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Abstract 

Data Warehouses (DWs) store sensitive data that encloses many business 

secrets. They have become the most common data source used by 

analytical tools for producing business intelligence and supporting 

decision making in most enterprises. This makes them an extremely 

appealing target for both inside and outside attackers. Given these facts, 

securing them against data damage and information leakage is critical.  

This thesis proposes a security framework for integrating data 

confidentiality solutions and intrusion detection in DWs. Deployed as a 

middle tier between end user interfaces and the database server, the 

framework describes how the different solutions should interact with the 

remaining tiers. To the best of our knowledge, this framework is the first 

to integrate confidentiality solutions such as data masking and 

encryption together with intrusion detection in a unique blueprint, 

providing a broad scope data security architecture. 

Packaged database encryption solutions are been well-accepted as the 

best form for protecting data confidentiality while keeping high database 

performance. However, this thesis demonstrates that they heavily 

increase storage space and introduce extremely large response time 

overhead, among other drawbacks. Although their usefulness in their 

security purpose itself is indisputable, the thesis discusses the issues 

concerning their feasibility and efficiency in data warehousing 

environments. This way, solutions specifically tailored for DWs (i.e., that 

account for the particular characteristics of the data and workloads are 

capable of delivering better tradeoffs between security and performance 

than those proposed by standard algorithms and previous research.  

This thesis proposes a reversible data masking function and a novel 

encryption algorithm that provide diverse levels of significant security 

strength while adding small response time and storage space overhead. 

Both techniques take numerical input and produce numerical output, 

using data type preservation to minimize storage space overhead, and 

simply use arithmetical operators mixed with eXclusive OR and modulus 
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operators in their data transformations. The operations used in these data 

transformations are native to standard SQL, which enables both solutions 

to use transparent SQL rewriting to mask or encrypt data. Transparently 

rewriting SQL allows discarding data roundtrips between the database 

and the encryption/decryption mechanisms, thus avoiding I/O and 

network bandwidth bottlenecks. Using operations and operators native to 

standard SQL also enables their full portability to any type of DataBase 

Management System (DBMS) and/or DW. Experimental evaluation 

demonstrates the proposed techniques outperform standard and state-of-

the-art research algorithms while providing substantial security strength. 

From an intrusion detection view, most Database Intrusion Detection 

Systems (DIDS) rely on command-syntax analysis to compute data access 

patterns and dependencies for building user profiles that represent what 

they consider as typical user activity. However, the considerable ad hoc 

nature of DW user workloads makes it extremely difficult to distinguish 

between normal and abnormal user behavior, generating huge amounts 

of alerts that mostly turn out to be false alarms. Most DIDS also lack 

assessing the damage intrusions might cause, while many allow various 

intrusions to pass undetected or only inspect user actions a posteriori to 

their execution, which jeopardizes intrusion damage containment. 

This thesis proposes a DIDS specifically tailored for DWs, integrating a 

real-time intrusion detector and response manager at the SQL command 

level that acts transparently as an extension of the database server. User 

profiles and intrusion detection processes rely on analyzing several 

distinct aspects of typical DW workloads: the user command, processed 

data and results from processing the command. An SQL-like rule set 

extends data access control and statistical models are built for each 

feature to obtain individual user profiles, using statistical tests for 

intrusion detection. A self-calibration formula computes the contribution 

of each feature in the overall intrusion detection process. A risk exposure 

method is used for alert management, which is proven more efficient in 

damage containment than using alert correlation techniques to deal with 

the generation of high amounts of alerts. Experiments demonstrate the 

overall efficiency of the proposed DIDS. 

Keywords: Data Security, Data Warehousing, Data Masking, Encryption, 

Database Intrusion Detection, Database Security Frameworks. 
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Resumo 

As Data Warehouses (DWs) armazenam dados sensíveis que muitas 

vezes encerram os segredos do negócio. São actualmente a forma mais 

utilizada por parte de ferramentas analíticas para produzir inteligência de 

negócio e proporcionar apoio à tomada de decisão em muitas empresas. 

Isto torna as DWs um alvo extremamente apetecível por parte de 

atacantes internos e externos à própria empresa. Devido a estes factos, 

assegurar que o seu conteúdo é devidamente protegido contra danos que 

possam ser causados nos dados, ou o roubo e utilização ou divulgação 

desses dados, é de uma importância crítica.  

Nesta tese, é apresentada uma framework de segurança que possibilita a 

integração conjunta das soluções de confidencialidade de dados e 

detecção de intrusões em DWs. Esta integração conjunta de soluções é 

definida na framework como uma camada intermédia entre os interfaces 

dos utilizadores e o servidor de base de dados, descrevendo como as 

diferentes soluções interagem com os restantes pares. Consideramos esta 

framework como a primeira do género que combina tipos distintos de 

soluções de confidencialidade, como mascaragem e encriptação de dados 

com detecção de intrusões, numa única arquitectura integrada, 

promovendo uma solução de segurança de dados transversal e de grande 

abrangência. 

A utilização de pacotes de soluções de encriptação incluídos em 

servidores de bases de dados tem sido considerada como a melhor forma 

de proteger a confidencialidade de dados sensíveis e conseguir ao mesmo 

tempo manter um nível elevado de desempenho nas bases de dados. 

Contudo, esta tese demonstra que a utilização de encriptação resulta 

tipicamente num aumento extremamente considerável do espaço de 

armazenamento de dados e no tempo de processamento e resposta dos 

comandos SQL, entre outras desvantagens ou aspectos negativos 

relativos ao seu desempenho. Apesar da sua utilidade indiscutível no 

cumprimento dos pressupostos em termos de segurança propriamente 

ditos, nesta tese discutimos os problemas inerentes que dizem respeito à 

sua aplicabilidade, eficiência e viabilidade em ambientes de data 
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warehousing. Argumentamos que soluções especificamente concebidas 

para DWs, que tenham em conta as características particulares dos seus 

dados e as actividades típicas dos seus utilizadores, são capazes de 

produzir um melhor equilíbrio entre segurança e desempenho do que as 

soluções previamente disponibilizadas por algoritmos standard e outros 

trabalhos de investigação para bases de dados na sua generalidade.  

Nesta tese, propomos uma função reversível de mascaragem de dados e 

um novo algoritmo de encriptação, que providenciam diversos níveis de 

segurança consideráveis, ao mesmo tempo que adicionam pequenos 

aumentos de espaço de armazenamento e tempo de processamento. 

Ambas as técnicas recebem dados numéricos de entrada e produzem 

dados numéricos de saída, usam preservação do tipo de dados para 

minimizar o aumento do espaço de armazenamento, e simplesmente 

utilizam combinações de operadores aritméticos conjuntamente com OU 

exclusivos (XOR) e restos de divisão (MOD) nas operações de 

transformação de dados. Como este tipo de operações se conseguem 

realizar recorrendo a comandos nativos de SQL, isto permite a ambas as 

soluções utilizar de forma transparente a reescrita de comandos SQL para 

mascarar e encriptar dados. 

Este manuseamento transparente de comandos SQL permite requerer a 

execução desses mesmos comandos ao Sistema de Gestão de Base de 

Dados (SGBD) sem que os dados tenham de ser transportados entre a 

base de dados e os mecanismos de mascaragem/desmascaragem e 

encriptação/ decriptação, evitando assim o congestionamento em termos 

de I/O e rede. A utilização de operações e operadores nativos ao SQL 

também permite a sua portabilidade para qualquer tipo de SGBD e/ou 

DW. As avaliações experimentais demonstram que as técnicas propostas 

obtêm um desempenho significativamente superior ao obtido por 

algoritmos standard e outros propostos pelo estado da arte da 

investigação nestes domínios, enquanto providenciam um nível de 

segurança considerável. 

Numa perspectiva de detecção de intrusões, a maioria dos Sistemas de 

Detecção de Intrusões em Bases de Dados (SDIBD) utilizam formas de 

análise de sintaxe de comandos para determinar padrões de acesso e 

dependências que determinam os perfis que consideram representativos 

da actividade típica dos utilizadores. Contudo, a carga considerável de 
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natureza ad hoc existente em muitas acções por parte dos utilizadores de 

DWs gera frequentemente um número avassalador de alertas que, na sua 

maioria, se revelam falsos alarmes. Muitos SDIBD também não fazem 

qualquer tipo de avaliação aos potenciais danos que as intrusões podem 

causar, enquanto muitos outros permitem que várias intrusões passem 

indetectadas ou apenas inspeccionam as acções dos utilizadores após 

essas acções terem completado a sua execução, o que coloca em causa a 

possível contenção e/ou reparação de danos causados. 

Nesta tese, propomos um SDIBD especificamente concebido para DWs, 

integrando um detector de intrusões em tempo real, com capacidade de 

parar ou impedir a execução da acção do utilizador, e que funciona de 

forma transparente como uma extensão do SGBD. Os perfis dos 

utilizadores e os processos de detecção de intrusões recorrem à análise de 

diversos aspectos distintos característicos da actividade típica de 

utilizadores de DWs: o comando SQL emitido, os dados processados, e os 

dados resultantes desse processamento. Um conjunto de regras tipo SQL 

estende o alcance das políticas de controlo de acesso a dados, e modelos 

estatísticos são construídos baseados em cada variável relevante à 

determinação dos perfis dos utilizadores, sendo utilizados testes 

estatísticos para analisar as acções dos utilizadores e detectar possíveis 

intrusões. Também é descrito um método de calibragem automatizado da 

contribuição de cada uma dessas variáveis no processo global de detecção 

de intrusões, com base na eficiência que vão apresentando ao longo do 

tempo nesse mesmo processo. Um método de exposição de risco é 

definido para fazer a gestão de alertas, que é mais eficiente do que as 

técnicas de correlação habitualmente utilizadas para este fim, de modo a 

lidar com a geração de quantidades elevadas de alertas. As avaliações 

experimentais incluídas nesta tese demonstram a eficiência do SDIBD 

proposto. 

 

Palavras-chave: Segurança de Dados, Data Warehousing, Mascaragem de 

Dados, Encriptação, Detecção de Intrusões em Bases de Dados, 

Frameworks de Segurança em Bases de Dados. 
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Chapter 1  

Introduction 

Data is a major asset for any enterprise, not only for knowing the past, 

but also to support today’s business and to predict future trends [Baer, 

2004; Kobielus, 2009]. Data Warehouses (DWs) gather all the relevant 

historical and current business data, reflecting the business measures and 

its results, as well as how and when it occurs. Given its nature, this data 

translates into business knowledge, providing invaluable information to 

generate added business value and support decisions.  

In fact, DWs are today’s backbone for enterprise business intelligence, 

playing a main role in the enterprise’s outcome [Kobielus, 2009]. Given 

these facts, we may state that DWs are the core of sensitive business data 

and store the secrets of the business itself. This makes them a major target 

for both inside and outside attackers. Consequently, securing DWs 

against data damage and information leakage is a critical goal.  

The awareness of the importance of data security has been growing in the 

recent years. In fact, a survey on enterprise data security conducted by 

the Independent Oracle Users Group (IOUG) in 2012 [McKendrick, 2012], 

shows that almost 50% of the inquired companies increased their 

investment in IT security, while 9% of the inquired companies stated that 

they had sustained security breaches in company data. The same report 

also shows that almost 40% of the companies are expecting a security 

breach in 2013.  

Although several other studies have also demonstrated that efficiently 

securing sensitive data has become an imperative concern in many 

enterprises [McKendrick, 2012; Yuhanna, 2009], database attacks are 

increasing every year in number and complexity, and the caused damage 

is frequently only discovered after a significant loss of business or 

financial value [Yuhanna, 2009]. As organizations scale up, the amount of 

data moving across their systems and business units, and the risk of data 
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breaches and abuse also grows [McKendrick, 2012]. This introduces the 

need for integrating effective security measures into databases, given that 

they are the central component of enterprise information systems. 

Regardless of their security purpose, the techniques that are selected for 

implementing data security in DWs need to consider that data 

warehousing environments have unique types of user activities, as well 

as database features1 and performance requirements, which do not exist 

in any other type of database system. Therefore, the implementation and 

usage of the chosen techniques must not jeopardize the feasibility, 

efficiency and effectiveness of those features and requirements. 

In this thesis, we focus on enhancing data security in databases, 

specifically in the context of data warehousing environments, namely in 

what concerns data masking, encryption and intrusion detection. The 

following sections characterize data security in databases, summarily 

describing the most commonly used techniques, and point out the main 

issues presented by these techniques from a data warehousing 

perspective. The chapter continues by presenting the thesis statement, its 

main achievements and contributions, as well as the structure of the 

document, which concludes this chapter. 

1.1 Data Security in Databases 

In this thesis, we adopt the security concepts and definitions described in 

[Avizienis et al., 2004]. Thus, when referring to data security in databases, 

it is defined as the composite set of the following attributes:  

 Integrity: absence of improper modification or deletion of data that 

may compromise its correctness, completeness, consistency or 

authenticity; 

 Confidentiality: absence of improper disclosure of data, i.e., users 

do not access data they are not supposed to access; 

 Availability: readiness of service, i.e., the required database service 

and data are always available whenever requested. 

                                                      
1 In this thesis, we consider a feature as a variable for assessing the characteristics 

of a given subject. For example, a database feature can be the storage size of a 

database or its throughput, among other variables. 
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To comply with these attributes, many techniques have been proposed in 

the past. These can be divided in two classes: preventive and reactive 

techniques. Preventive data security techniques effectively protect data in 

advance of security problems or attacks, and independently from the 

occurrence of those problems or attacks (e.g. data masking, encryption, 

and data access policies, among others), while reactive security 

techniques are used to effectively respond to the occurrence of a security 

problem or attack, either while it occurs or after it has taken place (e.g. 

intrusion detection and prevention systems). The following subsections 

summarily describe the most common types of techniques for each class. 

1.1.1. Preventive Data Security Techniques 

Besides basic data integrity rules such as the enforcement of referential 

integrity and low-level hardware and/or software data storage integrity 

checks against data corruption such as data block checksum functions 

and error-correcting codes (e.g. CRC), used in all databases, the most 

commonly used preventive data security techniques for protecting 

sensitive data are probably those that include data masking, encryption 

and the implementation of data access policies [Huey, 2008].  

As one of the earliest methods for protecting data, DataBase Management 

Systems (DBMS) traditionally use some form of access control to enforce 

policies regarding the data they manage. Using data access policies allows 

defining the data that each user is authorized to access and the actions 

that s/he is authorized to execute. This is accomplished through user 

authentication, which is the process of verifying the user’s identity in the 

system and applying the set of policies defined for the user or the role to 

which s/he belongs. 

Data masking, as the term itself indicates, is the process of obscuring data, 

either by replacing true values with false values or by hiding a part of its 

values, in specific data elements. In databases, the main goal of data 

masking is to replace stored true data with realistic but unreal data, so the 

true data is unavailable to unauthorized users. An extensive survey on 

data masking techniques is given in [Ravikumar et al., 2011]. To assure a 

significant level of security, the false values should not allow attackers to 

easily discover ways of retrieving the true values, either by comparison or 

inference techniques. Organizations have strived to solve privacy issues 



Chapter 1 

4 

with hand-crafted solutions or repurposed data manipulation tools 

within the enterprise to solve the problem of sharing sensitive 

information. The most common solutions are probably to use scripts with 

triggers in order to mask and unmask each value, use built-in DBMS data 

masking packages such as the Oracle Data Masking (ODM) pack [Natan, 

2005; Oracle, 2010c], or to embed the masking/unmasking logic within 

user applications themselves. 

Data encryption techniques are an evolutionary and more complex form of 

data masking which intends to strengthen the security level, obeying to a 

series of universal principles defined by the encryption research 

community. It is defined that an encryption algorithm is a procedure or 

function that handles a given input, performs a series of rounds 

composed by mixing and transformation actions with that input or part(s) 

of it, depending on a given encryption key or set of keys, and generates a 

given output from those mixes and transformations [Vaudenay, 2006]. 

The algorithms of these procedures or functions are either developed 

internally within the enterprise to be used in a private manner, or 

publically disclosed for discussing its merits and proving its secureness 

by the research community and entities such as the National Institution of 

Standards and Technology (NIST), so it can be accepted for usage. In the 

recent past, encryption packages have been progressively implemented in 

many commercial and open source DBMS such as Oracle, Microsoft SQL 

Server and MySQL. 

1.1.2. Reactive Data Security Techniques 

Currently, all main DBMS have audit control, comply with ACID 

(Atomicity, Consistency, Isolation, Durability) requirements, and supply 

extensive authentication, authorization, and access control (AAA) 

features for assuring that the right users access and/or modify only the 

data that they are supposed to access and/or modify. All main DBMS also 

have available data masking and encryption packages that can be used 

transparently with databases and user applications in a straightforward 

manner. These preventive techniques work effectively in guaranteeing 

that only authorized users may access and manage the data that they are 

supposed to access and manage. However, they are unable to distinguish 

if the user that has logged in is truly who s/he is supposed to be and/or if 

that user has or not malicious intentions; if a masqueraded user or 
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malicious insider that has gained clearance by hacking or taking 

advantage of valid login credentials, those preventive mechanisms are 

unable to protect data.  

Given the increase of sophisticated attacks (e.g. Distributed Denial of 

Service attacks) and rising internal theft, traditional AAA features along 

with data masking and/or encryption are no longer enough to protect 

data [McKendrick, 2012; Yuhanna, 2009]. Additionally, attackers that gain 

direct access to databases mostly represent authorized users logging with 

permission to access data, meaning that they are able to bypass 

traditional intrusion detection systems (IDS), which typically work at the 

network and operating systems (OS) levels. This has lead to the 

development of reactive data security techniques, which monitor and 

analyze user actions in the database and try to determine if they are 

harmful or not in order to adequately deal with them, protecting data 

from attackers that bypass preventive security techniques.  

Gartner Research has identified Database Activity Monitoring (DAM) as 

one of the most important strategies for decreasing information leakage 

in organizations [Mogull, 2006; Nicolett and Wheatman, 2007]. 

Considering an intrusion as an unauthorized attempt to violate the 

integrity, confidentiality or availability of a system, the detection of 

intrusion actions against data and inherent database services is the main 

goal of Database Intrusion Detection Systems (DIDS) [Lappas and 

Pelechrinis, 2007]. DIDS are mainly host-based intrusion detection 

systems that operate at the database level, i.e., they inspect user 

commands and/or data workloads just before, during or after that data 

and/or workloads are processed by the database server. In DIDS there is 

typically a learning phase (i.e., previous to intrusion detection), in which 

database and/or user activity logs assumed as having “normal” or 

intrusion-free activity are used in order to build the “non-intrusive” 

normal user behavior profiles. To perform intrusion detection, there are 

mainly two types of approaches: misuse detection, looking for well-

known predefined attack patterns; and anomaly detection, looking for 

deviations from the typical user behavior [Newman, 2011]. 
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1.2 Issues concerning Data Security in Data Warehouses 

In spite of the diversity of available data security techniques, their 

feasibility, efficiency and effectiveness in data warehousing environments 

has not been undoubtedly proven. On the contrary, in this thesis we 

demonstrate that several of the currently available data security 

techniques are in fact unfeasible or, at least, introduce lacks of efficiency 

and effectiveness or performance overheads with orders of magnitude 

that jeopardize their feasibility. In the next sections, we point out the 

issues concerning the data security techniques focused in this thesis, from 

a data warehousing perspective. 

This thesis focuses on enhancing data masking, encryption and DIDS 

specifically designed for usage in DWs. Therefore, in the following 

subsections we point out the main issues of each of these techniques from 

a data warehousing perspective, which make the ground for our work. 

1.2.1. Data Masking 

Data masking routines are generally simpler in complexity and faster 

than encryption routines. However, they provide lower security strength 

[Ravikumar et al., 2011]. As we previously mentioned, encryption 

algorithms intended to be accepted and widely used by the database 

community are typically published with open access in order to enable 

discussing its merits and proving its secureness by both security and 

database research communities and entities such as the National Institute 

of Standards and Technology (NIST). This means that before they are put 

to use, most encryption algorithms go through very thorough and 

exhaustive analysis and testing processes. If they have been approved, 

those processes confer a sense of secureness to whoever intends to use 

them.  

For example, the Advanced Encryption Standard (AES) [AES, 2001] 

became an encryption standard only after a five year long 

standardization process that included extensive benchmarking on a 

variety of platforms. Since the appearance of the encryption field within 

data security, both database developers and users feel much more 

confident and relaxed with using encryption, rather than simple masking, 

to protect their sensitive data. This has introduced a confidence issue 
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concerning the use of data masking in highly sensitive databases such as 

those in DWs. 

Data masking routines provided by most commercial tools such as Oracle 

Data Masking (ODM) typically change data in an irreversible manner, i.e., 

after masking data it is not possible to subsequently retrieve the original 

true values. Oracle states that the ODM should be used as a fast and easy 

way to generate production databases for supporting outsourcing and 

software development. The ODM can also be used to mask Microsoft SQL 

Server and DB2 databases for the same purpose. ODM requires new data 

to be loaded into the database first, and only applies the masking 

procedures afterwards. It is not possible to load previously masked data; 

masking in the ODM is an a posteriori process. Most commercial solutions 

work in a similar fashion as the ODM [Gartner, 2009; Huey, 2008].  

As not being able to retrieve the original values makes data masking 

solutions useless in live end user databases [Bertino and Sandhu, 2005a; 

Gartner, 2009; Huey, 2008; Nadeem and Javed, 2005; Natan, 2005; 

Ravikumar et al., 2011; Yuhanna, 2009], the lack of confidence in their 

security strength in some cases and their irreversibility in other cases has 

made masking techniques the main choice for protecting published data 

or production data, instead of protecting data in live sensitive end user 

databases such as DWs.  

1.2.2. Data Encryption 

Published research and best practice guides state that encryption is the 

best method to protect sensitive data at the database level while 

maintaining high database performance [Agrawal et al., 2004; Ge and 

Zdonik, 2007; Hacigumus et al., 2004; Huey, 2008; Natan, 2005; Oracle, 

2005; Oracle, 2010a; Oracle, 2010c; Vimercati et al., 2007]. However, 

despite their security strength, encryption techniques introduce 

performance key costs from a data warehousing point of view: 

 Large processing time/resources for encrypting sensitive data, since 

DWs require accessing and processing huge amounts of data, this 

creates a high demand on computational resources that 

significantly rises processing time and the required storage space 

in their databases; 
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 Extra storage space of encrypted data, since DWs usually have many 

millions or billions of rows, even a small modification of any 

datatype size to hold encrypted output introduces large storage 

space overhead; 

 Overhead of query response time and allocated resources for decrypting 

data to process those queries. Given the huge amount of data 

typically accessed in order to process DW queries, this is probably 

the most significant drawback concerning the use of encryption in 

DWs [Agrawal et al., 2004]. 

As the number and complexity of “data-mix” encryption rounds increase, 

their security strength often improves while performance degrades, and 

vice-versa. Balancing performance with security in DWs is a complex 

issue, which depends on the requirements and context of each particular 

environment. Most encryption algorithms are not suitable for DWs 

because they have been designed as a “one fits all” security solution for 

general-purpose data. Thus, they are designed for encrypting blocks of 

text, i.e., sets of character-values by default. This has led DBMS to 

implement encryption routines that just output textual or binary 

attributes.  

Since in most enterprises the business facts are essentially numerical 

values, it is fair to state that most DW columns store numerical values 

[Kimball and Ross, 2013]. Thus, using encryption means that they need to 

be converted to a textual or binary format. When those values are 

decrypted for query processing, they need to be converted back into 

numerical format in order to process sums, averages, etc. Since most 

decision support queries process mathematical functions and calculus 

against numerical attributes, conversion operations add computational 

overheads with considerable performance impact and represent a 

potentially critical drawback. 

Although many encryption algorithms such as [Agrawal et al., 2004; Ge 

and Zdonik, 2007; Hacigumus et al., 2004; Radha and Kumar, 2005; 

Vimercati et al., 2007] and built-in DBMS packages such as [Oracle, 2010a] 

for specific use within databases have been proposed in the past, the 

introduced performance costs in DWs are very significant and may 

jeopardize their feasibility or make them unacceptable to users, as we 

demonstrate in this thesis. 
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1.2.3.  Database Intrusion Detection Systems 

Most Database Intrusion Detection Systems (DIDS) rely on command-

syntax analysis to compute data access patterns and dependencies for 

building user profiles [Mathew et al., 2010]. However, as we have 

previously mentioned, the considerable ad hoc nature of Data Warehouse 

(DW) decision support workloads makes it extremely difficult to 

distinguish between normal and abnormal user behavior. Although 

several DIDS proposed in the recent past are available to be used in DWs, 

they suffer from a series of drawbacks in these environments: 

 Most are poor at detecting novel attacks in dealing with ad hoc 

workloads such as those in DWs and typically spawn too low true 

intrusion detection rates (allowing many intrusions to pass 

undetected) or too high false alarm rates [Pietraszek, 2004; 

Pietraszek and Tanner, 2005; Srivastava et al., 2006; Treinen and 

Thurimella, 2006]; 

 Thresholds2 are typically used to assess the probability of a given 

action being an intrusion. Given the sensitivity of DW data, using 

low thresholds is preferable (which consequently generates more 

alerts), because the potential cost of non-detection is often too high 

or unacceptable. However, in this case the number of false alarms 

is often so large that it frequently leads to wasting immense time 

and resources, or they are simply just too much to be checked 

[Pietraszek, 2004; Srivastava et al., 2006]; 

 Although alert correlation techniques have been proposed to deal 

with large amounts of generated alerts and decrease false positive 

rates, they are not the best choice for alert management in DW 

environments. In fact, as these techniques filter sets of alerts in 

order to decide if each alert is relevant or not, they may allow true 

intrusions that are capable of producing a great amount of 

damage to pass undetected, even though they were initially 

alerted; 

                                                      
2 When mentioned in intrusion detection processes, the term threshold is typically 

a value that sets the limit between normal and abnormal behaviour, given a 

range domain of possible values that are outputted by those processes. 
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 Most DIDS do not assess the damage that each potential intrusion 

is capable of causing to the data and/or enterprise. Given the 

business value of DWs, this is a critical issue because it would 

allow to define which alerts should be checked first, since 

different data also has different importance to the enterprise; 

 Many DIDS execute the intrusion detection (ID) process a 

posteriori, i.e., after the intrusion action has finished its execution. 

This disables intrusion response and prevention while the 

intrusion occurs. Given their value, avoiding corruption or 

exposure of data in DWs as early as possible is a critical issue, 

making real-time intrusion detection and response capabilities is 

an essential requirement. 

The overstated number of alerts and false alarms, together with the 

potentially low reliability on correlation techniques and the hypothesis 

that many intrusions may only be detected and dealt with a posteriori 

jeopardizes the credibility, efficiency and effectiveness of existing DIDS 

[Bockermann et al., 2009; Lee, 2002; Pietraszek, 2004; Pietraszek and 

Tanner, 2005; Treinen and Thurimella, 2006]. 

Another problem that makes it difficult to develop adequate DIDS is the 

absence of intrusion detection benchmarks at the database level. 

Benchmarks are an essential instrument used in the development and 

implementation of many systems. They are widely used because they 

provide a manner to test those systems and supply solution providers 

and clients with measures that allow comparing between different 

solutions, while providing feedback to developers that enables them to 

improve those solutions. In the past, the KDD99 benchmark [DARPA] has 

been widely used for testing intrusion detection solutions. However, this 

benchmark focuses on intrusion actions at the network and operating 

system (OS) level. In what concerns databases, a need arises for dealing 

with intruders that are able to bypass intrusion detection mechanisms 

working at the network and OS level. In spite of the criticality of 

protecting DW data against intrusions and the importance of having 

available benchmarks for testing and improving DIDS, to the best of our 
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knowledge there is no benchmark focusing on the specific features3 of 

intrusion detection in DW environments at the data level. 

1.2.4. Data Security Research Challenges in Data Warehousing 

The two main characteristics that differentiate one data confidentiality 

solution from the other is its ability to secure the protected data against 

attacks and its speed and efficiency in doing this. Given the specificities of 

data warehousing environments, we believe there are specific security 

and performance issues and tradeoffs to evaluate and discuss, regarding 

the use of data masking and encryption solutions in DWs, which can lead 

to the development of solutions with better tradeoffs. We also believe that 

higher efficiency and effectiveness can be achieved in DIDS for DWs if 

they are designed and/or improved taking in consideration those 

specificities of data warehousing environments. These are our 

motivations, which establish the foundations for the research work 

presented in this thesis. 

1.3 Thesis Statement and Main Contributions 

This thesis makes several contributions for enhancing data security in 

DWs at the database server level. We propose specific solutions for 

implementing data confidentiality, namely novel data masking and 

encryption techniques, as well as a Database Intrusion Detection System, 

which consider the unique specificities of data warehousing 

environments. A framework for integrating all the proposed solutions 

together is also proposed, supporting the implementation of a unique 

system that allows increasing the DW’s overall security strength.  

In detail, the main contributions of this thesis are: 

 A body of knowledge on performance of encryption solutions in 

large analytical databases. While encryption solutions are 

typically characterized and analyzed from a security perspective, 

we present research findings concerning their performance. It is 

                                                      
3 The explicit mention to intrusion detection features refer to the variables that 

are used for building user profiles and that are employed for intrusion detection 

purposes. For example, the DIDS proposed in this thesis uses features such as the 

elapsed time for processing each SQL user command, the number of processed 

rows, the size of the resulting dataset, etc. 
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not within the scope of this thesis to discuss the scientific merit or 

soundness of the security strength of each technique, but rather to 

evaluate their impact in database performance and applicability in 

data warehousing environments. This is obtained by analyzing the 

design and measured performance of several state-of-the-art and 

standard encryption algorithms in DWs of various sizes. 

 A body of knowledge on performance of database intrusion 

detection techniques focusing on their applicability in data 

warehousing environments. We present state-of-the-art intrusion 

detection techniques and make a clear distinction between them 

given the way that they determine which features to use and how 

they manage intrusion detection. Based on this and on the 

characteristics of typical data warehousing environment 

workloads, we discuss the suitability or unsuitability of each 

distinct type of technique for detecting intrusions in DWs. We also 

point out alert management and intrusion response issues, which 

can become a critical matter in intrusion damage containment. 

 A novel data masking technique that introduces small database 

performance overheads while providing considerable security 

strength. The technique is used transparently by means of a 

middleware security broker and sustains the reversible features to 

retrieve the true original values from the masked values, which 

makes it useful in live databases such as DWs. It also promotes 

user action auditing and accountability. Although its security 

strength is not as high as that of encryption techniques, we believe 

that this data masking technique is secure enough to be used in 

scenarios where the performance overheads introduced by 

encryption are unacceptable, presenting itself as a feasible solution 

by balancing security and performance tradeoffs. 

 A novel data encryption algorithm for numerical values that 

provides considerable security strength while introducing small 

database performance overhead. Similarly to the data masking 

technique, our encryption solution is used transparently by means 

of a middleware security broker and promotes user action 

auditing and accountability. The proposed encryption technique 

avoids storage space and computational overhead by preserving 
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each encrypted column’s original datatype. Each encrypted 

column may have its own security strength by defining the 

number of encryption rounds to execute, which also defines how 

many encryption keys are used, since each round uses a distinct 

key (thus, the true key length is the number of rounds multiplied 

by the length of each round’s encryption key). This enables 

columns that store less sensitive information to be protected with 

smaller-sized keys and rounds and thus, process faster than more 

sensitive columns. Both data masking and encryption techniques 

maintain the stored data masked or encrypted at all times, 

requiring only rewriting SQL user commands to function properly 

and minimal changes to the original data schemas. They use only 

standard SQL operations and operators, which makes them 

directly implementable and executable in any DBMS and database 

setup in a low-cost and straightforward manner. Contrarily to 

solutions that pre-fetch data to perform masking and unmasking 

or encryption and decryption, by simply rewriting SQL 

commands we avoid I/O and network bandwidth congestion due 

to data roundtrips between the database and the 

encryption/decryption or masking/unmasking mechanisms, and 

consequent response time overhead. 

 A specifically designed DIDS for DWs that works as an 

extension of any DBMS, adding real-time intrusion detection and 

response capabilities for each user action executed. The solution 

acts transparently at the application layer between user 

applications and the database without affecting their joint 

functionality. While other DIDS just analyze the user command or 

its resulting dataset, the proposed DIDS analyzes four distinct 

aspects of the user’s action: SQL command, plus the accessed and 

processed data, plus the resulting dataset, and enables stopping 

the user actions, both before and after they are executed by the 

DBMS, with the ability to avoid the disclosure of their results to 

the user or application that requested the execution. A declarative 

SQL-like form for defining intrusion detection and response rules 

at a fine-grain level is also proposed. These rules allow defining a 

large spectrum of possibilities for the detection of a wide range of 

intrusions as well as adequately dealing with them. 
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 A risk exposure approach to be used in the DIDS for ranking 

alerts, improving the efficiency of damage or leakage containment 

by pointing out the intrusions that might cause more damage. In 

cases where the number of generated alerts to be checked is high, 

the approach enables handling intrusions that indicate a 

potentially higher risk to the enterprise more rapidly, efficiently 

and effectively than using correlation techniques. 

 A security framework that integrates the proposed data masking 

and encryption solutions with the DIDS into a single conformed 

workflow between users and the database, which provides a mean 

for increasing the overall security strength of any DW by enabling 

each solution to optionally function individually or all together. 

The framework also defines the guidelines for each type of 

solution, given the characteristics of DWs and each solution’s 

individual purpose. 

 Although not included as fully developed and tested research and 

therefore, not included as a regular chapter, in Appendix D we 

include an initial proposal for a DW Intrusion Detection 

Benchmark to test DIDS in DWs at the SQL level, given a 

controlled DW environment with mixed intrusion and non-

intrusion SQL workloads. The main contribution of the 

benchmark is to provide a feasible and objective mean for 

evaluating the efficiency of the intrusion detection processes and 

impact on database performance at the SQL level for DW DIDS. 

The proposed measures intend to produce insight for aiding 

developers in the improvement of their solutions and allow 

providers and users to compare between different solutions. 

 

1.4 Thesis Structure 

This chapter discussed the importance of DWs and securing them. It 

presented key definitions and issues concerning data security in data 

warehousing environments, creating the ground for the research 

presented in this thesis. The chapter also presented the objectives and 

main contributions of the thesis. 
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Chapter 2 discusses background and related work in the domain 

background. We characterize data warehousing environments and 

describe the current state-of-the-art solutions and techniques in data 

masking, encryption and database intrusion detection. We conclude the 

chapter by pointing out the issues in each of these subjects from a data 

warehousing perspective [Santos et al., 2011a; Santos et al., 2012a, Santos 

et al., 2014]. 

Chapter 3 presents the integrated security framework, describing each of 

its components and how they work together to accomplish their security 

goals. The framework is defined in a generic way to demonstrate how 

each individual solution can come together to form a broad scoped 

overall security approach. The set of principles that drived the 

development of each data masking, encryption and intrusion detection 

solution proposed in this thesis is also included. 

Chapter 4 proposes a novel reversible data masking technique for 

numerical values that provides significant security strength and complies 

with the principles defined in the security framework [Santos et al., 2011b; 

Santos et al., 2011c]. Besides demonstrating the proof of the masking 

solution’s security strength, this chapter also includes an experimental 

evaluation to demonstrate that the proposed approach is computationally 

faster than existing standard and state-of-the-art encryption solutions.  

Chapter 5 proposes a novel encryption algorithm for numerical values 

[Santos et al., 2013]. This technique also complies with the set of principles 

defined by the security framework. The chapter includes the proof of the 

proposed solution’s security strength along with an experimental 

evaluation that also show that it is computationally faster than standard 

and state-of-the-art encryption solutions. 

Chapter 6 presents our approach to develop a DIDS focusing on the 

specificities of data warehousing environments, which is based on the 

detection of anomalous user activities by joining the syntax-based 

analysis of the user commands with features of the processed data and 

the command execution’s resulting datasets [Santos et al., 2012b; Santos et 

al., 2012c]. The DIDS works transparently as an extension of the database 

server, placed between the user interface(s) and the DBMS, and uses a 

risk exposure alert management approach that enables it to be more 

efficient than commonly used alert correlation techniques. An 
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experimental evaluation is included to demonstrate its efficiency against 

other state-of-the-art intrusion detection solutions proposed in former 

research. 

The last chapter presents the conclusions on this thesis and points out 

future research directions derived from our work. 

Appendix A describes the Sales DW purpose along with its data schema, 

scale and storage sizes, as well as a list of queries that make up the 

decision support workloads used in the experimental evaluations 

presented in the thesis. 

Appendix B shows the data masking and encryption experimental results 

included in Chapters 4 and 5, with its respective statistical measures 

(averages and standard deviations). 

Appendix C shows the intrusion detection experimental results included 

in Chapter 6, with its respective statistical measures. 

Finally, Appendix D describes in detail our initial proposal for a DW 

intrusion detection benchmark. 
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Chapter 2  

Background and Related Work 

Data Warehouses present unique characteristics that differ from other 

types of database systems. In order to discuss data security from a data 

warehousing perspective, summarizing those characteristics along with 

those belonging to the data security solutions focused in this thesis is an 

essential requirement. This chapter summarily describes the concepts 

concerning DWs and presents relevant background and related work 

focusing on standards and state-of-the-art solutions proposed by research 

in the data security domains focused in this thesis, namely data masking, 

encryption and DIDS.  

The chapter is structured as follows: Section 2.1 summarizes the concepts 

of data warehousing and the typical characteristics of those environments 

in what concerns database features and workloads, while Sections 2.2 and 

2.3 respectively describe the state-of-the-art data masking and encryption 

techniques that are currently available for usage in DWs and discusses 

the issues concerning their use in these analytical environments. Section 

2.4 describes the main intrusion techniques and methods used in DIDS 

and discusses their applicability from a data warehousing perspective. 

Finally, Section 2.5 concludes the chapter. 

2.1. Data Warehousing 

In an enterprise, the transactional (alias operational) systems typically 

consist of a set of applications and data sources that enable accomplishing 

and storing business transactions, and guarantee their operationability 

[Kimball and Ross, 2013]. Transactional databases are designed to 

manage the data for supporting each individual business transaction 

instead of cross-enterprise business analysis. Transactional systems 

typically consist of many users reading and writing small amounts of 

data; for example, on an ATM bank system, there are hundreds or 
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thousands of users accessing their account balances at the same time, or 

withdrawing/transferring a given amount of money. Another 

characteristic of the ATM system is that it does not require keeping long 

periods of historical data; it only needs the current balance and latest 

movement records to be able to adequately support user requests and 

business transactions.  

In contrast, Decision Support Systems (DSS) are usually accessed by 

fewer users but that query large amounts of data to obtain business 

analysis information to aid decision making. Using the same bank ATM 

system as an example, the difference is that the people from the bank that 

need to make decisions regarding the business (i.e., business managers, 

administrators, executives, etc.) want to know the average balance for the 

last six months or a year for the accounts with certain geographical 

region, for instance, in order to make strategic decisions like opening a 

new branch office or encourage people to increase their investments by 

offering better interests. To execute this kind of query, the system needs 

to keep historical data of the balances plus it would read millions of 

records of all clients within certain region and compute that average.  

These type of analytical actions result in very demanding data access 

patterns, that if running on top of a transactional database can lock large 

amounts of data and consume computational resources in a way that 

could compromise the transactional system’s availability, ultimately 

making it incapable of supporting the business transactions. Moreover, 

many transactional systems operate isolated from each other with little or 

no integration, and each system typically manages its own dataset. As a 

result, the same data is represented and stored in many different ways 

throughout the enterprise, one for each system. Consequently, there can 

be multiple distinct versions of the truth, which can be inaccurate, 

outdated or simply invalid. 

To relieve resource consumption, reduce the operational risk in the 

transactional applications that support business, deliver a unique source 

of true information and provide an optimized data structure for 

analytical cross-enterprise decision support purposes, Data Warehouses 

are used, clearly separating the analytical business processes from the 

transactional business processes. In the next subsection, we present the 

concepts and definitions concerning DWs. 



Background and Related Work 

 

19 

2.1.1. The Data Warehouse: Concepts and Definitions 

The origin of the Data Warehouse concept can be traced back to the 

research carried out at the Massachussets Institute of Technology and at 

IBM in the late 1970s, focusing on ways to define an architectural model 

for the flow of data from operational systems to decision support 

environments. From this research work at MIT, for the first time a 

differentiation between the operational and analytical processing is made. 

In 1988, Devlin and Murphy from IBM introduced the term “Business 

Data Warehouse” [Devlin and Murphy, 1988] that precedes the actual 

“Data Warehouse” term.  

In 1992, Bill Inmon published the first edition of his book “Building the 

Data Warehouse” [Inmon, 1992] where he defines the term “Data 

Warehouse” and also consolidated the terms and techniques that have 

been the foundation for DWs since then. In 1996, Ralph Kimball defined 

the Star Schema and Multidimensional modeling techniques [Kimball, 

1996], which enriched the DW definitions. The Inmon and Kimball 

approaches were widely accepted by research and commercial database 

communities and became the common guidelines for building DWs. 

In the past, there have been many definitions on what is a Data 

Warehouse. Although the Inmon and Kimball approaches differ from 

each other, as well as other derived approaches, they agree on most 

characteristics that define the concept of what a DW is.  

A generic definition of a DW is given by [Kimball, 1996; Kimball and 

Ross, 2002; Kimball and Ross, 2013]:  

“A Data Warehouse consists of a considerable sized database, which 

consistently aggregates all the historical data belonging to a given 

specific business field or business area, in a previously well-defined 

level of detail that is considered adequate and relevant for decision 

support purposes by the business itself. The data in a DW can be 

separated and combined by means of every possible measure in a 

business”. 

According to [Simitsis, 2005], the most popular definition of DW is that in 

[Inmon, 1996; Inmon, 2002]: 

“A Data Warehouse is a centralized repository for the entire 

enterprise, containing data that is used for analyzing the business 
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and supporting decision making. The Data Warehouse has four 

main attributes: it is subject-oriented (meaning the data in it is 

organized so that all the data elements relating to the same business 

event or subject are linked together and that the DW is developed in 

a way that satisfies the analytical requirements of the users that will 

query it); it is non-volatile (meaning that the data loaded into the 

database is never erased or over-written, i.e., once the data is 

committed it remains static and read-only and is retained for future 

reporting and analysis); it is integrated (meaning it joins data from 

several operational data sources into a conformed format in a 

consistent way); and it is time-variant (meaning that it stores the 

history of the business to which it was designed for).” 

Based on these definitions, in this thesis we consider a DW as a large-

sized non-volatile cross-enterprise analytical database that stores 

historical, non-volatile, integrated, consolidated, updated and consistent 

data, in a level of detail and format considered adequate for providing 

decision support information in a given business area or field by the 

business stakeholders. 

Having explained the principles and concepts that define a DW, it is also 

important to understand the environments in which they function. 

Therefore, in the next subsection we characterize data warehousing 

environments. 

 

2.1.2. Data Warehousing Environments 

The DW obtains its data from the operational data sources (which may 

consist of transactional databases, flat files, legacy systems, etc.) through 

the execution of Extraction, Transformation and Loading (ETL) processes, 

but clearly separates the analytical decision support processes (which 

mainly consist on executing On-Line Analytical Processing (OLAP) 

operations in order to generate a diverse variety of Business Intelligence 

(BI) reports) from the transactional business processes.  
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Figure 2-1 shows the traditional generic functional architecture of a DW, 

composed by the ETL Layer, and the Data and Metadata Repository Layers4. 

The ETL Layer is responsible for the execution of ETL processes and 

typically contains a staging area which is used to store extracted and 

transformed data until it is time to load that data into the DW database(s). 

The Data and Metadata Layer contains all DW databases, in which the 

Metadata Repository is used to describe in detail all DW objects and their 

relationships. In some DWs, the databases are divided into data 

structures named as Data Marts, which focus on storing the decision 

support data for a specific business subject within the enterprise. The 

Presentation Layer represents all front-end interfaces that are available to 

the DW end users for accessing its data. 

 

Figure 2-1. Generic Data Warehouse Functional Architecture 

Separating the analytical business processes from the operational 

transactional business processes allows the enterprise to gain at least two 

major advantages: 

 It enables physically and logically separating the transactional 

databases from the analytical databases and defining adequate 

specific allocated resources for each type of process. This means that 

                                                      
4 Diverse architectures such as that defined in [Kimball and Ross, 2013] also 

include the Presentation Layer as part of the DW itself, but in this thesis we 

consider the first two layers as the DW core and the third as a separate tier 

representing the user interfaces. 
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each database can be designed and defined the best possible way in 

order to adequately fulfill its purposes and maximize its performance 

regarding those purposes; 

 Reporting and ad hoc decision support querying is requested by the 

Presentation Layer to the mechanisms existing in the Data and Metadata 

Layer, which are isolated apart from the transactional business 

databases and thus, does not affect the functionality and/or 

availability of the operational source systems and vice-versa. 

Bearing in mind the way a DW operates, there have been several 

definitions of what is considered a data warehousing environment. 

According to [Chaudhuri et al., 1997]: 

“Data Warehousing is a collection of decision support technologies 

that aim at enabling an enterprise to make better and faster 

decisions.” 

Another definition of data warehousing is given in [Castro, 2009]: 

“The concept of data warehousing consists of architectures, tools, 

technologies, algorithms and methodologies that allow for the 

construction, usage, management and maintenance of the hardware 

and software used for a data warehouse, as well as the data itself.” 

Based on these definitions, in this thesis we consider data warehousing 

environments as the full setup of hardware and software in which the 

ETL processes and databases belonging to DWs operate, plus their user 

workloads. 

In what concerns the characterization of the type of users in data 

warehousing environments - considering users as anyone who may 

regularly access the DW database(s) for any reason - we consider three 

main classes of users, given their typical activities: 

1) The Database Administrator (DBA) or similar, which is anyone that 

can create or modify any database object. Typical actions on behalf 

of this user are the creation or modification of tables, indexes and 

views in the DW, for example. DBAs typically have full (or almost) 

access privileges to the databases. 
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2) The ETL User, which is any person or software responsible for 

updating the contents of the DW. Typical actions are new row 

inserts in fact tables and new row inserts or row updates in 

dimensional tables. 

3) The DW End User, which is any person belonging to the business 

that queries the databases with the purpose of obtaining decision 

support information or produce business knowledge, either by 

directly querying it or by using business intelligence and OLAP 

tools. 

In the next subsection, we describe the differences between operational 

systems and data warehousing environments. 

2.1.3. Data Warehousing Environments vs Operational Systems 

From a perspective attending to its purpose, as we have previously 

explained, a DW is mainly a database (or set of databases) system that has 

been specifically designed to provide decision support information and 

produce business knowledge, while an operational system is specifically 

designed to support individual business transactions and store its 

respective data. Given that the business often requires the operational 

system to be online in order to accomplish a transaction, operational 

system requirements focus on enabling high availability in order to avoid 

compromising the accomplishment of the transactions themselves. On the 

other hand, since most decision support queries often require processing 

a large amount of data, DWs focus on enabling high throughput [Kimball 

and Ross, 2013].  

From a perspective attending to the size and shape of its contents, a DW 

is composed of consolidated historical business data, mostly conformed 

and within data schemas that allow optimizing the execution of OLAP 

queries by tools that deliver the intended decision support information 

and produce the intended business knowledge. In most cases, storing the 

complete business history implies taking up a very large amount of 

storage space, often ranging from gigabytes to terabytes. In contrast, 

operational systems aim to keep their data sources “light”, i.e., small in 

size and content, in order to minimize processing efforts and 

consequently keep their availability as high as possible, therefore keeping 
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only the exact amount of data which is required to support current and 

near-future business transactions. 

In what concerns their data schemas, transactional databases have highly 

normalized schemas, mainly to avoid data redundancy and keep each 

table small-sized, while DWs have denormalized schemas. Most DW 

database schemas are based on star schemas, where business facts are 

stored in a central table called fact table (e.g. sales table) and the tables 

containing the business descriptors are called dimension tables (e.g. 

customer and product tables) [Kimball and Ross, 2013]. Dimension tables 

are linked to the fact table by their primary keys (e.g. CustomerID and 

ProductID) and are usually small in size (typically less than 10% of DW 

total storage space) and have a small amount of rows (up to tens of 

thousands), when compared with fact tables, which are typically very 

large in size and a huge amount of rows (millions or billions). Business 

facts are mainly stored in numerical-typed attributes within fact tables; 

since fact tables typically take up at least 90% of the DW total storage size, 

in many cases DW databases are mostly composed by numerical values 

[Kimball and Ross, 2013]. 

Attending to the user’s responsibility among the business, the typical DW 

user is a business manager or someone that holds a considerable role of 

responsibility in the enterprise, while the typical user of operational 

systems are mainly transactional operators with low responsibility and 

with few or none decision making privileges. Since they mainly consist of 

business managers and decision makers, the number of DW users it 

typically low (a few tens).  

While in operational systems end users typically execute intensive read 

and write instructions, DW end users only execute read-only instructions 

such as queries, i.e., they are not allowed to change data, while DBAs and 

ETL users may insert or modify data. More than 90% of actions executed 

in DWs are typically decision support queries, (i.e. SELECT statements), 

mainly executed against fact tables [Kimball and Ross, 2013]. Reporting 

(i.e. periodically running reports for answering predefined decision 

support queries) is typical in DWs. Besides predefined reporting, in many 

cases a very significant amount of decision support queries are ad hoc, 

which makes them mostly unpredictable in their syntax and frequency. In 
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operational systems, the queries are almost fully simple and predefined 

and repetitive. 

Although decision support queries may typically access huge amounts of 

data, their response usually results in small datasets with a few hundred 

bytes and a relatively low number of columns (no more than a few tens). 

Most queries in DWs are CPU intensive and can take up to hours, while 

operational system queries are intended to be computationally fast and 

deliver very small response times. 

Table 2-1 summarizes the main differences between operational systems 

and DWs, based on [Inmon, 2002; Kimball and Ross, 2013; Ponniah, 2010]. 

 

Table 2-1. Main Differences between Operational Systems and Data Warehouses 

 Operational Systems Data Warehouses 

Workload nature/purpose Transactional Analytical 

Temporal nature of the data Current Historical and current 

Typical database storage size As small as possible Very large to huge 

Typical number of tables Medium to high Small 

Typical data schema type Highly normalized Denormalized 

Typical number of users Medium to large Small 

Typical user’s responsibility 
towards the business 

Low High 

Typical type of command 
Read/Write of small 
amounts of data 

Read-only on large 
amounts of data 

Typical command complexity Simple Medium to High 

Typical operation dynamics 
Static, predefined, 
predictable and 
repetitive 

Dynamic, ad hoc, 
random and iterative 

Typical command response time Small Large 

Typical command action 
Read/write of a single 
row or few rows 

Reporting and 
aggregation on many 
rows, with roll-up, drill-
down, slice and dice 

Amount of data typically 
processed by each command 

Small Large or Very Large 

Typical data update frequency 
Often in a given period 
of time 

Once periodically 

Dataset size typically resulting 
from a command execution 

Small Variable (often Small) 
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Conclusively, it is widely recognized that DW/BI systems have 

profoundly different needs, clients, structures, and rhythms than those of 

operational systems. DW users have drastically different needs than 

operational system users [Kimball and Ross, 2013]. Thus, we can make 

the assumption that data warehousing environments also require distinct 

security solutions that are designed taking those specific characteristics 

under account and that are able to cope with those specific requirements 

and needs.  

The following sections present the background in data masking, 

encryption and intrusion detection. 

2.2. Data Masking 

An extensive survey on data masking (alias data obfuscation) techniques 

is given in [Ravikumar et al., 2011]. The main goal of data masking is to 

replace true data with realistic but not real data, so the true data is not 

readable by unauthorized users. To assure a significant level of security 

strength, the masked values should not allow attackers to easily discover 

ways of retrieving the true values.  

In this section, we shall explain the diverse forms of masking data, refer 

available commercial masking packages and discuss the issues 

concerning the use of data masking in data warehousing environments. 

2.2.1. Forms of Data Masking 

One way to accomplish data masking is to use value referencing, i.e., to 

create and use a reference table for each masked value, as shown in 

Figure 2-2. 

Original Values  Reference Table  Masked Values 

16  Original Masked  3 

12  9 1  2 

9  12 2  1 

31  16 3  5 

9  23 4  1 

16  31 5  3 

23    4 

Figure 2-2. Data masking using a reference table 
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Another way is to use a function against each original value to produce a 

new masked value, such as shown in Figure 2-3. 

