at all levels

(processes, techniques, tools, personnel, application of standards, organization, and so

on). Figure 21 shows the general approach of a defects assessment procedure, which

includes a root cause analysis and a continuous improvement procedure, described

hereafter.

1. Procedure Prerequisites

The approach is based on data analysis and software engineering knowledge that

require some prerequisites to be fulfilled for the correct application of the process:

0. Start:

In order to successfully perform the defects analysis it is necessary that the

collected data (A. Defects Data and B. Other Project Data) contain the necessary

information. This includes basic requirements such as: a) detailed information

about each defect and its fix; b) knowledge of defect environment conditions,

such as tools, personnel, constraints; c) engineers assessment of the defect

causes; and d) phase where the defect was introduced and where it was detected.
1. Data preparation and clean-up:

Once we have the necessary data it is important to organize it and perform some

anonymization if required. Data organization is essential for the next steps, since

it is important to have the data in a searchable and manageable manner.

2. Defects Classification

In order to efficiently and concretely tackle the important problems of critical software

engineering, the first set of activities shall focus on an orthogonal classification of the

sets of defects:

2. ODC:

Perform the ODC classification on the organized dataset. Enhancements and

adaptations to the ODC taxonomy can be useful depending on the nature of the

defects and the domain, however, these enhancements should be quite precise.
3. ODC Analysis:

Provide a summary of the ODC analysis (results analysis and distribution). This

information gives the first hints about the quality of the dataset, which can

provide some feedback to the implementation and V&V teams.

3. Defects Root cause analysis

The root cause analysis is composed by several steps that include analysis of the defects

types, the triggers allowing defect detection, the defects that could have been detected

Defects Assessment Questionnaire

161

earlier, and then prioritization and consolidation of these root causes leading to

concrete proposed improvements:

4. Defect Type RCA:

Identify what caused the specific defect types, and try to aggregate them.
5. Defect Trigger RCA:

Identify the causes and V&V techniques or triggers that allowed the defects

detection at the defect detection stage.
6. Late Detection RCA:

Identify the causes of the failures in the V&V and ISVV techniques that allowed

the defects to propagate until a later stage in the development lifecycle.
7. Defects prioritization:

If required (for example to tackle the defects with the highest impact on the

system, or due to the large amount of defects and respective causes) prioritize

the list of defect types and triggers.
8. RCA consolidation:

From the list of defects and the corresponding root cause analysis obtained in the

previous steps, consolidate the root causes into a prioritized list.
9. Improvements Suggestions:

For all the root causes, define solutions or modifications to the processes,

techniques, tools, training, resources, environment or application of standards.

4. Improvements and Validation

The suggested improvements might be difficult to implement, and their efficacy can

vary from team to team. They shall contribute to improve the software quality and

reduce the amount of defects, different defects can then surface, and this is why this

process shall have a consistent process improvement in place:

10. Improvements Implementation:

The development and V&V teams must be informed about the required changes

or adjustments (9. Improvements Suggestions), and the organization,

management and quality planning shall decide on the improvements to

implement for future projects.
11. Process Validation and Improvements:

At every step, it is possible to derive improvements to the process. Such

improvements can be set to adjust to the company culture, to the project

environment, to the customer requirements, etc. However, it is essential to

measure the effectiveness of the implementation of the results (9. Improvements

Suggestions and 10. Improvements Implementation) once the suggestions

have been implemented and new defects (or no defects) have been collected.

 162

Annex B. Defects Analysis

Textual Responses

Defects Analysis Textual Responses

163

Collection of the textual answers and recommendations provided by the experts as a response to the Defects Assessment Questionnaire.

The responses are presented as provided by the experts with no modifications to their text, excluding some typos corrected.

Process Strength, Weakness and Additional Experts Recommendations.

Q2:

Technical

Domain Q10: Process Strength Q11: Process Weakness Q12.1: Suggestion 1 Q12.2: Suggestion 2 Q12.3: Suggestion 3

Space

Helps improve

organizational processes

based on actual feedback in

a structured way.

Grouping of defects could

be cumbersome, especially

if not all relevant

information is logged. N/A N/A N/A

Fault

Tolerant/

High

Availabili

ty/Resilie

nt

commerci

al

computin

g

Process promotes

identification of weak areas

of design. verification, and

test.

Perhaps implicit but

unclear how process feeds

back to the point of defect

initiation (e.g., design,

documentation, etc.)

current defects vs past

defects (root cause,

location, escape from

process, etc)

design process change

recommended and

implemented as a result of

process N/A

Space

It is a very thorough

process that could help

identifying the root causes

of the defects in order to

correct them and improve

the overall quality of the

developed software.

The process relies on the

availability of good quality

data about the defects

which is not available very

often.

Ensure management /

project team commitment

with the activity

Discuss findings with

management / project team

before presenting the

improvement suggestions N/A

Automoti

ve,

telecomm

Steps 10 resp. 11 are most

important (and difficult to

implement): current

The improvement process

may need more attention:

are there classifications

Analysis of impacts of

recommended

improvements on

Selection process of

participants and managing

the defects analysis

Monitoring the

improvement

implementation (again

Annex B

 164

unications

, IT

software

operations/processes/softwa

re must be reviewed and

changed resp. updated. This

takes time, which may not

be available in the course

of a project. However, only

through improvements can

the number of defect be

reduced

possible, any relationship

between defect and type of

improvement – most

important: I am missing a

feedback from the defects

analysis to the development

process (the arrows only go

back to the defects analysis

(ODC)

project/schedule/cost;

optimization of different

improvements

operational aspects (sort of

orthogonal to described

process)

somewhat orthogonal):

how to assure that the

learnings are effectively

applied to development

and analysis processes.

Space

The use of the ODC (an

existing methodology)

associated to

improvements; the

correlation among the

defects classification (type,

trigger, detection)

It is not clear how historical

data may be used in the

process: to define

improvements to classify

defects, etc.

In step 9, I suggest you to

classify the list of causes

according to the person

who will receive it). Each

stakeholder have their own

interest or position (V&V

team, development team,

manager, etc..) N/A N/A

Manufact

uring

automatio

n,

Automoti

ve,

Energy –

nuclear

Within the context of high

quality high performance

organizations producing

high quality low-volume

products, using high quality

processes, a statistical

approach with aggregation

of de-fect data is not as

useful as a forensic analysis

of each defect:

• Each incident is a

learning opportunity. Why

wait for more data?

• Too much

calendar-time would be lost

waiting for statistically

significant data to ac-

cumulate. Meanwhile the Same as cell before

In the case of field data, as

mentioned in R10, the

quality and completeness of

the information collected is

a very significant factor.

(In the context of a product

family where successive

products are similar)

Information about what

changed when a new defect

or change in defect

occurred. Forensics focused

on the change and its

relationship to the defect

would

(In the context of one of a

kind products or very low

volume products) a

forensic interview with the

people involved in the

production processes.

Defects Analysis Textual Responses

165

root cause would remain

hidden and is not

addressed.

• In an application

domain of low volume

systems or devices and

rapid innovation,

meaningful aggregation of

historic data is very

difficult.

• Even in

organizations with high

volume products, e.g.,

automobiles, data from the

field is not collected well –

take a look at their

warranty claim records.

Typically, a module, called

an electronic control unit

(ECU), is replaced. The

servicing record does not

include much context

information, e.g., the

operating history or profile

of the vehicle, the specific

conditions when the

malfunction was first

noticed. The diagnostic test

codes (DTCs) are primitive.

Academia

It seems that this process is

rather complete. It is able to

analyse, to classify, and to

identify root-causes. Thus

the completeness seems to

First, the quality of the

process depends on the

quality of defect Data. You

should clarify how defect

data should be

characterized. Second, it

Quantification of the effort

(cost) needed to apply this

process.

