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Abstract 

Critical systems, such as space, railways and avionics systems, are developed under 

strict requirements envisaging high integrity in accordance to specific standards. For 

such software systems, generally an independent assessment is put into effect (as a 

safety assessment or in the form of Independent Software Verification and Validation 

- ISVV) after the regular development lifecycle and V&V activities, aiming at 

identifying and correcting residual faults and raising confidence in the software. These 

systems are very sensitive to failures (they might cause severe impacts), and even if 

they are today reaching very low failure rates, there is always a need to guarantee higher 

quality and dependability levels. However, it has been observed that there are still a 

significant number of defects remaining at the latest lifecycle phases, questioning the 

effectiveness of the previous engineering processes and V&V techniques.  

This thesis proposes an empirical approach to identify the nature of defects (quality, 

dependability, safety gaps) and, based on that knowledge, to provide support to 

improve critical systems engineering. The work is based on knowledge about safety 

critical systems and how they are specified/developed/validated (standards, processes 

and techniques, resources, lifecycles, technologies, etc.). Improvements are obtained 

from an orthogonal classification and further analysis of issues collected from real 

systems at all lifecycle phases. Such historical data (issues) have been studied, 

classified and clustered according to different properties and taking into account the 

issue introduction phase, the involved techniques, the applicable standards, and 

particularly the root causes. The identified improvements shall be reflected in the 

development and V&V techniques, on resources training or preparation, and drive 

standards modifications or adoption. 

The first and more encompassing contribution of this work is the definition of a defects 

assessment process that can be used and applied in industry in a simple way and 

independently from the industrial domain. The process makes use of a dataset collected 

from existing issues reflecting process deficiencies, and supports the analysis of these 

data towards identifying the root causes for those problems and defining appropriate 

measures to avoid them in future systems. 

As part of the defect assessment process activities, we propose an adaptation of the 

Orthogonal Defect Classification (ODC) for critical issues. In practice, ODC was 

used as an initial classification and then it was tuned according to the gaps and 

difficulties found during the initial stages of our defects classification activities. The 

refinement was applied on the defect types, triggers and impacts. Improved taxonomies 

for these three parameters are proposed. 

A subsequent contribution of our work is the application and integration of a root 

cause analysis process to show the connection of the defects (or issue groups) with the 
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engineering properties and environment. The engineering properties (e.g. human and 

technical resources properties, events, processes, methods, tools and standards) are, in 

fact, the principal input for the classes of root causes. A fishbone root cause analysis 

was proposed, integrated in the process and applied to the available dataset. 

A practical contribution of the work comprises the identification of a specific set of 

root causes and applicable measures to improve the quality of the engineered 

systems (removal of those causes). These root causes and proposed measures allow the 

provision of quick and specific feedback to the industrial engineering teams as soon as 

the defects are analyzed. The list/database has been compiled from the dataset and 

includes the feedback and contributions from the experts that responded to a 

process/framework validation survey. The root causes and the associated measures 

represent a valuable body of knowledge to support future defects assessments. 

The last key contribution of our work is the promotion of a cultural change to 

appropriately make use of real defects data (the main input of the process), which shall 

be appropriately documented and easily collected, cleaned and updated. The regular 

use of defects data with the application of the proposed defects assessment process will 

contribute to measure the quality evolutions and the progress of implementation of the 

corrective actions or improvement measures that are the essential output of the process. 

 

Keywords: 

Orthogonal defect classification, critical systems, defect, classification; root cause 

analysis, dependability, failure, safety. 
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Resumo 

Os sistemas críticos, tais como os sistemas espaciais, ferroviários ou os sistemas de 

aviónica, são desenvolvidos sob requisitos estritos que visam atingir alta integridade 

ao abrigo de normas específicas. Para tais sistemas de software, é geralmente aplicada 

uma avaliação independente (como uma avaliação de safety ou na forma de uma 

Verificação e Validação de Software Independente - ISVV) após o ciclo de 

desenvolvimento e as respetivas atividades de V&V, visando identificar e corrigir 

falhas residuais e aumentar a confiança no software. Estes sistemas são muito sensíveis 

a falhas (pois estas podem causar impactos severos), e apesar de atualmente se 

conseguir atingir taxas de falhas muito baixas, há sempre a necessidade de garantir a 

maior qualidade dos sistemas e os maiores níveis de confiabilidade. No entanto, 

observa-se que ainda existe um número significativo de defeitos que permanecem nas 

últimas fases do ciclo de desenvolvimento, o que nos leva a questionar a eficácia dos 

processos de engenharia usados e as técnicas de V&V aplicadas. 

Esta tese propõe uma abordagem empírica para identificar a natureza dos defeitos (de 

qualidade, confiabilidade, lacunas de safety) e com base nesse conhecimento 

proporcionar uma melhoria da engenharia de sistemas críticos. O trabalho é baseado 

em conhecimento sobre os sistemas críticos e na forma como estes são especificados / 

desenvolvidos / validados (normas, processos e técnicas, recursos, ciclo de vida, 

tecnologias, etc.). As recomendações de melhorias para os sistemas críticos são obtidas 

a partir de uma classificação ortogonal e posterior análise de dados de defeitos obtidos 

de sistemas reais cobrindo todas as fases do ciclo de vida. Estes dados históricos 

(defeitos) foram estudados, classificados e agrupados de acordo com diferentes 

propriedades, considerando a fase de introdução do defeito, as técnicas envolvidas, as 

normas aplicáveis e, em particular, as possíveis causas fundamentais (ou raiz). As 

melhorias identificadas deverão refletir-se nas técnicas de desenvolvimento / V&V, na 

formação ou preparação de recursos humanos e orientar alterações ou adoção de 

normas. 

A primeira e mais abrangente das contribuições deste trabalho é a definição de um 

processo de avaliação de defeitos que pode ser usado e aplicado na indústria de forma 

simples e independente do domínio industrial. O processo proposto baseia-se na 

disponibilidade de um conjunto de dados de problemas que refletem deficiências de 

processo de desenvolvimento e suporta a análise desses dados para identificar as suas 

causas raiz e definir medidas apropriadas para evitá-los em sistemas futuros. 

Como parte das atividades do processo de avaliação de defeitos, é proposta uma 

adaptação da Classificação Ortogonal de Defeitos (ODC) para sistemas críticos. 

Na prática, a ODC foi usada como uma classificação inicial e depois ajustada de acordo 

com as lacunas e dificuldades encontradas durante os estágios iniciais das atividades 

de classificação de defeitos. O refinamento foi aplicado aos tipos de defeito, aos 
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eventos que levaram a esses defeitos e aos seus impactos. Neste trabalho, são propostas 

versões melhoradas das taxonomias para esses três parâmetros. 

Uma contribuição subsequente é a aplicação e integração de um processo de análise 

de causas raiz para relacionar os defeitos (ou grupos de problemas) com as 

propriedades e o ambiente de engenharia. As propriedades de engenharia (por exemplo, 

recursos humanos e técnicos, eventos, processos, métodos, ferramentas e normas) são, 

de facto, as principais fontes para a identificação das classes de causas raiz. A análise 

de causas de raiz proposta é baseada em diagramas fishbone, tendo sido integrada no 

processo e aplicada ao conjunto de dados disponíveis. 

Uma contribuição prática do nosso trabalho é a identificação de um conjunto 

específico de causas raiz e de medidas aplicáveis para melhorar a qualidade dos 

sistemas de engenharia (eliminação dessas causas). As causas e as medidas propostas 

permitem um retorno rápido e específico logo que os defeitos são analisados. A lista / 

base de dados foi compilada a partir do conjunto de dados de defeitos e inclui os 

comentários e contribuições de especialistas que responderam a um formulário de 

validação do processo. As causas raiz e as medidas associadas representam um 

conjunto valioso de conhecimento que pode suportar futuras análises de defeitos. 

A última contribuição chave do nosso trabalho é a promoção de uma mudança 

cultural para fazer uso apropriado de dados de defeitos reais (principal fonte do 

processo), os quais devem ser devidamente documentados e facilmente recolhidos, 

tratados e atualizados. O uso regular de dados sobre defeitos através da aplicação do 

processo de análise de defeitos proposto contribuirá para medir a evolução da qualidade 

e o progresso da implementação das ações corretivas ou medidas de melhoria que são 

o principal resultado do processo. 

 

Palavras-chave: 

Classificação ortogonal de defeitos, sistemas críticos, defeito, classificação, análise 

de causas, confiabilidade, falha, safety. 
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Chapter 1 

Introduction 

"If builders built buildings the way computer programmers write 

programs, the first woodpecker that came along would have destroyed all 

civilization" -- Gerald Weinberg 

 

Software is becoming more and more ubiquitous and the importance and complexity 

of software systems in the safety critical domains are constantly increasing. A safety 

critical system is a system where a failure might result in the loss of human life, damage 

the environment or cause a severe incident/accident. 

Safety critical systems, which strongly rely on software, are nowadays an essential 

component of all aerospace, automotive, railways, nuclear, defense and medical 

systems. However, in the past 30 years, there has been a significant number of software 

problems that caused accidents and failures with severe impact within safety-critical 

systems, e.g., Therac-25 [14], the Ariane 5 explosion [15], the Boeing 777-200 accident 

(registered 9M-MRG) [16] or the Boeing 787 Dreamliner integer overflow bug that 

could shut down the electrical power [17], and the Toyota Prius break problems [18] 

or Toyota's electronic throttle control system (ETCS) that had bugs that could cause 

sudden unintended acceleration [19], [20]. 

Safety and mission critical systems rely nowadays on more and more complex software 

and are difficult to control while guaranteeing the highest levels of quality and 

dependability. These systems must deal with the effects of faults and failures and, even 

with the maturity and advances of software engineering, it is not possible to create 

“perfect” systems nor software [21]. However, safety and mission critical industries 

have kept an impressive safety record (compared to the complexity and size growth) 

mostly due to the large effort spent on developing and validating their systems and to 

the application of mature international standards and strict guidelines [22] and heavy 

use of standard-based Verification and Validation (V&V) methodologies [23]. In fact, 

these systems are developed according to very strict rules and guidelines, mostly due 

to the need to be qualified and certified: for human safety it is not uncommon to require 
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the system to be designed to lose less than one life per billion (109) hours of operation, 

and consequently it needs to follow specific and strict development standards [22] that 

recommend or force techniques and processes, dedicated personnel training and 

extensive domain expertise.  

When critical systems fail and accidents cannot be effectively avoided lives are in 

danger, extremely expensive systems are lost or damaged, and there are significant 

economic and negative company exposure impacts. In fact, data and lessons learned 

collected over several years of industrial experience have shown that safety critical 

systems engineering is not perfect, and relevant issues are still transferred from phase 

to phase [22], [24], [25]. Even in very strict engineering processes (such has the railway 

and aerospace domains) these issues have critical impacts, might mask other issues, 

and become costly to correct and maintain, while providing lower trust in the system. 

Ebert states that “Applications that enter testing with an excessive volume of defects 

cannot exit the testing phase because they don’t work” [22]. 

Safety critical systems require stable requirements and have several inflexible 

requirements (constraints) to be fulfilled [26]. These systems are also known for the 

demanding integration and validation efforts (on average, 40% of the software 

engineering effort as per [27]), as they are not only generally embedded but also require 

evidences to guarantee high dependability levels. 

The increased importance and complexity of safety-critical systems is imposing new 

objectives in terms of safety and dependability (quality), and at the same time 

revealing that the current engineering techniques and applicable standards are 

probably not enough to reach the safety levels required by society. In fact, these 

systems are still causing (too many) severe accidents and failures keep being 

propagated and introduced in all the lifecycle phases (for a concrete real example 

survey see [28]).  

Informally, we can define safety as “nothing bad will happen”. Leveson, in her book 

Safeware [14], defines safety as the “freedom from accidents or losses”. Storey, in 

Safety-Critical Computer Systems [29], defines a safety-critical system as a system 

that “will not endanger human life or the environment”. Despite all the possible similar 

and generic definitions of safety, in the frame of our work we consider safety as the 

“freedom from the occurrence or risk of danger, injury or loss”. No system can be 

completely “safe”, thus engineering needs to focus on making it safe enough, knowing 

that there are constraints like budget, time, and resources. Two strategies have been 

followed to achieve these goals in industry: i) focusing on eliminating end effects of 

accidents rather than risks [14]; and ii) focusing on removing hazards rather before the 

actual accidents [29]. 

This work addresses the problem of systematically studying the existing problems in 

safety critical projects, and analyzing them, by identifying the potential root causes and 

proposing solutions for avoiding their recurrence and, consequently, a negative impact 

on the system. 
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1.1 Engineering Safety Critical Systems 

Processes for developing critical systems are usually based on the waterfall/V-model. 

The V-model defines a development process that is an extension of the waterfall model, 

but instead of having the phases moving down linearly, the V-model process steps start 

from the conceptual phase, moves to the requirements, architectural and 

implementation (coding) phases and then bends upwards to the testing phases and the 

operations and maintenance. In the V-model, there is not only traceability between 

subsequent phases, but also horizontal traceability along the V, between the testing 

phases and the development phases. This traditional model, which is normally 

connected to the applicable international standards, provides the basic phases of the 

engineering process, guides the structure of development and V&V, and is sequential 

(waterfall). The sequential nature of engineering of these systems is considered 

essential for managing communications, scale and complexity, integrating 

multidisciplinary teams and managing the integration by well-defined phases, and 

promoting traceability between the phase artefacts to facilitate certification (as required 

by the safety critical standards). 

Safety critical systems are very sensitive to failures, and the ultimate goal is to avoid 

them at all costs, as “failure is not an option”. Since empirical research helps in 

integrating research and practice, and empirical data and knowledge are essential to 

understand and respond adequately to the dynamics of engineering, to build upon what 

is already known and to act in order to adjust and correct situations that caused the 

issues, the importance of empirical data is undeniable. 

Empirical data includes not only the knowledge of the development frameworks and 

processes, but also the actual data from failures, defects and identified issues, as well 

as the analysis of what led to these defects in the first place (be it a human, a process 

or a technology related root-cause). However, studying defects of safety critical 

systems seems to be different from non-critical systems, not only because the nature of 

the defects is different, but also due to the fact that the frequency of these defects is 

rather different, for example:  

 Industry average: "about 15-50 errors per 1000 lines of delivered code" [14]; 

 Microsoft applications: "about 10-20 defects per 1000 lines of code during in-

house testing, and 0.5 defect per KLOC in released product” [14]; 

 Space: as low as 3 defects per 1000 lines of code during in-house testing and 

0.1 defect per 1000 lines of code in the released product [30];  

 Best code: 0.5 to 1 defect per KLOC [31]; 

 NASA: down to 0.004 defects per KLOC, but a cost of 1000$/LOC compared 

to 25$/LOC for commercial code [31]. 

The general idea is that a fault density of 1 fault per thousand Lines of Code (KLOC), 

for safety critical systems is a world class value [32], and some studies do provide an 

insight on the real values. For example, the Space Shuttle software [33] reaches fault 
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densities lower than 0.1 per KLOC, but this is considered an exceptional result, and its 

development costs are higher than any other documented software development. In the 

aeronautics domain, the C130J software, developed according to DO178B [34], had a 

retrospective static analysis funded by the UK MoD (Ministry of Defense) that 

concluded the existence of about 1.4 safety critical faults per KLOC (the overall flaw 

density was about 23 per KLOC [35]). In commercial software, however, the fault 

density is commonly higher, usually up to 10 faults per KLOC, while pre-release fault 

densities can go up to 30 per KLOC [36], [37]. Other studies determine that the typical 

values for commercial software are up to 4 faults per KLOC, and confirm that the best 

fault densities possible for safety critical software are between 0.1-1.0 per KLOC (in-

line with the values presented before) [38]. Lastly, in one of our studies [25], with data 

collected from 10 years of Independent Software Verification and Validation (ISVV), 

the fault density prior to ISVV for space systems is at least 0.97 defects per thousand 

lines of code. Although the fault density might not be stable when safety critical 

systems become large and complex, if we consider a stable rate of 1 per KLOC for a 

system with 100 KLOC, we are already talking about 100 safety critical faults.  

In what concerns software failure rates, its estimation and collection is a bit harder than 

for software fault density. Ellims [39] has studied the failure rates in automotive 

industry, where most accidents are caused by driver action, and from those, the majority 

has mechanical causes. Based on 0.1% of the recalls due to software, Ellims has 

estimated that software issues (severe) cause a maximum of 5 deaths and 300 injuries 

annually in the UK. Taking into account the 5 million vehicles in the road and 300 

hours of driving time per year, failure rate for software becomes 0.2 x 10-6 failures/hour 

(causing injury or death). Shooman [40] did a software fault analysis for the aviation 

industry where he reaches a value of 10-7 failures/hour, and McDermid [32] also 

calculated a value of 10-7 fatal accidents/hour for the aviation industry for software 

causes. 

The safety critical industry relies on strict rules and application of international 

standards. An example of comparison of some of the most important standards has 

been performed with particular focus on Verification and Validation [23]: we have 

concluded that the basic contents and guidelines of these standards are common, and 

some industries provide only particular additions in what concerns the techniques and 

the way of presenting the evidences (with safety cases, or evidences format, for 

example). Several of these standards have, in fact, common roots, and reuse the lessons 

learned from the application of other standards in different domains. 

The safety critical standards are generally mature, well established and most of the 

times updated regularly (although DO-178B [34] is from the 1990’s, DO-178C [41] is 

already available and in use). However, they might be too generic and become outdated 

considering the new technologies, systems complexity and new software 

responsibilities (e.g. FPGA, ASIC, more intelligence, safety, reconfiguration, security, 

emergent behaviors, etc.). 

For the safety critical industries, the application of standards is not optional, and all 

development must strictly follow them. Some industries have a “certification” body 

that needs to ensure that the full system is developed according to the requirements in 
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the standards. Other industries are less strict and do not require a formal certification 

by an authorized body, but still use the standards as mandatory guidelines for the 

development and acceptance of the systems. Examples of the first case are the aviation 

and the railway industries, which need to have all systems certified by the certification 

authorities before any market usage. In the second case, we can include the space 

industry where certification is not required but following the applicable standards is 

highly recommended and the systems are qualified before the acceptance phase by the 

International Space Agencies. 

Examples of safety critical standards for different domains are (some of these have 

been used during this research, as we will see later): Space Domain - European 

Cooperation for Space Standardization (ECSS) series (e.g. [42] and [43]), and NASA 

Standards (e.g. [44]); Airborne Domain - DO-178B/C (software related) [34], [41], 

DO-254 (hardware related) [45], ARP-4761 [46], ARP-4754 [47]; Automotive Domain 

- ISO-26262 [48]; Railway Domain - CENELEC EN-50126 [49], EN-50128 [50], EN-

50129 [51]; Automation Domain - IEC-61508 [52], IEC 61511 [53], [54], [55], IEC-

62061 [56]; Medical Domain - IEC-62304 [57]; and Nuclear Energy Domain - IEC-

60880 [58]; 

Some standards last much longer than technology (e.g. D0-178B, ARP), while others 

are not yet mature and widely accepted (ISO-26262). Practical experience and feedback 

from the ECSS working groups show how these standards evolve, and this evolution is 

not in a systematic and structured way (due to pressure from tool suppliers, influent 

companies forcing, technology preferences or experience influences/preferences, etc.). 

A recent case is DO-178C that has evolved the B version due to technology evolutions 

and trends (object oriented programming, use formal methods, improve the testing 

requirements, and industrial/commercial pressure). 

In summary, engineering critical systems with a very low defect rates is a challenging 

objective. The existing technological domains follow different standards and processes, 

and are integrated in different development cultures, which leads to diverse defect rates 

and different types of problems. Engineers can learn from the most successful domains 

but it will certainly come with a cost. Alternatively, they can learn from the mistakes 

and problems in their own domain, and improve gradually on the base of real defects 

and real deficiencies. Within each domain, these issues can be related to the maturity 

or suitability of the standards, the culture of development, V&V or safety, the applied 

techniques, processes and tools, the engineers experience and training levels, and the 

managerial constraints (time, cost, customer). The study of these concrete problems 

(and the related solutions) for a specific domain is what is intended by this work. 

1.2 Contributions of the Work 

The goal of this research is to propose an approach to identify quality gaps and 

consequently improve systems engineering based on the data available from 

engineering execution quality. This approach is hereby called an assessment process 

or assessment framework. In practice, the three main pillars of the work are the use of 
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empirical data about defects and issues from critical systems, the root cause 

identification and relation of these issues and defects to the engineering processes, and 

the measurable improvement in reducing the frequency and severity of issues and 

defects in critical systems. 

The usage of empirical data about defects and issues from critical systems enables 

the provision of factual background intelligence about the dependability of systems, 

provides concrete evidence of issues, defects and discrepancies and their nature, and 

allows to confirm or deny the idea that critical systems based on strict requirements 

and international standards achieve generally very high quality. 

Root cause identification and relating the issues and defects to the engineering 

process components is key to pinpoint what effectively contributed to the existence 

of discrepancies, to determine the full (and sometimes, complex) chain of events, 

resources and processes that lead to the problems, and to provide specific solutions to 

avoid the issues and defects in the future.  

The measurable improvement in reducing the frequency and severity of issues 

and defects for critical systems is a central goal to demonstrate quantitatively that 

the systems have improved, to clearly measure the impact of changing resources or 

processes (either positive impact or negative/no impact), and to provide concrete 

feedback to the framework and thus help in improving the whole systems engineering 

and validation processes. 

In detail, the main contributions of this research can be summarized as follows: 

 The definition of a defects assessment process/framework that can be used 

and applied in industry in a simple way and independently from the industrial 

domain. The framework makes use of a dataset collected from existing issues 

and process deficiencies, and supports the analysis of these data towards 

identifying the root-causes for those problems and defining appropriate 

measures to avoid them in future developments. 

 The adaptation of the Orthogonal Defect Classification (ODC) [92] for critical 

issues (integrated in the process/framework). In practice, ODC (from IBM) was 

used as an initial classification and then it was refined according to the gaps and 

difficulties found during the initial stages of our defects classification. The 

refinement was applied on the defect types, defects triggers and defect impacts. 

Improved taxonomies for these three parameters are proposed. 

 The integration of a root cause analysis process to relate the issues (or issue 

groups) with the engineering properties. The engineering properties (e.g. 

human and technical resources properties, events, processes, methods, tools and 

standards) are, in fact, the principal input for the classes of root causes. A 

fishbone root cause analysis is proposed, integrated in the process/framework 

and applied to the available dataset. 

 The identification of a dynamic set of root causes and applicable measures 

to improve the quality of the engineered systems. These allow the provision of 

quick and specific feedback to the industrial engineering teams as soon as 

the root causes are identified. The list/database has been compiled from the 
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dataset and includes the feedback and contributions from the experts that 

responded to the process/framework validation survey. 

 The promotion of a cultural change to appropriately use real defects data, 

which are the main input of the process/framework, and that shall be easily 

collected, cleaned and updated. The regular use of defects data will contribute 

to measure the quality evolutions and the progress of implementation of the 

corrective actions or improvement measures that are the output of the 

process/framework. 

These contributions are described in this thesis with concrete results and a specific case 

study application. In practice, the central contribution is the defects assessment 

process/framework (reusable across different domains or industries) that supports 

analysts and engineers in the classification of issues with a defined (adapted) 

orthogonal issues classification and allows the identification of the relevant root causes, 

that are mapped to the systems engineering elements in order to provide measures and 

improvement recommendations (these cover suggestions to improve the standards, 

development and V&V techniques, training to the human resources or modifications to 

the organization or project lifecycles and management). The assessment 

process/framework is flexible enough to be updated and receive feedback from the 

implementation of the measures or from judgement of experts. The classification 

schemes and the root cause analysis techniques applied are not necessarily attached to 

the process and other techniques can be applied if deemed necessary or if proved more 

efficient. 

As a practical result of the work, a dataset including European space engineering issues 

has been collected and used through the full cycle of the process/framework. The 

feedback obtained can be provided to the community in order to improve the 

development and V&V processes (some of these results have already been provided to 

European space industries). The resulting root causes identified and measures proposed 

can be used by the space industry, but also by other safety critical industries, to adapt 

and improve existing standards (ESA ISVV Guide, ECSS, DO-178, ISO26262, 

CENELEC, etc.), in particular by identifying the missing V&V activities and 

promoting a regular/enforced application of the proposed measures. 

1.3 Structure of the Thesis 

This chapter introduced the context, the problem and the main contributions of the 

thesis. 

Chapter 2 presents background concepts relevant for the current work as well as 

existing related works. It covers the dataset sources (namely ISVV activities), defects 

classification schemes, types of procedures for root cause analysis, and background 

studies on defects/failures analysis and engineering improvements studies.  

Chapter 3 depicts and details the approach for defects assessment. The chapter 

overviews the proposed approach, then details the process/framework steps one by one, 
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and finally presents a generalization of the utilization and outcomes of the 

process/framework in order to make it usable in any industrial domain. 

Chapter 4 explains the defects data collection and data preparation procedures. In 

practice, the chapter presents an overview of the data collection and preparation 

process, then details the data collection and the data preparation, and discusses some 

data quality, confidentiality and availability issues. Furthermore, the dataset used in 

this work is described. 

Chapter 5 describes the defects data classification procedures that lead from the original 

ODC taxonomy into the Enhanced ODC proposed for critical systems in the frame of 

this work. The Enhanced ODC taxonomy is explained and justified in this chapter, 

which contains an overview of the adaptation procedure, a detailed description of the 

modifications proposed to the original ODC taxonomy, and the validation strategy 

applied to the new taxonomy. 

Chapter 6 presents the detailed results of the application of the Enhanced ODC 

proposed in Chapter 5 and of the Process for Defects Assessment defined in Chapter 3. 

The results support the characterization of the problem types, triggers and impacts 

associated to the defects under analysis. Based on these results, this chapter also 

discusses the root cause analysis derived from the study of the defects while presenting 

hints on how the root cause analysis and the obtained results can be extended/applicable 

to different critical systems domains. 

Chapter 7 presents the procedure used to validate the results of the defects assessment 

process and how the root causes resolution can be verified in the long term and applied 

to any critical systems domain. In practice, this chapter presents the results of a survey 

submitted to a significant number of experts where the procedure to analyze defects, 

derive root causes and identify solutions was tested and commented. 

Finally, Chapter 8 concludes the thesis, summarizing the lessons learned, evidencing 

the potential of the proposed solutions, and presenting the weaknesses that we believe 

should be tackled as future work. 

This document contains 4 annexes. Annex A contains the details of the survey provided 

to the experts for validation of the defects assessment process and the obtained results. 

Annex B provides the textual responses provided by the experts, including comments 

on the process and additional root causes and measures proposed. Annex C includes 

the results of the answers to the quantifiable questions of the survey. Annex D presents 

the description of the data collection elements as used for our dataset collection and 

preparation. 
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Chapter 2 

Background and related work 

In this chapter, we present relevant background concepts and related work. The first 

topic covered is related to the methodology used to collect and detect defects. In 

particular, in this work we used defects identified by a team independent from the 

development/design/validation ones, applying Independent Software Verification 

and Validation (ISVV) techniques. Any other defects detection and collection 

techniques and method can be applied as long as the defects contain enough detail to 

be analyzed. 

The second topic described in this chapter covers the defects classification methods. 

This is also the second step of our process and is important to allow grouping of the 

defects types and triggers in order to better define generic corrections and 

improvements. During our work we have improved the selected classification method 

that is described later in this document. 

The third topic covers root cause analysis methodologies. This is the process part 

where solutions are identified and improvements are proposed. We provide an 

overview of the existing background and related work and describe the applied root 

cause analysis in our process description later on this document. 

The next topic in the chapter summarizes the failure analysis related studies that 

provided a background for this work. These studies, including academic and industrial 

studies, are an essential part of the work as they provided inspiration for the structure 

of our proposed overall approach. 

The fifth covered topic is about software engineering improvements studies. The 

objective is to study what is being proposed and how it is being proposed so far in order 

to adapt also our process in the best way to have real improvements in software 

engineering. 

The last topic described in this chapter is related to empirical analysis for critical 

systems. Empirical studies are quite important as they are the most realistic sources of 

corrections and improvements, though they are quite difficult to be made available 

publicly due to confidentiality issues. 
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This chapter is composed by a short background and motivation description, then we 

describe the ISVV activities, next we cover the defect classification schemes studied, 

followed by the root cause analysis techniques considered, the failure analysis and 

engineering improvements studies analyzed and some final remarks concerning these 

topics. 

2.1 Background Concepts and Motivation 

This section presents two general concepts applicable to our study and some motivation 

for the work performed in the rest of the report. 

2.1.1 General Concepts 

Most of the traditional systems are still developed according to the generic V-model 

(Figure 1) which is adapted on a case-by-case situation by the companies to their needs 

and according to their experience. Most of the concepts used in this work consider a 

similar development lifecycle, but can be applied to any other lifecycle as can be seen 

in our conclusions. This V-model encompasses the different phases that ranges from 

System Concept down to System Operations, and our defects analysis process can be 

applied to defects arising from any of these phases. 

 
Figure 1: V-model example 

Figure 2 depicts a set of important industry standards and shows some relations 

between them, for example, several standards have been based on the more “generic” 

IEC 61508 standard. As shown, there are several (overlapped and complementary) 

standards for each domain. On one side, IEC 61508 is a quite generic and high level 
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standard that was used to derive very specific and focused standards. From this list, the 

latest one the ISO-26262 that is still not contextualized in a certification process, as it 

does not exist for the automotive domain. The airborne set of standards are 

complementary (e.g. DO-178 for software, DO-254 for hardware, ARP-4762 for 

safety), and the same is true for the ECSS and NASA standards for space, as they are 

composed by a set of different standards and handbooks covering different areas of the 

engineering processes. 

 

 

Figure 2: International standards for safety critical systems 

2.1.2 Systems and Software Growth and Complexity 

The best safety critical software fault densities (between 0.1-1.0 per KLOC) are still 

not enough since these systems cannot fail, nor contain faults that can cause incidents, 

accidents or loss of human life (whenever we less expect it). Typical values for 

commercial software are a few times higher (up to 30 faults per KLOC) [38]. With the 

growing size, complexity and percentage of software in safety-critical systems, the 

opportunities for software related problems also increase, thus the development and 

V&V techniques must also be improved. 
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Figure 3: Software increases and software related failures in space systems 

Figure 3 presented at the ESA Software Initiative [59], data originally collected by 

Cheng [60], states that over half of the last three shown years of failures involved 

software. FSW SLOC indicated the Flight Software lines of code. These graphs show 

exponential growth patterns both for the size and for the software-related issues 

occurrence. It gets even more complicated (or extremely costly) if we think that the 

recent Mars Rover contained about 3.8 million lines of code [61]. For the aircraft 

software the trend is similar. Figure 4, from [62], shows that by year 2000, about 80% 

of an US aircraft functions are already performed by software, 40 years before this 

dependence was only 10%. 

 

Figure 4: US Aircraft Software Dependence 
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NASA has also performed a detailed study about Flight Software Complexity [63], this 

study confirms the growth tendency, but also relates the size with the complexity (for 

example software interactions and urgency of development) as shown in Figure 5 from 

[63]. The more complex (and critical systems) are the safety critical ones, such as 

nuclear and chemical, aerospace and military. 

 

 

Figure 5: Risk Categorization of systems according to interactions and coupling 

The safety critical code tends to be small (to be controllable, maintainable and simple) 

but that is not always possible. In fact, the airborne software size has grown from about 

10 thousand lines of code in 1980 to over 10 million of lines of code nowadays [64] as 

shown in Figure 6.  

 

 

Figure 6: Growth of Airborne Software 
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2.2 Independent Software Verification and Validation 

(ISVV) 

ISVV stands for Independent Software Verification and Validation, and it is composed 

by a set of activities performed by and independent team that assesses the software and 

the system artefacts in order to improve the quality of critical systems and detect 

defects. This section presents an introduction to ISVV and some details about the ISVV 

techniques and methods. 

2.2.1 ISVV Introduction 

Any techniques that allow the detection of defects can be applied in software 

engineering in order to improve its quality. We might think about the traditional 

verification and validation (V&V) activities that are essential to any software 

engineering lifecycle. These are, commonly, tasks that identify issues and allow their 

“immediate” correction, most of the time not improving the software engineering 

process nor the organization, but the product under development. We hereby have used 

defects detected during independent assessment activities, after the regular V&V 

activities have been performed and the found issues corrected. 

ISVV is particularly targeted at critical software systems and intends to be an additional 

tool to increase the quality of software products, thereby reducing risks and costs 

through the operational life of the software-based systems. ISVV supports engineers 

by providing assurance that software performs according to the defined requirements, 

to the specified level of confidence and safety, and within its designed and intended 

parameters. 

ISVV activities are performed by independent engineering teams, not involved in the 

software development process, to assess the engineering processes and the resulting 

software products. The ISVV team independency shall be financial, managerial and 

technical. 

ISVV intends to go far beyond “traditional” V&V techniques, applied by project 

engineering teams. While the latter aim mainly to ensure that the software performs 

well against the nominal requirements, ISVV is especially focused on non-functional 

requirements such as safety, performance, robustness and reliability, and on conditions 

that can lead the software or system failures. ISVV results and findings are fed back to 

the development teams for correction and improvement and these modifications are 

later confirmed by the ISVV teams (acting similarly to independent safety assessors). 

ISVV is a set of structured engineering activities supported by tools that allow 

independent analysts to evaluate the quality of the software engineering artefacts 

produced at each phase of the engineering lifecycle. ISVV is commonly performed on 

mature artefacts, which follow strict engineering standards (due to the nature of the 

domains where ISVV is applied), and that have been previously verified and validated 

as part of the regular engineering processes. It provides an additional layer of 

confidence and is not expected to find a large number of severe defects. ISVV produces 
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evidences that support measuring the quality of the engineering processes, of the 

software and of the human and organizational resources involved in the software 

engineering processes. ISVV is referenced in several international standards: a) ISVV 

guide from the European Space Agency (ESA) [65]; b) ISO Software Lifecycle 

Processes (ISO/IEC 12207) [66]; c) IEEE Software V&V (IEEE 1012) [67], NASA 

IV&V Quality Manual [68], and mentioned in DO-178B [34]. 

 

ISVV includes six basic phases that can be executed sequentially or selected/adapted 

as the result of a tailoring process based on a criticality analysis [65]. These phases are 

(see Figure 7): 

 ISVV Planning: planning of the activities to be performed 8based on the size 

and complexity estimations), definition of the ISVV level that will impact the 

set of techniques to be applied, System Criticality Analysis (through a set of 

Reliability, Availability, Maintainability and Safety – RAMS – activities), and 

selection of the appropriate methods and tools to be applied. 

 Specification/Requirements Verification: verification activities for 

completeness, correctness, consistency, testability, etc. 

 Architectural/Design Verification: verification of design adequacy and 

conformance to software requirements and interfaces, internal and external 

consistency checks and verification of feasibility and maintenance. 

 Source Code Verification: verification of the code for completeness, 

correctness, consistency and traceability through code inspections, code metrics 

analysis, coding standards compliance verification and static code analysis. 

 Test Specification/Results Verification: verification of the test artefacts, 

which might include test specifications, procedures, results and reports, as well 

as traceability verifications and completion of test areas. 

Figure 7: ISVV phases 
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 Independent Validation: validation activities based on the identification of 

unstable components/functionalities and missing testing areas to promote 

validation focused on Error-Handling. 

According to the ESA ISVV Guide [65], ISVV engineers classify defects considering 

three severity levels as described in Table 1. 

Table 1: ISVV Severity Levels 

Severity Description 

Comment The discrepancy found does not present any threat to the system. The issue was 

raised as a recommendation that aims at improving the quality of the affected item. 

Minor The discrepancy found is a minor issue. Although it does not present a major threat 

to the system, its correction should be done. 

Major The discrepancy found refers to the lack of pertinent information or presents a threat 

to the system. The correction and/or clarification of the discrepancy are pertinent. 

 

Each ISVV defect is also classified according to an ISVV defect type:  

 External consistency: differences between implementation of artefacts 

between phases or with other applicable or reference artefacts (e.g. inconsistent 

documentation); 

 Internal consistency: inconsistency against another part of the same artefact 

(e.g. different code for similar purpose, differences within the same document 

or architectural components); 

 Correctness: item incorrectly implemented or with technical issues (e.g. 

erroneous implementation, wrong documentation description, bad architectural 

definition); 

 Technical feasibility: item not technically feasible with the actual constraints 

(e.g. unattainable or impossible requirement, architecture nor viable); 

 Readability and Maintainability: item hard to understand and/or maintain 

(e.g. lack of comments or no description, requirements too complex or too 

generic); 

 Completeness: item not completely defined or insufficient details provided 

(e.g. missing details, missing architectural components, insufficient 

requirements, not all requirements coded); 

 Superfluous: item that is a repetition or brings no added value to the artefact 

(e.g. repeated requirements, copy-pasted code doing the same actions); 

 Improvement: suggestion to improve any property of the artefact usually not 

related to a single of the other classification types (e.g. efficiency, simplicity, 

readability); 
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 Accuracy: the item does not describe with precision or follows the applicable 

standard (e.g. measurement precision, calculation precision, exact 

implementation). 

Some previous studies, based on ISVV results and data collection, have analyzed 

metrics, efficiency and efficacy of the ISVV results and techniques used within ISVV 

to identify the defects in critical projects [69], [70], [71], [72] and [73]. The essential 

conclusions from these studies are that ISVV still finds a significant amount of issues 

even after the regular V&V activities have been carried out as seen in Table 2 from 

[71] (0.69 issues per requirement, 0.97 issues per 1000 lines of code, 0.32 issues per 

test case), the identified issues are accepted by the customer with over 80% of 

acceptance rate, and all ISVV phases contribute effectively to find defects from 

specification analysis down to the very important independent test analysis. 

However, none of these studies considered their observations and results to classify or 

group the defects and improve the development processes, techniques, tools, or 

standards at large, they have been used to correct each individual issue one by one. 

Table 2: ISVV Issues results 

Metric Requirements Design Code Test TOTAL 

RIDs per Requirement 0.25 0.2 0.14 0.1 0.69 

RIDs per 1000 SLOCs N/A N/A 0.24 0.73 0.97 

RIDs per Test N/A N/A N/A 0.32 0.32 

RIDs per hour 0.15 0.22 0.15 0.21 - 

% Major Issues 21% 15% 21% 21% - 

 

These previous studies have shown that existing standards and good engineering 

practices are not enough to guarantee the required levels of safety and dependability of 

Critical Systems. Independence of V&V avoids author bias and is often more effective 

at finding defects and failures. It can be managerial, financial and technical, it brings 

separation of concerns, complementarity, second/alternative opinions, and it also has 

the merit of pushing development and in-house V&V teams to focus on the quality of 

their work. The role of independence at early development phases is highlighted in [74] 

and clearly stated in the requirements of several standards such as CENELEC [75] 

(depending on the SIL level), and DO-178 [34] (where for example, for the most critical 

level -A-, 33 out of the 71 objectives/requirements of the standard must be satisfied 

with full independence). 

2.2.2 ISVV Technologies, Techniques and Methods 

This section presents a summary list of commonly used techniques for ISVV of critical 

systems, focused in aerospace (aeronautics and space) standards. These techniques are 
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referred in the safety critical standards presented in Table 3, which are one of the targets 

for the assessment process suggested improvements, because this list and the current 

practice are not complete, some techniques are not properly applied or not applied at 

all in some domains, and some standards only suggest the use of some techniques in a 

very generic way. 

Table 3 illustrates the main applicable V&V techniques that have been identified in the 

standards, organized in 12 groups. ECSS-E-ST-10-06C [76] is reported although it 

does not describe V&V processes, but it does mention some V&V techniques. ECSS-

E-ST-10-03C [77] and ECSS-Q-ST-20-10C [78] are not reported in table as they 

provide little or no relevance to specific techniques. We note that all standards have 

elements from group 1 and group 11, that is, analysis, reviews, traceability and testing 

are common keywords of all V&V processes and related aerospace standards surveyed. 

From this classification, the DO-254 [45] is the standard which mentions the highest 

number of techniques, followed by ARP and ECSS-Q-ST-30C [79]. A marginal note 

is that FAA HDBK006A [80] mentions Reliability Modelling, but specifying that 

“Reliability modelling requirements [..] should be limited to simple combinatorial 

availability models […]; Complex models intended to predict the reliability of 

undeveloped software […] generate a false sense of complacency.” This sentence 

merges reliability and availability, but also addresses the difficulties in predicting 

software reliability, currently another open research problem. Finally, we note that little 

emphasis is devoted to the schedulability analysis technique, even for safety-critical 

systems. 
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Table 3: Techniques referred in standards 
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1 

reviews, inspections 

(Fagan, walk-through, 

…), analysis 

(traceability, static 

code analysis, HW/SW 

interaction, …) 

x x x x x x x x x x x x x 13 

2 
FMEA, FMECA, 

FMES 
x   x     x x     x x x x 8 

3 Hazard Assessment x x x   x             x   5 

4 

modeling (SW 

reliability models, 

Finite state machine, 

Petri Nets, Finite State 

Machines, Markov 

models, …) 

x x x x x x x     x x   x 10 

5 
Fault Trees, 

Dependence diagrams 
x   x     x x     x x x x 8 

6 prediction methods     x     x         x     3 

7 

Common Cause 

Analysis (CCA), 

Common Mode 

Analysis 

x   x   x           x x x 6 

8 
Functional Failure 

Path Analysis (FFPA) 
    x                     1 

9 
Formal methods, 

model checking 
  x x x x         x       5 

1

0 
Schedulability analysis                   x       1 

1

1 
Testing x x x x x x x x x x x x x 13 

1

2 

Similarity, service 

experience, failure 

statistics 

x x x x x     x     x x x 9 

 TOTAL 8 6 11 5 7 6 5 3 2 7 8 7 7 
 

 

Table 4 also presents the main testing techniques identified in the aerospace standards. 