Original Values (xi)  Masking Function f(xi)  Masked Values (yi) 

16   

 

 

f(xi)=(3+9xi)MOD17 

 11 

12   9 

9   16 

31   10 

9   16 

16   11 

23    6 

Figure 2-3. Data masking using a masking function 

There are several types of functions as shown in Figure 2-3 that can be 

used for data masking, such as:  

 Deterministic masking: A deterministic function f(x) = yi, where f(xi) 

always produces the same yi for a given value xi; 

 Condition-based masking: Applying different mask formats to the 

same dataset depending on the rows that match specific conditions 

(e.g. applying different national identifier masks based on country of 

origin); 

 Compound masking: A set of related columns is masked as a group 

to ensure that the masked data across the related columns retain the 

same relationship (e.g. city, state, and zip code values may need to be 

consistent after masking, for maintaining referential integrity). 

These functions are mainly used in two ways, which can be used 

separately or mixed together: 

 Substituting, where each value is replaced by the output of a 

deterministic function or reference (e.g. Figures 2-2 and 2-3); 

 Shuffling, where values switch places. This occurs by swapping the 

values between two or more predefined similar typed columns in the 

same row or in different rows, or swapping the characters that 

compose the value in a predefined form (e.g. 12345 becomes 52143), 

or mixing both these types of swap. 
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The references and functions shown in Figures 2-2 and 2-3 show data 

masking operations that are reversible, i.e., the original value can be 

retrieved from the masked value if an authorized user executes a valid 

query that should obtain a true result. This is the typical DW setting, 

where data should be masked for avoiding disclosure to unauthorized 

users, but all authorized user queries must be able to retrieve the true 

exact response. However, there are situations in which the released data 

should not reveal their true values or, at least, not all their true values, in 

any case (including authorized users). These cases mostly refer to 

published data for public consulting or outsourcing purposes, or the 

creation of production and testing databases for aiding software 

development processes. In these cases, several typical types of techniques 

allow the disclosure of only part of the true data or entirely false data, 

such as: 

 Random number generators (RNG), widely used for generating 

statistically independent and apparently random values for simply 

replacing the original true values in whole or in part; 

 Random shuffling, where shuffling is used in conjunction with RNG 

for randomly swapping the values; 

 Nulling, where sensitive values that should not be disclosed are 

simply replaced by a null value; 

 Deleting, where rows with sensitive values are erased; 

 Masking out, where predefined parts of the sensitive values are 

replaced by universal characters (e.g. credit card number 9255 0614 

0015 8925 becomes 9255 XXXX XXXX 8341 or 9X5X 0X1X 0X1X 8X2X); 

 A mix of the previous techniques. 

More recently, research has also proposed non-deterministic methods for 

masking data, such as perturbation techniques [Agrawal et al., 2005; 

Procopiuc and Srivastava, 2011; Xiao et al., 2009]. The work in [Agrawal et 

al., 2005] proposes a solution based on data perturbation techniques and 

explains data reconstruction for responding to queries, in a data 

warehousing environment. Recent similar work proposing data 

anonymization solutions which rely on perturbation or differential 
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techniques have been published in [Procopiuc and Srivastava, 2011] and 

[Xiao et al., 2009]. 

2.2.2. Commercial Data Masking Solutions 

Many similar commercial data masking packages have been developed. 

Oracle, for instance, has developed the Oracle Data Masking (ODM) pack 

[Oracle, 2010c], protecting data by replacing real values with realist-

looking data with the same type and characteristics as the original data. 

ODM provides masking primitives such as random numbers, dates and 

constants, as well as other built-in routines that shuffle the values in a 

column across different rows. However, once applied, the ODM does not 

allow retrieving the real values, i.e., the original values are forever 

inaccessible.  

ODM provides a centralized library of out-of-the-box mask formats for 

common types of sensitive data such as credit card and phone numbers, 

national identifiers (e.g. social security numbers), etc. By leveraging the 

ODM Format Library, data privacy rules can be applied across enterprise-

wide databases from a single source, ensuring consistent compliance with 

regulations. ODM supports the concept of application masking templates, 

which are XML representations of the mask definitions. Security 

administrators, software vendors or service providers can then import 

these predefined XML templates into the ODM in order to ease and 

accelerate the data masking implementation process. The ODM 

automatically identifies and ensures referential integrity.  

Oracle states that ODM is to be used mainly as a fast and easy way to 

generate production databases for supporting outsourcing and software 

application development. The ODM can also be used to mask Microsoft 

SQL Server and DB2 databases for the same purposes. ODM requires new 

data to be loaded into the database first, and only applies the masking 

procedures afterwards. It is not possible to load previously masked data. 

Masking in ODM is an a posteriori process. Most commercial data 

masking solutions work in a similar fashion as ODM. 

2.2.3. Using Data Masking in Data Warehouses 

Organizations have partly strived to solve confidentiality and privacy 

issues by using hand-crafted solutions or repurposed data manipulation 
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tools developed within the enterprise to solve the problem of sharing 

sensitive information. The most common solution is probably to use 

scripts with triggers in order to mask and unmask each value, or to 

embed the masking/unmasking logic within the user applications 

themselves, keeping their secrecy aspects mostly within the development 

team.  

However, these proprietary solutions are not the best way to achieve a 

standard data masking solution. On one hand, embedding them into 

applications makes their maintenance complex and costly. On the other 

hand, not disclosing them to the security and database research 

communities and keeping them as a hidden black box solution keeps 

their security strength unproven. Another common solution is to use 

standard commercial masking tools such as ODM. 

Since DWs mainly require masking solutions to guarantee that the 

masked values can be reengineered to retrieve their original true values, 

we can state that using RNG, random shuffling, nulling, deleting, and 

masking out techniques are mostly not suitable for data warehousing 

environments. Thus, most leading commercial data masking packages 

such as ODM are also not applicable to most data warehousing scenarios. 

Consequently, to be useful, DW data masking routines must be based on 

reversible shuffling or substituting techniques. 

Designing an efficient substitution or shuffling routine is far from being a 

trivial task. If the masking values produced by those methods can be 

easily determined by comparison or other type of inference then the 

original true data can be easily retrieved by attackers, making the 

routines useless. For example, if the shuffle algorithm simply runs down 

a table swapping the column data of the sensitive columns in between 

every group of two rows, it would not take much effort from the attacker 

to break security.  

Shuffling routines can ensure higher security strength than simple 

substitution routines, because they shuffle the values and can add the use 

of a value-function for changing their values before or after the shuffle. 

However, shuffling routines may become extremely complex, namely in 

determining how to swap the values in order to guarantee both an 

acceptable security strength and processing time overheads. On one 

hand, limiting the shuffling between columns of the same row allows 
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minimizing data access time for the masking actions but reduces security 

strength, compared with shuffling throughout the typically huge number 

of rows in DW sensitive fact tables. On the other hand, shuffling the 

values spaced throughout those table rows greatly increases the leaps the 

DBMS engine needs to execute in the datafile to retrieve the true data in 

the correct order, since the masked values for each row are distributed up 

and down the table. Given the large amount of data typically processed 

in DW queries, the number of leaps to orderly access the data may easily 

produce dramatic and unacceptable response time overheads.  

When using data referencing, if the number of possible values to 

substitute a certain value has low cardinality (e.g. swapping values TRUE 

and FALSE for a boolean column with masking values 1 and 2) the 

reference lookup is fast but there is a security problem because the 

attacker can easily infer which is which. On the other hand, if the 

cardinality of the column to mask by referencing is high, then the number 

of rows to seek in the reference table will also be high, increasing security 

but decreasing response time for retrieving each value. Thus, there is 

always a tradeoff between security and performance to deal with: if the 

security level increases, performance typically decreases.  

Substitution and shuffling techniques also present important security and 

performance issues. The main problem is that developing a value 

substitution function that uses one or more linear transformations is not 

secure because the attacker can build systems of equations and inference 

models to discover how the function masks a value. To deal with this 

problem, other bit-level manipulation operations need to be included, 

along with the execution of a significant number of rounds. These 

features are the basis for data encryption, which we explain in the next 

section. Data encryption solutions are the successors of the simpler forms 

of data masking substitution techniques and obey common principles and 

rules established by the security research and regulations communities 

and organizations. 

For decision support purposes, in most DWs the user queries need to 

obtain a true and accurate result. Given this requirement, since 

perturbation techniques produce errors in data reconstruction, they 

should be avoided and are mainly inadequate from a data warehousing 

perspective. 
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Therefore, the following needs to be considered when applying data 

masking in DWs: 

 Since it is not easy to ensure strong security strength (mainly when 

compared with encryption solutions), data masking has been 

considered a poor solution to protect data for real live DW 

databases, from the security perspective; 

 The data masking routines provided by most standard commercial 

tools typically change data in an irreversible manner, i.e., transform 

data in a way that makes it not possible to subsequently retrieve the 

original true values, making them useless for real live DW 

databases;  

 On the other hand, solutions that allow retrieving the true original 

data mostly rely on cross-referencing actions, which imply huge 

table joins in DWs. Given the consequent high performance 

degradation, they have been discarded for use with real-live DWs;  

 Given those security, usability and performance issues and 

drawbacks (assumed by the research and commercial 

communities), data masking is mostly recommended as an easy, 

efficient and fast solution in the development lifecycle of user 

applications and not for real-live databases. These facts have 

pushed data masking to a type of solution used mainly for testing 

software development rather than protect live sensitive data 

[Gartner, 2009; Huey, 2008; Natan, 2005; Oracle, 2005; Oracle, 2010a; 

Oracle, 2010c; Ravikumar et al., 2011; Yuhanna, 2009]. 

The next section describes standard and state-of-the-art encryption 

techniques and discusses the issues involving the use of data encryption 

solutions in DWs. 

2.3. Data Encryption 

The high security requirements for confidentiality in many scenarios 

involving end-to-end data communication have led to the development 

of encryption algorithms. The frontier between data masking and 

encryption is often blurry, since they mainly aim to achieve the same 

purposes. However, while data masking can be simply considered as any 

action that changes a given value or set of values into another value or set 
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of values that should not allow retrieving the original value or set of 

values by unauthorized users, encryption is mainly defined as a set of 

actions that obey a strict number of principles and rules defined and 

accepted by the security communities and is always a reversible action 

[Vaudenay, 2006]. Encryption makes ground on cryptography, defined as 

applying a coding algorithm to a plaintext (alias original input value) that 

results in a ciphertext (encrypted output value), which allows reversible 

action in order to retrieve the plaintext once again [Vaudenay, 2006].  

Typical encryption algorithms include iterative bit shifting and exclusive 

Or (XOR) operations executing in a predefined number of rounds. These 

operations rely on a key, which influences the “data mix” output of each 

round. The higher the key length and the number of rounds executed, the 

higher is the assumed security strength, given that the attacker typically 

needs to generate a large amount of possible key values and decryption 

rounds in order to break security [Elminaam et al., 2010]. Thus, 

encryption is an advanced form of data masking, with well-accepted and 

well-defined assumptions and high complexity, in order to make it 

extremely difficult for attackers to break security when compared with 

simpler forms of data masking.  

We consider describing and analyzing ciphers according to the principles 

following the Shannon Theory, where the Shannon Encryption Model is 

as illustrated in Figure 2-4 [Vaudenay, 2006]: 

“The purpose of encryption is to ensure communication secrecy. We 

assume that we want to communicate, which means to transmit 

information through a channel.” 

Plaintext 
Source

Encipherer CK
Plaintext X Decipherer C-1Ciphertext Y

Key Source

Key K

X

 

Figure 2-4. The Shannon Encryption Model (adapted from [Vaudenay, 2006])  
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Following the Shannon Theory, a cipher is given by: 

1) A plaintext source (with its corresponding distribution); 

2) A secret key or keys; 

3) A ciphertext space; 

4) A rule or set of rules represented as ��, which transform any 

plaintext X with a key K into a ciphertext Y as � =  ��(�); 

5) A rule or set of rules represented as ��
�� which enables recovering 

plaintext X from the ciphertext Y using key K as � = ��
�� (�). 

Categorization methods for encryption techniques commonly used in 

data security are based on the form of the input data they operate on. The 

two types are Block Ciphers and Stream Ciphers. 

A block cipher is a type of symmetric-key encryption algorithm that 

transforms a fixed-length block of plaintext (unencrypted text) data into a 

block of ciphertext (encrypted text) data of the same length. All 

intermediate blocks are called states. This transformation takes place 

under the action of a user-provided secret key. Decryption is performed 

by applying the reverse transformation to the ciphertext block using the 

same secret key. The fixed length is called the block size. 

Stream ciphers take a string (the encryption key) and deterministically 

generate a set of random-seeming text (called keystream) from that key. 

That keystream is then XORed against the message to encipher. To 

decipher the text, the recipient simply hands the same key to the stream 

cipher to produce an identical keystream and XORs it with the ciphertext, 

thus retrieving the original message. 

In the following subsections, we shall describe the standard encryption 

techniques and algorithms as well as state-of-the-art encryption 

algorithms that have been specifically proposed by research to be applied 

in databases, and discuss the issues concerning their use in data 

warehousing environments. 
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2.3.1. Standard Encryption Techniques and Algorithms 

Data Encryption Standard (DES). The Data Encryption Standard (DES) 

was the first encryption standard to be approved and recommended by 

the National Institute of Standards and Technology (NIST), and became a 

standard in 1977 [DES, 1977]. DES is a 64 bit block cipher, which means 

that data is encrypted and decrypted in 64 bit chunks, and uses a 56 bit 

encryption key. This has implications in short data lengths. Even 8 bit 

data, when encrypted by the algorithm will always result in a 64 bit 

chunk. Its algorithm is thus a set of permutations over the set of 64 bit 

block strings. 

DES consists of a 16-round Feistel scheme, which is the most popular 

block cipher skeleton [Vaudenay, 2006]. It is fairly easy to use a random 

function in order to construct a permutation. In addition, encryption and 

decryption hardly require separate implementations. A Feistel scheme is 

a ladder structure which creates a permutation from a function. In each 

round, the input string is split into two parts of equal length, and the 

result of passing one part through a round function is XORed to the other 

part, then obtaining two parts which are then exchanged (except in the 

final round). The round function uses subkeys derived from a secret key. 

The round function of DES has a 32-bit input, 48-bit subkey parameter 

input, and a 32-bit output. For every round, the 48-bit subkey is 

generated from a secret key by a key schedule. Basically, every 48-bit 

subkey consists of a permutation and a selection of 48 out of the 56 bits of 

the secret key. The round function is illustrated in Figure 2-5, consisting 

of [Vaudenay, 2006]: 

 An expansion of the main input (one out of two input bits is 

duplicated in order to get 48 bits); 

 A XOR with the subkey; 

 Eight Substitution Boxes (S-boxes) which transform a 6-bit input into 

a 4-bit output; and 

 A permutation of the final 32 bits. 
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Figure 2-5. DES Round Function [Vaudenay, 2006]  

As referred, the DES cipher uses eight S-boxes in its round function (S1 to 

S8). In cryptography, an S-box (Substitution-box) is a basic component of 

symmetric key algorithms which performs substitution. In block ciphers, 

they are typically used to obscure the relationship between the key and 

the ciphertext. In many cases, the S-boxes are carefully chosen to resist 

cryptanalysis. In general, an S-box takes some number of input bits, m, 

and transforms them into a number of output bits, n: an m×n S-box can be 

implemented as a lookup table with 2m words of n bits each. Fixed tables 

are normally used, as in DES, but in some ciphers the tables are generated 

dynamically from the key; e.g. the Blowfish encryption algorithm [Radha 

and Kumar, 2005]. 



Background and Related Work 

 

37 

3DES. DES has been proven to be an insecure cipher [Kim et al., 2010]. 

There has considerable controversy over its design, particularly in the 

choice of a 56 bit key [Nadeem and Javed, 2005]. As an enhancement of 

DES, the Triple DES (3DES) encryption standard was proposed [3DES, 

2005]. In 3DES encryption algorithm is similar to the original DES 

algorithm, but it is applied three times to increase the encryption level, 

using three different 56 bit keys. Thus, the effective key length is 168 bits. 

Since the algorithm increases the number of cryptographic operations it 

needs to execute, it is a well known fact that the 3DES algorithm is one of 

the slowest block cipher methods. 

Advanced Encryption Standard (AES). After the DES standard was 

deemed as no longer appropriate, the US Government started a process 

leading to the Advanced Encryption Standard (AES). The AES is a 

symmetric block cipher algorithm defined in the Federal Information 

Processing Standard (FIPS) no. 197 [AES, 2001]. The AES algorithms are 

block ciphers with a significant increase in the block size – from the old 

standard of 64 bits up to 128 bits. AES provides three approved key 

lengths: 128, 192 and 256 bits.  

The AES consists of several rounds of a substitution-permutation 

network. Its design consists of writing 128-bit message blocks as a 4x4 

square matrix of bytes. Encryption is performed through 10, 12 or 14 

rounds depending on whether the key size is 128, 196 or 256 bits. Each 

round (except the final one) consists of four transformations: 

1) SubBytes, a byte-wise substitution defined by a single table of 256 

bytes; 

2) ShiftRows, a circular shift of all rows (row i of the matrix is rotated 

by i positions to the left for i = 0, 1, 2, 3); 

3) MixColumns, a linear transformation performed on each column 

and defined by a 4x4 matrix of GF(28) elements (explained 

further); 

4) AddRoundKey, a simple bitwise XOR with a round key defined by 

another matrix. 

The final round is similar, except for MixColumns which is omitted. The 

round keys are generated by a separate key schedule. 
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More formally, one block s is encrypted by the following process, in 

which W is the output subkey sequence from the key schedule algorithm, 

as shown in Figure 2-6. 

 

Figure 2-6. AES Step-by-Step Algorithm [Vaudenay, 2006]  

The block s is also called state and represented as a matrix of terms si, j for 

i, j  {0, 1, 2, 3}. Each term is a byte, i.e., elements of a set Z of cardinality 

256. SubBytes(s) is defined as follows: 

FOR i = 0 TO 3 DO 

     FOR j = 0 TO 3 DO 

          si, j = S-box(si, j)  

Where S-box is the substitution table. Mathematically, it is a permutation 

of {0, 1, …, 255}. ShiftRows(s) is defined as follows: 

REPLACE [s1,0, s1,1, s1,2, s1,3] by [s1,1, s1,2, s1,3, s1,0] 

     {ROTATE row 1 BY ONE POSITION TO THE LEFT} 

REPLACE [s2,0, s2,1, s2,2, s2,3] by [s2,2, s2,3, s2,0, s2,1] 

     {ROTATE row 2 BY TWO POSITIONS TO THE LEFT} 

REPLACE [s3,0, s3,1, s3,2, s3,3] by [s3,3, s3,0, s3,1, s3,2] 

     {ROTATE row 3 BY THREE POSITIONS TO THE LEFT} 

Defining the set Z as the set of all the 256 possible combinations 

     a0 + a1.x + a2.x2 + … + a7.x7 
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where a0, a1, a2, …, a7 are either 0 or 1 and x is a formal term. Elements of Z 

are thus defined as polynomials of degree at most 7. AddRoundKey(s, k) is 

defined as follows: 

FOR i = 0 TO 3 DO 

     FOR j = 0 TO 3 DO 

          si, j = si, j Å  ki, j  

Here, the Å operation over Z is defined as an addition modulus, i.e. 

�� �� .��

�

���

�  Å �� �� .��

�

���

� = �(�� + �� ���  2).��

�

���

 

Given that a multiplication  in Z defined as follows: 

1) Perform the regular polynomial multiplication; 

2) Make the Euclidian division of the product by the x8 + x4 + x3 + x + 

1 polynomial and take the remainder; 

3) Reduce all its terms modulus 2. 

This provides Z with the structure of the unique finite field of 256 

elements. This finite field is denoted by GF(28). This means that any 

addition, multiplication, or division by any nonzero element of Z with the 

same properties always results in a regular number. Matrix operations 

with terms in Z can be further defined. Thus, MixColumns(s) can be 

defined as: 

FOR i = 0 TO 3 DO 

     LET v BE THE 4-DIMENSIONAL VECTOR WITH COORDINATES 

     s0,i, s1,i, s2,i, s3,i  

     REPLACE s0,i, s1,i, s2,i, s3,i BY THE COORDINATES OF M  v 

Where M is a 4x4 matrix over Z defined by 

 

The substitution table S-box is defined by the inversion operation x-1 

(except for x = 0, which is mapped to zero) in the finite field GF(28). This 

operation has good nonlinear properties [Vaudenay, 2006].  



Chapter 2 

40 

AES is considered fast and able to provide stronger encryption, compared 

to other well-known encryption algorithms such as DES [Nadeem and 

Javed, 2005]. Brute force attack (in which the attacker tries all the possible 

key combinations to unlock the encryption) is the only known effective 

attack known against it. 

2.3.2. Other Encryption Techniques and Algorithms 

Besides the existence of standard encryption algorithms, the data security 

research community has also proposed several solutions for encrypting 

databases.  

One of the main issues in database performance due to using encryption 

is the inability to effectively manage useful indexing, since encryption 

changes data values and thus renders the traditional index building as 

useless. One way to deal with this is to ensure order preservation of the 

generated encrypted values. Based on this principle, several approaches 

have been proposed in order to enable direct querying against encrypted 

data.  

Order Preserving Encryption Scheme (OPES). In [Agrawal et al., 2004] 

an Order Preserving Encryption Scheme (OPES) for numeric data is 

proposed, flattening and transforming plain text distributions onto target 

distributions defined from value-based buckets, given the attribute’s 

domain values. This solution allows any comparison operation to be 

directly applied on encrypted data, such as equality and range queries, as 

well as SUM, AVG, MAX, MIN and COUNT queries. The authors define 

a threat model with the following assumptions, given the transparent 

encryption setting shown in Figure 2-7: 

 The storage system used by the database software is vulnerable to 

compromise; 

 The database software (DBMS) is trusted; 

 All disk-resident data (alias data-at-rest) is encrypted. 
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Figure 2-7. Transparent Encryption Setting for OPES [Agrawal et al., 2004]  

OPES works as a three stage process [Agrawal et al., 2004]: 

1) Model: The input and target distributions are modeled as piece-wise 

linear splines; 

2) Flatten: The plaintext database P is transformed into a “flat” 

database F such that the values in F are uniformly distributed; 

3) Transform: The flat database F is transformed into the ciphered 

database C such that the values in C are distributed according to the 

target distribution. 

The results of query processing over data encrypted by OPES are exact. 

They neither contain any false positives nor miss any answer tuple. OPES 

also handles updates gracefully; a value in a column can be modified or a 

new value can be inserted without requiring changes in the encryption of 

other values. The basic idea of OPES is to take as input a provided target 

distribution and transform the plaintext values in such a way that the 

transformation preserves the order while the transformed values follow 

the target distribution. 
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Executing SQL over Encrypted Data in the Database-Service-Provider 

Model. A similar solution for processing queries without decrypting data 

was proposed earlier by [Hacigumus et al., 2002], which uses the 

“Database as a Service” provider model based on Internet availability. The 

authors focus on assuring the owner of the data that the data stored in the 

service-provider site is protected against those service providers 

themselves, if they cannot be trusted, by keeping data always encrypted 

and executing SQL queries directly against the encrypted data. To 

accomplish this, they propose splitting the computation of the queries 

into two phases: the first phase computes as much as possible against the 

encrypted data at the service provider server without having to decrypt 

it, and a second phase which processes the results obtained in the first 

phase at the client. The data in the service provider is protected because 

the decryption only occurs at the client side. The service-provider 

architecture for this solution is shown in Figure 2-8. 

 

Figure 2-8. Encryption-as-a-Service Service-Provider Model [Hacigumus et al., 2002]  

The encrypted data is stored at the service-provider according to the 

following: 
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 For each relation R(��, ��, …, ��) of the original plaintext data, an 

encrypted relation RS(etuple, ��
�, ��

� , …, ��
� ) is stored on the service-

provider server; 

 The attribute etuple stores an encrypted string that corresponds to a 

tuple in relation R; 

 Each attribute ��
� corresponds to the index for attribute �� that will be 

used for query processing at the server. 

Thus, each original unencrypted table is mapped to an encrypted table at 

the service-provider server. To accomplish this, they define a series of 

partitions on that server for each attribute, given the domain values of 

attributes R. ��, define an identification function to assign an identifier to 

each partition of each attribute, and finally define a mapping function to 

those partitions which ensures order-preservation of the attribute’s 

original values. A practical evolution of the initial proposal was 

published in [Hacigumus et al., 2004], based on the same model. In this 

work, the authors focus on improving their transformation and mapping 

functions, by exploring homomorphism techniques to support 

aggregation in relational databases against encrypted data without 

decryption in the presence of logical predicates. 

Encryption in Column-Oriented DBMS. The authors of [Ge and Zdonik, 

2007] propose a lightweight database encryption scheme for column-

stores in DWs with trusted servers, named FCE. This technique 

introduces low decryption overhead to enable making comparisons of 

ciphertexts and hence makes indexing operations fast. The authors also 

propose a relaxed measure of security to demonstrate FCE’s security 

strength based on information theoretic concepts. Using this same 

measure, they also show that order-preserving encryption techniques are 

insecure under straightforward attack scenarios.  

Tiny Encryption Algorithm (TEA). In an effort to trying to simplify 

encryption algorithms, the Tiny Encryption Algorithm (TEA) [Wheeler 

and Needham, 1994] was proposed in 1994. This simple algorithm uses a 

larger number of rounds against a small number of data transformations 

than, rather than a more complex set of transformations with few rounds.  

The main objective of the authors of the TEA was to provide a very 

simple encryption algorithm instead of a complicated one. The authors 
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claim that it uses little setup time and does a weak non-linear iteration a 

sufficient number of rounds that makes it secure enough. There are no 

preset tables or long setup times. It assumes 32 bit words and the authors 

suggest executing 32 rounds. The TEA schema is shown in Figure 2-9. 

 

Figure 2-9. TEA Schema  

The proposed encoding routine, written in C, using four 32 bit keys k[0] 

to k[3] (making up a 128 bit key), executing 32 rounds to encrypt 64 bits of 

data in v[0] and v[1], is [Wheeler and Needham, 1994]: 

void code(long* v, long* k) { 
unsigned long y = v[0],z = v[1], sum = 0, /* set up */ 
         delta = 0x9e3779b9, /* a key schedule constant 
*/ 
         n=32; 
while (n-->0) { /* basic cycle start */ 
   sum += delta ; 
   y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ; 
   z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; 
} /* end cycle */ 
v[0]=y ; v[1]=z ;  
} 
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TEA is a Feistel type routine although addition and subtraction are used 

as the reversible operators rather than XOR. The routine relies on the 

alternate use of XOR and ADD to provide nonlinearity. A dual shift 

causes all bits of the key and data to be repeatedly mixed. The top five 

and bottom four bits are probably slightly weaker than the middle bits. 

These bits are generated from only two versions of z (or y) instead of 

three, plus the other y or z. Thus, the convergence rate to even diffusion is 

slower. However, the shifting evens this out with a possible delay of one 

or two extra cycles [Wheeler and Needham, 1994]. 

Blowfish Encryption Algorithm. The Blowfish encryption algorithm 

[Schneier, 2013] is one of the most common public domain encryption 

algorithms. Blowfish is a variable length key, 64 bit symmetric block 

cipher. This algorithm was first introduced in 1993. Each round of the 

algorithm consists of a key-dependent permutation and a key-and-data-

dependent substitution. All operations are based on XORs and additions 

on 32-bit words. The key has a variable length (with a maximum length of 

448 bits) and is used to generate several subkey arrays. It has been 

extensively analyzed and deemed “reasonably secure” by the 

cryptographic community. Though it suffers from weak keys problem, no 

attack is known to be successful against it [Nadeem and Javed, 2005]. A 

graphical representation of the Blowfish algorithm can be seen in Figure 

2-10. 

As shown in Figure 2-10, a 64-bit plaintext message is first divided into 32 

bits. The “left” 32 bits are XORed with the first element of a P-array to 

create a new value named as P’, run through a transformation function 

called F, then XORed with the “right” 32 bits of the message to produce a 

new value named as F’. F’ then replaces the “left” half of the message and 

P’ replaces the “right” half, and the process is repeated 15 more times 

with successive members of the P-array. The resulting P’ and F’ are then 

XORed with the last two entries in the P-array (entries 17 and 18), and 

recombined to produce the 64-bit ciphertext. 

A graphical representation of the F transformation function is shown in 

Figure 2-11. The function divides a 32-bit input into four bytes and uses 

those as indices into an S-array. The lookup results are then added and 

XORed together to produce the output. 
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Figure 2-10. The Blowfish Algorithm  
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Figure 2-11. The Blowfish Transformation Function (F) 

The P-array and S-array values used by Blowfish are precomputed based 

on the user’s key. In effect, the user’s key is transformed into the P-array 

and S-array; the key itself may be discarded after the transformation. The 

P-array and S-array need not be recomputed (as long as the key doesn’t 

change), but must remain secret. The P and S-arrays are summarized as 

follows (according to [Schneier, 2013]):  

 P is an array of eighteen 32-bit integers; 

 S is a two-dimensional array of 32-bit integer of dimension 4x256; 

 Both arrays are initialized with constants, which happen to be the 

hexadecimal digits of π (a pretty decent random number source); 

 The key is divided up into 32-bit blocks and XORed with the initial 

elements of the P and S arrays. The results are written back into the 

array. A message of all zeros is encrypted; the results of the 

encryption are written back to the P and S arrays. The P and S arrays 

are now ready for use. 
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Snuffle (alias Salsa20) Encryption Algorithm. Recently, the Snuffle 2005 

encryption algorithm (also known as Salsa20) was proposed [Bernstein, 

2005; Bernstein, 2008]. The goal of Salsa20 is to produce a 64-byte block 

given a key, nonce5 and block counter. The author recommends executing 

a number of 20 rounds, although 8 or 12 rounds are acceptable when 

required to gain speed against sacrificing some security. This solution can 

be seen as a 256-bit stream cipher and is based on a hash function with a 

long chain of simple operations, instead of a short chain of more complex 

operations (typical in standard encryption algorithms), on 32-bit words: 

 32-bit additions, producing the sum a + b mod 232 of two 32-bit words 

a, b (which breaks linearity over Z/2); 

 32-bit exclusive-or (XOR), producing a Å b of two 32-bit words a, b 

(which breaks linearity over Z/232); and 

 Constant-distance 32-bit rotation, producing the rotation a <<< b of a 

32-bit word a by b bits to the left, where b is constant (diffusing 

changes from high bits to low bits). 

The author of Salsa20 states that although these operations may be 

considered too simplistic, they can easily emulate any circuit and are 

therefore capable of reaching the same security level as any other 

selection of operations. The real question for the cipher designer is 

whether a different mix of operations could achieve the same security 

level at higher speed. 

Salsa20 expands a 256-bit key and a 64-bit nonce (unique message 

number) into a 270-byte stream. It encrypts a b-byte plaintext by XORing 

the plaintext with the first b bytes of the stream and discarding the rest of 

the stream. It decrypts a b-byte ciphertext by XORing the ciphertext with 

the first b bytes of the stream. There is no feedback from the plaintext or 

ciphertext into the stream. 

Salsa20 generates the stream in 64-byte (512-bit) blocks. Each block is an 

independent hash of the key, the nonce, and a 64-bit block number; there 

                                                      
5 In cryptography, a nonce is an arbitrary number used only once in a 

cryptographic communication. It is often a random or pseudo-random number 

issued in an authentication protocol to ensure that old communications cannot be 

reused in replaying attacks. [Vaudenay, 2006] 
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is no chaining from one block to the next. The Salsa20 output stream can 

therefore be accessed randomly, and any number of blocks can be 

computed in parallel. 

There are no hidden preprocessing costs in Salsa20. In particular, Salsa20 

does not preprocess the key before generating a block; each block uses the 

key directly as input. Salsa20 also does not preprocess the nonce before 

generating a block; each block uses the nonce directly as input. 

This solution is relatively simple when compared with other standard 

encryption algorithms such as AES and has been recognized by the 

cryptology research community as an interesting alternative to those 

algorithms in contexts where speed is more important than confidence 

[Tsunoo et al., 2007; Bernstein, 2008]. 

2.3.3. DBMS Data Encryption Packages 

Many DBMS vendors such as Microsoft SQL Server and Oracle TDE 

provide built-in standard encryption packages. These routines run in the 

DBMS kernel and are optimized to work against their data structures and 

across a large diversity of platforms. 

Oracle has developed TDE (Transparent Data Encryption) [Oracle, 2005; 

Oracle, 2010a] incorporating both AES and 3DES, providing column and 

tablespace encryption. These routines can be used transparently without 

requiring user application source code modifications. As Oracle, 

Microsoft SQL Server also provides column and datafile 3DES and AES 

encryption routines. 

When using Oracle TDE tablespace encryption, all data in the tablespace’s 

physical datafiles is encrypted and almost no storage space overhead is 

generated. When using column encryption, a storage space overhead 

between 1 and 52 bytes per encrypted value is added. The generation of 

independently encrypted values for each column is done by using an 

optional feature (SALT) in the encryption, which implies adding 16 bytes 

of the storage space per encrypted column to each row. If the NO SALT 

option is used, those extra 16 bytes are saved, but all encrypted values in 

the column rely on one key only in the encryption algorithm, which 

lowers its security strength. Tablespace encryption uses only the database 

master key and the tablespace’s encryption key, which makes its security 

level lower than column encryption.  
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Encryption in Oracle TDE is transparently handled, including index 

operations and table joins, even if the columns for the join condition are 

encrypted. In TDE column encryption, the index needs to be a normal B-

Tree index. With TDE column encryption, the data remains encrypted in 

the RAM (in the database cache), but with TDE tablespace encryption the 

Oracle database will automatically decrypt data before it arrives in 

database memory (SGA). This means that all data in the SGA is always 

decrypted, which must be considered a weakness in security for this type 

of encryption. 

2.3.4. Using Data Encryption in Data Warehouses 

One of our main objectives in this thesis is to discuss if the commonly 

used data encryption algorithms are too slow for DWs. We are not 

interested in discussing in detail each step of each algorithm focusing on 

their security, but rather to compare and analyze the generic guidelines of 

the different types of encryption algorithms and how their performance is 

affected as well as how it affects DW performance. 

When processing SQL on encrypted data, there are many database 

performance issues that arise. For example, certain basic queries are not 

supported, i.e., they cannot be executed because they cannot be handled 

by the encryption/decryption schemas, or their execution is too inefficient 

(especially joins and ordering operations), resulting in the introduction of 

large response time overhead. Regarding this last issue, if no order 

preserving scheme is ensured by the encryption solution indexing 

becomes mostly useless, with its corresponding impact in database 

performance. 

Many decision support workloads are based on actions in which the end-

user interacts with the system, like performing an OLAP analysis through 

ad hoc querying or performing drill-down or roll-up reporting. When 

performing this type of analysis, the end user is typically in front of a 

computer waiting for the system to answer the query; therefore, if the 

DBMS is slow the end-user can lose interest in the business analysis, leave 

the query running and forget the business question s/he originally 

wanted or feel exasperated by having to wait for a long time to get the 

answer [Castro, 2009]. This may compromise the acceptability and 
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credibility of the DW system among its users and ultimately, jeopardize 

its usefulness.  

As we have mentioned earlier, encryption algorithms typically execute a 

significant number of bit management operations using one or more 

encryption keys. In what concerns performance issues, the quality of each 

set of operations in achieving the intended “data mix” affects how fast the 

algorithm can execute. When comparing encryption algorithms referring 

to what, how and how many operations they execute, most encryption 

algorithms such as AES carry out considerably short chains of complex 

operations, while other hash-based solutions such as Salsa20 execute 

longer chains of simpler operations. 

The argument in favor of using complicated operations such as the use of 

S-boxes is that they provide a large amount of mixing at reasonable speed 

on many CPUs, and thus achieve many desired security levels more 

quickly than simple operations on those CPUs; a single table lookup can 

mangle its input quite thoroughly – more thoroughly than a chain of 

simple integer operations – in fewer rounds. This provides a large 

amount of mixing at reasonable speed on many CPUs, reaching many 

desired security levels more quickly than simple operations. The 

counterargument is that potential speedup is fairly small and is 

accompanied by huge slowdowns on other CPUs.  

On the other hand, simple operations such as bit additions and XORs are 

consistently fast, independently from the CPU. It is also not obvious that 

a series of S-box lookups (even with rather large S-boxes, as in AES, 

increasing L1 cache pressure on large CPUs and forcing different 

implementation techniques for small CPUs) is generally faster than a 

comparably complex series of simpler integer operations. 

In what concerns the use of packaged encryption routines in DBMS’, 

Oracle recommends the use of tablespace encryption when there is no 

way of determining which columns are sensitive and which are not, or 

when the majority of the data in the tablespace is sensitive [Oracle, 

2010a]. They state that column encryption should be preferred when a 

small number of well defined columns are sensitive. This last scenario is 

typical in data warehousing environments, which makes column 

encryption the recommended solution according to Oracle. However, as 
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we have shown in [Santos et al., 2012a], when applying column 

encryption in DWs the storage overhead will be very significant. 

On the other hand, since DWs are business knowledge data sources by 

nature, we can assume that most of its data is sensitive. In this sense, we 

may also state that TDE tablespace encryption should also be highly 

considered. Nevertheless, data coming from tablespace encryption is 

made immediately transparent once that data is loaded into the SGA 

(located in RAM), making decryption straightforward and minimizing 

resource consumption, but also allowing third party access to the real 

data, lowering the level of security. Although we are focused on 

performance, we believe this is a very relevant drawback in data security 

and that it should not be considered a good solution, given the risk of 

data exposure. 

There are also many situations where certain users or applications may 

require querying data that is less sensitive or not sensitive at all to the 

business. Since tablespace encryption encrypts the entire content of the 

tablespace, in these scenarios using tablespace encryption would require 

giving those users or applications the encryption keys or passwords that 

allow them to access the data. Using column encryption would enable to 

keep the columns that store less sensitive data unencrypted is this 

desirable, avoiding the disclosure of security keys or passwords to ensure 

the access to that data. Furthermore, tablespace encryption adds 

computational overhead to decrypt less sensitive or non-sensitive 

columns for query processing, that wouldn’t be selected for encryption 

when using column encryption.  

Other encryption solutions proposed by research work such as [Agrawal 

et al., 2004] distribute data in well-defined groups to allow direct 

operations on encrypted data. However, the impact in performance 

produced by these solutions, in response time and storage space 

overhead, depends on the skew in the target distributions, which can be a 

very serious problem in DWs. There is no easy way around this. The 

proposal from [Hacigumus et al., 2002] also suffers from the same 

problem.  

The lightweight encryption in column-oriented DBMS proposed in [Ge 

and Zdonik, 2007] aims on providing low decryption overheads. 

However, their experiments show at least 50% of response time overhead 
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to retrieve the encrypted tuples, which is still extremely high for many 

DW scenarios, such as long running queries. The fact that is aimed at 

column-DWs also narrows its applications. 

Topologies involving middleware solutions such as [Radha and Kumar, 

2005] typically request the encrypted data from the database a priori and 

execute the decrypting actions themselves locally. The proposal in [Radha 

and Kumar, 2005] aims to ensure efficient query execution over encrypted 

databases, by evaluating most queries at the application server and 

retrieving only the necessary records from the database server. Only one 

query (Q6) of the TPC-H benchmark is used in their experimental 

evaluation, against a very small data subset (ranging from 10MB to 50MB, 

where query execution time rises up to 5 times for the last).  

This dataset size cannot be considered realistic for DWs, given its typical 

very large sized databases. In a DW environment, previously 

transporting all the required data from the database to the middleware is 

unreasonable, since the amount of data accessed for processing decision 

support queries is typically much larger than a few tens of MB. This 

would strangle the network due to bandwidth consumption of data 

roundtrips between middleware and database, jeopardizing data 

throughput and consequently, response time. Thus, all encrypted data 

should be processed at the DBMS itself, eliminating network overhead 

from the critical path. 

After considering the referred issues that influence performance (and 

security tradeoffs) of the described encryption solutions and to finish this 

discussion, we have come to the following conclusions: 

 Both standard encryption algorithms and specific research database 

encryption solutions show large performance overheads; 

 The type and number of operations for producing the “data mix” 

output in each round of the algorithm, the length of the used 

encryption keys, the size of the input and output blocks, and the 

number of rounds to execute, are all variables that affect both 

security and performance; 

 In many software implementations of the security techniques, the 

CPU architecture also varies the performance outcome; 
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 Typically, most secure encryption algorithms will execute between 8 

and 20 rounds against 64, 128 bit (or more) sized blocks, using a 128 

or 256 bit key; 

 Encryption algorithms which make use of chains of simple 

operations such as bit additions and XORs scale better and have 

reduced CPU dependency than solutions that make use of more 

complex operations such as S-box lookups; 

 Salsa20 seems to provide consistent speed in a wide variety of 

applications across a wide variety of platforms. It is faster and 

simpler than the complex-operations approach of the standard 

algorithms 3DES and AES, while granting significant security 

strength. However, most commercial vendors just include AES and 

3DES routines. The AES became a standard only after a five-year 

long standardization process that included extensive benchmarking 

on a variety of platforms ranging from smart cards to high end 

parallel machines. Thus, the adoption of encryption standards is 

probably only due to legal impositions and public reliability issues, 

given that only AES and 3DES are the current well-accepted 

encryption standards. 

 All major DBMS provide encryption to be used transparently by user 

applications; 

 When using tablespace encryption, the requested data is decrypted 

and loaded into RAM memory (in the database cache) as clear text, 

while column encryption does not and is thus more secure; 

 Tablespace encryption does not create significant storage space 

overhead, while column encryption does; 

 Despite the well-known pros and cons, the best choice between 

tablespace encryption and column encryption isn’t obvious; 

 Leading DBMS use standard encryption algorithms AES and 3DES, 

producing alphanumeric or binary values as a result of the 

encryption process, even for numerical-typed attributes; 

 In DWs, transporting encrypted data to third party decrypting agents 

would create unbearable communication bandwidth consumption 

and compromise throughput. 
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2.4. Database Intrusion Detection Systems 

Generically, intrusion detection (ID) is defined as the process of 

monitoring the events occurring in a computer system and analyzing 

them for signs of possible incidents, which are violations or imminent 

threats of violation of computer security policies, acceptable user policies, 

or standard security practices [Scarfone and Mell, 2007]. ID systems are 

typically classified in two main types, depending on the environment in 

which they operate: 

1) Network-based ID systems, which perform surveillance using 

network traffic or other network-based data; 

2) Host-based ID systems, which are located at the host that is aimed to 

be protected, analyzing the activity that happens there. 

In this thesis, we specifically focus on Database Intrusion Detection Systems 

(DIDS), which are host-based ID systems that analyze user actions 

occurring at the database level in order to detect (and eventually stop or 

prevent) intrusion actions. This section characterizes the way a typical ID 

system operates and presents a descriptive analysis of selected samples 

from each different type of approach and/or technique that can be applied 

in DIDS, in order to characterize the broad scope of existing solutions. 

2.4.1. How Intrusion Detection Systems Operate 

The main requirements that ID systems are required to cope with are:  

 The quest for adequately defining and building profiles that 

accurately represent “normal”/“intrusion-free” behavior or 

workloads, as well as identifying attack signatures; 

 Given those profiles and/or attack signatures, define which 

behavioral features as well as techniques and models that maximize 

the performance and accuracy of the intrusion detection processes; 

 Reporting system status to security staff and notifying them about 

generated alerts; 

 Promote a way of stopping or preventing the attack whenever an 

intrusion alert is raised (this feature may or not be present in the ID 

system; if it is the case, literature often refers to the ID system as an 
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Intrusion Detection and Response System, or an Intrusion Detection 

and Prevention System). 

The typical components of an ID system according to [Scarfone and Mell, 

2007] are shown in Figure 2-12 and are described as: 

 A Sensor or Agent, which are responsible for capturing both the 

information relating to the ID features that is necessary for building 

the “normal”/“intrusion-free” profiles and/or attack signatures, as 

well as the required information to execute the ID processes; 

 A Management Server, which is a centralized device that receives the 

information from the Sensor or Agent and manages the profile 

building processes and the intrusion detection and response 

processes of the ID system; 

 A Repository, for storing the behavior profiles and/or attack 

signatures, activity logs, generated alert information and other 

relevant data that is useful to the ID system; and 

 A Console, which is the interface responsible for the interaction 

between security managers/staff and the ID system, i.e., it enables a 

mean for configuring the ID system and displays the required 

information concerning the behavior profiles, system status, 

generated alerts, etc. 

Sensor or Agent Management Server

Repository

Console

Activity Source

 

Figure 2-12. Typical ID System Architecture (adapted from [Scarfone and Mell, 2007]) 
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Referring to Figure 2-12, the Activity Source is where the activity that 

should be analyzed is generated; in a DIDS, it can represent a user or an 

applications that generates SQL workloads to execute against the DW. 

This activity is then captured by the Sensor or Agent and sent on to the 

Management Server either to build behavior profiles and previously define 

attack signatures (if the activity is considered “intrusion-free” and the ID 

system is in the learning phase) or to perform intrusion detection and 

consequent alert generation (and/or response actions if this is required). 

The Management Server will both read and write data from the Repository 

in order to retrieve or store all relevant information accordingly with 

what it needs to do. The Console allows the security managers/staff to 

configure the ID system and retrieve all relevant information for 

assessing system status, user behavior and alert notifications. 

In DIDS systems there is typically a learning or training phase (i.e., 

previous to intrusion detection), in which database and/or user logs 

assumed as having “normal” or intrusion-free activity are used in order 

to build the user behavior profiles and/or define attack 

signatures[Newman, 2011]. After this learning phase, the intrusion 

detectors match user actions against those profiles and/or attack 

signatures to find significant deviations which are signaled as potential 

intrusions. 

From the intrusion perspective, an intruder in a data warehousing 

environment can be one of the following [Treinen and Thurimella, 2006]: 

 An authorized user, which is someone belonging to the enterprise that 

has regular access to authorized database interfaces and acts with 

malicious intent (also commonly referred to as the insider threat); 

 A masqueraded user, which is someone that obtains the credentials of 

an authorized user and impersonating that user takes control of an 

authorized interface (which refers to the insider threat when the 

attacker is someone from within the enterprise but without regular 

authorized database access, and refers to an outsider threat when it 

someone from outside the enterprise that manages to obtain the 

credentials); 

 An external attacker (commonly referred to as the outsider threat), 

which is someone from outside the enterprise that is able to bypass 
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the database security and gain direct database access using SQL 

injection6 or other exploiting techniques; 

 Any combination of the above. 

Considering the possible intruders’ intentions, there are mainly three 

types of attacks mobilized against DWs [Douligeris and Mitrokotsa, 

2004]: 

 Attacks aiming at corrupting data (integrity attacks). In these types of 

attack, the intruder seeks access to the database for executing actions 

that compromise its integrity, such as corrupting or deleting the data 

in a given database object (e.g. such as a table or view); 

 Attacks aiming at stealing information (confidentiality attacks). In these 

attacks, the intruder is focused on breaking confidentiality issues, 

such as stealing business information, rather than damaging data; 

 Attacks aiming at making the DW unavailable (availability attacks). These 

attacks aim on making database services unavailable to users, i.e., 

they are mainly Denial of Service (DoS) attacks (e.g. flooding 

database services and bandwidth with a large number of requests, 

halting or crashing database server instances, deleting database 

objects, etc). 

The way how ID processes are designed to operate is mainly based on 

two approaches, depending on what they intend to search for:  

                                                      
6 SQL injection is a type of attack executed through means of a third party 

interface (e.g. a web application) in which the attacker appends malicious code to 

an authorized command that will be executed on behalf of that interface. SQL 

injection is often considered as a particular form of attack on its own, following 

very well-defined guidelines. Although the actions performed through SQL 

injection can also be detected by DIDS, the forms of detecting SQL injection 

attacks have been extensively studied and belong to a category of security 

mechanisms that are differentiated appart from those that we intend to focus on 

in this thesis. As a reference, the work in [Halfond et al., 2006; Kim, 2011; Kindy 

and Pathan, 2012] presents detailed surveys and countermeasures on SQL 

injection. 
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1) Misuse or signature-based detection, which searches for well-known 

attack patterns and signatures defined a priori to the attack itself; 

and  

2) Anomaly detection, which searches for deviations from typical user 

behavior by matching their actions against assumed “intrusion-

free” profiles that significantly represent that typical user behavior.  

The first approach is mainly efficient against previously well-known and 

expected intrusion actions. However, they are mostly incapable of acting 

against intrusions that reveal new forms of attack or malicious actions 

that seem “normal” (which, in many cases, refer to the insider threat), 

opening a much wider spectrum of analysis possibilities that results in a 

threat that is much harder to tackle and mitigate. Given the published 

work that refers trends indicating an increase of attacks referring to the 

insider threat [Jabbour and Menasce, 2009], to overcome those issues 

anomaly detection techniques have been proposed in the most recent 

DIDS. 

In the past, several types of intrusion detection techniques and methods 

have been proposed to build behavior profiles and perform intrusion 

detection processes that may be used in DIDS, which we shall describe 

and discuss in the following subsections.  

2.4.2. Intrusion Detection Techniques 

The most common way to distinguish between distinct ID techniques is to 

classify the way they select and analyze the features used for building 

user profiles and execute the intrusion detection processes. In this 

subsection, we distinguish and describe a set of main types/classes of 

analysis techniques, referring prominent research work in each of these 

classes. 

Temporal Analysis. These techniques focus on temporal features such as 

the time span between user actions and the duration of those actions.  

The approach in [Lee et al., 2000] uses a mean and standard deviation 

model built from time signatures to check for outliers within a predefined 

range in real-time database systems. This solution considers a transaction 

as a set of read or write actions for each data object which is executed in 

predefined update time periods. For example, the update of a temporal 
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data object (event) can trigger a rule such that the update time is checked 

against the expected update time (condition) and rejects the update 

(action) if the predicate returns false, considering it an intrusion.  

The training period occurs until a significant mean with 99% confidence 

level of a normal distribution is obtained for each object/update pair. 

Database behavior is monitored by sensors at the transaction level, which 

are assumed to be small in size and have predefined semantics such as 

write-only operations and well-defined data access patterns. If a 

transaction tries to update a temporal data object that has already been 

updated in that period, an alarm is raised. 

Dependency and Relation Analysis. Intrusion detection techniques 

based on dependency and relation analysis determine dependencies 

and/or relations among the distinct sets of user actions and/or accessed 

data in order to determine which columns, rows, tables, etc. and/or which 

commands are usually issued or processed together.  

For example, the DEMIDS system [Chung et al., 1999] builds user profiles 

based on their activity by determining frequent itemsets from 

feature/value pairs and computes distance measures of user activity 

against the learnt frequent itemsets to detect intrusions, given a 

threshold. The features are typically based on the syntactical analysis of 

user commands, where the itemset domains are the sets of attributes 

issued together. 

Another approach using frequent itemset mining is presented in [Zhong 

and Qin, 2004]. This approach summarizes each user command into a 

tuple <Op, F, T, C> where Op is the type of SQL command (insert, select, 

etc), F is the set of attributes, T is the set of tables, C is the constrained 

condition set. An algorithm mines user query profiles using these tuples, 

based on the pattern of the submitted queries at the transaction level. The 

algorithm adapts the support and confidence of association rule mining 

by adding query structure and attribute relations to the computation. 

The Role-Based Access Control (RBAC) DIDS proposed in [Kamra et al., 

2008] improves a previous approach [Bertino et al., 2005b] using features 

named quiplets for summarizing each user command. Considering a 

generic command: 
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SELECT {Target-List}  
  FROM {Relation-List}  
 WHERE {Qualification} 

A quiplet is defined as (C, PR, PA, SR, SA) where C is the SQL main 

command (insert, select, etc.), PR is the Projection-Relation information, 

PA is the Projection-Attribute information, SR is the Selection-Relation 

information, and SA is the Selection-Attribute information. The authors 

define three types of quiplets with different granularities: given a relation 

(alias table) R1 with attributes A1, B1, C1, D1 and a relation R2 with 

attributes A2, B2, C2, D2 and given the user command SELECT R1.A1, 

R1.C1, R2.B2, R2.D2 FROM R1, R2 WHERE R1.B1 = R2.B2, will 

generate, as shown in Figure 2-13: 

1) The coarse c-quiplet (select, <2>, <4>, <2>, <2>) 

2) The medium m-quiplet (select, <1,1>, <2,2>, <1,1>, <1,1>) 

3) The fine f-quiplet (select, <1,1>, <[1,0,1,0], [0,1,0,1]>, 

<1,1>, <[0,1,0,0], [0,1,0,0]>) 

 

Figure 2-13. The quiplet construction process [Kamra et al., 2008]) 

For anomaly detection when the database has role-based users (i.e., it is 

possible to link each user action to a given role), a Naïve Bayes Classifier 

(NBC) is used as follows:  

 For all queries in the audit logs, and for each role, the classifier for 

each type of quiplet is built (training phase);  

 For each submitted query, if any of its classifiers is different from the 

ones in its roles, the action is considered an intrusion and an alert is 

generated (testing phase).  