Definition of Validation

metric.

Think about a potential

extension of ODC in order

to maximize the number of

defects covered

(classified) by your

process.

Annex B

 166

be the main strength of the

proposed pro-cess.

seems that the process you

propose is rather complex. I

don’t know how the overall

analysis will be effective.

You are trying to identify

defect types and trigger for

all the defect data. It is a

hard task, especially for the

trigger identification. Third,

how to validate this

process. In other words, can

we trust this process? Your

should define (or adopt)

some metrics to measure

the quality of the results.

Railway

The defects are

systematically considered.

The experiences from

previous projects are re-

used. N/A

Identifying new defect

types in the case of new

technologies are used. N/A N/A

Space and

Air

Traffic

Control

Systems

Being able to characterise

main issues in sw supplied

by a particular development

team sup-plier. This

enables focusing the system

testing prior to operational

usage of particular sw.

Ensuring consistency in

defect classification. Find

that usually even though a

definition is provided for

the meaning of urgency, it

is difficult to come up with

common understandings

across projects. Different

teams use specific naming

conventions e.g. vlaunch

anomaly means it has to be

fixed prior to launch.

Define rules within team

for defect types

Define rules within the

team for defects trigger

Ensure that consolidation

is not impacted by timing

or budget constraints.

Often, the classification is

well done but, for cost

reasons directives such has

“no more than 50 defects

can be raised” impact the

classification quality. As a

consequence, defects are

collated together and one

looses the traceability with

testing due to an increase

in complexity regarding

the defect description.

Defects Analysis Textual Responses

167

Academia

, Space,

Defence,

Railway

Detailed classification of

defects

Too much steps to achieve

the final result, namely in

the RCA

Impact analysis of the

defect

(Safety) Classification of

the defect

Defect correction

validation

Aeronauti

cs, Space

The process has a well-

define

The process describes

generic top level tasks such

as “Data Preparation” but

provides no guidance

neither guidelines on how

to implement those tasks.

Without further guidance

and/or guidelines different

users may implement the

same process in very

different ways resulting in

all from a very effective to

a rather poor one.

I am not sure about what is

done in “defect type”,

“defect trigger” and “late

detection” RCAs. To

properly assess the

proposed method, more

information is required.

The mind-set when we are

developing a new system or

modifying and existing one,

or even when fixing a

problem in a long duration

project is not the same. The

team or person doing the

modification may not be

the same that has originally

developed the system.

Team dynamics,

organisation culture and

psychology have huge

impact in the introduction

of errors and the ability to

detect them. I am not sure

this is addressed within the

activities of the pro-posed

process N/A

Defense,

Telecom

municatio

ns

Prerequisites steps, about

quality of data

classification group could

be omitted and still have a

positive outcome N/A N/A N/A

Aeronauti

cs,

Automoti

ve,

Railway

it is a process, i.e. if carried

out properly, it provides a

structured path to

improvements

it is only a process, hence

the real result will depend

mostly on the people N/A N/A N/A

Automoti

ve, Others N/A possible feedback to design N/A N/A N/A

Annex B

 168

Space,

Railway,

Energy,

Finance

The main strengths are that

there really is a process and

that there are criteria for

classification of defects

(ODC).

I think the process and

tasks are very dependent on

having a large system

where there are a

considerable number of

defects (whatever that

means) and a lot of

experience with analysing

and correcting defects. In

the last process,

Improvements and

validation, there is not

mentioned explicitly the

topic of retesting, i.e. how

much shall be retested to

make sure the defect has

been really corrected (not

the symptom), and that the

correction has not led to

unexpected problems

somewhere else.

As mentioned above,

strategy for retesting should

be addressed

Maybe also the ITIL-

processes change

management, release

management and

configuration management

should be addressed (for a

system in live operation) N/A

Space,

Aeronauti

cs,

Railway

Comprehensive and

detailed process. Low effort

associated with the

“Prerequisites” and

“Defects Classification”

phases (supported by the

projects). Possibility to

break-down the process by

its phases and assign them

to different teams

(“Prerequisites” and

“Defects Classification” to

the project team, remaining

to an R&D/Process

Requires all team members

to master the different ODC

classifications. May require

one full time resource to

periodically perform a

sanity check to the

submitted defects and their

classifications in order to

ensure the correctness of

the defects classification.

In order to start the third

phase, one needs to gather a

considerable amount of

information on the second

phase. Given that when the

second phase finishes,

project team members may

no longer be available for

clarifications of the raised

defects, an additional

optional activity may be

added to the second phase

of the process,

encompassing a periodic N/A N/A

Defects Analysis Textual Responses

169

Improvement team). Usage

of a well-known

classification system.

sanity check of the

classifications of the

submitted defects in order

to ensure the quality of the

data to be used for the

subsequent phases.

Railway,

Academia

, Others

The mean strength is the

application of root cause

analysis itself. It helps

understand the functionality

of the system even better.

It is a long process, while

maybe important

information could get lost

Analysing whether multiple

defects could have a

different effect N/A N/A

Space N/A N/A N/A N/A N/A

Avionics,

Medical

Devices,

Automoti

ve

Nice approach – the

feedback to truly analyze a

defect is very important, so

the Improvement process is

important (as usually this is

missing in most

organizations)

Perhaps it misses remedial

training of the person

responsible for the defect

then assessing the adequacy

of that improvement. Same

for the process

improvement: how we

assess/know the

improvement worked?

manual re-review to assess

adequacy of correction, by

an independent person

Check for Unwarranted

Changes, e.g. additional

changes made during the

defect correction process

which were not warranted

and in fact caused

unintended side effects

(problems)

Missing the process

improvement stage, or

assessing the adequacy of

the process improvement.

Aeronauti

cs, Space,

Defense,

Automoti

ve,

Railway,

Real-time

Embedde

d Systems

In any domain it is always

difficult to collect previous

defect data base when

performing RAMS

analysis. A process for

classifying the defects,

identification of their

causes and then taking

action to improve the

development process can

be an enormous added

value, in terms of

reliability, cost and

schedule.

Do to the budget and

schedule pressure, most

organizations are not

willing to invest in

improvement processes.

Defects data collection

process could be further

detailed, indicating the

common or potential source

of information, for

example: input data from

previous RAMS analysis

performed in the same type

or similar systems, existing

test data from similar

systems, existing defects

data-bases per domain.

An activity for creation and

updating of a defects

database could be included,

i.e., each project should

benefit and contribute for a

domain specific defect data

base.

A preliminary risk analysis

could be performed early

in the process to identify

what are the most common

types of defects expected

for that type of system and

to prepare a set of

mitigation actions that

could be taken to prevent

those defects from

occurring

Annex B

 170

Aerospace

, Defense ODC Analysis (4 or 5 or 6)

A and B (although at first

sounds easy, the data

collection can be one of the

items difficult to carry out

completely

in some part of the process

a model/snapshot view of

the system could be help N/A N/A

Commerci

al

Software.

Consultin

g Clients

have been

in

Networki

ng,

Operating

Systems,

Retail,

Aerospace

, Nuclear,

Insurance.

Real data from the process

yield measurements. So, we

see what it is as opposed to

an opinion by someone

without actual insight.

Takes time and effort. It is

much easier to do a shoddy

job after spending a day

talking to people, and

forming an opinion that can

be biased or influenced by

the people at task.

In our process, we also

have a technology

assessment that goes with

this.

A skills inventory is also

useful. N/A

Academia N/A N/A N/A N/A N/A

Railway

Understanding the root

causes are very important

to be able not only to

improve our pro-cesses, but

to understand why are these

processes so important. My

experience is that

development projects apply

standards and processes

only because it is

mandatory, and not because

they understood its

usefulness. This process

could help the recognition.