Some standards as the ARP-4754A [47] where attention to identify punctual testing 

techniques is minimal are not reported. DO-254 [45] is not reported, as its testing 

techniques are hardware specific (built-in, system bench, aircraft testing). We note the 
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following: FAA HDBK006A [80] mentions reliability growth testing for software 

systems (not reported in Table 2), which by its description seems simply meaning that 

fault removal process should be applied on the developed software. ECSS-Q-ST-30C 

[79] discusses reliability, availability and maintainability testing, but no indications are 

reported on the specific techniques to perform these tests (probably these are robustness 

and fault injection, but still not clarified). As it could be expected, the testing techniques 

that are most mentioned are interface and functional testing, and integration testing, 

followed by input-based testing, unit testing and stress testing. Timing testing is 

mentioned explicitly only once, in the ECSS-E-ST-40C [42] (which also mentions the 

schedulability analysis). 

Apart the information in the table, we also observe that ECSS-E-ST-10-03C [77] 

explicitly mentions test accuracy, tolerance, margin in tests results and inaccuracies, 

and that ECSS-E-ST-40C [42] discusses intrusiveness of the environment specifying 

“testing that the software product can perform successfully in a representative 

operational and non-intrusive environment”. 

 



Background and related work 

21 

Table 4: Main testing techniques referred in aerospace standards 
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1 requirements-based x x x               3 

2 (hw/sw, sw/sw) integration x x x       x     x 5 

3 
input-based (extensive inputs, 

normal-range, boundary, ...) 
x x         x     x 

4 

4 interface and functional     x x   x x     x 5 

5 unit     x       x     x 3 

6 white box                     0 

7 black-box     x               1 

8 grey-box     x               1 

9 fault tolerance diagnostic       x             1 

10 fault injection --, failure --             x   x   2 

11 robustness x x                 2 

12 stress              x x   x 3 

13 performance           x       x 2 

14 structure     x     x         2 

15 low-level x x                 2 

16 implementation     x               1 

17 isolation             x       1 

18 closed loop                     0 

19 periodic ---  during storage,           x         1 

20 
destructive tests (e.g., Burst 

test) 
          x         

1 

21 
reliability, availability, 

maintainability 
       x   1 

22 usability                   x 1 

23 mechanical, thermal, electrical           x         1 

24 timing/schedulability             x       1 

 
TOTAL 5 5 8 2 0 6 8 2 1 7  

 

Another relevant source of V&V techniques for aerospace application is the ESA ISVV 

Guide [65]. During the time of production of this guide we have surveyed also other 

domains and we have collected a list of relevant, non-exhaustive, techniques that could 

be useful for independent verification and validation. The surveyed domains included 

space, aeronautics and nuclear. This guide contains all independent verification and 
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validation activities detailed per lifecycle phase and according to component criticality, 

a suggested list of applicable methods and suggested checklists. 

The main methods/techniques described in the guide are: 

 Formal Methods 

 Inspection 

 Modelling 

 Data Flow Analysis 

 Control Flow Analysis 

 Real-Time Properties Verification 

 Reverse Engineering 

 Simulation (Design execution)  

 Software Failure Modes, Effects and Criticality Analysis (SFMECA) 

 Static Code Analysis  

 Traceability Analysis 

The impact of methods and techniques in the quality and dependability of software-

based systems is undeniable, and we could go on in listing more V&V and development 

techniques that influence somehow the engineering process.  

2.3 Defects Classification Schemes 

One of the first areas that were considered important for the research was the issues (or 

defects) classification. This is an essential part of the defined process since it directs all 

the subsequent process phases and the results are dependent on a proper classification. 

The main topics that were researched concerning this topic include: defect 

classification, orthogonal defect classification, empirical data analysis and 

classification taxonomies. This section presents these studies and then focuses on the 

orthogonal defects classification topic. 

2.3.1 Defects Classifications Studies Background 

From the different possible defects classification taxonomies (e.g. as described in [81], 

[82] and [83]), the one who has been adopted and consistently used by industry is ODC 

[84]. The list of taxonomies is extensive, sometimes connected to a specific engineering 

phase, and commonly questioned by the practitioners that tend to propose some 

adjustments. These taxonomies are often complex (Kaner, Falk and Nguyen’s 

Taxonomy [85] contains about 400 types of defects). Some examples of considered 

defect classification taxonomies are: 

1) Beizer's Taxonomy [86], 
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2) Kaner, Falk and Nguyen's Taxonomy [85],  

3) Robert Binder's Taxonomy [87],  

4) Whittaker's "How to Break Software" Taxonomy [81], [82], 

5) Vijayaraghavan's eCommerce Taxonomy [81], [82], 

6) Hewlett Packard Taxonomy [88],  

7) IEEE Standard Classification for Software Anomalies [89], [90],  

8) Orthogonal Defect Classification [84], [91] and [92]. 

Some researchers have compared different taxonomies, such as in [83] where the 

authors presented a framework for comparing six of the previous defect taxonomies, 

the results of the evaluation and concluded that all of them presented deficiencies. The 

Freimut report [93] presents the aspects of a defect that have been measured in the 

literature and possible structures of a defect classification scheme with examples of 

frequently used defect classification schemes. It also presents general methods to 

analyze defect classification as reported in the literature as well as concrete analyses 

for a variety of purposes.  

The Vallespir [83] analysis has shown that only two of the six analyzed taxonomies 

(from the list above: 1.2, 3, 6, 7 and 8) guarantee orthogonality: 

 The IEEE Standard Classification for Software Anomalies, and 

 The Orthogonal Defect Classification (ODC). 

The IEEE Standard Classification for Software Anomalies [90] provides a uniform 

approach to the classification of software anomalies, regardless of when they originate 

or when they are encountered within the project, product, or system life cycle. Data 

thus classified may be used for a variety of purposes, including defect causal analysis, 

project management, and software process improvement. However, this IEEE 

taxonomy might lead to quite extensive taxonomies to be easily applicable in an 

industrial and recurrent context. Yet, this taxonomy has not been extensively used in 

industrial defects assessment. 

ODC [84], [91] and [92] is one of the more adopted defect classification approaches, 

originally proposed by IBM. In ODC a defect is classified across several dimensions: 

(1) type, (2) source, (3) impact, (4) trigger, (5) phase found, and (6) severity. There are 

only eight options for the defect type making it easy and still covering the defect type 

space. Defect triggers represent a limited list of detection techniques for finding the 

defects, connecting defect types and triggers. ODC is quite generic and applicable to 

different domains but mostly oriented to design, implementation and testing originated 

defects.  

From the multitude of studies and reports where defects classification has been applied 

and studied we have selected some of the most important and relevant ones that are 

presented and summarized hereafter. 
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Orthogonal defect classification using defect data to improve software 

development [94]: This paper describes ODC and illustrates how ODC can be used to 

measure development progress with respect to product quality and identify process 

problems. The paper presents the results of a feasibility study conducted by the 

Motorola Corporate Software Center, Software Solutions Lab and the Cellular 

Infrastructure Group, GSM Products Division's Base Station Systems software 

development group using ODC. 

The repeatability of code defect classifications [95]: This paper evaluates an 

adaptation of ODC with the Kappa statistic. Defect data from code inspections 

conducted during a development project was used. The results indicate classification 

repeatability, in general. Improvements are suggested to improve classes of defects 

categorization. The author notes that defect classifications are subjective and this is 

why it is necessary to ensure that the classifications are repeatable (classification not 

dependent on the individual). 

Using defect patterns to uncover opportunities for improvement [96]: This paper 

presents the application of Bellcore tool Efficient Defect Analyser (EDA) that supports 

ODC to three case studies, identifies the main pitfalls of the classification (incomplete 

data, wrong classification, etc.) and provides some future directions. 

Improving software testing via ODC: Three case studies [97]: This paper presents 

the results of applying ODC to three case studies in order to improve software testing. 

For the first case study, with a high maturity development process, the study has 

provided specific testing strategies to reduce field defects. For second one, a 

middleware project, it identified areas of system test that needed to be improved. For 

the third, a small project, small team and inadequate testing strategy, the study made 

the team acknowledge the project risks, schedule delays and proposed necessary 

missing testing scenarios. The authors claim that ODC helps the identification of 

actions to increase the efficiency and effectiveness of development and test. 

Classification and evaluation of defects in a project retrospective [98]: This study 

consists of three investigations: a root-cause defect analysis (RCA) study, a process 

metric study, and a code complexity investigation on an optical network project. The 

authors made a correlation between the classification and the root-cause analysis and 

the adherence to the applicable development process. 

Empirical analysis of safety-critical anomalies during operations [99]: This paper 

presents some results from applying ODC to analyze about 200 hundred operational 

anomalies from seven different spacecraft systems. They found interesting 

(unexpected) classification patterns and lead to identification of proposed 

improvements to the software, the development process and the operational procedures. 

Defect categorization: making use of a decade of widely varying historical data 
[100]: This paper describes the results of an aggregation of historical datasets 

containing inspection defect data (with different categorization schemes). By using 

historical data and ODC-based classification the authors intended to create models to 

guide future development projects. A very interesting set of recommendations for 

classification of defects is provided in the paper. 
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Defect Classifications and Defect Types Revisited [101]: This short position paper 

summarizes the work of defect classification as applied in academia and industry with 

similar classification schemes but none widely accepted. The paper identifies a set of 

challenges and proposes generic directions in order to get a more widely accepted and 

common classification. 

A systematic literature review to identify and classify software requirement errors 
[102]: This paper presents a systematic literature review to develop taxonomy of errors 

(i.e., the sources of faults) that may occur during the requirements phase of software 

lifecycle. Improvement of the requirements engineering and the overall software 

quality are the goals of this new taxonomy. The study identified 149 papers from 

different domains related to requirements faults. The authors provided a categorization 

of the sources of faults into a formal taxonomy that provides a starting point for future 

research into error-based approaches to improving software quality. 

Using orthogonal defect classification in a Norwegian software company [103]: 

This report presents the work of a defect analysis and orthogonal classification made 

at a Norwegian company (not disclosed) by applying statistical methods. The authors 

found issues with the completeness of the defect report data, and analyzed the injection 

phase and time to fix of the defects. They have suggested some improvements but 

mostly to the defect reporting process. 

Software Defect Analysis - An Empirical Study of Causes and Costs in the 

Information Technology Industry [104]:This master thesis report, by collecting 

defect reports from three different types of projects, represents the results of a 

quantitative and qualitative analysis (root-cause analysis). The authors concluded that 

there are differences among project types with regard to root causes for defects, and 

differences similar between different levels of effort required to correct defects. It was 

not possible in this study to measure how the differences influenced the root causes. 

Quality Evaluation and Improvement Framework for Database Schemas - Using 

Defect Taxonomies [105]: This paper proposes a defective patterns taxonomy for 

database schemas. The authors identify four main classes of defects, namely complex 

constructs, redundant constructs, foreign constructs and irregular constructs. They 

develop some representative examples and discuss ways of improvement against three 

quality criteria: simplicity, expressiveness and evolvability. The proposed taxonomy 

and framework is applicable to quality assessment and improvement. 

AutoODC: Automated generation of Orthogonal Defect Classifications [106]: This 

paper presents an approach and tool for automating ODC classification by casting it as 

a supervised text classification problem. The authors seek to acquire a better ODC 

classification system by integrating experts' ODC experience and domain knowledge 

into the learning process via proposing a novel Relevance Annotation Framework. The 

case study was from the social network domain and allowed reduction of manual 

classification with an accuracy of about 80%. 

Classification of defect types in requirements specifications: Literature review, 

proposal and assessment [107]: The authors made a literature analysis about 

requirements defects classification taxonomy, they do mention ODC but conclude that 

it is more indicated to classify code defects, they proposed a modified classification for 
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requirements defect types. The new classification was found to be essential to the 

analysis of the root-causes of the defects and to their resolution. They have also 

concluded that his new classification might still not be consensual, i.e. might have 

different interpretations. 

Classification of Software Defect Detected by Black-Box Testing: An Empirical 

Study [108], is a study and an ODC adaptation for black box testing activities only. Li 

et al effectively made a detailed analysis for black box types of tests, but the defects 

detection methods and techniques can be much larger as the ones in our used datasets. 

All the papers and reports introduced above are somehow related to the research work 

we developed. They use defect classification schemes and taxonomies and some of 

them clearly point out that these schemes are not perfect, while suggesting 

improvements. Some papers go a bit beyond and identify root-causes and propose 

improvements either to the classifications, to the defect reporting processes or to the 

development/validation processes. None of these studies clearly studies safety-critical 

defects and map them up to the characteristics of these systems, namely the influence 

of the standards and certification processes. We feel, however, that all these works are 

a valuable input for our work. 

2.3.2 Orthogonal Defects Classification (ODC) 

The Orthogonal Defect Classification (ODC), originally proposed by IBM (Chillarege 

et al. [92]), is one of the most used defects classification approaches. It is intended to 

be generic and applicable to different technology domains, but it is mostly oriented to 

design, code and testing defects. ODC defines eight attributes for defects classification, 

divided into two main groups: a) opener, and b) closer. Three attributes (Activity, 

Trigger and Impact) classify the defect when it has been discovered and so they are 

part of the opener group. The other five attributes (Target, Type, Qualifier, Age and 

Source) are used when the defect is resolved, being thus part of the closer group. The 

full taxonomies for each attribute can be obtained from the ODC v5.2 specification 

[92]. A description of ODC attributes is summarized in Table 5. 
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Table 5: ODC attributes description 

ODC Attribute Description 

Activity 

The actual activity that was being performed at the time the defect was 

discovered. The main activities applicable to this work are: Requirements 

verification, design verification, code verification, test verification and test 

execution. 

Trigger 
A trigger represents the environment or condition that had to exist for the 

defect to surface. 

Impact 
The impact is the effect that the team who is classifying the defect thinks it 

would have on the system if not corrected. 

Target Represents the high level identity of the entity that was fixed. 

Type 

The defect type is defined according to the fix that is necessary to remove it 

from the system. For that reason, it is best classified by a team/person who 

applied the fix to the defect. 

Qualifier Captures the element of a non-existent, wrong or irrelevant implementation. 

Age 
Categorizes the age of the defect, whether if it is new or surfaced from a 

previous defect. 

Source Describes the source of the defect in terms of its developmental history. 

 

As for several of the previous works about defects classification taxonomies, we had 

to tailor the taxonomy for the attributes Trigger, Impact and Target, as described later 

in this document and presented in [1], [2] and [7], that allow ODC to better comply 

with the needs of space critical software systems. In those works, we have analyzed the 

original ODC attributes and, with simplification in mind, as well as usefulness for root 

cause analysis, we have picked those three as the essential attributes for our process. 

2.4 Root Cause Analysis 

Once the defects properly are classified, we can perform a root cause analysis (RCA) 

in order to identify what were the sources and events that lead to the defects occurrence 

or detection. RCA supports the identification of why an issue occurred contrary to only 

identifying or reporting the issue itself, it also allows the identification of the 

underlying cause(s) of the issues and helps in preventing additional rework and 

proactively address future recurrences of the issues. 

Some examples of root cause analysis techniques are [109]: 

Five Whys: The “5 Why’s” can show how causes connect; and it really simplifies the 

cause and effect relationship into a linear progression and typically focuses on the 

Action causes. 

Failure mode and effects analysis (FMEA): FMEA is a systematic procedure and 

tool that helps identify every possible failure mode of a process or product, to determine 

its effect locally or globally. The FMEA also ranks and prioritizes the possible causes 

of failures of a process or product and can determine the frequency and impact of the 
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failure as well as suggest and implement preventative actions and compensating 

provisions. 

SIPOC (Suppliers, inputs, processes, outputs, customers) diagram: SIPOC is a 

high level tool that simplifies the variables of any given process into five segments: S 

for suppliers, I for inputs, P for process, O for output and C for customers. During 

brainstorming sessions, team members determine the variables that are relevant to a 

given process under analysis. 

Flowcharting of the process flow, system flow, and data flow: Performed by flow 

charting the process, system and data flow, and assembling a group of experts to 

analyze the situation, while drafting a new version of the flow chart with the 

information related to the events, facts and justifications. 

Fishbone diagrams: The Fishbone method is a simple tool to identify the sources of 

cause: Man, Machine, Method, Material, and Environment (there are variations of the 

categories used on the Fishbone, another is: People, Procedure, Hardware and Nature). 

The Fishbone diagram is not intended to show how all these causes interact with each 

other, unless the analyst has experience in interaction analysis. 

Critical to quality metrics: Critical to quality metrics are relevant measures of 

attributes of a part, product, or process that is critical to quality or that has a direct and 

significant impact on the actual or perceived quality. 

Pareto chart: By studying and understanding data in the format of bar graphs that 

categorizes the frequency of a certain type of event. 

Statistical Correlation: Identify relationships (correlations) between variables where 

they exist and discount them where they don’t by using regression analysis and taking 

appropriate decisions. 

Design of Experiments (DoE): DoE helps improving the capability of a process by 

identifying the process and product variables that effect the mean and the variance of 

the quality characteristics of a product. 
 

The fact is that we do need to control the causes of problems [110] as a main objective, 

and problems cannot be solved without solving their causes [111]. To do this project 

analysis, called retrospectives are used, they are step-by-step processes [112]: 

 Problem identification; 

 Problem causes identification (using RCA) – the why [111];  

 Cause-and-effect relationships are also identified; 

 Root causes detection [111]; 

 Improvement suggestions for the identified root causes. 

RCA is performed more or less frequently for every domain, for software engineering, 

besides some of the articles already mentioned in section 2.3 and that are related to the 

defect classification schemes we can highlight the survey made by Lehtinen et al [113] 

where they propose a new tool for RCA but they surveyed another 35 existing tools to 
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perform on-line RCA. They separate their analysis in Software project retrospectives, 

RCA and distributed retrospectives and the actual comparison of the 35 + 1 tools, but 

their goal was to tackle the on-line and distributed properties of software projects 

teams. 

For the purpose of this work we have surveyed some relevant research works. Besides 

the already mentioned papers, the following papers and books present relevant inputs 

for the part of our process where root cause analysis is applied and applicable. 

Review of Root Causes of Accidents due to Design [28]: A Safbuild project report 

produced by Eurocontrol providing the results of a review study from different industry 

databases of the proportion of accidents that have their root causes in design. It includes 

accidents from aviation, railway and nuclear industries and concludes that about half 

of them are root caused to the design phase by providing the more frequent root causes 

identified. 

Root Cause Defect Classification (RCDC) for Documentation Defects [114]: Rao has 

made an industry study about root cause defect classification for documentation 

defects, analyzing a few dozen defects on a monthly basis. 

Defect Analysis and Prevention for Software Process Quality Improvement [115]: 

Kumaresh et al conducted a study with data from a few hundreds of collected defects, 

where these defects have been classified and the corresponding root causes have been 

proposed to the learning of the projects as preventive ideas. 

A case study in root cause defect analysis [116]: This paper presents a retrospective 

root cause defect analysis based on defects identified during different phases of a 

transmission network product. The authors present an RCA approach and classification 

and the results obtained as well as lessons learned. This work is related to [98]. 

Quantitative Analysis of Faults and Failures in a Complex Software System [117]: 

This paper presents the results of quantitative study of faults and failures of two releases 

of a commercial system. They studied correlations and fault prediction metrics and 

identified or denied some evidences and connections between components complexity 

and size and fault density, for example. 

Using defect analysis feedback for improving quality and productivity in iterative 

software development [118]: This paper deals with defect analysis as a feedback 

mechanism to improve the quality and productivity in a software project developed 

iteratively. The authors discuss how defects found in one iteration can provide feedback 

for defect prevention in later iterations. 

Root Cause Analysis: Simplified Tools and Techniques [119]: This book, first edited 

in 1999, describes the basic techniques and tools for root cause analysis.  

Root Cause Analysis: Improving Performance for Bottom-Line Results [120]: This 

book describes RCA as a structured investigation of a problem to detect which 

underlying causes need to be solved. 

Root Cause Analysis of Product Service Failure Using Computer 

Experimentation Technique [121]: In this paper, the authors propose a methodology 

of performing RCA and corrective actions in design by linking warranty failures with 



Chapter 2 

 30 

product design parameters. An analytical approach based on computer experimentation 

technique performs RCA of product failures (linking warranty failure modes with 

design parameters) and identifies the analytical relationship between them. They 

perform the identification of root cause(s) to address in tolerance product design faults. 

The case study used was an automotive ignition switch. 

Applying Root Cause Analysis to Software Defects [122]: In this short article 

Kaushal highlights the importance of RCA that it needs to get commitment from the 

institution champions and managers and that is an investment that must focus on 

finding solutions to improve the overall processes. 

The analyzed articles and books present RCA and Retrospective analysis as the way to 

identify the root causes of faults or problems and address them instead of treating the 

symptoms or effects. In safety-critical systems we do need to take into account both, 

we can never ignore the symptoms and effects and we care about reducing possible 

causes of faults at a minimum (e.g. RAMS analysis for safety-critical systems). RCA 

has been a process and a set of tools that grew out of accident/incident investigations 

and became a standard feature of modern engineering, still no so frequently applied in 

industry. If something is failing, instead of just fixing it at the point of discovery, RCA 

allows investigation and supports fixing the underlying causes at the point of origin. 

2.4.1 Fishbone diagrams 

Some of the previous studies seem to conclude that there is not perfect or preferred root 

cause analysis techniques, instead a set of tools together will produce better results. We 

hereby describe the commonly used Fishbone (also called Ishikawa) diagram analysis 

that can be complemented by any of the other analysis to support correlation analysis 

between the different attributes. 

The fishbone diagram, also called Ishikawa or cause and effect diagram helps, through 

brainstorming, to identify lists of causes of a problem and in grouping the causes into 

relevant categories. A fishbone diagram is a visual tool to look at causes and effects. It 

is a structured approach for brainstorming causes of a problem (more structured than 

e.g., the Five Whys tool). The problem or effect is displayed at the head or mouth of 

the fish, then possible contributing causes are listed on the smaller “bones” under 

various pre-defined cause categories. A fishbone diagram is helpful in identifying 

possible causes for a problem that might not otherwise be considered by directing the 

analysts to look at all the pre-defined categories and think of alternative causes. The 

analysts must be experienced in the problem domain ad be also aware of the process 

and other systems involved in the event to be investigated. 

The main steps to conduct and appropriate fishbone diagram analysis can be 

summarized as follows (see Figure 8 for a simple example): 

Problem statement: Clearly define the problem or the event/effect that is being 

analyzed. Position this problem (or effect) at the head or mouth of the “fish.” Make 

sure the problem is not a solution and is clear for all the involved experts. 
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Categories definition: The lists of categories for the causes of the problems is a key 

step. Common categories often include: equipment or supply factors, environmental 

factors, rules/policy/procedure factors, and people/staff factors. Common examples of 

main categories are: Man, Machine, Method, Material, and Environment, or People, 

Procedure, Hardware and Nature. 

Brainstorm: Brainstorm the possible causes of the problem (leading to the effect). Ask 

“Why does this happen?” Note down the causes proposed by the participants in the 

brainstorming as a separate branch of the main category (causes can relate to more than 

one main category and so must be written under several categories). 

Keep asking Why: Similar to the five Whys keep asking “Why does this happen?” for 

all the identified causes. Note down the proposed sub-causes related to each cause. 
 

2.4.2 Five Whys 

The 5 Whys is a technique used in the Analyze phase of the Six Sigma DMAIC (Define, 

Measure, Analyze, Improve, Control) methodology. .It is applied by repeatedly asking 

and refining the question “Why” (five is simply a good rule of thumb), and this way 

the different levels of symptoms are identified, eventually leading to the root cause of 

a problem. 

The 5 Whys can be used individually or as a part of the fishbone (also known as the 

cause and effect or Ishikawa) diagram. Thus supporting in the exploration all causes 

that result in a single defect or failure. The 5 Whys technique can be applied to drill 

down to the root causes once all inputs are established on the fishbone. 

Figure 8: Fishbone diagram analysis example 
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An example of 5 drilled down questions attributed to the creator of the 5 whys 

techniques, Talichi Ohno, is: 

1) “Why did the robot stop?” - The circuit has overloaded, causing a fuse to blow. 

2) “Why is the circuit overloaded?” - There was insufficient lubrication on the 

bearings, so they locked up. 

3) “Why was there insufficient lubrication on the bearings?” - The oil pump on the 

robot is not circulating sufficient oil. 

4) “Why is the pump not circulating sufficient oil?” - The pump intake is clogged 

with metal shavings. 

5) “Why is the intake clogged with metal shavings?” - Because there is no filter 

on the pump. 

2.4.3 Failure Mode and Effects Analysis 

The Failure mode and effects analysis (FMEA) process is a proactive process used to 

systematically analyze specific or vulnerable areas of a system or process. It is 

commonly used for system assessment and development and not like the other root 

cause analysis techniques that are applied once the problem occurs. 

The FMEA supports in preventing defects and problems by identifying early in the 

lifecycle phases the causes that might be hazardous and might cause these problems. 

The FMEA also provide detection, mitigation and elimination measures that can be 

implemented before any of the analyzed failures actually occur. 

The FMEA is usually managed in a tabular format, where each row represents one 

specific failure mode (a failure situation) and the columns contain, for example, the 

contents specified in Table 6. 

Table 6: Example of simple FMEA headers 

Column Heading Description 

Item No. A unique identifier for each row in the analysis 

Name The name of the component 

Function Brief explanation of component functionality 

Failure Mode Description of how the component could fail 

Local Effects Description of how the component will react if the failure occurs 

System Effects Description of how system will react if the failure occurs 

Fault Detection How the failure will be recognized as having occurred 

Failure Management Methods (design or process) to manage the failure mode 
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2.4.4 Fishbone (cause and effects, Ishikawa) diagrams 

The fishbone diagram, also called Ishikawa (named after its originator Kaoru Ishikawa) 

or cause and effect diagram helps, through brainstorming, to identify lists of causes of 

a problem and in grouping the causes into relevant categories. A fishbone diagram is a 

visual tool to look at causes and effects. It is a structured approach for brainstorming 

causes of a problem (more structured than e.g., the Five Whys tool). The problem or 

effect is displayed at the head or mouth of the fish, then possible contributing causes 

are listed on the smaller “bones” under various pre-defined cause categories (see Table 

7 for a few examples). A fishbone diagram is helpful in identifying possible causes for 

a problem that might not otherwise be considered by directing the analysts to look at 

all the pre-defined categories and think of alternative causes. The analysts must be 

experienced in the problem domain ad be also aware of the process and other systems 

involved in the event to be investigated. 

The tasks involved in constructing a Fishbone diagram can be summarized in three 

main groups: 

 1. Define the problem 

o Problem statement: Clearly define the problem or the event/effect that 

is being analyzed. Position this problem (or effect) at the head or mouth 

of the “fish.” Make sure the problem is not a solution and is clear for all 

the involved experts. 

o Categories definition: The lists of categories for the causes of the 

problems is a key step. Common categories often include: equipment or 

supply factors, environmental factors, rules/policy/procedure factors, 

and people/staff factors. Common examples of main categories are: 

Man, Machine, Method, Material, and Environment, or People, 

Procedure, Hardware and Nature. 

 2. Brainstorm 

o Brainstorm: Brainstorm the possible causes of the problem (leading to 

the effect). Ask “Why does this happen?” Note down the causes 

proposed by the participants in the brainstorming as a separate branch 

of the main category (causes can relate to more than one main category 

and so must be written under several categories). 

 3. Identify causes 

o Keep asking Why: Similar to the five Whys keep asking “Why does 

this happen?” for all the identified causes. Note down the proposed sub-

causes related to each cause. 

In particular, the Categories definition is an important step to support the brainstorming 

and to direct the causes identification. Table 7 presents a few commonly used sets of 
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categories and also the applied set of categories for this work, that comes from a merge 

of the other categories (in column 4 of Table 7). 

Table 7: Fishbone Common/Proposed Categories 

Services Industry 

(4 Ps) 

Manufacturing 

Industry 

(6 Ms) 

Business Industry 

(6 Ms) 

Proposed set of 

Categories for 

Software Systems 

Policies 

Procedures 

People 

Plant/Technology 

Machines 

Methods 

Materials 

Measurements 

Mother Nature 

(Environment) 

Manpower (People) 

Method 

Man 

Management 

Measurement 

Material 

Machine 

Method 

Man/People 

Management 

Measurement 

Material 

Machine 

Policies/Procedures 

Technology 

Environment 

2.4.5 SIPOC 

SIPOC (suppliers, inputs, process, outputs, customers) is a visual way for documenting 

a process from beginning to end. SIPOC diagrams are also referred to as high level 

process maps because they do not contain much detail. 

SIPOC diagrams are useful for focusing a discussion and helping team members agree 

upon a common language and understanding of a process for supporting continuous 

improvement. In Six Sigma, for example, SIPOC can be used during the “Define” 

phase of the DMAIC improvement steps. 

To create the SIPOC table (see example of Table 8), the following steps are required: 

1) Name the process. It is suggested to use a Verb and a Noun (e.g. Read Memory 

Location); 

2) Define the process Outputs. The outputs are the results created by the process 

(e.g. 100 bytes, a report); 

3) Define the process Customers. The customers are the consumers of the outputs, 

all outputs must have a customer; 

4) Define the process Inputs. The inputs are the actions or triggers to the process 

(e.g. a timer, a customer request) 

5) Define the process Suppliers. The suppliers provide the process inputs, 

suppliers can also be costumers. 

6) Define the sub-processes composing the process. The sub-processes use the 

inputs to create the outputs. 
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Table 8: Template of SIPOC Diagram 

Process Name 

Supplier Input Process Output Customer 

Entity providing 

each input 

Trigger to the 

process 

Sub-process Result of the 

process 

Received of the 

output 

2.5 Failure Analysis, Engineering Improvements and 

Empirical Studies 

A literature review has been performed during the duration of the research activities in 

order to find what the status of failure analysis research was. This review is presented 

in detail in the following sections we can conclude that some of these papers, books 

and reports have commonalities with our research work, although none of them fully 

covers the cycle from empirical data (historical data containing critical issues) to 

improvements up to the engineering, organization and standards level. Some activities 

have been performed for a much smaller scope and quite rarely to safety critical 

systems covering all the system lifecycle phases. Some researchers have focused on 

specific bounded problems, some have covered defects data from a particular lifecycle 

phase (e.g. requirements, source code, testing). However, some research work must be 

mentioned in this section especially due to the applicability to our research and 

commonalities that have been explored. 

Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems 
[123]: This paper from Dr. Robyn Lutz, analyses the root causes of safety-related 

software errors in safety-critical, embedded systems. She concluded that software 

errors identified as potentially hazardous to the system tend to be produced by different 

error mechanisms (non-safety-related software errors). They arise from discrepancies 

between the documented requirements specifications and the requirements needed for 

correct functioning of the system and misunderstandings of the software's interface 

with the rest of the system. The paper contains the identification of some methods by 

which requirements errors can be prevented. The objective is also to reduce safety-

related software errors and to improve the safety of complex, embedded systems. 

In-process improvement through defect data interpretation [124]: This paper 

presents an approach for the interpretation of defect data by the project teams to help 

correcting the software engineering process during development in order to improve 

quality and productivity. The authors use examples of corrections to evaluate and 

evolve the approach, and to inform and train those who will use the approach in 

software development. 

Software System Defect Content Prediction from Development Process and 

Product Characteristics [125]: The PhD dissertation from Dr. Nikora had the 

objective of ensuring reliability for the ever growing, in size and complexity, software 

space systems by developing new techniques to measure and predict system’s 

reliability and thus influence the development process and change the system’s 
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structure. He has developed a model for predicting the rate at which defects are inserted 

into a system, using measured changes in a system’s structure and development process 

as predictors, and show how to estimate the number of residual defects in any module 

at any time and determine whether additional resources should be allocated to finding 

and repairing defects in a module. 

Defect Analysis and Prevention for Software Process Quality Improvement [115]: 

This paper represents the results of a quantitative analysis of defects that occurred in 

the software development process for five similar projects and from the classification 

of various defects using first level of ODC, then finding these defects root causes and 

use the learning of the projects as preventive suggestions. The paper also shows the 

improvement in terms of reduction of defects once the preventive suggestions are 

implemented in other projects. 

Defect data analysis as input for software process improvement [126]: this paper 

describes the results of an analysis of 11879 software defects that have been classified 

and analyzed in order to determine the defect distributions and what are the most 

common defect types (defect from 3 companies). The authors noted that functional 

defects are, by far, the most common (65.5%), they concluded that unclear 

requirements or documentation only contribute to a residual percentage of defects 

(under 0.5%). The results of this study can be used to support the engineering process 

improvement. 

Using defect analysis feedback for improving quality and productivity in iterative 

software development [118]: This paper deals with defect analysis as a feedback 

mechanism to improve the quality and productivity in a software project developed 

iteratively. The authors discuss how defects found in one iteration can provide feedback 

for defect prevention in later iterations. 

Using Defect Analysis as an Approach to Software Process Improvement [127]: 

This presentation (and several other similar papers and presentations from the same 

author) demonstrate a way to classify bugs (problem reports), according to Beizer’s 

taxonomy [86]. This taxonomy contains nine main categories, which are further 

detailed in up to four levels. The author claims that categorizing each bug takes about 

five minutes. The improvements inspired by this defect analysis lead to better products 

(less defects after release, higher customer satisfaction). 

Digital Engineering Institute: Lessons Learned - klabs.org [128]: This webpage 

presents a scientific study of the problems of digital engineering for space flight 

systems, with a view to their practical solution. It contains links to the NASA Lessons 

Learned Information System.  The website contains lessons learned from design, 

analysis, verification, and test of digital systems. It presents several reports with flight 

problems and the relevant solutions, it might be a good input for the improvement 

suggestions. 

The Top Ten Things that have been Proven to Affect Software Reliability [129]: 

The work performed by Ann Marie Neufelder includes analysis of field failures and 

correlation to the engineering development characteristics (a total of 679 

characteristics). The data comer from 75 complete datasets and 54 incomplete datasets. 

Another study (Rome Laboratory model) contained 50 datasets and 220 parameters, 
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only. She uses correlation analysis and does sensitivity analysis and can rank the 

development characteristics according to their contribution to field defects and use the 

most influential characteristics to run a predictive model. 

A Literature Survey of the Quality Economics of Defect-Detection Techniques 
[130] and A Model and Sensitivity Analysis of the Quality Economics of Defect-

Detection Techniques [131] study and propose an analytical model for quality 

economics with a focus on defect-detection techniques. These apply to mainly system 

tests, defects over document types, the removal of costs in the field, but the authors 

also admit that these have not been extensively empirically analyzed. 

Requirements discovery during the testing of safety-critical software, Software 

Engineering [132], Analyzing Software Requirements Errors in Safety-Critical, 

Embedded Systems [133], and Operational Anomalies as a Cause of Safety-Critical 

Requirements Evolution [134] represent the results of the analysis of failures related to 

the requirements and the requirements phase as introduction phase. 

Software Engineering: Are we getting better at it? [135], is a survey and study where 

M. Jones provides an interesting analysis about space failures in the frame of the 

European Space Agency missions, but simply concluded that the main cause for all the 

accidents was lack of testing. Although better testing could have detected some of the 

problems, their origin (or cause) could be traced to other engineering deficiencies. 

An Analysis of Causation in Aerospace Accidents [136] presents a new model to 

evaluate the causal factors in a mission interruption of the SOHO (SOlar Heliospheric 

Observatory) spacecraft. The authors conclude that the causes of that specific accident 

are quite similar to causes found in other software- related aerospace accidents. 

2.6 Final Remarks 

This chapter presented the topics related to our research as relevant background and 

related work. Four main areas of research have been surveyed and used for our work. 

Firstly, we covered the Independent Software Verification and Validation, as one 

methods that provides techniques to detect defects. Any defect detection method, 

technique or tool can be applied as long as the defects are properly defined and 

documented. Secondly, we studied the Defects Classification Schemes, to support on 

the classification of the defects and enable the analysis of the causes. For the purpose 

of this work Orthogonal Defects Classification was considered the most applicable and 

mature scheme. Thirdly, we covered the Root Cause Analysis, where the defect data 

(types, triggers) are traced back to the causes and enable definition and application of 

solutions both in the form of better or earlier detection of elimination of the problems 

themselves. Lastly, we analyzed Failure Analysis techniques, Engineering 

Improvements and Empirical Studies, as a set of activities that take empirical quality 

data from defects or failures (from the engineering of critical systems), studies them by 

identifying under what conditions and what caused them, or what could detect them at 

an earlier phase of their engineering, and by defining solutions and improvements for 

the quality measured by the reduction of defects or accidents over time). 



Chapter 2 

 38 

The extensive amount of literature about these subjects demonstrates the importance of 

the topics, and the fact that industry is still striving to keep up with the technology 

advancements required by the society while improving the quality of the dependability 

of the developed systems shows that defect avoidance is a key aspect of critical 

systems. In fact, the defects or failure rates achieved today are still high and still cause 

unacceptable failures. Thus, the need to merge the advantages of these topics (defect 

or failure detection methods, classification, root cause analysis), and to build up on 

previous research work and lessons learned to endow industry with appropriate 

processes to learn from past mistakes and continuously improve the engineering 

processes, and consequently the engineering products in what concerns dependability, 

safety, security and so on. 
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Chapter 3 

Process for Defects Assessment 

There are several stages for the definition of an appropriate and widely acceptable 

process for defects assessment. Not only the process must be able to help in solving the 

existing problems, but it must also be based on proven methodologies and technologies 

and shall be able to integrate with the existing engineering processes. To define our 

defects assessment process, we started by drafting and applying a workflow (based on 

empirical data) that, iteratively, led to the process detailed definition. This workflow is 

depicted in Figure 9, which shows not only the relation between the different research 

topics covered (defects classification, root cause analysis, issues correlation, process 

feedback, engineering lifecycle feedback), but also the importance of the integration of 

the defects data and the engineering applied processes, as described in the following 

paragraphs. 

From left to right of Figure 9, we find the existing engineering practices (in red, 

depicted as Processes for each safety critical domain, since every domain applies 

specific processes, standards and tools), the objective, which is to improve these 

processes quality and dependability, and the existing knowledge (the actual data from 

defects and engineering processes performance). 

For a specific Process (way of doing engineering for a particular domain) we need to 

collect, sanitize and study data (mostly, defects classification to start). The 

classification and aggregation or clustering of the classification classes are performed 

to support the root cause analysis of groups of issues (instead of an analysis per issue), 

leading to some issue pattern identification, which makes the resolution of the problems 

more efficient. Then, the identified root-causes are mapped to the engineering 

processes and all that influences the engineering (General Engineering Process 

Framework in Figure 9), and an analysis is done on how to avoid or eliminate the root 

causes for future applications. 

The process summarized in Figure 9 has been adapted and adjusted according to the 

available data and has evolved to the more detailed process described in Section 3.1. 

Section 3.2 details the data collection and preparation. The defects classification 

activities are described in Section 3.3. The relevant root cause analysis tasks are 
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detailed in Section 3.4. Section 3.5 presents the tasks related to improvements and 

validation of both the process and the defects data. Finally, Section 3.6 concludes the 

chapter with some key remarks. 

 

 

Figure 9: Overview of the proposed process 

3.1 Overview of the Process 

The defects assessment process needs to cover the data collection and preparation, data 

analysis and relevant feedback identification. Our proposal can be divided in four main 

phases (refer to Sections 3.2 to 3.5 and Figure 10 for details): 

1) Data Collection and Preparation: defects data collection and preparation, 

aggregation of other data if necessary, such as complexity metrics, lifecycle 

data, etc. In practice, the issues (defects data) and the phase of issue 

introduction, the phase of correction, the type of project, etc., represent the main 

process inputs. 

2) Defects Classification: classification of individual defects according to an 

orthogonal defects classification schema/taxonomy to identify the defect types, 

triggers and impacts. Note that the classification taxonomy can be adapted for 

specific domains and technology purposes. 