If role-based access policies are not implemented in the database, they 

propose unsupervised anomaly detection. In this case, positional and 

distance functions are defined for the quiplets and clustering techniques 

(k-centers and k-means) map every user to its representative cluster, 

which is the cluster with the highest number of training records for that 

user after the clustering phase (training phase). 
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For each new query to test, two approaches can be used:  

1) Given the determination of its representative cluster, use the NBC 

as in the Role-Based anomaly detection to perform a similar test; or  

2) Verify if the new query is a statistical outlier using the MAD 

(Median of Absolute Deviations) test [Pham-Gia and Hung, 2001], 

which if true considers the action as an intrusion and generates an 

alert. 

Sequence Alignment Analysis. Sequence alignment mainly consists in 

determining common sequences of events (such as commands, data 

attributes, accessed values, etc). DIDS using this type of techniques 

typically learn and identify the repeatable series of events with significant 

length and eventually break them into smaller-sized subsets to label or 

classify those sequences and their subsets as normal user behavior. In the 

detection phase, each sequence of new events is matched against the 

learnt user sequences and their subsets for measuring how they differ in 

order to evaluate its probability of being an intrusion. 

The solution presented in [Kundu et al., 2010] identifies sequences of 

accessed attributes, commands and tables for building user profiles. The 

proposed features are the command types (insert, select, etc.), designed 

sensitive attributes, all attributes, operations on attributes, and mixes of 

all features. This work also defines criteria for choosing among user-

based, role-based or organization-based profiles, given the working 

context of the database.  

In the learning phase, it builds sequence models given a threshold for 

determining the maximum number of differences. In the detection phase, 

it also uses a threshold for computing the highest number of differences 

allowed between the tested sequences and those retained in the learning 

phase, to consider the sequences as normal or abnormal. 

Integrating Dependency with Sequence Alignment Analysis. An 

approach for finding dependency relationships among transaction-level 

attributes with high support and confidence rules is proposed in [Hu and 

Panda, 2004]. These authors observed that in real-world applications, 

although the transaction application can often change, the whole database 

structure and essential data correlations rarely change. They assume that 

whenever an attribute is updated, this action is linked to a sequence of 
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other events logged in the database (e.g. due to an update of a given 

attribute, other attributes are also read or written). Thus, each update is 

defined by three sets: the read set, a set of attributes that have been read 

because of the update; the pre-write set, a set of attributes that have been 

written before the update and because of it; and the post-write set, a set of 

attributes that have been written after the update as a consequence of it. 

Transactions that do not follow any of the mined data dependency rules 

are marked as malicious. 

The work in [Srivastava et al., 2006a; Srivastava et al., 2006b] improves 

that of [Hu and Panda, 2004] by considering attribute sensitivity, i.e., 

giving a measure of importance to each attribute. They propose three 

levels of attribute sensitivity, considering its support in the analyzed 

transactions: high, medium and low. A weighted data mining algorithm 

is used to mine the dependencies between database attributes and 

generate rules that reflect that dependency, given the measured 

sequences of operations (read, write) and the sensitivity of each attribute. 

Any transaction that does not follow these rules is identified as malicious. 

The authors also present an extension to the Entity-Relationship model to 

syntactically capture the sensitivity level of the attributes. 

In [Fonseca et al., 2008], a generic learning algorithm for representing 

transactions by directed graphs describing execution paths is proposed. 

New profiles that deviate from the ones learnt from those execution paths 

are seen as unauthorized sequences of SQL commands. The features used 

to build the execution paths are the command type (select, insert, delete, 

etc.), target objects (tables) and selected columns, and restriction 

attributes, all of which are obtained from typical DBMS audit entries 

[Newman, 2011] storing information on the UserID, SessionID, 

CommandID, TransactionID, user command, object owner, and a 

timestamp of its execution. 

Statistical Analysis. Statistical analysis is used in several DIDS for 

computing user activity and/or data statistics ID features.  

The approach presented in [Spalka and Lehnhardt, 2005] makes use of 

statistical functions on reference values obtained from the data in 

relations (alias tables) and -relations (changes of the values of the 

monitored objects/attributes for all reference values, per attribute, 

between two runs of the DIDS) for anomaly detection.  
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An extension is defined as the set of all rows of an insertion/modification 

of data and a relation refers to a table or view. The reference values 

include count, minimum, maximum, average, standard deviation, ranges, 

computed ratios, zero length checking and bit counting. A misuse 

detection method is also included, which works by examining database 

objects (Database, Default, Function, Index, Privilege, Procedure, Rule, 

Schema, Statistics, Table, Trigger, and View) and all operations on them. 

This is done by previously defining if each pair <Database object, 

operation> is dangerous or not. 

The work proposed in [Mathew et al., 2010] is based on computing 

summarized statistics such as counting, maximum, minimum, mean, 

median, standard deviation and cardinality values of each attribute from 

the dataset resulting or affected by the execution of each user command. 

These statistics are stored in a vector with fixed dimension named as an 

S-Vector, regardless of how large the command’s result dataset may be. 

When the dataset for obtaining the S-Vector is large, the authors propose 

sampling the dataset by fetching the first initial k tuples or a subset of 

randomly picked k tuples, for maintaining performance and scalability. 

The set of each user’s S-Vectors is then used for applying techniques such 

as clustering, naïve Bayes, support vector machines or decision trees in 

order to obtain models that represent the user’s normal behavior given 

the information in those S-Vectors. In the intrusion detection phase, 

statistical deviation and outlier verification is applied to inspect each user 

command and classify it as normal or abnormal. 

Information-Theoretic Analysis. Approaches using information-

theoretic analysis compute measures like entropy and information gain 

for characterizing user profiles and compare them with those of 

subsequent user actions to see how they differ from the original ones.  

The work in [Lee and Xiang, 2001] describes such a solution. Features are 

composed by a tuple of audit data with n variables for each data object 

(e.g. IP address, message size, etc). Entropy is used as a measure of 

regularity of audit data (e.g. event types such as a list of commands), 

where each record represents a class; the smaller the entropy, the fewer 

the number of distinct records (i.e., the higher the redundancies), the 

more regular the audit dataset. The fact that many events are repeated (or 

redundant) in a dataset suggests that they are likely to appear in the 
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future. Anomaly detection models constructed using datasets with small 

entropy will likely be simpler and have better detection performance. 

Conditional entropy is used to define temporal sequences of audit data. 

H(X|Y) shows how much uncertainty remains for the rest of the audit 

events in a sequence X after seeing Y. For anomaly detection, it is used as 

a measure of regularity of sequential dependencies. If the audit trail is a 

sequence of events of the same type, then the conditional entropy is 0 and 

the event sequences are deterministic. Conversely, large conditional 

entropy indicates that the sequences are not as deterministic and hence 

much harder to model.  

Relative conditional entropy between distributions is used for measuring 

regularities (distance) between two audit datasets, where the training 

dataset is a validated audit dataset and the tested dataset is the one that 

needs to be inspected. Once again, the best solution is the one with 

smaller relative conditional entropy. Information gain is introduced to aid 

the feature selection and construction process to improve the detection 

performance because of its direct connection with conditional entropy. 

The higher information gain owned by the feature, the smaller 

conditional entropy, and hence the better detection performance. 

Command Template Analysis. Command modeling DIDS use a 

command database log to analyze all the regular user commands and 

build some sort of summarized templates that are able to generically 

represent the typical user workloads.  

In [Lee et al., 2002], an algorithm summarizes a set of supposed 

“legitimate” queries into SQL templates that represent the models of all 

those queries. Each conditional filtering variables in the WHERE clause of 

similar commands are considered as parameters. To see if an unbounded 

variable should be used for each parameter or a finite list of values, a 

Kolmogorov-Smirnov test is done at a 90% confidence level. The 

algorithm also tabulates the frequency of each learnt fingerprint, i.e., how 

often it occurs in the set of SQL statements.  

Taking a new fingerprint F and a previously defined fingerprint F’, F is 

considered legitimate if F differs from F’ only by: 1) any extra conditions 

in the WHERE clause of F that are missing from F’ are joined with the 

AND operator; and 2) F selects an equal or fewer number of columns 
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than F’. They also propose a method for deducing missing fingerprints 

(i.e., ranges of queries that are similar to the database log queries used in 

the learning phase), based on mixing the possible combination of 

conditions in the WHERE clause from the previously acquired 

fingerprints. In the testing phase, each command significantly differing 

from the computed fingerprints is considered abnormal. 

In [Bockermann et al., 2009] the authors propose applying a grammar-

based analysis using machine-learning techniques instead of commonly 

used vector-based data. This approach applies tree-kernel based learning, 

which has become popular in natural language processing, using the 

parse-tree structure of SQL for correlating commands with applications 

and to differentiate between benign and malicious ones by inspecting 

changes in command syntax trees.  

They derive a distance measure induced by a tree-kernel function to 

measure the similarity of SQL commands using their parse-trees. Support 

vector machines are used in the learning phase and clustering is applied 

for distinguishing benign from malicious commands by outlier detection. 

This method promotes a context sensitive similarity that enables locating 

the nearest non-intrusive command for a malicious statement, which 

helps in root cause analysis. 

Table 2-2 summarizes the approaches previously described, mentioning 

each type of technique along with the actions and user action elements 

that can be analyzed. It also shows if each approach allows implementing 

intrusion prevention, i.e., if it enables stopping the intrusion action a priori 

to its execution. 
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Table 2-2. Database intrusion detection techniques and their coverage 

  Elements that can be analyzed Intrusion 
Prevention 
Capability Technique Reference 

Command 
Syntax 

Accessed 
Columns 

Processed 
Rows 

Result 
Dataset 

Temporal Analysis [Lee et al., 2000] X    Yes 

Dependency and 
Relation Analysis 

[Chung et al., 1999] X X   Yes 

[Zhong and Qin, 2004] X X X  Yes 

[Bertino et al., 2005b] X X   Yes 

[Kamra et al., 2008] X X   Yes 

Sequence Analysis [Kundu et al., 2010] X    Partial 

Integrated        
Dependency and  
Sequence Analysis 

[Hu and Panda, 2004] X X   Partial 

[Srivastava et al., 2006] X X   Partial 

[Fonseca et al., 2008] X X   Partial 

Statistical Analysis 
[Spalka and Lehnhardt, 2005] X X X  Partial 

[Mathew et al., 2010] X X  X No 

Information-Theory 
Analysis 

[Lee and Xiang, 2001] X    Partial 

Command          
Template Analysis 

[Lee, 2002] X X   Yes 

[Bockermann et al., 2009] X X   Yes 

In what concerns intrusion prevention, which is the capability of stopping 

the intrusion action when it occurs or even before it occurs, it can be seen 

that several solutions enable full intrusion prevention, while others can 

only partially accomplish this. In [Lee et al., 2000], the temporal analysis 

technique detects any queries that request execution outside a predefined 

time schedule and may therefore deny their execution and prevent the 

intrusion action. The sequence analysis technique used in [Kundu et al., 

2010] may enable intrusion prevention by avoiding subsequent user 

actions when it detects a suspicious sequence of actions. However, it 

needs to wait for a significant amount of actions that make up that 

sequence, meaning that it will probably only detect the intrusion after 

some of those actions have finished their execution, which makes it only 

capable of partial intrusion prevention. 

All the solutions based on dependency and relation analysis that were 

described [Bertino et al., 2005; Kamra et al., 2008; Zhong and Qin, 2004] 

are fully capable of enabling intrusion prevention, since they may check 

each individual user command syntax and if they find those commands 

suspicious their execution can be stopped before their execution occurs. 
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The solutions integrating a mix of dependency and sequence analysis 

such as [Fonseca et al., 2008; Hu and Panda, 2004; Srivastava et al., 2006a; 

Srivastava et al., 2006b] are capable of performing only partial intrusion 

prevention, for the same reasons pointed out in the previous paragraph 

concerning the solution proposed in [Kundu et al., 2010]. 

The solutions presented in [Mathew et al., 2010; Spalka and Lehnhardt, 

2005], which are based on statistical analysis, are mostly incapable of 

intrusion prevention, as they mostly rely on analyzing the changes in 

data or execution results after they have been processed. This means they 

can only detect the intrusion a posteriori to the attack. However, the 

approach in [Spalka and Lehnhardt, 2005] can be adapted to check a priori 

statistical data concerning the rows requested to be processed by the user 

action, enabling it to have partial intrusion prevention capabilities. For 

this same reason, the information-theory analysis approach presented in 

[Lee and Xiang, 2001] may also accomplish partial intrusion prevention. 

The solutions based on command template analysis proposed in 

[Bockermann et al., 2009; Lee et al., 2002] can fully enable intrusion 

prevention due to same reason as those previously mentioned that use 

dependency and relational analysis [Bertino et al., 2005; Chung et al., 1999; 

Kamra et al., 2008; Kamra, 2010; Zhong and Qin, 2004]. 

Besides the previously described specific ID techniques and approaches 

that can be used in databases, other research works have been published 

that can also contribute to this intrusion detection field. For example, 

although it does not present itself as a DIDS, the work in [Motwani et al., 

2008] describes a method for auditing SQL queries to measure their 

suspiciousness from a privacy and confidentiality perspective that may 

be useful for intrusion detection purposes. A generic survey on how data 

mining techniques can be applied to intrusion detection is shown in [Pei 

et al., 2004]. 

2.4.3. Using Database Intrusion Detection Systems in Data Warehousing 
Environments 

By observing Table 2-2 it can be seen that most DIDS focus on analyzing 

user command syntax (i.e., parsing the SQL-expression syntax of queries 

to construct user profiles). As pointed out in [Mathew et al., 2010], the 

most common problems with this type of approach is: 
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 Regular user queries may differ widely in syntax yet produce 

“normal” (i.e., good non-intrusive) output, which generates false 

positives (i.e., false alarms); 

 Queries may be crafted by the attacker to differ slightly in syntax 

from the “normal” user behavior profiles yet produce “abnormal” 

(i.e., malicious and intrusive) output, which generates false negatives 

(i.e., attacks that pass undetected). 

Given the expressiveness of the SQL language and the need to determine 

query equivalence or similarity, it is evident that syntax analysis is 

complex and very difficult to perform correctly. In fact, query 

containment and equivalence is NP-complete for conjunctive queries and 

uncertain for queries involving negation [Mathew et al., 2010]. 

In databases where typical user workloads have a well-defined number 

of distinct commands that are issued repetitively, relying on command 

syntax analysis may be feasible to achieve high ID efficiency. This is 

typically what occurs in transactional systems. However, in analytical 

systems such as DW’s many actions are ad hoc and have variable 

execution times with variable data access patterns and dimension-size 

frequencies and thus, are mostly unpredictable and broad-scoped. This 

makes distinguishing between normal and abnormal commands in DWs 

an extremely difficult task. In such analytical databases, limiting ID to 

command syntax analysis by simply modeling SQL command templates 

or static frequent data access patterns (e.g. which tables or columns are 

accessed) is unreliable or, at least, minimalist. 

Regarding the previously presented characteristics of DW user 

workloads, the ID solutions relying on temporal analysis such as 

presented in [Lee et al., 2000] are inadequate and mostly produce very 

poor ID results due to the unpredictable rate and execution time of those 

workloads. Due to the ad hoc nature of most of those workloads, ID 

solutions such as [Bockermann et al., 2009; Lee et al., 2002] that are based 

on command template analysis lack the necessary dynamics to efficiently 

perform the ID processes and therefore also produce poor ID results. 

Although the approach proposed in [Mathew et al., 2010] adds a data-

centric analysis of each user command execution’s resulting dataset, the 

analysis is performed a posteriori to that execution. Given the time span 
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between the start of the intrusion and its detection, together with resource 

consumption and sensitivity of the targeted data, many enterprises can 

suffer huge losses if their DIDS either takes too long to alert a malicious 

intrusion or is unable to prevent or stop its execution. In this sense, these 

approaches alone are not efficient solutions for intrusion detection in 

DWs. 

Conclusively, the unpredictable execution frequency and ad hoc nature of 

the user workloads make time-based and SQL templating ID approaches 

such as [Bockermann et al., 2009; Lee et al., 2002; Lee et al., 2000] mostly 

inadequate. On the other hand, DIDS performing ID at a coarse-grained 

basis such as database sessions or transaction command sets, instead of a 

fine-grained basis such as analyzing each SQL command, risk that a series 

of malicious commands may be executed before the intrusion can be dealt 

with. Therefore, data dependency and sequence alignment approaches 

such as [Chung et al., 1999] that are able to inspect each user command a 

priori to its execution, but only after a considerable amount of actions 

have been executed, should be used carefully according to each DW 

context.  

Data-centric techniques such as [Mathew et al., 2010; Spalka and 

Lehnhardt, 2005] are capable of bringing added value to a priori ID 

techniques by executing an a posteriori analysis of the data affected by the 

user action. Combining these techniques with data access pattern analysis 

techniques such as [Bertino et al., 2005; Kamra et al., 2008], that deem the 

processed data, seem a priori the most feasible and efficient DIDS for 

DWs. 

2.5. Summary 

This chapter presents the background and related work concerning the 

data security domains focused by the research work in this thesis, namely 

data masking, encryption and database intrusion detection.  

The concepts concerning DWs are described and data warehousing 

environments are characterized. The differences and characteristics that 

distinguish operational systems from DWs have also been detailed. 

We have also enumerated and described the standard and state-of-the-art 

techniques and methods in data masking, encryption and database 
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intrusion detection systems, and discussed the issues concerning their 

applicability in data warehousing environments. 
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Chapter 3  

Data Warehouse Security 
Framework 

Despite the fact that published research and best practice guides from 

many DBMS vendors state that the best way to protect data in databases 

is to use encryption solutions together with intrusion detection systems, 

to the best of our knowledge there has been no proposal regarding a 

conceptual framework for integrating these distinct solutions together. In 

this chapter, we propose a framework that enables integrating together 

the proposed masking, encryption and intrusion detection solutions, 

which are presented in the following chapters.  

The proposed framework can be seen as a middle tier between the user 

interfaces and the DBMS, working as an extension of the DBMS itself. We 

define the sequence of steps within the scope of the framework, that 

occur from the moment a user statement arrives at the data warehouse to 

be processed, and describe the information flow and each of its 

components. We also define a series of principles that drive the 

development of the masking, encryption and DIDS solution proposed in 

this thesis. These guidelines deal with the issues of data security and 

provide a body of knowledge for the development of specific solutions 

for data warehousing environments. 

The chapter is organized as follows. Section 3.1 details the middle tier and 

how it enables integrating data masking, encryption and intrusion 

detection to deal with user actions in a single pass-through overall 

process. Section 3.2 presents the guidelines for enhancing data masking 

and encryption in data warehouses and Section 3.3 presents the 

guidelines for enhancing intrusion detection in data warehouses. Finally, 

Section 3.4 concludes the chapter. 
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3.1. Overview of the Data Warehouse Security Middle Tier 

The typical information flow of data warehouse user actions between the 

interface used by the user and the DW database(s) is shown in Figure 3-1. 

In practice, the user interface typically issues a SQL statement and sends 

it to the DBMS, which then processes it against the respective database(s), 

receive the processed results, and finally send it back to the user interface 

that requested its execution. 

User Interface Data Warehouse 
Database(s)

DBMS
User query

Response

Write

Read

 

Figure 3-1. Typical DW user action information flow 

In the context of our work, each SQL statement is parsed and analyzed 

once it arrives at the DBMS. Whenever required, data masking, 

encryption and intrusion detection are applied given the command itself 

and its targeted data, immediately before the command is executed. 

Intrusion detection is also applied to the processed data and results after 

its execution finishes and before disclosing the results back to the users. 

The sequence of steps given a request to process a SQL statement issued 

by the user is shown in Figure 3-2. 

User Statement 
Submitted

Parse User 
Statement

Analyze User 
Statement

Execute User 
Statement

Analyze 
Processed Data 

and Results

Submit Results 
back to User

Mask/Encrypt or 
Demask/Decrypt 

LEGEND
       Regular Flow (mandatory for all user statements)
       Optional (depending on using masking/encryption or not)
       Conditional (user notification or resulting dataset feedback depending if there is any generated alert against the user statement or not)

Alert Alert

Alert and Intrusion Response Management

 

Figure 3-2. Step sequence of the submittance of a SQL user statement 

As shown in the figure, each user statement is parsed and then analyzed 

before it is executed by the DBMS, to make an a priori verification of its 

suspiciousness. If it is considered an intrusion, then an alert should be 

raised against this user action and its execution can be stopped at this 
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step. Contrarily, if it is not considered an intrusion, then the user 

statement can be processed by the DBMS against the Data Warehouse 

Database(s) with or without use of the data masking or encryption 

processes, according to the security measures defined for the targeted 

data. After the user statement finishes being processed by the DBMS, the 

processed data and resulting dataset are also be analyzed for 

suspiciousness. If it is considered an intrusion, then an alert is also raised 

against the user action and disclosure of the results can be stopped at this 

step, otherwise the results are sent back to the user. 

To accomplish the aimed functionality according to this sequence of 

steps, the framework includes intrusion detection, masking and 

encryption components, defining an information flow as shown in Figure 

3-3. 

The middle tier includes mandatory and optional components, 

considering that the intrusion detection processes are mandatory and the 

masking and encryption processes are optional, given the functionalities 

defined by the security administrators. For example, parts of the database 

may require encryption or masking due to security requirements, while 

other parts of the database may not require encryption or masking. This 

means that a user command is always subjected to the intrusion detection 

components, but might not require going through the masking or 

encryption components. 

The main elements of the information flow of the middle tier and each of 

its components are described in the following subsections. 
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Figure 3-3. Integrated Data Warehouse Security Framework 

3.1.1. The Security Framework Database 

The Security Framework Database is a database that stores all the user data 

that enables identifying each DW user (name and password) and his/her 

data access policies (attributed role(s) and SQL grant privileges) and a 

historical command log that stores all the issued user commands against 

the data warehouse database(s), together with the information required 

for each component of the masking, encryption and intrusion detection 

processes. 
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For masking and encryption, the Security Framework Database stores all the 

necessary masking and encryption keys for each DW database that needs 

to be masked or encrypted. On the other hand, for intrusion detection 

purposes, the Security Framework Database stores all the DW user behavior 

profiles that will be used to assess the incoming user statements. It also 

contains the complete history of all the generated alerts in an alert log 

that identifies the user command to which each alert refers and attributes 

for enabling the Data Warehouse Security Administrator to confirm if that 

alert concerns a true intrusion action or a false alarm. The rulebase for the 

risk exposure method and the risk exposure measure computed for each 

alert is also stored in the database. 

3.1.2. The Data Warehouse Security Interface 

The Data Warehouse Security Interface is used by the Data Warehouse 

Security Administrator for managing the Security Framework Database and 

all the masking, encryption and intrusion detection components. 

Whenever the Data Warehouse Security Administrator wants to protect a 

data warehouse database by applying the framework, the following 

actions should be performed: 

 After entering the DBA login and database connection data, the 

Data Warehouse Security Interface scans all the data access policies 

defined in the Data Warehouse Database(s) for identifying 

authorized users and respective permissions; 

 A user command log is created in the Security Framework Database 

for recording all future user actions requested to execute against 

the Data Warehouse Database(s); 

 All user behavior profiles are then built using the Data Warehouse 

Database(s) command log and the existing data. 

The interface allows the Data Warehouse Security Administrator to define 

the rules to be used by the intrusion detection risk exposure method. It 

also displays the information concerning all the generated intrusion alerts 

and allows the Data Warehouse Security Administrator to confirm the 

authenticity of each alert, i.e., if it refers to a true intrusion or a false 

alarm. 
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The Data Warehouse Security Administrator may use the Data Warehouse 

Security Interface to define, at any time, which attributes should be 

masked or encrypted. Each time this type of action is required, all the 

data concerning such attributes is immediately masked or encrypted by 

replacing the original values with the new masked or encrypted ones. 

Whenever the Data Warehouse Database(s) needs to be updated, this must 

always be done through the middle tier instead of directly through the 

DBMS. 

3.1.3. Analyzing the User Statement a Priori 

Before the user statement can be processed by the DBMS, it must be 

analyzed to verify its suspiciousness and assess if it is an intrusion or not. 

The information flow referring to this initial process is shown in Figure 3-

4. 
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Figure 3-4. Information flow concerning the a priori analysis of the user statement 

First, the user statement must go through the Command Parser component. 

The Command Parser component is responsible for parsing the SQL 

statement, splitting it into its individual sub-queries (if it has any sub-

query) and extracting the relevant intrusion detection features (defined 

by the DIDS – the DIDS proposed in this thesis is explained in Chapter 6, 

including its respective features), which are finally passed to the 

Command Analyzer component. The command itself and the information 

that traces it back to the user that requested its execution, as well as the 
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moment when that execution was requested, are stored in the Security 

Framework Database. 

Afterwards, the query (and sub-queries’ set) is passed on to the Command 

Analyzer component. An important aspect is that the DBMS should be 

configured to only process SQL statements that have gone through the 

Command Analyzer component. All SQL statements that avoid going 

through the Command Analyzer should be rejected by the DBMS. The 

Command Analyzer retrieves the information regarding the user behavior 

profile to which each command concerns from the Security Framework 

Database, and performs the respective intrusion detection tests on each 

command to verify if it should be considered an intrusion. If the user 

command is considered an intrusion, the Security Framework Database is 

updated by flagging the command as a potential intrusion and an alert is 

generated, which is passed on to the Data Warehouse Security Interface in 

order to be communicated to the Data Warehouse Security Administrator, 

and the user action may be stopped. If the user action is not considered 

an intrusion, it can then be executed by the DBMS against the Data 

Warehouse Database(s), which is the next step. 

3.1.4. Executing the User Statement 

A user statement that has not been considered an intrusion by the 

Command Analyzer component may be executed by the DBMS. There are 

two possibilities:  

1) If the user statement does not contain any reference to masked or 

encrypted columns, then it is immediately executed by the DBMS;  

2) If the user statement contains any reference to masked or 

encrypted columns, then it is passed on to the Command Rewriter 

component to be modified in order to correctly execute against the 

masked and/or encrypted data, and then it is executed by the 

DBMS. 

The information flow referring to this process of executing the user 

statement is shown in Figure 3-5. In practice, for each user statement 

deemed as a non-intrusion, the Command Analyzer component notifies the 

Response Analyzer component to wait for a response so the targeted 

processed data and the statement’s execution results can also be 

analyzed. 
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As we explain further in chapters 4 and 5, the proposed data masking and 

encryption algorithms only use operators and transformations that are 

native to standard SQL. This allows them to simply rely on SQL rewriting 

to accomplish their masking/unmasking and encryption/decryption 

purposes. After receiving a user statement from the Command Analyzer, 

the Command Rewriter queries the Security Framework Database(s) to 

retrieve the necessary data masking and encryption keys for that user 

statement and applies the required SQL rewriting to the user statement 

and sends it to be executed by the DBMS. When a user statement 

completes its execution, the results are sent to the Response Analyzer 

component to perform an a posteriori verification. 
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Figure 3-5. Information flow concerning the execution of the user statement 

3.1.5 Analyzing the Processed Data and Dataset Result a Posteriori 

After the user statement has been processed by the DBMS against the 

Data Warehouse Database(s), the results are sent to the Response Analyzer to 

check if the processed data and the results themselves are suspicious, 

given the behavior profile of the typically accessed data and resulting 
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datasets of the user to which the statement belongs. The information flow 

referring to this process is shown in Figure 3-6. 
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Figure 3-6. Information flow of the a posteriori analysis of the user statement 

The Response Analyzer retrieves the information from the Security 

Framework Database regarding the features belonging to the behavior 

profile of the typically accessed data and resulting datasets of the user to 

which the statement belongs, and performs the respective intrusion 

detection tests against the values of the processed data and resulting 

dataset to verify if it should be considered an intrusion. If it is considered 
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an intrusion, then the Security Framework Database is updated by flagging 

the command as a potential intrusion and an alert is generated, which is 

then passed on to the Data Warehouse Security Interface in order to 

communicate the event to the Data Warehouse Security Administrator, 

and the user action can be stopped. If the user action is not considered an 

intrusion, the results are simply sent back to the user that requested the 

execution and the Security Framework Database is updated by flagging the 

action as a non-intrusion that has completed its execution. 

3.2. Guidelines for Enhancing Data Masking and Encryption 
Performance in Data Warehousing 

In this section, we present the guidelines that drived the development of 

the data masking and encryption solutions proposed in Chapters 4 and 5. 

These generic principles intend to deal with the data masking and 

encryption issues pointed out in Chapter 2, and establish the foundations 

for each proposed solution in the context of the middle tier presented in 

the previous section. 

3.2.1. Numerical vs Textual Masked or Ciphered Input and Output 

As mentioned in Chapter 2, standard encryption algorithms were 

conceived for encrypting general-purpose data and therefore, receive and 

output textual or binary data, while data warehouse data is mostly 

composed by numerical datatype fact table columns that typically take up 

90% or more of the total storage space [Kimball and Ross, 2013]. Most 

data warehouse user workloads request processing arithmetic functions 

such as sums, averages, etc., which implies that those textual or binary 

values need to be converted back into their numerical format.  

Since working with text values is much more computationally expensive 

than working with numerical values, standard ciphers are much slower 

than ciphers specifically designed for receiving numerical inputs and 

producing numerical outputs. 

Therefore, to avoid the overhead processing time concerning the referred 

datatype conversions, the masking and encryption solutions proposed in 

this thesis were specifically designed to receive numerical input and 

produce numerical output. 
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3.2.2. Preserving Column Datatypes 

Considering that numerical datatype sizes usually range from 1 to 8 

bytes, while standard encryption outputs have lengths of 8 to 32 bytes 

[Natan, 2005] and that data warehouses have a huge amount of rows that 

typically take up many gigabytes or terabytes of space, even a small 

increase of any column size required by changing numeric datatypes to 

textual or binary (in order to store encryption outputs) introduces very 

large storage space overhead. This consequently increases the amount of 

data to process, as well as the required storage and processing resources, 

which also degrades database performance.  

While the importance of encrypting text values might be significant or not 

for data warehouses (depending on its context), efficiently encrypting 

numerical values is critical, as these represent the business facts. The 

masking and encryption solutions proposed in this thesis allow 

preserving the original datatype and length of each encrypted column, 

which allows maintaining their original data storage space. 

3.2.3. Using Only Native SQL Operations to Mask/Encrypt Data 

Another issue previously pointed out concerns the data roundtrips 

between the database and the encryption and decryption mechanisms. 

Topologies involving middleware solutions such as the one proposed in 

[Radha and Kumar, 2005] typically request all the encrypted data from 

the database and execute decrypting actions themselves locally, finally 

sending the decrypted results back to the user that requested them. Given 

the typically large amount of data accessed for processing DW queries, 

previously acquiring all the data from the database for encrypting or 

decrypting in a middle tier is unfeasible. This strangles the database 

server and/or network with communication costs due to bandwidth 

consumption and I/O bottlenecks, jeopardizing throughput and 

consequently, response time.  

As our approach is based on operators supported by native SQL, it 

requires only query rewriting for masking/encrypting and 

unmasking/decrypting actions. In fact, using only native SQL operators 

and functions brings several major benefits: 
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 It allows building the sequence of steps for all masking/encrypting 

and unmasking/decryption processes as a unique SQL statement, 

and no external languages or resources need to be instantiated; 

 Computing the masking/encrypting and unmasking/decrypting 

operations as a SQL statement enables them to run directly against 

the data, avoiding data roundtrips between the database and the 

masking and encrypting mechanisms and thus, avoiding I/O and 

network overhead from the critical path; 

 Contrarily to what happens with standard encryption algorithm 

implementations, which are typically OS platform and CPU 

dependent, using only native SQL makes our solutions DBMS 

platform independent, making them usable in any data 

warehouse running on any CPU model, without depending on 

any programming language or external OS resource; 

 Since the SQL statements can run directly against the masked or 

encrypted data, it means that the data can remain masked or 

encrypted at all times, only disclosing the computed results back 

to the user which requested the statement’s execution. 

3.2.4. Masking and Encryption Algorithm Design 

As discussed in Chapter 2, the complexity of each transformation round 

in masking and encryption algorithms is directly linked with the security 

strength achieved by the algorithm, as is the number of rounds it executes 

and the size of the used encryption key(s). It is assumed by the security 

community as a general rule that, as the number of complex operations, 

encryption key lengths, and/or number of encryption rounds increase, the 

algorithms security strength also increases or, at least, remains the same 

[Vaudenay, 2006]. However, increasing the complexity of the “data mix”, 

the number of rounds or the encryption key length also introduces a 

performance drawback, since it requires more machine resources and 

processing time. 

In what concerns the design of “data mixing” for each masking or 

encryption round, we discard bit shifting and permutations, commonly 

used by most ciphers [Vaudenay, 2006], since there is no standard SQL 

support for these actions. We also discard the use of substitution boxes 

(e.g. AES uses several 1024-byte S-boxes, each of which converts 8-bit 
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inputs to 32-bit outputs), because of their complexity and resource 

consumption. 

Our masking and encryption approaches are based on the widely used 

and well known XOR and MOD operators, which are available to be 

implemented in native SQL. In practice, we propose the use of a set of 

arithmetic operators combined with XOR and MOD operators to 

transform numerical data. 

The XOR operator is widely used in most encryption algorithms. In fact, 

it is the baseline for achieving perfect secrecy in the most basic encryption 

transformation, the Vernam Cipher7 [Vaudenay, 2006]. Its properties in 

achieving perfect secrecy given certain conditions and its ease in mixing 

up the input values makes the XOR operator an excellent candidate for 

building data transformation functions for masking or encryption 

purposes.  

The modulus (MOD) remainder operator is another good candidate for 

data transformation functions with masking or encryption purposes, 

because it enables building non-invertible functions. For a function to be 

directly invertible, each output must correspond to no more than one 

input, i.e., more than one different inputs cannot generate the same 

output; a function with this property is called one-to-one, or information-

preserving, or an injection [Bartle, 1976]. An injective function is a 

function that preserves distinctness: it never maps distinct elements of its 

                                                      
7 The Vernam Cipher was published in 1926 by Gilbert Vernam from AT&T. It is 

based on an encryption key with the same bit length as the input plaintext and 

applies a XOR operation against both values to get the encrypted output. 

Shannon proved that this cipher achieved perfect secrecy if the keys are 

generated in a randomly uniform distribution and the same key is only used 

once to encrypt one input value. In this case, there is no information leakage 

because the same key is never used twice and the attacker needs to test all 

possible encryption key values in each case to guarantee absolute success in the 

attack, requiring on average half of that number in order to succeed. Statistically, 

perfect secrecy means that the a posteriori distribution of the plaintext X after the 

encrypted ciphertext Y is known is equal to the a priori distribution of the 

plaintext: the conditional distribution of X given Y is equal to the original 

distribution. Formally, for all x and y such that Pr [Y = y] ≠ 0, we have Pr [X = x | 

Y = y] = Pr [X = x]. 
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domain to the same element of its codomain. From an information theory 

perspective, this means that for an injective function, each input-output 

pair has intrinsically the exact same probability of occurrence. This 

provides information to break the cipher’s key if the attacker has access to 

its algorithm and set of outputs. Therefore, the main objective of a cipher 

should be to assure a maximum of non-injective transformations in order 

to introduce uncertainty over which inputs generate the output, thus 

avoiding information disclosure to break the cipher.  

The MOD operator is non-injective, given that for X MOD Y = Z, the same 

output Z, considering Y a constant, can have an undetermined number of 

possibilities in X as an input which will generate the same value Z when 

applying the operator (e.g. 15 MOD 4=3, 19 MOD 4=3, 23 MOD 4=3, 27 

MOD 4=3, etc). Since MOD operations are non-injective, this means that 

the transformation functions that use MOD are also non-injective. Given 

that injectivity is a required property for having invertibility, masking or 

encryption algorithms that use MOD transformations are therefore, non-

invertible. 

3.3. Guidelines for Enhancing Intrusion Detection in Data Warehousing 

This section presents the guidelines that drove the development of the 

intrusion detection solution proposed in Chapter 6. These principles 

intend to deal with the data warehouse intrusion detection issues pointed 

out in Chapter 2 in the context of the middle tier presented in Subsection 

3.1. 

3.3.1. Using Individual User Profiles 

In typical transactional systems, it is normal to have a very high number 

of predefined queries that are issued in a repetitive manner by each user, 

making most queries extremely predictable. For example, each teller in a 

supermarket store is always repeating queries to retrieve individual 

product prices. Furthermore, independently from the number of tellers, 

all of them mostly repeat the same type of query. Considering a 

generalization of this typical operational business environment, it is easy 

to understand that user profiling in transactional systems is relatively 

simple and user role profiles can be built, instead of building an 

individual profile per each user.  
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Decision support systems do not have the same user characteristics as 

those of operational transactional systems. As previously mentioned in 

Chapter 2, distinguishing normal from abnormal user behavior in data 

warehouses is a very difficult task, given the typical high amount of ad 

hoc queries issued by the users. On the other hand, given that each user 

has its own data query demands that are closely linked to his/her 

business role, the portion of ad hoc queries inherent to each user should 

typically contribute to reveal a unique profile that distinguishes each user 

from the remaining. Therefore, in this work we claim that user profiles in 

DWs should be built with the highest detail, i.e., individual profiles 

should be built for each user in order to obtain high intrusion detection 

rates, against role-based profiling as suggested in other approaches such 

as [Kamra et al., 2008]. 

3.3.2. Analyzing the Targeted Tables and Columns, Processed Data and 
Resulting Datasets 

None of the intrusion detection techniques proposed in the past is 

capable of analyzing all the aspects directly linked with user behavior in 

what concerns database usage in an integrated manner. For instance, the 

RBAC intrusion detection approach proposed by [Kamra et al., 2008] 

profiles the columns and tables accessed by the users that belong to a 

given role. In our opinion, reducing the analysis of user behavior merely 

to this type of approach is too simplistic.  

Most intrusion detection techniques focus on features that enable the 

analysis of which tables and columns are being targeted by the user 

actions. Few techniques focus on the data processed by the user actions or 

on the resulting datasets themselves, which are a consequence of 

processing those user actions. We argue that such distinct approaches 

should be integrated so the features can reflect the impact produced by 

the user actions for all the previously referred aspects or dimensions. 

Therefore, the DIDS proposed in this thesis uses features that enable 

analyzing the targeted tables and columns included in the user actions, 

the data processed by those actions and its resulting datasets, in an 

integrated manner, which never occurs in current DIDS. 
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3.3.3. Intrusion Detection and Prevention a Priori and a Posteriori 

In the past, each DIDS approach for analyzing user actions from a timely 

perspective could be divided into two main groups: 1) analyzing the user 

action a priori to its execution; or 2) analyzing the user action a posteriori, 

i.e., after it finished its execution. Of course, the second type of analysis 

would not be able to provide intrusion prevention, which we consider 

critical for data warehouses. In this work we consider that both types of 

analysis should be used, before and after the user actions are executed 

and before its results are disclosed.  

The DIDS approach proposed in this thesis focuses not only on building 

user profiles regarding features holding information on the issued SQL 

commands, but also includes features that infer information on the 

processed data and resulting datasets. This enables our solution to 

perform intrusion detection and prevention both a priori and a posteriori to 

the execution of user actions, before the results are disclosed back. 

3.3.4. Using Risk Exposure for Alert Management 

When analyzing user actions, most DIDS output numerical measures that 

require defining thresholds to determine if those values imply 

considering the respective user actions as intrusions or non-intrusions. 

While defining high thresholds could potentially produce less false 

alarms and give higher assurance that a generated alert would in fact 

refer to a true intrusion, this could also potentiate the number of false 

negatives, i.e., the number of true intrusions that pass by undetected. 

Given the value and sensitivity of data warehouse data, it is preferable to 

define low thresholds for the intrusion detection processes. However, this 

typically generates an extremely high number of alerts that mostly turn 

out to be false alarms, wasting time and resources. There can typically be 

a significant amount of alerts with low probability of referring to an 

intrusion, but those alerts however may produce a very high negative 

impact on the business, given that DIDS typically do not assess the 

damage that those intrusions can produce on the business. Furthermore, 

not all intrusions represent the same potential amount of danger to the 

enterprise. 

In this work we propose a risk exposure method that evaluates the risk to 

the enterprise represented by each alert without excluding any of them, 
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given the probability that it really refers to an intrusion and the potential 

impact that the action may produce on the business. This allows 

considering all generated alerts instead of excluding any of them just 

because they have low probability thresholds. Ranking the alerts using a 

measure of risk exposure enables checking them by their order of 

importance, which means that security staff will spend time and 

resources more efficiently, by quickly dealing with intrusions that can 

produce greater damage rather than wasting time checking for intrusions 

that represent a lower risk of damage. Considering that none of the 

generated alerts are discarded and that ranking them by the risk they 

present to the enterprise, makes the proposed risk exposure method a 

much more reliable and efficient alert management approach than those 

using correlation techniques. 

3.3.5. Fine-Tuning Intrusion Detection Features 

In the proposed DIDS approach, each individual feature can generate 

intrusion alerts. The diversity of user behavior characteristics caught by 

each feature in each data warehouse environment depends on 

heterogeneous (and sometimes unpredictable) events such as the business 

context itself and the role played by each user, for example. This means 

that the same feature can produce very different false positive (i.e., false 

alarm), true positive (i.e., real intrusions detection), true negative (i.e., true 

normal user behavior) and false negative (i.e., intrusions that pass 

undetected) rates in different data warehousing environments.  

Although in most data warehouses it may be very difficult to define a 

priori which features should be deemed as more efficient to the intrusion 

detection processes, the DIDS should be able to fine tune its sensitivity 

over time. Considering that the features that produce the best intrusion 

detection results are the most reliable for the intrusion detection 

processes, these processes should be able to reflect the relative individual 

efficiency between the complete set of feature to improve the overall 

results.  

The DIDS proposed in this thesis uses a calibration technique that 

computes a measure to assure that the features that show a higher 

efficiency in intrusion detection are those who’s alerts have higher 

probability of referring true intrusions. This is made effective in our 
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approach by using this measure in the risk exposure method to assess the 

probability of each alert, given the feature that generated it, i.e., the 

feature’s efficiency measure is directly linked with the probability that the 

generated alert refers to a true intrusion. Through time, the system is self-

adaptive by fine-tuning each feature’s measure according to its intrusion 

detection efficiency, given its true positive and false positive rates. 

3.4. Summary 

In this chapter we presented the middle tier that enables the integration 

of the proposed data masking, encryption and intrusion detection for 

data warehousing environments, and described each of its components.  

We also described the information flow and how each individual 

component works within the execution path of each individual user 

action to form an overall security solution that deals with those actions in 

real-time.  

The guidelines that drove the development of each data masking, 

encryption and intrusion detection solution proposed in this thesis were 

also presented. The following chapters will explain in detail how each of 

these solutions operate and demonstrate their efficiency. 
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Chapter 4  

MOBAT: A Data Masking Solution 
for Data Warehouses 

The irreversibility and lack of proven security strength attributed to data 

masking routines have made them an unacceptable choice when it comes 

to securing sensitive data in live production and reporting databases 

[Natan, 2005; Ravikumar et al., 2011]. On the other hand, data masking is 

the main choice for generating test databases for software development 

environments or when there is a need to publish data that has values with 

privacy issues. However, we argue that it may be worth considering the 

usage of a reversible data masking solution in a data warehousing 

context, as it can effectively provide an alternative solution for protecting 

data with some level of security strength while introducing low 

overheads in database storage space and response time performance.  

In this chapter, we propose MOBAT (MOdulus BAsed data masking 

Technique), a low cost and straightforward data masking technique for 

numerical values that aims at balancing the tradeoff between data 

security and database performance. The data masking function uses the 

MOD-modular operator (which returns the remainder of a division 

expression) and simple arithmetic operations to mask data. Storage space 

overhead is avoided by preserving each masked column’s datatype and 

by simply using SQL rewriting to mask and unmask values. This also 

allows avoiding I/O and network bandwidth bottlenecks by discarding 

data roundtrips between the database and the masking and unmasking 

mechanisms. 

Note that this proposal does not intend to replace any standard 

encryption algorithms currently available as built-in packages in most 

DBMS, but rather should be viewed as an alternative solution for 

protecting the confidentiality of DW data. The main objective is to 

provide a significant level of security while introducing very small 
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overheads in storage space and database performance, i.e., acceptable 

tradeoffs between security and performance, which is a critical issue in 

order to assure the feasibility of these solutions in DWs. 

To evaluate our proposal, we include experiments using two leading 

commercial DBMS, Oracle 11g and Microsoft SQL Server 2008, and one 

open-source DBMS, MySQL Server 5.5. The experiments allow to 

compare the proposed data masking solution against the built-in AES 

(with 128 bit and 256 bit security) and 3DES168 encryption algorithms 

provided in the referred DBMS, as well as research state-of-the-art 

proposals such as Order-Preserving Encryption (OPES) and Salsa20 (alias 

Snuffle), using the TPC-H decision support benchmark and a real-world 

sales DW.  

The remainder of this chapter is organized as follows. In Section 4.1 we 

present and describe our masking technique and point out the main 

issues regarding its use, while Section 4.2 describes its functional 

architecture. In Section 4.3 we discuss our solution’s security and 

performance issues. Section 4.4 presents the experimental evaluations 

that were conducted using the well-known TPC-H decision support 

benchmark and a real-world DW to assess the proposed data masking 

technique’s performance and compare it against standard and state-of-

the-art encryption algorithms. Section 4.5 includes a discussion on the 

proposed data masking solution and on the results obtained in the 

experiments. Finally, Section 4.6 presents our conclusions. 

4.1 MOBAT Masking Expression 

Generally, most facts in DWs are columns with numerical values 

[Kimball and Ross, 2013]. Since fact tables usually represent more than 

90% of the DW’s total size [Kimball and Ross, 2013], it is fair to assume 

that numeric type columns also represent the largest portion of business 

data. The solution proposed in this chapter aims at masking the DW’s 

numerical values while introducing small overheads in the computational 

efforts for query processing.  

Our MOdulus-BAsed data masking Technique (MOBAT), which allows 

replacing sensitive data with realistic (but not real) data without heavily 

impacting database performance, is based on a quite simple masking 

expression. Assume a table T with a set of N numerical columns Ci = {C1, 
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C2, C3, …, CN) to be masked and a total set of M rows Rj = {R1, R2, R3, …, 

RM). Each value to mask in the table will be identified as a pair (Rj, Ci), 

where Rj and Ci respectively represent the row and column to which the 

value refers. The masking expression depends on the following 

predefinitions: 

 K1 is a 128 bit random generated value, constant for table T; 

 K2 is a 128 bit random generated value, ranging between the 

minimum and maximum positive integer value possible of column 

Ci, given the maximum storage size of the column’s datatype. There 

is a K2 for each column Ci to be masked, represented by K2, i; 

 K3 is a public key based on a 128 bit column appended to each row 

Rj in T, filled in with a random value in [1; 2128], represented by K3, j. 

Assume each value to be masked represented as (Rj, Ci). Each new 

masked value (Rj, Ci)’ is obtained by applying the following Formula (1) 

for row j and column i of table T: 

(Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) + K2, i (1) 

Since K1 and K2, i are constant values for the table and each column, 

respectively, and K3, j is stored along with each row in the table, the 

inverse formula of (1) for retrieving the original value is shown as 

Formula (2): 

(Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) – K2, i  (2) 

Given that an independent value of K3, j is required for each row, if the 

values of K3, j were stored in a lookup table separate from table T a heavy 

join operation between those tables would be required to unmask data, 

which should be avoided at all cost due to the typical enormous number 

of rows in fact tables. In order to avoid table joins in query processing 

when using MOBAT, the values of K3, j must be stored along with each 

row j in table T. To accomplish this, there are two possible solutions: 

1) A new column is added to table T for storing each K3, j value;  

2) Table T is recreated with the inclusion of K3, j using the CREATE 

TABLE statement from the start and then restoring the table’s data. 

The second option implies additional efforts and amount of time to 

rebuild table T, depending on its size. However, it should speed up query 
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response time, when compared with the first option, since the new 

column K3, j is physically included with the original data in each row from 

the start; the second option may make it to be physically stored apart 

from the remaining original data in the table because it is added a 

posteriori to its creation. The impact on database performance can be 

compared be observing the results in Section 4.4.  

A third option for defining K3, j values which speeds up MOBAT 

performance is to use any long integer typed column CZ, which is already 

part of the original data structure of table T, as K3, j, instead of creating an 

extra column for K3,j in T. In this case, no changes in table T data structure 

are required, eliminating storage space overhead in T. However, this 

limits the security strength of the masking Formula (1), since the value of 

K3, j also depends on the range and cardinality of the values of CZ, and the 

predictability of knowing the values of CZ on behalf of an attacker. The 

results for this third option for defining K3,j are also shown in Section 4.4. 

As a simple example on how MOBAT is applied, consider the following: 

assume a table T that requires two masked columns, Column1 and 

Column2. Suppose that the generated values for masking keys K1 = 9264 

for table T and K2,1 = 12 and K2,2 = 78254 for each respective column. Table 

4-1 shows the original data for T on the left and its resulting masked 

content on the right, represented as T’.  

Table 4-1. Example of original dataset and resulting MOBAT masked dataset 

T – Original dataset  T’ – MOBAT Masked dataset 

Column1 Column2 K3,j  Column1’ Column2’ K3,j 

11 91873 7537  22 162590 7537 

2 38824 1808  6 115270 1808 

18 71624 29636  22 148034 29636 

19 38824 50877  22 112521 50877 

15 84624 34997  22 155673 34997 

12 46926 41395  17 120841 41395 

It can be seen in Table 4-1 that the same original values of Column2 result 

in different masked values and that the same masked values in Column1’ 

also correspond to different original true values in Column1, achieving 

apparent randomness. Of course, this is a very small dataset used only to 

illustrate these features. We discuss MOBAT’s security issues further on 
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in Section 4.3. In the next section we explain how to query the masked 

database. 

4.2 Functional Architecture 

The functional architecture for using MOBAT in practice is shown in 

Figure 4-1, and comprises three key entities:  

 The masked database and its DBMS;  

 The MOBAT security middleware interface;  

 User/client interfaces to query the masked database.  

The MOBAT middleware interface acts as a broker between the masked 

database DBMS and the user interfaces, using the MOBAT masking and 

unmasking methods, ensuring that the queried data is securely processed 

and proper results are returned to those interfaces. All communications 

are executed through SSL/TLS secure connections, to protect SQL 

instructions and returned results between the system’s entities. In the 

Black Box, the middleware will store all the generated masking keys and 

predefined data access policies for the database to which it concerns. 

User 
Interface

MOBAT
Middleware

Interface

DBMS Masked DW 
Database

Black Box
(Masking Keys, 

User Access Definitions, 
SQL Command Log)

User 
Queries

Query 
Results

Query 
Results

Rewritten 
User Queries  

Figure 4-1. The MOBAT Data Security Architecture 

The Black Box is stored in the Security Framework Database database server, 

as described in Chapter 3, and there is one Black Box created for each 

masked DW database. This process is similar to the creation of an Oracle 

Wallet, which keeps all the encryption keys and definitions for each 

Oracle Database [Huey, 2008; Oracle, 2010a]. However, contrarily to what 

happens in Oracle, where the DBA is free to access the Oracle Wallet 

whenever s/he wishes, in our solution only the MOBAT middleware itself 

can access the Black Box, i.e., absolutely no user has direct access to its 
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content because it is encrypted using the AES standard encryption 

algorithm [AES, 2001] with a 256 bit key only known by MOBAT.  

The MOBAT middleware also creates a historical command log for 

recording all the instructions and actions executed against the database, 

for auditing and control purposes. In case of losing the Black Box of a 

certain database, there is no way to restore its true data, except to crack 

the masking keys or restoring a replica that has been previously backed 

up. 

Masking keys’ privacy depends on where the keys are stored and who 

has access to them. Our solution uses three masking keys (K1, K2 and K3): 

two are private and one is public. The private masking keys are generated 

by the MOBAT middleware, and encrypted and stored by it in the Black 

Box. The values of those keys are never shown or known by the DBA or 

any other user. To obtain true results, all user queries or actions must 

pass through the MOBAT middleware, which will store a copy of those 

instructions in the Black Box command history log.  