Currently in our project,

since it is the first version

of our product, we have to

face with really a lot of

bugs. This procedure does

not talk about how to

define the relevant bugs, if

we would like to cut the

effort required for this

process, before we start the

ODC classification. I feel

that it is not possible to

lower somehow the bugs

taken into account for

Some kind of pre-analysis

of bugs to decrease the

effort needed for the

process N/A N/A

Defects Analysis Textual Responses

171

And also based on this

process the best methods

could be used and

implemented which fit the

best to the given team,

since this can help also to

analyse the weak points of

a given team.

ODC, no one will give

green light for doing this

process, since it seems to

be really a lot of work.

Aeronauti

cs, Space

The structured approach

facilitates its usage

Length and amount of

activities you need to

perform before you have

useful data N/A N/A N/A

Railway,

Air

Traffic

Control

The main strength is to

combine ODC and RCA

analysis; indeed they have

different purposes,

advantages and drawbacks,

as pointed out by

Chillarege itself in his

original ODC paper. This

allows combining a more

“quantitative” analysis, as

enabled by ODC, and a

more qualitative one, like

RCA, thus allowing

capturing both more

general process-level flaws

and trends, and issues more

related to a specific product

development/verification

team.

The problem in defect

analysis is the manual

classification it is required.

ODC tends to minimize this

issue, by a more

“systematic”

characterization, but it

remains challenging to get

to fast and efficient

classification without an

automatic or semi-

automatic classification

procedure.

I think that what is missing

is a step for validation of

the classification process

itself, in terms of reliability

of the classification (e.g.,

different people classifies

in the same way), effective-

ness (i.e., the classification

actually serves the purpose

of detecting process flaws

and identify potential

improvements), efficiency

(i.e., classification is

effective but also requires

an acceptable time)

An initial tuning could help

tailoring the ODC

classification for the

purpose of a company (see

for instance this paper that

applies a lightweight

classification: “An

Industrial Case Study of

Implementing and

Validating Defect

Classification for Process

Improvement and Quality

Management” N/A

Railway

The improvement that you

gain by this analysis, in

theory it should help you to

build a better software

The process is time

consuming, since it requires

a proper classification of

the issue when it came out. N/A N/A N/A

Annex B

 172

(e.g., avoid inflating the

same type of bugs, improve

test detection efficiency)

You can still classify the

issue “later on”, let’s say,

when you have some more

time to devote to it, but it

would not be effective.

Academia

.

Aeronauti

cs

Systematic defect

management; Use of a

defect classification;

Inclusion of RCA

Need for a feedback from

step 11 (the feedback from

improvements comes only

from step 10, but steps

from 4 to 10 are not always

performed in companies –

process improvements may

be decided even without

RCA);

Defect prioritization (Step

7) may be required for

process improvements even

if RCA is not performed N/A N/A

Space,

Academia

Logic + Functional

Organisation

Some sub-processes might

be lost or forgotten If not

stated explicitly (some

extra information on these

steps needs to be provided)

Defect Data Interface

Check (is it the root or

secondary defect under

study)

Defect Data related

algorithm check

Defect data related

configuration check

Railway,

Automoti

ve

It seems a strongly

structured approach to

perform defect analysis,

that cover all the activities

that are considered as

necessary. Using a

structured approach like

this one will give you a

guideline and greater

evidence that no important

information are lost in the

analysis.

It seems missing a clear

trace of the defects with

respect to the components

and versions affected by the

defect. Clarifying this part

will enhance the

capabilities of the process.

IDENTIFICATION OF

COMPONENT /

SUBSYSTEM AND

VERSION THAT IS

AFFECTED BY THE

DEFECT N/A N/A

Academia

Enhancements and

adaptations to the ODC

taxonomy should be quite

precise

Bugs that could not have

been found through static

and dynamic analysis

Prevent defects from

recurring

Select defects for further

analysis

Determine if defect

analysis is necessary

Defects Analysis Textual Responses

173

Space,

Defense,

Automoti

ve

Continuous improvement,

feedback

getting relevant

measurement, getting

measurement early enough,

implementing the

improvements (overcoming

resistance) how do you prioritize?

How do your formulate

improvement suggestions?

How do you gain

commitment?

presucion

measuring

systems,

railways

infrastruct

ure and

railways

rolling

stock. N/A N/A

intermediate decisions

involving several stake

holders (e.g. financial,

technical, operational,

safety, customer focus).

Most of the time a defects

impact and/or it’s

resolution is different

depending on the main

goals set. E.g. delivery

product quickly, make it

very user friendly, make it

very cheap, N/A N/A

Space

its a looped system (should

lead to improvement of the

product and the process)

AND it con-siders also

other projects data for the

analysis.

1/ No safety assessment

(when relevant)

2/ I do not see any explicit

preliminary analysis of the

effects of the defect (e.g.

impact on the system being

developed such as

functional errors,

performance etc… and on

the development operations

such as delay and cost).

Unless causes and effects

are so obvious so the

process can be executed

very fast, it is to me very

important to do impact

assessment at early stage

because you never know

how long will the analysis

last. Then eventually,

defect prioritization may be

changed at step 7 once both

effects and root causes are

known.

Part of the impact

assessment is the Safety

assessment (mandatory for

processes with safe-ty

issue): It is necessary to

check the impact of the

defect on safety (of the

development team).

Important for type of

process such assembly and

integration, fuelling,

physical testing with

dangerous material or

physical conditions

(vacuum, vibrations)etc

etc…

Short term

countermeasures (work-

around solution) when the

defect has a significant

impact on safety or project

development

Annex B

 174

Railway

and Space structure and completeness how to enforce it for real? N/A N/A N/A

TeleGeoI

nformatic

s,

Statistical

Processin

g

(Applicati

ons

including

Data

Mining,

Machine /

Network

Intelligen

ce),

Software

Engineeri

ng,

Academia

Defect Analysis process is

built on the foundations of

ODC methodology with a

strong emphasis on

disciplined systematic

process.

The approach is trying to

solidify on disciplined

process on a particular

methodology rather than on

a process discipline.

Flexibility of approaches

(and methods) that can be

obtained through process

discipline is a key to

building reliable software

systems.

ODC is good for defect

classification for procedural

development with a

waterfall process. This

method does not bode well

for object/ service/ aspect

oriented development and

also for agile methods. It is

important to realize that

ODC is a classification

approach to group defects

and has limitations in

quantification of quality.

This approach may not

align well to bring holistic

picture for program or

operations management

unless the organization is

developing just one

product. If you have a

product line, it is difficult

to get a holistic grasp

considering the multiple

business priorities. N/A

Defects Analysis Textual Responses

175

Q15: Additional Development Root Causes

The following text also contains the frequency of the proposed root cause as evaluated by the expert: 1-Extremely Frequent; 2- Very

Frequent; 3-Somehow Frequent; 4 – Not Frequent, 0 – No Opinion.

Q2: Technical

Domain Q15.1: Suggestion 1 Q15.2: Suggestion 2 Q15.3: Suggestion 3

Space

Unmanageable software complexity (due to

standards not correctly applied) (2)

Software design poorly documented, affecting

software test effectiveness (3) -

Fault Tolerant/High

Availability/Resilie

nt commercial

computing

interaction with elements beyond system boundaries

(2) multiple failures (3) -

Space - - -

Automotive,

telecommunication

s, IT software

insufficient staffing – limited resources, leading to

insufficient backup know-how, review peers (2)

insufficient (management) planning to have

resources available when required (3)

too high focus on

functionality instead of

overall system thinking (1)

Space

overconfidence from the developer team (mainly in

case of re-use) (2) manager's pressure (3) -

Manufacturing

automation,

Automotive,

Energy – nuclear

Weak or lacking so-called “non-functional”

requirements, i.e., requirements for quality attributes

(see ISO 25000 family of standards) and their

transformation into explicit system constraints. (1)

Weak architectural design – it is typically a result of

R13.1. Often, it is also a result of organizational

culture. (1)

The way development

work and affecting

information is divided or

scattered across

organizations.