3) Defects Root Cause Analysis: based on three perspectives (defect type, trigger 

and impact), identification of the root causes of the defect groups (e.g. per type, 

per trigger). Several root cause analysis techniques can be used (alone or 
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complementary) and the analysis can be applied only to the data on defect types, 

to the defect triggers, to the introduction versus detection phase information, or 

to any other combination. 

4) Improvements and Validation: act upon the identified root causes, at a 

process, organizational or resources (human and techniques/tools) level, and 

measure the effects of the implemented actions. It is recommended to propose 

improvements to the systems under analysis (both environment/organization 

and processes) and also to the defects classification process in order to make it 

evolve and more applicable to the domain under analysis. 

Based on the empirical analysis conducted and the lessons learned and feedback 

collected during the course of our research, we have refined the approach for root cause 

analysis of critical software, enabling the continuous improvement of engineering 

implementation and V&V at all levels (processes, techniques, tools, personnel, 

application of standards, organization, and so on). Although our dataset (details on the 

dataset are presented in Section 4.4) and our experience is mainly from space software, 

our approach can be used to support the evaluation and root cause analysis of any 

critical system, independently from the domain. Figure 10 depicts the general approach, 

which includes the data collection and preparation, the defects classification, the root 

cause analysis and a continuous improvement procedure. 

 

 

Figure 10: General Process Definition 

Out of the 4 phases in our process, we highlight the particular importance of the work 

performed during phase 2 (Defects Classification) and phase 3 (Defects Root Cause 

Analysis). The following paragraphs discuss these two phases from a broad perspective, 

while sections 3.2 to 3.5 provide further details about the four phases of the process. 
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The defects classification is based on an orthogonal classification taxonomy, and can 

start once the defects data are collected and prepared. In practice, the ODC 

classification is performed on the organized dataset, taking the defects one by one. 

Enhancements and adaptations to the ODC taxonomy can be useful depending on the 

nature of the defects and the domain, however, these enhancements should be quite 

precise. The results of the classification will give the engineer a first view of the types 

of defects, of the main triggers that lead to the identification of these defects, and on 

the possible impacts distribution. 

Root Cause Analysis (RCA) refers to determining how each defect was introduced 

and identifying the defect source. Identifying the defect source helps in preventing the 

root cause recurrence and finding process improvements. In practice, root cause 

analysis can be summarized as the process of finding the activity, process or action that 

caused the defects and supporting in eliminating/reducing the related effects by 

providing remedial measures. Two main principles drive the defect root cause analysis: 

 Analysis done/performed by experts: internal resources with expertise to 

understand what went wrong must support the analysis of the processes 

prevalent in the organization, but also independent experts shall be involved. 

This way, all possibilities are reviewed, analyzed and the best possible actions 

are defined. 

 Reduction of the defects to improve the system quality: the RCA must drive 

changes in processes, tools or human resources that improve the defect 

prevention at the earliest stage possible (defect origin) and ensure the early 

detection in case of recurrence. 

The analysis of the enhanced ODC application (defects classification) to the dataset of 

defects is complemented by the identification of the root causes for the majority of the 

defects based on the classification results and the knowledge of the technological 

domain and environment, processes, methods and tools. The reasoning is that it may 

be quite expensive to identify the root cause for every single defect, thus we focus on 

the more frequent and more severe defect types – other strategies can also be applied. 

One possible strategy could be to start by analyzing the more frequent and more severe 

defect types to determine their causes (origins). The set of causes obtained, once solved, 

would influence the severity and the recurrence of the remaining defects. There are 

several techniques and tools that can be used to facilitate the root cause analysis 

process, such as Fishbone (Ishikawa) diagrams, Pareto charts, change analysis or 5 

Whys analysis. 

Note that the root causes are not identified at the moment of resolution of the issues but 

at the moment of the analysis using the ODC or an enhanced ODC. In practice, they 

are the result of the analysis done on the defects by experts (in the present work, 

performed by the authors and complemented and reviewed by the industrial partners). 

Note also that several defects do not have a clear and unique root cause but a set of 

related root causes. 
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The root causes analysis shall include the root causes that originated the identified 

defect types (these are related with development issues) and also defect issues 

according to defect triggers, which represent the V&V weaknesses. In a subsequent 

step, the sets of root causes will lead to a dedicated list of measures to tackle both sets 

of root causes (development and V&V). 

3.2 Data Collection and Preparation 

The approach is based on defects data analysis and software engineering knowledge. 

Thus, it is important to fulfil some prerequisites prior to the efficient and correct 

application of the process, namely (refer to Figure 10 for each activity and to Chapter 

4 for further details about the data collection and preparation tasks): 

1. Data Collection: to successfully perform the analysis of the defects, the data 

collected (A. Defects Data and B. Other Project Data, in Figure 10) should contain the 

relevant and necessary information. This includes basic requirements, such as: a) 

detailed information about each defect and its fix; b) knowledge about defect 

environment conditions, such as tools, personnel, constraints; c) engineer’s assessment 

of the defect causes; and d) phase when the defect was introduced and phase when the 

defect was detected.  

Complementary prerequisites are also essential for a successful application of the 

process. The first one includes training on the involved techniques depicted in Figure 

10, such as defects classification (e.g. ODC) and root cause analysis. The second 

includes rules and guidelines (such as a standards, templates) for defects description or 

defect data collection. For the proper application of the process it is essential that the 

collected defects contain a minimum of information, including: reference artefact, 

defect title and defect detailed description, phase where the defect was identified, phase 

where the defect was introduced, activity that detected the defect, defect author, and 

defect severity. 

2. Data Preparation: once we have the necessary data it is important to organize it 

and perform some anonymization when required (when the process is applied internally 

in an organization this step is obviously not necessary). Data organization is essential 

for the next steps, since it is important to have the data in a searchable and manageable 

manner. It is also important to confirm the completeness of the data, from a defects 

description perspective, but also from all the complementary engineering information 

(life-cycle phase, techniques applied that lead to the defect detection, impact analysis, 

etc.).  

In the case where some missing information that would affect the classification or the 

RCA is detected, this phase shall promote the completion and collection of that 

information using as source the defect author or the referenced artefacts (documents, 

tools, code, tests, etc.). 
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3.3 Defects Classification 

To efficiently and concretely tackle the important problems of critical software 

engineering, the first set of dynamic analysis activities shall focus on an orthogonal 

classification of the sets of defects (see Chapter 5 for further details about the defects 

classification task): 

3. ODC Classification: perform the ODC classification on the organized dataset (the 

completed set of defects). Enhancements and adaptations to the ODC taxonomy can be 

useful depending on the nature of the defects and the domain, however, these 

enhancements should be quite precise. Other classification taxonomies can be used if 

they are appropriate, well known by the user and provide relevant information 

(grouping, prioritization, clustering) to support the root cause analysis. 

4. ODC Analysis: the goal is to analyze the classification results and provide a 

summary of the main findings, in particular in what concerns the distributions of 

defects types and triggers. This information gives the first hints about the quality of the 

dataset (defects frequencies, impacts, distributions), which can provide some quick 

feedback to the implementation (defect types results) and V&V teams (defects triggers 

results). 

3.4 Defects Root Cause Analysis 

The proposed root cause analysis is composed by several steps that include analysis of 

the defect types, the triggers allowing defect detection, the defects that could have been 

detected earlier, and later prioritization and consolidation of these root causes leading 

to concrete proposed improvements (see Chapter 6 for our results): 

5. Defect Type RCA: the classification of the defect types will define which are the 

most common/frequent types of defects. If these defects are also mapped to high 

severity impacts, their prevention can efficiently reduce the impacts. With this data 

from the defects classification we can identify what caused the specific defects with 

the more common types, try to aggregate them, identify common root causes and 

common solutions. 

6. Defect Trigger RCA: similarly, when the defects classification provides the most 

common defect triggers, it is possible to quickly conclude that those activities have not 

been efficient in detecting the defects earlier (in case they could be detected earlier), 

but also, the results provide the list of triggers that actually detect them and that can be 

applied from now on by the V&V teams to detect further defects as early as possible. 

These results support the identification of the causes and V&V techniques or triggers 

that allow the defects detection at the current phase. 

7. Late Detection RCA: when relevant information is made available and it is possible 

to determine at what point in the lifecycle the defect was introduced (either generated 

or not detected) it is interesting to determine why certain defects have not been spotted 

and solved before, and why they have slipped through phases. The root cause analysis 
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of these specific slipped defects helps in identifying the causes of the failures in the 

V&V and ISVV techniques that allowed the defects to propagate until a later stage in 

the lifecycle. 

8. RCA Consolidation: defects prioritization can be done to simplify the RCA and to 

make it more efficient. It can be done to tackle the defects with high impact on the 

system, or simply to analyze the defects with more common types or triggers (due to 

the large amount of defects and respective causes). Note that, it may happen that defects 

of the same type do not have the same causes, but at least the RCA will provide a list 

of causes for the majority of the defects and thus provide a quick reduction of defects 

when those causes are fixed.  

9. Improvements Suggestions: after the prioritization of the lists of root causes from 

steps 5, 6 and 7, a root causes consolidation is required. As the list can become very 

extensive, causes may be merged (if appropriate) and ordered according to the 

prioritization performed, or to another specific root causes prioritization. For the 

consolidated root causes, define changes, solutions or modifications to the processes, 

techniques, tools, training, resources, environment or application of standards. The 

definition of the improvements should come straight forward from the list of root 

causes. 

3.5 Improvements and Validation 

Some of the suggested improvements might be difficult to implement, and their 

efficacy may vary from team to team or from organization to organization. They shall 

contribute to improve the software quality and reduce the number of defects or prevent 

them, but different defects can then surface, and therefore a consistent process 

improvement should be in place and shall provide constant feedback: 

10. Improvements Implementation: the engineering (development and V&V) teams 

must be informed about the required changes or adjustments, and the organization, 

management and quality planning shall decide on the improvements to implement for 

future projects. This can be provided in the form of process improvements, dedicated 

workshop or training sessions, lessons learned sessions, improved guidelines or 

standards, etc. 

11. Process Validation and Improvements: at every step, it is possible to derive 

improvements to the process. Such improvements can be set to adjust to the 

organization culture, to the project environment, to the customer requirements, etc. 

However, it is essential to measure the effectiveness of the implementation of the 

results once the suggestions have been implemented and new defects (or no defects) 

have been collected. Note that improvement can and shall also be about the current 

process, the defects classification scheme and taxonomies, the root cause analysis 

techniques and so on. The proposed process is able to adapt and help in improving itself 

and its composing techniques. For the validation of the process see Chapter 7. 
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3.6 Final Remarks 

The process for assessment of defects has been applied and adapted according to our 

empirical study (see Chapter 5 and Chapter 6 for the results). It was also exposed to a 

large set of worldwide experts (see Chapter 7) that provided their feedback, even if 

most of them were from distinct domains and with a different background. Generally, 

the process was accepted with a “recommendation” rate of 60% and “possible 

recommendation” rate of 33%, while only 7% would not recommend such a process. 

The process described in this chapter contains some strengths and weaknesses that are 

summarized here. The strengths are: i) the process itself represents a structured 

approach; ii) includes explicitly root cause analysis; iii) is based on an orthogonal 

classification scheme; iv) allows the provision of improvements and feedback; and v) 

relies on high quality of data. On the weaknesses, we should mention: i) concerns about 

how to guarantee the quality of defect data; and ii) large number of steps in the process; 

and iii) difficulty in implementing/enforcing such a process and the obtained results. 

These remarks are obviously very relevant. First, the process will only work if the 

defect data are appropriate, of good quality and complete. For this, we shall relate 

weakness i) with weakness iii), as a cultural enforcement must be broader than just the 

application of the process, but also cover the defect data collection, the quality checks 

of the data, the changes necessary to a certain way of working, and so on. The large 

number of steps is required to have the process detailed with simple blocks. 

Furthermore, the process contains permanent self-feedback and also feedback to the 

development and V&V processes, as a result of the root cause analysis suggestions. 

The list of the essential suggestions made by the experts and that would make the 

process generic enough to cover different domains and different types of technologies, 

include (see Chapter 7): data collection improvements (process, database, quality 

guarantee); classification/validation activities and data quality check between phases 

of the process; consideration of projects details/specifics and team dynamics (skills, 

experience, motivation); and assessment covering also management related issues. In 

practice, we can observe that we have suggestions on the environment and 

prerequisites, which make absolute sense (data quality, projects details) and also on the 

validation of the internal process activities, namely the quality of the classification that 

cannot be easily automated as per today’s technologies. 

Each group of process tasks (Data Collection and Preparation, Defects Classification, 

Defects Root Cause Analysis, and Improvements and Validation) are described in the 

subsequent chapters, providing more details and the outcomes of the application of the 

process to our case study. In practice, Chapter 4 details the data collection and 

preparation processes and activities (steps 1 and 2 of the process), Chapter 5 describes 

the defects classification process and taxonomy adaptations (steps 3 and 4), Chapter 6 

covers the root cause analysis activities and results (steps 5 to 9), and Chapter 7 presents 

the strategy and results of the process validation and implementation (steps 10 and 11). 
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Chapter 4 

Data Collection and 

Preparation 

Organizations have a challenge related to defect data management. First of all, these 

data are usually confidential and sensitive to the organization or the organization 

suppliers, and thus not usually available. Secondly, industry tends to not properly and 

completely document defects (especially industries with a lower CMMI maturity 

level), as they are more concerned about deploying the systems in a short timeframe 

and fixing the issues as soon as possible, than on really focusing on measuring and 

process improvement. Third, several cultural barriers (as the ones identified by Jäntti 

et al [137]) do not ease the implementation and usage of a defects management system, 

including data collection, acceptance and communication of the issues, organizational-

wide processes, etc. Therefore, defects data management (collection, preparation, 

recording, analysis) is not an easy task. Moreover, the results of the whole defects 

management process depend on the quality and availability of data, making data and 

the way it is collected the most important step for any defects analysis activity. 

Data collection and preparation is a set of complex processes that require organizational 

sponsorship, and organization wide processes require data collection rules or training, 

as well as standard defects collection contents. Furthermore, the defects data must be 

stored, either in a tool/database or in a set of documents, this being also an 

organizational strategy that needs to cope with data access and confidentiality issues. 

Defects data must be made available and must be complete or provide means to be 

completed with additional information (resources, author, documents, references, etc.). 

For this work we had access to real defects data that were produced to inform the 

stakeholders about the issues with an acceptable detail level. However, for some of the 

defects further information was needed, as for example to consult the original artifacts 

or documents to better understand the problem and its origin. The data was collected 

and prepared according to the format described in this chapter. Important actions had 

to be taken to preserve the confidentiality of the data, in particular the projects from 
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where they came from and the involved stakeholders, as these would publicly expose 

weaknesses of the engineering process of those organizations. 

The chapter is organized as follows. Section 4.1 presents a global view of the data 

collection and preparation related activities. Section 4.2 provides the details of the data 

collection tasks, next we present the applied data preparation and clean-up activities 

(Section 4.3), we then provide information about the defects included in our used 

dataset (Section 4.4), and we conclude with some final remarks about the data related 

tasks (Section 4.5). 

4.1 Overview of the Process 

The data collection and preparation depends on the completeness and quality of the 

input data. For this purpose and in order to use the data for our defects assessment 

process we have taken a straight forward approach to collect and prepare those data. 

The procedure is depicted in Figure 11 and described next. 

 

Figure 11: Data collection and preparation procedure 

Defects can be originated and detected at any of the lifecycle phases, so the first 

important activity is to collect information (data collection) about the defects (from 

specifications, architecture, design, implementation, testing, operations, and other 

phases or V&V activities) in a structured way and with enough information to enable 

an orthogonal classification and later support the root cause analysis. This is exactly 

why there is also a data preparation phase, where the collected defects data are 

structured and completed or complemented with additional information sources (data 

completion).  

The data collection and preparation phases can be based on a guideline or template to 

collect the minimum of defect data required for the next defects assessment activities 
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(see the used template in Annex D and the data collection and preparation details in 

sections 4.2 and 4.3). Other actions might be applied to the data to make them workable 

and available to the following phases of a defects analysis process. For example, we 

can apply some data clean-up, removal of unnecessary defects or details, and 

particularly data anonymization for data confidentiality assurance, during the data 

preparation activities (Section 4.3), if the data are to be made available to third parties. 

In the case where the data is being internally analyzed and there is no need to involve 

any third-party expert or to reveal the results to any external entity, this step is 

simplified and not required. Finally, the processed defects data need to be properly 

stored and managed (configuration management). For this, a tool or a dedicated 

database can be developed, for example by using Microsoft Access or Excel databases 

and manage their configurations with Git1, CVS2 or SVN3 repositories. 

4.2 Data Collection 

Defects data can come from different sources, including V&V reports, Excel databases, 

emails, and bug tracking web based tools. All these sources contain different formats 

and different levels of details for the defect data. Furthermore, a selection should be 

performed on the data to be collected, in order to include defects from different types 

of systems and subsystems, but also to include defects from all the lifecycle phases 

(specifications, architecture, design, implementation, testing, and operations).  

Our analysis is based on a set of real defects from ISVV activities in space projects. 

The projects include subsystems that compose satellite systems for three different 

domains: a) scientific exploration; b) earth observations; and c) telecommunications. 

These cover different types of software, such as start-up or boot software, on-board 

application software, command and control units, payload software, and attitude and 

orbit control units. The engineering processes used in the selected missions (and that 

drove the engineering lifecycles) were based on the ECSS standards, namely the space 

engineering standard E-ST-40 [42] and the quality standard Q-ST-80 [43], which have 

a comparable lifecycle and similar strict requirements imposed by the European Space 

Agency (ESA). 

                                                 
1 http://www.github.com/ 
2 http://savannah.nongnu.org/projects/cvs/ 
3 https://subversion.apache.org/ 
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Table 9: Generic caracterization of the subsystems contributing to the dataset 

Subsystem Domain Software Types 

SS01 Earth observation On-Board Start Up / Boot Software 

SS02 Scientific exploration On-Board Application Software 

SS03 Telecommunications System Software 

SS04 Earth observation Payload boot Software 

SS05 Earth observation On-Board Application Software 

SS06 Earth observation Payload boot Software 

SS07 Scientific exploration 
Payload Software 

Payload boot Software 

SS08 Scientific exploration 
Payload Software 

Payload boot Software 

SS09 Scientific exploration 
Payload Software 

Payload boot Software 

SS10 Scientific exploration 
Payload Software 

Payload boot Software 

SS11 Scientific exploration 
Payload Software 

Payload boot Software 

SS12 Scientific exploration 
Payload Software 

Payload boot Software 

SS13 Scientific exploration 
Payload Software 

Payload boot Software 

SS14 Scientific exploration 
Payload Software 

Payload boot Software 

SS15 Scientific exploration Attitude and orbit control unit software 

SS16 Scientific exploration Command and control units Software 

 

The subsystems (see Table 9) were developed according to functional and non-

functional requirements mandated from ECSS and mission specifics (by ESA). They 

are characterized by the following needs/objectives, which are common to space 

critical systems, and that were collected from the ECCS standards [42], [43] and from 

the corresponding engineering interpretations of the specification documents from 

several missions: 

 No crash or hang shall happen at any time; 

 No dynamic memory allocation is allowed; 

 Communications-Telemetry (TM)/Telecommands (TC) must always be 

possible between ground control and the satellite; 

 The system must implement a Safe Mode (with basic communications, patch 

and dump functionalities); 



Data Collection and Preparation  

51 

 Most systems shall have a very simple and stable start-up software (also called 

boot software); 

 There must be a watchdog (hardware and/or software) or an alive signal; 

 Systems should be built with redundancy (at least hardware); 

 Most systems must include FDIR (Fault Detection Isolation and Recovery) 

functionalities to account for the environment and external faults; 

 The systems must have high autonomy and some self-correction procedures; 

 Systems are categorized with a criticality level related to the impact or 

consequences of system failures (in this case, the ECSS defined levels are: 

Catastrophic, Critical, Major and Minor or Negligible). 

The projects could also be characterized by: 

 Requirements written in natural language (structured), highly based on 

documentation and non-formal processes and languages; 

 Documentation in UML/SysML and PDF files, with limited possibilities of 

automated verification and formal analysis; 

 Programming languages such as C, Ada and Assembly, that are quite mature 

and low level languages; 

 Unit tests performed using commercial tools (e.g. Cantata++, VectorCast, 

LDRA), commonly developed and adapted for the specific projects embedded 

systems and environments; 

 Integration and system testing performed in a specific validation environment 

(Software Validation Facility - SVF) developed for this purpose on a case by 

case situation, with hardware emulation and hardware in-the-loop, simulated 

instruments, etc. 

 A strong quality assurance process, based on the ECSS standards and monitored 

by the European Space Agency and complemented by and Independent 

Software Verification and Validation (ISVV) activities for the critical areas of 

the project; 

 A well-defined and mature Software Development Process (SDP). 

The defects collected for our study (also called issues or Review Item Discrepancies – 

RID) were identified by independent teams in the project development artefacts, after 

the development teams have performed their own required verification and validation 

activities, as defined in the ECSS SDP. The selection of systems and defects was based 

on several criteria, namely (further details about the dataset are presented in 

Section 4.4): 

 The defects are all confirmed (i.e. no false positives); 
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 The systems were developed for different space missions (in this case, 4 

different missions, including scientific exploration, earth observation and 

telecommunications); 

 The systems were developed by diverse prime contractors (3 main European 

prime contractors) and multiple software development entities (a dozen 

entities); 

 Different types and sizes of systems or sub-systems are included (in our case 

16, including start-up and boot systems, central control units, attitude and orbit 

control systems, payloads control software); 

 The defects were originated by different independent assessment activities, and 

detected after each of the SDP phases (a total of 1070 defects): 162 defects were 

detected after the conclusion of the specification phase, 112 after architecture, 

378 after implementation, 398 after testing and 20 after deployment; 

 The defects cover different severity categories, as defined in ECSS Q-ST-30 

series. In our dataset, 14% of the defects were classified as Major, 66% as 

Minor, and 20% as Improvements. 

4.3 Data Preparation 

The collected defects have been integrated in an Excel database where specific 

information was added. Some information required was not possible to import from the 

defects data sources (defects reports) and had to be complemented by external sources 

and in most cases by consulting the defected artifact or original documentation. This 

data was either not existing or not documented in the collected defect reports. It 

includes, for example, the year where the issue was raised, the maturity of the 

engineering team that generated the issue, or the exact activity (V&V tasks) that 

allowed the detection of the issue. Furthermore, the introduction and correction phases 

(Phase Detected, Phase Applicable) were also not explicitly stated in the defect reports 

but could easily be complemented. The excel spreadsheet has the following structure: 

 Number: a unique identifier for the defect, usually the original defect identifier; 

 Project: the name of the project from where the defect originated; 

 Subsystem: the subsystem or component to which the defect applies – a 

subsystem code was used in order to anonymize data for external experts; 

 Domain: the technology domain where the defect applies to (e.g. space, 

aeronautics, automotive, defense, railway, etc.); 

 System Type: a description of the system or component type, which can be 

different for every technology domain (e.g. for space systems it can be: on-

board start-up software, payload software, ground control software, on-board 
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application software, on-board systems, on-board component, command and 

control system, etc.); 

 Issue Title: a summarized title for the defect; 

 Description: the defect detailed description. This description shall be as 

complete as possible to simplify the classification and the root cause analysis. 

We have taken the original defect description that would allow full 

understanding and resolution of the defect; 

 Classification: the original severity classification of the defect, according to the 

organization severity classification scheme (e.g. for ISVV there is a 

classification scheme that was used and is shown in Section 4.4: Minor, Major 

and Comment); 

 Problem Type: classification of the defect type according to the original 

classification scheme (e.g. for ISVV there is a classification scheme that was 

used and is shown in Section 4.4); 

 Phase Detected: the lifecycle phase where the defect has effectively been 

detected and recorded. This column can be adapted to the applicable lifecycle 

phases. 

 Phase Applicable: the lifecycle phase where the defect has effectively been 

introduced. This column can be adapted to the applicable lifecycle phases. 

 Defect Type: the ODC (and later enhanced ODC) defect type classification for 

each defect. For details on this classification see Chapter 5; 

 Defect Trigger: the ODC (and later enhanced ODC) defect trigger 

classification for each defect. For details on this classification see Chapter 5; 

 Defect Impact: the ODC (and later enhanced ODC) defect impact classification 

for each defect. For details on this classification see Chapter 5; 

 Comment: field used to store information about the classification doubts and 

suggestions of modifications to the ODC original classification taxonomy. This 

information was later extracted and used to propose an enhanced ODC 

taxonomy; 

 Notes: notes related to the defect understanding or additional defect 

information; 

 Activity: the review or V&V activity that led to the discovery or detection of 

the defect. This is usually the activity that was being performed when the defect 

was uncovered; 

 Keywords: field reserved for keywords related to the defect in order to enable 

future automation of the defects analysis. 

Filling this structure was not always straightforward due to the different sources of 

defects data (mostly from ISVV reports, defect reports and other excel spreadsheets), 
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thus the data preparation included some data harmonization, in particular for the fields: 

System Type, Classification, Problem Type, Phase Detected, Phase Applicable, and 

Activity. Additional information was also collected but later discarded such as the age 

of the defect (year of raising it), the organization responsible for the defect, and 

complexity metrics related to the defect subsystem or component. This additional and 

complementary information was not adding enough relevant information for the root 

cause analysis and was making the process too complex to be easily applied. 

With the defects dataset built and filled we had to consider which amount of the data 

could go public and which should stay internal to the organization (data 

confidentiality assurance in Figure 11). It is natural that defects originated from a 

specific team, in particular those that are dealt with internally and during the 

engineering lifecycle phases, do not go public. No organization likes to have their 

shortcomings revealed publicly, as they deal with them internally, solve them and 

present a system or a product with an acceptable level of quality and dependability. 

Even when these organization are assessed by independent assessors, this information 

is not revealed and is used internally to correct the issues and improve the engineering 

methods. 

For this purpose, we had to operate some modifications on the dataset in order to 

eliminate the possibility of identification of the involved parties. The main fields that 

have been hidden or modified are: Number, Project, Issue Title and Description. All 

these fields contained sensitive data that could lead to the identification of the 

organizations involved in the development and V&V, and thus either they have been 

hidden (the two first ones have been replaced by the Subsystem identifier) or reviewed 

and anonymized (the two latter ones) in case some sensitive information was included 

in the title or the description (e.g. the name of the component, the company, etc.). 

4.4 Defects in the Dataset 

Table 10 summarizes the 1070 defects included in the dataset, divided by severity 

(having a major or minor impact in the system, or just being comments to improve the 

engineering) and considering the ISVV activities in which they were found. The defects 

have been originated from the analysis of more than 10.000 software requirements, 

more than 1 million lines of code (mostly C, Ada95 and some Assembly), and over 

3.000 tests4 (some unit tests, some integration tests, some system tests). In practice, the 

objective of ISVV was to find issues in the project artefacts, report and classify them 

in a clear and consistent way for the customer to act upon immediately and avoid these 

issues to slip over subsequent phases. 

For the particular set of selected defects, Table 10 shows the results of a typical ISVV 

analysis, i.e. issues identified during all the lifecycle phases (Requirements, Design, 

Implementation, Testing, and Operations), the large majority of the issues are Minor or 

                                                 
4 The 3000 tests correspond to only part of the requirements and code referred, as not all ISVV activities cover the full set of 

artefacts, e.g. for some projects only source code analysis was performed, no tests related to that specific code have been assessed. 
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Comments, which is consistent with the strict and mature development and validation 

processes applied for the space domain software, and a significant amount of defects is 

identified at the implementation and testing phases. This comes from the fact that 

source code artefacts and testing specifications, procedures and results are the ultimate 

focus of ISVV activities and represent the large majority of items under assessment, 

thus generating also a large amount of defects. 

Table 10: Dataset of ISVV defects 

 ISVV activity  

Severity Req. 

Verification 

Design 

Verif. 

Code 

Verif. 

Test 

Verif. 

Operation 

Monit. 

Total 

Major 27 14 43 62 2 148 

Minor 98 84 185 294 18 679 

Comment 37 14 150 42 0 243 

Total 162 112 378 398 20 1070 

 

The ISVV originally classified the defects with the following classification types (from 

[65]): 

 External consistency: differences in the implementation of artefacts between 

phases or with other applicable or reference artefacts (e.g. inconsistent 

documentation); 

 Internal consistency: inconsistency against another part of the same artefact 

(e.g. different code for similar purpose, differences within the same document 

or architectural components); 

 Correctness: item incorrectly implemented or with technical issues (e.g. 

erroneous implementation, wrong documentation description, bad architectural 

definition); 

 Technical feasibility: item not technically feasible with the actual constraints 

(e.g. unattainable or impossible requirement, architecture not viable); 

 Readability and Maintainability: item hard to understand and/or maintain 

(e.g. lack of comments or no description, requirements too complex or too 

generic); 

 Completeness: item not completely defined or insufficient details provided 

(e.g. missing details, missing architectural components, insufficient 

requirements, not all requirements coded); 

 Superfluous: item that is a repetition or brings no added value to the artefact 

(e.g. repeated requirements, copy-pasted code doing the same actions); 

 Improvement: suggestion to improve any property of the artefact usually not 

related to a single of the other classification types (e.g. efficiency, simplicity, 

readability); 
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 Accuracy: the item does not describe with precision or follows the applicable 

standard (e.g. measurement precision, calculation precision, exact 

implementation). 

The resulting classification of the defects by the ISVV teams is shown in Table 11. The 

main types of defects are external consistency, completeness, and correctness. These 

three types account for 75% of the total of ISVV defects. Note that the data shown in 

Table 11 have been used in an industrial context to provide simple metrics and to help 

promoting the immediate correction of the issues (including defects). This 

classification has never been intended to determine the defect types (although it 

represents generic defect types categories), nor determine the triggers, and only the 

severity of the impact has been considered in those cases. Therefore, a classification 

that allows to orthogonally classify defect types, triggers and impacts, as well as to 

support the analysis of the introduction versus the detection phases, is needed to support 

the RCA activity. 

Table 11: ISVV original defect types classification 

Defect Type Number of Defects Percent 

External Consistency 313 29% 

Completeness 275 26% 

Correctness 213 20% 

Internal Consistency 132 12% 

Technical Feasibility 3 0% 

Readability & Maintainability 84 8% 

Superfluous 14 1% 

Improvement 34 3% 

Accuracy 2 0% 

Total 1070 100% 

4.5 Final Remarks 

The quality of the inputs is key to any process. In order to ensure relevant results from 

the application of a defects assessment process, we have collected defects data, 

prepared and harmonized the defects, and complemented them whenever required. 

Anonymization was also required due to confidentiality of the defects data. The defects 

data have been collected in an Excel spreadsheet, which was also used later on for the 

individual classification of each defect based on the selected orthogonal defect 

classification taxonomy. 

We believe that the simple data collection and preparation approach, complemented 

with a short training on writing defects and filling the standard defects information can 

be an important step into the successful analysis of organizational weaknesses and 

reduction of the number of critical defects in the short/medium term. 
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Our case study dataset includes 1070 defects from space projects. Data were collected 

and harmonized from different sources (ISVV reports, excel spreadsheets with issues 

and operational defects), in order to obtain a coherent set of defects, covering different 

types of systems and all the lifecycle phases. This dataset is the source for all the 

activities and tasks of the defects assessment process (Chapter 3), namely the 

definition/adaptation/validation of the defects classification taxonomy, the root cause 

analysis based on the results of the defects classification (particularly the defect type, 

the defect trigger and the phases where the defect was detected versus the phase where 

it had been introduced) and the identification of correction, suggestions and 

improvements to both the process and the systems where the defects come from. These 

aspects will be addressed in the following chapters. 
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Chapter 5 

Defects Classification 

The defects dataset has been first classified with ODC v5.2 [92]. The outcome of this 

initial classification of our dataset was that we could not properly classify all the defects 

with the existing ODC defect types, defect triggers and defect impacts (see Section 5.1 

for the justification of the selection of these attributes). The classification difficulties 

were annotated when a specific issue was being classified and there was no 

classification fit or agreement. In fact, we experienced that for 31.7% of the defects, 

the original ODC taxonomy had some limitations. The issues affected (i.e. the RIDs 

that could not properly be classified according the standard ODC taxonomies) have 

been set aside and dully noted in order to contribute to the ODC adaptation.  

The standard ODC was thus considered not totally fit for this classification because it 

was not developed for the specific case of ISVV nor for critical systems, or even to 

cover the whole engineering lifecycle - from the 1070 defects classified, 136 defect 

types, 76 defects triggers and 201 defect impacts could not be properly mapped to the 

standard ODC taxonomy. A fitter ODC taxonomy was possible with some extended 

types and triggers that cover in a more efficient and concrete way the specific critical 

ISVV issues (e.g. traceability, verifiability, robustness/dependability and safety related 

properties). 

For example, defects related to tests and requirements specification are not clearly 

mapped to an existing ODC defect type and they are quite common sources of the 

reported defects from the Independent Test Verification activity. In what concerns the 

impacts, we can point out the absence of Testability and Verifiability specific 

classifications (as important requirements for critical systems and related standards), 

and we have also identified a few defects that would fit into more than one ODC impact 

classification (this indicated some orthogonality issues or the need to break the defect 

into more than one defect from the ISVV team point of view). 

To efficiently and concretely tackle the important problems of critical software 

engineering, defects classification includes two main tasks (see Chapter 3), the first 

consisting of applying ODC (or an enhanced version of ODC) to the dataset, and the 
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second focusing on the analyzes of the classification results to provide a summary of 

the main findings. This is precisely the goal of this chapter. 

The outline of this chapter is the following. Section 5.1 presents an overview of the 

process to adapt the standard ODC classification and operate the classification itself. 

Section 5.2 presents the original ODC classification and the identification of needed 

adaptations. The next section describes the proposed adaptations to the original ODC 

taxonomy. Section 5.4 details the obtained results of the enhanced ODC classification 

applied to our defects dataset. Section 5.5 provides the results of the validation strategy 

of the ODC classification and acceptability of the results. Finally, Section 5.6 

summarizes the ODC activities and provides the final remarks concerning the defects 

classification related activities. 

5.1 Overview of the Process 

The adaptation of ODC may lead to changes in the taxonomy of the different attributes 

to make them more applicable, more complete and more adjusted to critical systems 

defects from all lifecycle phases. Thus, some additions, reductions or merges might be 

needed over the original ODC taxonomy. Although the ODC general approach remains 

unchanged after adaptation, the attributes themselves were evaluated and adapted when 

necessary. In practice, the most relevant inputs for the taxonomy adaptation were the 

difficulties felt while applying the standard ODC to the defects in our dataset. 

We have not considered all eight attributes provided by the ODC specification, leaving 

aside the following ones: target, qualifier, age and source. We did not find the need to 

use these to achieve orthogonality, to promote a simple and regularly usable 

classification (with only essential attributes) and to avoid very specific code oriented 

attributes (not necessary to enable root cause analysis). The selected attributes are the 

most important and the candidates for adaptation for critical systems: activity and 

trigger represent the defect detection method and activity and can thus influence the 

root cause from a V&V perspective, type represents the development defect category 

and drives the root cause for all development defects, and impact can be used to 

prioritize and cluster groups of defects based on the defects effect on the system and 

also on the type of effect – safety, robustness, maintainability, etc. A small justification 

for the attributes not used is provided next: 

 Target – we claim that this attribute is not needed for orthogonality as the 

Activity/Trigger/Type is sufficient to derive what is the target of a defect. 

Target simply represents the high-level artifact that was fixed, for example 

code, design or requirements. Nonetheless it is additional information that may 

provide useful support in some specific situations; 

 Qualifier – we opted not to use this qualifier as our source of defects have this 

already specified in the description of each defect. Qualifier is simply the type 

of code fix: addition of missing code, fixing of existing incorrect code, or the 

removal of extraneous code; 
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 Age – this attribute seems to be useful when describing defects that occur during 

development, but not when classifying defects of an already developed product 

such as our case of ISVV, hence we opted to not use it. Age can be useful to 

compare the evolution of the defects sets over different releases and to study 

the changes of defect types due to the evolution of technologies, design or 

programming, languages, etc. This is generally covered by the defects 

description; 

 Source – this attribute captures the origin of the code that had the defect 

(developed in house, reused from a library, etc.) and was not classified because 

it captures very specific information that is not useful for root cause analysis of 

groups of defects (unless these groups include the software type, but this 

information is already include in the defect descriptions anyway).  

The above considerations do not imply that these attributes are not useful, as they surely 

provide additional information that can be used, although some of that information is 

already included in the defects description. However, it is also essential that the 

classification process is simple and contains the most relevant attributes to be 

efficiently applied in industry and adopted by the engineering teams. Thus, for the 

approach to be used by industry in a regular way, it should be kept as simple as possible 

and use the essential attributes only. 

Our strategy to perform the ODC enhancement started by applying the original 

classification to the dataset, then noting the classification difficulties, later aggregating 

and clustering these non-classified defects, harmonizing them, and finally defining new 

attributes or merging existing ones. A validation of the proposed enhanced taxonomy 

(for type, trigger and impact) was conducted to confirm its fit. The set of defects that 

were not originally classified or classified with attributes that changed were 

classified/reclassified by applying the new taxonomy. 

The first step to be performed when an organization decides to implement ODC is, as 

specified in ODC v5.2, to map activities to triggers. Although triggers are given by the 

ODC specification, the ODC activities are meant to be customizable, defined by each 

organization according to their approach in defect detection and removal (e.g., 

workflow, processes and the applicable lifecycles). Table 12 presents a set of activities 

performed at industrial levels related to ISVV of critical systems and the mapping to 

the set of ODC triggers. The Activity attribute was extracted directly from the ISVV 

activities and helps in identifying the introduction phase of the defects. Then, for each 

activity a set of triggers is mapped, these triggers are related to the nature of the ISVV 

tasks performed for every activity (described in detail in [65]), and have been 

harmonized in Table 12 to include the ODC set of triggers. As shown, some activities 

are mapped mostly to documentation/inspection related triggers, as for Requirements 

and Design, and some others are related to testing or dynamic execution triggers, as is 

are the cases of Test Verification and Test Execution. 
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Table 12: Mapping between activities and triggers 

Activity Triggers 

Requirements verification Standards conformance 

Traceability/Compatibility 

Consistency/Completeness 

Design verification Design conformance 

Standards conformance 

Traceability/Compatibility 

Logic/Flow 

Concurrency 

Consistency/Completeness 

Code verification Standards conformance 

Traceability/Compatibility 

Logic/Flow 

Concurrency 

Consistency/Completeness 

Test verification Consistency/Completeness 

Logic/Flow 

White box path coverage 

Test coverage 

Test variation 

Test sequencing 

Test interaction 

Workload/Stress 

Test execution White box path coverage 

Test coverage 

Test variation 

Test sequencing 

Test interaction 

Workload/Stress 

Blocked test 

Operation monitoring Design Conformance 

Workload/Stress 

Start-up/Restart 

HW/SW Configuration 

 

In practice, using ODC consists of applying it to the issues to support the analysis and 

feedback of defect data targeting quality issues in software design, code and 

documentation. Taking into account information on the issues, ODC identifies a defect 

type and the relevant trigger (assessment techniques, testing, analysis methods, etc.) 

for each defect identified. The results can be used for statistical quality control (e.g. 

measuring improvements), as well as for in-process monitoring and reliability 

assessment (required for critical systems). They are also frequently used to promote 

specific process and resources improvements by tackling the identified issues directly. 

The analysis of the classification results supports the ODC adaptation: once the 

classification work has been performed, the obtained classifications are analyzed and 
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the results used to propose adaptations of the classification taxonomy, if necessary 

(type, trigger and impact) to be aligned with the domain. Classification 

recommendations from experts and data clustering analysis can be used to identify 

classification patterns. 

The results of re-classifying the issues with the newly proposed taxonomy allows to 

validate the recommendations. The adaptations proposed for the classification 

taxonomy after applied and adjusted to the nature of the critical systems defects shall 

lead to more straight forward classifications of the defects and thus simplify the 

classification tasks. Further adaptation can be fed back into the classification taxonomy 

proposed and lead to a re-classification of the affected issues. 

The ultimate goal of the process is to analyze the classification results and provide a 

summary of the main findings, in particular in what concerns the distributions of 

defects types and triggers. This information gives the first hints about the quality of the 

dataset (defects frequencies, impacts, distributions), which can provide some quick 

feedback to the implementation (defect types results) and V&V teams (defects triggers 

results). 

5.2 ODC Classification Results 

The ODC classification of the issues identified by the ISVV teams (meaning that the 

assessment was made in quite mature software artefacts by independent experts – so 

these are not regular software engineering lifecycle issues) and during operation, has 

shown that for 1070 ISVV only 731 could be correctly classified considering ODC 

type, trigger and impact attributes (the remaining 31.7% justify the improved, more 

applicable, ODC taxonomy to be orthogonally classified).  