Each time a user requests the execution of a query or any other action, the 

MOBAT middleware will receive and parse the instructions, fetch the 

necessary masking keys, rewrite the query, send it to be processed by the 

DBMS and retrieve the processed results, and finally send those results 

back to the user interface that issued the request. Thus, MOBAT is 

transparently used, since SQL command rewriting is transparently 

managed by the middleware. The only change required to user 

applications is that commands should be sent to the middleware, instead 

of directly to the DBMS. 

To mask a database, a DBA must require this action through the MOBAT 

middleware. After inputting the DBA login and database connection 

information, the MOBAT middleware will attempt to log on to that 

database. If it succeeds, it then scans all the data access policies defined in 

the database for identifying authorized users and respective permissions. 

The Black Box is then created for that database and updated with those 

user access definitions and data policies, and an action log for recording 

all further user actions requested to execute in the database is also 

created, as explained earlier. Afterwards, the tables and columns to be 

masked are chosen by the DBA. All the required private masking keys for 
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each table and column are then generated, encrypted by an AES256 

algorithm and stored in the respective Black Box. 

Finally, the MOBAT middleware applies the data masking formula on all 

rows of all columns to be masked, replacing the original values with the 

new masked values. Inserting new data or modifying or deleting existing 

data must always be done through the MOBAT middleware, which 

applies the masking routine to any value referring to any masked 

column, and stores the masked value directly in place for update and 

insert actions. Contrarily to most standard commercial data masking 

solutions, MOBAT also allows reversing the masked database back to its 

original data, if masking is no longer needed.  

Whenever user applications wish to execute a query, they submit it to the 

MOBAT middleware instead of directly querying the database. The 

middleware then rewrites the received query in order to process it with 

the real data values, using Formula (2) to replace the respective masked 

columns used in the query, and checking the user access definitions in the 

Black Box to see if it comes from an authorized user. To rewrite the user 

query, the MOBAT middleware searches for which tables and columns it 

needs to process, and looks up the Black Box for retrieving the needed K1 

and K2,i data masking keys for each of those tables and columns, as well 

as the additional K3, j key columns used by MOBAT in those tables. 

As an example, suppose the LineItem table of the TPC-H benchmark 

[TPC-H] has three numerical fact columns (i = 3) (L_Quantity, 

L_ExtendedPrice, and L_Discount) masked by MOBAT. Suppose also that 

MOBAT has generated and filled in a new column L_KeyK3 for the j rows 

of the LineItem table, which will act as the public K3, j key values, and has 

stored the value of 9342 (for example) for key K1 referring to the LineItem 

table, as well as K2, L_Quantity = 12, K2, L_ExtendedPrice = 51234, and K2, L_Discount = 4 (for 

example also). Consider TPC-H query 6: 

SELECT SUM(L_ExtendedPrice * L_Discount) AS Revenue 
  FROM LineItem  
 WHERE L_ShipDate>=TO_DATE('1994-01-01')  
   AND L_ShipDate<TO_DATE('1995-01-01')  
   AND L_Discount BETWEEN 0.05 AND 0.07 
   AND L_Quantity<24 
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The new query, rewritten by the MOBAT middleware and submitted to 

the DBMS is as follows: 

SELECT SUM((L_ExtendedPrice +  
            MOD(MOD(L_KeyK3,9342),51234)-51234)  
            *(L_Discount+MOD(MOD(L_KeyK3,9342),4)-4))  
       AS Revenue 
  FROM LineItem  
 WHERE L_ShipDate>=TO_DATE('1994-01-01')  
   AND L_ShipDate<TO_DATE('1995-01-01')  
   AND (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4) 
         BETWEEN 0.05 AND 0.07  
   AND (L_Quantity+MOD(MOD(L_KeyK3,9342),12)-12)<24 

As shown in the example, query parsing and rewriting is a 

straightforward operation, replacing each masked column with their 

respective unmasking Formula (2). This is valid for any type of query, 

including equality and range queries, as well as built in functions. These 

changes to the queries are handled transparently by the middleware and 

kept hidden from the users. Only the query results are returned to the 

user interface. 

4.3 Security Issues 

In this section we discuss the security issues concerning the use of the 

proposed data masking technique. We present the threat model, explain 

why we use the MOD operator as the base operation for the masking 

expression and highlight the advantages of having data-at-rest masked at 

all times, and describe the attack costs for breaking MOBAT’s security. 

4.3.1 Threat Model  

All user queries and instructions that come through are managed by the 

MOBAT middleware, which transparently parses and rewrites them to 

query the DBMS and retrieve the intended results. The stored copy of 

those commands can never be changed or erased, and users never see the 

rewritten instructions. For security purposes, any historical logging on 

the DBMS should be shut off or made secure (e.g. via encryption) before 

requesting the execution of the rewritten instructions, so that they are not 

stored in the DBMS as plain text, since this would disclose the masking 

keys. Note that for security auditing and to be able to comply with legal 

auditing regulations, the MOBAT command log always stores a copy of 
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all the issued user commands. All communications between user 

applications, the MOBAT middleware and the DBMS are performed 

through encrypted SSL/TLS connections.  In what concerns the Black Box, 

all contents are encrypted using the standard AES 256 bit algorithm, 

making it as secure in this aspect as any other similar encryption solution 

for stored data (e.g. Oracle 11g TDE and Microsoft SQL Server 2008 TDE). 

The MOBAT middleware allows any user with administration privileges 

to query the read-only historical command log, so anyone can watch over 

anyone to check for misuse. All database access is controlled by the 

middleware, extracting the predefined data access policies in the first 

instantiation with the database to mask, from the data access policies 

previously defined using the DBMS. Subsequent changes in data access 

policies by DBAs must be done through the MOBAT middleware. As 

these changes are also stored in the Black Box history command log, 

changes in data access policies with the purpose of executing malicious 

actions can always be checked.  

The only allowed access to the masking keys in the Black Box is done by 

the middleware, which is managed only by the middleware itself. We 

assume that the DBMS is a trusted server because it is expected to 

correctly execute the SQL commands that are sent to it. However, we 

consider the database as untrusted as it may be compromised by an 

attacker able to bypass the network and MOBAT access controls, gaining 

direct access to the database itself. We also assume that the MOBAT 

expressions are public, so the attacker can replicate the masking and 

unmasking mechanisms, meaning that the goal of the attacker is to obtain 

the private masking keys in order to break security. 

4.3.2 Using Column Datatype Key Lengths and Consecutive MOD 
Operations 

In order to minimize the impact in data storage space and query response 

time overheads, the private keys for each column have the same length as 

the defined column datatype. Although this might imply using small 

sized keys and make the masking expression to produce a small amount 

of possible distinct outputs, it should not be very significant from a 

practical perspective. For example, if the masked column has a bit 

datatype, there is no point in generating masked values in a range of 
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[0…2128], since the attacker probably knows a priori that it can only hold a 

0 or 1 by observing the column’s name. Given that the best practices in 

DWs suggest using meaningful names for the columns in the database 

tables for the sake of readability [Kimball and Ross, 2013], this also 

suggests that there is not much to gain in incrementing the size of the 

masked output range of values because this will probably not imply an 

increase of the level of security strength. 

As previously mentioned, the MOD operator is used as the main 

operation in the masking expression because it is non-injective, given that 

for X MOD Y = Z, the same output Z, considering Y as a constant, can 

have an undetermined number of possibilities in X as an input that will 

generate the same value Z. This is illustrated in Section 4.1 (Table 4-1), 

where the same original values originate different masked values and 

vice-versa. Since MOD operations are non-injective, the masked outputs 

are also non-injective. Given that injectivity is a required property for 

invertibility, the proposed masking expression is thus not directly 

invertible, enforced by using two consecutive MOD operations. Thus, the 

objective of the attacker should be focused on obtaining the private 

masking keys in order to break security. 

4.3.3 Data-at-rest is Always Masked 

Since MOBAT operates simply by rewriting SQL commands to be 

processed against the data, this enables running SQL directly against the 

masked data, which means that the data-at-rest stored within the 

database files is masked at all times. 

This also means that even if someone gains direct access to the database, 

s/he will only see masked data values. As the masked values are realistic-

looking and maintain their original column datatypes, if an attacker was 

to query the database s/he would view expected values, although they 

would be incorrect. This means that MOBAT would potentially be able to 

produce misleading effects against attackers. 

4.3.4 Attack Costs on MOBAT 

As known (and as we assume the attackers have access to the masking 

expression), the level of security of data masking or encryption solutions 

does not depend on its secrecy, but on its keys [Elminaam et al., 2010; 
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Nadeem and Javed, 2005]. The quality of each set of operations in 

achieving the intended “data mix” affects the performance of the 

algorithm. Thus, there is always a tradeoff between security and 

performance in these algorithms, because the achievement of higher 

complexity often implies the consumption of a higher amount of 

resources and processing time.  

As mentioned before, there keys are used in our proposal: K1 is a unique 

value generated once for each table and made constant for all values to 

mask in that table; K2 is a unique value generated once for each column in 

each table and made constant for all values to mask in that column; and 

K3 is a value generated for each row in the table, made constant for all the 

values in the columns to mask in that row. Since K3 is public (given that it 

is stored in the fact table), only key values K1 and K2 need to be 

discovered for retrieving the real data values.  

K1 is a 16 byte integer key, i.e., a set of 128 bits. K2 depends on the 

maximum storage size defined for each column, typically varying 

between 1 and 128 bits. This means that our technique implies a 

minimum of 2129 key combinations, for K1 and K2 together (at least 16 

bytes + 1 bit), and roughly needs an average number of 2128 tests (half of 

the total amount of possible brute force tests = 50% chance) for 

discovering the keys using brute force, for each masked column in the 

table, since K2 is column dependant. Consequently, the minimum number 

of combinations needed to discover all the needed key values for a i 

number of columns is i * 2129, resulting in an average of i * 2128  i * 3.4 x 

1038 brute force tests in order to discover the keys. 

This is however the worst case scenario for the attacker and executing a 

chosen ciphertext attack would allow the attacker to reduce the key 

search space in the following way (considering the masking expression 

defined in Formula (1)):  

Consider x’1,i and x’2,i as the masked values for two given rows 

(respectively 1 and 2) of column i and x1,i and x2,i as their respective 

original true values, i.e., x’1, i = (R1, Ci)’, x’2, i = (R2, Ci)’, x1, i = (R1, Ci), and x2, 

i = (R2, Ci). In this case, 

x’1, i = x1, i – ((K3, 1 MOD K1) MOD K2, i) + K2, i  

x’2, i = x2, i – ((K3, 2 MOD K1) MOD K2, i) + K2, i   
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Knowing that K3, j is a public value key, if the attacker chooses two 

masked outputs where K3, j have very small values (close to zero), then it 

is highly probable that those values are smaller than the K1 private key, 

i.e., K3, 1 < K1 and K3, 2 < K1. In this case, the masking expression would be 

reduced to: 

x’1, i = x1, i – (K3, 1 MOD K2, i) + K2, i  

x’2, i = x2, i – (K3, 2 MOD K2, i) + K2, i   

where all values are known except for the private key K2, i. 

Building up an expression with the difference between both variables, we 

have: 

(x’1, i – x’2, i) = (x1, i – (K3, 1 MOD K2, i) + K2, i) – (x2, i – (K3, 2 MOD K2, i) + K2, i) 

  = (x1, i – (K3, 1 MOD K2, i)) – (x2, i – (K3, 2 MOD K2, i)) 

Finally, isolating the expressions with known values from those having 

unknown values: 

(x’1, i – x’2, i) – (x1, i – x2, i) = (K3, 1 MOD K2, i – K3, 2 MOD K2, i) 

which would significantly reduce the search space for K2, i. After breaking 

K2, i the attacker could then discover K1 in a similar manner by using the 

original expressions of Formula (1) for the masked values. 

To evaluate the database performance when using the proposed masking 

solution, the following section presents experimental results obtained by 

MOBAT against standard and state-of-the-art encryption solutions. 

4.4 Experimental Evaluation 

To evaluate the proposed masking technique, we used the TPC-H 

decision support benchmark [TPC-H] (1GB and 10GB scale sizes) and a 

real-world sales DW storing one year of commercial data taking up 2GB 

of storage space (full description of TPC-H can be found in [TPC-H 

Specifications], while full description of the sales DW including its 

description, size, data schema and query workload can be seen in 

Appendix A). We tested all scenarios using the Oracle 11g and Microsoft 

SQL Server 2008 R2 DBMS with default settings, on a Pentium IV 2.8GHz 

CPU with a 1.5TB SATA hard disk and 2GB of RAM, 512MB of which 

devoted to the database memory cache. Oracle 11g ran on Windows XP 

Professional, while SQL Server ran on Windows 2003 Server. 
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Although we include experiments from both DBMS, it is not our aim to 

compare the results between the DBMS, but rather to compare the 

performance of each standard and research solution with that of MOBAT 

within the same DBMS. 

The columns chosen for testing the masking solution were those referring 

to numerical datatype columns belonging to the fact tables. The database 

schema of TPC-H has one fact table (LineItem), and seven dimension 

tables. The Sales DW database schema has one fact table (Sales) and four 

dimension tables connected to it. In the TPC-H setups, four columns of 

LineItem were masked (L_Quantity, L_ExtendedPrice, L_Tax and 

L_Discount), given that they are the numerical fact columns. In the Sales 

DW, five numerical columns were masked (S_ShipToCost, S_Tax, 

S_Quantity, S_Profit, and S_SalesAmount), for the same reasons. 

Since our solution is column-based, for fairness we compare it with 

column-based AES128 and 3DES168 encryption algorithms. Note that 

tablespace encryption has functional primitives that speedup 

performance, which makes it unfair to compare it with column-based 

techniques [Huey, 2008; Oracle, 2010a]. Moreover, best practices for 

encryption in the documentation from both DBMSs [Huey, 2008; Oracle, 

2010a] recommend using column-based encryption when the sensitive 

data consists on a small number of well-defined columns. We used the 

AES128 and 3DES168 Transparent Data Encryption (TDE) algorithms 

provided by both DBMS for comparison because they are, respectively, 

the fastest and slowest available algorithms in those DBMS [Huey, 2008; 

Oracle, 2010a], and OPES [Agrawal et al., 2004] and Salsa20/20 [Bernstein, 

2005; Bernstein, 2008]. OPES and Salsa20 were implemented using C#. 

Table 4-2 shows the experimental encryption/masking scenarios. The 

results for MOBAT where the new K3, j masking key columns are added to 

the fact tables are referenced as MOBAT_AddCol; and the results for 

MOBAT where the K3, j columns are added in the fact tables from the start 

and completely rebuilt are referenced as MOBAT_CreateCol. The results 

for the tests using an existing table column as K3, j instead of adding a new 

column to the fact table is referred as MOBAT_ColKey, where L_OrderKey 

and S_SaleID are used as CZ in the TPC-H and real-world sales DW, 

respectively; i.e., each value of L_OrderKey and S_SaleID in each row j of 

tables LineItem and Sales, respectively, function as K3, j for MOBAT.  
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Table 4-2. Experimental Encryption/Masking Scenarios 

Reference/Label Description 

Standard Standard data without masking/encryption 

AES128 Col Data encrypted with TDE AES 128 bit key column encryption 

3DES168 Col Data encrypted with TDE 3DES168 column encryption 

OPES Data encrypted with Order-Preserving Encryption [Agrawal et al., 2004] 

Salsa20 Data encrypted with Salsa20/20 encryption [Bernstein, 2008] 

MOBAT AddCol 
Data masked by MOBAT formula (1), where a column for masking keys 
K3, j has been added to the existing fact table 

MOBAT CreateCol 
Data masked by MOBAT formula (1), where a column for masking keys 
K3, j was added to the fact table, which has been completely recreated 

MOBAT ColKey 
Data masked by MOBAT formula (1), using a numerical column from 
the original fact table data structure as key K3, j 

All loading time and query response time results shown in this section 

are an average of six executions in each described setup/scenario. Given 

the resulting standard deviations are relatively small assures that this 

number of executions if sufficient enough to be representative for 

comparisons. The complete set of results and respective statistical 

measures can be seen in Appendix B. 

4.4.1 Analyzing Storage Space 

Figures 4-2a and 4-2b respectively show the results of total data storage 

space (in MB) and percentage of storage space overhead for loading the 

TPC-H 1GB LineItem fact table in Oracle, while Figures 4-3a and 4-3b 

show the same results in SQL Server. To execute the loading processes, all 

indexes were dropped on the fact tables.  

As shown, the standard storage space for the TPC-H LineItem fact table 

without using any sort of encryption or masking solution takes up 772MB 

of storage space in Oracle and 1237MB of storage space in SQL Server. 

There is a significant difference in the standard data storage space sizes 

between the DBMS because they have distinct ways of storing data, in 

which Oracle standardly uses a type of compression algorithm while SQL 

Server does not.  

Note that the resulting values registered for MOBAT refer to 

MOBATAddCol (adding a column to the fact table) and MOBATCreateCol 

(recreating the fact table with the addition of a column), involving the 
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creation of an extra public key column (referred to as K3,j as described in 

the previous sections). The MOBAT ColKey setup (in which the column 

used as the public key column is a column that originally belongs to the 

fact table) is not included, since it does not require changing the fact table 

data structure to handle the implementation of MOBAT. Thus, the 

overhead for MOBATColKey is actually inexistent, making it the best 

technique in what concerns avoiding storage space overhead. 

Oracle TPC-H 1GB 

LineItem Fact Table Storage Size (MB) 

Oracle TPC-H 1GB 

LineItem Storage Size Overhead (%) 

 

      

 

        
 

Figure 4-2a. Storage Size in Oracle 

for the TPC-H 1GB Fact Table per 

Solution 

 

Figure 4-2b. Storage Overhead (%) 

in Oracle for the TPC-H 1GB Fact 

Table per Solution 

 

SQL Server TPC-H 1GB 

LineItem Fact Table Storage Size (MB) 

SQL Server TPC-H 1GB 

LineItem Storage Size Overhead (%) 

 

      

 

        
 

Figure 4-3a. Storage Size in SQL 

Server for the TPC-H 1GB Fact Table 

per Solution 

 

Figure 4-3b. Storage Overhead (%) 

in SQL Server for the TPC-H 1GB 

Fact Table per Solution 
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As shown, OPES and MOBAT produce much smaller storage space 

overheads than the remaining solutions. OPES shows a 2% overhead for 

both DBMS, corresponding to an extra 18MB of storage space in Oracle 

and 21MB in SQL Server, and 12% and 8% overhead for MOBAT 

respectively in Oracle and SQL Server, corresponding to an extra 96MB 

and 102MB of storage space. OPES produces a small storage space 

overhead because the smallest and largest gaps between the sorted values 

for its target distributions are mostly small in the TPC-H database. This 

attests what is explained in [Agrawal et al., 2004], where the authors 

express that they would expect a small increase of the required space for 

the ciphertexts. 

Salsa20 introduces more storage space overhead than OPES and MOBAT, 

namely 38% in Oracle, corresponding to adding 292MB, and 26% in SQL 

Server, which adds 316MB of extra storage space. The standard 

encryption solutions produce the highest overhead, with AES being the 

worst by requiring 154% in Oracle and 95% in SQL Server of storage 

space overhead, corresponding to respectively adding 1188MB and 

1173MB and 154%, while 3DES168 produced a storage space overhead of 

104% in Oracle and 76% in SQL Server, respectively corresponding to 

800MB and 944MB of extra storage space. 

Figures 4-4a and 4-4b respectively show the results of total data storage 

space (in MB) and percentage of storage space overhead for loading the 

TPC-H 10GB LineItem fact table in Oracle, while Figures 4-5a and 4-5b 

show the same results in SQL Server. Figures 4-4a to 4-5b show that the 

extra storage space added to the 10GB database by each solution is 

approximately proportional to those of the 1GB database, which means 

ten times bigger. Thus, the analysis of the results for the 10GB sized TPC-

H database is similar to that of the 1GB sized TPC-H database.  
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Oracle TPC-H 10GB 

LineItem Fact Table Storage Size (MB) 

Oracle TPC-H 10GB 

LineItem Storage Size Overhead (%) 

 

       

 

        
 

Figure 4-4a. Storage Size in Oracle 

for the TPC-H 10GB Fact Table     

per Solution 

 

Figure 4-4b. Storage Overhead (%) 

in Oracle for the TPC-H 10GB Fact 

Table per Solution 

 
SQL Server TPC-H 10GB 

LineItem Fact Table Storage Size (MB) 

SQL Server TPC-H 10GB 

LineItem Storage Size Overhead (%) 

 

        

 

         
 

Figure 4-5a. Storage Size in SQL 

Server for the TPC-H 10GB Fact Table 

per Solution 

 

Figure 4-5b. Storage Overhead (%) 

in SQL Server for the TPC-H 10GB 

Fact Table per Solution 

Figures 4-6a and 4-6b show the total data storage space (in MB) and 

percentage of storage space overhead for loading the Sales DW fact table 

in Oracle, while Figures 4-7a and 4-7b show the same results in SQL 

Server. It can be seen that the standard storage space for the Sales fact 

table without using any encryption or masking solution takes up 1664MB 

of storage space in Oracle and 1932MB of storage space in SQL Server. 
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Oracle Sales DW 2GB 

Sales Fact Table Storage Size (MB) 

Oracle Sales DW 2GB 

Sales Storage Size Overhead (%) 

 

        

 

        
 

Figure 4-6a. Storage Size in Oracle 

for the Sales DW Fact Table           

per Solution 

 

Figure 4-6b. Storage Overhead (%) 

in Oracle for the Sales DW Fact 

Table per Solution 

 
SQL Server Sales DW 2GB 

Sales Fact Table Storage Size (MB) 

SQL Server Sales DW 2GB 

Sales Storage Size Overhead (%) 

 

        

 

        
 

Figure 4-7a. Storage Size in SQL 

Server for the Sales DW Fact Table  

per Solution 

 

Figure 4-7b. Storage Overhead (%) 

in SQL Server for the Sales DW Fact 

Table per Solution 

As shown in Figures 4-6a to 4-7b, OPES and MOBAT continue to produce 

much smaller storage space overheads than the remaining solutions, 

similarly to the occurred with TPC-H. OPES shows a 4% overhead for 

both DBMS, corresponding to an extra 64MB of storage space, and 

MOBAT presents 25% and 33% overhead respectively in Oracle and SQL 

Server, corresponding to an extra 415MB and 636MB of storage space. 

OPES continues to present the best results because of the same reasons 

that were previously mentioned, i.e., the data values in the Sales DW 
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allow it to generate target distributions which do not require much 

additional space to store the ciphertexts. 

Salsa20 also introduces more storage space overhead than OPES and 

MOBAT, namely 88% in Oracle, corresponding to adding 1464MB, and 

94% in SQL Server, which adds 1818MB of extra storage space. The 

standard encryption solutions produce the highest overhead, with AES 

also being the worst by requiring 462% in Oracle and 591% in SQL Server 

of storage space overhead, corresponding to respectively adding 7688MB 

and 11424MB of storage space, while 3DES168 produced a storage space 

overhead of 308% in Oracle and 390% in SQL Server, respectively 

corresponding to 5125MB and 7532MB of extra storage space. 

Tables 4-3, 4-4 and 4-5 summarize the fact table storage space results 

respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for each 

DBMS, highlighting the best solutions in each case. 

Table 4-3. TPC-H 1GB Lineitem Fact Table Storage Size Overhead 

 

 

Oracle TPC-H 1GB  

Storage Size (Overhead) 

SQL Server TPC-H 1GB  

Storage Size (Overhead) 

Standard 772MB 1237MB 

AES128/256 1960MB (+1188MB / 154%) 2410MB (+1173MB / 95%) 

3DES168 1572MB (+800MB / 104%) 2181MB (+944MB / 76%) 

OPES 790MB (+18MB / 2%) 1258MB (+21MB / 2%) 

Salsa20 1064MB (+292MB / 38%) 1553MB (+316MB / 26%) 

MOBAT 868MB (+96MB / 12%) 1339MB (+102MB / 8%) 

 

Table 4-4. TPC-H 10GB Lineitem Fact Table Storage Size Overhead 

 

 

Oracle TPC-H 10GB  

Storage Size (Overhead) 

SQL Server TPC-H 10GB  

Storage Size (Overhead) 

Standard 7712MB 12272MB 

AES128/256 19580MB (+11868MB / 154%) 23909MB (+11637MB / 95%) 

3DES168 15704MB (+7992MB / 104%) 21637MB (+9365MB / 76%) 

OPES 7892MB (+180MB / 2%) 12480MB (+208MB / 2%) 

Salsa20 10629MB (+2917MB / 38%) 15407MB (+3135MB / 26%) 

MOBAT 8671MB (+959MB / 12%) 13284MB (+1012MB / 8%) 
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Table 4-5. Sales DW 2GB Fact Table Storage Size Overhead 

 

 

Oracle Sales DW 2GB  

Storage Size (Overhead) 

SQL Server Sales DW 2GB  

Storage Size (Overhead) 

Standard 1664MB 1932MB 

AES128/256 9352MB (+7688MB / 462%) 13356MB (+11424MB / 591%) 

3DES168 6789MB (+5125MB / 308%) 9464MB (+7532MB / 390%) 

OPES 1726MB (+62MB / 4%) 2005MB (+73MB / 4%) 

Salsa20 3128MB (+1464MB / 88%) 3750MB (+1818MB / 94%) 

MOBAT 2079MB (+415MB / 25%) 2568MB (+636MB / 25%) 

 

4.4.2. Analyzing Loading Time 

In this subsection, we analyze the loading time for populating the fact 

table of each DW, which is affected by both the execution of the masking 

or encryption processes and the need to write additional data taking up 

extra storage space. Figures 4-8a and 4-8b respectively show the results of 

total loading time (in seconds) and percentage of time overhead for 

loading the TPC-H 1GB LineItem fact table in Oracle, while Figures 4-9a 

and 4-9b show the same results in SQL Server. It can be observed that the 

standard loading time for the TPC-H LineItem fact table without using 

any sort of encryption solution is 310 seconds in Oracle and 212 seconds 

in SQL Server. 

As shown in the figures, MOBAT produces much smaller loading time 

overheads than the remaining solutions, introducing between 3% and 8% 

of overhead in both DBMS, respectively corresponding to adding 

between 6 and 25 seconds of loading time. OPES comes after MOBAT in 

loading time performance, showing an overhead of 49% in Oracle and 

44% in SQL Server, which respectively correspond to adding 151 and 93 

seconds. Salsa20 introduces more loading time overhead than OPES and 

MOBAT, namely 73% in Oracle, corresponding to adding 227 seconds, 

and 70% in SQL Server, which adds 149 seconds of extra loading time.  
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Oracle TPC-H 1GB 

LineItem Fact Table Loading Time (sec) 

Oracle TPC-H 1GB 

LineItem Loading Time Overhead (%) 

 

     

 

          
 

Figure 4-8a. Loading Time in Oracle 

for the TPC-H 1GB Fact Table per 

Solution 

 

Figure 4-8b. Loading Time Overhead 

(%) in Oracle for the TPC-H 1GB Fact 

Table per Solution 

 

SQL Server TPC-H 1GB 

LineItem Fact Table Loading Time (sec) 

SQL Server TPC-H 1GB 

LineItem Loading Time Overhead (%) 

 

    

 

           
 

Figure 4-9a. Loading Time in SQL 

Server for the TPC-H 1GB Fact Table 

per Solution 

 

Figure 4-9b. Loading Time Overhead 

(%) in SQL Server for the TPC-H 1GB 

Fact Table per Solution 
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Similarly to what occurred with storage space, the standard encryption 

solutions produced the highest loading time overheads. AES with 128 bit 

security produced 190% in Oracle and 123% in SQL Server, respectively 

corresponding to adding 589 and 260 seconds to the standard loading 

time. AES with 256 bit security shows an overhead of 209% in Oracle and 

139% in SQL Server, respectively corresponding to 648 and 295 seconds of 

extra loading time. 3DES168 introduces 192% loading time overhead in 

Oracle, corresponding to adding 596 seconds, and 129% in SQL Server, 

which adds 273 seconds of extra loading time. 

Figures 4-10a and 4-10b respectively show the results of total loading 

time (in seconds) and percentage of loading time overhead for loading 

the TPC-H 10GB LineItem fact table in Oracle, while Figures 4-11a and 4-

11b show the same results in SQL Server. 

From observing the results in Figures 4-10a to 4-11b, it can be seen that 

the extra loading time added to the 10GB database by each encryption 

solution is approximately over-proportional to those of the 1GB database, 

as occurred with the storage space, which means slightly over ten times 

bigger. Thus, the analysis of the results for the 10GB sized TPC-H 

database is also similar to that of the 1GB sized TPC-H database. 

Oracle TPC-H 10GB 

LineItem Fact Table Loading Time (sec) 

Oracle TPC-H 10GB 

LineItem Loading Time Overhead (%) 

 

      

 

             
 

Figure 4-10a. Loading Time in 

Oracle for the TPC-H 10GB Fact 

Table per Solution 

 

Figure 4-10b. Loading Time Overhead 

(%) in Oracle for the TPC-H 10GB Fact 

Table per Solution 



MOBAT: A Data Masking Solution for Data Warehouses 

 

113 

SQL Server TPC-H 10GB 

LineItem Fact Table Loading Time (sec) 

SQL Server TPC-H 10GB 

LineItem Loading Time Overhead (%) 

 

      

 

           
 

Figure 4-11a. Loading Time in SQL 

Server for the TPC-H 10GB Fact Table 

per Solution 

 

Figure 4-11b. Loading Time Overhead 

(%) in SQL Server for the TPC-H 

10GB Fact Table per Solution 

Figures 4-12a and 4-12b respectively show the results of total loading 

time (in seconds) and percentage of time overhead for loading the Sales 

DW fact table in Oracle, while Figures 4-13a and 4-13b show the same 

results in SQL Server. It can be seen that the standard loading time for the 

Sales fact table without using any encryption solution is 1195 seconds in 

Oracle and 1247 seconds in SQL Server. 

As seen in both figures, MOBAT continues to produce much smaller 

loading time overheads than the remaining solutions, similarly to the 

occurred with TPC-H. MOBAT AddCol shows 15% and 16% overhead in 

Oracle and SQL Server, respectively corresponding to an extra 178 and 

200 seconds in loading time. MOBAT CreateCol shows 9% and 10% in 

Oracle and SQL Server, corresponding to adding 113 seconds in Oracle 

and 120 seconds in SQL Server, and when using MOBAT ColKey the 

loading time overhead was 5% in Oracle and 6% in SQL Server, 

corresponding to 65 seconds of extra loading time in Oracle and 71 

seconds of extra loading time in SQL Server. 
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Oracle Sales DW 2GB 

Sales Fact Table Loading Time (sec) 

Oracle Sales DW 2GB 

Sales Loading Time Overhead (%) 

 

    

 

          
 

Figure 4-12a. Loading Time in 

Oracle for the Sales DW Fact Table 

per Solution 

 

Figure 4-12b. Loading Time 

Overhead (%) in Oracle for the Sales 

DW Fact Table per Solution 

 

SQL Server Sales DW 2GB 

Sales Fact Table Loading Time (sec) 

SQL Server Sales DW 2GB 

Sales Loading Time Overhead (%) 

 

    

 

          
 

Figure 4-13a. Loading Time in SQL 

Server for the Sales DW Fact Table per 

Solution 

 

Figure 4-13b. Loading Time 

Overhead (%) in SQL Server for the 

Sales DW Fact Table per Solution 
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OPES comes after MOBAT in loading time performance, showing a 61% 

overhead in Oracle and 57% in SQL Server, respectively corresponding to 

an extra 734 seconds and 716 seconds of loading time, and Salsa20 

presents 102% and 97% overhead for respectively in Oracle and SQL 

Server, corresponding to 1213 and 1212 seconds of extra loading time. 

The standard encryption solutions continue to produce the highest 

overhead, where AES with 128 bit security produced 199% in Oracle and 

159% in SQL Server, respectively corresponding to adding 2379 and 1985 

seconds to the standard loading time. AES with 256 bit security shows an 

overhead of 210% in Oracle and 171% in SQL Server, respectively 

corresponding to 2504 and 2134 seconds of extra loading time. 3DES168 

introduces 209% loading time overhead in Oracle, corresponding to 

adding 2500 seconds, and 168% in SQL Server, which adds 2092 seconds 

of extra loading time. 

Tables 4-6, 4-7 and 4-8 summarize the fact table loading time results (in 

hh:mm:ss format) respectively for the TPC-H 1GB, TPC-H 10GB and Sales 

DW, for each DBMS, highlighting the best solutions in each case. 

Table 4-6. TPC-H 1GB Lineitem Fact Table Loading Time Overhead 

 

 

Oracle TPC-H 1GB  

Loading Time (Overhead) 

SQL Server TPC-H 1GB  

Loading Time (Overhead) 

Standard Loading Time 00:05:10 00:03:32 

AES128 00:14:59 (00:09:49 / 190%)  00:07:52 (00:04:20 / 123%) 

AES256 00:15:58 (00:10:48 / 209%)  00:08:27 (00:04:55 / 139%) 

3DES168 00:15:06 (00:09:56 / 192%)  00:08:05 (00:04:33 / 129%) 

OPES 00:07:41 (00:02:31 / 49%)  00:05:05 (00:01:33 / 44%) 

Salsa20 00:08:57 (00:03:47 / 73%)  00:06:01 (00:02:29 / 70%) 

MOBAT AddCol 00:05:35 (00:00:25 / 8%)  00:03:47 (00:00:15 / 7%) 

MOBAT CreateCol 00:05:23 (00:00:13 / 4%)  00:03:41 (00:00:09 / 4%) 

MOBAT ColKey 00:05:18 (00:00:08 / 3%)  00:03:38 (00:00:06 / 3%) 
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Table 4-7. TPC-H 10GB Lineitem Fact Table Loading Time Overhead 

 

 

Oracle TPC-H 10GB  

Loading Time (Overhead) 

SQL Server TPC-H 10GB  

Loading Time (Overhead) 

Standard Loading Time 00:53:31 00:37:52 

AES128 02:49:45 (01:56:14 / 217%) 01:31:24 (00:53:32 / 141%) 

AES256  03:05:14 (02:11:43 / 246%)  01:43:49 (01:05:57 / 174%) 

3DES168  02:53:44 (02:00:13 / 225%)  01:33:55 (00:56:03 / 148%) 

OPES  01:22:23 (00:28:52 / 54%)  00:55:25 (00:17:33 / 46%) 

Salsa20  01:38:01 (00:44:30 / 83%)  01:08:08 (00:30:16 / 80%) 

MOBAT AddCol  00:59:57 (00:06:26 / 12%)  00:42:30 (00:04:38 / 12%) 

MOBAT CreateCol  00:57:29 (00:03:58 / 7%)  00:40:34 (00:02:42 / 7%) 

MOBAT ColKey  00:56:02 (00:02:31 / 5%)  00:39:41 (00:01:49 / 5%) 

 

Table 4-8. Sales DW 2GB Fact Table Loading Time Overhead 

 

 

Oracle Sales DW 2GB  

Loading Time (Overhead) 

SQL Server Sales DW 2GB  

Loading Time (Overhead) 

Standard Loading Time  00:19:55 00:20:47 

AES128 00:59:34 (00:39:39 / 199%)  00:53:52 (00:33:05 / 159%) 

AES256  01:01:39 (00:41:44 / 210%)  00:56:21 (00:35:34 / 171%) 

3DES168 01:01:35 (00:41:40 / 209%)  00:55:39 (00:34:52 / 168%) 

OPES  00:32:09 (00:12:14 / 61%)  00:32:43 (00:11:56 / 57%) 

Salsa20  00:40:08 (00:20:13 / 102%)  00:40:59 (00:20:12 / 97%) 

MOBAT AddCol  00:22:53 (00:02:58 / 15%)  00:24:07 (00:03:20 / 16%) 

MOBAT CreateCol  00:21:48 (00:01:53 / 9%)  00:22:47 (00:02:00 / 10%) 

MOBAT ColKey  00:21:00 (00:01:05 / 5%)  00:21:58 (00:01:11 / 6%) 

 

4.4.3. Analyzing Query Performance 

To analyze the query performance of the masking technique and the 

selected encryption algorithms, we defined a query workload for each 

database. The TPC-H workload included the benchmark queries 1, 3, 6, 7, 

8, 10, 12, 14, 15, 17, 19 and 20 (which correspond to all queries in TPC-H 

that access the LineItem fact table). For the Sales DW, the workload was a 

set of 29 queries, all processing the Sales fact table, as a set of usual 

decision support reports, gathering daily (9 queries), monthly (9 queries) 

and annual (11 queries) values, including actions such as row selection, 
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joining, aggregates, and ordering. These queries represent typical 

reporting workloads against the fact table for each database. For fairness, 

databases were optimized in a best practice manner (including primary 

keys, foreign keys, and referential integrity constraints and join indexes).  

As previously mentioned, all response time results are an average 

obtained from six executions in each scenario on each DBMS. The 

standard execution time (average of the execution times of the workload 

against a non-encrypted database) for each scenario is 625, 6155, and 2233 

seconds in Oracle 11g, and 580, 5301, and 2211 seconds in SQL Server 

2008, for the 1GB, 10GB TPC-H and Sales DW, respectively. 

Figures 4-14a and 4-14b respectively show the total workload execution 

time and its overhead in Oracle and Figures 4-15a and 4-15b show the 

total workload execution time and overhead in SQL Server, for the TPC-

H 1GB database.  

It can be seen that MOBAT executes much faster than the remaining 

solutions, introducing overheads between 22% and 35% of query 

workload execution time in Oracle, respectively corresponding to adding 

between 138 and 221 seconds to total execution time, and overheads 

between 23% and 40% in SQL Server, respectively corresponding to 

adding between 132 and 233 seconds to total execution time.  

All the remaining encryption solutions are approximately leveled and 

present overheads between 176% and 203% in Oracle, corresponding to 

adding an extra 1102 to 1270 seconds to total execution time, and 

overheads between 163% and 195% in SQL Server, corresponding to 

adding an extra 943 to 1132 seconds to total execution time. Regarding 

these solutions, Salsa20 was the fastest with AES128 coming afterwards, 

followed by OPES and AES256, with 3DES168 as the slowest solution. 

This means that MOBAT produces overheads that are roughly one sixth 

of the encryption solutions, on average, in the chosen experimental 

setups. 
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Oracle TPC-H 1GB 

Query Workload Execution Time (sec) 

Oracle TPC-H 1GB 

Query Workload Exec. Time Overhead (%) 

 
     

 
          

 

Figure 4-14a. Query Workload 

Execution Time per Solution in 

Oracle for TPC-H 1GB 

 

Figure 4-14b. Query Workload 

Execution Time Overhead (%) per 

Solution in Oracle for TPC-H 1GB 

 

SQL Server TPC-H 1GB 

Query Workload Execution Time (sec) 

SQL Server TPC-H 1GB 

Query Workload Exec.Time Overhead (%) 

 
                

 

Figure 4-15a. Query Workload 

Execution Time per Solution in SQL 

Server for TPC-H 1GB 

 

Figure 4-15b. Query Workload 

Execution Time Overhead (%) per 

Solution in SQLServer for TPC-H 1GB 

Figures 4-16a and 4-16b respectively show the total workload execution 

time and its overhead in Oracle and Figures 4-17a and 4-17b show the 

total workload execution time and overhead in SQL Server, for the TPC-

H 10GB database. As can be observed, the results lead to similar results as 

those seen in the TPC-H 1GB database, in what concerns the ranking of 

the tested solutions. MOBAT remains the solution having the best 
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execution time, with lower overhead for all scenarios in both DBMS. 

When compared with the results for the TPC-H 1GB database, it can be 

seen that the differences between the solutions are slightly enforced with 

the higher amount of data that need to be processed in the 10GB scale 

size. 

Oracle TPC-H 10GB 

Query Workload Execution Time (sec) 

Oracle TPC-H 10GB 

Query Workload Exec. Time Overhead (%) 

 
     

 
          

 

Figure 4-16a. Query Workload 

Execution Time per Solution in 

Oracle for TPC-H 10GB 

 

Figure 4-16b. Query Workload 

Execution Time Overhead (%) per 

Solution in Oracle for TPC-H 10GB 

 

SQL Server TPC-H 10GB 

Query Workload Execution Time (sec) 

SQL Server TPC-H 10GB 

Query Workload Exec.Time Overhead (%) 

 
    

 
           

 

Figure 4-17a. Query Workload 

Execution Time per Solution in SQL 

Server for TPC-H 10GB 

 

Figure 4-17b. Query Workload Exec. 

Time Overhead (%) per Solution in 

SQLServer for TPC-H 10GB 
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Furthermore, MOBAT executes much faster than the remaining solutions, 

introducing overheads between 17% and 22% of query workload 

execution time in Oracle, respectively corresponding to adding between 

1063 and 1372 seconds to total execution time, and overheads between 

13% and 21% in SQL Server, respectively corresponding to adding 

between 680 and 1119 seconds to total execution time.  

All the remaining encryption solutions are approximately leveled and 

present overheads between 155% and 192% in Oracle, corresponding to 

adding an extra 9549 to 11818 seconds to total execution time, and 

overheads between 139% and 184% in SQL Server, corresponding to 

adding an extra 7390 to 9757 seconds to total execution time.  Regarding 

these solutions, Salsa20 continues being the fastest, followed by OPES, 

AES128 and AES256, with 3DES168 as the slowest solution. This means 

that MOBAT continues to produce overheads that are roughly one eighth 

to one tenth of the encryption solutions, on average, in the chosen 

experimental setups, similar to what occurred in the TPC-H 1GB. 

Figures 4-18a and 4-18b respectively show the total workload execution 

time and its overhead in Oracle and Figures 4-19a and 4-19b show the 

total workload execution time and overhead in SQL Server, for the Sales 

DW database. 

As shown, MOBAT also executes much faster than the remaining 

solutions in the Sales DW, introducing overheads between 78% and 128% 

of query workload execution time in Oracle, respectively corresponding 

to adding between 1733 and 2851 seconds to total execution time, and 

overheads between 64% and 124% in SQL Server, which respectively 

correspond to adding between 1426 and 2735 seconds to total execution 

time.  

 

 

 

 



MOBAT: A Data Masking Solution for Data Warehouses 

 

121 

Oracle Sales DW 

Query Workload Execution Time (sec) 

Oracle Sales DW 

Query Workload Exec. Time Overhead (%) 

 
     

 
          

 

Figure 4-18a. Query Workload 

Execution Time per Solution in 

Oracle for the Sales DW 

 

Figure 4-18b. Query Workload 

Execution Time Overhead (%) per 

Solution in Oracle for the Sales DW 

 

SQL Server Sales DW 

Query Workload Execution Time (sec) 

SQL Server Sales DW 

Query Workload Exec.Time Overhead (%) 

 
    

 
           

 

Figure 4-19a. Query Workload 

Execution Time per Solution in SQL 

Server for the Sales DW 

 

Figure 4-19b. Query Workload Exec. 

Time Overhead (%) per Solution in 

SQLServer for the Sales DW 

All the remaining encryption solutions continue approximately leveled 

and present overheads between 598% and 815% in Oracle, corresponding 

to adding an extra 13349 to 18192 seconds to total execution time, and 

overheads between 588% and 759% in SQL Server, corresponding to 

adding 13001 to 16773 seconds to total execution time.  Regarding these 

solutions, Salsa20 continues to be the fastest with OPES and AES128 
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coming afterwards, followed by AES256 and 3DES168 as the slowest 

solution. This means that MOBAT produces overheads that are roughly 

one sixth to one eighth of the encryption solutions, on average, in the 

chosen experimental setups. 

Tables 4-9, 4-10 and 4-11 summarize the query workload execution time 

results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for 

each DBMS, highlighting the best solutions in each case. 

Table 4-9. TPC-H 1GB Query Workload Execution Time Overhead 

 

 

Oracle TPC-H 1GB  

Execution Time (Overhead) 

SQL Server TPC-H 1GB  

Execution Time (Overhead) 

Standard Loading Time 00:10:25 00:09:40 

AES128 00:29:58 (00:19:33 / 188%) 00:26:31 (00:16:51 / 174%) 

AES256 00:30:37 (00:20:12 / 194%) 00:27:26 (00:17:46 / 184%) 

3DES168 00:31:35 (00:21:10 / 203%) 00:28:32 (00:18:52 / 195%) 

OPES 00:30:13 (00:19:48 / 190%) 00:27:09 (00:17:29 / 181%) 

Salsa20 00:28:47 (00:18:22 / 176%) 00:25:23 (00:15:43 / 163%) 

MOBAT AddCol 00:14:06 (00:03:41 / 35%) 00:13:33 (00:03:53 / 40%) 

MOBAT CreateCol 00:13:29 (00:03:04 / 29%) 00:12:55 (00:03:15 / 34%) 

MOBAT ColKey 00:12:43 (00:02:18 / 22%) 00:11:52 (00:02:12 / 23%) 

 

Table 4-10. TPC-H 10GB Query Workload Execution Time Overhead 

 

 

Oracle TPC-H 10GB  

Execution Time (Overhead) 

SQL Server TPC-H 10GB  

Execution Time (Overhead) 

Standard Loading Time 01:42:35 01:28:21 

AES128 04:42:07 (02:59:32 / 175%) 03:42:24 (02:14:03 / 152%) 

AES256 04:48:03 (03:05:28 / 181%) 03:50:46 (02:22:25 / 161%) 

3DES168 04:59:33 (03:16:58 / 192%) 04:10:58 (02:42:37 / 184%) 

OPES 04:41:29 (02:58:54 / 174%) 03:40:15 (02:11:54 / 149%) 

Salsa20 04:21:44 (02:39:09 / 155%) 03:31:31 (02:03:10 / 139%) 

MOBAT AddCol 02:05:27 (00:22:52 / 22%) 01:47:00 (00:18:39 / 21%) 

MOBAT CreateCol 02:01:54 (00:19:19 / 19%) 01:42:42 (00:14:21 / 16%) 

MOBAT ColKey 02:00:18 (00:17:43 / 17%) 01:39:41 (00:11:20 / 13%) 
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Table 4-11. Sales DW 2GB Query Workload Execution Time Overhead 

 

 

Oracle Sales DW 2GB  

Execution Time (Overhead) 

SQL Server Sales DW 2GB  

Execution Time (Overhead) 

Standard Loading Time 00:37:13 00:36:51 

AES128 04:53:24 (04:16:11 / 688%) 04:42:03 (04:05:12 / 665%) 

AES256 05:08:04 (04:30:51 / 728%) 04:57:07 (04:20:16 / 706%) 

3DES168 05:40:25 (05:03:12 / 815%) 05:16:24 (04:39:33 / 759%) 

OPES 04:51:05 (04:13:52 / 682%) 04:40:45 (04:03:54 / 662%) 

Salsa20 04:19:42 (03:42:29 / 598%) 04:13:32 (03:36:41 / 588%) 

MOBAT AddCol 01:24:44 (00:47:31 / 128%) 01:22:26 (00:45:35 / 124%) 

MOBAT CreateCol 01:13:55 (00:36:42 / 99%) 01:11:53 (00:35:02 / 95%) 

MOBAT ColKey 01:06:06 (00:28:53 / 78%) 01:00:37 (00:23:46 / 64%) 

 

To demonstrate the effects of using masking and encryption on each 

individual query, Figure 4-20 shows the results for individual query 

execution time in Oracle for the TPC-H 10GB scenarios, with a 

logarithmic scale. These results show that all queries have similar 

proportional overhead to those of the complete workload. This is also 

true for all the other scenarios, making it redundant to include all of 

them. Query Q1 presents the most significant results because it processes 

more than 90% of the fact table data, while the other process less than 

10%. It can be seen that mostly all queries processed using the encryption 

solutions have introduced overheads of several orders of magnitude 

higher than MOBAT, individually matching what has been shown in the 

total query workload results through Figures 4-14 to 4-19. 

The individual query execution times for the Sales DW are not included, 

given that this set of queries can produce a certain amount of insight as a 

whole (and shown in the total query workload execution graphs in 

Figures 4-18a to 4-19b), but should mainly not be considered as 

appropriate for individual analysis, since this DW is a specific real-world 

database and it is not a standard nor a benchmark. 
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Figure 4-20. TPC-H 10GB Individual Query Execution Time Overhead per Query 

per Solution in Oracle 11g 

4.5 Discussion on MOBAT 

Contrarily to typical commercial data masking tools which provide data 

masking routines that, once applied, do not allow reversing the 

operations to retrieve the original data, the technique proposed in this 

chapter manages full masking and unmasking processes. MOBAT 

accomplishes continuous data protection similarly to commercial 

masking tools, since it maintains data-at-rest masked at all times, and 

adds the advantage of enabling its usage in live databases. 

Basing the masking and unmasking processes simply on SQL rewriting 

enables executing direct queries against masked/unmasked data without 

having that data transferred between the database and the 

masking/unmasking mechanisms, thus avoiding the I/O and network 

bandwidth congestion that other solutions introduce due to those data 

roundtrips.  
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High-level SQL rewriting also makes MOBAT a straightforward portable 

technique to be universally used in any DBMS regardless of the CPU and 

operating system, contrarily to what occurs with most standard 

encryption packages supplied by DBMS. Most of these packages are CPU 

optimized, i.e., designed and programmed for specific processor models 

and therefore depending on those CPUs, meaning that they may fail to 

execute on other machines. MOBAT is completely processor-

independent, since all CPUs support basic modular and arithmetic 

operations. 

As we discussed before, while DW data is mainly composed by numerical 

values, standard encryption algorithms are designed to output generic 

textual values. In the encryption packages supplied by commercial 

DBMS, the output they produce is textual or varbinary type values (char, 

varchar, varbinary, etc). Given that most sensitive columns in DW fact 

tables store numerical values, using these packages to encrypt data 

requires converting those values to a textual or varbinary format. Once 

decrypted for processing, these values also must be transformed back into 

numerical format in order to apply arithmetical operations such as sums, 

averages, etc. This is a significant drawback, introducing extra 

computational overheads with evident impact in performance. MOBAT is 

specifically designed for masking numerical values, and in this sense, it is 

much more performance efficient for protecting DW facts. The data 

loading and query execution response time results shown in the 

experimental evaluations demonstrate this, and show that using 

encryption does in fact introduce extremely high storage space, loading 

time and query response time overhead. 

In what concerns storage space, OPES and MOBAT introduce much 

smaller storage space overheads than the remaining solutions (less than 

25% of extra storage space), followed by Salsa20 at a considerable 

difference (adding approximately 30% of storage space in TPC-H and 

almost 100% in the Sales DW), while the standard encryption solutions 

produce the highest storage space overheads by far. The standard 

encryption solutions introduce the highest overheads, roughly requiring 

duplicating the original database storage space for the TPC-H scenarios 

tested and between 308% and 591% of extra storage space in the Sales DW 

scenarios.  
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Note that in the best case scenarios for the standard encryption 

algorithms in TPC-H 10GB, an overhead of 104% in Oracle implies using 

more 8GB of storage space, and for an overhead of 308% in the Sales DW 

implies using more 5GB of storage space. OPES only requires a storage 

space overhead of 2% for TPC-H, which means that the worst case 

scenarios would imply using more 208MB of storage space in TPC-H 

10GB and 62MB in the Sales DW. MOBAT would require almost 1GB of 

extra storage space for the TPC-H 10GB worst case scenario, and 73MB of 

extra storage space for the Sales DW. Salsa20 requires approximately 

three times more storage space overhead than MOBAT, and ten to twenty 

times more than OPES. These results show that Salsa20 and the standard 

encryption solutions effectively introduce a much higher increase of extra 

storage space than OPES and MOBAT. 

In what concerns loading time, MOBAT is much faster than all the 

remaining solutions, introducing 3% to 16% of extra loading time in the 

tested scenarios. OPES has the second best performance, introducing 46% 

to 71% of extra loading time, more than four times worse than MOBAT 

on average. Salsa20 presents loading time overheads from 72% to 114%, 

on average roughly nine or ten times worse than MOBAT, while the 

standard encryption solutions introduce overheads of more than 100%, 

reaching more than 200% in several scenarios. In practice, while MOBAT 

introduces an extra 6 minutes of loading time in the worst case scenario, 

the standard algorithms introduce at least almost one hour of extra 

loading time. 

Considering the results obtained in the query workload executions, 

MOBAT is also much faster than the remaining solutions. By observing 

the results, it can be seen that the relative differences between the 

solutions are approximately proportional throughout the different 

scenarios, with MOBAT always as the fastest solution and therefore 

introducing the smallest execution time overheads by several orders of 

magnitude, roughly one sixth, on average, of the remaining solutions. In 

practice, MOBAT adds less than 12 minutes of extra execution time in all 

TPC-H 10GB and Sales DW scenarios, and the remaining solutions 

introduce at least 30 more minutes up to more than 2 hours.  