Organizational division of

work is not aligned with a

sound architecture of the

system (1)

Academia - - -

Railway Human carelessness (1)

Changing of the (railway) environment in which the

system is installed. (Especially SIL0 systems) (3) -

Annex B

 176

Space and Air

Traffic Control

Systems

Team with mixed backgrounds e.g. C developer and

a Java developer programming in ADA. (1)

Teams with biased backgrounds. People tend to

import practices from previous working

environment, and this might lead to defect

introduction. (3)

Excess of interruptions at

work (1)

Academia, Space,

Defence, Railway - - -

Aeronautics, Space

Lack of knowledge of common defects and their

causes, not only the technical causes but also the

organisational and even psychological causes that

lead developers to inject defects. (2)

Lack of dissemination of the FDIR approach – what

is the approach and why that particular approach was

selected. (1) -

Defense,

Telecommunication

s - - -

Aeronautics,

Automotive,

Railway Ambiguous requirements and specifications - -

Automotive, Others

I believe one of the, if not the, main cause(s) for bad

software (and consequently bad embedded systems)

to be that companies and their (software) engineers

are developing increasingly complex products whose

workings they have increasing difficulty to

understand. (1) - -

Space, Railway,

Energy, Finance

Too tight schedule in combination with too many

developers (“The Chinese Army approach to

programming”…) (1)

No lean programming approach or wrongly

implemented lean approach, i.e. the product released

after a sprint can’t be used for anything (1) -

Space, Aeronautics,

Railway Unstable baselines (1)

Lack of focus on SW aspects when defining the

System Software Specification (2) -

Railway,

Academia, Others

R13.1:Not well defined documentation framework

(i.e, it is not clear, which document should contain

certain information) (2) Not well defined development responsibilities (1)

Permanently changing

instructions from the

management (1)

Space - - -

Avionics, Medical

Devices,

Automotive

Requirements change process whereby requirements

changed after implementation and incomplete

regression analysis leading to incorrect operation (2)

Incorrect interface documentation, due to interface

change and versioning problem between

organizations (1)

code update by person less

experienced with complex

code and the original code

was too complex, e.g.

Defects Analysis Textual Responses

177

McCabe above 20 and

complex C++ constructs

(1)

Aeronautics, Space,

Defense,

Automotive,

Railway, Real-time

Embedded Systems

Lack or unefficient communication between

development and V&V teams (e.g. when frequent

changes of requirements exist) (1)

Schedule issues related to the development process

(due to the fact that V&V phase occurs more to the

end of the process it gets “squeezed” in terms of

schedule, which may lead to specific or more

complex scenarios (e.g. FDIR scenarios) not being

tested enough to achieve a reasonable level of risk.

For example, in the case of FDIR testing, it is

impossible to test all the combinations of events that

may trigger a reaction, but currently only basic FDIR

scenarios are tested on host machines. Validation the

FDIR scenarios in more representative hardware

scenarios is usually not possible. (1)

Limitations of the tools

and processes that deal

with system configuration

data. Defects originated in

misconfigured system

configuration data can be a

source of many problems.

(1)

Aerospace, Defense

Waiver solutions in the middle of the project (mainly

hardware to software) (3) - -

Commercial

Software.

Consulting Clients

have been in

Networking,

Operating Systems,

Retail, Aerospace,

Nuclear, Insurance.

Changed operating conditions – platform, network

traffic, change of backend DB, etc.

Calibration changes that arise from changing

suppliers, parts, manufacturing processes, etc. -

Academia - - -

Railway

Lack of project management knowledge, culture:

tasks are not done in the right order, unclear tasks,

unclear deadlines for the subtasks (2)

Lack of definition of responsibilities, and

responsibility scope: who is responsible for what,

who will decide go/no-go for each artefacts, who

have the right to say “no”. (2)

Lack of working

according to the chosen

development model/wrong

model chosen for

development (2)

Aeronautics, Space Schedule pressure (2) Budget constraints (1) -

Annex B

 178

Railway, Air

Traffic Control Programmers mistakes (3) - -

Railway

Insufficient or incomplete requirement elicitation.

Not to confuse with requirements documentation.

Here in the pure sense of elicitation, I mean that

customers and software developers have few chance

to meet and discuss software functionality. In many

cases the customer leaves the choice to the software

developers which might miss a proper vision of the

software product or of the domain (4)

Customer with confused ideas on the mission of the

software or its use (3) -

Academia.

Aeronautics Pressure for release Limited budget / Engineers overload

Space, Academia Lack of staff motivation (1)

Lack of interest on a given technology required to be

used (2) Short term planning (2)

Railway,

Automotive - - -

Academia

Coding flaws: lack of time to address the problem

(2)

The design documentation could lead to incorrect

source code (3)

Requirements Flaws: The

requirements provided to

the developer were

incorrect (3)

Space, Defense,

Automotive Documents not reflecting “As build” (2) Document not suited as means of communication (2)

V&V of models hard to

assess (2)

presucion

measuring systems,

railways

infrastructure and

railways rolling

stock. Changes in scope after specification freeze (1)

Reduction of test on real system in order to reduce

time/cost for developers (1)

Late availability of testing

equipment for developers

(2)

Space

Too much management pressure on delay

disregarding the actual excessive workload on

development teams (1)

Too much confidence of management in “reuse” part

of an already flying system (e.g. an equipment off

the shelve) conducting to deletion of some tests

although operational conditions are different

(rare but with catastrophic effect as for example first

launch of Ariane 5) (4)

Missing detailed

justification of

requirements (from system

level standpoint) together

with lack of (inter-teams)

communication resulting

in a poor understanding of

Defects Analysis Textual Responses

179

the actual system by

developers. (2)

Railway and Space - - -

TeleGeoInformatic

s, Statistical

Processing

(Applications

including Data

Mining, Machine /

Network

Intelligence),

Software

Engineering,

Academia - - -

Annex B

 180

Q17: Additional Defect Detection Root Causes

The following text also contains the frequency of the proposed root cause as evaluated by the expert: 1-Extremely Frequent; 2- Very

Frequent; 3-Somehow Frequent; 4 – Not Frequent, 0 – No Opinion.