Table 13 presents the results of the classification of the 731 defects using the standard 

ODC. We can observe that the main classified types of defects are Documentation 

(36.11%), Function/Class/Object (21.34%) and Algorithm/Method (11.35%). These 

three defect types (that cover more than two thirds of the defects) arise from the fact 

that the systems under analysis are heavily based on documentation and thus the larger 

set of defects is naturally of documentation type. Then, several defects are related to 

the function and the proper implementation of algorithms, being more “functional” 

defects.  

The main classified triggers for the defects under analysis are Document 

Consistency/Completeness (Internal Document) (22.30%), Test Coverage (19.84%) 

and Backward Compatibility (19.29%). These three triggers uncovered almost two 

thirds of the defects. It is worth mentioning that while the first trigger is evident due to 

the nature of the artefacts under assessment, the second one is related to the fact that 

most of the testing activities performed for space systems tend to prove coverage of the 

requirements, and the third trigger is related with traceability analysis results (backward 

traceability checks).  

The impacts identified are Capability (30.23%), Reliability (24.76%), Maintainability 

(18.74) and Documentation (18.60%). These impacts cover more than 90% of all the 
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impacts in the dataset. Capability relates to limited functioning of the system, 

Reliability to the dependability properties that are not met, Maintainability is related to 

updates, patches and maintenance activities, and Documentation is a minor severity 

impact related to documentation imparities. 

Table 13: Original ODC classification results (731 defects) 

Defect Type 
Qt

y 
% Defect Trigger 

Qt

y 
% 

Defect 

Impact 
Qt

y 
% 

Documentation 

264 36.11% Document 

Consistency/Completeness 

(Internal Document) 

163 22.30% Capability 221 30.23% 

Function/Class/Object 156 21.34% Test Coverage 145 19.84% Reliability 181 24.76% 

Algorithm/Method 83 11.35% Backward Compatibility 141 19.29% Maintainability 137 18.74% 

Checking 
48 6.57% Operational Semantics  

(Understanding flow)  

95 13.00% Documentation 136 18.60% 

Interface 48 6.57% Design Conformance 86 11.76% Performance 28 3.83% 

Understandability 35 4.79% Lateral Compatibility 46 6.29% Usability 19 2.60% 

Environment 35 4.79% Combinatorial Path Coverage  

(Complex Path)  

20 2.74% Migration 6 0.82% 

Assignment/Initialization 28 3.83% Rare Situation  15 2.05% Standards 2 0.27% 

Timing/Serialization 26 3.56% Language Dependencies 7 0.96% Installability 1 0.14% 

Build/Package 8 1.09% Test Sequencing 7 0.96%    

   Recovery / Exception 3 0.41%    

   Test Interaction 1 0.14%    

   Test variation 1 0.14%    

   White box path coverage 1 0.14%    

Total 731 100% Total 731 100% Total 731 100% 

5.3 Proposed Adaptations (ODC Enhancements) 

This section presents the proposed adaptations to the original ODC (v5.2) to make the 

defect type, defect trigger and defect impact more fit for classifying defects in critical 

systems. The distinct backgrounds of the tables in this section highlight the changes 

from the standard ODC taxonomy: a) white - unchanged; red - deleted; yellow - 

merged; and green - new. 

5.3.1 ODC Attributes – Activity 

The ODC specification defines activities as defect removal activities. In our 

understanding, we benefit to expand this definition to also encompass defects that 

appear in field operation, hence we added the activity ‘operation monitoring’. 

The list of activities are the ones performed during the ISVV phases described in 

section 2.2 and includes operation monitoring: a) Requirements verification; b) Design 
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verification; c) Code verification; d) Test verification; e) Test execution; and f) 

Operation monitoring. See Table 12 for the full list of considered Activities. 

The main divergence to the standard ODC is the inclusion of test verification and 

operation monitoring as activities which can be a source of defects. Test verification 

was included as it is an activity extensively performed in ISVV and other defect 

detection activities, and was not considered in the standard ODC. Operation monitoring 

simply represents the issues that have been identified after the system is in operation. 

This means, the issues or defects detected during the system execution. 

In order to properly accommodate these activities, the taxonomy of the other attributes 

was also adapted (such as the Testability/Verifiability impact and the Documentation 

type). For more details please refer to the modification descriptions in sections 5.3.2, 

5.3.3 and 5.3.4. 

5.3.2 ODC Attributes – Type 

The type attribute represents where the defect was fixed. Since not all defect types were 

possible to determine with the original ODC taxonomy, some gaps have been identified 

mostly to simplify the classification and avoid confusions, but also a new type has been 

added in order to be able to classify some of the defects. We adapted the ODC v5.2 

classification and extended it with the new value when appropriate for our needs, as 

follows: 

 Algorithm/Method, Checking, Function/Class/Object, 

Timing/Serialization, Documentation – same meaning as in the original ODC 

5.2. 

 Assignment/Initialization – similar to the original ODC v5.2, but extendable 

to cases where, for instance, variable names are changed to be in compliance 

with coding standards or coding rules (frequently required for critical systems). 

 Build/Package/Environment – new classification to be applied in defects 

related to the build process, packaging of data/functionality, and environment 

setup or configuration. Libraries that are never used or large modules of dead 

code should also be classified here. Note that cases of code paths that are never 

reached and with a small scope, such as inside a function, should be classified 

with the ‘Function/Class/Object’ type, by default. 

 Interface – this classification is the result of the merge of ‘Interface’ and 

‘Relationship’ into one single type, as both relate to interfacing (internal or 

external) and the encountered cases were all related to interface problems – 

even when they were a relationship issue. 

 Understandability – removed and merged with ‘Documentation’ as this type 

raised confusion during the classification activities and all the encountered 

examples could be covered by documentation fixes. 
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Table 14 depicts the mapping of the standard ODC type taxonomy to the proposed 

adaptation of the ODC type attribute values. 

Table 14: Standard ODC Type to Adapted Taxonomy 

Standard ODC Defect 

Type 

Adapted ODC Defect Type 

Algorithm/Method Algorithm/Method 

Assignment/Initialization Assignment/Initialization 

 Build/Package/Environment 

Checking Checking 

Documentation Documentation 

Understandability 

Function/Class/Object Function/Class/Object 

Interface Interface 

Relationship 

Timing/Serialization Timing/Serialization 

5.3.3 ODC Attributes – Trigger 

Triggers classify what actions or checks can reveal the defect. Some changes to the 

triggers were made from the standard ODC specification in order to simplify and 

streamline as much as possible (for each trigger a small description provides the 

rationale in order to better clarify when to use it): 

 Design conformance – trigger that indicates that the defect was detected while 

comparing the design, code or test with their specifications and assessing the 

design and the specification conversion into design or implementation (similar 

to ODC v5.2). 

 Standards conformance – this trigger replaces the original ‘Language 

Dependency’ trigger, renaming it and broadening the scope to better suit issues 

in critical systems (often based on standards). It is applicable to defects that 

arise when checking items for standards compliance (which typically do not 

exist for the systems for which ODC was originally defined). This includes 

requirements not written according to specific rules, and implementation 

concerns such deviation from best practices. These issues may arise from 

manual or tool assisted inspection. 

 Logic/Flow – this trigger identifies incorrect flow of logic or data in the design, 

implementation or procedure details (similar to ODC v5.2). 

 Traceability/Compatibility – this trigger replaces both ‘Backward 

Compatibility’ and ‘Lateral Compatibility’ in the ODC v5.2 specification. It is 

applicable in cases where traceability is unclear or missing, or system blocks 

have compatibility issues. This merge and adaption was deemed necessary to 
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cover specific requirements related to critical systems and requirements 

imposed by standards that extensively use traceability. 

 Consistency/Completeness – this trigger replaces the ‘Internal Document’ 

trigger, providing a more appropriate terminology, such as the one critical 

systems engineers are used to. Defects related to incorrect information, 

inconsistency or incompleteness should be mapped here. This trigger is mostly 

related to inspections and assessment activities. 

 Rare situation – this trigger is the result of the merge of both ‘Side Effects’ and 

‘Rare Situation’ from the ODC v5.2 specification. We did not find relevant to 

separate the two in our case study due to their low frequency and similarity. 

 White box path coverage – merged ‘Simple path coverage’ and ‘Complex path 

coverage’, applicable in unit testing when the tester is trying to exercise specific 

code paths, which is very common in testing strategies for critical systems and 

generally ruled by the testing strategies. Only path coverage is now considered 

without distinguishing between simple and complex because no advantage was 

seen and it is not easy to classify the complexity of path coverage 

(simplification of the classification). 

 Concurrency, Test coverage, Test variation, Test sequencing, Test 

interaction, Workload/Stress, Start-up/Restart, Recovery/Exception, 

Blocked test – same meaning as ODC v5.2 and no modifications required. 

 HW/SW configuration – merged ‘Hardware configuration’ and ‘Software 

configuration’ to cover configuration issues at large, as no major difference was 

found that require to keep them separate. Also, hardware and software in 

embedded systems are strongly coupled, thus making such distinction while 

classifying issues may lead to many doubts without relevant added value. 

Table 15 shows the mapping of the standard ODC taxonomy for triggers with our 

proposed adaptation.  
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Table 15: Standard ODC Trigger to Adapted Taxonomy 

Standard ODC Defect 

Trigger 

Adapted ODC Defect 

Trigger 

Design conformance Design conformance 

Logic/Flow Logic/Flow 

Backward compatibility 
Traceability/Compatibility 

Lateral compatibility 

Concurrency Concurrency 

Internal document Consistency/Completeness 

Language dependency Standards conformance 

Side effects 
Rare situation 

Rare situation 

Simple path 
White box path coverage 

Complex path 

Test coverage Test coverage 

Test variation Test variation 

Test sequencing Test sequencing 

Test interaction Test interaction 

Workload/Stress Workload/Stress 

Recovery/Exception Recovery/Exception 

Start-up/Restart Start-up/Restart 

Hardware configuration 
HW/SW configuration 

Software configuration 

Blocked test Blocked test 

5.3.4 ODC Attributes – Impact 

This attribute depicts the impact that the defect would have had upon the end user if it 

was not detected during ISVV (or the defect detection phase), or in the case of defects 

detected during operation, what was the impact of the failure. The adaptations proposed 

to the impact attribute are the following: 

 Capability, Documentation, Installability, Integrity/Security, Migration, 

Performance, Reliability, Requirements, Standards, Usability – same 

meaning as in ODC v5.2, no modification required. 

 Maintenance – merged ‘Serviceability’ into this impact attribute, as for critical 

systems the definition of the two is similar and refer to diagnosing issues and 

applying corrective/preventive actions. 

 Safety – added for the special cases where defects in critical systems can 

directly impact the safety of humans or of the environment (these are specific 

requirements for many critical systems). There are sets of requirements that are 

exclusively related to safety and any misinterpretation or failure of these 
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requirements will endanger the system safety, thus these situations need to be 

carefully analyzed for these systems. 

 Security – new taxonomy element to cover the security and cybersecurity 

growing concerns of modern systems. The security analysis are not yet very 

common for safety critical systems but there is a growing concern as the 

systems become online and interfacing with more and more systems. For the 

case of our study we had mostly on-board systems, so no security flaws have 

been detected. 

 Testability/Verifiability – added to fulfil the need to classify defects with an 

impact in testability/verifiability of the systems. This is important to the 

applicable standards conformance in critical systems since testability and 

verifiability are commonly strict requirements that need to be part of the system. 

 Accessibility – removed this impact that was related to ensuring that successful 

access to information and use of information technology is provided to people 

who have disabilities. For our case study, and for most critical systems, this 

impact is not applicable and can be supported by either “Safety” or “Capability” 

impacts depending on the situation and applicable requirements. 

Table 16 presents the mapping of the standard ODC impact taxonomy to the proposed 

adaptation. 

Table 16: Standard ODC Impact to Adapted Taxonomy 

Standard ODC Defect 

Impact 

Adapted ODC Defect 

Impact 

Accessibility  

Capability Capability 

Documentation Documentation 

Installability Installability 

Integrity/Security Integrity/Security 

Maintenance 
Maintenance 

Serviceability 

Migration Migration 

Performance Performance 

Reliability Reliability 

Requirements Requirements 

 Safety 

 Security 

Standards Standards 

 Testability/Verifiability 

Usability Usability 
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5.4 Enhanced ODC Classification Results 

The results of the application of the enhanced ODC for space defects are summarized 

in Table 17. The top 5 defect types, triggers and impacts cover about 90% of the issues 

analyzed. This observation suggests that actions can be taken to quickly improve the 

quality of systems, by tackling a limited amount of properties. 

Table 17: Enhanced ODC classification results (1070 defects) 

Defect Type Qty % Defect Trigger Qty % Defect Impact Qty % 

Documentation 515 48.13% Traceability/Compatibility 309 28.88% Capability 308 28.79% 

Function/Class/Object 203 18.97% Test Coverage 227 21.21% Maintenance 264 24.67% 

Algorithm/Method 96 8.97% Consistency/Completeness 206 19.25% Reliability 252 23.55% 

Checking 69 6.45% Logic/Flow  119 11.12% Documentation 157 14.67% 

Interface 56 5.23% Design Conformance 119 11.12% Performance 39 3.64% 

Build/Package/Environment 52 4.86% Rare Situation 26 2.43% Usability 28 2.62% 

Assignment/Initialization 46 4.30% Test Sequencing 16 1.50% Requirements 9 0.84% 

Timing/Serialization 33 3.08% Standards Conformance 14 1.31% Migration 8 0.75% 

   HW / SW Configuration 13 1.21% Standards 4 0.37% 

   Recovery / Exception 10 0.93% Installability 1 0.09% 

   Test interaction 4 0.37%    

   Test variation 3 0.28%    

   Start-up/Restart 2 0.19%    

   Concurrency 1 0.09%    

   White box path coverage 1 0.09%    

Total 1070 100% Total 1070 100% Total 1070 100% 

 

The ‘Documentation’ defect type represents now almost half of the defects and 

‘Function/Class/Object’ represents almost 20% of the defects. This can be justified by 

the fact that critical systems highly depend on documentation and documented 

evidences to prove the accomplishment of requirements and standards and to ensure 

qualification/certification of the systems by external entities. Furthermore, some of the 

defects not classified in the first round (with the original ODC taxonomy) have now 

been classified as ‘Documentation’ type, and those who were supposed to be of 

‘Understandability’ defect type are also classified as ‘Documentation’ due to the merge 

operated in the enhanced ODC taxonomy. ‘Function/Class/Object’ identifies 

functionality implementation deficiencies, especially at implementation level.  

For the defect triggers the results are a bit different from the previous as ‘Traceability’ 

has been clearly identified as a trigger, ‘Traceability/Compatibility’ became the most 

frequent trigger (28.88%) as it is also one of the most used defect finding activity for 

critical systems, the ‘Test Coverage’ (21.21%) is similar to the previous classification, 

and ‘Consistency/Completeness’ (19.25%) is still a quite high trigger due to the fact 

that a lot of artefacts under analysis are documents or documented that require 

consistency and completeness checks.  
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For the defects impacts ‘Capability’ (28.79%), ‘Maintenance’ (24.67%), ‘Reliability’ 

(23.55%) and ‘Documentation’ (14.67%) still represent over 90% of the impacts 

altogether. 

Next, we present a detailed analysis of the classification results, providing a summary 

of the main findings. As mentioned before, this gives the first hints about the dataset, 

which can provide some quick feedback to the implementation and V&V teams. 

5.4.1 Defect Type Results 

The defect type is classified according to the fix that will remove it. If the defect has 

already been fixed (in the moment we did the analysis), then it is quite straight forward 

to determine its type. As observed in Table 17, there are 8 different types of defects, 

from the most frequent (Documentation) with 48.13% of the cases to the least frequent 

(Timing/Serialization) with only 3.08%. However, for the root cause analysis, we focus 

in every defect type, even the least frequent, since any failure can compromise a 

mission, with severe consequences. Table 18 presents the relation of every defect type 

with the classified impacts.  

Table 18: Specific Impact distribution for every defect type 
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Capability 21.56% 51.24% 46.88% 8.82% 26.79% 16.00% 20.45% 43.75% 

Reliability 13.97% 24.88% 33.33% 70.59% 23.21% 38.00% 29.55% 21.88% 

Maintenance 32.14% 17.41% 11.46% 8.82% 28.57% 38.00% 27.27% 12.50% 

Documentation 30.14% 0.50% 1.04% 0.00% 1.79% 4.00% 0.00% 3.13% 

Performance 1.60% 2.99% 6.25% 10.29% 0.00% 2.00% 15.91% 12.50% 

Usability 0.60% 2.99% 1.04% 1.47% 19.64% 2.00% 6.82% 6.25% 

The following paragraphs present an analysis for each type of defect (latter in the thesis 

we will identify their primary root causes): 

 Documentation (48.13%): Documentation is an essential asset for these 

systems and is mandatory according to the standards (ECSS). It represents 

essential artefacts for the system implementation that are passed from phase to 

phase, starting from system specification and finishing with acceptance, 

operation and maintenance. It is important to highlight the defects in 

documentation that have an impact in Maintenance – 32.14% (quite important 

for space systems due to frequent changes and corrections that are required 

when the spacecraft is already in orbit, such as patches and dumps), Capability 

– 21.56%, and Reliability – 13.87% (which represent essential properties of 
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space systems: the correct implementation of functional and non-functional 

properties). 

 Function/Class/Object (18.97%): This type represents mainly the changes 

that need to be applied in system functionality to correct non-compliances with 

requirements. In short, it is the defect type that represents implementation 

problems. The analysis shows that Function defects are related with the 

Capability of the system – 51.24% (this is absolutely natural, since the defect 

type indicates a functional error), Reliability – 24.88% (many functionality 

problems have consequences in the reliability of critical systems), and 

Maintenance – 17.41% (autonomous and dynamic systems frequently require 

remote corrections and updates). 

 Algorithm/Method (8.97%): These defects are usually the result of efficiency 

or correctness problems that affect the task and can be fixed by 

(re)implementing an algorithm or a method. They are also related to system 

Capability – 46.88%, Reliability – 33.33%, and Maintenance – 11.46%. 

 Checking (6.45%): These defects are the result of the omission or incorrect 

validation of parameters or data, usually in conditional statements. Checking 

defects are related to Reliability – 70.59%, Performance – 10.29%, Capability 

– 8.82%, and Maintenance – 8.82%. Since Reliability is mostly achieved 

through Fault Detection Isolation and Recovery (FDIR), error checking and 

redundancy, checking defects have a profound impact on Reliability. 

 Interface (5.23%): These defects are the result of communication problems 

between subsystems, modules, components, operating system, or device 

drivers, requiring changes, for example, to macros, call statements, control 

blocks, parameter lists, or shared memory. Interface defects relate to 

Maintenance – 28.57%, Capability – 26.79%, Reliability – 23.21%, and 

Usability – 19.64%. The latter is mostly due to the fact that interfaces are related 

to operation, control and usability of the system. 

 Build/Package/Environment (4.86%): These defects are the result of 

problems on the build process and on change management and version control. 

They relate to Maintenance – 38.00%, Reliability – 38.00%, and Capability – 

16.00%. The processes and tools used for these systems have a significant 

impact in such activities. 

 Assignment/Initialization (4.30%): Assignment/Initialization defects are the 

result of values not assigned or incorrectly assigned, as well as wrong 

initializations. These defects relate to Reliability – 29.55%, Maintenance – 

27.27%, Capability – 20.45%, and Performance – 15.91%. The main impact is 

in the system reliability, as some of these defects might stay undetected until 

the occurrence of some very specific functional or non-functional situations. 

 Timing/Serialization (3.08%): These defects are the result of timing errors 

between systems, modules or components, or problems accessing shared 



Chapter 5 

 72 

resources. They relate mainly with Capability – 43.75% and Reliability – 

21.88%, as well as Performance – 12.50% and Maintenance – 12.50%. 

5.4.2 Defect Trigger Results 

Some of the root causes for the defects detected during ISVV are related with problems 

in the efficiency of the verification and validation activities applied during 

development. When we look at the triggers of the enhanced ODC, we might question 

about the reason why those defects have not been caught earlier by the development or 

V&V teams. Some questions arise in this case: has the independence so much 

importance that makes it easier to find defects? why the same techniques used by the 

ISVV team were not applied at an earlier stage of the project? or have they been 

ineffectively applied? 

This section provides an analysis of the triggers that detected the 1070 defects at the 

ISVV stage of the projects. Since the list of triggers is extensive, we will focus on the 

most relevant in terms of number of detected defects. This analysis contributes to 

pinpoint the weaknesses of the regular development V&V activities and provide 

suggestions to change/improve V&V activities to become more efficient and detect 

more problems before they are passed on to the ISVV teams (this will be done 

specifically in Chapter 6). Table 19 summarizes the impacts of the defects identified 

by specific triggers. 

Table 19: Specific Impact distribution for every defect trigger 

IMPACT Traceability/ 

Compatibility 

Test Coverage Consistency/ 

Completeness 

Logic/Flow Design 

Conformance 

Capability 72.28% 25.49% 95.00% 18.95% 35.64% 

Reliability 14.98% 37.75% 2.00% 21.05% 36.63% 

Maintenance 4.12% 24.51% 1.50% 14.74% 9.90% 

Documentation 0.75% 2.45% 0.00% 42.11% 15.84% 

Performance 7.87% 9.80% 1.50% 3.16% 1.98% 

The following paragraphs present an analysis for each defect trigger: 

 Traceability/Compatibility (28.88%): The Traceability/Compatibility trigger 

allows the detection of almost one third of all the defects. Such activities look 

for inconsistencies of information across phases, incomplete or outdated 

traceability matrices, or untraced artefacts. Regular V&V activities should be 

enough to detect these defects during the development. Apparently, a clearly 

stated and formally implemented traceability analysis is required and, if 

supported by the appropriate toolset, it would not require significant additional 

effort to the development and V&V teams. This trigger identifies most 

Capability defects (72.28%) and some Reliability ones (14.98%). 
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 Test Coverage (21.21%): Test Coverage is the trigger that evaluates the 

completeness of the tests performed to validate the different units or 

functionalities by considering different values or possibilities. As expected, a 

significant number of defects is uncovered by Test Coverage activities. A 

significant number of Reliability (37.75%) impact defects are uncovered, but 

also Maintenance (25.51%) and Capability (25.49%) ones. 

 Consistency/Completeness (19.25%): Another trigger with significant impact 

related to inspections and reviews is Consistency/Completeness. All project 

artefacts must be consistent between each other, as well as complete. Due to the 

number of artefacts required by the lifecycle process and by the applicable 

standards (ECSS), consistency and completeness analysis of these artefacts 

very frequently reveal discrepancies. This trigger finds mostly defects with 

impact on Capability (95.00%). 

 Logic/Flow (11.12%): Logic and Flow analysis are triggers that allow the 

detection of control and data flow defects by assessing the logical paths of the 

software for program flow and control but also for data and variables flow. This 

trigger finds mostly defects with impact on Documentation (42.11%). 

 Design Conformance (11.12%): The Design Conformance trigger is a specific 

set of activities applied to the architecture that allows the review of design 

artefacts versus the specifications and the environment constraints. This trigger 

finds mostly Reliability (36.63%) and Capability (35.64%) related defects. 

5.4.3 Defect Impact Results 

The results of the defect impacts are a reflection of the severity of the defects even if 

the majority will never have a real impact because they will be solved and prevented 

before. The distributions of the impacts include Capability, Maintenance and 

Reliability as the most common ones, then Documentation with still a significant 

frequency, and finally Performance, Usability, Requirements, Migration, Installability 

and standards, with a much lower frequency. 

The ODC Impact analysis can be used to prioritize the defect types/triggers to identify 

the development and V&V activities that might conduct to the defects with a high 

impact in the system. As “high impact”, we consider equally the impacts in Capability, 

Reliability, and Maintenance, as they are the most severe since they represent three 

essential requirements of critical space systems: functional quality, non-functional 

reliability assurance, and maintainability. For our analysis, we have considered 

Capability, Reliability and Maintenance as the most important impact types. 

The following paragraphs present an analysis for each defect impact: 

 Capability (28.79%): It is normal that Capability (i.e. functionality) is the most 

affected property but, in space critical systems, maintenance has a significant 

importance as well as the reliability requirements. Capability represents the 
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defects that will affect the functionality of the system without having an impact 

on the non-functional properties, these can be seen as the normal “bugs” that 

will lead the system to work with limitations or not properly, due to wrong 

design or wrong implementation affecting the normal functioning. 

 Maintenance (24.67%): A large amount of the maintenance defects from an 

impact perspective) are originated in the implementation phase (most source 

code and source code documentation), thus, the larger the amount of source 

code defects the larger this impact will be, as it affects future maintenance of 

the source code itself. 

 Reliability (23.55%): The defects that have an impact on Reliability are 

extremely important as they represent problems that affect one of the essential 

properties of safety critical systems (not necessary or not always functional 

property). The nature of the systems and defects selected for this work lead to 

this high value, as some of the failures could have more than a Capability (or 

functional) impact and could affect the dependability properties such as 

Reliability and Safety that is also considered to be added as an impact for future 

usage of the enhanced ODC. Safety has not been added to the enhanced ODC 

taxonomy because the original dataset of defects did not lead to safety impact, 

but this was considered during the analysis of the enhanced ODC classification 

results as a possibility for future datasets. The same situation may apply to 

security-related defects. 

 Documentation (14.67%): As in all systems that heavily depend on 

documentation, there are some minor defects that will impact simply the 

documentation. This is the case for critical systems where documentation is 

required at every lifecycle phase as artefacts to specify, design or document 

evidences and results of the process. 

 Performance (3.64%): Impact of defects that affect the system performance, 

namely defects that increase the CPU load, the memory utilization, or increase 

the application timings due to extensive or unintended data or control flows 

originated from the defect. 

 Usability (2.62%): These critical systems have a rather low set of defects that 

impact Usability, but they still do exist. Other systems will certainly have larger 

percentages for this impact, in particular systems with user interfaces or 

command and control consoles. Our dataset was mostly of embedded 

automated and autonomous systems, thus this value is quite low. 

 Requirements (0.84%): Some of the defects affected the requirements and 

their specification. This can happen up to the validation and testing phases, but 

these are quite rare cases for critical systems due to the care that is taken to have 

mature and stable sets of requirements and milestones to review extensively 

those specifications. 

 Migration (0.75%): This is a rare impact identified when a system or a 

software is reused in a different environment, migrated to different hardware or 

configured in a different manner. 
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 Standards (0.37%): Some impacts are related to the application or 

interpretation of standards during the system development lifecycle. There are 

several levels of standards that can be involved, namely the domain specific 

standards (e.g., the ECSS), the generic level standards (the Quality Assurance 

standards or ISO 9001) and the specific engineering standards (requirements 

standards, coding standards). Defects with an impact on standards can provide 

feedback to improve the standards or make them more precise. 

 Installability (0.09%): Impact originated from defects that affect the 

installation, the configuration or the modification for safe use of the systems. 

5.4.4 Combined Results 

The previous sections have presented the main results from the defect type, defect 

trigger and defect impact points of view. These results provide a good overview of the 

system quality and already indicate some of the weaknesses that need to be tackled to 

make the systems better and to avoid or prevent either most of the defects or the defects 

with more severe impacts. Next, we will provide a more integrated view of the defects 

that have slipped through review and defect detection phases of the lifecycle, and show 

how the results presented before integrate as a whole. 

5.4.4.1 Defect Introduction vs Detection Phase 

To support the RCA, we have analyzed the introduction versus detection phases of the 

defects. If a defect is not detected during, or right after, the phase when it was inserted, 

that means that the V&V or defect detection activities between at least two different 

phases failed. Table 20 presents the ISVV activities that detected the defects introduced 

in previous stages and that slipped through detection on at least one defect detection 

activity. The top heading (“Phase of Introduction”) represents the development phase 

when the defects have been introduced, while the first vertical column contains the 

activities (and phases) when the defects have been actually detected. Each row contains 

the number of defects that have been detected in the phase specified in the first column 

and that have been originated in the phase specified in the first row of the table 

(Requirements, Design, etc.). 
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Table 20: Phase of introduction versus phase of detection 
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Phase of Detection   

               

Requirements Verification   162      - 162 

Design Verification   6 106     6 112 

Implementation Verification   10 77 290    87 377 

UT/IT Verification   18 0 9 351   27 378 

System Tests Verification   2 0 0 9 10 
 

11 21 

Operation Monitoring   1 6 0 0 9 4 16 20 

Total late detected  37 83 9 9 9 - 147 - 

Total   199 189 299 360 19 4 - 1070 

 

The large majority of defects (86%) were detected right after being introduced (shaded 

diagonal). However, a large number of defects (147) escaped both V&V and ISVV 

(light blue background), being caught by later ISVV activities only. In Table 20 we 

divided the testing activities in 2 phases as they provide an additional view showing 

that even within the testing activities there are defects that could be caught earlier. 

We can observe that a relevant number of defects that escaped previous ISVV or V&V 

activities were detected during Implementation Verification (60%) – 10 defects were 

introduced during Requirements and 77 during Design. A closer look, shown in Table 

21, reveals that almost 80% are Documentation defects and 10% are Function defects, 

which is in-line with the overall results presented earlier in this chapter. Thus, tackling 

documentation issues might greatly reduce defect propagation. 

The most important observation from the results in Table 21 is related with defect 

triggers. Traceability/Compatibility accounts for 60% of the detected defects, while 

Design Conformance and Consistency/Completeness account for 20% each. As source 

code is more detailed and more concrete than architectural design components and 

requirements descriptions, it is normal that traces can detect more inconsistencies, 

especially missing or incoherent information. 

The defects detected during the testing phases that originated from previous phases 

include 20 defects injected during requirements specification and 9 defects introduced 

during implementation, from which 14 defects are Function/Class/Object defects and 

10 are Documentation defects. 
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Table 21: Defects detected late, after Implementation 

Defect Type Design Requirements 

Documentation 65 4 

Function/Class/Object 7 2 

Algorithm/Method 2 3 

Checking 1 0 

Interface 1 0 

Timing/Serialization 1 1 

Defect Trigger Design Requirements 

Traceability/Compatibility 46 5 

Design Conformance 16 2 

Consistency/Completeness 15 3 

5.4.4.2 Enhanced ODC Defect Type vs Impact Analysis 

The defect types that have higher impacts in the system (affecting Capability, 

Reliability and Maintenance) are depicted in Figure 12. Defects with impact in 

Capability (blue line) are mainly related with Function/Class/Object, Documentation 

and Algorithm/Method types, confirming that the functionality 

specification/implementation, the documented artefacts and the design decision in what 

concerns algorithms and methods to apply are the main contributors to defects that 

influence the system capability and normal functionality. 

Defects with impact in Reliability (orange line) are originated mostly from 

Documentation, Checking, Function/Class/Object and Algorithm/Method defect types. 

In this case, there is a new defect type that contributes significantly to reliability issues: 

Checking. It is clear that reliability (including redundancy, fault detection/monitoring, 

isolation and recovery) is often implemented with checks and verifications for 

monitoring and detection of errors and so the importance of avoiding this type of 

defects to guarantee higher reliability. 

Defects with impact in Maintenance (gray line) originate essentially from the 

Documentation defect type. This is an expected result due to the fact that maintenance 

depends on source code documentation and comments and documented artefacts that 

include installation and download instructions, user and developer manuals, and 

maintenance procedures. 



Chapter 5 

 78 

 

Figure 12: Defect type versus defect impact 

Table 22 summarizes the defects that have a high impact in the system (regarding 

Capability, Reliability and Maintenance). The defect types are ordered according to the 

total number of defects with such impacts. Table 22 shows that the two most frequent 

defect types (Documentation and Function/Class/Object) account for almost 50% of all 

defects (64% regarding the defects with high impact). Actions to avoid these defects, 

such as Technical Writing trainings, improvement of documentation reviews or 

automation of verification of documentation issues, could significantly reduce the 

number of defects and improve Capability, Reliability and Maintenance. 

Table 22: Defect types with high impact 

(Capability, Reliability and Maintenance) 

Type Capability Reliability Maintenance Total 

defects 
% 

overall 

defects 

% defects 

with high 

impact 

1. Documentation 108 70 161 339 31.7% 41.2% 

2. Function/Class/Object 103 50 35 188 17.6% 22.9% 

3. Algorithm/Method 45 32 11 88 8.2% 10.7% 

4. Checking 6 48 6 60 5.6% 7.3% 

5. 

Build/Package/Environment 
8 19 19 46 4.3% 

5.6% 

6. Interface 15 13 16 44 4.1% 5.3% 

7. Assignment/Initialization 9 13 12 34 3.2% 4.2% 

8. Timing/Serialization 14 7 4 25 2.3% 3.0% 

Total 308 252 264 824 77.0% 100% 
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5.4.4.3 Enhanced ODC Defect Trigger vs Impact Analysis 

The defect triggers that allow the detection of the defects with a high impact are 

represented in Figure 13. The graph reinforces the importance of the three main triggers 

as the most important (frequent) triggers (overall they allowed the detection of 77.0% 

of the issues): a) Consistency/Completeness, b) Test Coverage, and c) 

Traceability/Compatibility. For this particular case, Reliability can be ensured with 

better Traceability/Compatibility analysis, Test Coverage and Logic/Flow analysis. 

Capability shall be assessed more efficiently with Test Coverage, 

Traceability/Compatibility assessment and Design Conformance Analysis. The 

Maintenance defect impact can be mitigated with Traceability/Compatibility and 

Consistency/Completeness analysis. 

 

Figure 13: Defect triggers versus defect impacts 

Table 23 prioritizes the triggers that detected the defects with high impact. We can 

observe that the two triggers that detect the most impacting defects are 

Consistency/Completeness analysis and Test coverage, allowing the detection of 

57.8% of the high impact defects (44.5% of all defects). Although the list of triggers 

that enable detection of high impact defects is extensive, the 5 more meaningful ones 

allowed the detection of 91.6% of the defects with high impact (about 70% of all 

defects in our dataset). This is the reason why it is efficient to focus on the top 5 triggers, 

as shown in Table 23: Consistency/Completeness, Test Coverage, Traceability 

/Compatibility, Design Conformance and Logic/Flow. 
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Table 23: Defect triggers with high impact 

Trigger Capability Reliability Maintenance Total 

defects 
% overall 

defects 
% defects 

with high 

impact 

Consistency/Completeness 67 68 139 274 25.6% 33.3% 

Test coverage 130 59 13 202 18.9% 24.5% 

Traceability/Compatibility 37 20 42 99 9.3% 12.1% 

Design conformance 15 55 24 94 8.8% 11.4% 

Logic/Flow 37 29 18 84 7.9% 10.3% 

Rare situation 8 10 6 24 2.2% 2.9% 

Test sequencing 4 5 6 15 1.4% 1.8% 

HW/SW Configuration 3 0 6 9 0.8% 1.0% 

Standards conformance 0 2 6 8 0.7% 0.9% 

Recovery/Exception 4 1 3 8 0.7% 0.9% 

Test interaction 2 0 1 3 0.3% 0.4% 

Test Variation 0 2 0 2 0.2% 0.3% 

Concurrency 0 1 0 1 0.1% 0.1% 

Path coverage 1 0 0 1 0.1% 0.1% 

Total 308 252 264 824 77.0% 100% 

5.4.4.4 Enhanced ODC Defect Trigger vs Type Analysis 

It is also interesting to understand which defect triggers lead to the detection of which 

defect types. This is what is shown in Figure 14 for the three most frequent defect types. 

The graph shows that defect triggers Traceability/Compatibility and 

Consistency/Completion allow the detection of a very large number of Documentation 

defects (dashed blue line). As these triggers apply mostly to documentation and 

documented artefact, this is an expected result. Another observation we can make is 

that the Test Coverage trigger allows mostly the detection of Function/Class/Object 

defects. In fact, the objective of Test coverage is to cover/test essentially the 

specifications, which represent the functionality of the system. Thus, if the 

specifications are not totally covered, functionality defects are probable to be missed 

(Function/Class/Object). The same trigger (Test Coverage) also allows the detection of 

Algorithm/Method defects in a larger scale than the other triggers. 
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Figure 14: Defect triggers versus defect types 

From the overall distribution of which triggers detect the 5 most frequent defect types 

(Table 24) we can observe that some triggers are more efficient in detecting some 

defect types, such as Design Conformance and Logic/Flow, which are good to detect 

Checking defects, and the Test Coverage and Traceability/Compatibility triggers that 

detect most of the Interface defects. 
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Table 24: Defect triggers detecting specific defect types 

Trigger Documen

tation 
Function/

Class/Ob

ject 

Algorith

m/Metho

d 

Checking Interface Total 

defects 
% 

overall 

defects 

Consistency/Comple

teness 
190 4 3  3 200 18.69

% 

Test coverage 52 77 50 5 20 204 19.07

% 

Traceability/Compat

ibility 
193 40 11 2 21 267 24.95

% 

Design conformance 36 37 10 16 2 101 9.44% 

Logic/Flow 18 20 14 40 3 95 8.88% 

Rare situation 6 12 1 3  22 2.06% 

Test sequencing 2 4 4  5 15 1.40% 

HW/SW 

Configuration 
2  2  2 6 0.56% 

Standards 

conformance 
7 1  2  10 0.93% 

Recovery/Exception 3 6  1  10 0.93% 

Test interaction 3  1   4 0.37% 

Test Variation 3     3 0.28% 

Concurrency  1    1 0.09% 

Path coverage  1    1 0.09% 

Total 515 203 96 69 56 939 87.76

% 

5.5 Validation of the Enhanced ODC 

As mentioned, to validate the enhanced ODC taxonomy we re-applied it to our dataset. 

In addition to the important fact that no issue was left unclassified with this new 

taxonomy and that most of the issues could be classified in an easier way (avoiding 

confusions or doubts by merging similar taxonomy elements), the results highlighted 

the following: 

a) The results with the enhanced ODC taxonomy revealed a higher percentage of 

‘Documentation’ when compared to the original ODC classification. This can be 

justified by the fact that critical systems highly depend on documentation and 

documented evidences to prove the accomplishment of the requirements and the 

standards. Furthermore, the classification performed by using the enhanced ODC 

taxonomy allowed to consider 339 new defects, most of them previously 

classified with the “Documentation” type, but that could not be added to the 

results since either trigger of impact where not correctly classified. 

b) ‘Traceability/Compatibility’ is the more frequent trigger and even ‘Test 

Coverage’ became a trigger more efficient than ‘Consistency and Completeness’. 

This suggests that the most efficient defect triggers are the simplest and more 

logical ones, namely the ones related to traceability and testing activities. 
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c) The ‘Maintenance’ defect impact became more frequent than ‘Reliability’, and 

the ‘Documentation’ impact frequency has been reduced. In fact, maintainability 

is an important property for the systems in our dataset, and the results show that 

issues impact more system maintainability than system reliability. 

The results also show that the 5 more frequent types, triggers and impacts cover about 

90% of the issues analyzed. This does not mean that the others are not important (in 

fact, ODC does not take into account the issue severity in its classification scheme) or 

that they do not need careful analysis, but, with up to 5 taxonomy values, we are 

covering the large majority of the issues, which suggests that actions can be taken to 

quickly improve the quality of the systems, which is of extreme importance for the 

industry. 

These results, however, have not been compiled easily. The effort spent for the 1070 

classifications was around 800 man hours (only for the classification task). This effort 

includes the original ODC classification that exposed issues with the classification of 

31.7% of the defects, the effort of enhancing the ODC attributes values, and the effort 

of reclassification. The main noted difficulties during the whole process are related to: 

 The amount of ODC classifications possible – even though only 3 ODC 

attributes have been selected for the classification effort, the number of 

possibilities is still significant – we found the standard taxonomy of the selected 

attributes a bit generic when applied to a safety critical domain; 

 The lack of fit of the ODC taxonomy for critical systems issues – this lead 

to additional effort to try to classify the attribute originally, a need to scan and 

check all attributes possibilities and consequent rework; 

 The precision, completeness and detail level of the defects description – 

some RIDs are very telegraphic, some others are extremely technical, some 

include very limited information or lots of references that need to be checked 

to perform the correct classifications; 

 The lack of uniformity in the description of the defects - due to the fact that 

they had been compiled between 2005 and 2014, by different teams of engineers 

and they related to different types of systems or subsystems. 

 The amount of supporting documentation required – the classification 

required often the reference to the original documentation (specifications, 

architecture, source code, testing artefacts, etc.) and these artefacts are quite 

extensive, exist in different versions, had to be recovered from the projects 

archives, and so on. 

Table 25 shows that the second round was about twice as fast as the first round with 

the original ODC (3.9 defects/hour versus 2.1 defects/hour). This is naturally due to 

the fact that the defects were already known, the ODC taxonomy was clearer and the 

practice of the analysts had increased. Another exercise, taken later, to classify 120 

issues from railway control and management systems support the validation of the 

enhanced taxonomy by two facts: a) the 120 defects have all been classified smoothly; 
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and b) the effort spent in that classification (defect type, trigger and impact) was 34 

hours (3.5 defects/hour). 