All the results in all scenarios and databases for both DBMS also show 

that the performance of CreateCol Masking is better than AddCol Masking, 
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which was expected. The performance results of ColKey Masking are the 

best, given the absence of changes in the original fact table data structure 

and size. 

Given that decision support environments typically execute long running 

queries (i.e., queries that can run for many minutes up to hours), the 

response time overheads introduced due to the use of encryption 

solutions represent high absolute values that can easily make query 

responses overdue and jeopardize the usefulness of the DW itself. 

Considering the magnitude of the results shown in the experimental 

evaluations, even a minimum gain in response/CPU time can be 

considered as an important achievement.  

Although not nearly as secure as standard or state-of-the-art encryption 

algorithms, the proposed data masking technique is able to provide at 

least acceptable security while requiring a small amount of computational 

resources, introducing small response time and storage space overhead. 

Moreover, it keeps the data-at-rest always masked. Assuming that 

implementing a minimum amount of security strength concerning data 

confidentiality is better than not implementing any security at all, this 

makes the proposed masking technique a feasible and valid alternative 

for data warehousing contexts in which minimizing response time is so 

critical that using encryption to protect the DW is not acceptable. 

Given that the proposed masking technique is straightforward and nearly 

effortless to implement, the masking keys may be periodically refreshed 

by rebuilding the masked table values, frequently switching the values of 

all or any one of the K1, K2, and K3 keys before refreshing masked data in 

order to ensure that data is properly protected. Although it is not possible 

to absolutely prove that a particular algorithm is absolutely secure 

[Elminaam et al., 2010; Ge and Zdonik, 2007; Kim et al., 2010; Mattson, 

2004; Nadeem and Javed, 2005; Natan, 2005], we believe that our 

technique is secure enough to be acceptable for use and that the small 

overheads introduced in both data loading and query execution 

performance are also acceptable, allowing us to state that it may be 

considered as a valid alternative for enhancing data confidentiality in 

DWs. 
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4.6 Summary 

In this chapter we proposed a data masking solution specifically designed 

for enhancing data confidentiality in DWs. The proposed data masking 

formula is composed by a set of two consecutive modulus (division 

remainder) operations and two simple arithmetic operations. It requires 

small computational efforts and can be easily implemented in any DBMS. 

The proposed solution is transparently used and to query the database 

the user interfaces only need to send their queries to a middleware 

instead of to the DBMS. Data at rest is always masked and only the 

processed results are returned to the authorized user interfaces that 

requested them. All SQL commands and actions are encrypted and stored 

in a log by the middleware security broker, which can be audited by 

security staff. If an attacker bypasses the broker and gains direct access to 

stored data, s/he just views masked “realistic-looking” but not real 

values. 

Since it basically works by transparently rewriting user queries, the 

approach minimizes the required changes to user applications, and does 

not jeopardize network bandwidth. The masked database can be directly 

used for production purposes, while applications under development 

may directly query the database without passing through the MOBAT 

application (e.g. for software testing purposes), therefore retrieving 

realistic data, but never the real data. This also avoids disclosure of the 

real original data if any attacker bypasses database access control and is 

able to retrieve data directly from the database. 

Although it was not conceived as a direct alternative to standard 

encryption solutions, we have compared it with the AES and 3DES 

encryption algorithms provided by leading commercial DBMS, as well as 

two state-of-the-art encryption proposals. The experimental results show 

that the storage space increase and the degradation of database 

performance in response time introduced by these standard and research 

solutions is very significant from the DW perspective. This enforces 

stating that those techniques are in fact too complex to be used in DW 

scenarios.  

Given that most DW data consists on numerical values, our masking 

technique is tailored for this kind of data, thus showing better database 

performance than the remaining encryption solutions, while managing to 
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maintain a significant level of security strength. Thus, it is an efficient 

overall solution and a valid alternative for balancing performance and 

security issues from the DW perspective. In the next chapter, we propose 

an encryption solution based on the masking solution that enhances its 

security while maintaining low performance overhead. 
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Chapter 5  

SES-DW: A Specific Encryption 
Solution for Data Warehouses 

As we discussed in Chapter 2 and demonstrated in Chapter 4, database 

storage size and response time overheads introduced by using encryption 

in very large databases such as DWs may jeopardize their feasibility. 

However, given the value of DW data, it is not advisable to avoid using 

encryption to secure that data just because of those overheads. This arises 

the need for encryption solutions that are capable of maintaining 

database performance as high as possible while providing significant 

security strength. Although the data masking solution proposed in the 

previous chapter provides some security strength, it is far from being a 

full-poof solution. Therefore, in this chapter we propose an encryption 

algorithm that computes a series of data transformations based on the 

data masking solution proposed in the previous chapter, which improves 

its security strength while maintaining low performance overhead. 

The proposed Specific Encryption Solution tailored for Data Warehouses 

(SES-DW) consists on a lightweight encryption cipher for numerical 

values, which uses only mixes of standard SQL operators such as 

eXclusive OR (XOR) and modulus (MOD, that return the remainder of a 

division expression), together with additions and subtractions, similarly 

to the data masking solution proposed in the previous chapter. Storage 

space overhead is also avoided by preserving each encrypted column’s 

datatype, while using only standard SQL operators enables the 

transparent use of SQL rewriting in order to avoid I/O and network 

bandwidth bottlenecks by discarding data roundtrips between the 

database and the encryption and decryption mechanisms (similarly to the 

masking solution presented in Chapter 4). 

Also similarly to what we mentioned in the previous chapter it is 

important to note that it is not our aim to propose an encryption solution 
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as strong in security as any state-of-the-art encryption algorithm, but 

rather a technique that provides a considerable level of overall security 

strength while introducing small performance overhead, i.e., that presents 

better security-performance balancing. Nevertheless, we include a 

thorough security analysis of the proposed cipher. As the data masking 

technique proposed in the previous chapter, this encryption technique fits 

into the middleware layer of the security framework described in Chapter 

3, working transparently between user interfaces and the DBMS. 

Experiments are included in order to compare the proposed solution with 

the standard encryption algorithms available in current DBMS, namely 

AES and 3DES, and also with state-of-the-art proposals such as Order-

Preserving Encryption (OPES) and Salsa20 (alias Snuffle), using the TPC-

H decision support benchmark and a real-world DW running on top of 

the Oracle 11g and Microsoft SQL Server 2008 DBMS. 

The remainder of this chapter is organized as follows. Section 5.1 presents 

the encryption cipher and Section 5.2 describes its functional architecture. 

Section 5.3 presents a security analysis on the proposed cipher. Section 5.4 

presents the experimental evaluation. Section 5.5 includes a discussion on 

the proposed encryption solution and on the results obtained in the 

experiments. Section 5.6 presents our conclusions. 

5.1 SES-DW Encryption Cipher 

Given x as the plaintext value to cipher and y as the encrypted ciphertext, 

the external view for encrypting x using the SES-DW cipher is shown in 

Figure 5-1, and considers the following assumptions: 

 NR is the number of rounds executed by the cipher; 

 RowK is a 2128 bit random encryption key (in a database table T, each 

row j has its own RowK, meaning each encrypted table T has a 

vector RowK[j] where j = [1…number of rows in T); 

 Operation[t] is a random binary vector with NR elements (i.e., each 

element is randomly 1 or 0), where t represents each encryption 

round’s number (i.e., t = 1...NR); 

 XorK[t] and ModK[t] are vectors where each element is a random 

value encryption subkey with the same bit length as the plaintext x, 

(where t = 1...NR);  
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 F(t) is a MOD/XOR mix function (explained further), where t 

represents each encryption round’s number (i.e., t = 1...NR). 

F(1)Operation[1]

x

ModK[1]

RowK

output

input

XorK[1]

F(2)Operation[2] ModK[2]

output

input

XorK[2]

F(NR)Operation[NR] ModK[NR]

output

input

XorK[NR]

y  
Figure 5-1. The SES-DW Data cipher for encryption 

The MOD/XOR mix function F(t) for encryption, considering input as the 

function’s input and output as its output, is defined as: 

IF Operation[t] = 1 THEN  
   output = input+(RowK MOD ModK[t])–ModK[t] 
ELSE  
   output = input 
END_IF 

Given this, the SES-DW cipher encryption function for encrypting x by 

executing NR rounds is as shown: 

FUNCTION Encrypt(x, NR)  
   EncrOutput = x 
   FOR t = 1 TO NR 
      IF Operation[t] = 1 THEN 
         EncrOutput = EncrOutput+(RowK MOD ModK[t])–ModK[t] 
      END_IF 
      EncrOutput=EncrOutput XOR XorK[t] 
   END_FOR 
RETURN EncrOutput 
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As illustrated, SES-DW randomly mixes MOD with XOR throughout the 

encryption rounds, given a random distribution of 1 and 0 values of the 

vector Operation. In the rounds where Operation[t] = 0, only XOR is used 

with the respective XorK[t]; in rounds where Operation[t] = 1, SES-DW 

first performs MOD with addition and subtraction using the respective 

ModK[t] and RowK[j], and afterwards XOR with the respective XorK[t]. To 

avoid generating a ciphertext that may overflow the bit length of x it must 

be assured that the bit length of the term using MOD (EncrOutput + 

(RowK[j] MOD ModK[t]) - ModK[t]) is smaller or equal to the bit length of 

x. 

As a practical example of encrypting with SES-DW, consider the 

encryption of an 8 bit numerical value (x = 126) executing 4 rounds (NR= 

4), for a row that has RowK = 15467801, given the following assumptions 

for Operation, XorK and ModK: 

Operation = [0, 1, 0, 1]  

XorK = [31, 2, 28, 112]  

ModK = [87, 36, 123, 19] 

Then for t = 1 (round 1), EncrOutput = 126 XOR 31 = 97 

For t = 2 (round 2), EncrOutput = (97+(15467801 MOD 36)-36) XOR 2 
                           = 64 

For t=3 (round 3), EncrOutput = 64 XOR 28 = 92 

For t=4 (round 4), EncrOutput = (92+(15467801 MOD 19)-19) XOR 112 
                          = 40 

Thus, Encrypt(126, 4) = 40. To decrypt, SES-DW inverts the cipher. Figure 

5-2 shows the external view of the SES-DW decryption cipher steps, in 

which F-1(x) also represents the reverse MOD/XOR mix function for 

decryption.  
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Operation[NR-1]

F-1(NR)Operation[NR]

y

ModK[NR]

RowK

output

input

XorK[NR-1]

F-1(NR-1) ModK[NR-1]

output

input

XorK[1]

F-1(1)Operation[1] ModK[1]

output

input

XorK[NR]

x  

Figure 5-2. The SES-DW Data cipher for decryption 

Given this, the SES-DW cipher decryption function for decrypting y with 

NR rounds is: 

FUNCTION Decrypt(y, NR)  
   DecrOutput = y 
   FOR t = NR DOWNTO 1 
      DecrOutput = DecrOutput XOR XorK[t] 
      IF Operation[t] = 1 THEN 
         DecrOutput = DecrOutput-(RowK MOD ModK[t])+ModK[t] 
      END_IF 
   END_FOR 
RETURN DecrOutput 

Considering the encryption example previously shown, we now 

demonstrate the decryption process for y = 40, given the same Operation, 

RowK, XorK and ModK: 

For t=4 (round 1), DecrOutput=(40 XOR 112)-(15467801 MOD 19)+19  
                          =92 

For t=3 (round 2), DecrOutput=92 XOR 28=64 

For t=2 (round 3), DecrOutput=(64 XOR 2)-(15467801 MOD 36)+36  
                          =97 

For t=1 (round 4), DecrOutput=97 XOR 31=126 
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Thus, Decrypt(40, 4) = 126, which is the original x plaintext value. 

Although the SES-DW cipher aims to work only with numerical values, 

we maintain the designation of plaintext and ciphertext respectively for the 

true original input value and ciphered output value. 

5.2 Functional Architecture 

The functional architecture for using SES-DW in practice is shown in 

Figure 5-3, which is similar to what was presented for MOBAT in the 

previous chapter. The architecture is made up by three entities:  

 The encrypted database and its DBMS;  

 The SES-DW security middleware interface;  

 User/client interfaces to query the encrypted database.  

The SES-DW middleware interface acts as a broker between the DBMS and 

the user interfaces, using the SES-DW encryption and decryption 

methods and ensuring the queried data is securely processed and the 

proper results are returned to those interfaces. All communications are 

executed through SSL/TLS secure connections, to protect SQL instructions 

and returned results between the system’s entities. 

User 
Interface

SES-DW
Middleware

Interface

DBMS Encrypted 
DW Database

Black Box
(Encryption Keys, 

User Access Definitions, 
SQL Command Log)

User 
Queries

Query 
Results

Query 
Results

Rewritten 
User Queries  

Figure 5-3. The SES-DW Data Security Functional Architecture 

The Black Box is stored in the Security Framework Database database server, 

and there is one Black Box created for each encrypted DW database. Only 

the SES-DW middleware itself can access the Black Box, where all 

encryption keys and predefined data access policies for the database are 

stored.  
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As in MOBAT, the SES-DW middleware also creates a history command 

log that can also be used for intrusion detection purposes, when 

integrated with the DIDS proposed in the following chapter. All Black Box 

contents are encrypted using AES with a 256 bit key, and there is no way 

to restore its true data, except by cracking the encryption keys. These keys 

are generated by the SES-DW middleware and are never shown or 

known by the DBA or any other user. 

To obtain true results, all user queries or actions must pass through the 

SES-DW middleware, which will store a copy of those instructions in the 

Black Box command history log. Each time a user requests any action, the 

middleware will receive and parse the instructions, fetch the encryption 

keys, rewrite the command, send it to be processed by the DBMS and 

retrieve the results, and finally send those results back to the user 

interface that issued the request. Thus, SES-DW is transparently used, 

since SQL command rewriting is transparently managed by the 

middleware. Obviously, user applications should send the commands to 

the middleware, instead of querying the DBMS directly. 

To encrypt a database, a DBA requires it through the SES-DW 

middleware. After entering login and database connection information, 

the middleware connects to the database and creates the corresponding 

Black Box, as explained earlier. Afterwards, the middleware allows the 

DBA to define which tables and columns to encrypt. All the required 

encryption keys (RowK, XorK, ModK) for each table and column are 

generated, encrypted by an AES256 algorithm and stored in the Black 

Box. Finally, the middleware encrypts all values in each column that were 

marked for encryption. Subsequent updates on the database data must 

always be done through the middleware, which will apply the cipher to 

the values and store them directly in the database. 

In order to implement SES-DW encryption in a given table T, consider the 

following: suppose table T with a set of N numerical columns Ci = {C1, C2, 

…, CN} to be encrypted and a total set of M rows Rj = {R1, R2, …, RM}. Each 

value to encrypt in the table is identified as a pair (Rj, Ci), where Rj and Ci 

respectively represent the row and column to which the value refers (j = 

{1..M} and i = {1..N}). To use the SES-DW cipher, we generate the 

following encryption keys and requirements: 
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 An encryption key TabK, a 128 bit random generated value, 

constant for table T; 

 Vector RowK[j], with j = {1..M}, for each row j in table T. Each 

element holds a random 128 bit value; 

 Define NRi with i = {1..N}, which gives the number of encryption 

rounds to execute for each column Ci. We define NRi = 

SBLi/BitLength(Ci), where SBLi is the desired security bit strength 

for the XorK and ModK encryption keys of column Ci and 

BitLength(Ci) is the datatype bit length of column Ci (e.g. if we 

want to secure a 16 bit column Ci with a security strength of 256 

bits, then the number of encryption rounds would be 256/16 = 16); 

 Vectors XorKi[t] and ModKi[t], with t = {1..NRi}, for each Ci, filled 

with randomly generated unique values. The bit length of each 

key is equal to the bit length of each Ci’s datatype; 

 A vector Operationi[t], with t = {1..NRi}, for each column Ci, filled 

randomly with 1 and 0 values, so that the count of elements equal 

to 1 is the same as the count of elements equal to 0 (e.g. Operationi 

= [0, 1, 0, 0, 1, 1, 0, 1], with NRi = 8). This makes 

Prob(Operation[t]=0) Û Prob(Operation[t]=1), i.e., the probability 

of executing or not MOD operations in each cipher round is 

uniformly distributed, in order to avoid information leakage in 

attempting to break security. 

Since the number of rows in a DW fact table is often very big, the need to 

store a RowK[j] encryption key for each row j poses a challenge. If these 

values were stored in a lookup table separate from table T, a heavy join 

operation between those tables would be required to decrypt data. Given 

the typically huge number of rows in fact tables, this must be avoided. 

For the same reasons, storing RowK[j] in RAM is also impracticable. To 

avoid table joins, as well as oversized memory consumption, the values of 

RowK[j] must be stored along with each row j in table T, as an extra 

column CN+1. This is the only change needed in the DW data structure in 

order to use SES-DW. To secure the value of RowK[j], it should be XORed 

with key TabK before being stored. To retrieve the true value of RowK[j] 

in order to use the SES-DW algorithms, we need to simply calculate (Rj, 

CN+1) XOR TabK. 
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5.3 Security Issues 

Most security issues and assumptions concerning the threat model, 

datatype preservation, having data-at-rest masked or encrypted at all 

times, and the use of MOD and XOR operations for SES-DW are similar 

to those described in the previous chapter for MOBAT. In this section we 

present the security proof specifically concerning the SES-DW algorithm, 

as well as the entropy produced by SES-DW. 

5.3.1 Using Variable Key Lengths and MOD-XOR Mixes 

The bit length of the encryption subkeys XorK and ModK are the same as 

the bit length of each encrypted column, meaning that an 8 bit sized 

column datatype will have 8 bit sized encryption subkeys. It is obvious 

that using 8 bit subkeys on their own is not secure at all. However, since 

all keys are distinct in each round, executing 16 rounds would be roughly 

equivalent to having a 16*8 = 128 bit key in the encryption process. As 

discussed in [Elminaam et al., 2010; Kim et al., 2010; Mattson, 2004; 

Nadeem and Javed, 2005], there is no easy way of obtaining impartial and 

widely accepted values for defining the minimum number of secure 

rounds for each algorithm. It is up to the DW security administrator to 

decide how strongly secure each column should be, which defines how 

many rounds should be executed, considering the bit length of the 

column’s datatype. 

As previously mentioned in Chapter 3, the MOD operator is used in the 

cipher because it is non-injective and consequently makes our cipher not 

directly invertible. It is also true that the same ciphered output values are 

most likely to come from different original input values and have 

approximately the same probability for any output value within the full 

range of possible output values. This is formally demonstrated in 

Subsection 5.3.3, where the cipher’s entropy is computed, showing a 

nearly uniform probability distribution. 

Randomly using the XOR and MOD operators as the two possible 

operators for each round also increases the number of possibilities an 

attacker needs to test in exhaustive searches for the output values of each 

encryption round, since the attacker does not know the rounds in which 

MOD is used with XOR and needs to test both hypothesis (XOR and 

MOD-XOR). Furthermore, if the attacker does not know the security 



Chapter 5 

140 

strength chosen for encrypting each column, s/he does not know how 

many encryption rounds were executed for each ciphered value. 

By making the values of XorKi and ModKi distinct between columns, we 

also make encrypted values independent from each other between 

columns. Even if the attacker breaks the security of one column in one 

table row, the information obtained from discovering the remaining 

encryption keys is limited. Thus, the attacker cannot infer information 

enough to break overall security; in order to succeed, s/he must perform 

recover all the keys for all columns. 

5.3.2 Attack Costs on SES-DW 

To break security by key search in a given column Ci, the attacker needs 

to have at least one pair (plaintext, ciphertext) for a row j of Ci, as well as 

the security bit strength involved, as explained in Section 5.2, because it 

will indicate the number of rounds that were executed. In this case, taking 

that known plaintext, its respective ciphertext, and the CN+1 value (storing 

RowKj XOR TabK, as explained in Section 5.2), s/he may then execute an 

exhaustive key search. 

The number of cipher rounds for a column Ci is given by NRi, and β is the 

bit-length of Ci’s datatype. Since half the values of vector Operation are 

zeros and the other half are ones, the probability of occurrences of 1 and 0 

is equal, i.e., Prob(Operation[t]=0) = ½ = Prob(Operation[t]=1), where the 

number of possible values for Operation[t] is 2NRi.  

Considering β, each XorK and ModK subkey also has a length of β bits 

and thus, each XorK and ModK subkeys have a search space with 2β 

possible values. TabK is a 128 bit value, thus with a search space of 2128 

possible values. Considering the cipher’s algorithm and given the 

probability of {0, 1} values in Operation, a XOR is executed in all rounds 

(NRi), while a MOD is executed before the XOR in half the rounds 

(NRi/2). Given this, the key search space dimension considering the 

combination of XOR and MOD/XOR rounds is given by G(x): 
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Considering Y as the number of attempts to discover the keys, Y is a 

discrete random variable with support S = {1…N }, where N represents 

the search space’s dimension. For one attempt, considering a random 

variable B, it has only two possibilities: 
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Therefore, B follows a Bernoulli distribution with probability p = 

Prob(B=1) = 1/N. Since the number of attempts is limited, given the search 

space is finite, variable Y also has a finite support S = {1…N}. The 

probability of being successful after k attempts is given by: 
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The probability of needing n more attempts, given m initial unsuccessful 

attempts (for m > 1 and n > 1) is defined by Prob(Y >m+n | Y >m) = 

Prob(Y>m+n) / Prob(Y>m), since the event {Y > m+n} is contained in {Y > m}, 

which means that after having m unsuccessful attempts, being successful 

after n more attempts only depends on those n additional attempts and 
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not on the initial m attempts, i.e., it does not depend on the past. For the 

complete search space, the average number of attempts is then given by: 
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which is equal to the dimension of the key search space (N). Note 

however, that this is the worst case complexity. It is possible for the 

attacker to reduce the key search space by chosen plaintext attacks. Since 

the same TabK key is used for encrypting all RowK, as explained in section 

5.2 (CN+1(row j) = RowK[j] Å TabK), the information leakage is given by 

y1 Å y2 = (x1  Å TabK) Å (x2  Å TabK) Û  

Û y1 Å y2 = (x1  Å x2) Å (TabK Å TabK)  

Û y1 Å y2 = x1  Å x2  

This implies that CN+1(row j) Å CN+1(row j+1) = RowK[j] Å RowK[j+1], 

reducing the possible search space for RowK to 264 instead of 2128 in each 

row. If the attacker manages to use very low RowK values, which are most 

probably smaller than the value of the ModK encryption keys (i.e. 

RowK<ModK[t]), then the (RowK MOD ModK[t]) – ModK[t] operation in 

the cipher will be reduced to RowK – ModK[t], thus further reducing 

complexity. In this case, for example, taking more than one (plaintext, 
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ciphertext) pair y1 = Encrypt(x1,2) and y2 = Encrypt(x2,2) for 2 encryption 

rounds on the same row, where Operation=[0,1]: 

��Å �� = (��Å ����[1] + ���� − ����[2]) Å (��Å ����[1] + ���� − ����[2]) 

Considering that each xi has a length of  bits, given the encryption key 

RowK has a reduced search space of 264 (as previously mentioned) and 

each XorK and ModK have a search space of 2, the key search space in 

this example is given by 22+64. Since XorK[1] and ModK[2] are just half the 

keys for the 2 round SES-DW, to obtain the remaining XorK[2] and 

ModK[1] keys, the search space is incremented by 22.  

As the number of XorK and ModK encryption keys is the same as the 

number of rounds, the generic expression for the reduced key search 

space in this type of attack is given by G(x) = 2NRi*+64 + 2NRi*. Note that for 

an 8 bit value ( = 8) encrypted by 16 rounds (NRi = 16), using 16 XorK 

and ModK subkeys with 8 bits each (each total key length for XorK and 

ModK is 16*8 = 128 bits), the key search space complexity is 2192 + 2128 ≅ 

6.3x1057, which remains a considerable measure of security strength. 

5.3.3 SES-DW Entropy 

In information theory, entropy is a measure of randomness or uncertainty 

[Vaudenay, 2006]. In this context, the term usually refers to Shannon’s 

entropy, which quantifies the randomness of a variable based upon the 

knowledge of the information contained in its message. The entropy of a 

discrete variable X with n bits in length is given by the following 

expression, where Prob(xi) is the probability of occurrence of each xi 

within the probability distribution of all possible integer values [1…2n]: 

�������(�) = − ∑ �����(� = ��).��������(� = ��)���

���    

Since numeric datatype storage sizes are typically 8, 16, 32, 64 or 128 bits, 

each of our cipher’s input/output values (as well as the encryption keys) 

respectively have a number of 28, 216, 232, 264, or 2128 possible combinations. 

While it is computationally fast to obtain the probability distribution in 

the first case by combining all possible input and encryption key values 

(with all 8 bit values = [1...28]) using two cipher rounds (the minimum 

number of rounds), for the remaining (216, 232, 264 and 2128) the task gets 

exponentially time-expensive.  
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Therefore, after a series of statistical regression experiments using the 

calculated 8 bit probability distribution for SES-DW, we found that the 

logarithmic regression ( � = � + �.��(�) ) generated the most adjusted 

statistical model for representing the cipher’s probability distribution 

(with correlation R2 >= 0.98 and a standard error of 0.001). Knowing that 

the accumulated probability for n bits must be equal to 1, using the 

logarithmic regression function we must ensure that: 

� � + �.��(�) ��
��

�

= 1 

This expression leads to ����(��) = �� + ��.��(��), which represents the 

estimated probability distribution function for n bits SES-DW, where: 

�� =
���.�.��.��(�)

����
+ �          �� =

���������
�

�
�

����� � 
�

�
 – � . ���� .  �� (�)

     

Given ����(�), the entropy of SES-DW for n = 8, 16, 32, 64 and 128 bits is 

shown in Table 5-1. As can be seen, the entropy produced for n bits is 

nearly n, thus meaning the generated ciphertexts are very close to a 

uniformly random n bit value and therefore, have very little information 

leakage because very little can be inferred from the output generated by 

the cipher. 

Table 5-1. Estimated SES-DW entropy values 

Number of bits (n) SES-DW Entropy 

8 7.967144 

16 15.972308 

32 31.979863 

64 63.986246 

128 127.989741 

5.4 Experimental Evaluation 

In these experiments we used the TPC-H benchmark [TPC-H] 

implemented in its 1GB and 10GB scale sizes, and a real-world sales DW 

storing one year of commercial data taking up 2GB of storage space (as 

we previously mentioned, full description of the sales DW can be seen in 
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Appendix A). We tested all scenarios using the Oracle 11g and Microsoft 

SQL Server 2008 DBMS with default settings, on a Pentium Core2Duo 

3GHz CPU with a 1.5TB SATA hard disk and 2GB RAM (512MB of 

devoted to database memory cache), running Windows 2003 Server.  

As in the experiments involving the data masking solution, the columns 

chosen for testing the masking solution were those referring to numerical 

datatype columns belonging to the fact tables. The TPC-H schema has 

one fact table (LineItem), and seven dimension tables. In TPC-H setups, 

four numerical columns of LineItem were encrypted (L_Quantity, 

L_ExtendedPrice, L_Tax and L_Discount). The Sales DW database schema 

has one fact table (Sales) and four dimension tables. In the Sales DW, five 

numerical columns were encrypted (S_ShipToCost, S_Tax, S_Quantity, 

S_Profit, and S_SalesAmount).  

In these experiments, we compare the storage size overhead and query 

response time of SES-DW with the column-based AES (with 128 bit and 

256 bit security) and 3DES168 algorithms available as built-in options of 

each DBMS, and OPES [Agrawal et al., 2004] and Salsa20/20 [Bernstein, 

2005; Bernstein, 2008]. OPES and Salsa20 were implemented using C#. We 

use the column-based solutions for the same reasons as explained in the 

previous chapter in Section 4.4 (see Table 4-2). 

All loading time and query response time results shown in this section 

were obtained from an average of six executions in each described 

setup/scenario, given the relatively small standard deviation values, as in 

Chapter 4. The complete set of results and respective statistical measures 

can be seen in Appendix B. Note that the experiments included in this 

chapter cannot be directly compared with those of the data masking 

chapter, since different CPUs were used. 

5.4.1. Analyzing Storage Space 

The storage space results measured in these experimental evaluations are 

exactly the same as those presented for the data masking experimental 

evaluation in Subsection 4.4.1, making it redundant and unnecessary to 

repeat the analysis here. This happens because the implementation of 

SES-DW requires exactly the same changes to the DW data schemas as 

MOBAT, and the remaining encryption algorithms that we tested against 
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are also the same as in the previous experiments. Therefore, in this 

subsection we just remind the main storage space results and conclusions.  

For TPC-H 1GB: 

 OPES and SES-DW produce much smaller storage space overheads 

than the remaining solutions; 

 OPES adds a 2% overhead for both DBMS, corresponding to 18MB 

of extra storage space in Oracle and 21MB in SQL Server; 

 SES-DW adds 8% and 12% overhead respectively in Oracle and 

SQL Server, corresponding to an extra 96MB and 102MB of storage 

space;  

 Salsa20 introduces 38% overhead in Oracle, corresponding to 

adding 292MB, and 26% in SQL Server, which adds 316MB of extra 

storage space; 

 The standard encryption solutions produce the highest overhead, 

with AES being the worst by requiring 154% in Oracle and 95% in 

SQL Server of storage space overhead, corresponding to 

respectively adding 1188MB and 1173MB and 154% in each DBMS, 

while 3DES168 produced a storage space overhead of 104% in 

Oracle and 76% in SQL Server, respectively corresponding to 

800MB and 944MB of extra storage space. 

In what concerns the TPC-H 10GB DW, the extra storage space added to 

the 10GB database by each encryption solution is approximately 

proportional to those of the 1GB database, which means ten times bigger. 

Thus, the analysis of the results for the 10GB sized TPC-H database is 

similar to that of the 1GB. 

For the Sales DW: 

 OPES and SES-DW continue to produce much smaller storage space 

overheads than the remaining solutions, similarly to the occurred 

with TPC-H; 

 OPES shows a 4% overhead for both DBMS, corresponding to an 

extra 62MB of storage space in Oracle and 73MB in SQL Server 
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 SES-DW presents 25% and 33% overhead for SES-DW respectively 

in Oracle and SQL Server, corresponding to an extra 415MB and 

636MB of storage space;  

 Salsa20 also introduces more storage space overhead than OPES 

and SES-DW, namely 88% in Oracle, corresponding to adding 

1464MB, and 94% in SQL Server, which adds 1818MB of extra 

storage space; 

 The standard encryption solutions continue to produce the highest 

overhead, with AES also being the worst by requiring 462% in 

Oracle and 591% in SQL Server of storage space overhead, 

corresponding to respectively adding 7688MB and 11424MB of 

storage space, while 3DES168 produced a storage space overhead of 

308% in Oracle and 390% in SQL Server, respectively corresponding 

to 5125MB and 7532MB of extra storage space. 

5.4.2. Analyzing Loading Time 

Figures 5-4a and 5-4b respectively show the results for the total loading 

time (in seconds) and percentage of time overhead for loading the TPC-H 

1GB LineItem fact table in Oracle, while Figures 5-5a and 5-5b show the 

same results in SQL Server. It can be observed that the standard loading 

time for the TPC-H LineItem fact table without using any sort of 

encryption solution is 253 seconds in Oracle and 171 seconds in SQL 

Server. 

As shown, SES-DW produces much smaller loading time overheads than 

the remaining solutions with the same bit security. SES-DW with 128 bit 

security shows 10% and 12% overhead in Oracle and SQL Server, 

respectively corresponding to an extra 26 and 20 seconds in loading time. 

SES-DW with 256 bit security shows 16% and 18% in Oracle and SQL 

Server, respectively corresponding to adding 41 and 30 seconds, and 

when using 1024 bit security (at least four times higher than the 

remaining solutions) the loading time overhead was 78% in Oracle and 

66% in SQL Server, respectively corresponding to an extra 198 and 113 

seconds of loading time. 
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Oracle TPC-H 1GB 

LineItem Fact Table Loading Time (sec) 

Oracle TPC-H 1GB 

LineItem Loading Time Overhead (%) 

 

   

 

            
 

Figure 5-4a. Loading Time in Oracle 

for the TPC-H 1GB Fact Table per 

Encryption Solution 

 

Figure 5-4b. Loading Time Overhead 

(%) in Oracle for the TPC-H 1GB Fact 

Table per Encryption Solution 

 

SQL Server TPC-H 1GB 

LineItem Fact Table Loading Time (sec) 

SQL Server TPC-H 1GB 

LineItem Loading Time Overhead (%) 

 

   

 

            
 

Figure 5-5a. Loading Time in SQL 

Server for the TPC-H 1GB Fact Table 

per Encryption Solution 

 

Figure 5-5b. Loading Time Overhead 

(%) in SQL Server for the TPC-H 1GB 

Fact Table per Encryption Solution 

OPES comes after SES-DW 128 and 256 bit security in loading time 

performance, showing an overhead of 40% in Oracle and 34% in SQL 

Server, which respectively correspond to adding 100 and 110 seconds. 

Salsa20 introduces more loading time overhead than OPES and the 
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referred bit security versions of SES-DW, namely 66% in Oracle, 

corresponding to adding 166 seconds, and 64% in SQL Server, which 

adds 110 seconds of extra loading time. 

Note that, although SES-DW 1024 does introduce higher overhead than 

OPES and Salsa20, it does use a much higher security bit strength, which 

consequently has impact on its performance.  

Similarly to what occurred with storage space, the standard encryption 

solutions produced the highest loading time overheads. AES with 128 bit 

security produced 140% in Oracle and 123% in SQL Server, respectively 

corresponding to adding 355 and 211 seconds to the standard loading 

time. AES with 256 bit security shows an overhead of 151% in Oracle and 

138% in SQL Server, respectively corresponding to 383 and 236 seconds of 

extra loading time. 3DES168 introduces 144% loading time overhead in 

Oracle, corresponding to adding 364 seconds, and 127% in SQL Server, 

which adds 218 seconds of extra loading time. 

Figures 5-6a and 5-6b respectively show the results of total loading time 

(in seconds) and percentage of loading time overhead for loading the 

TPC-H 10GB LineItem fact table in Oracle, while Figures 5-7a and 5-7b 

show the same results in SQL Server. 

Oracle TPC-H 10GB 

LineItem Fact Table Loading Time (sec) 

Oracle TPC-H 10GB 

LineItem Loading Time Overhead (%) 

 

     

 

            
 

Figure 5-6a. Loading Time in Oracle 

for the TPC-H 10GB Fact Table per 

Encryption Solution 

 

Figure 5-6b. Loading Time Overhead 

(%) in Oracle for the TPC-H 10GB Fact 

Table per Encryption Solution 
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SQL Server TPC-H 10GB 

LineItem Fact Table Loading Time (sec) 

SQL Server TPC-H 10GB 

LineItem Loading Time Overhead (%) 

 

     

 

          
 

Figure 5-7a. Loading Time in SQL 

Server for the TPC-H 10GB Fact Table 

per Encryption Solution 

 

Figure 5-7b. Loading Time Overhead 

(%) in SQL Server for the TPC-H 

10GB Fact Table per Encrypt. Solution 

From observing the results in Figures 5-6a to 5-7b, it can be seen that the 

extra loading time added to the 10GB database by each encryption 

solution is approximately proportional to those of the 1GB database, as 

occurred with the storage space, which means ten times bigger. Thus, the 

analysis of the results for the 10GB sized TPC-H database is also similar 

to that of the 1GB sized TPC-H database. 

Figures 5-8a and 5-8b respectively show the results of total loading time 

(in seconds) and percentage of time overhead for loading the Sales DW 

fact table in Oracle, while Figures 5-9a and 5-9b show the same results in 

SQL Server. It can be seen that the standard loading time for the Sales fact 

table without using any encryption solution is 994 seconds in Oracle and 

1013 seconds in SQL Server. 

As seen in both Figures, SES-DW continues to produce much smaller 

loading time overheads than the remaining solutions, similarly to the 

occurred with TPC-H. SES-DW with 128 bit security shows 13% and 15% 

overhead in Oracle and SQL Server, respectively corresponding to an 

extra 130 and 148 seconds in loading time. SES-DW with 256 bit security 

shows 22% in both DBMS, corresponding to adding 217 seconds in Oracle 

and 224 seconds in SQL Server, and when using 1024 bit security the 
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loading time overhead was 82% in Oracle and 86% in SQL Server, 

corresponding to an extra 814 and 868 seconds of loading time. 

Oracle Sales DW 2GB 

Sales Fact Table Loading Time (sec) 

Oracle Sales DW 2GB 

Sales Loading Time Overhead (%) 

 

     

 

         
 

Figure 5-8a. Loading Time in Oracle 

for the Sales DW Fact Table per 

Encryption Solution 

 

Figure 5-8b. Loading Time 

Overhead (%) in Oracle for the Sales 

DW Fact Table per Encrypt. Solution 

 
SQL Server Sales DW 2GB 

Sales Fact Table Loading Time (sec) 

SQL Server Sales DW 2GB 

Sales Loading Time Overhead (%) 

 

     

 

         
 

Figure 5-9a. Loading Time in SQL 

Server for the Sales DW Fact Table per 

Encryption Solution 

 

Figure 5-9b. Loading Time Overhead 

(%) in SQL Server for the Sales DW 

Fact Table per Encryption Solution 
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OPES comes after SES-DW in loading time performance, showing a 56% 

overhead in Oracle and 53% in SQL Server, respectively corresponding to 

an extra 561 seconds and 541 seconds of loading time, and Salsa20 

presents 91% and 86% overhead for respectively in Oracle and SQL 

Server, corresponding to an extra 908 and 866 seconds of loading time in 

each DBMS. 

The standard encryption solutions continue to produce the highest 

overhead, where AES with 128 bit security produced 169% in Oracle and 

139% in SQL Server, respectively corresponding to adding 1682 and 1403 

seconds to the standard loading time. AES with 256 bit security shows an 

overhead of 191% in Oracle and 154% in SQL Server, respectively 

corresponding to 1895 and 1560 seconds of extra loading time. 3DES168 

introduces 197% loading time overhead in Oracle, corresponding to 

adding 1955 seconds, and 158% in SQL Server, which adds 1598 seconds 

of extra loading time. 

Overall, the loading time results presented in this section mostly confirm 

those shown in the previous chapter, although different CPUs were used 

between them. Tables 5-2, 5-3 and 5-4 summarize the fact table loading 

time results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, 

for each DBMS, highlighting the best solutions in each case. 

Table 5-2. TPC-H 1GB Lineitem Fact Table Loading Time Overhead 

 

 

Oracle TPC-H 1GB  

Loading Time (Overhead) 

SQL Server TPC-H 1GB  

Loading Time (Overhead) 

Standard Loading Time 00:04:13 00:02:51 

AES128 00:10:08 (00:05:55 / 140%) 00:06:22 (00:03:31 / 123%) 

AES256 00:10:36 (00:06:23 / 151%) 00:06:47 (00:03:56 / 138%) 

3DES168 00:10:17 (00:06:04 / 144%) 00:06:29 (00:03:38 / 127%) 

OPES 00:05:53 (00:01:40 / 40%) 00:03:49 (00:00:58 / 34%) 

Salsa20 00:06:59 (00:02:46 / 66%) 00:04:41 (00:01:50 / 64%) 

SES-DW128 00:04:39 (00:00:26 / 10%) 00:03:11 (00:00:20 / 12%) 

SES-DW256 00:04:54 (00:00:41 / 16%) 00:03:21 (00:00:30 / 18%) 

SES-DW1024 00:07:31 (00:03:18 / 78%) 00:04:44 (00:01:53 / 66%) 
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Table 5-3. TPC-H 10GB Lineitem Fact Table Loading Time Overhead 

 

 

Oracle TPC-H 10GB  

Loading Time (Overhead) 

SQL Server TPC-H 10GB  

Loading Time (Overhead) 

Standard Loading Time 00:42:56 00:29:56 

AES128 01:46:15 (01:03:19 / 147%) 01:09:04 (00:39:08 / 131%) 

AES256 01:52:22 (01:09:26 / 162%) 01:15:32 (00:45:36 / 152%) 

3DES168 01:48:47 (01:05:51 / 153%) 01:11:30 (00:41:34 / 139%) 

OPES 01:02:46 (00:19:50 / 46%) 00:42:22 (00:12:26 / 42%) 

Salsa20 01:14:41 (00:31:45 / 74%) 00:51:46 (00:21:50 / 73%) 

SES-DW128 00:50:24 (00:07:28 / 17%) 00:35:37 (00:05:41 / 19%) 

SES-DW256 00:53:36 (00:10:40 / 25%) 00:38:40 (00:08:44 / 29%) 

SES-DW1024 01:20:44 (00:37:48 / 88%) 00:58:36 (00:28:40 / 96%) 

 

Table 5-4. Sales DW 2GB Fact Table Loading Time Overhead 

 

 

Oracle Sales DW 2GB  

Loading Time (Overhead) 

SQL Server Sales DW 2GB  

Loading Time (Overhead) 

Standard Loading Time 00:16:34 00:16:53 

AES128 00:44:36 (00:28:02 / 169%) 00:40:16 (00:23:23 / 139%) 

AES256 00:48:09 (00:31:35 / 191%) 00:42:53 (00:26:00 / 154%) 

3DES168 00:49:09 (00:32:35 / 197%) 00:43:31 (00:26:38 / 158%) 

OPES 00:25:55 (00:09:21 / 56%) 00:25:54 (00:09:01 / 53%) 

Salsa20 00:31:42 (00:15:08 / 91%) 00:31:19 (00:14:26 / 86%) 

SES-DW128 00:18:44 (00:02:10 / 13%) 00:19:21 (00:02:28 / 15%) 

SES-DW256 00:20:11 (00:03:37 / 22%) 00:20:37 (00:03:44 / 22%) 

SES-DW1024 00:30:08 (00:13:34 / 82%) 00:31:21 (00:14:28 / 86%) 

 

5.4.3. Analyzing Query Performance 

To analyze the query performance of the encryption algorithms, we 

defined a decision support query workload for each database similar to 

what was described in the data masking technique’s experimental 

evaluation in the previous chapter. The TPC-H workload included the 

benchmark queries were the same as those used in the data masking 
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experiments in the previous chapter (i.e., TPC-H queries number 1, 3, 6, 7, 

8, 10, 12, 14, 15, 17, 19 and 20, which correspond to all that access the 

LineItem fact table). For the Sales DW, the workload was also the same 

set of 29 queries all processing the Sales fact table. For fairness, databases 

were also optimized in a best practice manner (including primary keys, 

foreign keys, and referential integrity constraints and join indexes).  

As we previously mentioned, all response time results are an average 

obtained from six executions in each scenario on each DBMS. The 

standard execution time (average of execution time of the workload 

against a non-encrypted database) for each scenario is 492, 5037, and 1766 

seconds in Oracle 11g, and 452, 4694, and 1690 seconds in SQL Server 

2008, for the 1GB, 10GB TPC-H and Sales DW, respectively. 

Figures 5-10a to 5-11b show the total workload execution time and its 

overhead in Oracle and SQL Server for the TPC-H 1GB database, while 

Figure 5-12 shows the CPU execution time overhead in Oracle and SQL 

Server for the same database. SES-DW with 128-bit and 256-bit security 

has the best response and CPU time overheads for all scenarios, 

respectively 106% and 154% of execution time overhead in Oracle, 

corresponding to 523 and 759 seconds of added response time, and 105% 

and 152% in SQL Server, corresponding to 475 and 688 seconds of added 

response time. The results are followed by Salsa20 and further by AES, 

while OPES has results leveled between AES and 3DES, while SES-DW 

with 1024 bit security presents values approximately similar to AES. 

Oracle TPC-H 1GB 

Query Workload Execution Time (sec) 

Oracle TPC-H 1GB 

Query Workload Exec. Time Overhead (%) 

  
 

Figure 5-10a. Query Workload 

Execution Time in Oracle for the 

TPC-H 1GB per Encryption Solution 

 

Figure 5-10b. Query Workload Exec. 

Time Overhead (%) in Oracle for the 

TPC-H 1GB per Encryption Solution 
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SQL Server TPC-H 1GB 

Query Workload Execution Time (sec) 

SQL Server TPC-H 1GB 

Query Workload Exec. Time Overhead (%) 

  

 

Figure 5-11a. Query Workload 

Execution Time in SQL Server for the 

TPC-H 1GB per Encryption Solution 

 

Figure 5-11b. Query Workload Exec. 

Time Overhead (%) in SQL Server for 

the TPC-H 1GB p/ Encryption Solution 

 
Query Workload CPU Time Overhead (%) 

 Oracle TPC-H 1GB SQL Server TPC-H 1GB 

 
 

Figure 5-12. Query Workload CPU Time Overhead (%) for the TPC-H 1GB per 

Encryption Solution in each DBMS 

 

It can be seen that in what concerns the processing efforts of the 

encryption algorithms themselves, which can be observed through 

analyzing the CPU execution time overhead, the results shown in Figure 

5-12 show that SES-DW introduces an overhead of approximately 200% 

to 270% respectively with 128 and 256 bit security. Salsa20, which is the 
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best of the remaining solutions, introduces approximately 300%, while all 

other solutions add nearly 400% of CPU execution time overhead. 

Figures 5-13a to 5-14b show the total workload execution time and its 

overhead in Oracle and SQL Server for the TPC-H 10GB database, while 

Figure 5-15 shows the CPU execution time overhead in Oracle and SQL 

Server for the same database. As can be observed, the results lead to 

similar conclusions as those seen in the TPC-H 1GB database, in what 

respects the ranking performance of the tested solutions. SES-DW 

remains the solution having the best response and CPU time overheads 

for all scenarios, with 128-bit and 256-bit security in both DBMS. When 

compared with the results for the TPC-H 1GB database, it can be seen that 

the differences between the solutions are slightly enforced with the 

higher amount of data which needs to be processed in the 10GB scale size.  

Oracle TPC-H 10GB 

Query Workload Execution Time (sec) 

Oracle TPC-H 10GB 

Query Workload Exec. Time Overhead (%) 

  
 

Figure 5-13a. Query Workload 

Execution Time in Oracle for the 

TPC-H 1GB per Encryption Solution 

 

Figure 5-13b. Query Workload Exec. 

Time Overhead (%) in Oracle for the 

TPC-H 1GB per Encryption Solution 
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SQL Server TPC-H 10GB 

Query Workload Execution Time (sec) 

SQL Server TPC-H 10GB 

Query Workload Exec. Time Overhead (%) 

 

 

 

Figure 5-14a. Query Workload 

Execution Time in SQL Server for the 

TPC-H 10GB per Encryption Solution 

 

Figure 5-14b. Query Workload Exec. 

Time Overhead (%) in SQL Server for 

the TPC-H 10GB p/ Encryption Solution 

 
Query Workload CPU Time Overhead (%) 

 Oracle TPC-H 10GB SQL Server TPC-H 10GB 

 
 

Figure 5-15. Query Workload CPU Time Overhead (%) for the TPC-H 10GB per 

Encryption Solution in each DBMS 

 

Figures 5-16a to 5-17b show the results of total workload execution time 

and respective overhead for the Sales DW fact table in both DBMS. It can 

be seen that SES-DW continues to produce much smaller execution time 

overheads than the remaining solutions, similarly to the occurred with 

TPC-H. SES-DW with 128 bit security shows 262% and 236% overhead in 

Oracle and SQL Server, respectively corresponding to an extra 4627 and 

3988 seconds in response time. SES-DW with 256 bit security shows 409% 
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and 361% in Oracle and SQL Server, corresponding to adding 7223 

seconds in Oracle and 6101 seconds in SQL Server, and when using 1024 

bit security the loading time overhead was 610% in Oracle and 493% in 

SQL Server, respectively corresponding to an extra 10773 and 8332 

seconds of loading time. 

Salsa20 comes after SES-DW 128 bit and 256 bit in execution time 

performance, showing a 539% overhead in Oracle and 492% in SQL 

Server, and OPES presents more than 700% and 600% overhead 

respectively in Oracle and SQL Server. The standard encryption solutions 

continue to produce the highest overhead, roughly between 700% and 

800% of extra loading time in both DBMS. 

 

Oracle Sales DW 

Query Workload Execution Time (sec) 

Oracle Sales DW 

Query Workload Exec. Time Overhead (%) 

  
 

Figure 5-16a. Query Workload 

Execution Time in Oracle for the 

Sales DW per Encryption Solution 

 

Figure 5-16b. Query Workload Exec. 

Time Overhead (%) in Oracle for the 

Sales DW per Encryption Solution 
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SQL Server Sales DW 

Query Workload Execution Time (sec) 

SQL Server Sales DW 

Query Workload Exec. Time Overhead (%) 

  

 

Figure 5-17a. Query Workload 

Execution Time in SQL Server for the 

Sales DW per Encryption Solution 

 

Figure 5-17b. Query Workload Exec. 

Time Overhead (%) in SQL Server for 

Sales DW p/ Encryption Solution 

Figure 5-18 shows the CPU time overhead per solution for the Sales DW 

in each DBMS. In what concerns CPU time overhead, by observing Figure 

5-18 and comparing it with the results from the TPC-H 1GB in Figure 5-12 

and TPC-H 10GB in Figure 5-15, it can be seen that the CPU execution 

time overhead obtained in the Sales DW are very leveled and similar to 

those obtained in the TPC-H databases. This reveals a similar difference 

and impact in CPU processing efforts between the different solutions. 

Query Workload CPU Time Overhead (%) 

 Oracle Sales DW 2GB SQL Server Sales DW 2GB 

 
 

Figure 5-18. Query Workload CPU Time Overhead (%) for the Sales DW 2GB per 

Encryption Solution in each DBMS 
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Tables 5-5, 5-6 and 5-7 summarize the query workload execution time 

results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for 

each DBMS. We highlight SES-128 as the solution that achieves the best 

results. 

Table 5-5. TPC-H 1GB Query Workload Execution Time Overhead 

 

 

Oracle TPC-H 1GB  

Execution Time (Overhead) 

SQL Server TPC-H 1GB  

Execution Time (Overhead) 

Standard Loading Time 00:08:12 00:07:32 

AES128 00:22:37 (00:14:25 / 176%) 00:20:31 (00:12:59 / 172%) 

AES256 00:24:56 (00:16:44 / 204%) 00:22:10 (00:14:38 / 194%) 

3DES168 00:28:22 (00:20:10 / 246%) 00:22:42 (00:15:10 / 201%) 

OPES 00:25:35 (00:17:23 / 212%) 00:22:06 (00:14:34 / 193%) 

Salsa20 00:21:08 (00:12:56 / 158%) 00:18:51 (00:11:19 / 150%) 

SES-DW128 00:16:55 (00:08:43 / 106%) 00:15:27 (00:07:55 / 105%) 

SES-DW256 00:20:51 (00:12:39 / 154%) 00:19:00 (00:11:28 / 152%) 

SES-DW1024 00:24:13 (00:16:01 / 195%) 00:22:05 (00:14:33 / 193%) 

 

Table 5-6. TPC-H 10GB Query Workload Execution Time Overhead 

 

 

Oracle TPC-H 10GB  

Execution Time (Overhead) 

SQL Server TPC-H 10GB  

Execution Time (Overhead) 

Standard Loading Time 01:23:57 01:18:14 

AES128 04:13:11 (02:49:14 / 202%) 03:54:23 (02:36:09 / 200%) 

AES256 05:17:53 (03:53:56 / 279%) 04:37:30 (03:19:16 / 255%) 

3DES168 06:07:33 (04:43:36 / 338%) 05:13:41 (03:55:27 / 301%) 

OPES 04:46:45 (03:22:48 / 242%) 03:55:55 (02:37:41 / 202%) 

Salsa20 04:03:43 (02:39:46 / 190%) 03:45:40 (02:27:26 / 188%) 

SES-DW128 02:44:53 (01:20:56 / 96%) 02:37:26 (01:19:12 / 101%) 

SES-DW256 03:20:56 (01:56:59 / 139%) 02:51:29 (01:33:15 / 119%) 

SES-DW1024 04:09:36 (02:45:39 / 197%) 03:48:33 (02:30:19 / 192%) 
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Table 5-7. Sales DW 2GB Query Workload Execution Time Overhead 

 

 

Oracle Sales DW 2GB  

Execution Time (Overhead) 

SQL Server Sales DW 2GB  

Execution Time (Overhead) 

Standard Loading Time 00:29:26 00:28:10 

AES128 03:55:01 (03:25:35 / 698%) 03:43:49 (03:15:39 / 695%) 

AES256 04:18:10 (03:48:44 / 777%) 03:56:20 (03:28:10 / 739%) 

3DES168 04:24:20 (03:54:54 / 798%) 04:08:18 (03:40:08 / 782%) 

OPES 03:56:29 (03:27:03 / 703%) 03:26:21 (02:58:11 / 633%) 

Salsa20 03:08:14 (02:38:48 / 540%) 02:46:59 (02:18:49 / 493%) 

SES-DW128 01:46:36 (01:17:10 / 262%) 01:34:42 (01:06:32 / 236%) 

SES-DW256 02:29:58 (02:00:32 / 410%) 02:10:06 (01:41:56 / 362%) 

SES-DW1024 03:29:06 (02:59:40 / 610%) 02:47:12 (02:19:02 / 494%) 

 

To demonstrate the effects of using encryption on each individual query, 

the results for individual query execution time in Oracle for the TPC-H 

10GB scenarios are shown in Figure 5-19, with a logarithmic scale. These 

results show that all queries have similar proportional overhead to those 

of the complete workload. This is also true for all the other scenarios, 

making it redundant to include all. It can be seen that most queries 

processed by AES and 3DES have overheads of several orders of 

magnitude higher than SES-DW. 
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Figure 5-19. TPC-H 10GB Individual Query Execution Time Overhead per 

Encryption Algorithm in Oracle 11g 

For the same reasons as in the experimental evaluation subchapter of the 

proposed data masking solution, the individual query execution time 

results for the Sales DW are not included, given this set of queries can 

produce a certain amount of insight as a whole, but should mainly not be 

considered as appropriate for individual analysis, since this DW is a 

specific real-world database and it is not a standard nor a benchmark. 