Q2: Technical Domain Q17.1: Suggestion 1 Q17.2: Suggestion 2 Q17.3: Suggestion 3

Space - - -

Fault Tolerant/High

Availability/Resilient

commercial computing - - -

Space

Lack of awareness and

experienced test team (2) - -

Automotive,

telecommunications, IT software

lack of integrated specification

– development – test tool

system (2) - -

Space - - -

Manufacturing automation,

Automotive, Energy – nuclear

Ambiguity in requirements,

including quality requirements

(see ISO 25000 family of

standards). (1)

Lack of information about what changed

when. (2) -

Academia - - -

Railway Human carelessness (1) - -

Space and Air Traffic Control

Systems
Lack of communication (1)

Lack of domain knowledge in teams (1) Management pressure to keep in budget (3)

Academia, Space, Defence,

Railway - - -

Aeronautics, Space

Insufficient incremental

testing, e.g. jumping from unit

tests to system tests without

Long execution time of test procedures,

which increases the costs of –non-

regression verification and therefore limits

Lack of effective validation facilities for

system testing – either lack of automation,

lack of numeric (i.e. simulated) benches,

Defects Analysis Textual Responses

181

sufficient test campaigns in

between. (2)

the frequency at which non-regression

verification is performed) (2)

bogus validation facilities, complex test

languages or test libraries, etc. (2)

Defense, Telecommunications - - -

Aeronautics, Automotive,

Railway - - -

Automotive, Others - - -

Space, Railway, Energy, Finance

Little knowledge of OS

constraints / inherent faults

(maybe this has to do with

testing environment?) (1) - -

Space, Aeronautics, Railway

Defects on the Validation

Environment that hide defects

on the system (3) - -

Railway, Academia, Others

Not well defined and not

clearly understood verification

processes (2) Lack of verification culture overall (2) Lack of support from the management (3)

Space - - -

Avionics, Medical Devices,

Automotive

Usually weak LLR’s

implemented by person

different than System or HLR

writer (1)

Safety assessment missing hence missing

derived requirements (2) -

Aeronautics, Space, Defense,

Automotive, Railway, Real-time

Embedded Systems

Lack of a standard for

performing independent

verification and validation

(most domains don’t have it)

(1)

Excessive number of “untestable”

requirements due to complexity of some

system features, which indicates

architectural problems, i.e., the system was

not conceived with a testability mindset. (1)

Lack of participation of V&V experts during

the early design phase of the system (e.g.

very few systems have been designed from

scratch with built-in fault-injection

capabilities). (1)

Aerospace, Defense - - -

Commercial Software.

Consulting Clients have been in

Networking, Operating Systems,

Retail, Aerospace, Nuclear,

Insurance.

Lack of a reference model –

especially for incremental

releases. - -

Academia - - -

Annex B

 182

Railway

Lack of project management

knowledge, culture: tasks are

not done in the right order,

unclear tasks, unclear

deadlines for the subtasks (2)

Lack of working according to the chosen

development model/wrong model chosen

for development (2)

Evaluation of verification results too late /

communication problems between

development and verification teams (2)

Aeronautics, Space - - -

Railway, Air Traffic Control

Inappropriate choice of (the

mix of) testing and

(automated) analysis

techniques (1)

Unclear separation of the role of tester with

respect to developers/designers/analysts

(lack of independence) (1) -

Railway - - -

Academia. Aeronautics - - -

Space, Academia Inexperienced staff (1) Tight deadlines (schedule) (1) Unfamiliar project (1)

Railway, Automotive - - -

Academia

Requirement Related root

causes (3)

PM may not be analysing all possible risks

(3)

Project control not exercised properly /

Monitoring milestones not done (2)

Space, Defense, Automotive

Configuration management of

run-time data (2) - -

presucion measuring systems,

railways infrastructure and

railways rolling stock. Test in real environment (2) Test with end- user (2) -

Space - - -

Railway and Space - - -

TeleGeoInformatics, Statistical

Processing (Applications

including Data Mining, Machine

/ Network Intelligence),

Software Engineering, Academia - - -

Defects Analysis Textual Responses

183

Q19: Additional Development Measures

The following text also contains the relevance of the proposed measures as evaluated by the expert: 1-Extremely Relevant; 2- Very

Relevant; 3-Somehow Relevant; 4 – Not Relevant, 0 – No Opinion.

Q2: Technical Domain Q19.1: Suggestion 1 Q19.2: Suggestion 2 Q19.3: Suggestion 3

Space

Allocate more effort (money) to early

verification! (1) - -

Fault Tolerant/High

Availability/Resilient

commercial computing - - -

Space - - -

Automotive,

telecommunications, IT

software

Get Management involvement and commitment

for strict review processes (as required in

“Define/redefine appropriate review methods,

processes and tools and enforce their

application at every stage of the SDP;” (1)

work with customers and regulator

to enforce strict review

processes/development

processes/documentation processes

(2)

work with relevant industry to enforce

tool/documentation/review/development/s

pecification standards (3)

Space - - -

Manufacturing

automation,

Automotive, Energy –

nuclear

Get the right requirements, esp. quality

requirements. (1)

Transform quality requirements into

system architectural constraints. (1)

Design the development process such that

requirements-related questions are

answered early in the development cycle

(e.g., iterative evolutionary development

process) (1)

Academia - - -

Railway

Cross code reviews between two programmers,

or strong code inspection. (1) - -

Space and Air Traffic

Control Systems

Lack of leadership to communicate uniform

verification approach (people with different

backgrounds are not willing to accept other

peoples approaches...) (1)

Simplification of traceability

processes (3) -

Annex B

 184

Academia, Space,

Defence, Railway - - -

Aeronautics, Space

Provide practical training on common error

causes and on the mechanisms available to

avoid or compensate them (2)

Clearly define and disseminate the

FDIR approach not only describing

it but explaining why that particular

approach has been selected. (1)

Develop a modular architectural concept

that clearly maps the concepts of

Detection, Isolation and Recovery – often

FDIR is, misleadingly, taken as a “magic”

component that one adds to an

architecture. (2)

Defense,

Telecommunications - - -

Aeronautics,

Automotive, Railway - - -

Automotive, Others

The most important measure would probably be

to aim at producing a system that is simple

enough to be well understood. (1)

The next-important measure would

be to make full formal requirements

specification mandatory for critical

systems. This would throw the vast

majority of companies out of

business, eventually leading to better

products. (1) -

Space, Railway, Energy,

Finance

Test based approach to software development

(3)

“Buddy” programming / unit testing

(1) -

Space, Aeronautics,

Railway

Review/contribute to the definition of the

System Software requirements (2) - -

Railway, Academia,

Others

Promote meetings not just to present the

requirements, but for the members of different

development teams / developers and testers, on

different development stages, in order to ensure

that the original goals are achieved / or if not,

could they perhaps be modified (iterative

development) (3) - -

Space - - -

Avionics, Medical

Devices, Automotive

Linking all code constructs to tests, e.g. DO-

178C DAL A, B, C (1)

Reducing code complexity, using

automated tools like LDRA, PRQA,

(2)

Mandating MISRA C/CC++ automated

static analysis test before independent code

peer review. Having ONE reviewer, not

one hundred. “One great reviewer is

Defects Analysis Textual Responses

185

better than 100 good reviewers” – Vance

Hilderman quote (1)

Aeronautics, Space,

Defense, Automotive,

Railway, Real-time

Embedded Systems

Most safety-related industrial standards are

typically not freely available. (1)

Lack of harmonization between the

standards of the several safety-

related domains (each domain

defines its own processes), which

makes it difficult to re-use process

and tools across the different

domains. (1)

Most of the standards have gaps. It is not

always clear for the organizations the way

to apply certain process and rules that are

not defined in details by the standards,

which requires support from certification

authority representatives or certification

agency. (1)

Aerospace, Defense

People in charge of this subject with correct

(and better) skills (2) - -

Commercial Software.

Consulting Clients have

been in Networking,

Operating Systems,

Retail, Aerospace,

Nuclear, Insurance.