Table 25: Effort Spent for the different ODC related activities 

Activity Description 
Effort 

(hrs) 

Data 

preparation 

and training 

Data collection/clean-up, training. 2 expert engineers in ISVV and 

Critical systems and one junior researcher. 
110 

ODC phase I 

Classification of defects and review of the classification. Full 

classification of 721 defects, remaining 349 defects have been 

partially/doubtfully classified. 2 expert engineers in ISVV and Critical 

systems and one junior researcher. 

520 

Analysis/ 

Proposal of 

ODC 

Adaptations 

Analysis of the 349 defects have been partially/doubtfully classified in 

the previous phase and identification of modifications to the original 

ODC taxonomy. 2 expert engineers. 

80 

ODC phase II 
Reclassification and review of the defects (about 33%). The remaining 

349 defects have been classified and reviewed. 2 expert engineers. 
90 

Total  800 

5.6 Final Remarks 

This chapter presented the defects classification results prior to the root cause analysis. 

Both results including the original ODC classification and the enhanced ODC 

classification were presented, but only detailed results of the enhanced ODC taxonomy 

have been described. The classification issues identified by the ISVV teams using ODC 

allowed the classification of 739 issues (out of 1070 defects). The remaining 31.7% 

could not be classified and required an improved, more applicable taxonomy, which 

was proposed and applied.  

The proposed adjustments to the ODC taxonomy had several objectives, namely: to 

promote a fit for critical systems issues classification and study, to maintain the 

orthogonality of the classifications, to propose only the minimum amount of changes 

possible to the ODC taxonomy, to simplify the classification work, and to allow easy 

root-cause analysis for the future. The process to determine the adaptations was based 

on the missing classification for the ODC defect Type, Trigger and Impacts as 

explained before, but also on the difficulty to classify some of the issues according to 

these attributes, thus including: a) new types, triggers and impacts; b) merged types, 

triggers and impacts; and c) adjustment of some previous classifications due to a better 

interpretation of the attributes. While the activity attribute was updated generically to 

be adjusted to the commonly used lifecycle phases, the other three attributes (type, 

trigger and impact) suffered some enhancements to improve the classification and 

reduce the amount of doubts while classifying the defects. 
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The results presented can help the space industrial community in focusing on the 

weakest points of the engineering process to improve them. Also, by using the 

enhanced ODC, ISVV teams can work much more efficiently with the triggers that 

catch more problems and even develop appropriate and more precise V&V tools or 

defect detection processes. As the systems involved cover most of the development 

activities performed for those systems, and involve different companies (at geographic, 

size and management level), we consider these results to be quite general for this 

domain. A similar study for other domains (e.g. aeronautics, railway, automotive) is 

foreseen as future work, but it will not be as easy as the existing data might not be as 

structured as for space systems. Data confidentiality will be a challenging issue. 

The enhanced ODC classification is done based on the opinion and knowledge of 

experts and not following precise algorithms or criteria. However, it is important to 

note that the original classification (the one that could not classify all the issues) was 

performed by two engineers, whose work was also checked by a third space domain 

expert. This domain expert also performed the reclassification himself (verified and 

discussed with another space domain expert engineer in the case of doubts). 

Finally, the results present interesting data to support the root cause analysis, and also 

for immediate feedback to the engineering of critical systems, namely, what are the 

most frequent defect types, and how they are reflected in terms of impact (severity), 

what are the most efficient and frequent defect triggers (and again how they detect 

issues with specific impacts), what type of triggers allow the detection of specific defect 

types, and what are the defects that have slipped between lifecycle phases without being 

detected (in order to identify if it is possible to detect them faster in the near future). 
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Chapter 6 

Defects Root Cause Analysis 

"There are a thousand hacking at the branches of evil for one who is striking at 

the root, and it may be that he who bestows the largest amount of time and money 

on the needy is doing the most by his mode of life to produce that misery which he 

strives in vain to relieve." – Henry David Thoreau, 1854. 

This chapter presents the root cause analysis process and the results (root causes and 

suggested measures) of the enhanced ODC application to the dataset of 1070 defects 

from space projects and identifies the root causes for the majority of the defects based 

on the ODC results and the knowledge of the space domain environment, processes, 

methods and tools. As it is not possible to identify the root cause for every single defect, 

we focused on the more frequent and more severe defect types. 

The presentation of results and root causes is divided in five main lines of analysis: a) 

the enhanced ODC results (the inputs to the RCA); b) the analysis of the defect types 

(eventually detects implementation problems); c) the analysis of the defect triggers 

(identifies inefficient V&V activities); d) the analysis of the defects identified at a later 

SDP phase (inefficient ISVV or V&V activities); and e) the prioritization according to 

the defect impacts (Capability, Reliability and Maintainability). Note that the root 

causes have not been identified at the moment of resolution of the issues but at the 

moment of the analysis of the enhanced ODC results. In practice, they are the result of 

an expert analysis done on the defects, performed by the authors and complemented 

and reviewed by the industrial partners. Note also that several defects do not have a 

clear and unique root cause but a set of related root causes. 

The root causes analysis consisted in a structured process based on a fishbone analysis 

for the most frequent defect types and defect triggers, and a specific root cause analysis 

for the defects that have slipped from detection in the phase where they have been 

introduced. We have first analyzed the resulting defect types and identified root causes 

related to development issues, then we have identified the main defect issues according 

to defect triggers which gave us the V&V weaknesses. In a subsequent step, we have 

proposed a dedicated list of measures to tackle both sets of root causes. 
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6.1 Overview of the Process 

A fundamental law in science is the Law of Cause and Effect: it states that every effect 

has a cause. From that law follows the Law of Root Causes: stating that all problems 

arise from their root causes. This is then the fundamental principle of Root Cause 

Analysis, which intends to tackle the root of a problem by finding and resolving its root 

causes. Root cause analysis is a kind of problem solving method aimed at identifying 

the root causes of problems or events. It is common belief that problems are best solved 

by correcting or eliminating their root causes, as opposed to merely addressing the 

immediately obvious symptoms, which is common industrial practice. 

Root cause analysis also helps on the identification of why an issue or problem occurred 

and promotes the creation of a knowledge base that can be used to prevent or reduce 

the impact of root causes in the future. When a root cause is permanently or completely 

eliminated or controlled, then immediate or remedial rework is avoided and the future 

occurrence of the issues caused by the root cause tackled are proactively addressed (or 

avoided). 

In the frame of this work, the root cause analysis has been designed to fit the process 

described in Chapter 3 and to rely on defect classification from three different 

perspectives: a) identification of root causes taking into account the more frequent or 

more severe defect types; b) identification of root causes based on the more frequent 

or more efficient defect triggers; and c) identification of root causes applicable to the 

late detection of the defects in the development (or V&V) lifecycle. With the 

combination of these three perspectives (see Figure 15) we can ensure a general but 

also embracing analysis that is certain to identify the more important root causes and 

help in improving the quality for future developments. 

 

Figure 15: Root Cause Analysis Overview 

Figure 15 provides a short overview of the root cause analysis as integrated in the 

Chapter 3 defects analysis process. With the support of data from the defects 

classification, three types of root causes are identified, not necessarily for every single 

defect, but more generally to groups of similar defects, by considering defect types, or 
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by identifying triggers and V&V techniques that detected the defects, or by peeling off 

the root causes of the late defect detection. Root causes can be identified by several 

ways and techniques as described later in this chapter. Once the list of root causes is 

defined, it can be prioritized based on different criteria (e.g. the amount of defects 

caused, the severity of the impact of the caused defects, or removal of specific types of 

undesired defects), consolidated by aggregating root causes common to the three 

different root cause identification perspectives (defect, type, defect trigger and late 

detection) or even similar root causes, and finally, complemented with a step of 

matching the root causes to real suggestions for avoiding or eliminating them. The 

improvement suggestions should be communicated to the engineering stakeholders, 

implemented and monitored in order to confirm that the root causes are 

eliminated/reduced for future development and V&V cycles.  

For the root cause analysis, several techniques can be applied, as long as they are 

mastered and applied by experienced analysts. Examples of techniques include: Five 

Whys; Failure mode and effects analysis; Fishbone (cause and effects, Ishikawa) 

diagrams; SIPOC (Suppliers, inputs, processes, outputs, customers diagram); 

Flowcharting of the process flow, system flow, and data flow; Critical to quality 

metrics; Pareto chart; and Statistical Correlation. The most commonly used of these 

techniques are detailed in Section 2.4. Fishbone (cause and effects, Ishikawa) diagrams 

is the technique used in the remainder of this chapter. 

6.2 Root Cause Analysis Results 

This subsection presents the results obtained from the root cause analysis activities 

performed on the classified defects data. Root causes have been identified according to 

the grouped defect types and defect triggers. The same root causes have been also 

mapped to the defects that have not been detected within the phase they have been 

introduced. 

6.2.1 Enhanced ODC Defect Type RCA 

The defect type is classified according to the fix that removes it. If the defect has 

already been fixed (in the moment we did the analysis), then it is quite straight forward 

to determine its type, as information about the fix is available. The defects classification 

lead to the identification of 8 different types of defects (refer to Table 17), from the 

most frequent (Documentation) covering 48.1% of the cases to the least frequent 

(Timing/Serialization) covering only 3% of the defects. However, for the root cause 

analysis, we focus in every defect type, even the least frequent, since the number of 

defect types is acceptable and it is feasible to perform the analysis for 8 different types. 

This way, the following subsections present an analysis for each type of defect, and 

identify their primary root causes, based on the knowledge of several experts with many 

years in development, V&V and ISVV activities in the space domain. 
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It is important to note that the root cause analysis was not performed on the individual 

defects (due to the amount of work that that would require), but sampling of defects 

have been used to confirm the applicability of the defined root causes. 

Table 26 presents the summarized and harmonized root causes that apply for each 

defect type. These root causes represent the most common causes of the defects of each 

type. Some examples from our dataset are also presented (the defect title is simple 

enough to be understood without a detailed description). For example, looking at the 

“Checking” defect type, the root causes identified include ambiguous/missing/incorrect 

architecture and design artefacts; incomplete specifications in what concerns FDIR and 

erroneous situations (commonly non-functional specifications), etc. For this case, 

several situations where erroneous situations can occur have not been taken into 

account, such as the examples presented in Table 26: missing validation of input 

parameters and index value not checked. 

Table 26: Root Causes vs Defect Types with real examples 

Defect Types Root Causes Examples of Defects 

Documentation lack of basic documentation skills (e.g. technical 

writing); oversimplified documentation planning 
procedures; lack of time to produce, review and 

accept documentation artefacts (pressure on 

schedules); lack of importance given to some 
documentation artefacts (prioritization); lack of 

completeness and consistency of documentation in 

previous phases (ambiguous information, missing 
information, incomplete documents); limited 

domain knowledge (understanding of the system); 

simplification of the product assurance processes 
related to documentation artefacts; and limitations 

of the tools or toolsets that deal with 

documentation, especially across development 
lifecycle phases or lack of preparation to use such 

tools. 

- Insufficient 

information to validate 

implementation 

- Code documentation 

not consistent with 

implementation and 

the design 

- Requirement covered 

by test procedure not 

indicated in test 

specification 

Function/Class/Object ambiguous/missing/incorrect artefacts 
(documentation, requirements, design, tests); 

inefficient/insufficient reviews; limited engineers’ 

domain knowledge – lack of appropriate skills; lack 
of system knowledge (to understand the overall 

functionalities); lack of tools knowledge, 

programming languages, design languages; and 

insufficient unitary tests. 

- Mismatch between 
function 

documentation and 

design/implementation 

- Requirement not 

completely validated 

Algorithm/Method ambiguous/missing/incorrect artefacts 

(documentation, requirements, design, tests); 
inefficient/insufficient reviews; limited engineers’ 

domain knowledge – lack of appropriate skills; lack 

of system knowledge (to understand the overall 

functionalities); lack of tools knowledge, 

programming languages, design languages; and 

insufficient unitary tests. 

- Inconsistency between 

requirement and 
function 

implementation 

- Requirement may not 

be validated in test 

step 

Checking ambiguous/missing/incorrect architecture and 

design artefacts; incomplete specifications in what 

concerns FDIR and erroneous situations (commonly 
non-functional specifications), 

inefficient/insufficient reviews; insufficient/wrong 

tests (unit, integration, system, fault injection); lack 
of system knowledge; and lack of reliability and 

safety culture. 

- Validate the input 

parameters before 

writing or reading 

from array 

- Index value not 

checked (Defensive 

programming). 
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Defect Types Root Causes Examples of Defects 

Interface ambiguous/missing/incorrect architecture and 

design artefacts; ambiguous/missing/incorrect 

Interface Control Documents (ICD) or protocols 
definition; incomplete specifications in what 

concerns interfaces, environment and 

communications; limited definition of the operation, 
usability, maintainability requirements (user, 

operation, installation manuals); 

inefficient/insufficient reviews; insufficient/wrong 
tests (unit, integration, system); and lack of system 

knowledge (interfaces). 

- Incoherence between 

requirements, design 

and code 

- Unused input 

parameter 

Build/Package/Environment version and configuration management procedures 

inappropriately implemented; complexity of the 

build, versioning or change control procedures; 
complexity of the tools used for build, change or 

version control; and lack of knowledge on how to 

properly use the tools, build warnings/errors not 

resolved. 

- Unused macros 

- MISRA C Violations: 

Functions not defined 

Assignment/Initialization lack of specification of initial and default values; 

incorrect implementation by forgetting basic 
initializations; and lack of checking of values and 

results of operations. 

- Initialized variables 

not found in state, 
parameter or 

Housekeeping Data 

- Output pointer not 

validated 

Timing/Serialization lack of appropriate architecture detailing the timing 

properties; and lack of knowledge of subsystems, 

modules, resources, including hardware behavior. 

- Housekeeping 

execution time is 

400ms instead of 

500ms 

- Transmission rate 

inconsistency between 

design and code 

6.2.2 Enhanced ODC Defect Trigger RCA 

Some of the root causes for the defects detected during ISVV reveal problems in the 

efficiency of the verification and validation activities applied during development. 

When we look at the triggers of the enhanced ODC (refer to Table 17), we might 

question the reason why those defects have not been caught earlier by the development 

or V&V teams, or simply by the application of those same triggers: has the 

independence so much importance that makes it easier to find these defects? why the 

same techniques used by the ISVV team were not applied at an earlier stage of the 

project? or have they been ineffectively applied? 

This section provides a qualitative analysis of the triggers that detected the 1070 defects 

at the ISVV stage of the projects (see Table 17). Since the list of triggers is extensive, 

we focus on the most relevant in terms of number of detected defects. This analysis 

contributes to pinpoint the weaknesses of the regular development V&V activities and 

provide suggestions to change/improve V&V activities to become more efficient and 

detect more problems before they are passed on to the ISVV teams. From the 

identification of triggers that should had been there at the development/V&V activities 

we derive root causes in a simple manner. 

This listing is presented in a detailed way since the triggers can be more directly and 

concretely affected by the removal of the root causes. This means that we can apply 

very specifically the recommendations and see an immediate effect, which is usually 
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the detection of defects at the moment of application of the trigger. We also present the 

title of a few defect examples from our dataset in order to demonstrate the type of 

defects uncovered by the specific trigger-related root causes. 

6.2.2.1 Traceability/Compatibility 

The identified generic root causes that lead to Traceability/Compatibility trigger not 

being effective before the ISVV detection are:  

 Lack of traceability verification culture – most of the development / V&V 

engineering activities related to traceability do not use properly the traceability 

as the powerful tool it can be. Traceability can be used to support design, 

implementation and testing activities, as well as the reviews of the artefacts 

between lifecycle phases; 

 Lack or inefficient usage of tools that support traceability across lifecycle 

phases – the traceability is usually performed either on very simple tabular 

format or integrated in other tools without automated/regular checks and 

validations, in particular when assessing the artefacts of a specific lifecycle 

phase. 

Some examples of defects that could have been uncovered with appropriate application 

of the Traceability/Compatibility trigger include: 

 Inconsistency between Function Comments, Design and Code; 

 Inconsistencies between test procedure and test log; 

 Traceability mismatch between Procedure and test specification. 

6.2.2.2 Test Coverage 

The identified generic root causes that lead to a Test Coverage trigger not being 

effective before the ISVV detection are:  

 Lack of appropriate test planning and test strategy – test strategy and test 

planning are commonly misconceived as the activity of defining test procedures 

and test cases, implement, debug and execute them and then report the results. 

The test strategy is essential as it shall define the testing methodologies, the test 

planning, testing types, testing approaches, testing tools, test environment, test 

data strategy, staffing needs and trainings, and so on; 

 Lack of appropriate testing tools and testing environment support – the 

testing tools and the testing environment are quite often deficient, archaic 

sometimes, and should provide confidence in the testing, as well as be able to 

automated and support the test implementation, execution and reporting 

activities;  
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 Poor test specification and execution – test procedures specification can also 

be limited due to the strategy and the available tools and environments. 

However, it is still quite difficult for testing engineers to master the art of 

defining appropriate and complete test specifications, while, for example using 

full traceabilities to ensure coverage of the requirements or design artefacts. 

Special care in the execution and logs collections is also required; 

 Insufficient testing – as the test strategy is usually quite weak, the testing team 

end up not doing enough testing. This must be defined upfront and later on a 

case by case situation based on the particular needs of each requirements in 

terms of logic flow or data testing needs to achieve functional and non-

functional coverage of “all” situations. 

Some examples of defects that could have been uncovered with appropriate application 

of the Test Coverage trigger include: 

 Requirement not completely validated; 

 Incomplete list of requirements covered by the test; 

 Test Steps with no clear validation goal (missing requirement association). 

6.2.2.3 Consistency/Completeness 

The identified generic root causes that lead to Consistency/Completeness trigger not 

being effective before the ISVV detection are:  

 Documentation related root causes - lack of basic documentation skills (e.g. 

technical writing); oversimplified documentation planning procedures; lack of 

time to produce, review and accept documentation artefacts (pressure on 

schedules); lack of importance given to some documentation artefacts 

(prioritization); lack of completeness and consistency of documentation in 

previous phases (ambiguous information, missing information, incomplete 

documents); limited domain knowledge (understanding of the system); 

simplification of the product assurance processes related to documentation 

artefacts; and limitations of the tools or toolsets that deal with documentation, 

especially across development lifecycle phases or lack of preparation to use 

such tools; 

 Review process related root causes – namely review simplifications (due to 

lack of time excuse) and inappropriate/no usage of traceability assessments; 

 Deficient usage of tools and applicable processes – oversimplification of 

documentation processes, verification and validation processes and difficulty to 

accept comment on own’ work. The usage of tools is also dependent on the 

experience and training acquired in the tool usage and tool features, so, for 
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several situations, a more appropriate usage and application of available tools 

would produce a great improvement;  

 Unclear or missing specifications – specifications that do not describe clearly 

the requirements (specifications are not specific, measurable, 

attainable/achievable/actionable/appropriate, realistic, time-

bound/timely/traceable) or missing specifications about some important steps 

that will be left to the designer or implementation teams; 

 Lack of domain knowledge – the ignorance of some processes, functional and 

non-functional details about the system or the domain are some of the most 

common causes for consistency and completeness problems during all phases 

of the lifecycle. 

Some examples of defects that could have been uncovered with appropriate application 

of the Consistency/Completeness trigger include: 

 No results in the UT report; 

 There is not enough  information to validate implementation; 

 Inconsistency with (/within) design. 

6.2.2.4 Logic/Flow 

The identified generic root causes that lead to Logic/Flow trigger not being effective 

before the ISVV detection are:  

 Incomplete specifications – specifications that do not provide the means to 

clearly design the logic or flow of operations/actions or missing specifications 

about some important steps that will be left to the designer or implementation 

teams;  

 Ambiguous or unclear architecture definition – incorrect or incomplete 

architecture definition have an effect on the implementation, and in particular 

in the interfaces between modules where commonly discrepancies and 

problems are identified; 

 Lack of usage of tools that support data and control flow analysis – tools to 

analyze the systems from a logic or data flow perspective would avoid several 

problems related to interfaces or performance, tools similar to static code 

analysis tools would be very beneficial for the logic/data flow analysis of 

modern systems. 

Some examples of defects that could have been uncovered with appropriate application 

of the Logic/Flow trigger include: 

 Releasing semaphores that haven't been locked; 
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 Optimize the validation of the mode transition table; 

 Possible incorrect tracking of failed thrusters. 

6.2.2.5 Design Conformance 

The identified generic root causes that lead to Design Conformance trigger not being 

effective before the ISVV detection are:  

 Inappropriate architecture support tools or tool usage – tools that automate 

checks, in particular for the architecture/design, could support on the checking 

of conventions, completeness, interfaces and better assessment of the systems;  

 Deficient specification or design artefact that lead to wrong 

implementations – these are the common “bugs” from a design perspective, if 

the design has flaws they might be replicated in the implementation. This 

problem is also related to the expertise and technical knowledge of the designer. 

Some examples of defects that could have been uncovered with appropriate application 

of the Design Conformance trigger include: 

 Code does not follow the design; 

 Not validated state variable and documentation inconsistent with code; 

 Cyclomatic complexity higher than expected. 

6.2.3 Late Detection RCA 

There are defects that for some reasons are not detected within the same phase they are 

introduced, and this might lead to a severe leakage of the defects over phases. In case 

a defect is detected later (it might not be detected) then the effort to fix it is much larger 

as several artifacts and several lifecycle phases need to be revisited. 

It is then of utmost importance to determine why (the causes) certain defects have not 

been spotted and solved before, and why they have slipped through phases. The root 

cause analysis of these specific slipped defects helps in identifying specifically the 

causes of the failures in the V&V and ISVV techniques that allowed the defects to 

propagate until a later stage in the lifecycle without being spotted. 

We have analyzed the introduction versus detection phases of the defects. If a defect is 

not detected during, or right after, the phase when it was inserted, that means that the 

V&V activities from at least 2 phases failed detecting it, and that the ISVV activities 

from at least one phase also failed. Table 27 presents the ISVV activities that detected 

the defects introduced in some of the previous stages. The top heading (“Phase of 

Introduction”) represents the development phase when the defects have been 
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introduced, while the first vertical column contain the activities (and phases) when the 

defects have been actually detected. Each row contains the number of defects that have 

been detected in the phase specified in the first column and that have been originated 

in the phase specified in the first row of the table (Requirements, Design, 

Implementation, Unit Tests and Integration Tests (UT/IT), System Tests, Operation). 

Table 27: Phase of introduction versus phase of detection 
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Phase of Detection   
               

Requirements Verification   162      - 162 

Design Verification   6 106     6 112 

Implementation Verification   10 77 290    87 377 

UT/IT Verification   18 0 9 351   27 378 

System Tests Verification   2 0 0 9 10 
 

11 21 

Operation Monitoring   1 6 0 0 9 4 16 20 

Total late detected  37 83 9 9 9 - 147 - 

Total   199 189 299 360 19 4 - 1070 

The large majority of defects (86.3%) were detected right after being introduced 

(shaded diagonal). However, a significant number of defects (147, or 13.7%) escaped 

both V&V and ISVV, being caught by later ISVV activities only. In Table 27, we 

divided the testing activities in two phases (the Unit/Integration and the System tests) 

as they provide an additional view showing that even within the testing activities there 

are defects that could have been caught earlier. 

We can observe that an important number of defects that escaped previous ISVV or 

V&V activities were detected during Implementation Verification (60%) – of these, 10 

defects were introduced during Requirements and 77 during Design. A closer look, 

depicted in Table 28, reveals that almost 80% of these are Documentation defects, and 

10% Function defects, which are in-line with the overall results (Table 17). Thus, 

tackling documentation issues might greatly reduce defect propagation (see Sections 

6.2.1 and 6.2.2 for the applicable list of root causes). Another important observation is 

that the large majority of slipped defects are introduced in the Design phase and not 

properly detected by design V&V activities, directing the analysis to indicate design 

conformance root causes (Section 6.2.2.5) as the ones to tackle first. 
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Table 28: Defects detected late, after Implementation 

Defect Type Design Requirements 

Documentation 65 4 

Function/Class/Object 7 2 

Algorithm/Method 2 3 

Checking 1 0 

Interface 1 0 

Timing/Serialization 1 1 

Defect Trigger Design Requirements 

Traceability/Compatibility 46 5 

Design Conformance 16 2 

Consistency/Completeness 15 3 

 

Furthermore, analyzing the data from Table 28, the defect triggers 

Traceability/Compatibility are accountable for 60% of the detected defects, while 

Design Conformance and Consistency/Completeness account for 20% each. As source 

code is more detailed and more concrete than architectural design components and 

requirements descriptions, it is normal that traces can detect more inconsistencies, 

especially missing information. Code analysis (Implementation Verification) is also 

largely supported by tools for static, dynamic and metrics analysis, and this is certainly 

the main reason why this phase catches a large amount of defects introduced previously 

and not detected in the appropriate phase. 

The defects detected during the testing phases that originated from previous phases 

include 20 defects injected during requirements specification and 9 defects introduced 

during implementation, from which 14 defects are Function/Class/Object defects and 

10 are Documentation defects. The requirements-related defects are mostly due to 

requirements quality root causes, while the defects introduced at implementation 

represent generally “bugs” or implementation mistakes, thus the root cause is related 

to the experience of the programmers and the efficiency of the code reviews. 

This section does not contain a list of root causes but they can be found within sections 

6.2.1 and 6.2.2, which contain a very comprehensive list of root causes applicable in 

this situation as well. For example, for the defect type related root causes a mapping 

with the first row of Table 26 can be performed (Documentation). For the defect trigger 

related root causes, the Traceability/Compatibility root causes are listed in Section 

6.2.2.1. 

6.2.4 Prioritization of the Root Cause Analysis 

The prioritization is an optional step that is very practical for industry usage, if, for 

example, the objective is to save money and get the best return on investment by 

tackling the most important and/or the most frequent defects. It is arguable how we 

identify the importance of defects based on a classification that has reduced and 
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aggregated defects. However, for this purpose the selected Enhanced ODC 

classification scheme provides and interesting tool in the form of the Impact 

classification. 

When we look at the possible impacts, we can identify a list that should get priority 

versus the other one due to the possible effect on the critical systems. This way we have 

labelled the impacts Capability, Reliability, Maintenance, Safety and Integrity/Security 

as the most important, and Documentation, Installability, Migration, Performance, 

Requirements, Standards, Testability/Verifiability and Usability as the less important. 

As it is quite easy to map the relation between defect types and their foreseen defect 

impacts, it is also possible to prioritize the identified root-causes in a similar way. 

The defects with impact on Capability, Reliability and Maintenance (in our dataset 

there were no defects with impact on Safety nor Integrity/Security), identified in Table 

17, represent 77% of the total dataset. From these, if we consider the top 6 defect types 

and the top 5 defect triggers we are already covering more than 90% of the high impact 

defects. Thus, we can select Capability, Reliability and Maintenance impacts together 

with the 6 more frequent types and 5 more frequent defect triggers safely for a more 

simplified root cause consolidation process. 

The results of the defects types and triggers prioritization are presented in detail in 

sections 5.4.4.2 and 5.4.4.3. 

6.2.5 Improvements Suggestions 

The defects with impact on Capability, Reliability and Maintenance, as referred in 

Section 6.2.4 and detailed in sections 5.4.4.2 and 5.4.4.3, represent 77% of the total 

dataset. From these, we considered the top 6 defect types and the top 5 defect triggers 

(see Table 22 and Table 23), each of them accounting for more than 90% of the defects 

with high impact. Then, crossing these defects with the root causes identified in 

sections 6.2.1 to 6.2.3, we were able to filter the main root causes for the most important 

defect types (Table 29) and the most important defect triggers (Table 30). 

This analysis results on a list of the most important causes of the defects identified 

during ISVV, and of the most important causes of failure in the verification and 

validation activities during the development lifecycle. For defects with high impact, 

the listed causes show that software engineering processes, methods and tools require 

some adjustments in order to become more efficient to produce more dependable and 

safe systems. The identified root causes are all related to existing development and 

V&V activities that require more careful application, especially in what concerns 

schedule and planning pressures, rigor and caution on the application of engineering 

processes, and V&V activities importance. The quality/product assurance strategies 

and the guidance from applicable processes and required standards are essential to 

ensure that these root causes are minimized. 
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Table 29: Summary of root causes for main defect types 

Root Cause Defect Types 

Inefficient/insufficient reviews Documentation; 

Function/Class/Object; 

Algorithm/Method; Checking; 

Interface 

Ambiguous/missing/incorrect artefacts (documentation, 

requirements, design, tests) 

Function/Class/Object; 

Algorithm/Method; Checking; 

Interface 

Insufficient/Wrong tests (unit, integration, system, fault 

injection) 

Function/Class/Object; 

Algorithm/Method; Checking; 

Interface 

Limitations of the tools or toolsets that deal with 

documentation  

Documentation 

Lack of Completeness and consistency of system level (or 

previous phases) documentation  

Documentation; 

Function/Class/Object; 

Algorithm/Method 

Oversimplified documentation planning procedures 

Lack of time to produce, review and accept documentation 

artefacts 

Lack of importance given to some documentation artefacts 

Simplification of the product assurance processes related to 

documentation artefacts 

Documentation 

Limited engineers’ domain knowledge – lack of appropriate 

skills 

Function/Class/Object; 

Algorithm/Method 

Incomplete specifications in what concerns FDIR and 

erroneous situations 

Checking 

Lack of reliability and safety culture Checking 

Incomplete specifications in what concerns interfaces, 

environment and communications 

Interface 

Limited definition of the operation, usability, maintainability 

requirements 

Interface 

Lack of tools knowledge, programming languages, design 

languages 

Function/Class/Object; 

Algorithm/Method 

Version and configuration management procedures 

inappropriately implemented 

Build/Package/Environment 

 

The root causes presented (in Table 29 and Table 30) have been ordered according to 

expert knowledge and experience applicable to the high impact defects, and intend to 

provide a preliminary ordering in what concerns their contribution to the high defect 

impacts. 

The identified root causes for defect triggers indicate that improvements to the current 

processes, both development (to avoid the introduction of defects) and V&V (to detect 

the defects within the phase they are introduced) might be possible. At a higher level, 

the leading safety standards might require additional guidance to support development 

and V&V in order to reinforce that the product/quality assurance (PA/QA), and safety 
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and dependability assessments should be properly realized, reducing the number of 

defects caught by ISVV. The proposed improvements are guidelines derived directly 

from the root causes summarized in Table 29 and Table 30 and from domain and expert 

knowledge of the authors and industrial contributors to this work. Their intent is to 

fulfil the needs of the development and V&V processes to avoid the most important 

and more frequent defects as those in our dataset. 

Table 30: Summary of root causes for main defect triggers 

Root Cause Defect Trigger 

Lack of traceability verification culture 

Traceability/Compatibility Lack or inefficient usage of tools that support 

traceability across lifecycle phases 

Lack of appropriate test planning and test strategy 

definition 

Test Coverage Lack or inefficient testing tool and testing 

environment support 

Incomplete tests specification and execution 

Review process related root causes 
Document Consistency/Completeness 

(Internal Document) 

Documentation related root causes 
Document Consistency/Completeness 

(Internal Document) 

Deficient usage of tools and applicable processes 
Document Consistency/Completeness 

(Internal Document) 

Unclear or missing/incomplete specifications 
Document Consistency/Completeness 

(Internal Document); Logic / Flow 

Ambiguous or unclear architecture definition Logic / Flow 

Lack of usage of tools that support data and 

control flow analysis 
Logic / Flow 

Inappropriate architecture support tools or tool 

usage 
Design Conformance 

Deficient specification or design artefacts Design Conformance 

 

From the development perspective, and based on Table 29, the following measures 

(proposed improvements) should be considered to reduce/eliminate the root causes: 

 Define/redefine appropriate review methods, processes and tools and enforce 

their application at every stage of the SDP; 

 Implement automated documentation generation processes and tools to avoid 

inconsistencies between artefacts/lifecycle phases; 

 Use tools that integrate and manage all the phases of the lifecycle, such as 

concept specifications, requirements, architecture, source code, tests, etc.; 

 Introduce/use tools with automatic validations (documentation completeness, 

design consistency, code analysis, control and data flow analysis); 
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 Provide training to the engineering teams, to improve the domain knowledge, 

the system or interfacing systems knowledge, standards knowledge and 

techniques and tools practice; 

 Promote workshops or meetings to present the specifications/requirements, to 

discuss and clarify them before advancing to the following phase; 

 Introduce additional guidelines or even specific requirements (e.g. by defining 

and specifying the reasoning behind the standards requirements and how to 

achieve them in full conformance) in the applicable standards (PA/QA, version 

and configuration control and development). 

From the V&V perspective, and based on the results in Table 30, the following 

measures (proposed improvements) should be considered to increase the defects 

detection efficiency: 

 Define appropriate test plans and strategies, especially unit and integration tests. 

The soundness of the test plans and strategies will reflect in the success of the 

validation; 

 Ensure appropriate (or automated) traceability analysis at every stage of the 

development lifecycle; 

 Improve the testing completeness, coverage and reviews; 

 Implement non-functional tests (fault detection, fault injection, redundancy, 

etc.); 

 Apply or develop tools to verify and validate the implementation and design 

compliance. 

6.3 Effort Spent on the Root Cause Analysis Activities 

The root cause analysis was a very efficient activity as can be seen in Table 31. In 

practice, the dataset root cause analysis was performed in about 2 weeks of effort, and 

for any future analysis, the analyst can already reuse the identified root causes and 

measures defined, if they still apply. A large amount of the effort was spent on the 

brainstorming and identification of root causes for every specific defect type and for 

every specific defect trigger. The activity ended with the identification of 26 root causes 

(13 from the development perspective and 13 from the V&V perspective) and led to 

the suggestion of 12 measures (7 to improve the development part and 5 to improve the 

V&V practices). 
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Table 31: Effort Spent for the root cause analysis activities 

Activity Description 
Effort 

(hrs) 

Process Data 

Preparation 

Collection of the Defect Types and Defect Triggers resulting from the 

enhanced ODC classification. Training on the selected root cause 

analysis methods (fishbone and 5 Whys). 

8 

Root Cause 

Analysis for 

Defect Types 

Brainstormings and definition of the possible root causes for the 8 defect 

types existent in the defects dataset. Summary of the root causes by 

aggregating similar ones and simplifying the resulting list of causes. 

Spot check on some defects to confirm the applicability of the defined 

root causes. 

24 

Root Cause 

Analysis for 

Defect 

Triggers 

Brainstormings and definition of the possible root causes for the 15 

defect triggers existent in the defects dataset. Summary of the root 

causes by aggregating similar ones and simplifying the resulting list of 

causes. 

Spot check on some defects to confirm the applicability of the defined 

root causes. 

22 

Root Cause 

Analysis for 

the Late 

Detected 

Defects 

Brainstormings and definition of the possible root causes for the late 

detected defects. Merging of these root causes with the previous analysis 

(for defect type and defect triggers). 

 

6 

Prioritization 

of the Root 

Causes 

Analysis of the specific types and triggers and what impacts they 

generally cause. Selection of the top 5 most “important” impacts 

(Capability, Safety, Reliability, Maintainability and Integrity/Security). 

Filtering of the root caused based on this criteria. 

8 

Consolidation 

of the Root 

Causes 

Simplification and aggregation of root causes in broader sets according 

to affinities and similarities. The result = 13 root causes groups for the 

defects types and 13 root causes for the defect triggers. 

6 

Identification 

of Measures 

Definition of sets of implementation suggestions to the consolidated list 

of root causes. Analysis of the 26 resulting root causes. 
8 

Total  82 

6.4 Final remarks 

This chapter presented the root cause analysis results, one of the main outcomes of the 

defects assessment process defined in Chapter 3. The root cause analysis consisted in 

a structured process based on a fishbone analysis for the most frequent/important defect 

types and triggers. We have first analyzed the resulting defect types and identified root 

causes related to development issues, then we have identified the main defect issues 

according to defect triggers which gave us the V&V weaknesses. We have also 

(particularly) applied the root cause analysis to the defects that have slipped through at 

least one lifecycle phase. In a subsequent step, we have proposed a dedicated list of 

measures to tackle both sets of root causes (development and V&V). The applied root 

cause analysis could produce manageable results due to the orthogonal classification 

provided by the defined enhanced ODC taxonomy. This classification simplified 
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(aggregated) the defect types and triggers and allowed the analysis to be focused on 

typed subsets (we can consider that we identified common root causes, instead of 

individual ones). 

From the resulting root causes, the main issues affecting critical systems in the space 

domain are related to engineer’s mistakes, requirements and constraints, test strategies 

and completeness, and lack of appropriate tools. To solve the problems caused by the 

main root causes improvement on review processes, traceability activities and test 

plans, strategies and completeness are the most relevant. 

The root cause analysis technique used (fishbone + 5 whys), can be replaced by any 

other root cause analysis technique as long as it is mastered and efficient and provides 

complete results. The set of root causes identified either in the individual analysis (per 

defect type or per defect trigger) or after consolidation can perfectly be reused for future 

analysis, or simply be used as a starting point to feed the root cause analysis process. 

The measures defined can also be reused as they are naturally connected to the 

identified root causes. The reuse of root causes and measures will make the process 

much more efficient and complete for the next time it is applied, and it will allow also 

the organizations to measure the progress by studying the trends in the changes of 

defect types and defect triggers (reflected in changes in the root causes). 

Finally, even if the root causes defined for a specific dataset are a representation of the 

problems that lead to that dataset, and the proposed measure represent the delta or the 

improvements that are needed for the engineering teams that produced the systems, 

these root causes and measures can be also used as a reference for root cause analysis 

on other systems and on other domains. For more details on this topic see the next 

chapter that discusses the topics of validation of the defects assessment procedure and 

the application of the procedure to other domains. 
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Chapter 7 

Process Validation and 

Application in Multiple Domains 

“Program testing can be a very effective way to show the presence of bugs, but is 

hopelessly inadequate for showing their absence.” - Edsger Dijkstra 

 

The validation of a process shall be performed based on the applicability and 

acceptance of the process and of the process results (output). The first part requires the 

implementation in an industrial environment, some training and the application of the 

defects assessment process to sets of defects. The second part requires the existence of 

defects and much larger cycles, as suggested measures for improvement need to be 

implemented (this can be done at different levels and require different periods of time: 

new or modified engineering processes, techniques or tools, human resources training, 

guidelines, templates and standards, and so on) and their results need to be assessed by 

a second round of application of the defects assessment process or by the analysis of 

the reduction of the number of defects or of their severity. This is very costly and time-

consuming or time dependent, for this reason we followed a different method to 

validate the process and the process results. 

The method defined to support the validation of the results of our research was to create 

a dedicated questionnaire and have it answered by a selected and significant number of 

experts. The questionnaire covered the definition and acceptance of the process, and its 

applicability, simplicity and the results, and intended to collect the opinion of experts 

on the validity of the root cause and measures. The questionnaire also allowed the 

experts to share their experience by providing additional root causes and measures that 

could be useful for future root cause analysis. 

The survey also had the intention to provide to the industry and academia the 

understanding of the applicability and need of a RCA based process, to compare and 

complete the root causes defined with additional/complementary root causes 

experienced by the experts, and to present the obtained measures and collect additional 
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ones from the exerts experience. The responses have allowed us to improve and adapt 

the defects assessment process, and to rank, in terms of perceived importance, the root 

causes and the proposed measures in order to improve software engineering processes. 

A side effect of the results obtained, also visible in the textual responses collected in 

Annex B, is the enhancement of the root causes and measures with additional common 

root causes suggested by the experts. In practice, our root causes and measures together 

with the root cause and measures proposed by the experts provide a very complete set 

of information that can be used in future root cause analysis, and that support the claim 

that the process provides results that are independent from the business domain. 

The outline of this chapter is as follows. Section 7.2 presents the detailed results 

obtained from the survey provided to the experts and the discussion of these results, 

section 7.3 discusses some concerns about the applicability of both the process and the 

reutilization of the root causes and measures to multiple business domains. Section 7.4 

covers the process improvements as suggested by the experts in the answered surveys 

and section 7.5 presents the final remarks about the process validation and the 

application to different domains. 

7.1 Overview of the Process 

The process for validating and collecting the approval of experts concerning very 

specific (and sometimes sensitive) topics is not an easy task. We had four main 

objectives with our validation questionnaire:  

 to confirm that the proposed process is acceptable and usable by industry;  

 to confirm the validity of the identified root causes and measures; 

 to obtain feedback and promote improvements to the process and to the lists of 

root causes and measures, even if those come from different technical domains 

(this might be useful in future defect analysis for other datasets); and 

 to measure the applicability of the process and results to different business 

domains (how generic these can be). 

The first activity was to formulate the questions and have the questionnaire validated 

(see Section 7.1.1). Next, we selected the target groups of respondents of the survey 

(see Section 7.1.2). A large group of experts from academia and industry worldwide 

has been contacted, in particular experts working with dependability and critical 

systems. Finally, the responses to the questionnaire have been collected and the data 

analyzed (see results in Section 7.2). 