5.5 Discussion on SES-DW 

Contrarily to typical encryption packages such as those supplied by the 

leading commercial DBMS, SES-DW preserves the encrypted columns’ 

datatype and bit length. This avoids introducing storage space overhead 

and type conversions in decryption, consequently decreasing the amount 

of data that needs to be accessed in order to process queries, as well as 

computation efforts, when compared with typical encryption. As the data 

masking technique proposed in the previous chapter, SES-DW 

accomplishes continuous data protection similarly to commercial 

encryption packages, since it maintains data-at-rest encrypted at all times, 

while adding the mentioned benefits of datatype preservation. 
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SES-DW also has similar advantages to MOBAT, such as executing direct 

queries against encrypted/decrypted data without having that data 

transferred between the database and the encryption/decryption 

mechanisms. This also avoids I/O and network bandwidth congestion 

that other solutions introduce due to those data roundtrips, enabled by 

the fact that the encrypting and decrypting processes simply rely on SQL 

rewriting. As MOBAT, SES-DW is a straightforward and portable 

technique to be universally used in any DBMS regardless of the CPU and 

operating system, contrarily to what occurs with most standard 

encryption packages supplied by DBMS. 

Another advantage in SES-DW that is similar to MOBAT is that SES-DW 

is specifically designed for masking numerical values, and in this sense, is 

therefore much more performance efficient for protecting DW facts, when 

compared with standard encryption techniques that require executing 

data type conversions. The data loading and query execution response 

time results shown in the experimental evaluations demonstrate this, as it 

also proves that using encryption does in fact introduce extremely high 

storage space, loading time and query response time overheads. 

In what concerns storage space, SES-DW presents similar overhead as 

MOBAT, concerning the addition of an extra column in the fact table. 

OPES and SES-DW introduce much smaller storage space overheads than 

the remaining solutions (less than 25% of extra storage space), followed 

by Salsa20 at a considerable difference (adding approximately 30% of 

storage space in TPC-H and almost 100% in the Sales DW), while the 

standard encryption solutions produce the highest storage space 

overheads by far.  

In what concerns loading time, SES-DW with 128 bit and 256 bit security 

(those similar to the key lengths of the other solutions) is much faster 

than all the remaining solutions, introducing 10% to 29% of extra loading 

time in the tested scenarios. OPES has the second best performance, 

introducing 34% to 61% of extra loading time, more than two times worse 

than SES-DW on average. Salsa20 presents loading time overheads from 

64% to 102%, on average roughly four times worse than SES-DW, while 

the standard encryption solutions introduce overheads of more than 

100%, reaching more than 200% in several scenarios. On the other hand, 

while SES with 1024 bit security does present greater overhead than 
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OPES and Salsa20, it does have a superior bit security strength than these 

solutions. 

Considering the results obtained in the query workload executions, SES-

DW with security strengths similar to the remaining solutions is also 

much faster. By observing the results, it can be seen that the relative 

differences between the solutions are approximately proportional 

throughout the different scenarios, with SES-DW being always the fastest 

solution (using the same bit security strength as the key length of the 

remaining solutions) and therefore introducing the smallest execution 

time overheads by several orders of magnitude, roughly half to a quarter, 

on average, of the remaining solutions.  

SES-DW can be considered as a much more efficient overall solution, 

introducing small overheads when compared to the remaining solutions, 

for similar key sizes. Note that the worst result for SES-DW is that with 

1024 bit security, which is similar to Salsa20. However, it does refer to 

using 1024 bit encryption, far higher than the remaining tested solutions. 

As we previously mentioned, given that decision support environments 

typically execute long running queries (i.e., queries that can run for many 

minutes up to hours), the response time overheads introduced due to the 

use of encryption solutions represent high absolute values that can easily 

make query responses overdue and jeopardize the usefulness of the DW 

itself. Considering the magnitude of the results shown in the 

experimental evaluations, even a minimum gain in response/CPU time 

can be considered as an important achievement.  

The proposed encryption technique is straightforward and nearly 

effortless to implement in a similar fashion as the data masking 

technique, and the encryption keys may also be periodically refreshed 

and used to refresh the encrypted table values without much effort, by 

frequently switching the values of all or any one of the set of encryption 

keys for each encrypted column before refreshing encrypted data in order 

to ensure that data is properly protected. Therefore, given all of its 

security and performance features discussed and demonstrated in this 

chapter, we believe our technique is secure enough to be acceptable for 

use and that it may be considered as a valid alternative for enhancing 

data confidentiality in DWs. 
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5.6 Summary 

In this chapter we propose an encryption solution specifically designed 

for enhancing data confidentiality in DWs. The proposed encryption 

algorithm requires only operations that can be executed using standard 

SQL, such as modulus, exclusive or and arithmetic operators. As the 

masking technique, it requires small computational efforts and is 

straightforward and easily implemented in any DBMS. The proposed 

solution is transparently used and to query the database the user 

interfaces only need to send their queries to a middleware broker instead 

of the DBMS. Data-at-rest is always encrypted and only the final 

processed results are returned to the authorized user interfaces that 

requested them. All SQL commands and actions are encrypted and stored 

in a log by the middleware security broker, which can be audited by any 

security staff.  

We have compared SES-DW with the AES and 3DES encryption 

algorithms provided by leading commercial DBMS, as well as two state-

of-the-art encryption proposals. The experimental results confirm the 

same kind of storage space and database performance results as in the 

previous chapter. Given that most DW data consists on numerical values, 

our encryption technique is tailored for this kind of data. Given both 

security proof and performance results, our technique shows better 

security strength versus database performance tradeoffs than the 

remaining encryption solutions. Thus, it is an efficient overall solution 

and a valid alternative for balancing performance and security issues 

from the DW perspective. 
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Chapter 6  

DW-DIDS: An Intrusion Detection 
Mechanism for Data Warehouses 

In a defense in depth scenario, an intruder needs to overcome a series of 

security mechanisms against invasive or unauthorized actions, such as 

routers, firewalls, network-based intrusion detectors, OS-based intrusion 

detectors, and finally, Database Intrusion Detection Systems (DIDS). The 

DIDS represents the last bastion of defense before any intruder gains 

access to the data itself. In this chapter, we propose a Data Warehouse 

Database Intrusion Detection System (DW-DIDS) based on the analysis of 

user actions at the SQL command level, including measures concerning 

what data was processed as well as the resulting datasets from the 

command’s execution. The proposed DIDS complies with the principles 

defined by the framework presented in Chapter 3. 

To accomplish this, we define what an intruder is and what types of 

attack can occur against data warehouses, proposing a classification of 

each intruder action according to those intents. Given this classification 

and the characteristics of typical end user workloads, we propose a set of 

features analyzed by the DIDS which we consider relevant to analyze and 

monitor their behavior.  

We then define how to construct each user’s behavior profile using the 

chosen Intrusion Detection (ID) features in a defined learning phase for 

the DIDS, and how to perform ID in the detection phase for generating 

alerts.  

For performing alert and response management, we propose a risk 

exposure method that assesses the risk inherent to each generated alert, 

given its probability and impact, which indicates the alerts that 

potentially present greater risk to the enterprise. This allows security staff 

to quickly check the alerts showing the highest risk and deal with the 
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potentially most dangerous intrusions first. The approach includes a SQL-

like set of rules that allow determining the probability that each alert 

refers to a true intrusion given the feature that generated that alert, as 

well as the impact that the user action can produce on the enterprise. 

These rules also enable to deal with intrusions automatically, given the 

alert’s risk exposure measure. 

The chapter is organized as follows. In Section 6.1 we describe the basics 

of intrusion behavior in data warehousing environments, classifying the 

types of intrusion actions and proposing the relevant features for 

monitoring user behavior and performing intrusion detection. In Section 

6.2 we present the overall architecture of the proposed DIDS, describing 

each of its components and how they operate together during the 

workflow of the user command’s execution. Section 6.3 describes how to 

build user profiles, while Section 6.4 describes how to perform ID given 

each user action. Section 6.5 presents the risk exposure method for alert 

and response management. Section 6.6 includes an experimental 

evaluation of the proposed DIDS against two other ID techniques 

proposed by recent state-of-the-art research. In Section 6.7 we discuss 

open issues regarding the proposed DIDS and finally, Section 6.8 

summarizes and concludes the chapter. 

6.1. Selecting Intrusion Detection Features in Data Warehouses 

Selecting the appropriate features for performing intrusion detection 

requires understanding what an intruder is and which are the distinct 

type of intentions that can drive an attack, i.e., what the intruder aims to 

achieve with the attack.  

From a database perspective, an intruder in a data warehousing 

environment can be one of the following [Treinen and Thurimella, 2006]: 

 An authorized user, which is someone that has regular access to 

authorized database interfaces and acts with malicious intent; 

 A masqueraded user, which is someone that obtains the credentials 

of an authorized user and impersonating that user takes control of 

an authorized interface connecting to the database; 

 An insider attacker, which is someone that holds valid credentials 

to access the database as a regular activity; 
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 An external attacker, which is someone that does not have valid 

credentials to access the database, but is able to bypass database 

security mechanisms and gain direct database access using SQL 

injection or other exploiting techniques; 

 Any combination of the above. 

Considering the possible intruders’ intentions, there are mainly three 

types of attacks mobilized against DWs [Douligeris and Mitrokotsa, 

2004]: 

 Attacks aiming at corrupting data (integrity attacks). In this type 

of attack, the intruder seeks access to the database for executing 

actions that compromise its integrity, such as corrupting or deleting 

the data in a given database object (e.g. such as a table or view); 

 Attacks aiming at stealing information (confidentiality attacks). In 

these attacks, the intruder focuses on confidentiality issues, such as 

stealing business information, rather than damaging data; 

 Attacks aiming at making the DW unavailable (availability 

attacks). These attacks aim on making database services 

unavailable, i.e., they are mainly Denial of Service (DoS) attacks (e.g. 

flooding database services and bandwidth with a large number of 

requests, and halting or crashing database server instances). 

Given these intruder intents and types of attacks, we define ten classes of 

intrusion action types (A...J) as shown in Table 6-1. This classification 

distinguishes the intruder’s intentions apart from each other (shown in 

the “Attack Profile/Intent/Focus” column), defining a taxonomy for each 

action accordingly to what s/he might be aiming to achieve with the 

attack.  

Considering that integrity attacks focus on compromising the consistency 

and accurateness of the data content itself, we consider as integrity 

attacks all intruder actions that attempt to insert new false data values 

(class H), change the existing data values in order to make them incorrect 

or inaccurate (class I) and deleting existing data (class J). Any one of these 

attacks will cause inaccurate query responses against the affected data 

and they can also compromise referential integrity constraints if 

dimensional data is affected. 
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Table 6-1. SQL Intrusion Action Type Classification 

SQL 
Action 
Class 

Security dimension affected 
by the intrusion Intruder Command 

Action Description 
Attack Profile/Intent/Focus 

Confid Integrity Availab 

A X   
Attempts to discover 
valid database 
credentials/logins 

Brute force attack or dictionary-based 
attacks for attempting to obtain valid 
application/database logins 

B X   

Query retrieving 
information on 
database objects or 
data structures 

Retrieving information on database 
tables, views, triggers, etc. as well as 
index column names and types, in order 
to compose further attack instructions 

C   X 

Malicious 
modification of 
auxiliary data 
structures 

Erasing or renaming performance 
optimization data structures (e.g. 
erasure of indexes or materialized 
views), database objects (e.g. tables or 
physical datafiles) 

D X  X 
Query retrieving all 
data from a table 
(integral table copy) 

Retrieving all possible information of 
fact tables (in order to steal business 
secrets or strangle network bandwidth) 
or dimension tables (e.g. customer 
information) 

E X   
Query retrieving a 
significant portion of 
data from a table 

Stealing of selected sensitive factual 
(e.g. fact rows about sales concerning a 
given product or time period, or the 
rows with a small well-chosen set of 
sensitive table columns) or dimensional 
data (e.g. a list of customer credit cards 
or addresses) 

F X   
Query retrieving a 
specific and relatively 
small portion of data 

Stealing a small amount of specifically 
targeted data (e.g. total year sales value 
of a given product) 

G   X Query flooding 

Execution of an overwhelming amount 
of concurrent queries that access large 
volumes of data (creating database 
server processing bottlenecks) or that 
return large volumes of data (causing 
network bandwidth strangulation) 

H  X  Insertion of false data 
Insertion of rows with false data in fact 
tables and/or dimension tables to 
compromise user query results 

I  X  
Malicious 
modification of data 

Modification of stored data values in 
fact tables and/or dimension tables to 
compromise user query results 

J  X  Deletion of data 
Deletion of fact and/or dimensional 
table rows to produce false user query 
results and erase sensitive data 

We consider as confidentiality attacks all those that attempt to disclose 

information that should not be disclosed. In these intruder actions, there 
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can be distinct intentions such as: attempting to retrieve valid credentials 

to access the database with certain privileges (class A, which will allow 

the intruder to gain access to certain parts of the database), retrieving 

information on the database structures, such as table names and column 

names, for example (class B, which will allow identifying how the data is 

stored in the database and how the business is analyzed); and retrieving 

all or certain amounts of data from the database (classes D, E and F, 

which discloses business information to the intruder that s/he may use in 

her/his benefit or dismay the enterprise). 

Data availability attacks aim at keeping the database services from 

providing the responses back to the users or to simply keep them from 

operating. We consider as availability attacks user actions that: attempt to 

rename or delete database objects that hold data, such as tables or 

materialized views, or which are required to process regular user 

commands, such as table views (class C); request the database server to 

process a huge amount of data in a single command (e.g. retrieving all 

data from a fact table, defined in class D); and overwhelming the 

database server with commands, alias known as query flooding (class G). 

As can be seen, the classes defined in Table 6-1 cover a broad scope of 

intentions posed by intrusions. This classification is generic and can be 

easily modified in order to widen its scope by including other classes of 

different types of attack. 

As we previously discussed, a DIDS at the database command level 

should be able to analyze all the aspects triggered by the execution of the 

user’s action: the commands themselves, the processed data, and the 

resulting datasets. Given the described issues, the features required for 

monitoring database user actions are those focusing on the following 

usability dimensions: 

 Action-type: what type of actions are being requested; 

 Traceability: from who/where does the requested action come; 

 Selectivity: what data will be affected by that action and what 

data composes the resulting dataset; 

 Time: when are the actions requested to execute as well as their 

duration. 
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In order to analyze the referred dimensions given each user action, we 

need to capture observable measures of user behavior from each of the 

following inputs:  

 The user’s ID and his/her session ID. Identifying the user and 

session allows building individual behavior profiles, as well as trace 

back each requested database command;  

 The SQL commands issued by the user. The SQL command allows 

using features that identify the type of command (insert, update, 

select, delete, etc.) and accessed data structures (columns, tables, 

materialized views, etc.), selection attributes and values, grouping 

attributes, union queries, etc.;  

 A timestamp of the issued execution request. This allows defining 

the temporal behavior of each user, identifying sequences of 

measures as well as frequencies of occurrences, how long does it 

take to process each command (elapsed time), etc.; 

 The data processed by each SQL command. The measures from the 

processed data allow using features concerning the data that is 

processed by each command that is not intrinsic to the command 

(e.g. how many rows were processed in the command’s execution); 

 The dataset resulting from each SQL command’s execution. The 

measures from the dataset resulting from the command’s execution 

allow using features that enable analyzing what sort of data is 

returned to the user (the size of the resulting dataset, how many 

rows and columns, data values, etc.). 

Considering these inputs and the characterization of data warehousing 

environments and intrusion actions previously described, the intrusion 

detection features considered interesting to capture the relevant measures 

for the proposed DIDS are shown in Table 6-2. Note that although these 

features may seem general-purpose and well fit for intrusion detection in 

most types of databases, they are in fact the most relevant features for 

collecting the required information for monitoring data warehouse user 

actions and analyze their behavior, given the characteristics inherent to 

data warehouse user activity, as described in [Bockermann et al. 2009; 

Douligeris and Mitrokotsa, 2004; Kimball and Ross, 2013; TPC-H; TPC-

DS; Treinen and Thurimella, 2006]. 



Chapter 6 

172 

Table 6-2. SQL Intrusion Detection Features 

F# FeatureName Description 

User-based features 

F1 #ConsecFailedLoginAttempts The number of consecutive failed database login attempts 
by a UserID or from an IPAddress (accumulated or in a 
given timespan) 

F2 #SimultaneousSQLSessions The number of active simultaneous database connections on 
behalf of a UserID or IPAddress 

F3 #UnauthorizedAccessAttempts The number of consecutive requests to execute 
unauthorized actions (e.g. requesting to modify read-only 
data, or query data that he does not have access privileges) 
from a UserID or IPAddress 

SQL Command-based features 

F4 CPUTime CPU time spent by the DBMS to process each command 

F5 ResponseSize Size (in bytes) of the result of the command’s execution 

F6 #ResponseLines Number of lines and columns in the result of the 
command’s execution 

F7 #ResponseColumns Number of columns in the result of the command’s 
execution 

F8  #ProcessedRows Number of accessed rows for processing the command’s 
execution 

F9 #ProcessedColumns Number of accessed columns for processing the command’s 
execution 

F10 CommandLength Number of characters in the command 

F11 #GroupBy Number of GROUP BY columns in the command 

F12 #Union Number of UNION clauses in the command 

F13…F17 #Sum, #Max, #Min, #Avg, 
#Count 

Number of appearances of SUM, MAX, MIN, AVG and 
COUNT functions in the command 

F18, F19 #And , #Or Number of appearances of AND and OR operators in the 
command’s WHERE clause(s) 

F20 #LiteralValues Number of appearances of literal values in the command’s 
WHERE clause(s) 

Session-based features 

F21…F27 #Select, #Insert, #Delete, 
#Update, #Create, #Alter, 
#Drop 

Number of executed SELECT, INSERT, DELETE, 
UPDATE, CREATE, ALTER, and DROP commands per 
session 

F28 #Insert-Select Number of executed INSERT commands that used 
SELECT commands for inserting or building datasets, per 
session 

F29 #Create-Select Number of executed CREATE commands that used 
SELECT commands for inserting or building datasets, per 
session 

F30 TimeBetwCommands Time period (in seconds) between execution of commands, 
per session 

F31 #SimultaneousCommands Number of commands simultaneously executing, per 
session 
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Table 6-2. SQL Intrusion Detection Features (continued) 

F# FeatureName Description 

Table-based features 

F32 #ProcessedRows Number of accessed rows per table 

F33 #ProcessedColumns Number of accessed columns per table 

F34...F38 #Sum, #Max, #Min, #Avg, 
#Count 

Nr. of appearances of SUM, MAX, MIN, AVG and 
COUNT functions executed per table 

F39…F42 #Select, #Insert, #Delete, 
#Update 

Number of executed SELECT, INSERT, DELETE, and 
UPDATE commands per table 

Column-based features 

F43 #GroupBy Number of issued GROUP BY clauses per column 

F44…F48 #Sum, #Max, #Min, #Avg, 
#Count 

Nr. of SUM, MAX, MIN, AVG and COUNT functions 
executed per column 

F49, F50 #Select, #Update Number of executed SELECT, and UPDATE commands 
per column 

As can be observed in Table 6-2, the features are divided into five main 

groupings: user-based, command-based, session-based, table-based and 

column-based. This allows testing features by applying different levels of 

grouping (per user / per user session / per SQL command / per table / per 

column) as roll-up and drill-down techniques, widening the detection 

scope and coverage of user behavior variability. 

Table 6-3 shows the coverage of the intrusion detection features defined 

in Table 6-2 against the intrusion action classes described in Table 6-1. 

Given the diverse types of intrusion detection techniques discussed in 

Chapter 2, the set of proposed features presented in our approach 

manages to cover an extremely broad scope of possible forms of intrusion 

detection. For example, features F1, F2, F3, F4, F5, F30, F31 are commonly 

used in intrusion detection systems that inspect network traffic; F6, 

F8…F29, F34…F50 are widely used for SQL command analysis; F4, F5, F6, 

F13…F17, F34…F38, F44…F48 are used in statistical intrusion detection 

systems; F4, F21…F27, F30, F31, F39…F42, F49, F50 are used for sequence 

analysis;  F6…F9, F11, F12, F21…F29, F32, F33, F39…F43, F49, F50 focus on the 

accessed data and are used in intrusion detection systems for data access 

pattern analysis; and features F4…F7, F30…F33 are used in intrusion 

detection systems that analyze the action’s resulting dataset.  
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Table 6-3. SQL Intrusion Detection Features Coverage per Intrusion Action Class 

SQL Action 
Class 

Intrusion Detection Features 

A F1, F2, F3, F8, F9, F10, F12, F18, F19, F20, F30, F31, F32, F33, F49 

B F2, F3, F8, F9, F18, F19, F20, F30, F31, F32, F33, F49 

C 
F3, F8, F9, F10, F18, F19, F20, F22, F23, F24, F25, F26, F27, F28, F30, F31, F32, F33, F40, F41, F42, 
F50 

D 
F2, F3, F4, F5, F6, F7, F8, F9, F10, F12, F18, F19, F20, F21, F22, F25, F26, F28, F29, F30, F31, F32, 
F33, F39, F49 

E 
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F25, 
F26, F28, F29, F30, F31, F32, F33, F34, F35, F36, F37, F38, F39, F43, F44, F45, F46, F47, F48, F49 

F 
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F25, 
F26, F28, F29, F30, F31, F32, F33, F34, F35, F36, F37, F38, F39, F43, F44, F45, F46, F47, F48, F49 

G 
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F18, F19, F20, F21, F22, F28, F29, F30, F31, F32, F33, 
F39, F40, F43, F49 

H F2, F3, F4, F8, F9, F10, F18, F19, F20, F22, F28, F29, F30, F31, F32, F33, F39, F40, F49 

I F2, F3, F4, F8, F9, F10, F18, F19, F20, F24, F26, F30, F31, F32, F33, F42, F50 

J F2, F3, F4, F8, F10, F18, F19, F20, F23, F27, F30, F31, F32, F41 

 

6.2. DW-DIDS Architecture 

The Data Warehouse Database Intrusion Detection System’s (DW-DIDS) 

architecture is shown in Figure 6-1. The DataBase Administrator (DBA) is 

the person in charge of managing the DW Database(s), namely managing 

all database objects such as datafiles, tablespaces, tables, indexes, views, 

etc. The Authorized End User is a regular authorized DW end user that is 

interested in querying data for decision support purposes or an ETL tool. 

The Intruder represents the attackers as defined in the previous section. 

The DW Security Administrator is responsible for handling the DW-DIDS 

through the Security Manager Interface by managing the contents of the 

DW-DIDS Database (which is a part of the Security Framework Database, as 

explained in Chapter 3). This database contains: 

 A historical SQL command log for storing all commands requested 

to be executed by the DBMS; 

 The individual user feature profiles and respective statistical 

models; 

 A historical alert log for storing and monitoring all generated alerts; 
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 A rule-base dataset containing the rules for computing risk 

exposure and indicating how to deal with intrusions according to 

each generated alert (the syntax of the risk exposure rules will be 

explained further in Section 6.5). 

The generated alerts stored in the alert log are also manually confirmed 

as true or false positive outcomes by the DW Security Administrator, after 

their veracity have been checked out. The true and false positive 

outcomes are used to fine-tune each feature’s contribution in the overall 

intrusion detection process, as explained further in Subsection 6.5.4. 
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Figure 6-1. DW-DIDS Architecture 

In our approach, intrusion detection is handled at the SQL command 

level in two moments:  

1) when the DBMS receives a command to execute, that command is 

analyzed before it is executed (step 2);  

2)  after its execution is completed (if the command is not considered 

an intrusion in step 2), its response and the data that was processed 

is also analyzed before being returned to the user which requested 

the execution (step 10).  
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The sequence of steps is labeled in Figure 6-1. In practice, before 

executing any command, the Command Parser retrieves the command text 

and starting date/time, as well as user identification (User type, UserID, 

IPAddress, SessionID), parses the command according to the intrusion 

detection features and passes all the information to the Command Analyzer 

(step 3). The Command Analyzer stores this information in the SQL 

Command Log and retrieves the respective user features’ statistical models 

(step 4), and applies the intrusion detection algorithms (explained in the 

next subsections) to determine if an alert should be generated concerning 

the analyzed command. The information referring the parsed user 

command and its outcome results from the intrusion detection tests is 

then passed on to the Intrusion Response Manager (IRM) (step 5). 

When the IRM receives indication that an alarm should be generated, it 

retrieves the probability, impact and risk exposure rule set from the DW-

DIDS Database (step 6), evaluates the intrusion’s risk exposure and stores 

the data concerning the alert and the features which generated it in the 

database (for future reference), and notifies the DW Security Administrator 

through the Security Manager Interface (step 7). Moreover, it also takes the 

suitable actions for dealing with the possible intrusion through the 

DBMS, accordingly to what is defined by the risk exposure rules. The 

IRM takes action against intrusions by suspending or killing its execution, 

or killing the user session, either automatically or on request of the DW 

Security Administrator after s/he has seen the alert information and 

decided what action should be taken. 

If the command is not considered an intrusion a priori to its execution, i.e., 

if no alarm is generated after analyzing the command, DW-DIDS will 

simply update each feature’s statistical model for the corresponding user 

in the DW-DIDS Database and notify the DBMS to execute the command. 

In this case, after its execution, the resulting dataset and the data that was 

processed is parsed by the Response Parser and analyzed by the Response 

Analyzer (in a similar way as the applied by the Command Parser to the 

user command) (steps 10 to 13).  

If the Response Analyzer does not request to generate an alarm against the 

command’s resulting dataset, i.e., if it is not considered an intrusion, then 

each feature’s statistical models for the concerning user is updated once 

more in the DW-DIDS Database and the command’s results are disclosed 
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back to the user that requested them. On the other hand, if the IRM 

receives indication that an intrusion alert should be generated, then it 

takes action similarly to what was previously described for steps 6 and 7. 

6.3. Learning Phase: Building User Behavior Profiles 

Our user profiling approach is based on adjusting a probabilistic 

distribution for each ID feature { F1, …, F50 } (as shown in Table 6-2) per 

user, except F1 and F3 (which use absolute values), from observations 

(feature values) extracted in an initial training (alias learning) stage. To 

obtain those observations, we assume the existence of a previous 

“intrusion-free” database command log or a set of queries supplied by the 

DW administrator, which also identify the user that issued each 

command.  

To build the user profiles, each SQL user command in that log or set of 

queries is parsed and executed against the DW to extract the required 

information, i.e., the observations from the command itself, those 

referring to the data processed by the command, and the resulting 

dataset, for building each feature’s statistical distribution per user. The 

workflow of this training stage is shown in Figure 6-2, where the 

continuous lines show the flow a priori to the user command’s execution 

and the dashed lines indicate the flow a posteriori.  

Statistical adjustment tests are performed in order to obtain each 

population’s distribution model at a level of 5% significance using Qui-

square (which is valid for any distribution), Kolmogorov-Smirnov (which 

is valid for a continuous distribution) or Shapiro-Wilks (valid for normal 

distributions) to verify if each set of observations comes from a 

population with a given distribution function F0, specified on the null 

hypothesis.  
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Figure 6-2. DW-DIDS Learning Stage Workflow for each SQL User Command 

6.4. Detection Phase: Intrusion Detection against User Commands 

The testing phase workflow for performing intrusion detection is shown 

in Figure 6-3, where continuous lines show the flow a priori to the user 

command’s execution and the dashed lines indicate the flow a posteriori. 

To detect an intrusion, each user command is analyzed before it is 

executed by the DBMS. A statistical test is performed for each feature 

given its original statistical model for the respective user and a new 

sample set built by gathering the existent observations with the current 

respective user session sample set for that feature. New statistical tests are 

performed to adjust a new probability distribution to the former data 

collection. Afterwards, we test if the new distribution matches the 

original distribution of the feature (Ho).  

The Chi-square, Kolmogorov-Smirnov or Shapiro-Wilk statistical tests, 

mentioned in the previous subsection, are always used as the testing 

methods in all cases, all performed at a level of 5% significance. These 
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methods test whether one distribution (e.g. one data set) is significantly 

different from another (e.g. a normal distribution) and produce a binary 

answer, corresponding to yes or no. We use the Shapiro-Wilk test if the 

sample size is small (between 3 and 2000) and the Kolmogorov-Smirnov 

test if the sample size is big (greater than 2000). The Chi-square test is 

used to verify if a data sample came from a population with a specific 

distribution.  

If no test in this first phase (i.e., a priori to the user command’s execution 

by the DBMS) rejects H0, then the DBMS is notified to run the command. 

After the command has been processed, feature value extraction is 

performed on the resulting dataset and the processed data and the 

corresponding statistical tests are executed in a similar fashion as 

described in the previous paragraph. In any testing phase, for each 

feature’s test result that rejects the distribution’s equality (Ho) in any 

moment, the respective user action is considered an intrusion and an 

alarm is generated. 

For features F1 and F3 a different approach is chosen, considering the 

following: in systems such as ATM, banking, e-governance, and most 

web applications, for instance, the number of allowed consecutive 

unsuccessful login attempts is typically three (which is the most used 

option) to five (usually the maximum number of allowed consecutive 

unsuccessful attempts). It is considered common to accept two 

consecutive unsuccessful attempts followed by a successful attempt as a 

non-intrusion, while more consecutive unsuccessful attempts indicate a 

possible intrusion tentative or a true user that has forgotten his/her login 

information. Thus, DW-DIDS considers an intrusion more than two 

consecutive failed login attempts (F1>2) on behalf of a given user/IP 

address and generates the correspondent alert. 

In a similar fashion, a situation where a user that manages to login and 

tries to view or process data to which s/he does not have or is not 

supposed to access may also match an intrusion action. Therefore, two 

consecutive attempts from a given user/IP address for accessing 

unauthorized data or for executing an unauthorized command (e.g. an 

INSERT, UPDATE, DROP, etc., by a DW End User, which has only 

SELECT statement privileges) (F3>=2) is also considered an intrusion by 

DW-DIDS, generating the correspondent alert. 
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Figure 6-3. DW-DIDS Intrusion Test/Detection Stage Workflow for each SQL User Command 

6.5. Alert and Response Management 

For each user action that flags an alert, the Intrusion Response Manager 

(IRM) evaluates the potential damage the action may cause to the 

enterprise, assessing the action’s risk exposure according to the feature(s) 

that generated the alert. After computing that risk exposure measure, it 

notifies the DW Security Administrator about the alert and adequately 
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responds to the intrusion accordingly with the defined risk exposure rule. 

In this section we define risk exposure and explain how this measure is 

computed in order to rank the alerts and take action against the attack. 

We also show how to calibrate the contribution of each intrusion 

detection feature in the overall intrusion detection process. 

6.5.1. Defining the Risk Exposure  

Many DIDS evaluate what data is accessed, while others focus on how 

data is accessed. Both assess the probability of a given user action being 

suspicious to classify that particular action or set of actions to which it 

belongs as an intrusion; when that probability exceeds a predefined 

threshold, an alert is generated. As we have previously mentioned, any 

thresholds used to filter out intrusion alerts given their probability should 

be defined with low values that minimize the risk of false negatives, i.e., 

to minimize the number of true intrusions that pass undetected. Given 

the sensitivity of DW data, it is preferable to have low thresholds, as the 

potential cost of undetection is often considered too high or unacceptable.  

However, this exponentially increases the number of generated alerts in 

most scenarios, making alert management one of the most critical issues 

in intrusion detection scenarios. 

To improve the efficiency of intrusion detection systems when the 

number of generated alerts is extremely high, alert correlation techniques 

such as [Debar and Wespi, 2001; Ning et al., 2002; Pietraszek, 2004; 

Pietraszek and Tanner, 2005; Valdes and Skinner, 2001; Yu et al., 2007] 

have been proposed. These techniques typically filter sets of alerts to 

distinguish which are worthy of being checked from those that are more 

probably false alarms. However, we argue that alert correlation on itself 

is not the best way to determine which alerts should be checked and in 

which order of priority. 

Since the value of DWs resides on the fact that they store the secrets of the 

business, the impact resulting from an intrusion on the enterprise is 

intimately linked with what data was exposed or corrupted. When using 

alert correlation techniques, there can be an alert that has been positively 

correlated for checking but has a low potential impact on the enterprise 

(e.g. the exposed or damaged data is not very sensitive), while an alert 

referring a true intrusion with high impact can be filtered out if it has a 
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low correlation value. Moreover, not evaluating the potential impact of 

the intrusion means that security staff do not know which alerts are more 

important, implying that resources may be wasted in checking intrusion 

alerts referring to actions that would cause minimal damage to the 

enterprise, while a highly prejudicial intrusion occurs and is left to be 

dealt with later on. 

To avoid this, we propose considering all alerts admissible and apply a 

method for ranking them, given a measure of risk exposure. Given a user 

action, risk exposure is a function of both the probability that the action has 

of referring an intrusion and the impact that it may produce, i.e., the 

potential magnitude of the cost to the enterprise related with the damage 

or disclosure of the data targeted by the action. The computation of the 

risk exposure of each alert is done according to the matrix shown in 

Figure 6-4, given its measured probability and impact.  

 

Figure 6-4. The risk exposure matrix 

The risk exposure method assures that all generated alerts will be ranked 

and automatically inform security staff to check out and deal with the 

most significant intrusions (given alerts with higher risk exposure) prior 

to possible intrusions that might potentially produce less damage, thus 

performing alert management more efficiently.  

To determine which actions are taken as a response for each alert given 

its risk exposure assessment, the DW Security Administrator should define 

rules with the following syntax (where the values enclosed in {} represent 

sets of values to choose from and those in [] are optional clauses): 
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    GIVEN RISK EXPOSURE AS {VeryLow, Low, High, VeryHigh,   
                            Critical} 
       ON FEATURE {FeatureName1, FeatureName2, ...},  
                  [AllFeatures] 
   [WHERE {List of filtering conditions}] 
    [WHEN {List of time-based conditions}] 
     TAKE ACTION {DoNothing, PauseUserCommand,  
                  TerminateUserCommand, KillUserSession} 
      FOR USERS {User1, User2, ...} [, [AllUsers,] 
          USERS WITH ROLE {Role1, Role2, ...} 

This SQL-like rule covers all user action classes and dimensions 

mentioned in Section 6.1. The FOR USERS, WHEN and WHERE clauses 

allow conditioning the application of the intrusion response actions 

defined in the TAKE ACTION clause, according to the specified features 

included in the ON FEATURE clause to which the generated alert refers. 

The FOR USERS clause allows the rule to be applied only to a limited 

subset of users, the WHEN clause allows the rule to be valid only during a 

given time schedule, and the WHERE clause allows the rule to be valid 

only given certain conditions using feature weight values – feature 

weighting is explained in the next subsection. 

As an example of defining risk exposure rules, consider feature 

#ConsecFailedLoginAttempts from Table 6-2. Supposing the DW Security 

Administrator wants to be alerted each time an alert is risen by this feature 

and defines that High and Very High risk exposure assessments for this 

feature should terminate the respective user commands, while a Low 

assessment should suspend the user command until the administrator 

checks if everything is alright, for all users. This is accomplished by: 

GIVEN RISK EXPOSURE AS Low 
   ON FEATURE #ConsecFailedLoginAttempts 
 TAKE ACTION PauseUserCommand 
  FOR USERS AllUsers 

GIVEN RISK EXPOSURE AS VeryHigh, High 
   ON FEATURE #ConsecFailedLoginAttempts  
 TAKE ACTION TerminateUserCommand 
  FOR USERS AllUsers 

As another example, if all users requesting to execute any command that 

generates critical alerts – regardless of the feature that generated them – 

should immediately be banned, the following rule can be defined: 
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GIVEN RISK EXPOSURE AS Critical 
   ON FEATURE AllFeatures 
 TAKE ACTION TerminateUserCommand, KillUserSession 
  FOR USERS AllUsers 

On the other hand, considering that all the command that generate alerts 

which present a Very Low risk exposure measure can be executed 

normally, although the Security Manager Interface still displays the alert to 

the DW Security Administrator so they can be checked out, the following 

rule can be defined: 

GIVEN RISK EXPOSURE AS VeryLow 
   ON FEATURE AllFeatures 
 TAKE ACTION DoNothing 
  FOR USERS AllUsers 

6.5.2. Defining the Probability 

DW-DIDS defines the probability of each intrusion alert with rules, given 

the feature that generated the alert. In a similar manner to the risk 

exposure rules, these rules have the following syntax: 

DEFINE PROBABILITY AS {VeryLow, Low, High, VeryHigh} 
    ON FEATURE {FeatureName1, FeatureName2, ...}, 
               [AllFeatures] 
[WHERE {List of filtering conditions}] 
 [WHEN {List of time-based conditions}] 
   FOR USERS {User1, User2, ...}, [AllUsers,] 
       USERS WITH ROLE {Role1, Role2, ...} 

It is quite obvious that, depending on each DW’s context, each feature has 

its own importance in the overall intrusion detection process, which is 

directly related to its risk probability, i.e., its efficiency in producing high 

true positive rates (detection of a high amount of true intrusions) and low 

false positive rates (small amounts of false alarms). To define this 

importance, each feature has a weight attributed to it, which is a real 

value within the range [0…1]. Using the probability rule syntax, we 

propose that the risk probability of each feature Fi should have a 

significance directly linked to its weight, as: 

DEFINE PROBABILITY AS VeryLow  
    ON FEATURE Fi WHERE Weight(Fi)<0.25 
   FOR AllUsers 
DEFINE PROBABILITY AS Low  
    ON FEATURE Fi WHERE Weight(Fi)>=0.25 AND Weight(Fi)<0.50 
   FOR AllUsers 
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DEFINE PROBABILITY AS High  
    ON FEATURE Fi WHERE Weight(Fi)>=0.50 AND Weight(Fi)<0.75 
   FOR AllUsers 

DEFINE PROBABILITY AS VeryHigh  
    ON FEATURE Fi WHERE Weight(Fi)>=0.75 
   FOR AllUsers 

After the learning phase in which all user profiles are built and DW-DIDS 

runs for the first time to detect and respond to intrusions, we suggest 

giving an equal weight of 0.5 to all features (Weight(Fi)=0.5), since it 

is not possible to know a priori which features will reveal to be more 

significant in the intrusion detection process. However, after the DW 

security staff checks each generated intrusion alert, the value of each 

feature’s weight is calibrated by its revealed efficiency. This weight 

calibration technique is explained in Subsection 6.5.4. 

For the fixed value features F1 and F3 we use predefined constants for 

defining the probability rule. For example, in banking and e-governance 

applications the number of consecutive unsuccessful login attempts that 

are allowed typically ranges from three to five. As mentioned before, it is 

common to accept that two consecutive unsuccessful login attempts 

followed by a successful attempt as a non-intrusion, while more 

consecutive unsuccessful tries indicate a possible intrusion attempt. 

Given this, the probability of an intrusion given the number of 

consecutive failed login attempts can be defined as: 

DEFINE PROBABILITY AS VeryLow  
    ON FEATURE #ConsecFailedLoginAttempts  
 WHERE #ConsecFailedLoginAttempts<=2 
   FOR AllUsers 

DEFINE PROBABILITY AS Low  
    ON FEATURE #ConsecFailedLoginAttempts  
 WHERE #ConsecFailedLoginAttempts=3 
   FOR AllUsers 

DEFINE PROBABILITY AS High  
    ON FEATURE #ConsecFailedLoginAttempts  
 WHERE #ConsecFailedLoginAttempts=4 
   FOR AllUsers 

DEFINE PROBABILITY AS VeryHigh  
    ON FEATURE #ConsecFailedLoginAttempts  
 WHERE #ConsecFailedLoginAttempts>=5 
   FOR AllUsers 
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Note that this is only an example and that although the statistical features 

have a proposed predefined set of rules given their computed 

importance/weight in the overall intrusion detection process, the DW 

Security Administrator can define new rules to widen the probability scope 

(in the same way s/he can add new features). To give an example on 

using temporal conditioning on any feature, consider a context in which 

no user is expected to access the DW between 8p.m. and 7a.m. on the 

server time clock. This may be defined in a rule as: 

DEFINE PROBABILITY AS VeryHigh  
    ON FEATURE #ProcessedRows, CommandLength  
 WHERE (Server.Time>20:00 OR Server.Time<7:00) AND 
       (#ProcessedRows>0 OR CommandLength>0) 

      FOR AllUsers 

Given the wide scope allowed by the defined rules, there may be more 

than one type of probability assessed when checking the rules that 

concern a generated intrusion alert. For instance, the same feature might 

have a High probability given from one of the rules and a VeryHigh 

probability attributed by another rule. In this case, the Intrusion Response 

Manager always chooses to assign the highest value (in this case, 

VeryHigh). 

6.5.3. Defining the Impact 

The assessment of the impact caused by a user action is also defined by 

rules in a similar fashion as those previously described. This assessment 

is based on which, how much, and when sensitive data can be exposed or 

damaged by the user command, as well as who is the user. The impact for 

the actions ranged by each user’s command is managed by the following 

rules, valid for the list of nominal-based, value-based and/or temporal-

based conditions is defined through rules with the following syntax: 

DEFINE IMPACT AS VeryLow, Low, High, VeryHigh 
    ON FEATURE {FeatureName1, FeatureName2, ...}, 
       [AllFeatures] 
   [ON COMMAND Insert, Update, Delete, Select, 
               CreateAll, DropAll, AlterAll,  
               CreateTable, DropTable, AlterTable, 
               CreateIndex, DropIndex, AlterIndex, 
               CreateProcedure, DropProcedure,  
               AlterProcedure, CreateFunction,  
               DropFunction, AlterFunction, 
               CreateView, DropView, AlterView, 
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               CreateTrigger, DropTrigger,  
               AlterTrigger, AllCommands, DML, DDL] 
 [WITH COLUMNS {Column1, Column2, ...}, [AllColumns]] 
[WHERE {List of filtering conditions}] 
 [WHEN {List of time-based conditions}] 

[JOINED WITH {Column1, Column2, ...}, [AllColumns]] 
   FOR USERS {User1, User2, ...}, [AllUsers,] 
       USERS WITH ROLE {Role1, Role2, ...} 

This impact assessment is left entirely to the DW Security Administrator, as 

it depends on the nature and structure of each DW itself and is mostly 

unique in each real-world context. The clauses are used in a similar 

manner to those in the probability rules, plus the clause that allows 

distinguishing which is the user command (ON COMMAND), which 

columns are processed (WITH COLUMNS), and the clause defining the 

impact of two or more columns being processed or shown together by the 

same command (JOINED WITH COLUMNS).  

As an example, suppose that a credit sales DW has a Sales fact table with 

column SalesAmount, storing the total amount value of each sale. It is 

probable that a command that retrieves a single row or two of 

SalesAmount values from the fact table probably represents low exposure 

risk for the enterprise in case of an intrusion, while that risk may 

probably be very high if the number of retrieved rows is higher (e.g. 

greater than 20). This can be defined by the following rules: 

DEFINE IMPACT AS Low  
    ON FEATURE #ProcessedRows 
    ON COMMAND Select  
  WITH COLUMNS Sales.SalesAmount 
 WHERE COUNT(*)<=2 FOR USERS AllUsers 

DEFINE IMPACT AS VeryHigh  
    ON FEATURE #ProcessedRows 
    ON COMMAND Select  
  WITH COLUMNS Sales.SalesAmount 

    WHERE COUNT(*)>=20 FOR USERS AllUsers 

6.5.4. Calibrating Feature Weight 

The efficiency of intrusion detection mechanisms is typically analyzed 

recurring to several measures [Kamra et al., 2008; Kamra, 2010]: 

 True Positive (TP): an alert referring to a true intrusion; 

 False Positive (FP): an alert which reveals a false alarm; 
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 True Negative (TN): a user action that is correctly classified as a non-

intrusion by the ID process; 

 False Negative (FN): an intrusion action that is misclassified by the ID 

process as a non-intrusion (i.e., resulting in a missed intrusion). 

The importance of each feature in DW-DIDS is computed by a self-

calibrating technique, using its individual ∑TP and ∑FP values. For each 

feature Fi, its weight is given by: 

Weight (Fi) = 0.5 + 

�
∑ ��� � ∑ ���
∑ ���� ∑ ���

�

�
 , ∑ ��� > 0 ∨  ∑ ��� > 0 

where ∑ ��� and ∑ ��� respectively represent the total number of true 

positives and false positives achieved by all the alerts generated by 

feature Fi. In our approach we assume a priori that each statistical feature 

initially has the same relevance. When DW-DIDS runs for the first time 

(and until the first alert generated by Fi, which allows computing TPi and 

FPi), each feature’s weight is set to an initial value of 0.50, as previously 

explained in Subsection 6.5.2. This value represents a neutral value in the 

formula, where the number of alerts generated by the feature refers to a 

true intrusion are the same as the number of alerts referring to false 

alarms: 

∑ ��� =  ∑ ���      �
∑ ��� � ∑ ���

∑ ���� ∑ ���
� = 0      Weight (Fi) = 0.5 + 

�

�
  = 0.5         

Every time an intrusion alert is generated, it needs to be checked a 

posteriori by the DW Security Administrator and then its status (true 

positive or false positive) is stored in the DW-DIDS Database. Each 

feature’s weight linked to that alert is then updated accordingly to the 

calibration weight formula. In case ∑ ��� >  ∑ ��� , the second term of the 

sum is positive, which makes the feature’s weight higher than 0.5. 

Contrarily, when ∑ ��� <  ∑ ��� the second term of the sum is negative, 

which makes the feature’s weight lower than 0.5, implying it erroneously 

alerts intrusions more than it accurately does. As the values of TPi or FPi 

grow, the computed weight will also respectively get higher or lower, 

meaning that as the values of TPi and FPi vary through time the 

computed weight will faithfully reflect the feature’s intrusion detection 

probability. 
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6.6. Experimental Evaluation 

Given the inexistence of an intrusion detection benchmark at the SQL 

command level, we used the well-known TPC-H decision support 

benchmark [TPC-H] to build the “true” non-intrusion workloads and a 

set of diverse artificially created “intrusion” workloads in the 

experiments.  

For the “true” DW users, the respective workloads were taken from the 

TPC-H benchmark due to its representativeness of typical DW 

workloads, and defined according to the following assumptions: 

 A number of randomly chosen TPC-H benchmark queries were 

selected for each user’s workload, i.e., each user has different 

queries to execute, as well as a different number of queries to 

execute; 

 Within the queries for each workload, several were randomly 

picked for modifying the benchmark’s fixed parameters (namely in 

their WHERE clause) by randomly changing their values to obtain a 

larger scope of diverse user actions from the benchmark queries; 

 A number of randomly built queries (by randomly picking a set of 

tables, columns, functions to execute, grouping and sorting, and 

literal restrictions for columns in the WHERE clauses) were also 

generated for each workload, representing the ad hoc user queries in 

DW environments; 

 The proportion of TPC-H and randomly built queries used in each 

workload is respectively 80% and 20% (on average), representing 

the typical reporting behavior in DW’s as the majority of the 

running tasks, while ad hoc queries are simulated by the random 

queries, in smaller number. 

Given that TPC-H has 23 predefined queries, the composed workload for 

each “true” user is shown in Table 6-4 for a setup consisting of 10 users, 

where O means that we are using the original TPC-H query, and M 

stands for a TPC-H query with modified parameters, as explained 

previously. 

 



Chapter 6 

190 

Table 6-4. “Non-Intrusion” True User Workloads (TUW) 

 Users 

Queries 1 2 3 4 5 6 7 8 9 10 

TPC-H Q1 O O   M   M O  

TPC-H Q2  M O   O    O 

TPC-H Q3 M    O  O M O  

TPC-H Q4  O M   M   M O 

TPC-H Q5    M O  M    

TPC-H Q6 O M      O  M 

TPC-H Q7   M O  O   M  

TPC-H Q8 M O     M   O 

TPC-H Q9   M O  M  O   

TPC-H Q10  O   M  O  O  

TPC-H Q11 O    M     M 

TPC-H Q12 M  O   O M O   

TPC-H Q13  O   M    M  

TPC-H Q14   O M      O 

TPC-H Q15 M M    O O    

TPC-H Q16 O  M     M O  

TPC-H Q17  O   M  O   M 

TPC-H Q18  M   O O M  M  

TPC-H Q19 M    O M  O   

TPC-H Q20  O   M  O  M M 

TPC-H Q21 O    M M  M  O 

TPC-H Q22  M   O      

TPC-H Q23   O M  M  O  O 

Nr. of Random Queries 2 3 1 5 3 2 5 1 2 2 

To build each “intruder” workload, we generated a random number of 

actions for each intrusion action type defined in Section 6.1 and executed 

them in a random order. The types of intrusion actions cover a wide 

range of attacks against the database, accordingly with the DW attack 

actions and classes formerly described in Section 6.1, as follows: 

 Inserting a random amount of rows; 

 Changing a random amount of rows and columns; 

 Deleting a random amount of rows and columns; 
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 Selecting a random amount of columns from a random number of 

tables, without range value restrictions (1); 

 Selecting a random amount of columns with a random amount of 

functions (MAX, SUM, etc.) from a random number of tables, 

without range value restrictions (2); 

 Selecting a random amount of columns from a random number of 

tables with a random amount of grouping columns, without range 

value restrictions (3); 

 Selecting a random amount of columns with a random amount of 

functions (MAX, SUM, etc.) from a random number of tables with a 

random amount of grouping columns, without range value 

restrictions (4); 

 Similar to (1), with range value restrictions; 

 Similar to (2), with range value restrictions; 

 Similar to (3), with range value restrictions; 

 Similar to (4), with range value restrictions; 

 Union queries with a random number of columns and tables; 

 Query flooding; 

 Unauthorized DW end user actions (create, drop, etc). 

For comparison with other DIDS, we repeated the experiments using the 

fine-grained Role-Based access control DIDS (RB-DIDS) solution 

proposed in [Kamra et al., 2008] and the clustered Data-Centered DIDS 

(DC-DIDS) proposed in [Mathew et al., 2010]. Both these solutions are 

explained in Chapter 2. The machine used in these experiments was the 

same used for the experiments presented in Chapter 5, with a Core2Duo 

3GHz CPU and 2GB of RAM, using Oracle 11g as the DBMS. 

DC-DIDS was implemented accordingly to the referred paper, using K-

means clustering [Mathew et al., 2010]. In their paper [Kamra et al., 2008], 

the authors of RB-DIDS define vectors named quiplets that store 

information on the columns used in the WHERE selection clause as well 

as the accessed tables and columns to be displayed included in the 

SELECT projection clause. They also propose three types of granularity 

(coarse, medium-grain and fine-grained quiplets) for building the user 

profiles. For fairness, we include the results from the implementation 
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using the medium-coarse quiplet, which obtained the best results in our 

tests, using K-means clustering with 10 iterations and the statistical 

Median Absolute Deviation (MAD) test for the detection process. 

For our testing scenario, we consider that the most sensitive data relates 

to the most recent data. Since TPC-H has approximately seven years of 

business data, the implementation of DW-DIDS defined the data from the 

most recent year to have very high impact due to intrusion actions, the 

data from the two previous years as high impact, the data from the two 

years before that as low impact and the remaining as having very low 

impact. Of course, this is not a real scenario, but we consider it to be a 

sufficiently realistic setup to test our approach. As we previously 

explained, the definition of impact on the data is directly related to the 

sensitivity of the data values themselves, which varies from case to case. 