Regularly review the ODC defect profiles with

the teams (1)

Create a clear plan on what tests

needs to be automated, versus kept

manual (1) -

Academia - - -

Railway - - -

Aeronautics, Space - - -

Railway, Air Traffic

Control

Improve requirements specification and

validation (2)

Enforce design partitioning,

modularity and reuse (2)

Training about basic software engineering

principles (3)

Railway Analysis of the post- delivery issues (4) - -

Academia. Aeronautics - - -

Space, Academia Groups of small engineers shall be trained (1)

Small groups of workshops or

meeting shall be preferred. (1)

Tailor and/or develop project specific

measures whenever feasible. (1)

Railway, Automotive - - -

Academia

PM should have the overall control of the

project (3)

Skilled programmers are to be

employed for tasks in the critical

path (3)

PM / PL should always have some buffer

while planning for external dependencies

(4)

Space, Defense,

Automotive

Order feature development according to risk

analysis (2) Iterative development (short cycles) -

Annex B

 186

presucion measuring

systems, railways

infrastructure and

railways rolling stock. Introduce and keep quality milestones (2) - -

Space - - -

Railway and Space - - -

TeleGeoInformatics,

Statistical Processing

(Applications including

Data Mining, Machine /

Network Intelligence),

Software Engineering,

Academia - - -

Defects Analysis Textual Responses

187

Q21: Additional Verification and Validation Measures

The following text also contains the relevance of the proposed measures as evaluated by the expert: 1-Extremely Relevant; 2- Very

Relevant; 3-Somehow Relevant; 4 – Not Relevant, 0 – No Opinion.

Q2: Technical Domain Q21.1: Suggestion 1 Q21.2: Suggestion 2 Q21.3: Suggestion 3

Space

Thorough unit testing, specified against an

actually documented detailed design (not against

the code itself) (2) - -

Fault Tolerant/High

Availability/Resilient

commercial computing - - -

Space - - -

Automotive,

telecommunications, IT

software

Improve completeness of reviews (extension of

above, as I feel reviews are more valuable than

testing completeness or coverage) (1)

involve customer/requirements team in review and

testing efforts (2) -

Space

apply ISVV - independence is quite important

(1)

have a trained and motivated team with skilled for

finding errors (1) -

Manufacturing

automation, Automotive,

Energy – nuclear

Validate requirements through interaction with

experts (1)

Validate the decomposition and derivation of

requirements and their allocation to various

elements in the architecture. Apply rules of

composition to ensure nothing is lost in the flow-

down. (1)

Review, inspection and

analysis for unwanted

behaviour, e.g., through

the application of

advanced hazard analysis

techniques such as

STAMP/STPA (1)

Academia - - -

Railway

Cross code reviews between two programmers, or

strong code inspection. (1) - -

Space and Air Traffic

Control Systems
Simple but strict configuration control policies (4)

Reviews where the developer asks the reviewer to

explain the design (4)

Use of code linting tools

(2)

Annex B

 188

Academia, Space,

Defence, Railway - - -

Aeronautics, Space - - -

Defense,

Telecommunications - - -

Aeronautics,

Automotive, Railway - - -

Automotive, Others

The entire development process of safety-critical

systems, including all certification-relevant

artefacts, documentation, source code etc, should

by law be required to be public and accessible to

scrutiny by anyone via internet. (1) - -

Space, Railway, Energy,

Finance

Informal “rainy day” testing in addition to the

formal tests (in case something has been over-

looked). (2) - -

Space, Aeronautics,

Railway

Clear definition of the of Unit/Integration tests

and Functional tests, including their goals and

place in the overall SDP (2)

Introduce formal or semi-formal verification of the

SW specification in the Verification process (2)

Use tools that integrate

and manage all the phases

of the lifecycle, such as

concept specifications,

requirements,

architecture, source code,

tests, etc.; (2)

Railway, Academia,

Others

Use “creative”, informal methods (i.e., analyse

what could go wrong in the system) beside of

formal ones. (3)

Consult regularly (but not too deeply, in order to

ensure the independence) with the validator and /

or assessor about requirements coming from

standards. (3) -

Space - - -

Avionics, Medical

Devices, Automotive Check LLR to code robustness (2) Decision Condition coverage tracing to LLR’s (1) -

Aeronautics, Space,

Defense, Automotive,

Railway, Real-time

Embedded Systems

Evaluation of the testability of the architecture and

requirements early in the process through the

involvement of the V&V experts. During the

V&V phase some requirements are simply not

possible to test and verified through code

Lack of planning and definition of processes for

performing non-functional tests. Most standards

simply mention that these tests must be performed,

but do not detail them, e.g. process for performing

robustness testing. These tests are normally -

Defects Analysis Textual Responses

189

inspections (this is especially applicable to the

space domain). (1)

performed ad-hoc in parallel to the functional

tests. (1)

Aerospace, Defense

the whole system team must be involved in the

V&V process, at least to testimony of its part of

the system "passed" in the tests (2) - -

Commercial Software.

Consulting Clients have

been in Networking,

Operating Systems,

Retail, Aerospace,

Nuclear, Insurance.

Compare release to release ODC metrics to

identify trends (1)

Establish with ODC analysis that current release is

better than previous release!!!! Very Important (1) -

Academia - - -

Railway

Appropriate trainings for the test team about the

system under test and the related domain. My

experience is if they clearly understand the

system, they can use the verification techniques

more accurate and they have more motivation. (1)

Trainings for the test team about the defined

verification and validation methods and the related

standards, justification of the used methods. My

experience is if they clearly understand what is the

goal, they can use the techniques more accurate

and they have more motivation. (1)

Develop a good

communication with the

development team,

considering independency

(2)

Aeronautics, Space - - -

Railway, Air Traffic

Control

Define “quantitative” test planning strategies to

best allocate efforts (i.e., prioritize

functions/components) (4)

Improve testing accounting for operational phase

expected usage (i.e., operational/reliability testing)

– Exploit historical data to assess usage profiles

and corresponding tests (3)

Usage of ASA

(automated static

analysis) for code

sanitization (2)

Railway - - -

Academia. Aeronautics

Apply model-driven techniques for early defect

detection - -

Space, Academia Implement functional tests for validation (1) Record and save the results automatically (1)

PA review of V&V

Measures (1)

Railway, Automotive - - -

Academia Do adequate testing (2) Eliminating escaping defects (3)

Preventing the occurrence

of an individual defect or

group of defects (3)

Space, Defense,

Automotive Continuous integration and test (1) Tests driven development (1) -

Annex B

 190

presucion measuring

systems, railways

infrastructure and

railways rolling stock.

Clarify roles in order to have one person at least

focussing on V&V (1) - -

Space - - -

Railway and Space - - -

TeleGeoInformatics,

Statistical Processing

(Applications including

Data Mining, Machine /

Network Intelligence),

Software Engineering,

Academia - - -

 191

Annex C. Summary of the

Results of the Survey

Annex C

 192

This annex presents the summary of the survey results as provided by the experts. The

data have been simplified and harmonized for data processing and analysis. Data from

the experts experience is presented separately for anonymity reasons.

The data presented in the table can be understood as follows:

 For questions Q2, Q8 and Q8, a 1 represents “Yes”, a 0 represents “No”;

 For questions Q3 to Q7:

o 1 - Extremely Important

o 2 - Very Important

o 3 - Somehow Important

o 4 – Not relevant

o Empty – No opinion

 For the remaining questions:

o 1 - Extremely Frequent/Relevant

o 2 - Very Frequent/Relevant

o 3 - Somehow Frequent/Relevant

o 4 – Not Frequent/Relevant

o Empty – No Opinion.

Summary of the Results of the Survey

193

R
es

p
o
n

se
 I

D

Q
2

:
A

ca
d

em
ia

 D
o

m
ai

n

Q
2

:
T

ra
n
sp

o
rt

at
io

n
 D

o
m

ai
n

Q
2

:
A

er
o

sp
ac

e
D

o
m

ai
n

Q
2

:
O

th
er

 D
o
m

ai
n

Q
3

:
S

ta
n

d
ar

d
s

Im
p
o

rt
an

ce

Q
4

:
B

u
d
g

et
 I

m
p

o
rt

an
ce

Q
5

:
S

ch
ed

u
le

 I
m

p
o

rt
an

ce

Q
6

:
E

x
te

rn
al

 A
ss

es
sm

en
t

Im
p
o

rt
an

ce

Q
7

:
R

C
A

 I
m

p
o

rt
an

ce

Q
8

:
U

se
d
 O

D
C

?