7.1.1 Definition and Validation of the Questionnaire 

Once we have defined the generic objectives (above) and research questions, we have 

formulated the survey specific questions. The survey intended essentially to gather the 
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view of the industry and academia in what concerns defect analysis of critical systems, 

in particular the occurrence of failures in systems and software development and V&V 

processes. The research questions included the confirmation of the applicability and 

need of a RCA based process (Research Question RQ1), the types of causes that were 

experienced by experts (RQ2), and what the challenges are to advance the methods and 

practice of RCA (RQ3). 

The applicable systems are usually developed with utmost care, under very strict and 

mature processes and methods and usually require independent assessment in order to 

be fit to the purpose (qualified, certified, and homologated). These systems also follow 

well-defined quality assurance rules and originate a great deal of evidences (mostly 

documented artifacts) that can be consulted by teams and independent assessors. The 

survey operates around the results presented in the previous chapters, but also intends 

to collect additional expertise to improve the classification and the root-cause 

identification tasks. 

The questionnaire (presented thoroughly in Annex A) is composed by the following 

parts: 

 A short introduction to the topics, a relevant list of acronyms, a note about the 

anonymity of the answers, instructions on how and when to deliver the 

questionnaire, and a short presentation of the defects analysis process; 

 Three core parts:  

o A set of General Questions (to quantify the technical domain and 

experience, the perceived importance of the role of standards, budget, 

schedule, external assessment and defects analysis); 

o A set of textual questions collecting feedback about the process 

(positive and negative) and a request for additional recommendations 

(the results are in Annex B), and questions about the level of 

acceptability/recommendation of the proposed defects assessment 

process, the strengths and weaknesses identified, and some additional 

suggestions to simplify or improve the process; 

o Four sets of questions related with: a) defect development root causes 

and suggestions; b) root causes and suggestions regarding defect 

detection failure; c) defect avoidance measures and suggestions; and d) 

V&V measures and suggestions. 

 Additional comments to the questionnaire. 

Once the draft structure and questions have been formulated, the questionnaire has been 

reviewed internally, then provided to a group of 4 experts (two from academia and two 

from industry) to have the questionnaire tested, reviewed and commented for 

validation. The results of this validation were not used since the questionnaire suffered 

some adjustments based on the feedback from the experts. The questions have then 

been adjusted and simplified with the feedback from the four experts, as it should be 
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complete and straightforward and answerable in less than 1.5 hours, without 

compromising confidentiality (ensuring anonymity of the answers). 

Further validations have been done on each question in order to simplify the answers, 

support the respondents and avoid confusion or misunderstandings while responding. 

These validations included: proof reading of all questions, merging of similar 

questions, simplification by dividing one complex question into two or more, addition 

of helping text and guidelines to guide the answers, and appropriate reordering of the 

questions. 

7.1.2 Distribution of the Questionnaire 

The target audience of the survey has been selected based on the author’s experience 

and list of contacts. The industrial background of the author provided a large and 

dedicated list of relevant contacts in the Aeronautics, Space, Defense and 

Transportation domains. An important tool used to support the selection of industrial 

contacts was LinkedIn [138]. A large list of academic experts has also received the 

questionnaire. This list was constructed based on contacts acquired over several 

international research projects such as Critical Step [139], CECRIS [140], VALCOTS-

RT [141], and AMBER [142], just to name a few, and from the previous participation 

in international conferences such as DASIA, ISSRE, DSN, SAFECOMP, etc. These 

experts all belong to at least one of the following business domains: aeronautics, space, 

automotive, railway, defense, nuclear; and had experience in the following technical 

areas: critical systems, dependability, reliability, fault injection, V&V, RAMS. 

In practice, the questionnaire was delivered directly by email to 171 experts both in 

MS Word and PDF formats and the respondents were given one month to answer. Some 

of the experts replied stating that they would not be available to provide feedback or 

they did not felt confident to respond to the survey, some others have shown their 

interest in the survey and in getting the results of the overall survey at the end. Finally, 

36 surveys have been received and compiled, the results have been summarized and 

presented (see Section 7.2). We estimate that these experts have spent around 60 hours 

overall to provide their feedback. 

7.1.3 Characterization of the Respondents 

The questionnaire has been answered by 36 experts. Not all experts answered the full 

set of questions, or had opinion on every question where a textual response was 

required (Annex B). From the responses received, 17 were completely filled, 14 had 

more than 92% of the questions answered (corresponding to 20 out of 22 questions), 

and 5 had between 56% and 76% of completion of the responses. Some experts had no 

opinion concerning either one of the questionnaire areas or some of the proposed root 

causes or measures (we cannot conclude that no answer means total agreement with 

the proposed root causes/measures, but we can suspect that they had no clear or evident 

additions to our list). Overall, all questionnaires have been used to extract useful data. 
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In the analysis of the questionnaires we have simplified the domains to Academia, 

Transportation, Aerospace and Others. The distribution of respondents that claimed to 

work on these domains is: Academia – 19; Transportation – 18; Aerospace – 20; Other 

– 15. Only 7 researchers specified that they have experience in Academia, however, 

for this metric we have also considered researchers who claimed at least 5 years of 

experience in the academic field. Note that several experts have expertise in several 

domains, this is why the total adds up to more than 36. These results provide an 

interesting base for industrial analysis of the importance and extensibility our work. 

The average experience per expert was about 6.7 years for the 7 Academic respondents 

and 16.7 years for the 29 Industrial respondents (see Annex C for the experience 

distribution). 

7.2 Validation Results 

The data collected from the 36 questionnaires provided the validation arguments that 

we needed to improve and confirm the value of our process and results. The results of 

the survey are documented in Annex B and Annex C. 

7.2.1 Relevance of RCA 

The importance and relevance of application of a root cause analysis based process was 

at the center of the objectives of the survey. It is very clear from the answers provided 

to the general questions that root cause analysis is considered as extremely relevant. 

Most of the experts consider that the usage of standards is extremely important, 

consider that budget and schedule restrictions are very important, and that external 

assessment (such as ISVV or certifications) as well as root cause analysis are also 

extremely important for critical systems. These results clearly confirm that our 

motivations for acting upon such systems quality is shared by the community. The 

resulting answers are shown in Table 32. 

Table 32: General Questions Summary 

ER (Extremely Relevant), VR (Very Relevant), SR (Somehow Relevant), NR (Not Relevant), NO (No Opinion) 

From questions Q8 and Q9 (Table 33) we observe that 28% of the inquired experts 

have already used ODC in the past, and 50% have used some kind of defect analysis 

technique. This is quite surprising for such a selected population, since only a little 

Questions ER VR SR NR NO 

Q3: Standards Importance 53% 33% 11% 0% 3% 

Q4: Budget Importance 30% 53% 14% 0% 3% 

Q5: Schedule Importance 42% 42% 11% 0% 6% 

Q6: External Assessment Importance 56% 30% 11% 0% 3% 

Q7: RCA Importance 61% 36% 3% 0% 0% 
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more than half has ever used a structured way to study (recurrent) defects. Defects 

classification is also not common, but generally it is done with a very simple internal 

taxonomy to each organization. 

Table 33: Experts Background knowledge Questions 

7.2.2 Feedback on the Defects Assessment Process 

This subsection presents the critics, suggestions and recommendations from the experts 

in what concerns questions Q10, Q11, Q12. Again, the full set of answers is included 

in Annex B.  

When we asked if the experts would recommend such a process, we got 60% of 

recommendations and 33% of possible recommendation, while only 7% would not 

recommend such a process (See Figure 16 which does not include the 6 respondents 

who did now answered this question). 

 

Figure 16: Process Recommendation Distribution 

The comments on the process strengths, weaknesses and suggestions are presented in 

the following sub-sections. 

Questions YES NO 

Q8: Used ODC before? 10 (28%) 26 (72%) 

Q9: Used Defect Analysis before? 18 (50%) 18 (50%) 



Process Validation and Application in Multiple Domains 

109 

From the 32 responses (89%) obtained on the process strengths (Q10) we can 

highlight the following ones: i) being a structured approach; ii) inclusion of root cause 

analysis; iii) inclusion of a classification scheme; iv) provision of improvements and 

feedback; and v) relying on high quality of data. These strengths are effectively the 

ones we wanted to achieve and demonstrate with the defects assessment process. 

From the 32 responses collected on the process weaknesses (Q11) we can summarize 

the most relevant/frequent as: i) concerns about how to guarantee the quality of defect 

data (also related to strength v); ii) large amount of steps in the process; iii) missing 

feedback to the process (identified also as strength iv); and iv) difficulty in 

implementing/enforcing such a process.  

These comments are all very relevant. First, the process will only work if the defect 

data is appropriate. For this, we shall relate comment i) with comment iv), as a cultural 

enforcement must be broader than just the application of the process, but also cover the 

defect data collection, the quality checks of the data, and so on. The large number of 

steps is required to have the process well detailed with simple blocks – the process can 

however be simplified as some steps can be considered optional (e.g. 6 – Late Detection 

RCA, 7 – RCA prioritization). Furthermore, the process contains feedback to both the 

process itself and to the development and V&V processes (strength iv). 

Only 7 (19%) experts have not provided any additional process suggestions (Q12). 

Overall, out of the three requested suggestions, we obtained a response rate of 58%, 

which is a significant amount of comments and suggestions and demonstrates the 

interest of the experts in the topics. The main and more commonly agreed process 

suggestions include (see Annex B for the complete set): 

 Data collection improvements (process, database, quality guarantee) – 

some experts have demonstrated concerns about the quality and availability of 

good defects data. This topic has also been discussed earlier in Chapter 4; 

 Classification/validation activities and data quality checks between phases 

of the process – this is a very relevant topic. We had to implement a validation 

of the classification of defects due to many classification doubts in early phases. 

We have also used the questionnaire to be able to generically validate the root 

causes and the measures proposed, but this is a general validation and not a 

validation between phases. We believe however that with the appropriate 

training, and with expert support, any organization can comfortably implement 

such a process and guarantee quality of the results after each phase; 

 Consideration of projects details/specifics and team dynamics (skills, 

experience, motivation) – these parameters need to be considered mostly 

during the root cause analysis and measures definition. If the root causes point 

to any of these topics, then actions need to be defined to deal with these less 

technical properties; 

 Assessment covering also management related issues – the management 

cannot be dissociated from the success or failure of the teams, and it can be 

included as well in the root causes, if considered necessary. Questions about 



Chapter 7 

 110 

budget and schedule pressures have been included in the survey to measure the 

level of influence of management in the success of a critical system project. 

We can observe that we have suggestions on the environment and prerequisites, which 

make absolute sense (data quality, projects details), and also on the validation of the 

internal process activities, namely regarding the quality of the classification, which 

cannot be easily automated as per today’s technologies. 

7.2.3 Evaluation of the Quality of the Root Causes 

The following analysis presents the results and discussion regarding the experts’ 

opinions on the main results of the application of the defects assessment process to the 

1070 ISVV space defects, namely, de development defects root causes (based on defect 

types analysis) and the failure of detecting defects root causes (based on defect triggers 

analysis). This analysis is based on the 4 questions Q14, Q15, Q16 and Q17. While 

Q14 and Q16 represent the classification of the root causes identified and proposed by 

us to the experts, Q15 and Q17 represent newly suggested root causes according to the 

knowledge and experience of the experts. 

The objective of this section is to show that the experts have a common view on the 

root causes identified for critical systems. Although the presented root causes are 

naturally associated to the defects dataset and the aerospace domain, we intended to 

determine if these results were still widely acceptable and potentially recurrent also in 

other domains. As we will see, this assumption can be corroborated by the presented 

results. 

We have analyzed the frequency of words/groups of words and clustered the 

suggestions of the experts, and those are presented hereby for all the questions where 

a written opinion was requested. For the details on the proposed root causes see Annex 

B. 

For the questions Q15, Q17, the number of provided suggestions (root causes) can be 

observed in Table 34 (we have simplified the questions text to make it fit in the table. 

Further textual description can be found in the questionnaire in Annex A). The experts 

provided more suggestions to root causes for development problems (62) than for V&V 

problems (36), and a relatively similar amount of Extremely Relevant/Frequent and 

Very Relevant/Frequent set of overall suggestions (38 and 43). The first observation 

that can be made is that the development is naturally more exposed to defects and 

experts have seen different types during their career. The V&V activities that are 

associated with the “lack of defects detection” are a limited set in terms of causes and 

have been quite well captured by our analysis. Moreover, the experts tend to spend time 

proving suggestions that they really consider important and relevant, according to their 

domains and expertise. As we will see next, although some of their suggestions are 

already covered by the results of our analysis, they have expressed them in a slightly 

different wording. 
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Table 34: Amount of the Proposed Root Causes and Measures 

ER (Extremely Relevant/Frequent), VR (Very Relevant/Frequent), SR (Somehow Relevant/Frequent), NR (Not Relevant/Frequent), 

NO (No Opinion). 

7.2.3.1 Root Causes on Development Defects  

We requested the experts’ perception of the frequency of the identified root causes from 

a development perspective. These have been identified in the context of our dataset and 

for the space domain, but we expect these to be quite well acknowledged by the experts. 

Q14 presented the main root causes that we found during the development lifecycle. 

Figure 17 shows the order of “preference” or “importance” given by the experts to 

those root causes and the distribution of the relevance level. The colors represent the 

percentage (the left axis of the image) of responses of each importance/relevance level, 

while the green line provides an average of the overall responses for each root cause 

based on the weights given to the response (ER = 3, VR = 2, SR = 1, NR = 0, NO = 

excluded). The list of root causes is ordered by this average, showing the root causes 

considered more important/relevant to the left and the less important/relevant to the 

right. 

Questions ER VR SR NR NO Total 

Q15: Development Defects Root Causes Suggestions 23 26 11 2 46 62 

Q17: Failure of Detecting Defects Root Causes Suggestions 15 17 4 0 72 36 

TOTAL 38 43 15 2 118  
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Figure 17: Development Defects Root Causes 

Aerospace experts consider documentation tools limitations (decrease of 21%5) and 

lack of tools and programming languages knowledge (increase of 21%) as less relevant 

than other experts, and incomplete interface specifications (decrease of 15%) as more 

relevant than experts from other domains. Besides these causes both groups classify 

the root causes in a very similar way in terms of importance. Table 35 shows the relative 

difference between the classifications made by Aerospace experts and experts from 

other domains (based on the values presented in Figure 17).  

                                                 
5 This means that for question Q14d: Docu Tools Limitations, Aerospace experts have provided a 

lower importance, according to the sum of the weights of NO, NR, SR, VR and ER, to this root cause 

than other experts. The difference of the aggregated sum in this case is 21%. 
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Table 35: Difference between Aerospace experts answers and others for Q14 

Question Difference 

Q14a: Inefficient Reviews 9.0% 

Q14b: Artefacts Problems 4.5% 

Q14c: Incorrect Tests 11.0% 

Q14d: Docu Tools Limitations -21.0% 

Q14e: Sys Docu Inconsistencies 3.6% 

Q14f: Docu Processes Overlooked 10.5% 

Q14g: Limited Domain Knowledge 6.7% 

Q14h: FDIR Specs Missing 0.3% 

Q14i: Lack Reliab. Safety Culture 0.8% 

Q14j: Incomplete Interface Specs 15.0% 

Q14k: Insufficient Maint, Oper, Usab Specs 6.6% 

Q14l: Lack Tools and Languages Knowl -20.8% 

Q14m: CM and Versioning Problems -9.3% 

In what concerns the causes for defects introduced during “development”, ordered 

according to the frequency of occurrence/importance, we can observe that 9 of the 13 

root causes achieve an Avg. greater than 1.5, meaning that in overall they were 

evaluated at least as relevant/frequent by the set of experts. 

We also observe that experts do not seem to consider the lack of domain knowledge, 

tools limitations and configuration management problems as the most relevant or 

frequent root causes. On the contrary, they consider that wrong implementations, 

incomplete reviews, incomplete tests and specifications for the error situations are the 

more frequent/important root causes. 

As a complement we requested the experts to provide some additional root causes from 

their experience (which would not necessarily be applicable to our dataset) in order to 

compile a more complete and equilibrated list of root causes that can be used for the 

future independently from the business domain.  

The aggregated summary of the new root causes (Q15) has been collected from the 

suggestions of 27 experts (75% of the total sample). The main topics for new root 

causes suggested are: 

 Pressures impacting development artefacts (management, schedule/delivery, 

budget); 

 Development/developers overconfidence or carelessness, as well as skills, 

motivation and interest in the project; 

 Systems increasing complexity (technical and team sizes); 

 Communication issues (customer, developers, V&V, management); 

 Constraints on quality, availability of artefacts, and resources skills. 
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Several experts suggested root causes similar to the ones proposed in our survey, 

making the clustering easy. In fact, we observed that some of the suggested root causes 

are related specifically to some of our root causes proposed (described in the 

questionnaire), e.g. domain knowledge, poor documentation, Fault Detection, Isolation 

and Recovery (FDIR). Others, as those stated in the bullets above, are sometimes quite 

broad but constitute an interesting starting point for consideration in future RCA, and 

thus to be added to our list of 13 root causes to serve as a reference for future analysis. 

7.2.3.2 Root Causes on Failure of Detecting Defects 

While analyzing the defect triggers we have identified root causes for failing defect 

detection or for demonstrating how V&V activities have failed. The perception of the 

frequency/importance of these identified root causes was asked in Q16 and is depicted 

in Figure 18. The colors represent the percentage (left axis of the image) of responses 

of each importance/relevance level, while the green line provides an average of the 

overall responses for each root cause based on the weights given to the response (ER = 

3, VR = 2, SR = 1, NR = 0, NO = excluded). The list of root causes is ordered by this 

average, showing the root causes considered more important/relevant to the left and the 

less important/relevant to the right. 

 

Figure 18: Failure of Detecting Defects Root Causes 

Aerospace experts consider defective review processes (increase of 22%), non-

application of traceability support tools (increase of 20%) and incorrect usage of tools 

(increase of 16%) as more relevant than experts from other domains. Besides these 
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causes both groups classify the root causes in a very similar way in terms of importance. 

Table 36 shows the relative difference between the classifications made by Aerospace 

experts and experts from other domains (based on the values presented in Figure 18. 

Table 36: Difference between Aerospace experts answers and others for Q16 

Question Difference 

Q16a: No Traceability Culture 6.7% 

Q16b: No Traceability Tools 20.2% 

Q16c: No Test Planning 7.9% 

Q16d: No Testing Tool/Env. 2.1% 

Q16e: Incomplete Test Spec 3.1% 

Q16f: Defective Review Process 22.4% 

Q16g: Defective Docu 11.1% 

Q16h: Bad Tools Usage 16.4% 

Q16i: Incomplete/Bad Specs 1.2% 

Q16j: Defective Architecture -3.1% 

Q16k: No Tools for Data Flow Analysis 6.6% 

Q16l: Inappropriate arch supp tools -4.2% 

Q16m: Deficient Design Specs 10.9% 

Experts do not seem to consider that tools (again) are an important source for failing to 

detect problems, since the 5 lowest average root causes pointed to tools-related 

problems or lack of tools. On the contrary, they consider that specifications-related 

problems, test specifications and implementation of planning and review processes lead 

to the lack of defects detection much more frequently than the other root causes. From 

these values, we can observe that 8 of the 13 root causes achieves an average greater 

than 1.5, meaning that in overall they were evaluated at least as relevant/frequent by 

the set of experts. 

The aggregated summary of the root causes proposed by experts for failure of detecting 

defects (Q17) has been collected from the suggestions of 18 experts (50% of the total 

sample). The main topics for new root causes suggested are: 

 Knowledge limitations (domain, project, environment, faults, constraints, 

technologies, safety culture); 

 V&V processes and culture (also considering dedicated standards); 

 Staff inexperience (lack of testing expertise, lack of verification training); 

 Management related issues (planning, pressures, risks, milestones, schedules); 

 Size and complexity of systems (untestable requirements, long testing periods 

or impossibility of full coverage, lack of early involvement of safety/V&V 

teams). 
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Some of the root causes suggested are related to specific root causes already in the 

questionnaire, e.g. testing planning/strategy, or testing tooling/environment issues (also 

problems with tools). Others, as those stated above, can also be allocated to the 

development phases but constitute another interesting addition for consideration in 

future RCA, and thus to be added to our list of 13 root causes to serve as a reference 

for future analysis. 

7.2.4 Evaluation of the Quality of the Measures 

The following analysis presents the results and discussion regarding the experts’ 

opinions on the main results of the application of the defects assessment process to the 

1070 ISVV space defects, namely, the measures to improve development and V&V. 

This analysis is based on the 4 questions Q18, Q19, Q20 and Q21. While Q18 and Q20 

represent the classification of the measures identified and proposed by us to the experts, 

Q19 and Q21 represent additional measures proposed by the experts. 

The objective of this section is to show that the experts have a common view on 

required measures for critical systems. Although the presented measures are naturally 

associated to the defects dataset and the aerospace domain, we intended to determine 

if these results were still widely acceptable and potentially recurrent also in other 

domains. As we will see, this assumption can be corroborated by the presented results. 

We have analyzed the frequency of words/groups of words and clustered the 

suggestions of the experts, and those are presented hereby for all the questions where 

a written opinion was requested. For the details on the proposed measures see Annex 

B. 

For the questions Q19 and Q21, the number of provided suggestions (measures) can be 

observed in Table 37 (we have simplified the questions text to make it fit in the table. 

Further textual description can be found in the questionnaire in Annex A). The experts 

provided an equivalent number of additional measures for development and V&V (40 

versus 42). The experts tend to spend time proving suggestions that they really consider 

important and relevant, according to their domains and expertise. As we will see next, 

although some of their suggestions are already covered by the results of our analysis, 

they have expressed them in a slightly different wording. 

Table 37: Amount of the Proposed Measures 

ER (Extremely Relevant/Frequent), VR (Very Relevant/Frequent), SR (Somehow Relevant/Frequent), NR (Not Relevant/Frequent), 

NO (No Opinion). 

Questions ER VR SR NR NO Total 

Q19: Development Measures Suggestions 21 10 7 2 68 40 

Q21: V&V Measures Suggestions 21 13 5 3 66 42 

TOTAL 42 23 12 5 134  
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7.2.4.1 Development Measures 

Following the root cause analysis, we have identified concrete measures to tackle the 

most frequent root causes and thus avoid the same type of defects in the future. The 

perception of the relevance/importance of these proposed measures was asked in Q18 

for the development related root causes. Figure 19 presents the ordering of 

importance/relevance of these measures according to the classification performed by 

the experts. 

 

Figure 19: Development Measures 

We observed that aerospace experts consider that Engineering Training (Q18e) is a 

measure that could help in reducing the introduction of defects more than the overall 

experts do (Table 38). The difference is about 25% increase in the importance of this 

root cause. The proposals of meetings to clarify the specifications, automated 

documentation generation and additional standards guidelines are also more 

emphasized by the aerospace experts, having about 16% increase in these measures. 

Most of the remaining measures are similar between the aerospace and the overall 

responses of the experts. 
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Table 38: Difference between Aerospace experts answers and others for Q18 

Question Difference 

Q18a: Better Processes/Review 2.5% 

Q18b: Auto Docu Generation 17.0% 

Q18c: Tools for full lifecycle 0.9% 

Q18d: Auto Validation Tools -5.6% 

Q18e: Engineering Training 24.8% 

Q18f: Specifications Meetings 16.5% 

Q18g: Standards Guidelines 16.3% 

 

Experts do not seem to consider that tools (yet again) are the most important asset for 

reducing defects during the lifecycle. On the contrary, they consider that better 

processes, more frequent clarification meetings with the customer and dedicated 

engineering trainings are the main solutions. From these values, we can observe that 5 

out of the 7 measures achieve an average greater than 1.5, meaning that, overall, they 

were evaluated at least as relevant/important by the experts. 

Additional suggestions regarding development measures have been provided by 20 of 

the respondents (56% of the total sample) and allowed the identification of a large set 

of new measures: 

 Require early results, early quality guarantee of requirements (or formal 

specifications); 

 Promote defects knowledge and analysis, fault awareness (FDIR) training, 

compensations, etc.; 

 Simplify systems, technologies, team management, lifecycles; 

 Improve communication, meetings efficiency, mile-stones with more quality; 

 Traceability simplification and implementation; 

 Promote teams training and involvement at different phases; 

 Use standards but plan for necessary improvements / additional tasks; 

Once again there is a relation between some of the suggestion and measures already 

defined, namely the enforcement of strict review processes/development 

processes/documentation processes and the topics regarding standards. Moreover, 

some of the suggestions would also fit the V&V measures since there are 

commonalities, such as the traceability related measures. 
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7.2.4.2 V&V Measures 

Following the RCA we have performed based on the defect triggers, we also mapped 

concrete measures to tackle the lack of defect detection. The perception of the relevance 

of these proposed measures was asked in Q20 and is depicted in Figure 21. 

 

Figure 20: V&V Measures 

Aerospace experts consider that Q20c Test Coverage (increase of 27%), Q20d non-

existence of non-functional tests (increase of 23%) and Q20b Traceability are more 

important tools/measures than non-aerospace experts (depicted in Table 39). 

Table 39: Difference between Aerospace experts answers and others for Q20 

Question Difference 

Q20a: Test Plans 1.3% 

Q20b: Traceability 15.2% 

Q20c: Test Coverage 26.9% 

Q20d: Non-functional Tests 22.8% 

Q20e: Tools for design compliance 3.9% 

Experts still do not seem to consider that tools are the most important asset for V&V 

to help detecting defects. More importantly, experts suggest that better test plans, 

improved test coverage criteria and better traceability analysis are the most important 

V&V actions to implement. From these values, we can observe that 4 out of the 5 
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measures achieve an average much greater than 1.5, meaning that in overall they were 

evaluated at least as relevant/important by the set of experts. 

Additional suggestions on V&V measures were obtained from 21 of the respondents 

(58% of the total sample): 

 More customer involvement in testing; 

 Experts involvement for requirements testing; 

 Tools to support V&V processes, static analysis, automation of testing tasks; 

 Better communication between V&V and development; 

 Monitor and measure quality; 

 Enforce early defect detection (model-driven techniques, formal methods, test 

driven development). 

As before, there were commonalities between the newly proposed measures and some 

of the measures already included in the questionnaire. For example, experts also 

proposed better test plans and strategies and more robustness testing (non-functional) 

– exploration of informal V&V methods. Moreover, some of the V&V measures 

proposed were already covered as part of the development measures on the questions 

of the survey (Q18), as is the case of better review processes, better code inspections 

and team training, focus, specialization, defects awareness. 

7.3 Application to Multiple Domains 

Several domains have been depicted in Figure 2 (Chapter 2). All the depicted domains 

have in common that they require a controlled and recognized development and V&V 

set of processes based on international standards and guidelines. In fact, the differences 

between software engineering in different domains is not so significant. Only some 

techniques and taxonomies actually differ from domain to domain as confirmed by a 

study performed over different safety critical standard [23]. Another study, within 

CRITICAL Software, S.A. that operates in different domains, has demonstrated that 

the differences of techniques, tools and skills from teams working in one domain to 

move on to another domain are very manageable and require and acceptable amount of 

effort and time [13]. This shows that a common set of skills, techniques, tools and 

practices are totally reusable and so should be the defects assessment process. 

Our dataset contains defects from space projects and some defects from aeronautics 

(airborne) projects. During the dataset clean-up, we have removed the aeronautics 

defects as they did not contained structured nor enough information to be used. Once 

the defects assessment process defined in Chapter 3 has been applied to the space 

defects (especially with the enhanced ODC taxonomy) and validate it can be applied 

to different domains, an on-going activity is being performed with a set of about 150 

railway defects. The preliminary results demonstrate that the enhanced ODC taxonomy 

is properly adapted to the railway domain, and that the process can be applied to another 
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domain with no modifications required. Nonetheless, the process allows for the 

modification or replacement of the classification taxonomy, as long as it remains 

orthogonal. Thus, a different classification taxonomy can be used or the currently 

proposed enhanced ODC can also be adapted if there is the need (for example due to 

the impact of the usage of new technologies, emergent behaviors or cybersecurity 

issues). Any adaptation, should, at this point, be very precise and localized. Another 

area of the process that can use different techniques is the root cause analysis. We have 

applied the fishbone diagrams and the 5 whys techniques, but any technique based on 

expertise and knowledge of the systems and environment can be used to determine the 

root causes. 

In order to further collect feedback from the applicability of the process to an enlarged 

set of technical domains, we have compiled a questionnaire (see Annex A) that was 

delivered to a large set of experts (industry and academia) working in a diverse set of 

domains. Both the process and the analysis results, have been widely accepted by the 

experts, meaning that the root causes identified for the space defects can also be 

applicable for other domains. This has three main reasons: first, the engineering 

processes and tools are not that different; second, the guidance or standards have quite 

similar objectives; and third, the identified root causes and the associated improvement 

measures as identified by our activity have been defined in a very generic and thus 

broadly-accepted way.  

Since the engineering processes and tools used are very common, the result depends 

on the maturity of the organizations and the experience of the engineers, thus some 

very pervasive problems occur. The standards and guidance requirements having 

common objectives (e. g. safety, security, availability, reliability, dependability, 

quality, certification or qualification) also lead to the usage of common processes, 

techniques, tools, reuse, and this will again lead to problems that can be found across 

domains. Finally, our lists of development root causes, V&V root causes, and the 

proposed improvements are not specific to any specific defect (it would be very 

extensive to do it for the 1070 defects) and is purposely generic being this way 

applicable to any engineering context (engineering domain). This genericity was one 

of our essential requirements for this work. 

As the implementation is mainly performed by engineers, they tend to make common 

mistakes and require the same type of improvements. 

The results of the survey, presented in before, have highlighted that the opinion of 

experts is not very divergent in what concerns the applicability of the identified roots 

causes and the proposed measures. Our dataset contains a diverse set of defects from 

all lifecycle phases, form the aerospace domain. Nonetheless, we observed that the 

perception of the importance of the root causes for development and V&V is very 

similar between aerospace experienced respondents and the global population (as 

shown in Table 35, Table 36, Table 38 and Table 39). Besides the differences, none of 

them is higher than 30%, we observe only small divergence of opinions. There are only 

two proposed root causes where non-aerospace experts have given a higher importance 

than the aerospace experts, and these are: Q14d: Documentation Tools Limitations and 

Q14l: Lack of Tools and Languages Knowledge. However, these root causes are also 
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classified as the least relevant ones for both aerospace and non-aerospace. Similarly, 

regarding the measures proposed, the only ones that had a significant difference 

between the aerospace and non-aerospace are: Q18e: Engineering Training and Q20c: 

Test Coverage. These two measures are however considered among the most relevant, 

but aerospace experts consider that they are much more relevant than non-aerospace 

experts. 

The experts have also expressed their opinion on the process that led to those results. 

The acceptance rate was positive and there were no differences observed between 

experts of the different domains, nor between academia and industry. The tasks that 

compose the process are also generic enough to be applied to any engineering project, 

independently from the domain. It is currently being applied to the transportation 

domain without any issue. The same process, with the same ODC taxonomy is being 

applied to a set of 150 railway train control and management system defects. 

We conclude that the process with the Enhanced ODC taxonomy and the root cause 

tasks is potentially independent from the domain, so it can be applied generically. 

Moreover, the set of root causes and measures seems to be also well accepted by experts 

from the different domains. Further suggestions have been proposed but they do not 

seem to be connected to any business domain, as they are also very applicable to all 

domains. 

7.4 Process Improvements as a Result of the Process 

Validation Activities 

Based on feedback collected from the empirical and practical application of the process 

to a large set of space software defects, and then with additional feedback from industry 

and academia, we have derived the process depicted in Figure 10. Although our dataset 

and our experience is mainly from space software, this generalization can support the 

evaluation and root cause analysis of any critical system, independently from the 

domain (as confirmed from the set of industry and academic surveys performed). 

7.4.1 Data Collection and Preparation Improvements 

Data collection seems to be a straight forward activity; however, it is not always easy 

to get access to the right or the complete data necessary to classify the defects and to 

determine the root causes. Some suggestions that have been included in the defects 

analysis procedure are: 

 Engineering training on how to properly raise defects – the engineers should 

be prepared to promptly and correctly report defects, and to document them 

completely in a self-contained manner, with the appropriate references and with 

a common and simple language; 

 Definition of a template with the basic information required to be collected 

for every defect (this can also be implemented on a defect tracking tool) – 
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definition of the mandatory information fields required for each defect that is 

raised and provide hints or multiple choices whenever possible for the filling of 

those fields; 

 Procedure for early evaluation of the quality and completeness of the 

defects data – define some metrics or develop a tool to evaluate the 

completeness and quality of the contents of the defects, the natural language 

used, etc.; 

 Pre-selection of the defects to decrease analysis effort – with the definition 

of a criteria (for example based on the priority and/or severity of the defect) 

prioritize and select a subset of the defects to promote the classification and the 

root cause analysis on a smaller and more important set of defects; 

 Usage/update of a domain specific database of defects – generalize the defect 

types or examples and complete the analysis, record it on a database and reuse 

it for future occurrence of similar defects of defects related to the same topics. 

The contents of the template with the basic information required to be collected shall 

include, at least: reference artefact, defect title and defect detailed description, phase 

where the defect was identified, phase where the defect was introduced, activity that 

detected the defect, defect author, defect severity, and defect relevant keywords. 

7.4.2 Defects Classification Improvements 

In this work, defects classification was based on the selected orthogonal defect 

classification (ODC) and the proposed enhancement. The classification process 

depends on the selected scheme and taxonomy (see Chapter 5 for the proposed 

classification and relevant details). Some suggestions have been made by industry and 

academic experts to our proposed classification process: 

 Define and provide training on the classification of defects and on the 

applied taxonomy - to make the classification more efficient, easy and 

homogeneous, since understanding of the classification taxonomy is essential 

for a sound classification; 

 Explore the usage/configuration of tools to support the defects 

classifications (e.g. JIRA, Bugzilla, …) – tools must support the classifications 

and analysis of the defects, as well as the access and storage of the defects data; 

 Adapt ODC for object/service/aspect oriented developments and for agile 

– to support new development paradigms and be able to cover future needs of 

the project teams; 

 Promote continuous improvement of ODC taxonomy (from feedback) – as 

stated in the process last step (11. Process Validation and Improvement), 

regular feedback to the whole process is important to support the technological 

changes in system development; 
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 Improve confirmation of the proper defect classification (confirmation by 

another expert – validation of the classification) – defects classification 

validation and confirmation is necessary, and this is commonly done by 

additional experts, different solutions for the appropriateness of the 

classification shall be explored; 

 Use and update the defects database (classified defects) – the usage of a 

defects database, and relevant classifications and constant 

updates/improvements to that database are required; 

 Explore the possibility of getting defects automatically classified with 

support of the defect author (e.g. by using keywords) – either by improving 

the templates and the guidelines for writing defects or by requesting the defect 

author to fill in some additional fields, collect extra information to support on 

the defects classification activities. 

7.4.3 Root Cause Analysis Improvements 

The root cause analysis requires expertise and effort to be properly performed. The 

proposed process contains different steps and different root cause analysis activities. 

Some of the suggestions made by the industrial and academic experts consulted are: 

 Provide root cause analysis training – training and practice on root cause 

analysis is important to properly perform the root cause analysis activities and 

avoid doing only a high level and flawed analysis; 

 Use of a root causes database as a baseline to identifying the defects causes 
– the defects database with associated classifications is a key element for future 

automation and guidance on classifications of similar defects or groups of 

defects; 

 Promote some type of automation for the root cause analysis activities – 

with additional information provided by the defects authors or with the support 

of the classified defects database some automation or classification suggestions 

can be performed; 

 Define and derive root causes per domain or system type (together with the 

database) – the database should have categories or groups of defects (similar 

defects, subsystem types, defects from specific lifecycle, phases, etc.) that can 

support classification of similar defects in the future; 

 Separate root causes depending on target groups (development, V&V, 

management) – the root causes separated by type can simplify their 

distribution, implementation and acceptance by the target groups; 

 Promote a quick comparison with previous defects root causes to see if the 

systems are improving – verify that the frequency of previously identified root 

causes is reduced and conclude on the suggestions and actions implemented. 
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7.4.4 General Process Improvements 

The root cause analysis lead to the identification of changes to prevent or avoid defects 

from existing or from slipping between lifecycle phases. The implementation of these 

changes (improvements) might lead to the expected results, but might also reveal 

different type of problems, that will need to be tackled in a subsequent cycle. For 

engineering cycles that are long (projects that have, for example, 5 years duration), it 

will take some time to measure the effect of the implementation of the improvement, 

and some improvements might not be easy to implement because they will depend on 

training, cultural changes, technology evolutions, tools that need to be purchased, 

guidelines or standards that need to be updated and followed, etc.  

Some of the suggestions made by the industrial and academic experts consulted are: 

 Discuss and agree the changes with management before presenting them 

to the affected groups, to ensure their commitment and sponsorship – a 

formal discussion and acceptance of the suggestions based on the identified root 

causes is the best way to have the solutions implemented; 

 Monitor the improvements implementation, maybe through a simplified 

and lighter process that quick confirms the reduction of the defects – 

monitor and track the metrics of the defects rate and the root causes occurrences 

to conclude in the effectiveness of the implemented measures; 

 Define and adopt some metrics to measure the quality of the results – define 

specific metrics such as the defects recurrence, the root causes frequency, by 

severity, etc., in order to measure the quality and effectiveness of the 

implemented modifications. 

7.5 Final remarks 

We have created a survey to measure the acceptability of the defects analysis process 

and to confirm that the obtained results are in-line with the community experience and 

background. This survey has been answered by 36 experts and provided us not only a 

ranking of the root causes and possible measures but also some feedback on the process 

and some additional root causes and measures. 

The main outcomes from the survey results were discussed in this chapter. The 

community (both academia and industry) considers that defect analysis, external 

assessments and the use of standards are of utmost importance. In parallel, budget and 

schedule constraints play an important role in the quality of the projects outcomes. 

Almost half of the respondents had never performed defect analysis, so this is an area 

that really needs improvements to be implemented. 

The proposed assessment process got acceptance from a majority of the respondents. 

They claimed that the process was structured and could provide valuable feedback; 

however, they were concerned about how to obtain good quality of defects data and 

how to implement a process with a large number of steps. Some of the proposed 
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suggestions were exactly concerning the data quality and how to validate the obtained 

results. We claim that usage over the time and monitoring of the defects frequency and 

impact will be a good validation method. 

The root cause results (development and V&V defects) have allowed the ranking of 

our identified root causes, and this has shown that the experts consider wrong software 

implementations, incomplete reviews, incomplete tests or test plans and lack of 

consideration of error situations to be the most common problems, while lack of 

domain knowledge and tools do not seem to be the causes for most defects. This is an 

interesting result that shows that the critical software domain is still heavily dependent 

on manual actions, on human skills, and on traditional development (from 

specifications to tests). 

For the ranking of the measures to apply, the most voted were review processes, 

improved communications, test plans and tests coverage, better traceability and 

engineering trainings. Again, tools and automation are generally the V&V and 

development assets that seem less important for the experts. This shows once that the 

manual and human based techniques (that are simple) are still the ones the community 

is considering more applicable. There is maybe a cultural change to operate in these 

areas. 

Additional suggestions for root causes and measures have been proposed by the 

experts. Although these were very much in-line with those that we proposed based on 

our dataset, they also provide an interesting addition for future RCA. The proposed root 

causes and measures arise from the specific experience of the experts and provide a 

good overview of the problems (and possible solutions) for critical systems at large. 

The conclusion we can make is that our process produced a very well accepted set of 

root causes and measures, and this supports positively the evaluation of the process and 

the methods that compose it. 
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Chapter 8 

Conclusions and Future Work 

The topics of quality, dependability, reliability, integrity and safety of critical systems, 

such as space, railways and avionics systems, are of utmost importance. These systems 

operate vital functions and cannot fail. It is however not possible to have a system that 

does not fail or does not contain defects, and this is observed, for example, when 

independent assessments of these systems are performed. The significant and frequent 

amount of defects (sometimes major defects) is the main motivation to develop a 

process to support the engineering teams in reducing the amount of defects by learning 

from previous mistakes. 

A complete process was defined, applied, validated and refined, in this work, covering 

four main phases, from the defect data collection and preparation, to the defects 

classification, the root causes analysis and measures identification, to the validation of 

the measures implementation. The defects assessment process was applied to a set of 

1070 space systems defects, and validated with the support of a survey provided to 

different academic and industrial experts. The process can be used and applied in 

industry in a simple way and independently from the industrial domain. In practice, the 

process takes as input defects identified on the engineered systems, and supports the 

analysis of these defects towards identifying their root causes and defining appropriate 

measures to avoid them in future systems. 

Within the defects assessment process activities, the adaptation of the Orthogonal 

Defect Classification (ODC) for critical issues is a key step. The original ODC was 

used for an initial classification and then it was tuned according to the gaps and 

difficulties found during the defects classification activities. The improvements were 

necessary and covered the defect types, defects triggers and defect impacts. Improved 

taxonomies for these three parameters have then been devised and applied to the full 

set of defects and validated with the support of experts, demonstrating their 

appropriateness. 