This is why this assessment should be done by the DW Security 

Administrator according to the specific business context. 

Four user scenarios were considered for testing, with a total of 10 users in 

each scenario. Scenario 10-0 specifies a setup without any intruder 

activity, i.e., there is no “intruder” workload running, while in scenarios 

9-1, 8-2 and 5-5 there are respectively one, two and five “intruders” 

amongst the 10 users.  

6.6.1. Building User Profiles 

Each user profile is comprised by the set of statistical models (one per 

feature) that refer to his/her workloads. To build the statistical models for 

each feature of each “true” user, we used 5, 25, 50 and 100 executions of 

the “True” Users’ Workloads (TUW) previously shown in Table 6-4. The 

data and user workload in the learning phases are considered intrusion-

free and representative of normal usage because they are built and run 

“as defined” in the TPC-H benchmark. We shall now analyze the time 

and resources required to build these profiles. 

Table 6-5 shows the required storage space (in kilobytes) for building the 

user profiles. As can be seen, the smallest user profile database was built 

from 305 SQL commands, referring to the 5-5 Scenario with the execution 

of 5 TUW workloads, while the largest user profile database, referring to 

Scenario 10-0 with the execution of 100 TUW workloads, which contains a 

set of 12000 SQL queries. 



Intrusion Detection Mechanism 

 

193 

As shown in Table 6-5 in the largest setup, RBAC-DIDS, DC-DIDS and 

DW-DIDS respectively needed nearly 234 KB, 1031 KB and 2767 KB of 

storage space, corresponding to an average of 20, 88 and 236 bytes of data 

per SQL command. Given that the storage space typically required by 

DWs ranges through many gigabtyes or terabtyes, we may conclude that 

the measured sizes for the user profiles can be considered insignificant. 

Table 6-5. Required Storage Space for building User Profiles 

Scenario # Executions 
# TUW SQL 
Commands 

Required Storage Space (Kbytes) 

RBAC-DIDS DC-DIDS DW-DIDS 

10-0 

5 600 11.7 51.6 138.3 

25 3000 58.6 257.8 691.7 

50 6000 117.2 515.6 1383.4 

100 12000 234.4 1031.3 2766.8 

9-1 

5 540 10.5 46.4 124.5 

25 2700 52.7 232.0 622.5 

50 5400 105.5 464.1 1245.1 

100 10800 210.9 928.1 2490.1 

8-2 

5 485 9.5 41.7 111.8 

25 2425 47.4 208.4 559.1 

50 4850 94.7 416.8 1118.1 

100 9700 189.5 833.6 2236.3 

5-5 

5 305 6.0 26.2 71.4 

25 1525 29.8 131.1 356.8 

50 3050 59.6 262.1 713.7 

100 6100 119.1 524.2 1427.3 

 

In what concerns the time spent in building the user profiles, the 

measured costs can also be deemed insignificant when compared with 

the typical response time of long running queries, intrinsic characteristics 

of user actions in DW environments. For building all the user profiles, 

RBAC-DIDS took less than 1 minute, DC-DIDS took approximately 4 

minutes and DW-DIDS nearly 6 minutes. 
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6.6.2. Intrusion Detection Efficiency 

The complete “true” user and intruder workload of the testing (intrusion 

detection) phase for each scenario is shown in Table 6-6. 

Table 6-6. Workload Quantification for each User Scenario 

Scenario # “True” Queries # Attack Queries 

10-0 1250 0 

9-1 1130 100 

8-2 1020 200 

5-5 660 500 

Based on the previously mentioned TP, TN, FP and FN measures, derived 

calculations are commonly used to measure the efficiency of intrusion 

detection mechanisms, such as [Kamra et al., 2008; Kamra, 2010]: 

 TP Rate (TPR) =  
��

�����
 

 FP Rate (FPR) =  
��

�����
 

 Accuracy =  
�����

�����������
 

 Precision =  
��

�����
 

For the performed experiments, Figures 6-5a to 6-5c respectively show the 

TP Rate (TPR) and FP Rate (FPR) of DW-DIDS, RBAC-DIDS and DC-DIDS 

for each scenario using the user profiles built in the learning stage for 

each TUW training set, and Figures 6-6a to 6-6c show their Accuracy and 

Precision. All results are the average of 10 repeated executions for each 

setup (and there full statistical measures can be seen in Appendix C). 
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Figure 6-5a. DW-DIDS 

TP and FP rates 
Figure 6-5b. RBAC-DIDS 

TP and FP rates 
Figure 6-5c. DC-DIDS 

TP and FP rates 

 

Figure 6-6a. DW-DIDS 

Accuracy (ACC) and 

Precision (PREC) 

Figure 6-6b. RBAC-DIDS 

Accuracy (ACC) and 

Precision (PREC) 

Figure 6-6c. DC-DIDS 

Accuracy (ACC) and 

Precision (PREC) 

As shown in Figures 6-5.a to 6-5.c, the TP rates resulting from the 

scenarios in which the user profiles were built from only 5 TUW 

executions are relatively low for all DIDS (ranging from 52% to 78%), 

while in those built from 25 or more TUW executions the TP rates ranged 

between 85% and 94% for DW-DIDS and between 79% and 94% for RB-

DIDS, while DC-DIDS obtains the worst TPR result, ranging between 65% 

and 72%.  

The observed FP rates are all relatively low for DW-DIDS and RB-DIDS 

(ranging from 1% to 7%) in all scenarios except the 5-5 scenario, where 

14% to 23% of the alerts result in false alarms for DW-DIDS, 15% to 30% 

for RB-DIDS, and 19% to 31% for DC-DIDS. This should be somewhat 

expected, since the 5-5 scenario represents an environment with heavy 

intrusion activity (±50% of the total input workload). This results in a 

heavy increase of alarm generation, and given the high difficulty in 

distinguishing normal from abnormal behavior (as previously described), 

the probability of generating false alarms consequently increases. 
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As seen in Figures 6-6.a to 6-6.c, the accuracy is high in all scenarios 

except 5-5, ranging between 90% and 99% for DW-DIDS, between 83% 

and 99% for RB-DIDS, and between 82% and 90% for DC-DIDS. In the 5-5 

scenario, DW-DIDS maintains the best accuracy results between 72% and 

90%, RB-DIDS between 62% and 89%, and DC-DIDS between 68% and 

78%. The precision results are considerably high for DW-DIDS in all 

scenarios, ranging from 58% to 83%, variable in RB-DIDS by ranging from 

36% to 83%, and the poorest for DC-DIDS, ranging from 29% to 50%. 

Another commonly used metric to evaluate ID efficiency is the F-score (or 

F-measure) [Kamra et al., 2008; Kamra, 2010]. This measure is preferred by 

many authors to score efficiency, because it scores the balance (as a 

harmonic mean) between Precision and Recall (alias TP rate) in a single 

output: 

 F-score =  
�∗���������∗������

����������������
 

Figures 6-7.a to 6-7.c show the F-score results in each scenario for each 

DIDS. It can be seen that DW-DIDS obtains the best results for all 

scenarios and TUW setups, followed by RB-DIDS, while DC-DIDS has the 

worst results in most cases. DW-DIDS and RB-DIDS present very similar 

results for the setups in which the training SQL dataset is fairly 

significant in size (>=25 TUW), although DW-DIDS has always a slight 

advantage. On the other hand, the DC-DIDS presents better results than 

RB-DIDS when the training dataset is small (5 TUW) in the 9-1 and 8-2 

scenarios, suggesting that in these cases the data-centric analysis 

produces more efficient results than the command-centric analysis. Since 

DW-DIDS includes analysis on both data and command features, this 

mostly explains why DW-DIDS presents better results in all cases. 

 

Figure 6-7a. F-Score for 

the 9-1 Scenario 
Figure 6-7b. F-Score for the 

8-2 Scenario 
Figure 6-7c. F-Score for 

the 5-5 Scenario 
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6.6.3. Analyzing the Generated Alerts per Risk Exposure Measure 

Given that one of the main advantages of ranking the alerts using the risk 

exposure approach is to separate the most urgent alerts that need to be 

checked out from those which represent a lower risk to the enterprise, we 

shall now analyze the generated alerts per risk exposure measure. Tables 

6-7a to 6-7d show the number of generated alerts for each risk exposure 

measure, in each scenario. Recall the previously presented Table 6-6 

referring to the number of “true” SQL instructions versus the number of 

“intrusion” SQL instructions for each scenario (10-0, 9-1, 8-2 and 5-5). 

Table 6-7a. Alerts per Risk Exposure Measure w/ Profiles built from 5 TUW Executions 

 Scenario Very Low Low High Very High Critical 
Total # 
Alerts 

 10-0 11 13 14 12 7 57 

 9-1 27 28 28 30 12 125 

 8-2 41 52 59 42 29 223 

 5-5 88 93 116 111 89 497 

Table 6-7b. Alerts per Risk Exposure Measure w/ Profiles built from 25 TUW Executions 

 Scenario Very Low Low High Very High Critical 
Total # 
Alerts 

 10-0 2 2 3 3 3 13 

 9-1 22 30 31 29 15 127 

 8-2 40 52 57 47 29 225 

 5-5 103 118 139 116 63 539 

Table 6-7c. Alerts per Risk Exposure Measure w/ Profiles built from 50 TUW Executions 

 Scenario Very Low Low High Very High Critical 
Total # 
Alerts 

 10-0 1 2 3 4 2 12 

 9-1 20 30 30 26 17 123 

 8-2 36 50 59 49 31 225 

 5-5 108 123 138 125 69 563 

Table 6-7d. Alerts per Risk Exposure Measure w/ Profiles built from 100 TUW Executions 

 Scenario Very Low Low High Very High Critical 
Total # 
Alerts 

 10-0 1 1 2 4 2 10 

 9-1 22 23 26 35 20 126 

 8-2 34 51 55 54 32 226 

 5-5 109 125 131 136 71 572 
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By observing the previous tables it can be seen that in scenario 10-0, while 

there are no “intrusion” actions, DW-DIDS using profiles built from 25 

TUW raises 19 false alerts (corresponding to 1,5% of user statements), 

while in the remaining setups that amount of false alarms decreases to 1% 

or less, as a result of building more accurate profiles due to having more 

TUW to build it from. 

Figure 6-8 shows the percentage of alerts per risk exposure measure, 

given each scenario and user profile database setup. It can be seen that 

the most relevant alerts (very high and critical) represent approximately 

one third of all alerts, which should be the ones first deserving full 

attention on behalf of the security staff, instead of wasting potentially 

precious time checking the remaining alerts.  

 Scenario 10-0 Scenario 9-1 Scenario 8-2 Scenario 5-5 

5 TUW 
Executions 

 

25 TUW 
Executions 

50 TUW 
Executions 

100 TUW 
Executions 

Figure 6-8. Percentage of Alerts per Risk Exposure Method in each Setup 
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It can be seen that the alerts that are potentially most critical to the 

enterprise (assuming this to be Very High + Critical) are approximately 35-

40% of the total number of alerts in most cases. This gives a measure of 

how many alerts (60-65%) can be left to check subsequently to those that 

are most urgent to check. 

To analyze the efficiency of the risk exposure alert ranking method, we 

recalculated the TPR, FPR, Accuracy, Precision and F-score measures for 

DW-DIDS, considering only the generated alerts referring to attacks that 

fell within the High, Very High and Critical measures, i.e. filtering those 

which present a greater threat to the enterprise. Figures 6-9 to 6-11 show 

these results.  

 

Figure 6-9. DW-DIDS 

TPR and FPR 

considering only High, 

Very High and Critical 

Risk Exposure Alerts 

Figure 6-10. DW-DIDS 

Accuracy and Precision 

considering only High, 

Very High and Critical 

Risk Exposure Alerts 

Figure 6-11. DW-DIDS 

F-Score considering only 

High, Very High and 

Critical Risk Exposure 

Alerts 

Considering Figure 6-9, the TP rate presents nearly the same results as 

when all alerts are considered (Figure 6-5a), but the FP rate is much better 

than the previous, obtaining much fewer false alarms. The measured 

accuracy and precision, shown in Figure 6-10, is very high and also 

significantly better than the previous (Figure 6-6a). In fact, the accuracy 

for the majority of the scenarios in almost 100%, while in many setups the 

precision rises above 90%. Figure 6-11 shows that the overall F-score 

measure translates this, by presenting almost 10% of improvement for 

each scenario considering the previous results shown in Figures 6-7a to 6-

7c. 
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Conclusively, this allows to state that considering the alerts referring to 

higher risk exposure present higher efficiency results in intrusion 

detection, thus demonstrating that the risk exposure method is an 

adequate form of defining the priority on which alerts should be checked 

first and consequently reduce intrusion damage.  

6.6.4. Database Response Time Overhead due to Intrusion Detection  

In what concerns the impact on database performance, i.e. the increase of 

query response time, we measured an average overhead for each DIDS in 

each scenario as shown in Figure 6-12.  

 

Figure 6-12. Database Response Time Overhead for each DIDS in each Scenario 

By observing the previous figure, it can be seen that RB-DIDS is the 

fastest, introducing an overhead of equal or lesser than 2% to user query 

workload response time, while DW-DIDS is the slowest, given that it 

joins data-centric and command-centric analysis and processes a 

significantly higher amount of data than the remaining DIDS in the 

intrusion detection process, introducing response time overheads ranging 

from 4% to 11%. However, although DW-DIDS does in fact have the 

worse results, we argue that its intrusion detection efficiency shown in 

the experiments make these overheads worthwhile when compared to 

the remaining solutions. 

6.7. Discussion on DW-DIDS 

In DW-DIDS, all risk exposure, probability and impact rules are stored in 

the DW-DIDS Database and used by the Intrusion Response Manager (IRM) 

as formerly explained. Although probability is initially predefined, each 

rule may be redefined by the DW Security Administrator at any time for 

fine tuning. For instance, the DW Security Administrator may grant a 
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different probability to any feature or grant higher or lower weights to 

specific features that s/he knows are most likely to lead to better or less 

reliable ID rates given the DW’s context. 

The conditional clauses in the DW-DIDS rules (similarly to SQL clauses) 

allow an extremely wide range of definitions that, due to space feasibility 

issues, are not included. We just want to make clear that, besides the 

examples described in the former subsections, the algorithms can be 

easily adapted to cope with a wide range of rule possibilities using 

standard SQL functions with the DW-DIDS features, tables and columns, 

and the DW’s tables and columns, providing a very wide intrusion 

detection scope coverage. 

Using qualitative measures instead of quantitative measures allows 

providing a much more comprehensive rank; it is humanly much more 

intuitive and straightforward to interpret a High or Low measure of 

evaluation than the difference between a value of 0.46 and 0.58, or having 

just a High measure instead of differencing values such as 0.76 and 0.78. 

The qualitative measures smoothen the ranges of the quantitative values, 

providing better understanding to security staff. 

Combining quantitative probability and impact assessments into a unique 

qualitative risk exposure measure also improves the efficiency of alert 

management. For example, if an alert refers to an attack with Low 

probability – probably, a false positive – or refers to an attack with Low 

impact – probably, against non-sensitive data – it can be assessed as 

having Low risk exposure, which means that checking it can be postponed 

(or the intrusion may even be tolerated); if another alert with higher risk 

exposure – and thus, probably capable of causing greater damage – is 

generated simultaneously, it is more significant and quickly dealt with. 

The credibility and assertiveness of these assumptions are demonstrated 

by the experimental results shown in Figures 6-9, 6-10 and 6-11 described 

in Subsection 6.6.3, where the analysis containing the most relevant alerts 

(i.e. High, Very High and Critical risk exposure) shows particularly good 

accuracy, precision and F-score results. 

Figure 6-12 illustrates the alert correlation and risk exposure approaches for 

alert management. Standard alert correlation techniques are a weakness in 

most existing DIDS because they may exclude part of the generated alerts 

and do not consider the impact of the user actions, while our approach 
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considers all the alerts, focusing on their importance rather than solely on 

their probability.  

The alert correlation approach might lead to wasting time dealing with an 

attack on unimportant data while an attack on vital data occurs. With the 

risk exposure alert ranking method proposed in this thesis, it is 

guaranteed that the attacks focusing on the most sensitive data or capable 

of producing more damage to the enterprise can be dealt with first, 

effectively increasing damage containment. Furthermore, while alert 

correlation may exclude some alert that refers to an intrusion potentially 

capable of producing high impact on the enterprise, the risk exposure 

does not exclude any alert, but rather ranks them given their respectively 

assessed risk measure. 

Intrusion Detector

Alert Correlator

Intrusion Detector

Risk Exposure 
Assessment

Generated
Alerts

Generated
Alerts

Filtered Alerts 
considered 

Relevant

Ranked 
Alerts (All)

Filtered 
Alerts 

considered 
Irrelevant

Trash Security Staff Security Staff

ALERT MANAGEMENT USING 
ALERT CORRELATION APPROACH

ALERT MANAGEMENT USING 
RISK EXPOSURE APPROACH

 

Figure 6-12. Risk Exposure Approach vs Alert Correlation for Alert Management 

Although discussable, we argue that the contribution of each feature to 

the overall intrusion detection efficiency is subjective. The rules that 

define attack probability depend on the intrusion detection features in 

DW-DIDS are initially tuned to 0.5 by default, given the system has no 
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knowledge a priori on which feature is more relevant for the intrusion 

detection process. However, if the DW Security Administrator has know-

how or any way of defining the relevance of each feature a priori, the rules 

provide a way to accomplish this by adding whichever extra rules s/he 

wishes to the rule base. On the other hand, the rules that define the 

sensitivity of data (i.e. impact rules) must be defined by the DW Security 

Administrator because it depends on the nature and importance of that 

data to the enterprise, which only s/he (and mainly business managers) 

know, and depends on the DW context itself. Therefore, there isn't any 

automatic setup for these rules because, from our point of view, it is not 

relevant. 

Our proposal is both syntax-centric and data-centric. Although this rises 

its execution time overhead, we argue that this is worthwhile because it 

allows our approach to analyze the complete set of dimensions affecting 

the data due to the user action – the command itself, the processed data 

and the data resulting from the command’s execution – which is left out 

by the IDS used for comparison in the experiments (they only analyze 

command syntax - RBAC - and resulting dataset - Data-Centric). To the 

best of our knowledge, no other DIDS proposes this threefold analysis. 

The main reasons why we chose the role-based and data-centered 

approaches proposed in [Kamra et al., 2008; Mathew, 2010] is that DIDS 

analyzing data access patterns such as [Bertino et al., 2005; Kamra et al., 

2010] and analyzing the targeted data such as [Mathew et al., 2010; Spalka 

and Lehnhardt, 2005] seem more adequate for DW intrusion detection 

than solutions using other techniques such as sequence alignment, 

fingerprinting commands or transactional read-write rules, as we 

previously discussed in Chapter 2. Therefore, we chose one of each type 

of these intrusion detection techniques. 

The differences in storage size and time cost are justified by the type of 

dataset required by each DIDS to build the profiles: RBAC-DIDS just 

parses the SQL command and splits it into the relevant features, which 

basically works by accessing the command log and executing string 

manipulation; DC-DIDS considers, on average, a higher number of 

features than RBAC-DIDS and executes statistics per feature on each 

resulting command’s dataset, thus requiring data access actions, which 

are much more time-expensive than those executed by RBAC-DIDS; and 
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DW-DIDS executes both types of actions of RBAC-DIDS and DC-DIDS, 

plus accessing the data rows processed by the command, and has the 

highest number of features. Although this makes DW-DIDS the slowest 

solution in building the profiles and the one that requires the highest 

amount of storage space, collecting and combining the information 

regarding the user command with the resulting dataset and the rows 

processed by the command enables it to compose the richest feature 

dataset, which would add value to improve its intrusion efficiency, as 

was demonstrated in the experiments. 

By analyzing all results, it may be concluded that DW-DIDS showed the 

best results, followed closely by RB-DIDS in most scenarios, mainly when 

the training set was significantly large (>=25 TUW), while DC-DIDS 

obtained the worst results. By integrating features that enable both data-

centric and command-centric analysis, DW-DIDS is capable of producing 

the expected added value when compared with the application of those 

distinct analysis in separate. We may also conclude that a training set of 5 

TUW is insufficient in size for producing an efficient user profile 

database, as these scenarios yielded relatively low intrusion detection 

efficiency. The better results were obtained using the highest number of 

user workloads in the training stage. 

The results presented in the experiments suffer from the predefined data 

values and user commands used in the setups. Although both the DW- 

DIDS and RBAC-based approaches obtained good results in our 

experiments, it is extremely difficult to state that these results can be 

generalized to assess the efficiency of both DIDS. Most DIDS use the well-

known KDD99 benchmark [DARPA] to compare results. However, this 

benchmark uses network-based traffic for its purpose, which in our case 

is not applicable. In fact, given the absence of an SQL-based intrusion 

detection benchmark, the results published in this field of research are 

not comparable and thus, they cannot be generalized. We therefore argue 

that research in both the data warehousing and intrusion detection 

communities should make an effort to propose a benchmark for DIDS at 

the SQL level, possibly a compromise between the well-known TPC-DS 

or TPC-H decision support benchmarks and the KDD99 benchmark. 
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6.8. Summary 

In this chapter, we proposed a DIDS specifically designed for DWs, which 

can work transparently between the user interfaces and the database 

server as an extension of the DBMS itself. User behavior profiles are built 

using features that enable analyzing the diverse dimensions of DBMS 

user behavior: SQL commands, processed data and result datasets. 

Statistical tests are used to verify user actions against those profiles and 

generate intrusion alerts.  

The probability of each alert referring to a true intrusion and the impact 

that might be caused by the user action to which the alert refers can be 

managed by a set of SQL-like rules previously defined by the DW 

Security Administrator. This rule-base allows extending DBMS data 

access policies and provides a mean to assess the risk exposure of each 

intruder action for an extremely wide range of possibilities. The risk 

exposure method is used to rank the generated alerts and prioritize 

response to intrusions, presenting clear advantages when compared to 

standard correlation techniques: it does not allow any intrusion alert to be 

neglected and it enables rapidly responding to alerts which may cause 

greater damage to the enterprise. The experimental results show the 

proposed approach achieves high intrusion detection efficiency and 

accuracy results in the tested setups. 
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Chapter 7  

Conclusions and Future Work 

Protecting business secrets from disclosure is a critical issue for many 

enterprises. This implies that ensuring data confidentiality in extremely 

sensitive data repositories such as DWs, which store many of those 

secrets, is of vital importance. To deal with this, many data security 

solutions have been proposed in the past. Research and best practice 

guides have stated that the best way to promote confidentiality at the 

database level is probably to use a mix of DIDS together with encryption 

for live user databases, and use data masking techniques for protecting 

sensitive published or outsourced data.  

Despite the development of these solutions for protecting data 

confidentiality, internal as well as external attacks against databases in 

the recent past have been rising in both number and complexity. This 

makes the continuous development and improvement of data security 

solutions an imposing business requirement, in which this thesis seeks to 

make a contribution. In this sense, this thesis addressed the feasibility 

issues involving solutions that promote data confidentiality and deal with 

intrusions against DWs at the database level, focusing on data masking, 

encryption and DIDS.  

As discussed, data masking solutions are typically not used to protect live 

databases because they are not considered secure enough, and have been 

mostly applied as an irreversible process as a mean to secure sensitive 

data that has to be outsourced or publicly published. On the other hand, 

it is revealed throughout this thesis that the database performance 

overheads introduced by encryption techniques might effectively lead 

business stakeholders and end users to consider their use infeasible in 

many data warehousing environments. Finally, the reasons why there 

should be DIDS specifically tailored for data warehousing environments 

have also been discussed, as well as the issues relating alert management 
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and dealing with intrusions against DWs according to the potential cost 

they represent to the business. 

Founded on the research and analysis of current commercial and state-of-

the-art data masking and encryption solutions as well as database 

intrusion detection techniques, the overall objective of this thesis was the 

proposal of new feasible, efficient and effective solutions in these fields 

that contribute to enhance data security in data warehousing 

environments. To achieve this overall objective given the importance of 

securing confidentiality in DWs and comparing with the currently 

available data security solutions from the fields covered, our work 

introduces a series of solid key contributions, which are detailed in the 

following paragraphs: 

 A body of knowledge focusing on the impact on database 

performance caused by the use of encryption in very large 

databases. Most discussions around the development of new 

encryption techniques are focused on their security proof, i.e., on 

the demonstration of how secure they are against attackers. The 

focus on their performance, i.e., how fast they are able to execute, is 

often considered a secondary issue. We have built a body of 

knowledge focusing on the development guidelines of modern 

encryption solutions and their performance concerning 

implementations to be used against very large databases. 

Experimental evaluations included in state-of-the-art standards and 

published research as well as experimental results throughout this 

thesis effectively show that the storage space and response time 

overheads introduced by encryption algorithms dramatically 

degrade database performance to a magnitude that jeopardizes 

their feasibility in data warehousing environments. Since database 

performance is a critical issue in DWs, we conclude that current 

encryption solutions are not suitable. Data warehouses operate in a 

well-determined specific environment with tight security, 

performance and scalability requirements and, therefore, need 

specific solutions able to cope with these directives. Since there is 

always a tradeoff between security strength and performance, 

developing specific data confidentiality solutions for DWs must 

always balance security requirements with the desire for high 

performance, i.e., ensuring a strong level of security while keeping 
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database performance acceptable. This is a critical issue that justifies 

the development of new solutions in this domain, given the lack of 

specific solutions for data warehousing environments. 

 A body of knowledge on database intrusion detection techniques. 

Although intrusion detection has been well studied in the past 

decades, it has mostly focused on network and operating system 

level intrusions rather than on the data level intrusions. We have 

built a body of knowledge that gathers, describes and classifies the 

most recently proposed intrusion detection techniques that can be 

used at the data level to develop DIDS. We have discussed their 

usage from a data warehousing perspective, given the typical DW 

workloads. We have justified why DWs are database systems with 

unique user and data processing requirements that differ from 

other types of systems and require distinctively tailored intrusion 

detection approaches. To the best of our knowledge, we have 

concluded that up to date there has been no database intrusion 

detection proposal that accounts for: 1) the impact that the intrusion 

might cause to the business; 2) realizing intrusion detection and 

response both a priori and a posteriori to the execution of the user 

action; and 3) performing intrusion detection by analyzing the user 

action, processed data and the outcome of processing the user 

action, together in the same workflow. We have also discussed why 

alert correlation techniques are not the most appropriate solutions 

for performing alert management, given that these techniques 

exclude possible intrusions that could be alerted, by relying solely 

on probability assessments. Given the sensitivity of DW data and its 

critical security requirements, these facts justify the development of 

new DIDS that incorporate these capabilities. 

 An integrated data security framework that enables the use of 

data masking, encryption and intrusion detection in a single 

workflow. To the best of our knowledge, this is the first framework 

that transversally integrates a diversity of solutions across several 

distinct security domains/purposes such as masking, encryption 

and intrusion detection. The proposed framework describes the 

implementation of an architecture that enables integrating all 

solutions proposed in this thesis together in a unique workflow. 

The framework also proposes the guidelines for improving or 
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developing new data masking, encryption and DIDS from a data 

warehousing perspective, considering the issues pointed out by the 

discussion derived from the bodies of knowledge in each domain 

presented in Chapter 2. This framework provides an overall 

functional security architecture and guides the development of the 

solutions proposed in this thesis for each referred domain. 

 A reversible data masking technique for numeric values on live 

databases using only standard SQL operators. Although data 

masking techniques are not seen as reliable solutions to be used in 

live sensitive databases and are mostly used as an irreversible 

process which is applied to the data that is to be publicly available 

or outsourced, we have shown that they might still be a viable 

option in data warehousing environments in which response time is 

a critical concern. Given the overhead introduced by using 

encryption, using a lightweight data masking solution that provides 

some security strength is better than not having any sort of security 

at all. In this thesis, we have proposed a reversible data masking 

technique, which provides a certain level of security strength while 

producing low database performance overheads. It relies on data 

type preservation and restrains its data transformations to 

operators existing in standard SQL, requiring only SQL rewriting to 

achieve its security purpose. This gives it several advantages: 1) 

data type preservation avoids database storage space overhead and 

extra computational efforts in datatype conversions when 

compared with standard encryption; 2) executing SQL commands 

directly against the masked data; 3) due to the previous advantage, 

it avoids data roundtrips between the database and the 

masking/unmasking mechanisms, thus avoiding critical path I/O 

and network bandwidth consumption bottlenecks, contrarily to 

other solutions which require this; 4) data-at-rest is masked at all 

times; 5) It executes faster than standard and state-of-the-art 

encryption algorithms; and 6) the solution can be transversally and 

transparently applied and used in any DBMS against any database. 

The experimental results have confirmed these advantages and 

demonstrated that it can effectively be a valid way to protect data 

confidentiality in DWs. 
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 A lightweight encryption algorithm for securing numeric values 

using only standard SQL operators. We have proposed a novel 

encryption algorithm that, although might not be as secure as other 

standard and state-of-the-art encryption algorithms, presents 

significantly better database performance while providing 

considerable security strength, i.e., better performance-security 

tradeoffs. It follows similar guidelines as those on which the data 

masking technique was based, also relying on data type 

preservation and restraining its data transformations to operators 

existing in standard SQL, requiring only SQL rewriting to achieve 

its security purpose. Thus, it also achieves the same advantages, 

when compared with standard and state-of-the-art encryption 

algorithms. The experimental results have also confirmed these 

advantages and the included security proof makes it an acceptable 

alternative to the former, making it a feasible and efficient 

encryption option to protect data confidentiality in DWs.  

 A DIDS focused on typical end user workloads and intrusions in 

DWs, capable of analyzing the user action, processed data and 

resulting outcome from the execution of the user action, performing 

intrusion detection and response both a priori and a posteriori, and a 

risk exposure method for ranking alerts and responding to possible 

intrusions in a much more reliable and efficient way than standard 

alert correlation techniques. Our DIDS specifically accounts for the 

characteristics of DW users, gathering the set of features that allow 

adequately building their behavior profiles and analyze their 

actions. The proposed features handle intrusion detection by 

analyzing from several aspects of user workloads, such as the user 

command, the data processed by the command and the results of its 

processing. The intrusion detection processes may run before the 

command’s execution and after it finishes executing (but before 

disclosing results back to the user). Each generated intrusion alert is 

never discarded, but ranked by a risk exposure method that is able 

to prioritize dealing with the intrusions that potentially present a 

higher threat to the business. The proposed set of risk exposure 

rules (including probability and impact) enables defining a 

particularly large scope of possibilities that provide a wide 

coverage of intrusions. The relevance of each feature in the 
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intrusion detection processes is adjusted according to its efficiency 

given its TP and FP rates and self-calibrates through time. 

Therefore, the proposed solution is effectively better than those that 

perform intrusion detection in only one of the mentioned moments 

or only on one aspect of the user action, and particularly better than 

those that rely on alert correlation techniques for alert management 

purposes. The experimental results demonstrate its efficiency 

against similar state-of-the-art intrusion detection solutions, 

comproving these statements. 

 

Future Work 

The work presented in this thesis represents the initial ground for our 

research in data security for data warehousing. Related to the issues and 

questions addressed in this thesis, we propose the following priority 

developments and improvements: 

 Increase the scope of both data masking and encryption 

techniques to consider protecting the confidentiality of textual 

attributes, besides numerical attributes. Both data masking and 

encryption techniques proposed in this thesis were specifically 

designed as intended to mask and encrypt numeric values, because 

in most DWs the main portion of sensitive data is numerical. 

Nevertheless, other datatypes may also be used to store sensitive 

data. A natural and logical improvement of the proposed solutions 

is its adaptation to be able to accomplish protecting data of all 

datatypes. Therefore, researching the best ways to develop and 

implement these improvements, and verify their feasibility, namely 

by assessing performance impact as well as security strength, is one 

of the future works to be executed. 

 Investigate ways to enhance the security strength of the proposed 

data masking and encryption solutions, without losing focus on 

their feasibility for data warehousing environments. As we have 

discussed in this thesis, the execution performance and security 

strength of both data masking and encryption techniques depend 

on their algorithm, keys and block length. Investigating changes to 

the proposed data masking formula or encryption algorithm in any 



Conclusions and Future Work 

 

213 

one of these aspects to improve their performance or their security 

and respective tradeoffs is always an open research possibility for 

future work, as in any other similar solution. Additionally, any of 

the proposed solutions can use the row masking keys to enable a 

method for injecting false rows into the fact tables. This would 

make it increasingly difficult to distinguish true and false data, 

increasing the overall DW security level and misleading attackers 

that gain direct access to the database. To achieve this, instead of 

generating independent random numbers for the values of the 

masking or encryption row keys in each fact table row j, we 

redefine those keys Kj as a multiple of the sum of the true original 

values of all Ci, j columns to be masked, for each true row j: 

Kj = ( Ci, j ) * k,  { i = 1…n } where k is a random integer constant 

that does not overflow for Kj and n is the number of masked 

columns C in row j) 

For false rows, random values for filling each column Ci,j would be 

generated, and the value of Kj would be equal to any value different 

from those possibly generated by Formula (3). Thus, true rows are 

verifiable through testing if Kj is a multiple of the sum of the true 

unmasked values of all masked columns, using the MOD remainder 

operator. The following formula shows how to test if a certain row j 

is true or false: 

Given R = K3,j MOD ( Ci, j ) ,  { i = 1…n }     

IF R=0 THEN row j is True ELSE row j is False 

However, although potentially increasing the fact table’s security 

strength, there is a tradeoff between security and performance that 

needs to be considered when using this false data injection method. 

The more false data is injected, the stronger is the level of security 

of the table. However, the more data is injected, the more data is 

scanned and verified by the queries, decreasing database 

performance. The increased overall security strength for each fact 

table is directly dependent on how many false rows should be 

injected into each table, and how to distribute the false rows 

throughout the existing data. Thus, the injection of false data to 

increase security strength is at least, arguable, since it increases the 
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amount of data to be accessed when the queries are being 

processed, consequently introducing overhead in response time. 

 Investigate ways to enhance the efficiency and effectiveness of 

the intrusion detection methods. Our intrusion detection approach 

appears to work best when the number of intrusions is relatively 

low. This happens because its statistical probability provides that a 

greater number of false alarms is likely to be generated given an 

increasing number of attack attempts. However, the statistical 

approach used to detect abnormal commands was our first 

approach. As future work, testing techniques such as the Naive 

Bayes Classifier, Clustering, SVM, etc. for the intrusion detection 

process should be approached and their efficiency should be 

compared in order to choose the most efficient solution(s). 

 Improve the practical application and performance of the risk 

exposure method rules. The execution of the verification tasks 

referring to the impact and probability rules introduce extra 

response time because they need to be processed before the user 

command is executed and before the results are disclosed back to 

the user. Given the expressiveness of the rules’ syntax (similar to 

SQL), the efforts in processing them may be significant. Therefore, 

the impact produced in database performance by the referred 

verification tasks for the generated alerts should be thoroughly 

evaluated and analyzed, and ways of improving and optimizing the 

execution of these tasks should be researched.  

 Develop a database intrusion detection benchmark. Benchmarks 

are an essential instrument used in the development and 

implementation of many systems. They provide a mean to test 

those systems and significantly contribute to supply end users and 

developers with feedback on their performance, allowing to 

compare between different solutions, as well as give the developers 

insight for improving the proposed solutions. In the past, the 

KDD99 benchmark [KDD99] has been widely used for testing 

intrusion detection solutions, as we have previously mentioned. 

However, this benchmark focuses on intrusion actions at the 

network and operating system (OS) level, and the datasets and 

attack loads used in most published research are either synthetic or 
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come from real-world applications. To the best of our knowledge, 

there has been no proposal from the research community regarding 

an intrusion detection benchmark focusing on the data level. In 

such a sensitive matter as data security, we find that the inexistence 

of a recognized standard database intrusion detection benchmark at 

the data level is an important lack in assessing the feasibility, 

credibility and efficiency of DIDS. Therefore, we propose a first 

draft version of such a benchmark, which can be seen in Appendix 

D of this thesis. 

 Realize and produce a survey with an objective comparison 

between distinct state-of-the-art database intrusion detection 

techniques and mechanisms using the proposed database 

intrusion detection benchmark. Once the benchmark is defined 

and accepted by the database research and security communities, 

use it to test a sample of distinct state-of-the-art intrusion detection 

techniques (e.g. those described in Chapter 2). The obtained results 

can then be used to produce a formal report to disclose them to 

those communities and drive discussion around them as well as 

around the benchmark itself. 

 Demonstrate the feasibility, efficiency and effectiveness of the 

proposed solutions in real-world data warehousing contexts. 

Perform implementations and tools using the proposed solutions in 

real-world DWs and gather feedback to measure and analyze their 

accomplishments in order to assess their feasibility, efficiency and 

effectiveness in real-world data warehousing contexts. 

 

In conclusion, this thesis has focused on proposing feasible, efficient and 

effective techniques that can enhance data security in data warehousing 

environments. Overall, the main objective for the future is to investigate 

ways of enhancing these proposals and go from research prototypes and 

laboratory environments to real-world scenarios as much as possible. We 

will aim verifying our experimental results and expectations and to 

provide both the research community as well as the industrial 

community with knowledge and tools that can truly enhance data 

security in data warehousing environments. We also wish that our work 

can make way for innovative solutions in this domain, not only data 
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masking, encryption and intrusion detection techniques specifically 

designed for DWs, but also for the conception of a novel standard 

database intrusion detection benchmark at the database level. Ultimately, 

we hope our work is considered as an effective concrete valid 

contribution to keep the secrets of the business safe. 
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Appendix A 

Sales Data Warehouse 

In this appendix we describe the purpose and data schemas of the Sales 

DW as well as its scale and query workloads used in the experimental 

evaluations included in this thesis. 

A.1. Purpose 

The Sales DW is withdrawn from a real-world enterprise data mart of an 

online retail business, which aims on analyzing sales revenue, given 

customers, products and promotions. 

A.2. Data Schema 

The Sales DW data schema is shown in Figure A-1. It is a star schema 

with a central fact table named Sales, which stores the relevant measures 

regarding sales and promotions, and four dimension tables that describe 

the business, respectively containing the descriptive information 

concerning Customers, Products and Promotions, as well as a temporal 

dimension named as Time. 

A.3. Table Scale Size 

The number of rows and approximate storage space size for the Sales DW 

used in the experimental evaluations is shown in Table A-1, 

corresponding to one year of business activity. 

Table A-1. Scale-size features of the Sales Data Warehouse 

 Number of Rows Storage Size 

Time 8 760 0,12 MB 

Customers 250 000 90 MB 

Products 50 000 7 MB 

Promotions 89 812 10 MB 

Sales 31 536 000 1 927 MB 
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Figure A-1. Sales Data Warehouse Star Schema 

 

A.4. Query Workloads 

Following is the list of 29 queries against the Sales DW data schema that 

were used in the experiments. 
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Q1. YEAR SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA 
SELECT  
   P_Department, 
   Profit/TotalProfit*100 AS ProfitQuota  
FROM  
   (SELECT      
       P_Department, 
       SUM(S_profit) AS Profit  
    FROM  
       Products, Sales, Times  
    WHERE  
       S_ProductID=P_ProductID AND  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')  
    GROUP BY  
       P_Department) A, 
   (SELECT  
       SUM(S_profit) AS TotalProfit  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')) B  
ORDER BY  
   ProfitQuota DESC 
 
Q2. MONTH SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA 
SELECT  
   P_Department, 
   Profit/TotalProfit*100 AS ProfitQuota  
FROM  
   (SELECT  
       P_Department, 
       SUM(S_profit) AS Profit  
    FROM  
       Products, Sales, Times  
    WHERE  
       S_ProductID=P_ProductID AND  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
    GROUP BY  
       P_Department) A, 
   (SELECT  
       SUM(S_profit) AS TotalProfit  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')) B  
ORDER BY  
   ProfitQuota DESC 
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Q3. DAY SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA 
SELECT  
   P_Department, 
   Profit/TotalProfit*100 AS ProfitQuota  
FROM  
   (SELECT  
       P_Department, 
       SUM(S_profit) AS Profit  
    FROM  
       Products, Sales, Times  
    WHERE  
       S_ProductID=P_ProductID AND  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY')  
    GROUP BY  
       P_Department) A, 
   (SELECT  
       SUM(S_profit) AS TotalProfit  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY')) B  
ORDER BY  
   ProfitQuota DESC 
 
Q4. YEAR TOTAL SALES, PROFIT AND SHIPCOST VALUES 
SELECT  
   SUM(S_salesamount) AS TotalSalesAmount, 
   SUM(S_profit) AS TotalSalesProfit, 
   SUM(S_shiptocost) AS TotalShipToCost  
FROM  
   Sales, Times  
WHERE  
   S_TimeID=T_TimeID AND  
   T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND   
   T_Date<=to_date('31-12-2008','DD-MM-YYYY') 
 
Q5. MONTH TOTAL SALES, PROFIT AND SHIPCOST VALUES 
SELECT  
   SUM(S_salesamount) AS TotalSalesAmount, 
   SUM(S_profit) AS TotalSalesProfit, 
   SUM(S_shiptocost) AS TotalShipToCost  
FROM  
   Sales, Times  
WHERE  
   S_TimeID=T_TimeID AND  
   T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
   T_Date<=to_date('30-11-2008','DD-MM-YYYY') 
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Q6. DAY TOTAL SALES, PROFIT AND SHIPCOST VALUES  
SELECT  
   SUM(S_salesamount) AS TotalSalesAmount, 
   SUM(S_profit) AS TotalSalesProfit, 
   SUM(S_shiptocost) AS TotalShipToCost  
FROM  
   Sales, Times  
WHERE  
   S_TimeID=T_TimeID AND  
   T_Date=to_date('01-12-2008','DD-MM-YYYY') 
 
Q7. TOP 100 CUSTOMERS OF A YEAR WITH HIGHEST TOTAL SALES VALUE, 
ORDERED BY VALUE 
SELECT  
   TOP 100 
   S_CustomerID, C_Name, C_City, TotalSalesAmount  
FROM  
   (SELECT  
       S_CustomerID,  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')  
    GROUP BY  
       S_CustomerID) A, Customers  
WHERE  
   C_CustomerID=S_CustomerID  
ORDER BY  
   TotalSalesAmount DESC 
 
Q8. TOP 100 CUSTOMERS OF A MONTH WITH HIGHEST TOTAL SALES VALUE, 
ORDERED BY VALUE 
SELECT 
   TOP 100  
   S_CustomerID, C_Name, C_City, TotalSalesAmount  
FROM  
   (SELECT  
       S_CustomerID,  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
    GROUP BY  
       S_CustomerID) A, Customers  
WHERE  
   C_CustomerID=S_CustomerID  
ORDER BY  
   TotalSalesAmount DESC 
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Q9. TOP 100 CUSTOMERS OF A DAY WITH HIGHEST TOTAL SALES VALUE, 
ORDERED BY VALUE 
SELECT  
   TOP 100 
   S_CustomerID, C_Name, C_City, TotalSalesAmount  
FROM  
   (SELECT  
       S_CustomerID,  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY')  
    GROUP BY  
       S_CustomerID) A, Customers  
WHERE  
   C_CustomerID=S_CustomerID  
ORDER BY  
   TotalSalesAmount DESC 
 
Q10. YEAR TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT OF 
BRAND #1, ORDERED BY PROMOTION/PRODUCT 
SELECT  
   S_PromotionID, PR_Description, S_ProductID, P_Name,  
   Qty, SalesAmount  
FROM  
   (SELECT  
       S_PromotionID, S_ProductID,  
       SUM(S_quantity) AS Qty,  
       SUM(S_salesamount) AS SalesAmount # 
    FROM  
       Sales, Times, Products  
    WHERE  
       S_ProductID=P_ProductID AND  
       P_Brand='BRAND #1' AND  
       S_PromotionID>0 AND  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')  
    GROUP BY  
       S_PromotionID, S_ProductID  
    ORDER BY  
       S_PromotionID, S_ProductID), Products, Promotions  
WHERE  
   S_PromotionID=PR_PromotionID AND  
   S_ProductID=P_ProductID 
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Q11. MONTH TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT 
OF BRAND #1, ORDERED BY PROMOTION/PRODUCT 
SELECT  
   S_PromotionID, PR_Description, S_ProductID, P_Name,  
   Qty, SalesAmount  
FROM  
   (SELECT  
       S_PromotionID, S_ProductID,  
       SUM(S_quantity) AS Qty,  
       SUM(S_salesamount) AS SalesAmount  
    FROM  
       Sales, Times, Products  
    WHERE  
       S_ProductID=P_ProductID AND  
       P_Brand='BRAND #1' AND  
       S_PromotionID>0 AND  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
    GROUP BY  
       S_PromotionID, S_ProductID  
    ORDER BY  
       S_PromotionID, S_ProductID), Products, Promotions  
    WHERE  
       S_PromotionID=PR_PromotionID AND  
       S_ProductID=P_ProductID 
 
Q12. DAY TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT OF 
BRAND #1, ORDERED BY PROMOTION/PRODUCT 
SELECT  
   S_PromotionID, PR_Description, S_ProductID, P_Name,  
   Qty, SalesAmount  
FROM  
   (SELECT  
       S_PromotionID, S_ProductID,  
       SUM(S_quantity) AS Qty,  
       SUM(S_salesamount) AS SalesAmount  
    FROM  
       Sales, Times, Products  
    WHERE  
       S_ProductID=P_ProductID AND  
       P_Brand='BRAND #1' AND  
       S_PromotionID>0 AND  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY')  
    GROUP BY  
       S_PromotionID, S_ProductID  
    ORDER BY  
       S_PromotionID, S_ProductID), Products, Promotions  
WHERE  
   S_PromotionID=PR_PromotionID AND  
   S_ProductID=P_ProductID 
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Q13. YEAR TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY 
COUNTRY/ZONE 
SELECT  
   C_Country, ZipCode,  
   SUM(S_salesamount) AS TotalSalesAmount  
FROM  
   (SELECT  
       DISTINCT(SUBSTR(c_zipcode,1,3)) AS ZipCode  
    FROM  
       Customers), Sales, Customers, Times  
WHERE  
   S_CustomerID=C_CustomerID AND  
   S_TimeID=T_TimeID AND  
   T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
   T_Date<=to_date('31-12-2008','DD-MM-YYYY') AND  
   SUBSTR(C_ZipCode,1,3)=ZipCode  
GROUP BY  
   C_Country, ZipCode  
ORDER BY  
   C_Country, TotalSalesAmount DESC, ZipCode 
 
Q14. MONTH TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY 
COUNTRY/ZONE 
SELECT  
   C_Country, ZipCode,  
   SUM(S_salesamount) AS TotalSalesAmount  
FROM  
   (SELECT  
       DISTINCT(SUBSTR(c_zipcode,1,3)) AS ZipCode  
    FROM  
       Customers), Sales, Customers, Times  
WHERE  
   S_CustomerID=C_CustomerID AND  
   S_TimeID=T_TimeID AND  
   T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
   T_Date<=to_date('30-11-2008','DD-MM-YYYY') AND  
   SUBSTR(C_ZipCode,1,3)=ZipCode  
GROUP BY  
   C_Country, ZipCode  
ORDER BY  
   C_Country, TotalSalesAmount DESC, ZipCode 
 
Q15. DAY TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY 
COUNTRY/ZONE 
SELECT  
   C_Country, ZipCode,     
   SUM(S_salesamount) AS TotalSalesAmount  
FROM  
   (SELECT  
       DISTINCT(SUBSTR(c_zipcode,1,3)) AS ZipCode  
    FROM  
       Customers), Sales, Customers, Times  
WHERE  
   S_CustomerID=C_CustomerID AND  
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   S_TimeID=T_TimeID AND  
   T_Date=to_date('01-12-2008','DD-MM-YYYY') 
   SUBSTR(C_ZipCode,1,3)=ZipCode  
GROUP BY  
   C_Country, ZipCode  
ORDER BY  
   C_Country, TotalSalesAmount DESC, ZipCode 
 
Q16. YEAR TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT, 
ORDERED BY SALES VALUE 
SELECT  
   S_ProductID, P_Name, C_Gender, 
   SUM(CASE WHEN C_Income<600 THEN S_salesamount  
            ELSE 0 END) AS MinimumIncome, 
   SUM(CASE WHEN C_Income>=600 AND C_Income<1000 THEN S_salesamount  
            ELSE 0 END) AS ReasonableIncome, 
   SUM(CASE WHEN C_Income>=1000 AND C_Income<1500 THEN S_salesamount 
            ELSE 0 END) AS MediumIncome, 
   SUM(CASE WHEN C_Income>=1500 AND C_Income<2500 THEN S_salesamount  
            ELSE 0 END) AS HighIncome, 
   SUM(CASE WHEN C_Income>=2500 THEN S_salesamount  
            ELSE 0 END) AS VeryHighIncome  
FROM  
   Sales, Products, Customers, Times  
WHERE  
   S_CustomerID=C_CustomerID AND  
   S_ProductID=P_ProductID AND  
   S_TimeID=T_TimeID AND  
   T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
   T_Date<=to_date('31-12-2008','DD-MM-YYYY')  
GROUP BY  
   S_ProductID, P_Name, C_Gender  
ORDER BY  
   MinimumIncome+ReasonableIncome+MediumIncome+     
   HighIncome+VeryHighIncome DESC 
 
Q17. MONTH TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT, 
ORDERED BY SALES VALUE 
SELECT  
   S_ProductID, P_Name, C_Gender, 
   SUM(CASE WHEN C_Income<600 THEN S_salesamount  
            ELSE 0 END) AS MinimumIncome, 
   SUM(CASE WHEN C_Income>=600 AND C_Income<1000 THEN S_salesamount  
            ELSE 0 END) AS ReasonableIncome, 
   SUM(CASE WHEN C_Income>=1000 AND C_Income<1500 THEN S_salesamount  
            ELSE 0 END) AS MediumIncome, 
   SUM(CASE WHEN C_Income>=1500 AND C_Income<2500 THEN S_salesamount  
            ELSE 0 END) AS HighIncome, 
   SUM(CASE WHEN C_Income>=2500 THEN S_salesamount  
            ELSE 0 END) AS VeryHighIncome  
FROM  
   Sales, Products, Customers, Times  
WHERE  
   S_CustomerID=C_CustomerID AND  
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   S_ProductID=P_ProductID AND  
   S_TimeID=T_TimeID AND  
   T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
   T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
GROUP BY  
   S_ProductID, P_Name, C_Gender  
ORDER BY  
   MinimumIncome+ReasonableIncome+MediumIncome+  
   HighIncome+VeryHighIncome DESC 
 
Q18. DAY TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT, 
ORDERED BY SALES VALUE 
SELECT  
   S_ProductID, P_Name, C_Gender, 
   SUM(CASE WHEN C_Income<600 THEN S_salesamount  
            ELSE 0 END) AS MinimumIncome, 
   SUM(CASE WHEN C_Income>=600 AND C_Income<1000 THEN S_salesamount  
            ELSE 0 END) AS ReasonableIncome, 
   SUM(CASE WHEN C_Income>=1000 AND C_Income<1500 THEN S_salesamount  
            ELSE 0 END) AS MediumIncome, 
   SUM(CASE WHEN C_Income>=1500 AND C_Income<2500 THEN S_salesamount  
            ELSE 0 END) AS HighIncome, 
   SUM(CASE WHEN C_Income>=2500 THEN S_salesamount  
            ELSE 0 END) AS VeryHighIncome  
FROM  
   Sales, Products, Customers, Times  
WHERE  
   S_CustomerID=C_CustomerID AND  
   S_ProductID=P_ProductID AND  
   S_TimeID=T_TimeID AND  
   T_Date=to_date('01-12-2008','DD-MM-YYYY')  
GROUP BY  
   S_ProductID, P_Name, C_Gender  
ORDER BY  
   MinimumIncome+ReasonableIncome+MediumIncome+ 
   HighIncome+VeryHighIncome DESC 
 
Q19. YEAR TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY, 
ORDERED BY VALUE 
SELECT  
   C_Country, SalesAmount,  
   SalesAmount/TotalSalesAmount*100 AS SalesQuota  
FROM  
   (SELECT  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')), 
   (SELECT  
       C_Country, 
       SUM(S_salesamount) AS SalesAmount  
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    FROM  
       Sales, Customers, Times  
    WHERE  
       S_CustomerID=C_CustomerID AND  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')  
    GROUP BY 
       C_Country)  
ORDER BY 
   SalesAmount DESC 
 
Q20. MONTH TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY, 
ORDERED BY VALUE 
SELECT  
   C_Country, SalesAmount,  
   SalesAmount/TotalSalesAmount*100 AS SalesQuota  
FROM  
   (SELECT  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')), 
   (SELECT  
       C_Country, 
       SUM(S_salesamount) AS SalesAmount  
    FROM  
       Sales, Customers, Times  
    WHERE  
       S_CustomerID=C_CustomerID AND  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
    GROUP BY 
       C_Country)  
ORDER BY 
   SalesAmount DESC 
 
Q21. DAY TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY, 
ORDERED BY VALUE 
SELECT  
   C_Country, SalesAmount,  
   SalesAmount/TotalSalesAmount*100 AS SalesQuota  
FROM  
   (SELECT  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY')), 
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   (SELECT  
       C_Country, 
       SUM(S_salesamount) AS SalesAmount  
    FROM  
       Sales, Customers, Times  
    WHERE  
       S_CustomerID=C_CustomerID AND  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY') 
    GROUP BY 
       C_Country)  
ORDER BY 
   SalesAmount DESC 
 
Q22. LIST OF PRODUCTS NEVER SOLD DURING THE YEAR, ORDERED BY 
PRODUCT 
SELECT  
   S_ProductID, P_Name, P_Brand, P_Category, P_Department  
FROM  
   Sales, Products  
WHERE  
   S_ProductID=P_ProductID AND  
   S_ProductID NOT IN  
      (SELECT  
          DISTINCT(S_ProductID)  
          FROM  
             Sales, Times  
          WHERE  
             S_TimeID=T_TimeID AND  
             T_Date=to_date('01-01-2008','DD-MM-YYYY'))  
ORDER BY  
   S_ProductID 
 
Q23. LIST OF PRODUCTS NEVER SOLD DURING THE MONTH, ORDERED BY 
PRODUCT 
SELECT  
   S_ProductID, P_Name, P_Brand, P_Category, P_Department  
FROM  
   Sales, Products  
WHERE  
   S_ProductID=P_ProductID AND  
   S_ProductID NOT IN  
      (SELECT 
          DISTINCT(S_ProductID)  
       FROM  
          Sales, Times  
       WHERE  
          S_TimeID=T_TimeID AND  
          T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
          T_Date<=to_date('30-11-2008','DD-MM-YYYY'))  
ORDER BY  
   S_ProductID 
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Q24. LIST OF PRODUCTS NEVER SOLD DURING THE DAY, ORDERED BY 
PRODUCT 
SELECT  
   S_ProductID, P_Name, P_Brand, P_Category, P_Department  
FROM  
   Sales, Products  
WHERE  
   S_ProductID=P_ProductID AND  
   S_ProductID NOT IN 
      (SELECT  
          DISTINCT(S_ProductID)  
       FROM  
          Sales, Times 
       WHERE 
          S_TimeID=T_TimeID AND  
          T_Date=to_date('01-12-2008','DD-MM-YYYY'))  
ORDER BY  
   S_ProductID 
 
Q25. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE YEAR, 
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES 
SELECT  
   S_CustomerID, C_Name, C_City, C_ZipCode, C_Country  
FROM 
   (SELECT  
       S_CustomerID,  
       COUNT(*) AS Conta  
    FROM 
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')  
    GROUP BY  
       S_CustomerID), Customers  
WHERE 
   S_CustomerID=C_CustomerID AND  
   Conta>0  
ORDER BY  
   C_Country, C_City, C_ZipCode, Conta DESC 
 
Q26. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE MONTH, 
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES 
SELECT  
   S_CustomerID, C_Name, C_City, C_ZipCode, C_Country  
FROM  
   (SELECT  
       S_CustomerID,  
       COUNT(*) AS Conta  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
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       T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
    GROUP BY  
       S_CustomerID), Customers  
WHERE  
   S_CustomerID=C_CustomerID AND  
   Conta>0  
ORDER BY  
   C_Country, C_City, C_ZipCode, Conta DESC 
 
Q27. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE DAY, 
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES 
SELECT  
   S_CustomerID, C_Name, C_City, C_ZipCode, C_Country  
FROM  
   (SELECT  
       S_CustomerID,  
       COUNT(*) AS Conta  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date=to_date('01-12-2008','DD-MM-YYYY') 
    GROUP BY  
       S_CustomerID), Customers  
WHERE  
   S_CustomerID=C_CustomerID AND  
   Conta>0  
ORDER BY  
   C_Country, C_City, C_ZipCode, Conta DESC 
 
Q28. MONTHLY TOTAL SALES VALUE AND RESPECTIVE QUOTA FOR THE YEAR, 
ORDERED BY MONTH 
SELECT  
   SalesMonth, MonthTotalSalesAmount,  
   MonthTotalSalesAmount/TotalSalesAmount AS MonthQuota  
FROM  
   (SELECT  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM 
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('31-12-2008','DD-MM-YYYY')) a, 
   (SELECT SalesMonth, 
       SUM(TotSalesAmount) AS MonthTotalSalesAmount  
    FROM  
       (SELECT  
           to_char(T_Date,'Month') AS SalesMonth, 
           S_salesamount AS TotSalesAmount  
        FROM  
           Sales, Times  
        WHERE  
           S_TimeID=T_TimeID AND  
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           T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND  
           T_Date<=to_date('31-12-2008','DD-MM-YYYY')) b  
    GROUP BY  
       SalesMonth) c  
ORDER BY  
   SalesMonth 
 
Q29. DAILY TOTAL SALES VALUE AND RESPECTIVE QUOTA FOR A MONTH, 
ORDERED BY DAY 
SELECT  
   T_Date, DayTotalSalesAmount,  
   DayTotalSalesAmount/TotalSalesAmount AS DayQuota  
FROM  
   (SELECT  
       SUM(S_salesamount) AS TotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND   
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')) a,  
   (SELECT  
       T_Date,  
       SUM(S_salesamount) AS DayTotalSalesAmount  
    FROM  
       Sales, Times  
    WHERE  
       S_TimeID=T_TimeID AND  
       T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND  
       T_Date<=to_date('30-11-2008','DD-MM-YYYY')  
    GROUP BY  
       T_Date) b  
ORDER BY  
   T_Date 
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Appendix B 

Data Masking and Encryption 
Experimental Results 

In this appendix we present the averages and standard deviations for the 

data masking and encryption experimental results described in the thesis. 