Q
9

:
U

se
d
 D

ef
ec

t
A

n
al

y
si

s?

Q
1

3
:

R
ec

o
m

m
en

d
 P

ro
ce

ss

Q
1

4
a:

 I
n

ef
fi

ci
en

t
R

ev
ie

w
s

Q
1

4
b

:
A

rt
ef

ac
ts

 P
ro

b
le

m
s

Q
1

4
c:

 I
n

co
rr

ec
t

T
es

ts

Q
1

4
d

:
D

o
cu

 T
o

o
ls

 L
im

it
at

io
n

s

Q
1

4
e:

 S
y

s
D

o
cu

 I
n

co
n
si

st
en

ci
es

Q
1

4
f:

 D
o
cu

 P
ro

ce
ss

es
 O

v
er

lo
o
k

ed

Q
1

4
g

:
L

im
it

ed
 D

o
m

ai
n

 K
n
o

w
le

d
g

e

Q
1

4
h

:
F

D
IR

 S
p

ec
s

M
is

si
n
g

Q
1

4
i:

 L
ac

k
 R

el
ia

b
.

S
af

et
y

 C
u
lt

u
re

Q
1

4
j:

 I
n

co
m

p
le

te
 I

n
te

rf
ac

e
S

p
ec

s

Q
1

4
k

:
In

su
ff

ic
ie

n
t

M
ai

n
t,

 O
p

er
,

U
sa

b
 S

p
ec

s

Q
1

4
l:

 L
ac

k
 T

o
o
ls

 a
n
d

 L
an

g
u

ag
es

 K
n
o
w

l

Q
1

4
m

:
C

M
 a

n
d
 V

er
si

o
n

in
g
 P

ro
b

le
m

s

Q
1

6
a:

 N
o

 T
ra

ce
ab

il
it

y
 C

u
lt

u
re

Q
1

6
b

:
N

o
 T

ra
ce

ab
il

it
y
 T

o
o
ls

Q
1

6
c:

 N
o

 T
es

t
P

la
n
n

in
g

Q
1

6
d

:
N

o
 T

es
ti

n
g

 T
o

o
l/

E
n
v

.

Q
1

6
e:

 I
n

co
m

p
le

te
 T

es
t

S
p

ec

Q
1

6
f:

 D
ef

ec
ti

v
e

R
ev

ie
w

 P
ro

ce
ss

Q
1

6
g

:
D

ef
ec

ti
v
e

D
o
cu

Q
1

6
h

:
B

ad
 T

o
o
ls

 U
sa

g
e

Q
1

6
i:

 I
n

co
m

p
le

te
/B

ad
 S

p
ec

s

Q
1

6
j:

 D
ef

ec
ti

v
e

A
rc

h
it

ec
tu

re

Q
1

6
k

:
N

o
 T

o
o
ls

 f
o

r
D

at
a

F
lo

w
 A

n
al

y
si

s

Q
1

6
l:

 I
n

ap
p

ro
p

ri
at

e
ar

ch
 s

u
p

p
 t

o
o
ls

Q
1

6
m

:
D

ef
ic

ie
n

t
D

es
ig

n
 S

p
ec

s

Q
1

8
a:

 B
et

te
r

P
ro

ce
ss

es
/R

ev
ie

w

Q
1

8
b

:
A

u
to

 D
o
cu

 G
en

er
at

io
n

Q
1

8
c:

 T
o
o

ls
 f

o
r

fu
ll

 l
if

ec
y
cl

e

Q
1

8
d

:
A

u
to

 V
al

id
at

io
n
 T

o
o
ls

Q
1

8
e:

 E
n
g

in
ee

ri
n
g

 T
ra

in
in

g

Q
1

8
f:

 S
p
ec

if
ic

at
io

n
s

M
ee

ti
n

g
s

Q
1

8
g

:
S

ta
n
d

ar
d

s
G

u
id

el
in

es

Q
2

0
a:

 T
es

t
P

la
n

s

Q
2

0
b

:
T

ra
ce

ab
il

it
y

Q
2

0
c:

 T
es

t
C

o
v

er
ag

e

Q
2

0
d

:
N

o
n

-f
u
n

ct
io

n
al

 T
es

ts

Q
2

0
e:

 T
o
o

ls
 f

o
r

d
es

ig
n
 c

o
m

p
li

an
ce

1 1 0 1 0 1 3 3 2 1 0 0 4 4 3 2 4 2 3 3 2 3 1 2 4 2 4 4 2 3 2 4 3 4 2 4 4 4 2 2 3 4 4 2 4 3 2 3 2 3 4

2 0 0 0 1 1 1 2 1 0 3 4 1 2 2 4 4 4 2 3 4 1 4 3 1 2 2 3 3 3 2 2 3 3 2 3 1 1 1 3 3 4 1 3 3 3 3

3 0 0 1 0 1 1 2 1 2 0 0 2 2 1 2 3 2 2 2 2 2 3 4 4 4 2 3 2 3 2 2 3 2 3 3 3 2 1 1 2 2 2 2 3 2 1 2 3 2

4 0 1 0 1 2 2 1 2 1 0 0 1 1 2 3 2 3 3 3 2 2 3 2 4 4 3 3 3 3 3 2 2 4 3 3 2 2 3 1 2 2 2 3 3 3 2 2 3 3 2

5 1 0 1 0 2 1 1 1 1 0 0 2 1 2 4 2 1 3 2 2 1 4 2 2 2 3 3 1 3 3 3 1 3 4 2 1 2 3 3 2 2 3 3 3 1 1 2

6 1 1 0 1 3 1 1 1 1 1 1 4 2 1 2 3 1 4 1 1 1 1 1 4 3 2 1 1 2 1 4 4 4 4 2 1 3

7 1 0 0 0 2 2 1 2 1 1 3 2 1 2 1 2 2 3 4 3 3 2 1 3 2 2 3 4 4 1 1 1 2 2

8 0 1 0 0 1 2 2 1 1 0 0 1 3 2 3 1 3 4 4 3 2 2 4 4 1 4 4 4 4 4 2 4 4 4 4 4 4 4 1 4 3 3 1 1 1 3 4 4 3 4

9 0 0 1 1 2 1 2 1 1 0 1 2 2 1 3 3 1 2 3 3 2 1 4 3 1 2 3 4 4 1 2 4 2 2 2 4 2 1 3 3 3 1 1 3 1 1 2 1 3

10 1 1 1 1 1 2 2 1 3 0 1 3 2 2 3 1 2 3 4 2 4 2 3 4 4 2 3 3 3 3 2 2 2 3 3 2 2 3 3 1 3 3 2 3 2 2 2 3 2 2

11 0 0 1 0 1 2 2 3 1 1 0 3 2 2 2 4 3 2 2 3 1 3 3 4 2 2 2 2 3 3 2 3 2 2 2 4 4 2 2 4 3 2 1 2 2 2 2 2 2 3

12 0 0 0 1 1 2 3 3 1 0 1 3 2 2 3 3 1 2 1 1 4 3 3 4 4 3 4 3 3 3 3 3 4 1 2 3 3 2 3 4 2 2 2 1 2 1 1 2 1 2

13 1 1 1 0 3 2 2 1 1 0 1 3 2 1 3 1 3 3 2 2 1 2 3 4 2 3 1 2 3 3 2 4 1 3 2 4 2 2 2 2 2 2 1 3 2 3 1 2 1

14 1 1 0 1 3 1 1 2 1 0 0 2 1 2 3 2 3 2 1 1 2 3 3 1 1 1 2

15 0 1 1 1 2 2 1 2 2 0 1 3 1 1 1 2 1 1 1 1 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 1 2 2