The most important part of the process is, however, the application and integration of 

a set of root cause analysis steps. These steps produce results that show the origins of 

the defects. The identified causes are related to different parameters, such as human 
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and technical resources, events occurred, processes followed, methods applied, tools 

used and standards followed. The fishbone root cause analysis proposed and applied to 

the defects dataset has proven to be quite effective since the obtained results were well 

accepted by the experts during the validation phases. 

As a result of the root cause analysis, a specific set of root causes and applicable 

measures to improve the quality of the engineered systems (removal of those causes) 

have been identified. These root causes and proposed measures allow the provision of 

quick and specific feedback to the industrial engineering teams as soon as the defects 

are analyzed. A list/database has been compiled from the dataset and includes the 

feedback and contributions from the experts that responded to a process validation 

survey. The root causes and the associated measures represent a valuable body of 

knowledge to support future defects assessments as confirmed by the answers and 

classifications of the experts. 

The measures proposed to improve systems have shown the importance of using 

empirical data (of defects in this case) to contribute to technical and processual 

improvements in order to get better overall quality and improved dependability levels 

for systems that are critical. In fact, the outcomes of the field study show that, although 

critical systems are already guided by appropriate development and V&V techniques 

and processes, most of the defects are caused by an inefficient usage or implementation 

of these techniques and processes. Appropriate guidance, additional requirements and 

constraints, better test strategies and tools that are able to help in the application of the 

techniques and processes are essential to obtain better results (less defects). 

We can conclude that the main issues affecting critical systems in the space domain are 

related to engineer’s mistakes, requirements and constraints, test strategies and 

completeness, and lack of appropriate tools. The results also suggest that our process 

(supported by the classification scheme and the root cause analysis) allows the 

identification of improvements for specific areas and groups of defects, and that review 

processes, traceability activities and test plans, strategies and completeness are the most 

relevant V&V tasks to be improved/enforced for better detection of the defects in space 

systems. 

As a result of this study, and due to the industrial cooperation behind it, several parties 

have already shown interest in the results of the current analysis to promote internal 

awareness and process improvements. 

8.1 Discussion 

Some topics are worth being mentioned as part of the conclusions and of the obtained 

results. 

Firstly, the proposed ODC adaptation. The classification scheme is a core element of 

the process and we have selected ODC due to its implantation in industry, orthogonality 

and comprehensiveness. However, soon we identified difficulties in classifying issues 

without ambiguity: we had a first classification with 27% of ambiguous classifications, 

but once this classification was reviewed and completed by an expert engineer the 
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ambiguity increased to 31.7%. We solved this issue by proposing an adaptation of the 

taxonomy, which was based on the study of the ambiguous classifications and on the 

judgement of experts. 

Secondly, the reduction of the ODC attributes. The selected subset of ODC attributes 

come from the fact that not all attributes bring useful information to support RCA. A 

key objective was to make the classification easier (for Type, Trigger and Impact) and 

to cope with the fact that the classifiers had some troubles categorizing certain defects. 

We believe that the proposed taxonomy allows a more efficient and faster classification 

(even if losing some specificity), as we are joining some classes that had similarities 

(probably removing ambiguity and human error probability, but that is not easy to 

validate). The reclassification (with the enhanced ODC taxonomy versus the original 

ODC) lead to: 

 More ‘Documentation’ defect types being observed (12% increase). We have 

classified some of the defects in this category after a deeper analysis of the 

defects where we had defect type doubts. 

 ‘Traceability/Compatibility’ became the most frequent trigger and even ‘Test 

Coverage’ became a trigger which lead to the identification of more defects 

than ‘Consistency and Completeness’. 

 ‘Maintenance’ defect impact became more frequent than ‘Reliability’, and the 

‘Documentation’ impact frequency has been reduced. 

Thirdly, the classification certainty/precision. We are aware that such a process cannot 

lead to a fully precise classification. Human error/bias shall be taken into account. 

Although the classifications have been performed by experienced engineers, and 

confirmed/reviewed by a second engineer, some of the classifications are always 

arguable – this is due to the understanding of the problem, to the expertise/background 

of the engineer, and to the classification taxonomy itself (this was a problem we tried 

to tackle). Moreover, the proposed/used adapted taxonomy is meant to be a step 

towards a more applicable classification for this type of defects/systems and 

demonstrates that such a classification taxonomy can (and will be) adapted in the 

future. If we take, for example, the results of the enhanced ODC classification of our 

dataset, even with a 20% error interval we can conclude that the two main defect types, 

the three main defect triggers and the four main defect impacts would remain the same, 

thus giving us a group of consistent taxonomy priorities to tackle for root cause 

analysis. 

Fourthly, the efficiency and employability of the process. The 850 hours required to 

apply the original ODC include the whole process, that means, the data collection and 

clean-up, additional data collection (phase, activity), and defects classification, where 

several doubts arose (in fact, almost 1/3 of the classifications have been challenged 

between the classifier and the reviewer). The classifier had to take note of his doubts 

and analyze the defects that could not be classified together with the reviewer, by 

aggregating new class types. Later, the not classified defects have been reclassified, the 

ODC classification was enhanced with the new class types and rechecked by the 
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reviewer. This last part (reclassification and review) took under 100 hours as most of 

the effort was in the first pass of the activity. 

Fifthly, the empirical Software Engineering nature. The process is based on data, but 

actually several of the steps depend on training and expert judgment such as the 

classification, the root cause identification, and the suggestion of improvements. We 

thus acknowledge that replication of the results will be hardly possible, as they depend 

on the experts involved and on their expertise. For this reason, a questionnaire to 

validate the process and the results has been defined and answer by a group of academic 

and industry experts. 

Sixthly, the defined process. The proposed and applied process is heavily dependent 

on the availability of good quality data. Data clean-up activities have been performed 

not in the sense of removing any defect, but to remove the names of the 

projects/missions, companies, systems/sub-systems, customers, in order to avoid that 

information to be known publicly for confidentiality reasons. No manipulation or 

modifications on the defects text have been performed. The data clean-up was also 

enriched by the gathering of additional data and complementing the defects data with 

the phase detected, phase introduced, detection activity, etc., for better supporting the 

ODC classification. In the future, if guidelines and rules for defect writing are defined 

(e.g. with some lessons learned from this work), the data clean-up step might be 

simplified or automated.  

Seventhly, the obtained results. A list of root causes was identified by the experts, and 

not necessarily concrete or recurrent problems. From our knowledge of the systems and 

of the defects resolutions, we believe that some of the root causes are more frequent 

than others. We can comment on the quality of the systems under analysis and the 

application of standards, and this (non-measured) question was what lead to this work 

in the first place: as the number of issues was deemed too high for these systems, we 

decided to concretely identify why, in order to support the engineering team in 

correcting these deficiencies. With this work, we have concrete improvements to avoid 

the same issues and reduce their frequency. 

Finally, the process validation. The process, the defects classification, the root causes 

and the identified measures have been exposed to a group of academic and industrial 

experts that expressed their opinions by answering a survey, by prioritizing the root 

causes and the measures and by proposing process improvements, suggesting 

additional root causes and additional measures according to their expertise. The results 

of the survey allowed the validation of the process and of the results themselves. 

8.2 Threats to Validity 

The main threats to validity of our work (construct, internal and external validity), due 

to some limitations and confidentiality issues, are: 

 The fact that the issues data cannot be shared nor publicized, as no company 

wants their issues exposed, makes this work harder and demands a great effort 
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of anonymization. Also, the acceptance of the results may be challenged. 

(external validity) 

 The space systems involved cover most of the development activities performed 

for those systems, and involve different companies (at geographic, size and 

management levels), thus we consider the results to be quite general for this 

domain. A similar study for other domains (e.g. aeronautics, railway, 

automotive) is foreseen as future work, but it will not be so easy since the 

existing data is not as structured as for space systems. Again, data 

confidentiality will be a challenging issue. (internal and external validity) 

 The classification was done based on expert knowledge. However, it is 

important to note that the original classification (the one that could not classify 

all the issues) was performed by two engineers, whose work was also checked 

by a third space domain expert. This domain expert also performed the 

reclassification himself (verified and discussed with another space domain 

expert). (internal validity) 

 Implementation of the suggestions will take a long time as it needs to go through 

process improvements and this is foreseen as current/future work. However, 

what is important here is the justification of these suggestions and also the 

acceptance and acknowledge of them by the involved industries. Once this is 

done, they can pay more attention to these root causes, and some months after 

that we may try to measure again the defects occurrences, types and triggers. 

Note that the provided lists of improvements are already the ones selected for 

tackling the most frequent and most critical defects. (construct validity) 

 Finally, the adaptations were performed based on the 31.7% of the issues that 

could not be classified with ODC. This required several rounds of discussion, 

and the majority of changes are merges where terms were not well 

distinguishable for these systems. Also, details about the systems requirements 

(namely non-functional, safety and dependability, etc.) originated doubts about 

the original ODC classification. (internal validity) 

8.3 Future work 

Specific topics for future work are detailed in Section 7.4, aggregated by group of 

process activities, and reflected as improvements to the process and development of 

additional tools and guidelines to support the process. Some of these future works are 

highlighted hereafter: 

 The validation of the process by applying it to datasets from other safety-critical 

domains. This will be achieved by doing a similar field study for railway 

(already on-going, based on 150 railways train management and control system 

defects), and for other domains such as automotive or avionics.  

 It might be worthwhile to map the ODC defect triggers with the activities of the 

SDP in the lifecycle following the V-model (they should be fully mapped and 
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feedback can be provided both ways, to the ODC list of triggers or to the 

techniques applied in the lifecycle phases), and also map the ODC defect 

impacts with the ISO25010 [143] metrics (they should also be fully mapped 

and feedback can be provided both ways, to the ODC list of impacts or the to 

the ISO standard).  

 By tracing the applicable standards, processes and techniques to the root causes 

and the proposed measures, we can work on proposing improved or new 

processes, techniques and tools to reduce the amount of issues and the 

probability of their occurrence.  

 It is worth trying to automate some of the steps of the process, in order to 

promote automatic classification of defects or automated suggestions for root 

causes that can be stored in a database and associated to the classification 

taxonomies.  

 The development of templates, guidelines and training to support the different 

activities of the process, in order to harmonize the classifications and the root 

cause analysis.  

 To create and maintain a database or a body of knowledge of the root causes, 

associated measures, in order to reuse them or help in future defects analysis.  

 The achieved results shall be consolidated to provide feedback to the ESA 

ISVV guide [65], regarding the results and triggers efficiency (according to the 

V&V techniques efficiency), and to the ECSS standards – to enforce additional 

PA/QA activities and evidence analysis that the requirements on the standards 

are appropriately being implemented. Note that this guide will be updated to 

become and ECSS handbook. 
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Introduction 

Dear respondent, 

This survey blossoms in a very particular situation. It intends to gather the view of the 

industry and academia in what concerns defect analysis of critical systems, in particular 

the occurrence of failures in systems and software development and V&V processes. 

It is essential to keep in mind that we are considering systems currently developed 

with utmost care, under very strict and mature processes and methods and that 

usually require independent assessment in order to be fit to purpose (qualified, 

certified, homologated, …). These systems also follow well-defined quality assurance 

rules and originate a great deal of evidences that can be consulted by teams and 

independent assessors. 

In this context, previous work [1] on the analysis of the defects identified at a late 

development stage (either at the end of a development lifecycle phase or at the end of 

the validation) has shown that some defects are still not caught by the traditional V&V 

and QA activities. These defects have been classified with ODC [2] and some 

improvement suggestions have been identified, to both improve the development and 

avoid the defects, and to improve the efficacy of the V&V activities and thus identify 

them within the project internal quality assurance tasks. This survey operates around 

some of these results, but intends to also grab additional expertise to improve the 

classification and the root-cause identification tasks. 

Note when answering that we are not looking for basic development methods, nor basic 

V&V processes, but to go beyond them, although, sometimes, the simplest solutions 

are known and wrongly applied. Consider the defects as defects found at a near 

deployment phase or after deployment. 
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Acronyms and Definitions 

Relevant list of acronyms and definitions: 

ISVV: Independent Software Verification and Validation 

ODC: Orthogonal Defect Classification. ODC is a methodology that extracts 

information and provides feedback about a development process from the defects that 

occur during the development lifecycle. (Developed at IBM Research circa 1991) 

PA: Product Assurance 

QA: Quality Assurance 

RCA: Root Cause Analysis 

SDP: Software Development Process 

SW: Software 

V&V: Verification and Validation 
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Anonymity 

In order to protect individual and organization privacy, the answers to this 

questionnaire will remain anonymous and will not in any way be used to identify the 

respondents. The survey data will not identify and will not be used, either alone or with 

other information, to identify survey participants. 
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Instructions 

Please respond to the following 22 questions by editing this MS Word document or the 

PDF version and deliver your responses preferably before April 15th, 2016 to the 

following email:  

nsilva@criticalsoftware.com 

Please feel free to request clarifications and thank you very much for supporting me in 

this analysis. 

 

Coimbra, March 24th, 2016 

Nuno Silva 

Critical Software SA / University of Coimbra 

Coimbra, Portugal 

  

mailto:nsilva@criticalsoftware.com
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Questions 

A. General Questions 
 

Q1: Years of Academic/Research Experience or Years of Industry experience. 

[If both, please indicate both separately, e.g.: Academic: 5y; Industry: 10y] 

R1: Academic/Research: ____________________ Industry: ___________________ 

 

Q2: Industries where you (the expert) have been involved? Aeronautics, Space, 

Defense, Automotive, Railway, Energy, Others. 

[Indicate in which industries/domains you have been involved for more than one year. 

Academic researchers might not have this distinction, thus use “Academia”] 

R2: _________________________________________________________________ 

 

Q3: Level of importance that you give to standards utilization (according to impact in 

software/system development). 

[Leave blank if you have no opinion] 

☐ 1 - Extremely Important 

☐ 2 - Very Important 

☐ 3 - Somehow Important 

☐ 4 – Not relevant 

 

Q4: Level of importance of budget/financial restrictions. 

[Indicate how important are budgetary restrictions when you have to develop a critical 

system. Leave blank if you have no opinion or don’t have experience on critical 

systems development] 

☐ 1 - Extremely Important 

☐ 2 - Very Important 

☐ 3 - Somehow Important 

☐ 4 – Not relevant 

 

Q5: Level of importance of schedule/timings restrictions. 
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[Indicate how important are schedule restrictions when you have to develop a critical 

system. Leave blank if you have no opinion or don’t have experience on critical 

systems development] 

☐ 1 - Extremely Important 

☐ 2 - Very Important 

☐ 3 - Somehow Important 

☐ 4 – Not relevant 

 

Q6: Level of importance External Assessment of the developed systems or software 

[When a critical system is developed, up to what level do you consider the importance 

of independent assessments and the certification/qualification processes that are 

commonly imposed in certain domains (e.g. railway, aerospace, nuclear)? Leave blank 

if you have no opinion] 

☐ 1 - Extremely Important 

☐ 2 - Very Important 

☐ 3 - Somehow Important 

☐ 4 – Not relevant 

 

Q7: Level of importance of analysing software/system errors or failures and identify 

their root causes 

[When developing or updating a critical system and issues, bugs, failures are detected, 

how important do you consider that industry should go beyond just correcting the 

issues, for example by analysing and understanding what lead to these problems (root 

cause)?] 

☐ 1 - Extremely Important 

☐ 2 - Very Important 

☐ 3 - Somehow Important 

☐ 4 – Not relevant 

 

Q8: Have you ever used Orthogonal Defect Classification (ODC)? 

☐ Yes 

☐ No 

 

Q9: Have you ever used defect analysis approaches? 
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☐ Yes 

☐ No 
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B. Defect Analysis Process 

Considering the following process composed by four main phases: 

 Prerequisites: Defects data collection and preparation, aggregation of other data 

if necessary, such as complexity metrics, lifecycle data, etc. A (the issues) and 

B (the phase where the issue was found, the phase it was corrected, the type of 

project, etc.) represent process inputs. 

 Defects Classification: Classification of individual defects according to ODC 

in order to identify the defect types, defect triggers and defect impacts. Note 

that ODC can be adapted for specific domain and technology purposes. 

 Defects Root Cause Analysis: Based on the three perspectives (defect types, 

triggers and impact) identify the root cause analysis of the defect groups (e.g. 

per type, per trigger or even per impact). Steps 4 to 6 might be considered 

“optional”, i.e. we can apply one, two or the three root cause analysis. 

 Improvements and Validation: Act upon the identified root causes, at a process, 

organizational or resources (human and techniques/tools) level. Measure the 

effects of the implemented actions. Step 10 represents the actual improvements 

to the systems under analysis (both environment/organization and processes). 

Step 11 represents adaptations and improvements to the classification process 

of the issues. 

Note: For a more detailed description of each process step refer to Annex 1 at the end 

of this questionnaire. 
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Figure 21: Defect Assessment Process6 

 

Q10: What is the main strength you can point in such a defect analysis process? 

[Point out and comment the main strength in the proposed tasks or the overall process] 

R10:_________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

 

Q11: What is the main weakness you identify in the proposed defect analysis process? 

[Point out an important weakness in the proposed tasks or the overall process] 

R11:_________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

 

Q12: According to your experience, highlight up to three missing/important 

activities/steps that should be part for such a defect analysis process. 

[You might highlight activities that you already perform and that bring added value to 

the process or you might propose the replacement of some activities in the defect 

analysis process] 

                                                 
6 This figure is slightly different from the final process presented in Figure 10 since after the survey 

results have been collected we have operated modifications to the process presented in this figure. 
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R12.1:_______________________________________________________________

____________________________________________________________________ 

R12.2:_______________________________________________________________

____________________________________________________________________ 

R12.3:_______________________________________________________________

____________________________________________________________________ 

 

Q13: Would you recommend such a defect analysis process to be used in your 

organization? 

[Leave blank if you have no opinion] 

☐ 1 – Strongly Recommend 

☐ 2 - Recommend 

☐ 3 – Maybe Recommend 

☐ 4 – Would Not Recommend 
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C. Defect Development Causes 

Q14: From your experience and expert judgement, classify the following causes for 

defects introduced during “development”, according to the frequency of occurrence. 

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no 

opinion, leave the line blank] 
Defect “Development” Cause Classification 

 1 2 3 4 

Inefficient/insufficient reviews     

Ambiguous/missing/incorrect artefacts (documentation, requirements, design, tests)     

Insufficient/Wrong tests (unit, integration, system, fault injection)     

Limitations of the tools or toolsets that deal with documentation      

Lack of Completeness and consistency of system level (or previous phases) documentation      

Oversimplified documentation planning procedures 

Lack of time to produce, review and accept documentation artefacts 

Lack of importance given to some documentation artefacts 

Simplification of the product assurance processes related to documentation artefacts 

    

Limited engineers domain knowledge – lack of appropriate skills     

Incomplete specifications in what concerns FDIR and erroneous situations     

Lack of reliability and safety culture     

Incomplete specifications in what concerns interfaces, environment and communications     

Limited definition of the operation, usability, maintainability requirements     

Lack of tools knowledge, programming languages, design languages     

Version and configuration management procedures inappropriately implemented     

 

Q15: Provide up to 3 examples of additional causes for defects introduced during 

“development”, according to your experience and knowledge of critical systems. 

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no 

opinion, leave the line blank] 
Additional Defect “Development” Cause Classification 

 1 2 3 4 

R13.1: 

 

    

R13.2: 

 

    

R13.3: 
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D. Defect Detection Causes 

Q16: From your experience and expert judgement, classify the following causes for 

failing the detection of defects during development, according to the frequency of 

occurrence. 

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no 

opinion, leave the line blank]  
Defect “Detection” Cause Classification 

 1 2 3 4 

Lack of traceability verification culture     

Lack or inefficient usage of tools that support traceability across lifecycle phases     

Lack of appropriate test planning and test strategy definition     

Lack or inefficient testing tool and testing environment support     

Incomplete tests specification and execution     

Review process related root causes     

Documentation related root causes     

Deficient usage of tools and applicable processes     

Unclear or missing/incomplete specifications     

Ambiguous or unclear architecture definition     

Lack of usage of tools that support data and control flow analysis     

Inappropriate architecture support tools or tool usage     

Deficient specification or design artefacts     

 

Q17: Provide up to 3 examples of additional defect “detection” causes according to 

your experience and knowledge of critical systems. 

[The examples can include techniques applied by you or simply known. Please place 

an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-Somehow 

Frequent; 4 – Not Frequent. If you don’t understand the cause or have no opinion, leave 

the line blank] 
Additional Defect “Detection” Cause Classification 

 1 2 3 4 

R17.1: 

 

    

R17.2: 

 

    

R17.3: 
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E. Defect Avoidance Measures 

Q18: From a development perspective, classify the following measures that could 

avoid the introduction of defects, according to the perceived importance. 

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no 

opinion, leave the line blank]  
 “Development” Measure Classification 

 1 2 3 4 

Define/redefine appropriate review methods, processes and tools and enforce their application at 

every stage of the SDP; 

    

Implement automated documentation generation processes and tools to avoid inconsistencies 

between artefacts/lifecycle phases; 

    

Use tools that integrate and manage all the phases of the lifecycle, such as concept specifications, 

requirements, architecture, source code, tests, etc.; 

    

Introduce/use tools with automatic validations (documentation completeness, design consistency, 

code analysis, control and data flow analysis); 

    

Provide training to the engineering teams, to improve the domain knowledge, the system or 

interfacing systems knowledge, standards knowledge and techniques and tools practice; 

    

Promote workshops or meetings to present the specifications/requirements, to discuss and clarify 

them before advancing to the following phase; 

    

Introduce additional guidelines or even specific requirements (e.g. by defining and specifying the 

reasoning behind the standards requirements and how to achieve them in full conformance) in the 

applicable standards (PA/QA, version and configuration control and development). 

    

 

Q19: Provide up to 3 examples of additional defect avoidance measures according to 

your experience and knowledge of critical systems. 

[The examples can include measures applied by you or simply known. Please place an 

X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-Somehow 

Frequent; 4 – Not Frequent. If you don’t understand the cause or have no opinion, leave 

the line blank] 
Additional “Development” Measures Classification 

 1 2 3 4 

R19.1: 

 

    

R19.2: 

 

    

R19.3: 
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F. V&V Measures 

Q20: From the V&V perspective, classify the following measures according to the 

perceived importance in detecting defects. 

[Please place an X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-

Somehow Frequent; 4 – Not Frequent. If you don’t understand the cause or have no 

opinion, leave the line blank]  
“V&V” Measure Classification 

Define appropriate test plans and strategies, especially unit and integration tests. The soundness of 

the test plans and strategies will reflect in the success of the validation; 

1 2 3 4 

Ensure appropriate (or automated) traceability analysis at every stage of the development lifecycle;     

Improve the testing completeness, coverage and reviews;     

Implement non-functional tests (fault detection, fault injection, redundancy, etc.);     

Apply or develop tools to verify and validate the implementation and design compliance.     

 

Q21: Provide up to 3 examples of additional effective V&V measures according to 

your experience and knowledge of critical systems. 

[The examples can include measures applied by you or simply known. Please place an 

X in your classification: 1-Extremely Frequent; 2- Very Frequent; 3-Somehow 

Frequent; 4 – Not Frequent. If you don’t understand the cause or have no opinion, leave 

the line blank] 
Additional “V&V” Measures Classification 

 1 2 3 4 

R21.1: 

 

    

R21.2: 

 

    

R21.3: 

 

    

 

Q22: 

Thank you for your time answering this questionnaire. If you have any additional 

suggestions or any relevant observations please feel free to expose them. In case you 

would like to receive the results of this questionnaire by email when they become 

available please indicate so. 

R22:_________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

____________________________________________________________________ 
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Annex 1. Defects Analysis Process Description 

This annex provides a general approach for root cause analysis of critical software 

issues, enabling the continuous improvement of implementation and V&V at all levels 

(processes, techniques, tools, personnel, application of standards, organization, and so 

on). Figure 21 shows the general approach of a defects assessment procedure, which 

includes a root cause analysis and a continuous improvement procedure, described 

hereafter. 
 

1. Procedure Prerequisites 

The approach is based on data analysis and software engineering knowledge that 

require some prerequisites to be fulfilled for the correct application of the process: 

 
0. Start: 

In order to successfully perform the defects analysis it is necessary that the 

collected data (A. Defects Data and B. Other Project Data) contain the necessary 

information. This includes basic requirements such as: a) detailed information 

about each defect and its fix; b) knowledge of defect environment conditions, 

such as tools, personnel, constraints; c) engineers assessment of the defect 

causes; and d) phase where the defect was introduced and where it was detected. 
1. Data preparation and clean-up: 

Once we have the necessary data it is important to organize it and perform some 

anonymization if required. Data organization is essential for the next steps, since 

it is important to have the data in a searchable and manageable manner. 

 

2. Defects Classification 

In order to efficiently and concretely tackle the important problems of critical software 

engineering, the first set of activities shall focus on an orthogonal classification of the 

sets of defects: 

 
2. ODC: 

Perform the ODC classification on the organized dataset. Enhancements and 

adaptations to the ODC taxonomy can be useful depending on the nature of the 

defects and the domain, however, these enhancements should be quite precise. 
3. ODC Analysis: 

Provide a summary of the ODC analysis (results analysis and distribution). This 

information gives the first hints about the quality of the dataset, which can 

provide some feedback to the implementation and V&V teams. 

 

3. Defects Root cause analysis 

The root cause analysis is composed by several steps that include analysis of the defects 

types, the triggers allowing defect detection, the defects that could have been detected 
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earlier, and then prioritization and consolidation of these root causes leading to 

concrete proposed improvements: 

 
4. Defect Type RCA: 

Identify what caused the specific defect types, and try to aggregate them. 
5. Defect Trigger RCA: 

Identify the causes and V&V techniques or triggers that allowed the defects 

detection at the defect detection stage. 
6. Late Detection RCA: 

Identify the causes of the failures in the V&V and ISVV techniques that allowed 

the defects to propagate until a later stage in the development lifecycle. 
7. Defects prioritization: 

If required (for example to tackle the defects with the highest impact on the 

system, or due to the large amount of defects and respective causes) prioritize 

the list of defect types and triggers. 
8. RCA consolidation: 

From the list of defects and the corresponding root cause analysis obtained in the 

previous steps, consolidate the root causes into a prioritized list. 
9. Improvements Suggestions: 

For all the root causes, define solutions or modifications to the processes, 

techniques, tools, training, resources, environment or application of standards. 

 

4. Improvements and Validation 

The suggested improvements might be difficult to implement, and their efficacy can 

vary from team to team. They shall contribute to improve the software quality and 

reduce the amount of defects, different defects can then surface, and this is why this 

process shall have a consistent process improvement in place: 

 
10. Improvements Implementation: 

The development and V&V teams must be informed about the required changes 

or adjustments (9. Improvements Suggestions), and the organization, 

management and quality planning shall decide on the improvements to 

implement for future projects. 
11. Process Validation and Improvements: 

At every step, it is possible to derive improvements to the process. Such 

improvements can be set to adjust to the company culture, to the project 

environment, to the customer requirements, etc. However, it is essential to 

measure the effectiveness of the implementation of the results (9. Improvements 

Suggestions and 10. Improvements Implementation) once the suggestions 

have been implemented and new defects (or no defects) have been collected. 
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Collection of the textual answers and recommendations provided by the experts as a response to the Defects Assessment Questionnaire. 

The responses are presented as provided by the experts with no modifications to their text, excluding some typos corrected. 

 

Process Strength, Weakness and Additional Experts Recommendations. 

 

Q2: 

Technical 

Domain Q10: Process Strength Q11: Process Weakness Q12.1: Suggestion 1 Q12.2: Suggestion 2 Q12.3: Suggestion 3 

Space 

Helps improve 

organizational processes 

based on actual feedback in 

a structured way. 

Grouping of defects could 

be cumbersome, especially 

if not all relevant 

information is logged. N/A N/A N/A 

Fault 

Tolerant/

High 

Availabili

ty/Resilie

nt 

commerci

al 

computin

g 

Process promotes 

identification of weak areas 

of design. verification, and 

test. 

Perhaps implicit but 

unclear how process feeds 

back to the point of defect 

initiation ( e.g., design, 

documentation, etc.)  

current defects vs past 

defects (root cause, 

location, escape from 

process, etc) 

design process change 

recommended and 

implemented as a result of 

process N/A 

Space 

It is a very thorough 

process that could help 

identifying the root causes 

of the defects in order to 

correct them and improve 

the overall quality of the 

developed software. 

The process relies on the 

availability of good quality 

data about the defects 

which is not available very 

often. 

Ensure management / 

project team commitment 

with the activity 

Discuss findings with 

management / project team 

before presenting the 

improvement suggestions N/A 

Automoti

ve, 

telecomm

Steps 10 resp. 11 are most 

important (and difficult to 

implement): current 

The improvement process 

may need more attention: 

are there classifications 

Analysis of impacts of 

recommended 

improvements on 

Selection process of 

participants and managing 

the defects analysis 

Monitoring the 

improvement 

implementation (again 



Annex B 

 164 

unications

, IT 

software 

operations/processes/softwa

re must be reviewed and 

changed resp. updated. This 

takes time, which may not 

be available in the course 

of a project. However, only 

through improvements can 

the number of defect be 

reduced 

possible, any relationship 

between defect and type of 

improvement – most 

important: I am missing a 

feedback from the defects 

analysis to the development 

process (the arrows only go 

back to the defects analysis 

(ODC)  

project/schedule/cost; 

optimization of different 

improvements 

operational aspects (sort of 

orthogonal to described 

process)  

somewhat orthogonal): 

how to assure that the 

learnings are effectively 

applied to development 

and analysis processes. 

Space 

The use of the ODC (an 

existing methodology) 

associated to 

improvements; the 

correlation among the 

defects classification (type, 

trigger, detection) 

It is not clear how historical 

data may be used in the 

process: to define 

improvements to classify 

defects, etc.  

In step 9, I  suggest you to 

classify the list of causes 

according to the person 

who will receive it). Each 

stakeholder have their own 

interest or position (V&V 

team, development team, 

manager, etc..)   N/A N/A 

Manufact

uring 

automatio

n, 

Automoti

ve, 

Energy – 

nuclear 

Within the context of high 

quality high performance 

organizations producing 

high quality low-volume 

products, using high quality 

processes, a statistical 

approach with aggregation 

of de-fect data is not as 

useful as a forensic analysis 

of each defect: 

• Each incident is a 

learning opportunity. Why 

wait for more data? 

• Too much 

calendar-time would be lost 

waiting for statistically 

significant data to ac-

cumulate. Meanwhile the Same as cell before 

In the case of field data, as 

mentioned in R10, the 

quality and completeness of 

the information collected is 

a very significant factor. 

(In the context of a product 

family where successive 

products are similar) 

Information about what 

changed when a new defect 

or change in defect 

occurred. Forensics focused 

on the change and its 

relationship to the defect 

would 

(In the context of one of a 

kind products or very low 

volume products) a 

forensic interview with the 

people involved in the 

production processes. 
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root cause would remain 

hidden and is not 

addressed. 

• In an application 

domain of low volume 

systems or devices and 

rapid innovation, 

meaningful aggregation of 

historic data is very 

difficult. 

• Even in 

organizations with high 

volume products, e.g., 

automobiles, data from the 

field is not collected well – 

take a look at their 

warranty claim records. 

Typically, a module, called 

an electronic control unit 

(ECU), is replaced. The 

servicing record does not 

include much context 

information, e.g., the 

operating history or profile 

of the vehicle, the specific 

conditions when the 

malfunction was first 

noticed. The diagnostic test 

codes (DTCs) are primitive. 

Academia 

It seems that this process is 

rather complete. It is able to 

analyse, to classify, and to 

identify root-causes. Thus 

the completeness seems to 

First, the quality of the 

process depends on the 

quality of defect Data. You 

should clarify how defect 

data should be 

characterized. Second, it 

Quantification of the effort 

(cost) needed to apply this 

process. 

Definition of Validation 

metric. 

Think about a potential 

extension of ODC in order 

to maximize the number of 

defects covered 

(classified) by your 

process. 
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be the main strength of the 

proposed pro-cess. 

seems that the process you 

propose is rather complex. I 

don’t know how the overall 

analysis will be effective. 

You are trying to identify 

defect types and trigger for 

all the defect data. It is a 

hard task, especially for the 

trigger identification. Third, 

how to validate this 

process. In other words, can 

we trust this process? Your 

should define (or adopt) 

some metrics to measure 

the quality of the results. 

Railway 

The defects are 

systematically considered. 

The experiences from 

previous projects are re-

used. N/A 

Identifying new defect 

types in the case of new 

technologies are used. N/A N/A 

Space and 

Air 

Traffic 

Control 

Systems 

Being able to characterise 

main issues in sw supplied 

by a particular development 

team sup-plier. This 

enables focusing the system 

testing prior to operational 

usage of particular sw. 

Ensuring consistency in 

defect classification. Find 

that usually even though a 

definition is provided for 

the meaning of urgency, it 

is difficult to come up with 

common understandings 

across projects.  Different 

teams use specific naming 

conventions e.g.  vlaunch 

anomaly means it has to be 

fixed prior to launch. 

Define rules within team 

for defect types 

Define rules within the 

team for defects trigger  

Ensure that consolidation 

is not impacted by timing 

or budget constraints. 

Often, the classification is 

well done but, for cost 

reasons directives such has 

“no more than 50 defects 

can be raised”  impact the 

classification quality. As a 

consequence, defects are 

collated together and one 

looses the traceability with 

testing due to an increase 

in complexity regarding 

the defect description. 
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Academia

, Space, 

Defence, 

Railway 

Detailed classification of 

defects  

Too much steps to achieve 

the final result, namely in 

the RCA  

Impact analysis of the 

defect  

(Safety) Classification of 

the defect    

Defect correction 

validation  

Aeronauti

cs, Space 

The process has a well-

define  

The process describes 

generic top level tasks such 

as “Data Preparation” but 

provides no guidance 

neither guidelines on how 

to implement those tasks. 

Without further guidance 

and/or guidelines different 

users may implement the 

same process in very 

different ways resulting in 

all from a very effective to 

a rather poor one.  

I am not sure about what is 

done in “defect type”, 

“defect trigger” and “late 

detection” RCAs. To 

properly assess the 

proposed method, more 

information is required.  

The mind-set when we are 

developing a new system or 

modifying and existing one, 

or even when fixing a 

problem in a long duration 

project is not the same. The 

team or person doing the 

modification may not be 

the same that has originally 

developed the system. 

Team dynamics, 

organisation culture and 

psychology have huge 

impact in the introduction 

of errors and the ability to 

detect them. I am not sure 

this is addressed within the 

activities of the pro-posed 

process N/A 

Defense, 

Telecom

municatio

ns 

Prerequisites steps, about 

quality of data 

classification group could 

be omitted and still have a 

positive outcome N/A N/A N/A 

Aeronauti

cs, 

Automoti

ve, 

Railway  

it is a process, i.e. if carried 

out properly, it provides a 

structured path to 

improvements 

it is only a process, hence 

the real result will depend 

mostly on the people N/A N/A N/A 

Automoti

ve, Others N/A possible feedback to design N/A N/A N/A 
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Space, 

Railway, 

Energy, 

Finance 

The main strengths are that 

there really is a process and 

that there are criteria for 

classification of defects 

(ODC). 

I think the process and 

tasks are very dependent on 

having a large system 

where there are a 

considerable number of 

defects (whatever that 

means) and a lot of 

experience with analysing 

and correcting defects. In 

the last process, 

Improvements and 

validation, there is not 

mentioned explicitly the 

topic of retesting, i.e. how 

much shall be retested to 

make sure the defect has 

been really corrected (not 

the symptom), and that the 

correction has not led to 

unexpected problems 

somewhere else. 

As mentioned above, 

strategy for retesting should 

be addressed 

Maybe also the ITIL-

processes change 

management, release 

management and 

configuration management 

should be addressed (for a 

system in live operation) N/A 

Space, 

Aeronauti

cs, 

Railway 

Comprehensive and 

detailed process. Low effort 

associated with the 

“Prerequisites” and 

“Defects Classification” 

phases (supported by the 

projects). Possibility to 

break-down the process by 

its phases and assign them 

to different teams 

(“Prerequisites” and 

“Defects Classification” to 

the project team, remaining 

to an R&D/Process 

Requires all team members 

to master the different ODC 

classifications. May require 

one full time resource to 

periodically perform a 

sanity check to the 

submitted defects and their 

classifications in order to 

ensure the correctness of 

the defects classification. 

In order to start the third 

phase, one needs to gather a 

considerable amount of 

information on the second 

phase. Given that when the 

second phase finishes, 

project team members may 

no longer be available for 

clarifications of the raised 

defects, an additional 

optional activity may be 

added to the second phase 

of the process, 

encompassing a periodic N/A N/A 
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Improvement team). Usage 

of a well-known 

classification system. 

sanity check of the 

classifications of the 

submitted defects in order 

to ensure the quality of the 

data to be used for the 

subsequent phases. 

Railway, 

Academia

,  Others 

The mean strength is the 

application of root cause 

analysis itself. It helps 

understand the functionality 

of the system even better. 

It is a long process, while 

maybe important 

information could get lost 

Analysing whether multiple 

defects could have a 

different effect N/A N/A 

Space N/A N/A N/A N/A N/A 

Avionics, 

Medical 

Devices, 

Automoti

ve 

Nice approach – the 

feedback to truly analyze a 

defect is very important, so 

the Improvement process is 

important (as usually this is 

missing in most 

organizations) 

Perhaps it misses remedial 

training of the person 

responsible for the defect 

then assessing the adequacy 

of that improvement. Same 

for the process 

improvement:  how we 

assess/know the 

improvement worked? 

manual re-review to assess 

adequacy of correction, by 

an independent person 

Check for Unwarranted 

Changes, e.g. additional 

changes made during the 

defect correction process 

which were not warranted 

and in fact caused 

unintended side effects 

(problems) 

Missing the process 

improvement stage, or 

assessing the adequacy of 

the process improvement. 

Aeronauti

cs, Space, 

Defense, 

Automoti

ve, 

Railway, 

Real-time 

Embedde

d Systems 

In any domain it is always 

difficult to collect previous 

defect data base when 

performing RAMS 

analysis. A process for 

classifying the defects, 

identification of their 

causes and then taking 

action to improve the 

development process can 

be an enormous added 

value, in terms of 

reliability, cost and 

schedule. 

Do to the budget and 

schedule pressure, most 

organizations are not 

willing to invest in 

improvement processes.  

Defects data collection 

process could be further 

detailed, indicating the 

common or potential source 

of information, for 

example: input data from 

previous RAMS analysis 

performed in the same type 

or similar systems, existing 

test data from similar 

systems, existing defects 

data-bases per domain.  

An activity for creation and 

updating of a defects 

database could be included, 

i.e., each project should 

benefit and contribute for a 

domain specific defect data 

base. 

A preliminary risk analysis 

could be performed early 

in the process to identify 

what are the most common 

types of defects expected 

for that type of system and 

to prepare a set of 

mitigation actions that 

could be taken to prevent 

those defects from 

occurring 
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Aerospace

, Defense ODC Analysis (4 or 5 or 6)  

A and B (although at first 

sounds easy, the data 

collection can be one of the 

items difficult to carry out 

completely  

in some part of the process 

a model/snapshot view of 

the system could be help  N/A N/A 

Commerci

al 

Software.  

Consultin

g Clients 

have been 

in 

Networki

ng, 

Operating 

Systems, 

Retail, 

Aerospace

, Nuclear, 

Insurance. 

Real data from the process 

yield measurements. So, we 

see what it is as opposed to 

an opinion by someone 

without actual insight.  

Takes time and effort. It is 

much easier to do a shoddy 

job after spending a day 

talking to people, and 

forming an opinion that can 

be biased or influenced by 

the people at task.  

In our process, we also 

have a technology 

assessment that goes with 

this.  

A skills inventory is also 

useful.  N/A 

Academia N/A N/A N/A N/A N/A 

Railway 

Understanding the root 

causes are very important 

to be able not only to 

improve our pro-cesses, but 

to understand why are these 

processes so important. My 

experience is that 

development projects apply 

standards and processes 

only because it is 

mandatory, and not because 

they understood its 

usefulness. This process 

could help the recognition. 

Currently in our project, 

since it is the first version 

of our product, we have to 

face with really a lot of 

bugs. This procedure does 

not talk about how to 

define the relevant bugs, if 

we would like to cut the 

effort required for this 

process, before we start the 

ODC classification. I feel 

that it is not possible to 

lower somehow the bugs 

taken into account for 

Some kind of pre-analysis 

of bugs to decrease the 

effort needed for the 

process N/A N/A 
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And also based on this 

process the best methods 

could be used and 

implemented which fit the 

best to the given team, 

since this can help also to 

analyse the weak points of 

a given team. 

ODC, no one will give 

green light for doing this 

process, since it seems to 

be really a lot of work. 