Annex C

 194

16 0 1 1 0 2 2 3 1 2 0 0 1 3 1 3 2 2 4 4 3 4 3 3 4 3 4 2 4 3 4 3 4 3 3 3 3 3 3 3 2 1 2 3 2 4 1 1 1 2 2

17 1 1 0 1 2 2 1 2 2 0 0 2 1 1 2 3 1 2 3 2 2 1 2 3 2 2 3 2 3 2 2 2 3 1 1 3 3 2 2 3 3 3 3 3 2 3 2 2 3 3

18 1 0 1 0 2 2 1 3 2 0 0 1 1 2 1 2 3 3 2 1 1 3 3 1 2 2 2 1 2 3 3 3 1 3 3 2 2 1 2 2 1 1 1 1 1 1 1 2

19 0 1 1 1 1 2 2 1 1 0 1 1 2 3 3 4 2 2 4 2 3 1 2 4 4 1 2 2 3 1 1 2 3 1 2 3 2 1 1 3 3 4 1 2 2 2 1 1 3 3

20 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 4 4 1 4 4 1 2 4 4 1 1 1 4 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

21 1 0 1 0 1 1 1 2 1 0 0 2 2 1 2 2 1 2 3 3 2 3 2 3 2 2 1 3 3 3 2 2 3 2 2 3 3 3 1 2 2 3 3 3 2 2 2 2 2 3

22 0 0 1 1 2 2 1 2 1 1 1 2 2 3 1 1 1 2 1 3 3 3 2 3 2 3 3 3 2 1 1 1 1 1 1 2 3

23 1 0 0 0 2 3 2 0 0 3 3 2 2 2 2 2 3 3 3 4 3 4 4 2 3 3 4 1 3 3 2 3 3 3 2 2 2 2 4 3 3 2 2 2 4 3

24 0 1 0 0 1 2 1 1 1 0 0 1 2 1 3 4 2 1 3 2 2 2 3 3 2 1 2 2 3 2 3 1 2 1 1 2 2 1 2 2 2 1 1 1 1 1 2 1 2

25 0 0 1 0 1 2 2 1 2 1 1 3 2 2 2 3 3 2 3 2 2 3 3 3 2 3 3 2 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 2 2 2 2 2 2 2

26 1 1 0 1 1 2 2 2 1 1 1 2 3 1 2 4 3 3 4 1 1 2 2 3 4 1 2 1 3 1 2 3 3 2 3 2 4 2 2 2 3 2 4 4 3 3 2 3 2

27 0 1 0 0 2 2 2 1 2 0 0 3 3 4 3 2 4 3 4 4 4 1 2 3 2 4 3 4 4 4 4 4 3 2 3 3 3 3 2 4 3 3 3 3 4 3

28 1 0 1 0 1 2 3 1 1 1 1 3 2 2 3 3 3 2 1 4 1 1 1 3 1 3 1 2 1 1 1 1

29 1 0 1 0 1 3 2 1 1 0 0 2 1 2 2 3 3 1 1 2 1 1 2 3 2 2 3 1 3 3 1 2 2 1 1 3 3 2 1 3 3 3 1 1 1 1 1 1 1 3

30 0 1 0 0 1 3 2 2 1 0 1 2 2 3 2 4 2 1 3 4 2 3 3 4 3 2 4 2 3 2 4 3 3 1 4 3 3 2 1 4 3 3 2 2 2 1 3 2 2 3

31 1 0 0 0 2 1 2 2 2 0 0 1 1 3 2 2 3 2 1 2 3 2 3 1 2 3 2 1 3 2 2 3 2 1 2 2 3 1 3 3 2 2 3 3 1 2 2 1

32 1 1 1 1 1 1 1 2 2 0 0 2 1 3 3 4 1 2 2 1 3 3 3 3 3 3 1 3 2 2 3 4 4 3 1 4 2 4 4 4 3 3 2 3 3 1 1 3

33 1 1 0 0 1 3 2 1 1 0 1 1 3 2 2 2 2 2 4 1 3 2 1 4 2 3 3 4 3 2 3 2 4 2 3 4 4 4 1 2 2 2 2 3 3 1 2 3 2 3

34 0 0 1 0 1 3 2 1 1 0 1 3 3 2 2 3 2 3 3 2 4 2 2 4 4 4 4 3 4 4 4 3 4 2 2 2 3 3 4 3 2 3 1 1 1 2 3 1 3

35 1 1 1 0 1 2 1 1 1 1 1 2 2 1 1 2 1 2 2 1 2 1 1 4 3 2 2 2 2 2 2 2 3 1 1 2 3 2 1 2 2 2 1 1 2 1 1 1 2 3

36 1 0 0 1 3 1 1 1 2 1 1 3 2 2 1 1 1 3 2 2 2 2 2 2 1 1 2 2 3 3 3 1 1 3 1 2 2 3 3 3 1 1 2 3 3 1 1 3

Summary of the Results of the Survey

195

These charts show the amount of experts per experience range.

0

2

4

6

8

10

12

14

Up to 5 years]5-10]]10-15]]15-20] More than 20
years

Academic Experience

0

1

2

3

4

5

6

7

Up to 5 years]5-10]]10-15]]15-20]]20-25]]25-30] More than 30
years

Industry Experience

Annex D

 196

Annex D. Example of Data

Collection Template

Example of Data Collection Template

197

This annex presents the used data collection template and explains each of the data

fields considered in the template.
Item Description Example

Number Unique identifier for the issue 001

Project Identifier of the project where the issue comes from (Mission 1, Mission

2, etc.)

SYS02

Subsystem Subsystem or component within the project (star tracker, GPS, Laser

system, etc.)

SS-02

Domain Business domain applicable to the project of the issue (space,

automotive, aeronautics, etc.)

Space

System Type Definition of a system type applicable to the domain (Data Processing,

User Interface, Database, Communications System, etc.)

OB ASW

Issue Title Short issue title Conflict between ASW

and SA

Desc Detailed description of the issue. Must contain enough details to be able

to be analyzed or, eventually, to be processed in an automated way in the

future.

The Application Software

(ASW) contains an
implementation (source

code) that differs from the

defined Software
Architecture (SA). The

differences are the

following:

Listing of the differences

and inconsistencies.

Classification Classification of the Severity of the issue. (Minor, Major, Catastrophic,

Comment, etc.)

Minor

Problem Type Originally classified issue type. This field has been used to contain the

ISVV classification made by the team that raised the issue.

External Consistency

Phase

Detected

Lifecycle phase where the issue has been detected. (Requirements,

Design, Implementation, Testing, Operations, etc.)

Design

Phase

Applicable

Lifecycle phase where the issue has been actually introduced.

(Requirements, Design, Implementation, Testing, Operations, etc.)

Requirements

Defect Type ODC Classification according to the defect type taxonomy defined in

section 5.3.2

Function/Class/Object

Defect

Trigger

ODC Classification according to the defect trigger taxonomy defined in

section 5.3.3

Concurrency

Defect Impact ODC Classification according to the defect impact taxonomy defined in

section 5.3.4

Reliability

Comment Field used to add comments related to the defect. This might be useful to

complement the defect information or to justify some of the

classification of the other fields.

The architecture should

be updated to reflect the
source code (or vice-

versa).

Notes Notes about the defects classification. This field has been used to

enhance the defects classification taxonomy, to document the

classification doubts and to propose new taxonomy items or taxonomy

items merges.

ODC Classification

reviewed and confirmed.

Activity V&V activity that lead to uncover the issue. In our case this was the

ISVV task that was applied and that lead to the raising of the issues

(requirements verification, code inspections, testing, etc.)

Requirements verification