Aeronauti

cs, Space 

The structured approach 

facilitates its usage  

Length and amount of 

activities you need to 

perform before you have 

useful data N/A N/A N/A 

Railway, 

Air 

Traffic 

Control 

The main strength is to 

combine ODC and RCA 

analysis; indeed they have 

different purposes, 

advantages and drawbacks, 

as pointed out by 

Chillarege itself in his 

original ODC paper. This 

allows combining a more 

“quantitative” analysis, as 

enabled by ODC, and a 

more qualitative one, like 

RCA, thus allowing 

capturing both more 

general process-level flaws 

and trends, and issues more 

related to a specific product 

development/verification 

team. 

The problem in defect 

analysis is the manual 

classification it is required. 

ODC tends to minimize this 

issue, by a more 

“systematic” 

characterization, but it 

remains challenging to get 

to fast and efficient 

classification without an 

automatic or semi-

automatic classification 

procedure. 

I think that what is missing 

is a step for validation of 

the classification process 

itself, in terms of reliability 

of the classification (e.g., 

different people classifies 

in the same way), effective-

ness (i.e., the classification 

actually serves the purpose 

of detecting process flaws 

and identify potential 

improvements), efficiency 

(i.e., classification is 

effective but also requires 

an acceptable time) 

An initial tuning could help 

tailoring the ODC 

classification for the 

purpose of a company (see 

for instance this paper that 

applies a lightweight 

classification: “An 

Industrial Case Study of 

Implementing and 

Validating Defect 

Classification for Process 

Improvement and Quality 

Management”  N/A 

Railway 

The improvement that you 

gain by this analysis, in 

theory it should help you to 

build a better software 

The process is time 

consuming, since it requires 

a proper classification of 

the issue when it came out. N/A N/A N/A 
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(e.g., avoid inflating the 

same type of bugs, improve 

test detection efficiency) 

You can still classify the 

issue “later on”, let’s say, 

when you have some more 

time to devote to it, but it 

would not be effective.  

Academia

. 

Aeronauti

cs 

Systematic defect 

management; Use of a 

defect classification; 

Inclusion of RCA  

Need for a feedback from 

step 11 (the feedback from 

improvements comes only 

from step 10, but steps 

from 4 to 10 are not always 

performed in companies – 

process improvements may 

be decided even without 

RCA); 

Defect prioritization (Step 

7) may be required for 

process improvements even 

if RCA is not performed N/A N/A 

Space, 

Academia 

Logic + Functional 

Organisation 

Some sub-processes might 

be lost or forgotten If not 

stated explicitly (some 

extra information on these 

steps needs to be provided) 

Defect Data Interface 

Check (is it the root or 

secondary defect under 

study) 

Defect Data related 

algorithm check 

Defect data related 

configuration check 

Railway, 

Automoti

ve 

It seems a strongly 

structured approach to 

perform defect analysis, 

that cover all the activities 

that are considered as 

necessary. Using a 

structured approach like 

this one will give you a 

guideline and greater 

evidence that no important 

information are lost in the 

analysis. 

It seems missing a clear 

trace of the defects with 

respect to the components 

and versions affected by the 

defect. Clarifying this part 

will enhance the 

capabilities of the process. 

IDENTIFICATION OF 

COMPONENT / 

SUBSYSTEM AND 

VERSION THAT IS 

AFFECTED BY THE 

DEFECT N/A N/A 

Academia 

Enhancements and 

adaptations to the ODC 

taxonomy should be quite 

precise 

Bugs that could not have 

been found through static 

and dynamic analysis 

Prevent defects from 

recurring 

Select defects for further 

analysis 

Determine if defect 

analysis is necessary 
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Space, 

Defense, 

Automoti

ve 

Continuous improvement, 

feedback 

getting relevant 

measurement, getting 

measurement early enough, 

implementing the 

improvements (overcoming 

resistance) how do you prioritize? 

How do your formulate 

improvement suggestions? 

How do you gain 

commitment? 

presucion 

measuring 

systems, 

railways 

infrastruct

ure and 

railways 

rolling 

stock. N/A N/A 

intermediate decisions 

involving several stake 

holders (e.g. financial, 

technical, operational, 

safety, customer focus). 

Most of the time a defects 

impact and/or it’s 

resolution is different 

depending on the main 

goals set. E.g. delivery 

product quickly, make it 

very user friendly, make it 

very cheap,  N/A N/A 

Space 

its a looped system (should 

lead to improvement of the 

product and the process) 

AND it con-siders also 

other projects data for the 

analysis. 

1/ No safety assessment 

(when relevant) 

2/ I do not see any explicit 

preliminary analysis of the 

effects of the defect (e.g. 

impact on the system being 

developed such as 

functional errors, 

performance etc… and on 

the development operations 

such as delay and cost).  

Unless causes and effects 

are so obvious so the 

process can be executed 

very fast, it is to me very 

important to do impact 

assessment at early stage 

because you never know 

how long will the analysis 

last. Then eventually, 

defect prioritization may be 

changed at step 7 once both 

effects and root causes are 

known.  

Part of the impact 

assessment is the Safety 

assessment (mandatory for 

processes with safe-ty 

issue): It is necessary to 

check the impact of the 

defect on safety (of the 

development team). 

Important for type of 

process such assembly and 

integration, fuelling, 

physical testing with 

dangerous material or 

physical conditions 

(vacuum, vibrations)etc 

etc…  

Short term 

countermeasures (work-

around solution) when the 

defect has a significant 

impact on safety or project 

development  
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Railway 

and Space structure and completeness how to enforce it for real? N/A N/A N/A 

TeleGeoI

nformatic

s, 

Statistical 

Processin

g 

(Applicati

ons 

including 

Data 

Mining, 

Machine / 

Network 

Intelligen

ce), 

Software 

Engineeri

ng, 

Academia 

Defect Analysis process is 

built on the foundations of 

ODC methodology with a 

strong emphasis on 

disciplined systematic 

process. 

The approach is trying to 

solidify on disciplined 

process on a particular 

methodology rather than on 

a process discipline. 

Flexibility of approaches 

(and methods) that can be 

obtained through process 

discipline is a key to 

building reliable software 

systems. 

ODC is good for defect 

classification for procedural 

development with a 

waterfall process. This 

method does not bode well 

for object/ service/ aspect 

oriented development and 

also for agile methods. It is 

important to realize that 

ODC is a classification 

approach to group defects 

and has limitations in 

quantification of quality. 

This approach may not 

align well to bring holistic 

picture for program or 

operations management 

unless the organization is 

developing just one 

product. If you have a 

product line, it is difficult 

to get a holistic grasp 

considering the multiple 

business priorities. N/A 
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Q15: Additional Development Root Causes 

The following text also contains the frequency of the proposed root cause as evaluated by the expert: 1-Extremely Frequent; 2- Very 

Frequent; 3-Somehow Frequent; 4 – Not Frequent, 0 – No Opinion. 

 

Q2: Technical 

Domain Q15.1: Suggestion 1 Q15.2: Suggestion 2 Q15.3: Suggestion 3 

Space 

Unmanageable software complexity (due to 

standards not correctly applied) (2) 

Software design poorly documented, affecting 

software test effectiveness (3) - 

Fault Tolerant/High 

Availability/Resilie

nt commercial 

computing 

interaction with elements beyond system boundaries 

(2) multiple failures (3) - 

Space - - - 

Automotive, 

telecommunication

s, IT software 

insufficient staffing – limited resources, leading to 

insufficient backup know-how, review peers (2) 

insufficient (management) planning to have 

resources available when required (3) 

too high focus on 

functionality instead of 

overall system thinking (1) 

Space 

overconfidence from the developer team  (mainly in 

case of re-use) (2) manager's  pressure (3) - 

Manufacturing 

automation, 

Automotive, 

Energy – nuclear 

Weak or lacking so-called “non-functional” 

requirements, i.e., requirements for quality attributes 

(see ISO 25000 family of standards) and their 

transformation into explicit system constraints. (1)  

Weak architectural design – it is typically a result of 

R13.1. Often, it is also a result of organizational 

culture. (1) 

The way development 

work and affecting 

information is divided or 

scattered across 

organizations. 

Organizational division of 

work is not aligned with a 

sound architecture of the 

system (1) 

Academia - - - 

Railway Human carelessness (1) 

Changing of the (railway) environment in which the 

system is installed. (Especially SIL0 systems) (3) - 
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Space and Air 

Traffic Control 

Systems 

Team with mixed backgrounds e.g. C developer and 

a Java developer programming in ADA. (1) 

Teams with biased backgrounds. People tend to 

import practices from previous working 

environment, and this might lead to defect 

introduction. (3) 

Excess of interruptions at 

work (1) 

Academia, Space, 

Defence, Railway - - - 

Aeronautics, Space 

Lack of knowledge of common defects and their 

causes, not only the technical causes but also the 

organisational and even psychological causes that 

lead developers to inject defects. (2) 

Lack of dissemination of the FDIR approach – what 

is the approach and why that particular approach was 

selected. (1) - 

Defense, 

Telecommunication

s - - - 

Aeronautics, 

Automotive, 

Railway  Ambiguous requirements and specifications - - 

Automotive, Others 

I believe one of the, if not the, main cause(s) for bad 

software (and consequently bad embedded systems) 

to be that companies and their (software) engineers 

are developing increasingly complex products whose 

workings they have increasing difficulty to 

understand. (1) - - 

Space, Railway, 

Energy, Finance 

Too tight schedule in combination with too many 

developers (“The Chinese Army approach to 

programming”…) (1) 

No lean programming approach or wrongly 

implemented lean approach, i.e. the product released 

after a sprint can’t be used for anything (1) - 

Space, Aeronautics, 

Railway Unstable baselines (1) 

Lack of focus on SW aspects when defining the 

System Software Specification (2) - 

Railway, 

Academia,  Others 

R13.1:Not well defined documentation framework 

(i.e, it is not clear, which document should contain 

certain information) (2) Not well defined development responsibilities (1) 

Permanently changing 

instructions from the 

management (1) 

Space - - - 

Avionics, Medical 

Devices, 

Automotive 

Requirements change process whereby requirements 

changed after implementation and incomplete 

regression analysis leading to incorrect operation (2) 

Incorrect interface documentation, due to interface 

change and versioning problem between 

organizations (1) 

code update by person less 

experienced with complex 

code and the original code 

was too complex, e.g. 
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McCabe above 20 and 

complex C++ constructs 

(1) 

Aeronautics, Space, 

Defense, 

Automotive, 

Railway, Real-time 

Embedded Systems 

Lack or unefficient communication between 

development and V&V teams (e.g. when frequent 

changes of requirements exist) (1) 

Schedule issues related to the development process 

(due to the fact that V&V phase occurs more to the 

end of the process it gets “squeezed” in terms of 

schedule, which may lead to specific or more 

complex scenarios (e.g. FDIR scenarios) not being 

tested enough to achieve a reasonable level of risk. 

For example, in the case of FDIR testing, it is 

impossible to test all the combinations of events that 

may trigger a reaction, but currently only basic FDIR 

scenarios are tested on host machines. Validation the 

FDIR scenarios in more representative hardware 

scenarios is usually not possible. (1) 

 

Limitations of the tools 

and processes that deal 

with system configuration 

data. Defects originated in 

misconfigured system 

configuration data can be a 

source of many problems. 

(1) 

Aerospace, Defense 

Waiver solutions in the middle of the project (mainly 

hardware to software) (3) - - 

Commercial 

Software.  

Consulting Clients 

have been in 

Networking, 

Operating Systems, 

Retail, Aerospace, 

Nuclear, Insurance. 

Changed operating conditions – platform, network 

traffic, change of backend DB, etc.  

Calibration changes that arise from changing 

suppliers, parts, manufacturing processes, etc. - 

Academia - - - 

Railway 

Lack of project management knowledge, culture: 

tasks are not done in the right order, unclear tasks, 

unclear deadlines for the subtasks (2) 

Lack of definition of responsibilities, and 

responsibility scope: who is responsible for what, 

who will decide go/no-go for each artefacts, who 

have the right to say “no”. (2) 

Lack of working 

according to the chosen 

development model/wrong 

model chosen for 

development (2) 

Aeronautics, Space Schedule pressure (2) Budget constraints (1) - 
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Railway, Air 

Traffic Control Programmers mistakes (3) - - 

Railway 

Insufficient or incomplete requirement elicitation. 

Not  to confuse with requirements documentation. 

Here in the pure sense of elicitation, I mean that 

customers and software developers have few chance 

to meet and discuss software functionality. In many 

cases the customer leaves  the choice to the software 

developers which might miss a proper  vision of the 

software product or of the domain (4) 

Customer with confused ideas on the mission of the 

software or its use (3) - 

Academia. 

Aeronautics Pressure for release Limited budget / Engineers overload  

Space, Academia Lack of staff motivation (1) 

Lack of interest on a given technology required to be 

used (2) Short term planning (2) 

Railway, 

Automotive - - - 

Academia 

Coding flaws: lack of time to address the problem 

(2) 

The design documentation could lead to incorrect 

source code (3) 

Requirements Flaws: The 

requirements provided to 

the developer were 

incorrect (3) 

Space, Defense, 

Automotive Documents not reflecting “As build” (2) Document not suited as means of communication (2) 

V&V of models hard to 

assess (2) 

presucion 

measuring systems, 

railways 

infrastructure and 

railways rolling 

stock. Changes in scope after specification freeze (1) 

Reduction of test on real system in order to reduce 

time/cost for developers (1) 

Late availability of testing 

equipment for developers 

(2) 

Space 

Too much management pressure on delay 

disregarding the actual excessive workload on 

development teams (1) 

Too much confidence of management in “reuse” part 

of an already flying  system (e.g. an equipment off 

the shelve) conducting to deletion of some tests 

although operational conditions are different  

(rare but with catastrophic effect as for example first 

launch of Ariane 5) (4) 

Missing detailed 

justification of 

requirements (from system 

level standpoint) together 

with lack of (inter-teams) 

communication resulting 

in a poor understanding of 
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the actual system by 

developers. (2) 

Railway and Space - - - 

TeleGeoInformatic

s, Statistical 

Processing 

(Applications 

including Data 

Mining, Machine / 

Network 

Intelligence), 

Software 

Engineering, 

Academia - - - 
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Q17: Additional Defect Detection Root Causes 

The following text also contains the frequency of the proposed root cause as evaluated by the expert: 1-Extremely Frequent; 2- Very 

Frequent; 3-Somehow Frequent; 4 – Not Frequent, 0 – No Opinion. 

 

Q2: Technical Domain Q17.1: Suggestion 1 Q17.2: Suggestion 2 Q17.3: Suggestion 3 

Space - - - 

Fault Tolerant/High 

Availability/Resilient 

commercial computing - - - 

Space 

Lack of awareness and 

experienced test team (2) - - 

Automotive, 

telecommunications, IT software 

lack of integrated specification 

– development – test tool 

system (2) - - 

Space - - - 

Manufacturing automation, 

Automotive, Energy – nuclear 

Ambiguity in requirements, 

including quality requirements 

(see ISO 25000 family of 

standards). (1) 

Lack of information about what changed 

when. (2) - 

Academia - - - 

Railway Human carelessness (1) - - 

Space and Air Traffic Control 

Systems 
Lack of communication (1) 

Lack of domain knowledge in teams (1) Management pressure to keep in budget (3) 

Academia, Space, Defence, 

Railway - - - 

Aeronautics, Space 

Insufficient incremental 

testing, e.g. jumping from unit 

tests to system tests without 

Long execution time of test procedures, 

which increases the costs of –non-

regression verification and therefore limits 

Lack of effective validation facilities for 

system testing – either lack of automation, 

lack of numeric (i.e. simulated) benches, 
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sufficient test campaigns in 

between. (2)  

the frequency at which non-regression 

verification is performed) (2) 

bogus validation facilities, complex test 

languages or test libraries, etc. (2) 

Defense, Telecommunications - - - 

Aeronautics, Automotive, 

Railway  - - - 

Automotive, Others - - - 

Space, Railway, Energy, Finance 

Little knowledge of OS 

constraints / inherent faults 

(maybe this has to do with 

testing environment?) (1) - - 

Space, Aeronautics, Railway 

Defects on the Validation 

Environment that hide defects 

on the system (3) - - 

Railway, Academia,  Others 

Not well defined and not 

clearly understood verification 

processes (2) Lack of verification culture overall (2) Lack of support from the management (3) 

Space - - - 

Avionics, Medical Devices, 

Automotive 

Usually weak LLR’s 

implemented by person 

different than System or HLR 

writer (1) 

Safety assessment missing hence missing 

derived requirements (2) - 

Aeronautics, Space, Defense, 

Automotive, Railway, Real-time 

Embedded Systems 

Lack of a standard for 

performing independent 

verification and validation 

(most domains don’t have it) 

(1) 

Excessive number of “untestable” 

requirements due to complexity of some 

system features, which indicates 

architectural problems, i.e., the system was 

not conceived with a testability mindset. (1) 

Lack of participation of V&V experts during 

the early design phase of the system (e.g. 

very few systems have been designed from 

scratch with built-in fault-injection 

capabilities). (1) 

Aerospace, Defense - - - 

Commercial Software.  

Consulting Clients have been in 

Networking, Operating Systems, 

Retail, Aerospace, Nuclear, 

Insurance. 

Lack of a reference model – 

especially for incremental 

releases. - - 

Academia - - - 
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Railway 

Lack of project management 

knowledge, culture: tasks are 

not done in the right order, 

unclear tasks, unclear 

deadlines for the subtasks (2) 

Lack of working according to the chosen 

development model/wrong model chosen 

for development (2) 

 

Evaluation of verification results too late / 

communication problems between 

development and verification teams (2) 

Aeronautics, Space - - - 

Railway, Air Traffic Control 

Inappropriate choice of (the 

mix of) testing and 

(automated) analysis 

techniques (1) 

Unclear separation of the role of tester with 

respect to developers/designers/analysts 

(lack of independence) (1) - 

Railway - - - 

Academia. Aeronautics - - - 

Space, Academia Inexperienced staff (1) Tight deadlines (schedule) (1) Unfamiliar project (1) 

Railway, Automotive - - - 

Academia 

Requirement Related root 

causes (3) 

PM may not be analysing all possible risks 

(3) 

Project control not exercised properly / 

Monitoring milestones not done (2) 

Space, Defense, Automotive 

Configuration management of 

run-time data (2) - - 

presucion measuring systems, 

railways infrastructure and 

railways rolling stock. Test in real environment (2) Test with end- user (2) - 

Space - - - 

Railway and Space - - - 

TeleGeoInformatics, Statistical 

Processing (Applications 

including Data Mining, Machine 

/ Network Intelligence), 

Software Engineering, Academia - - - 
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Q19: Additional Development Measures 

The following text also contains the relevance of the proposed measures as evaluated by the expert: 1-Extremely Relevant; 2- Very 

Relevant; 3-Somehow Relevant; 4 – Not Relevant, 0 – No Opinion. 

 

Q2: Technical Domain Q19.1: Suggestion 1 Q19.2: Suggestion 2 Q19.3: Suggestion 3 

Space 

Allocate more effort (money) to early 

verification! (1) - - 

Fault Tolerant/High 

Availability/Resilient 

commercial computing - - - 

Space - - - 

Automotive, 

telecommunications, IT 

software 

Get Management involvement and commitment 

for strict review processes (as required in 

“Define/redefine appropriate review methods, 

processes and tools and enforce their 

application at every stage of the SDP;” (1) 

work with customers and regulator 

to enforce strict review 

processes/development 

processes/documentation processes 

(2) 

work with relevant industry to enforce 

tool/documentation/review/development/s

pecification standards (3) 

Space - - - 

Manufacturing 

automation, 

Automotive, Energy – 

nuclear 

Get the right requirements, esp. quality 

requirements. (1) 

 

Transform quality requirements into 

system architectural constraints. (1) 

Design the development process such that 

requirements-related questions are 

answered early in the development cycle 

(e.g., iterative evolutionary development 

process) (1) 

Academia - - - 

Railway 

Cross code reviews between two programmers, 

or strong code inspection. (1) - - 

Space and Air Traffic 

Control Systems 

Lack of leadership to communicate uniform 

verification approach (people with different 

backgrounds are not willing to accept other 

peoples approaches...) (1) 

Simplification of  traceability 

processes (3) - 
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Academia, Space, 

Defence, Railway - - - 

Aeronautics, Space 

Provide practical training on common error 

causes and on the mechanisms available to 

avoid or compensate them (2)  

Clearly define and disseminate the 

FDIR approach not only describing 

it but explaining why that particular 

approach has been selected. (1) 

Develop a modular architectural concept 

that clearly maps the concepts of 

Detection, Isolation and Recovery – often 

FDIR is, misleadingly, taken as a “magic” 

component that one adds to an 

architecture. (2) 

Defense, 

Telecommunications - - - 

Aeronautics, 

Automotive, Railway  - - - 

Automotive, Others 

The most important measure would probably be 

to aim at producing a system that is simple 

enough to be well understood. (1) 

The next-important measure would 

be to make full formal requirements 

specification mandatory for critical 

systems. This would throw the vast 

majority of companies out of 

business, eventually leading to better 

products. (1) - 

Space, Railway, Energy, 

Finance 

Test based approach to software development 

(3) 

“Buddy” programming / unit testing 

(1) - 

Space, Aeronautics, 

Railway 

Review/contribute to the definition of the 

System Software requirements (2) - - 

Railway, Academia,  

Others 

Promote meetings not just to present the 

requirements, but for the members of different 

development teams / developers and testers, on 

different development stages, in order to ensure 

that the original goals are achieved / or if not, 

could they perhaps be modified (iterative 

development) (3) - - 

Space - - - 

Avionics, Medical 

Devices, Automotive 

Linking all code constructs to tests, e.g. DO-

178C DAL A, B, C (1) 

Reducing code complexity, using 

automated tools like LDRA, PRQA, 

(2) 

Mandating MISRA C/CC++ automated 

static analysis test before independent code 

peer review. Having ONE reviewer, not 

one hundred.   “One great reviewer is 
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better than 100 good reviewers” – Vance 

Hilderman quote (1) 

Aeronautics, Space, 

Defense, Automotive, 

Railway, Real-time 

Embedded Systems 

Most safety-related industrial standards are 

typically not freely available. (1) 

Lack of harmonization between the 

standards of the several safety-

related domains (each domain 

defines its own processes), which 

makes it difficult to re-use process 

and tools across the different 

domains. (1) 

Most of the standards have gaps. It is not 

always clear for the organizations the way 

to apply certain process and rules that are 

not defined in details by the standards, 

which requires support from certification 

authority representatives or certification 

agency. (1) 

Aerospace, Defense 

People in charge of this subject with correct 

(and better) skills (2) - - 

Commercial Software.  

Consulting Clients have 

been in Networking, 

Operating Systems, 

Retail, Aerospace, 

Nuclear, Insurance. 

Regularly review the ODC defect profiles with 

the teams (1) 

Create a clear plan on what tests 

needs to be automated, versus kept 

manual (1) - 

Academia - - - 

Railway - - - 

Aeronautics, Space - - - 

Railway, Air Traffic 

Control 

Improve requirements specification and 

validation (2) 

Enforce design partitioning, 

modularity and reuse (2) 

Training about basic software engineering 

principles (3) 

Railway Analysis of the post- delivery issues (4) - - 

Academia. Aeronautics - - - 

Space, Academia Groups of small engineers shall be trained (1) 

Small groups of workshops or 

meeting shall be preferred. (1) 

Tailor and/or develop project specific 

measures whenever feasible. (1) 

Railway, Automotive - - - 

Academia 

PM should have the overall control of the 

project (3) 

Skilled programmers are to be 

employed for tasks in the critical 

path (3) 

PM / PL should always have some buffer 

while planning for external dependencies 

(4) 

Space, Defense, 

Automotive 

Order feature development according to risk 

analysis (2) Iterative development (short cycles) - 
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presucion measuring 

systems, railways 

infrastructure and 

railways rolling stock. Introduce and keep quality milestones (2) - - 

Space - - - 

Railway and Space - - - 

TeleGeoInformatics, 

Statistical Processing 

(Applications including 

Data Mining, Machine / 

Network Intelligence), 

Software Engineering, 

Academia - - - 
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Q21: Additional Verification and Validation Measures 

The following text also contains the relevance of the proposed measures as evaluated by the expert: 1-Extremely Relevant; 2- Very 

Relevant; 3-Somehow Relevant; 4 – Not Relevant, 0 – No Opinion. 

 

Q2: Technical Domain Q21.1: Suggestion 1 Q21.2: Suggestion 2 Q21.3: Suggestion 3 

Space 

Thorough unit testing, specified against an 

actually documented detailed design (not against 

the code itself) (2) - - 

Fault Tolerant/High 

Availability/Resilient 

commercial computing - - - 

Space - - - 

Automotive, 

telecommunications, IT 

software 

Improve completeness of reviews (extension of 

above, as I feel reviews are more valuable than 

testing completeness or coverage) (1) 

involve customer/requirements team in review and 

testing efforts (2) - 

Space 

apply ISVV   - independence is quite important 

(1) 

have a trained and motivated team with skilled  for 

finding errors (1) - 

Manufacturing 

automation, Automotive, 

Energy – nuclear 

Validate requirements through interaction with 

experts (1) 

Validate the decomposition and derivation of 

requirements and their allocation to various 

elements in the architecture. Apply rules of 

composition to ensure nothing is lost in the flow-

down. (1) 

Review, inspection and 

analysis for unwanted 

behaviour, e.g., through 

the application of 

advanced hazard analysis 

techniques such as 

STAMP/STPA (1) 

Academia - - - 

Railway 

Cross code reviews between two programmers, or 

strong code inspection. (1) - - 

Space and Air Traffic 

Control Systems 
Simple but strict configuration control policies (4) 

Reviews where the developer asks the reviewer to 

explain the design (4) 

Use of code linting tools 

(2) 
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Academia, Space, 

Defence, Railway - - - 

Aeronautics, Space - - - 

Defense, 

Telecommunications - - - 

Aeronautics, 

Automotive, Railway  - - - 

Automotive, Others 

The entire development process of safety-critical 

systems, including all certification-relevant 

artefacts, documentation, source code etc, should 

by law be required to be public and accessible to 

scrutiny by anyone via internet. (1) - - 

Space, Railway, Energy, 

Finance 

Informal “rainy day” testing in addition to the 

formal tests (in case something has been over-

looked). (2) - - 

Space, Aeronautics, 

Railway 

Clear definition of the of Unit/Integration tests 

and Functional tests, including their goals and 

place in the overall SDP (2) 

Introduce formal or semi-formal verification of the 

SW specification in the Verification process (2) 

Use tools that integrate 

and manage all the phases 

of the lifecycle, such as 

concept specifications, 

requirements, 

architecture, source code, 

tests, etc.; (2) 

Railway, Academia,  

Others 

Use “creative”, informal methods (i.e., analyse 

what could go wrong in the system) beside of 

formal ones. (3) 

Consult regularly (but not too deeply, in order to 

ensure the independence) with the validator and / 

or assessor about requirements coming from 

standards. (3) - 

Space - - - 

Avionics, Medical 

Devices, Automotive Check LLR to code robustness (2) Decision Condition coverage tracing to LLR’s (1) - 

Aeronautics, Space, 

Defense, Automotive, 

Railway, Real-time 

Embedded Systems 

Evaluation of the testability of the architecture and 

requirements early in the process through the 

involvement of the V&V experts. During the 

V&V phase some requirements are simply not 

possible to test and verified through code 

Lack of planning and definition of processes for 

performing non-functional tests. Most standards 

simply mention that these tests must be performed, 

but do not detail them, e.g. process for performing 

robustness testing. These tests are normally - 
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inspections (this is especially applicable to the 

space domain). (1) 

performed ad-hoc in parallel to the functional 

tests. (1) 

Aerospace, Defense 

the whole system team must be involved in the 

V&V process, at least to testimony of its part of 

the system "passed" in the tests (2) - - 

Commercial Software.  

Consulting Clients have 

been in Networking, 

Operating Systems, 

Retail, Aerospace, 

Nuclear, Insurance. 

Compare release to release ODC metrics to 

identify trends (1) 

Establish with ODC analysis that current release is 

better than previous release!!!!  Very Important (1) - 

Academia - - - 

Railway 

Appropriate trainings for the test team about the 

system under test and the related domain. My 

experience is if they clearly understand the 

system, they can use the verification techniques 

more accurate and they have more motivation. (1) 

Trainings for the test team about the defined 

verification and validation methods and the related 

standards, justification of the used methods. My 

experience is if they clearly understand what is the 

goal, they can use the techniques more accurate 

and they have more motivation. (1) 

Develop a good 

communication with the 

development team, 

considering independency 

(2) 

Aeronautics, Space - - - 

Railway, Air Traffic 

Control 

Define “quantitative” test planning strategies to 

best allocate efforts (i.e., prioritize 

functions/components) (4) 

Improve testing accounting for operational phase 

expected usage (i.e., operational/reliability testing) 

– Exploit historical data to assess usage profiles 

and corresponding tests (3) 

Usage of ASA 

(automated static 

analysis) for code 

sanitization (2) 

Railway - - - 

Academia. Aeronautics 

Apply model-driven techniques for early defect 

detection - - 

Space, Academia Implement functional tests for validation (1) Record and save the results automatically (1) 

PA review of V&V 

Measures (1) 

Railway, Automotive - - - 

Academia Do adequate testing (2) Eliminating escaping defects (3) 

Preventing the occurrence 

of an individual defect or 

group of defects (3) 

Space, Defense, 

Automotive Continuous integration and test (1) Tests driven development (1) - 
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presucion measuring 

systems, railways 

infrastructure and 

railways rolling stock. 

Clarify roles in order to have one person at least 

focussing on V&V (1) - - 

Space - - - 

Railway and Space - - - 

TeleGeoInformatics, 

Statistical Processing 

(Applications including 

Data Mining, Machine / 

Network Intelligence), 

Software Engineering, 

Academia - - - 
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Annex C. Summary of the 

Results of the Survey 
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This annex presents the summary of the survey results as provided by the experts. The 

data have been simplified and harmonized for data processing and analysis. Data from 

the experts experience is presented separately for anonymity reasons. 

The data presented in the table can be understood as follows: 

 For questions Q2, Q8 and Q8, a 1 represents “Yes”, a 0 represents “No”; 

 For questions Q3 to Q7: 

o 1 - Extremely Important 

o 2 - Very Important 

o 3 - Somehow Important 

o 4 – Not relevant 

o Empty – No opinion 

 For the remaining questions: 

o 1 - Extremely Frequent/Relevant 

o 2 - Very Frequent/Relevant 

o 3 - Somehow Frequent/Relevant 

o 4 – Not Frequent/Relevant 

o Empty – No Opinion. 
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2 0 0 0 1   1 1   2 1 0 3 4 1 2   2   4 4 4 2 3 4 1 4 3 1 2 2 3 3 3 2 2 3 3 2 3 1 1 1 3 3 4 1 3 3 3 3 

3 0 0 1 0 1 1 2 1 2 0 0 2 2 1 2 3 2 2 2 2 2 3 4 4 4 2 3 2 3 2   2 3 2 3 3 3 2 1 1 2 2 2 2 3 2 1 2 3 2 

4 0 1 0 1 2 2 1 2 1 0 0 1 1 2 3 2 3 3 3 2 2 3 2 4 4 3 3 3 3 3 2 2 4 3 3 2 2 3 1 2 2 2 3 3 3 2 2 3 3 2 

5 1 0 1 0 2 1 1 1 1 0 0   2 1 2 4 2 1 3 2   2 1 4 2 2 2 3 3 1 3 3 3 1 3 4   2 1 2 3 3 2 2 3 3 3 1 1 2 

6 1 1 0 1 3 1 1 1 1 1 1 4 2 1 2 3 1 4 1 1 1 1 1 4 3 2               1 1   2 1 4 4 4 4 2 1 3           

7 1 0 0 0 2 2   1 2 1 1 3 2 1 2 1 2 2 3 4 3 3 2 1 3             2   2 3   4 4               1 1 1 2 2 

8 0 1 0 0 1 2 2 1 1 0 0 1 3 2 3 1 3 4 4 3 2 2 4 4 1 4 4 4 4 4 2 4 4 4 4 4 4 4 1 4 3 3 1 1 1 3 4 4 3 4 

9 0 0 1 1 2 1 2 1 1 0 1 2 2 1 3 3 1 2 3 3   2 1 4 3 1 2 3 4 4 1 2 4 2 2 2 4 2 1 3 3 3 1 1 3 1 1 2 1 3 

10 1 1 1 1 1 2 2 1 3 0 1 3 2 2 3 1 2 3 4 2 4 2 3 4 4 2 3 3 3 3 2 2 2 3 3 2 2 3 3 1 3 3 2 3 2 2 2 3 2 2 

11 0 0 1 0 1 2 2 3 1 1 0 3 2 2 2 4 3 2 2 3 1 3 3 4 2 2 2 2 3 3 2 3 2 2 2 4 4 2 2 4 3 2 1 2 2 2 2 2 2 3 

12 0 0 0 1 1 2 3 3 1 0 1 3 2 2 3 3 1 2 1 1 4 3 3 4 4 3 4 3 3 3 3 3 4 1 2 3 3 2 3 4 2 2 2 1 2 1 1 2 1 2 

13 1 1 1 0 3 2 2 1 1 0 1   3 2 1 3 1 3 3 2 2 1 2 3 4 2 3 1 2 3 3 2 4 1 3 2 4 2 2 2 2 2 2 1 3 2 3 1 2 1 

14 1 1 0 1 3 1 1 2 1 0 0   2 1 2 3 2 3 2   1 1 2 3 3         1       1       1         2               

15 0 1 1 1 2 2 1 2 2 0 1 3 1 1 1 2 1 1 1 1 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 1 2 1 2 2 
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16 0 1 1 0 2 2 3 1 2 0 0 1 3 1 3 2 2 4 4 3 4 3 3 4 3 4 2 4 3 4 3 4 3 3 3 3 3 3 3 2 1 2 3 2 4 1 1 1 2 2 

17 1 1 0 1 2 2 1 2 2 0 0 2 1 1 2 3 1 2 3 2 2 1 2 3 2 2 3 2 3 2 2 2 3 1 1 3 3 2 2 3 3 3 3 3 2 3 2 2 3 3 

18 1 0 1 0 2 2 1 3 2 0 0     1 1 2 1 2 3 3 2 1 1 3 3 1 2 2 2 1 2 3 3 3 1 3 3 2 2 1 2 2 1 1 1 1 1 1 1 2 

19 0 1 1 1 1 2 2 1 1 0 1 1 2 3 3 4 2 2 4 2 3 1 2 4 4 1 2 2 3 1 1 2 3 1 2 3 2 1 1 3 3 4 1 2 2 2 1 1 3 3 

20 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 4 4 1 4 4 1 2 4 4 1 1 1 4 3 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 

21 1 0 1 0 1 1 1 2 1 0 0 2 2 1 2 2 1 2 3 3 2 3 2 3 2 2 1 3 3 3 2 2 3 2 2 3 3 3 1 2 2 3 3 3 2 2 2 2 2 3 

22 0 0 1 1 2 2 1 2 1 1 1 2                           2 3 1 1 1 2 1 3 3 3 2 3 2 3 3 3 2 1 1 1 1 1 1 2 3 

23 1 0 0 0 2     3 2 0 0 3 3 2 2 2 2 2 3 3 3 4 3 4 4 2 3 3 4 1     3 3 2 3 3 3 2 2 2 2 4 3 3 2 2 2 4 3 

24 0 1 0 0 1 2 1 1 1 0 0 1 2 1 3 4 2 1 3 2 2 2 3 3 2 1 2 2 3 2 3 1 2 1 1 2   2 1 2 2 2 1 1 1 1 1 2 1 2 

25 0 0 1 0 1 2 2 1 2 1 1 3 2 2 2 3 3 2 3 2 2 3 3 3 2 3 3 2 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 2 2 2 2 2 2 2 

26 1 1 0 1 1 2 2 2 1 1 1 2 3 1 2 4 3 3 4 1 1 2 2 3 4 1 2 1 3 1 2 3 3 2 3 2 4 2 2 2 3 2 4 4 3   3 2 3 2 

27 0 1 0 0 2 2 2 1 2 0 0 3 3 4 3 2   4 3   4 4 4 1 2 3 2 4 3 4 4 4 4 4 3   2 3 3 3 3 2 4 3 3   3 3 4 3 

28 1 0 1 0 1 2 3 1 1 1 1               3   2 2 3 3   3 2 1 4 1 1     1 3       1   3 1 2   1   1 1 1   

29 1 0 1 0 1 3 2 1 1 0 0 2 1 2 2 3 3 1 1 2 1 1 2 3 2 2 3 1 3 3 1 2 2 1 1 3 3 2 1 3 3 3 1 1 1 1 1 1 1 3 

30 0 1 0 0 1 3 2 2 1 0 1 2 2 3 2 4 2 1 3 4 2 3 3 4 3 2 4 2 3 2 4 3 3 1 4 3 3 2 1 4 3 3 2 2 2 1 3 2 2 3 

31 1 0 0 0 2 1 2 2 2 0 0 1 1 3 2 2 3 2   1 2 3 2 3 1 2 3 2 1 3 2 2 3 2 1 2 2 3 1 3 3 2 2 3 3   1 2 2 1 

32 1 1 1 1 1 1 1 2 2 0 0 2 1 3 3 4 1 2 2 1 3 3 3 3 3 3 1 3 2 2     3 4 4 3 1 4 2 4 4 4 3 3 2 3 3 1 1 3 

33 1 1 0 0 1 3 2 1 1 0 1 1 3 2 2 2 2 2 4 1 3 2 1 4 2 3 3 4 3 2 3 2 4 2 3 4 4 4 1 2 2 2 2 3 3 1 2 3 2 3 

34 0 0 1 0 1 3 2 1 1 0 1 3 3 2 2 3 2 3 3 2 4 2 2 4 4 4 4 3 4 4 4 3 4 2 2 2 3 3 4 3 2 3 1 1 1 2 3   1 3 

35 1 1 1 0 1 2 1 1 1 1 1 2 2 1 1 2 1 2 2 1 2 1 1 4 3 2 2 2 2 2 2 2 3 1 1 2 3 2 1 2 2 2 1 1 2 1 1 1 2 3 

36 1 0 0 1 3 1 1 1 2 1 1   3 2 2 1 1 1 3   2 2 2 2 2 2 1 1 2 2 3 3 3 1 1 3 1 2 2 3 3 3 1 1 2 3 3 1 1 3 



Summary of the Results of the Survey 

195 

These charts show the amount of experts per experience range. 
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Annex D. Example of Data 

Collection Template 
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This annex presents the used data collection template and explains each of the data 

fields considered in the template. 
Item Description Example 

Number Unique identifier for the issue 001 

Project Identifier of the project where the issue comes from (Mission 1, Mission 

2, etc.) 

SYS02 

Subsystem Subsystem or component within the project (star tracker, GPS, Laser 

system, etc.) 

SS-02 

Domain Business domain applicable to the project of the issue (space, 

automotive, aeronautics, etc.) 

Space 

System Type Definition of a system type applicable to the domain (Data Processing, 

User Interface, Database, Communications System, etc.) 

OB ASW 

Issue Title Short issue title Conflict between ASW 

and SA 

Desc Detailed description of the issue. Must contain enough details to be able 

to be analyzed or, eventually, to be processed in an automated way in the 

future. 

The Application Software 

(ASW) contains an 
implementation (source 

code) that differs from the 

defined Software 
Architecture (SA). The 

differences are the 

following: 

Listing of the differences 

and inconsistencies. 

Classification Classification of the Severity of the issue. (Minor, Major, Catastrophic, 

Comment, etc.) 

Minor 

Problem Type Originally classified issue type. This field has been used to contain the 

ISVV classification made by the team that raised the issue. 

External Consistency 

Phase 

Detected 

Lifecycle phase where the issue has been detected. (Requirements, 

Design, Implementation, Testing, Operations, etc.) 

Design 

Phase 

Applicable 

Lifecycle phase where the issue has been actually introduced. 

(Requirements, Design, Implementation, Testing, Operations, etc.) 

Requirements 

Defect Type ODC Classification according to the defect type taxonomy defined in 

section 5.3.2 

Function/Class/Object 

Defect 

Trigger 

ODC Classification according to the defect trigger taxonomy defined in 

section 5.3.3 

Concurrency 

Defect Impact ODC Classification according to the defect impact taxonomy defined in 

section 5.3.4 

Reliability 

Comment Field used to add comments related to the defect. This might be useful to 

complement the defect information or to justify some of the 

classification of the other fields. 

The architecture should 

be updated to reflect the 
source code (or vice-

versa). 

Notes Notes about the defects classification. This field has been used to 

enhance the defects classification taxonomy, to document the 

classification doubts and to propose new taxonomy items or taxonomy 

items merges. 

ODC Classification 

reviewed and confirmed. 

Activity V&V activity that lead to uncover the issue. In our case this was the 

ISVV task that was applied and that lead to the raising of the issues 

(requirements verification, code inspections, testing, etc.) 

Requirements verification 

 