As mentioned in the respective chapters, each result is obtained from the 

execution of six rounds of experiments, referring to the following legend 

labels: 

Reference/Label Description 

Standard Standard data without masking/encryption 

AES128 Col Data encrypted with TDE AES 128 bit key column encryption 

3DES168 Col Data encrypted with TDE 3DES168 column encryption 

OPES Data encrypted with OPES 

Salsa20 Data encrypted with Salsa20/20 

MOBAT AddCol 
Data masked by MOBAT, where a column for masking keys has 
been added to the existing fact table 

MOBAT CreateCol 
Data masked by MOBAT, where a column for masking keys was 
added to the fact table, which has been completely recreated 

MOBAT ColKey 
Data masked by MOBAT, using a numerical column from the 
original fact table data structure as key K3, j 

SES-DW128 Data encrypted using SES-DW with 128 bit security 

SES-DW256 Data encrypted using SES-DW with 256 bit security 

SES-DW1024 Data encrypted using SES-DW with 1024 bit security 
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B.1. Data Masking Chapter Loading Time Results 

Tables B-1 to B-3 show the results in seconds for the average (µ) and 

standard deviation (σ) of the data masking loading experiments, obtained 

using a Pentium IV 2.8 GHz CPU with 2GB RAM. 

Table B-1. TPC-H 1GB Loading Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 310 9,86777 212 8,99475 

AES128 899 46,94247 472 36,75193 

AES256 958 44,63968 507 31,48409 

3DES168 906 33,61551 485 21,38157 

OPES 461 20,87444 305 22,10521 

Salsa20 537 26,42794 361 26,65626 

MOBAT AddCol 335 14,81949 227 12,39097 

MOBAT CreateCol 323 14,70876 221 11,69447 

MOBAT ColKey 318 12,81143 218 11,93016 

 

Table B-2. TPC-H 10 GB Loading Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 3211 121,9969 2272 96,2474 

AES128 10185 387,1303 5484 233,5230 

AES256 11114 434,7008 6229 254,6556 

3DES168 10424 508,4449 5635 257,1251 

OPES 4943 222,8019 3325 160,8512 

Salsa20 5881 185,4172 4088 180,0211 

MOBAT AddCol 3597 181,0830 2550 155,7417 

MOBAT CreateCol 3449 151,5198 2434 154,1759 

MOBAT ColKey 3362 144,0208 2381 131,4362 

 

Table B-3. Sales DW Loading Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 1195 74,2938 1247 70,9444 

AES128 3574 155,6558 3232 111,3055 

AES256 3699 162,8546 3381 117,3645 

3DES168 3695 140,0080 3339 146,1417 

OPES 1929 117,5107 1963 71,6937 

Salsa20 2408 84,0577 2459 97,3811 

MOBAT AddCol 1373 83,7072 1447 76,2599 

MOBAT CreateCol 1308 79,9533 1367 80,6815 

MOBAT ColKey 1260 80,7588 1318 78,5291 



Appendix B 

244 

B.2. Data Masking Chapter Query Workloads Execution Time Results 

Tables B-4 to B-6 show the results in seconds for the average (µ) and 

standard deviation (σ) of the data masking query workload execution 

experiments, obtained using a Pentium IV 2.8 GHz CPU with 2GB RAM. 

Table B-4. TPC-H 1GB Query Workload Execution Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 625 50,6069 580 54,4009 

AES128 1798 223,0013 1591 199,6768 

AES256 1837 212,8436 1646 172,8946 

3DES168 1895 175,8836 1712 186,4174 

OPES 1813 158,0126 1629 137,4651 

Salsa20 1727 163,8821 1523 154,9399 

MOBAT AddCol 846 76,7923 813 82,0243 

MOBAT CreateCol 809 79,0004 775 69,8340 

MOBAT ColKey 763 86,0046 712 76,4791 

 

Table B-5. TPC-H 10 GB Query Workload Execution Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 6155 481,3438 5301 406,6876 

AES128 16927 1701,2962 13334 949,9173 

AES256 17283 1767,3377 13846 1213,7299 

3DES168 17973 1741,0874 15058 1266,3514 

OPES 16889 1575,5657 13215 1172,8934 

Salsa20 15704 1118,5171 12691 1054,1071 

MOBAT AddCol 7527 762,7053 6420 715,2876 

MOBAT CreateCol 7314 819,1865 6162 480,4649 

MOBAT ColKey 7218 702,9792 5981 447,6100 

 

Table B-6. Sales DW Query Workload Execution Time 

 Oracle SQL Server 

 µ σ µ σ 

Standard 2233 172,8706 2211 200,3533 

AES128 17604 1399,6442 16923 1974,8563 

AES256 18484 1619,3473 17827 1578,0671 

3DES168 20425 1777,9447 18984 1827,5253 

OPES 17465 1376,6070 16845 1497,5728 

Salsa20 15582 845,2452 15212 1435,1688 

MOBAT AddCol 5084 390,5519 4946 279,9171 

MOBAT CreateCol 4435 462,5449 4313 240,3703 

MOBAT ColKey 3966 283,0312 3637 264,4148 
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B.3. Encryption Chapter Loading Time Results 

Tables B-7 to B-9 show the results in seconds for the average (µ) and 

standard deviation (σ) of the encryption loading experiments, obtained 

using a Core2Duo 3 GHz CPU with 2GB RAM. 

Table B-7. TPC-H 1GB Loading Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 253 12,2420 171 9,6231 

AES128 608 28,4159 382 14,3341 

AES256 636 29,6265 407 19,2423 

3DES168 617 31,9687 389 20,1096 

OPES 353 17,3743 229 21,5238 

Salsa20 419 24,6833 281 21,5931 

SES-DW128 279 15,9888 191 15,8537 

SES-DW256 294 20,3858 201 18,3346 

SES-DW1024 451 21,4445 284 19,7159 

 

Table B-8. TPC-H 10 GB Loading Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 2576 132,6468 1796 99,7148 

AES128 6375 302,7141 4144 214,7684 

AES256 6742 342,2266 4532 193,2705 

3DES168 6527 384,4802 4290 245,6537 

OPES 3766 153,7396 2542 102,1442 

Salsa20 4481 190,5514 3106 129,0725 

SES-DW128 3024 140,4549 2137 103,1846 

SES-DW256 3216 153,7929 2320 109,6005 

SES-DW1024 4844 200,5901 3516 133,9737 

 

Table B-9. Sales DW Loading Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 994 38,4313 1013 47,0286 

AES128 2676 125,6391 2416 97,7693 

AES256 2889 89,9725 2573 111,7741 

3DES168 2949 78,9573 2611 123,8752 

OPES 1555 77,0835 1554 57,2072 

Salsa20 1902 84,6333 1879 78,4652 

SES-DW128 1124 46,8944 1161 54,5001 

SES-DW256 1211 57,4479 1237 64,4903 

SES-DW1024 1808 71,6928 1881 89,6482 
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B.4. Encryption Query Workloads Execution Time Results 

Tables B-10 to B-12 show the results in seconds for the average (µ) and 

standard deviation (σ) of the encryption query workload execution 

experiments, obtained using a Core2Duo 3 GHz CPU with 2GB RAM. 

Table B-10. TPC-H 1GB Query Workload Execution Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 492 48,4052 452 39,2937 

AES128 1357 124,1525 1231 124,3141 

AES256 1496 130,1163 1330 153,0616 

3DES168 1702 167,9543 1362 159,4373 

OPES 1535 136,5459 1326 99,6848 

Salsa20 1268 95,7280 1131 98,4518 

MOBAT AddCol 1015 93,4154 927 89,7789 

MOBAT CreateCol 1251 126,5178 1140 106,7907 

MOBAT ColKey 1453 117,9790 1325 96,2909 

 

Table B-11. TPC-H 10 GB Query Workload Execution Time 

 Oracle 11g SQL Server 2008 

 µ σ µ σ 

Standard 5037 531,1588 4694 459,2833 

AES128 15191 1358,3464 14063 993,7016 

AES256 19073 1116,7794 16650 1276,2821 

3DES168 22053 2105,4593 18821 1447,4942 

OPES 17205 1205,4704 14155 1256,6578 

Salsa20 14623 965,2504 13540 1080,3754 

SES-DW128 9893 671,6570 9446 580,0519 

SES-DW256 12056 973,8139 10289 916,5035 

SES-DW1024 14976 1520,3692 13713 1153,3621 

 

Table B-12. Sales DW Query Workload Execution Time 

 Oracle SQL Server 

 µ σ µ σ 

Standard 1766 143,4475 1690 181,5121 

AES128 14101 1409,7929 13429 1117,5437 

AES256 15490 1160,3142 14180 1013,8596 

3DES168 15860 1645,6413 14898 1467,3108 

OPES 14189 1272,7239 12381 1149,5012 

Salsa20 11294 1078,3294 10019 868,6609 

SES-DW128 6396 374,6025 5682 434,3993 

SES-DW256 8998 512,0796 7806 612,9569 

SES-DW1024 12546 1131,3574 10032 980,1660 
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Appendix C 

Intrusion Detection Experimental 
Results 

In this appendix we present the experimental results on intrusion 

detection described in Chapter 6 of the thesis. Tables C-1 to C-4 show the 

results for the average (µ) and standard deviation (σ) of the number of 

true positives (TP), false positives (FP), true negatives (TN) and false 

negatives (FN) generated by DW-DIDS in each scenario (“number of true 

users”-“number of intruders”). 

 

Table C-1. DW-DIDS ID Results for Profiles built from 5 “True” User Workloads 

 TP FP TN FN 

Scenario µ σ µ σ µ σ µ σ 

10-0 0 0 57 2,7358 1193 70,1898 0 0 

9-1 62 3,3922 54 2,5322 1076 58,6154 38 1,0416 

8-2 131 7,4332 76 4,2092 944 55,5715 69 2,9680 

5-5 327 20,9846 282 15,3613 378 21,0100 173 10,0307 

 

Table C-2. DW-DIDS ID Results for Profiles built from 25 “True” User Workloads 

 TP FP TN FN 

Scenario µ σ µ σ µ σ µ σ 

10-0 0 0 14 0,9442 1236 66,7567 0 0 

9-1 81 4,8560 42 2,0296 1088 63,1729 19 1,9311 

8-2 167 7,9252 54 2,6129 966 57,5426 33 1,4605 

5-5 427 25,1637 221 12,8374 439 26,4010 73 3,9543 
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Table C-3. DW-DIDS ID Results for Profiles built from 50 “True” User Workloads 

 TP FP TN FN 

Scenario µ σ µ σ µ σ µ σ 

10-0 0 0 12 0,7048 1238 65,5332 0 0 

9-1 85 4,4048 38 1,0416 1092 67,4688 15 1,1095 

8-2 177 11,1384 48 1,9226 972 53,1624 23 0,9102 

5-5 459 27,7095 204 11,5661 456 23,2852 41 2,3537 

 

Table C-4. DW-DIDS ID Results for Profiles built from 100 “True” User Workloads 

 TP FP TN FN 

Scenario µ σ µ σ µ σ µ σ 

10-0 0 0 9 0,8625 1241 75,2322 0 0 

9-1 88 5,0469 32 1,2429 1098 65,9825 12 0,7329 

8-2 183 11,0307 43 2,0296 977 54,1515 17 1,4190 

5-5 477 28,3424 193 11,2083 467 28,4039 23 1,8280 

 

 

 



 

 

Appendix D 

Intrusion Detection Benchmark 

As current work under development, in this appendix we present a draft 

proposal for a DW Intrusion Detection Benchmark (DWID-Bench) for 

testing DIDS in DWs at the SQL level, given a controlled DW 

environment with mixed intrusion and non-intrusion SQL workloads.  

The benchmark’s main aim is to provide a feasible and objective mean of 

evaluating the efficiency of the intrusion detection processes and impact 

in database performance at the SQL level for DW DIDS. The proposed 

measures intend to produce insight for aiding developers in the 

improvement of their solutions and allow solution providers and clients 

to compare between different solutions. 

To accomplish this, we consider the typical DW user workloads and 

intrusion detection techniques described in Chapter 2 and the SQL 

intrusion action type classification described in Chapter 6. The chosen 

“intrusion” workload covers a broad scope of distinct types of SQL 

intrusion actions against DWs. The “intrusion” workload is executed 

concurrently with defined “non-intrusion” workloads, which are selected 

from the well-known TPC-DS benchmark to represent a typical decision 

support user workload, in order to simulate a scenario as close to reality 

as possible. 

The remainder of this appendix is organized as follows. In Section D.1 we 

present the benchmark and describe its setup. In Section D.2 we present 

the database schema used in the benchmark. Sections D.3 and D.4 

respectively explain the “non-intrusion” and “intrusion” workloads and 

how they are defined. Section D.5 describes the benchmark’s execution 

rules and procedures, while Section D.6 describes its proposed metrics. In 

Section D.7 we discuss open issues regarding the development of the 

benchmark and finally, Section D.8 summarizes the benchmark proposal 

and points out future work. 
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D.1. DWID-Bench: Data Warehouse Intrusion Detection Benchmark 

Figure D-1 shows the key components of the experimental setup required 

to run DWID-Bench. As in TPC-DS [TPC-DS], the main elements are the 

System Under Test (SUT) and the Driver System. The goal of the Driver 

System is to emulate the client applications and respective users and 

control all the aspects of each benchmark run. In the Driver System we 

include both the “non-intruder” and “intruder” users. Additionally, the 

Driver System also records the raw data needed to calculate the 

benchmark measures (which are computed afterwards by analyzing the 

data collected during each benchmark run).  

 

Figure D-1. DWID-Bench experimental setup 

The SUT represents a client-server system fully configured to run both 

intruder and non-intruder workloads coming from the Driver System and 

includes the DIDS to be evaluated. From the benchmark point of view, 

the SUT is composed by the DIDS and the set of processing units used to 

run the workloads and to store all the data processed. In other words, the 

SUT can be any (hardware + software) system able to run the complete 

benchmark workload and execute the DIDS algorithms under the 

conditions specified by the benchmark procedure. The communication 

between the Driver System and the SUT may be executed through any 

type of LAN or WAN network infrastructures. 

D.2. DWID-Bench Database Schema 

In DWID-Bench, we partially use the data schemas proposed by TPC-DS. 

The TPC-DS has been released after we had partially executed the 

experiments presented throughout the thesis, and is the latest and 

probably the currently mostly used benchmark for measuring the 

throughput performance of Decision Support Systems (DSS). The TPC-DS 
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benchmark has been mapped to a typical business environment and 

claims to significantly represent DSS that: 

 Examine large volumes of data; 

 Give answers to real-world business questions; 

 Execute queries of various operational requirements and 

complexities (e.g. ad-hoc instructions, reporting actions, data mining 

operations, etc); 

 Are characterized by high CPU and I/O load; 

 Are periodically synchronized with transactional source databases 

through database maintenance functions. 

Assuming these features are common to a typical DW environment, as 

described in [Kimball and Ross, 2013], we accept the TPC-DS as 

representative of DSS and partially use its defined data schemas and 

workloads in DWID-Bench. The “intrusion” and “non-intrusion” DWID-

Bench workloads focus on users with ETL and DW End User privileges, 

since these are the type of actions covered by the TPC-DS benchmark. We 

also define a set of actions for simulating DBA users as a mix of ETL + 

DW End User actions, plus DDL commands relating to the creation of 

tables, constraints and indexes belonging to the chosen schema. 

The TPC-DS focuses on a generic retail business DSS for any industry that 

must manage, sell and distribute products. Its schema models the sales 

and sales returns process for an organization that employs three primary 

sales channels: stores, catalogs, and the Internet. Each of these channels 

has two fact tables, for storing the facts concerning sales and sales 

returns. There is also another fact table for modeling inventory for the 

catalog and Internet sales channels. Each fact table is linked with its 

respective dimensions in a star schema, which means the complete TPC-

DS data schema is a set of seven star schemas, interlinked by their shared 

dimensions.  

In DWID-Bench, we chose to use the TPC-DS store sales star schema, 

illustrated in Figure D-2. We chose this particular schema because it 

represents a common business DW scenario for many enterprises, within 

the set of proposed star schemas in TPC-DS. Moreover, the Store_Sales 

fact table is the biggest sized fact table of all generated tables in the 
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complete TPC-DS database. As shown in Figure D-2, it is composed of 

one fact table and ten dimension tables. In the following sections, we 

explain how the “intrusion” and “non-intrusion” workloads are defined. 

 

Figure D-2. TPC-DS store sales E-R diagram [TPC-DS] 

 

D.3. DWID-Bench “Non-intrusion” Workload 

The TPC-DS models a database that is continuously available 24 hours a 

day, 7 days a week, for data modifications against any/all tables and 

various types (e.g. ad hoc, reporting, iterative OLAP and data mining) of 

queries originating from multiple concurrent user sessions. This 

environment allows potentially long running and multi-part queries 

where the DBA cannot assume that the database can be inactive during 

any particular period. Queries and data maintenance functions may 

execute concurrently. Since we use the store sales star schema for our DW 

database, we use the predefined TPC-DS query and data maintenance 

workloads for the store sales star schema as our chosen “non-intruder” 

workloads in DWID-Bench. 

From the DWID-Bench perspective, each session with an open connection 

to the database refers to a given type of user (ETL, DW end user, or DBA, 

as described in Chapter 6 of this thesis). The benchmark expects each 

session to execute a stream of actions, which depend on the type of user 

and defined as the following: 
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 For sessions simulating “non-intrusion” users with ETL database 

privileges, data maintenance routines for all the tables of the store 

sales data schema are executed, exactly as defined in TPC-DS; 

 For sessions simulating “non-intrusion” DW end users (i.e. typical 

business managers, analysts and decision makers), each session will 

execute a query stream with the complete set of SQL queries 

defined in TPC-DS that request processing data from the store sales 

star schema, thus totalizing 32 distinct queries for each stream, 

taken from the total of 99 queries defined in TPC-DS. The complete 

set of selected TPC-DS queries for composing the DWID-Bench 

“non-intrusion” workload is thus { Q3, Q6, Q7, Q8, Q13, Q19, Q27, 

Q28, Q34, Q36, Q42, Q43, Q44, Q46, Q47, Q48, Q52, Q53, Q55, Q59, 

Q61, Q63, Q65, Q67, Q68, Q70, Q73, Q79, Q88, Q89, Q96, Q98 }. For 

each benchmark run, each stream is expected to execute each 

distinct query once, in which their execution order is defined by the 

query ordering established in TPC-DS; 

 For sessions simulating users with DBA privileges, the workload 

definition is very difficult to define, given the dynamic and huge 

scope of actions they can execute. The TPC-DS benchmark does not 

have any type of approach on actions coming from users with this 

profile, and to present an abstraction that strictly defines a finite set 

of particular actions for this type of user may risk the 

representativeness of the workload for this type of users in what 

concerns the benchmark. From this perspective, we consider the 

DBA user as someone that has privileges to execute any type of 

action that can be performed by ETL and DW end users (i.e.,  DML 

commands – insert, update and select; delete is not considered, 

since typical DW maintenance involves only modifying or insertion 

of new data), plus common database object creation and 

maintenance actions such as creating, modifying and deleting tables 

and indexes (i.e., any sort of DDL commands – drop, create, etc). 

Thus, in DWID-Bench we define the DBA workload as the mix of 

the ETL and DW end user workloads together, plus all the DDL 

commands needed for creating tables, constraints and indexes (i.e., 

primary and secondary indexes, possible bitmap join indexes, key 

and referential integrity constraint instructions) for the store sales 

star schema. 
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The execution matrix for the “non-intrusion” workloads can be seen in 

Table D-1, displaying the query order for the maximum of 20 DW End 

User streams that can be executed in DWID-Bench. It shows the order in 

which each of the 32 queries chosen from the TPC-DS queries (identified 

by their number in TPC-DS) should be executed, depending on which 

user (1 to 20) it refers to. The assumptions and rules on how each user 

workload should be executed for each user stream in each benchmark run 

will be explained further in Section D.5. 

Table D-1. “Non-Intrusion” DW End-User Workload – Query Ordering 

Query 
Sequence 

Number 

DW End-User Stream Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 96 98 98 89 79 73 34 70 98 88 43 7 68 61 46 27 48 61 42 47 

2 7 96 59 52 8 98 88 53 59 52 48 43 88 53 42 47 63 8 19 55 

3 44 13 88 53 89 88 44 6 70 13 53 13 44 98 79 73 61 67 47 13 

4 19 36 6 7 46 19 53 34 44 7 96 36 28 89 6 46 34 42 53 44 

5 43 63 27 63 48 65 7 13 73 27 63 98 3 68 96 13 36 88 7 73 

6 27 3 28 13 59 3 73 28 3 34 70 8 19 13 8 59 52 70 48 28 

7 36 6 68 19 19 79 36 98 7 65 36 88 53 43 89 88 53 13 79 27 

8 46 28 8 96 6 13 89 79 36 28 7 28 52 63 88 68 28 28 70 67 

9 63 27 63 8 28 6 28 48 61 42 98 59 27 36 28 36 88 46 36 34 

10 59 8 19 36 44 52 6 47 65 67 47 96 98 96 55 44 73 89 73 52 

11 98 52 55 43 88 7 65 46 67 36 28 55 67 65 48 19 42 6 59 36 

12 70 61 42 47 36 36 42 55 6 48 55 63 61 42 36 79 89 53 96 7 

13 67 88 53 3 61 61 47 52 47 6 44 3 8 19 47 53 67 34 65 6 

14 28 68 67 46 55 53 59 44 55 59 27 52 7 7 59 61 8 47 55 96 

15 47 67 44 59 52 68 8 3 42 61 59 47 55 44 27 3 59 79 44 88 

16 3 79 61 55 27 28 19 19 34 68 67 46 48 67 44 28 65 19 88 53 

17 89 43 73 27 63 42 61 42 79 47 52 53 63 3 65 6 6 48 63 8 

18 6 47 96 42 47 67 3 43 28 98 42 67 43 48 98 65 46 27 89 65 

19 52 19 36 34 70 48 67 61 89 70 65 27 42 55 19 52 68 52 27 79 

20 42 53 43 68 7 63 98 7 46 73 88 70 65 8 53 63 44 55 46 3 

21 8 55 52 44 96 8 48 73 19 3 34 61 59 88 68 98 43 96 28 63 

22 88 46 70 67 68 46 79 89 8 79 73 34 36 47 43 55 3 36 52 46 

23 65 65 7 6 43 55 46 36 96 89 79 73 70 52 3 96 98 59 68 59 

24 34 70 79 28 65 89 96 8 88 19 6 6 34 28 7 67 70 68 43 43 

25 48 59 65 65 98 96 68 63 43 96 68 89 79 70 34 43 96 98 61 61 

26 73 48 34 61 42 27 63 68 53 46 89 65 89 73 73 48 79 3 34 89 

27 55 34 3 73 34 44 27 67 52 53 61 44 46 79 70 7 55 73 3 42 

28 53 89 13 98 3 43 43 88 68 55 46 79 96 34 67 70 13 43 13 70 

29 79 7 46 70 13 47 52 65 13 44 13 42 73 27 13 34 19 63 6 68 

30 13 73 89 48 73 70 13 59 48 63 8 48 47 6 63 89 27 7 8 48 

31 68 44 47 79 67 59 70 96 27 43 3 19 13 59 52 8 47 44 67 19 

32 61 42 48 88 53 34 55 27 63 8 19 68 6 46 61 42 7 65 98 98 
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In the following section we define the benchmark’s “intrusion” workload. 

D.4. DWID-Bench “Intrusion” Workload 

The chosen intrusion actions intend to provide a wide coverage of the 

possible types of attacks described in Section 6.1 and most of the database 

threats discussed in published work [Schulman, 2007] that can be dealt 

with at the SQL level. Considering these threats, the types of attacks 

against DWs (described in Chapter 6), the classes of intruder actions 

presented in Table 6-1, and focusing on the specific business of the TPC-

DS store sales data schema, we assume that the possible “intruder” 

profile is an attacker that has access to the database and pursues answers 

for the following generic questions: 

 How are the store sales DW data structures (i.e. table, indexes and 

column names and types) implemented in the database, and how 

can they be reached? (SQL intrusion action class B defined in Table 

6-1) 

 How can the optimization data structures such as indexes be 

deleted so database performance is degraded? (SQL action class B 

and C) 

 How can the existing data structures such as tables and views be 

deleted so that DW availability is affected and business information 

is lost? (SQL action class C) 

 How to obtain the complete set of business values from the fact or 

dimension tables? (SQL action class D) 

 How to obtain the full set of business values for a certain item, item 

brand, class or category, time period, city, county or state? (SQL 

action class E and F) 

 How to obtain the grouped set (e.g. sum, average, count) of 

interesting business values for a certain item, item brand, item class, 

item category, time period, city, county or state? (SQL action class 

F) 

 How to flood the database services with requests that can 

overwhelm them by creating CPU and I/O server and network 

bottlenecks? (SQL action class G) 
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 How can false data be inserted into the store sales fact table so that 

decision support may be compromised? (SQL action class H) 

 How to modify or erase data so that decision support may become 

compromised? (SQL action class I and J) 

In DWID-Bench we assume a set of instructions that are able to respond 

to these questions as the set of representative “intrusion” actions for the 

chosen database schema.  

For each intrusion action in which there are parameter variables (shown 

in brackets []), these should be given a value as defined in the list of 

random parameter variables. Each parameter value should be refreshed 

for each query in each intrusion action stream, so that the same 

parameters which are used in more than one action in the stream does not 

have its value repeated amongst the remaining actions (e.g. ITEM_K 

should have five distinct values for actions IA06, IA12, IA17, IA22, and 

IA34, shown further on).  

The random generator is defined as a Mersenne Twister Pseudo-Random 

Number Generator8 [Matsumoto and Nishimura, 1998], which is, by far, 

the most widely used PRNG [Marsland, 2011]. Its name derives from the 

fact that its period length9 is chosen to be a Mersenne prime. The most 

commonly used version of the Mersenne Twister algorithm is based on 

                                                      
8 A pseudorandom number generator (PRNG), also known as a deterministic 

random bit generator (DRBG) is an algorithm for generating a sequence of 

numbers that approximates the properties of random numbers [Barker et al., 

2012]. The sequence is not truly random in that it is completely determined by a 

relatively small set of initial values, called the PRNG's state, which includes a 

truly random seed. Although sequences that are closer to truly random can be 

generated using hardware random number generators, pseudorandom numbers 

are important in practice for their speed in number generation and their 

reproducibility. 
9 A PRNG can be started from an arbitrary starting state using a seed state. It will 

always produce the same sequence thereafter when initialized with that state. 

The period of a PRNG is defined as the maximum over all starting states of the 

length of the repetition-free prefix of the sequence. The period is bounded by the 

size of the state, measured in bits. However, since the length of the period 

potentially doubles with each bit of 'state' added, it is easy to build PRNGs with 

periods long enough for many practical applications. 
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the Mersenne prime 219937−1 (alias MT19937). It has a period of 219937−1 

iterations (≈4.3×106001), is proven to be equidistributed in (up to) 623 

dimensions (for 32-bit values), and runs faster than other statistically 

reasonable generators [Marsland, 2011]. 

For DWID-Bench, the following piece of pseudocode is assumed as the 

PRNG, generating uniformly distributed 32-bit integers in the range [0, 

232 − 1] with the MT19937 algorithm (withdrawn from an original code 

listing written by Matsumoto and Mishimura and available at 

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html): 

 

/*  
   Extracted from a C-program for MT19937, with initialization improved    
   2002/1/26, coded by Takuji Nishimura and Makoto Matsumoto. 
 
   Before using, initialize the state by using init_genrand(seed). 
 
   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, 
   All rights reserved.                           
 
   Any feedback is very welcome. 
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html 
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) 
*/ 
 
#include <stdio.h> 
 
/* Period parameters */   
#define N 624 
#define M 397 
#define MATRIX_A 0x9908b0dfUL   /* constant vector a */ 
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */ 
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */ 
 
static unsigned long mt[N]; /* the array for the state vector  */ 
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */ 
 
/* initializes mt[N] with a seed */ 
void init_genrand(unsigned long s) 
{ 
    mt[0]= s & 0xffffffffUL; 
    for (mti=1; mti<N; mti++) { 
        mt[mti] =  
     (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);  
        /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ 
        /* In the previous versions, MSBs of the seed affect   */ 
        /* only MSBs of the array mt[].                        */ 
        /* 2002/01/09 modified by Makoto Matsumoto             */ 
        mt[mti] &= 0xffffffffUL; 
        /* for >32 bit machines */ 
    } 
} 
 
/* initialize by an array with array-length */ 
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/* init_key is the array for initializing keys */ 
/* key_length is its length */ 
/* slight change for C++, 2004/2/26 */ 
void init_by_array(unsigned long init_key[], int key_length) 
{ 
    int i, j, k; 
    init_genrand(19650218UL); 
    i=1; j=0; 
    k = (N>key_length ? N : key_length); 
    for (; k; k--) { 
        mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) 
          + init_key[j] + j; /* non linear */ 
        mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ 
        i++; j++; 
        if (i>=N) { mt[0] = mt[N-1]; i=1; } 
        if (j>=key_length) j=0; 
    } 
    for (k=N-1; k; k--) { 
        mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) 
          - i; /* non linear */ 
        mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ 
        i++; 
        if (i>=N) { mt[0] = mt[N-1]; i=1; } 
    } 
 
    mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */  
} 
 
/* generates a random number on [0,0xffffffff]-interval */ 
unsigned long genrand_int32(void) 
{ 
    unsigned long y; 
    static unsigned long mag01[2]={0x0UL, MATRIX_A}; 
    /* mag01[x] = x * MATRIX_A  for x=0,1 */ 
 
    if (mti >= N) { /* generate N words at one time */ 
        int kk; 
 
        if (mti == N+1)   /* if init_genrand() has not been called, */ 
            init_genrand(5489UL); /* a default initial seed is used */ 
 
        for (kk=0;kk<N-M;kk++) { 
            y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 
            mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL]; 
        } 
        for (;kk<N-1;kk++) { 
            y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); 
            mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; 
        } 
        y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); 
        mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; 
 
        mti = 0; 
    } 
   
    y = mt[mti++]; 
 
    /* Tempering */ 
    y ^= (y >> 11); 
    y ^= (y << 7) & 0x9d2c5680UL; 
    y ^= (y << 15) & 0xefc60000UL; 
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    y ^= (y >> 18); 
 
    return y; 
} 
 
/* generates an integer random number on [0, x[ */ 
long random(long x) 
{ 
    return trunc(genrand_int32()*(1.0/4294967296.0)*x);  
} 
 
 
 
/* EXAMPLE OF USAGE – Generate first 10 random numbers in [0, 100[ */ 
/* 123456789 used as the initial seed */ 
int main(void) 
{ 
    int i, x=100; 
    unsigned long s=123456789; 
    init_genrand(s); 
    printf("10 random outputs in [0, 100[ \n"); 
    for (i=0; i<10; i++) { 
      printf(random(x)); 
      printf("\n"); 
    } 
    return 0; 
} 

 

The random function based on the Mersenne Twister should be used the 

following way: 

 For each benchmark run, the PRNG should be reinitialized using 

seed 123456789 (execute function init_genrand(123456789)); 

 Given random(x), where x represents a fixed integer value, the 

function result should be a randomized number belonging to range 

[0…x-1]; 

 Given random(x), where x represents a list of values, the function 

result should be one of those values randomly chosen from the list. 

All random values should be generated sequentially for all random 

parameters of the previous user workload, before moving on to generate 

the random values for the random parameters of the next user workload, 

i.e., the random values should be sequentially generated for the complete 

set of random parameters (R_TABLE, R_INDEX, ..., P_VALUE2) in the 

parameters’ order, for user 1, and then moving on to user 2, and so on 

and so forth. 

The complete list of defined used random parameter variable values is: 
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List of Random Parameter Variables 

DEFINE R_TABLE = random(’Store_sales’, ’Time_dim’, ’Date_dim’, ’Customer’, ’Item’, 

’Store ’, ’Customer_address’, ’Customer_demographics’, ’Household_demographics’, 

’Promotion’, ’Income_band’) 

DEFINE R_INDEX = random(select index_name from dba_indexes where table_name = 

[D_TABLE]) 

DEFINE ITEM_K = random(select max(i_item_sk) from item) 

DEFINE ITEM_N = random(select distinct i_product_name from item) 

DEFINE RD_DOM = random(14)+1 

DEFINE RD_MOY = random(12)+1 

DEFINE RD_YEAR = random(6)+1998 

DEFINE CA_TYPE = random(‘ca_state’, ’ca_county’, ’ca_city’) 

DEFINE CA_VALUE = random(select distinct [SS_CATYPE] from customer_address) 

DEFINE CA_STATE = random(select distinct ca_state from customer_address) 

DEFINE I_TYPE = random(‘i_brand’, ’i_class’, ’i_category’) 

DEFINE I_VALUE = random(select distinct [SS_ITYPE] from item) 

DEFINE SS_COLUMN = random(’ss_wholesale_cost’, ’ss_list_price’, ’ss_salesprice’, 

’ss_ext_discount_amt’, ’ss_ext_sales_price’, ’ss_ext_wholesale_cost’, ’ss_ext_list_price’, 

’ss_ext_tax’, ’ss_coupon_amt’, ’ss_net_paid’, ’ss_net_paid_inc_tax’, ’ss_net_profit’) 

DEFINE SS_VALUE = random(select max([SS_COLUMN]) from store_sales) 

DEFINE SS_TICKET = random(select max(ss_ticket_number) from store_sales) 

DEFINE SS_ITEM_T = random(select ss_item_sk from store_sales where ss_ticket_number 

= SS_TICKET) 

DEFINE SS_SDATE = random(select max(d_date_sk) from date_dim) 

DEFINE SS_STIME = random(select max(t_date_sk) from time_dim) 

DEFINE SS_SITEM = random(select max(i_item_sk) from item) 

DEFINE SS_SCUST = random(select max(c_customer_sk) from customer) 

DEFINE SS_SCDEMO = random(select max(cd_demo_sk) from customer_demographics) 

DEFINE SS_SHDEMO = random(select max(hd_demo_sk) from 

household_demographics) 

DEFINE SS_SADDR = random(select max(ca_address_sk) from customer_address) 

DEFINE SS_SSTORE = random(select max(s_store_sk) from store) 

DEFINE SS_SPROMO=random(select max(p_promo_sk) from promotion) 
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DEFINE SS_STICK = (select max(ss_ticket_number) from store_sales)+1 

DEFINE SS_ITICK = random(select ss_item_sk from store_sales where ss_ticket_number = 

[SS_STICK]) 

DEFINE SS_QUANTITY = random(99)+1 

For i = 1 to 12 

      DEFINE SS_VALUES[i] = random(9999999)/100 

Next 

DEFINE I_COLUMN = random(‘i_current_price’,’i_wholesale_cost’) 

DEFINE I_VALUE_2 = random(select max[I_COLUMN] from item) 

DEFINE P_COLUMN_1 = random(‘p_start_date_sk’, ’p_end_date_sk’, ’p_item_sk’, 

’p_cost’) 

DEFINE P_VALUE_1 = random(select max([P_COLUMN_1]) from promotion) 

DEFINE PROMO_K = random(select max(p_promo_sk) from promotion) 

DEFINE P_COLUMN_2 = random(‘p_start_date_sk’, ’p_end_date_sk’, ’p_cost’) 

DEFINE P_VALUE_2 = random(select max([P_COLUMN_2]) from promotion) 

The complete list of proposed intrusion actions that represent the 

“intruder” workload is as follows, composed by 34 SQL instructions 

(Intrusion Action IA01 to IA34. 

Intrusion Action IA01. Query for retrieving information on the tables and columns of the 

database schema. 

select table_name, column_name, data_type from user_tab_columns; 

 

Intrusion Action IA02. Deleting an index from the database. 

drop index [D_INDEX]; 

 

Intrusion Action IA03. Deleting the fact table. 

drop table store_sales; 

 

Intrusion Action IA04. Retrieving all data from the fact table. 

select * from store_sales; 

 

Intrusion Action IA05. Query flooding by requesting several joins on all data from the 

fact table to be processed and returned. 
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select * from  

      (select * from store_sales) a, (select * from store_sales) b, (select * from store_sales) c,  

      (select * from store_sales) d, (select * from store_sales) e, (select * from store_sales) f, 

      (select * from store_sales) g, (select * from store_sales) h, (select * from store_sales) i,  

      (select * from store_sales) j; 

 

Intrusion Action IA06. Query retrieving all sales, date, item and customer data for all 

sales of a given item. 

select * from store_sales, item, customer, date_dim 

where ss_item_sk = [ITEM_K] and ss_item_sk = i_item_sk and 

           ss_customer_sk = c_customer_sk and ss_sold_date = d_date_sk; 

 

Intrusion Action IA07. Query retrieving all sales, item and date data for all sales in a 

random period of two weeks. 

select * from store_sales, item, date_dim 

where ss_sold_date_sk = d_date_sk and 

            d_year = [RD_YEAR] and d_moy = [RD_MOY] and 

            d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14 

 

Intrusion Action IA08. Query retrieving all sales, customer address, date and item data 

for all sales in a given state, county or city. 

select store_sales.*, customer_address.*, item.*, d_year, d_moy, d_dom 

from store_sales, customer_address, item, date_dim 

where ss_addr_sk = ca_address_sk and 

           ss_item_sk = i_item_sk and  ss_sold_date_sk = d_date_sk and  

           [CA_TYPE] = [CA_VALUE]; 

 

Intrusion Action IA09. Query retrieving all sales, item, date and customer address data 

for all sales of a given item in a given state in a random period of two weeks. 

select store_sales.*, item.*, d_year, d_moy, d_dom, customer_address.* 

from store_sales, date_dim, item, customer_address 

where ss_item_sk = i_item_sk and 

           i_product_name = [ITEM_N] and  ss_sold_date_sk = d_date_sk and  

          d_year = [RD_YEAR] and d_moy = [RD_MOY] and  

          d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14 and  

          ss_addr_sk = ca_address_sk and ca_state = [CA_STATE]; 

 

Intrusion Action IA10. Query retrieving all sales, item and date data for all sales of all 

items of a given brand, class or category. 

select * from store_sales, item, date_dim 

where ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and  
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           [I_TYPE] = [I_VALUE]; 

 

Intrusion Action IA11. Query retrieving the total quantity and total value of a given sales 

column, per item, for all items. 

select ss_item_sk, i_product_name,sum(ss_quantity),sum([SS_COLUMN]) 

from store_sales, item  

where ss_item_sk = i_item_sk  

group by ss_item_sk; 

 

Intrusion Action IA12. Query retrieving the total quantity and total value of a given sales 

column as well as the row count of those sales, for a given item. 

select ss_item_sk, i_product_name, sum(ss_quantity), sum([SS_COLUMN]), count(*) 

from store_sales, item 

where ss_item_sk = i_item_sk and ss_item_sk = [ITEM_K]; 

 

Intrusion Action IA13. Query retrieving the total value of a given sales column as well as 

the row count of those sales, per day, in a given period of two weeks. 

select d_year, d_moy, d_dom, sum([SS_COLUMN]), count(*) 

from store_sales, date_dim 

where ss_sold_date_sk = d_date_sk and  

           d_year = [RD_YEAR] and d_moy = [RD_MOY] and  

           d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14 

group by d_year, d_moy, d_dom 

order by d_year, d_moy, d_dom; 

 

Intrusion Action IA14. Query retrieving the total value of a given sales column as well as 

the row count of those sales, per city per month, for a given state, county or city. 

select ca_city, d_year, d_moy, sum([SS_COLUMN], count(*) 

from store_sales, customer_address, date_dim 

where ss_addr_sk=ca_address_sk and ss_sold_date_sk=d_date_sk and  

           [CA_TYPE]=[CA_VALUE] 

group by ca_city, d_year, d_moy  

order by ca_city, d_year, d_moy; 

 

Intrusion Action IA15. Query retrieving the total quantity and total value of a given sales 

column as well as the row count of those sales, for a given item in a given state, per city 

per day, in a given period of two weeks. 

select ca_city, ca_county, ca_state, ss_item_sk, i_product_name, d_year,   

          d_moy, d_dom, sum(ss_quantity), sum([SS_COLUMN]), count(*) 

from store_sales, date_dim, customer_address, item 

where ss_item_sk = i_item_sk and i_product_name = [ITEM_N] and  
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           ss_sold_date_sk = d_date_sk and  

           d_year = [RD_YEAR] and d_moy = [RD_MOY] and  

           d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14 

           ss_addr_sk = ca_address_sk and ca_state = [CA_STATE] 

group by ca_city, d_year, d_moy, d_dom 

order by ca_city, d_year, d_moy, d_dom; 

 

Intrusion Action IA16. Query retrieving the total value of a given sales column for all 

sales of a given brand, class or category, per city per month. 

select [I_TYPE], ca_city, d_year, d_moy, sum(R_COLUMN) 

from store_sales, item, customer_address, date_dim 

where ss_item_sk = i_item_sk and [I_TYPE] = [I_VALUE] and  

           ss_addr_sk = ca_address_sk and ss_sold_date_sk = d_date_sk 

group by ca_city, d_year, d_moy 

order by ca_city, d_year, d_moy; 

 

Intrusion Action IA17. Modifying the values of a given sales column for all the sales rows 

of a certain item. 

update store_sales set [SS_COLUMN] = [SS_VALUE] where ss_item_sk = [ITEM_K]; 

 

Intrusion Action IA18. Modifying the values of a given sales column for all the sales rows 

of a certain item belonging to a certain ticket number. 

update store_sales set [SS_COLUMN] = [SS_VALUE]  

where ss_ticket_number = [SS_STICK] and ss_item_sk = [SS_ITICK]; 

 

Intrusion Action IA19. Modifying the values of a given sales column for all the sales rows 

of a certain state, county or city. 

update store_sales set [SS_COLUMN] = [SS_VALUE]  

where (select count(*) from customer_address where  

            ss_addr_sk = ca_address_sk and [CA_TYPE] = [CA_VALUE])>0; 

 

Intrusion Action IA20. Modifying the values of a given sales column for all the sales rows 

of a certain brand, class or category. 

update store_sales set [SS_COLUMN] = [SS_VALUE]  

where (select count(*) from item where ss_item_sk = i_item_sk and  

            [I_TYPE]=[I_VALUE])>0; 

 

Intrusion Action IA21. Modifying the values of a given sales column for all the sales rows 

of a certain day. 

update store_sales set [SS_COLUMN] = [SS_VALUE]  
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where (select count(*) from date_dim where ss_sold_date_sk = d_date_sk  

            and d_year = [RD_YEAR] and d_moy = [RD_MOY] and  

            d_dom = [RD_DOM])>0; 

 

Intrusion Action IA22. Deleting all the sales rows of a certain item. 

delete from store_sales where ss_item_sk = [ITEM_K]; 

Intrusion Action IA23. Deleting all the sales rows of a certain item belonging to a certain 

ticket number. 

delete from store_sales  

where ss_ticket_number = [SS_STICK] and ss_item_sk = [SS_ITICK]; 

 

Intrusion Action IA24. Deleting all the sales rows of a certain state, county or city. 

delete from store_sales where (select count(*) from customer_address where 

ss_addr_sk=ca_address_sk and [CA_TYPE] = [CA_VALUE])>0; 

Intrusion Action IA25. Deleting all the sales rows of a certain brand, class or category. 

delete from store_sales where (select count(*) from item where  

                         ss_item_sk = i_item_sk and [I_TYPE] = [I_VALUE])>0; 

 

Intrusion Action IA26. Deleting all the sales rows of a certain day. 

delete from store_sales where (select count(*) from date_dim where  

           ss_sold_date_sk=d_date_sk and d_year=[RD_YEAR] and   

           d_moy=[RD_MOY] and d_dom=[RD_DOM])>0; 

 

Intrusion Action IA27. Inserting false data in  the store sales fact table. 

insert into store_sales (*) values (SS_SDATE, SS_STIME, SS_SITEM, SS_SCUST,  

     SS_SCDEMO, SS_SHDEMO, SS_SADDR, SS_SSTORE, SS_SPROMO, SS_STICK,  

     SS_QUANTITY, SS_VALUE[1], SS_VALUE[2], SS_VALUE[3], SS_VALUE[4],  

     SS_VALUE[5], SS_VALUE[6], SS_VALUE[7], SS_VALUE[8], SS_VALUE[9],  

     SS_VALUE[10], SS_VALUE[11], SS_VALUE[12]); 

 

Intrusion Action IA28. Retrieving all data from any table in the database. 

select * from [R_TABLE]; 

 

Intrusion Action IA29. Retrieving the most sensitive customer data from all customer 

tables the database. 

select * from customer, customer_address, customer_demographics 

where c_current_addr_sk = ca_address_sk and c_current_cdemo_sk = cd_demo_sk; 
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Intrusion Action IA30. Retrieving a portion of sensitive customer data from all customers 

belonging to a given state, county or city. 

select c_customer_sk, c_first_name, c_last_name, c_birth_day, c_birth_month,   

           c_birth_year, c_email_address, customer_address.*, customer_demographics.* 

from customer, customer_address, customer_demographics 

where c_current_addr_sk = ca_address_sk and  

      c_current_cdemo_sk = cd_demo_sk and [CA_TYPE] = [CA_VALUE]; 

Intrusion Action IA31. Retrieving the data of all promotions concerning a given item on a 

given month. 

select promotion.*, item.*, d_year, d_moy, d_dom 

from promotion, item, date_dim 

where p_item_sk = i_item_sk and  

           i_product_name = [ITEM_N] and p_start_date_sk = d_date_sk and  

          d_year = [RD_YEAR] and d_moy = [RD_MOY]; 

 

Intrusion Action IA32. Modifying the current price or wholesale cost of a given item. 

update item set [I_COLUMN] = [I_VALUE_2]  

where i_product_name = [ITEM_N]; 

 

Intrusion Action IA33. Modifying the start date, end date, item or cost of a given 

promotion. 

update promotion set [P_COLUMN_1] = [P_VALUE_1]  

where p_promo_sk = [PROMO_K]; 

 

Intrusion Action IA34. Modifying the start date, end date, or cost of all promotions of a 

given item. 

update promotion set [P_COLUMN_2] = [P_VALUE_2]  

where p_item_sk = [ITEM_K] 

 

Table D-2 resumes the user types that may execute each instruction, the 

action class and affected security dimensions, as well as the tables 

targeted to be affected by the instruction. From observing the table it can 

be seen that each DBA “intrusion” workload is composed by all 34 

intrusion actions, the ETL “intrusion” workload is defined by 28 intrusion 

actions (all except IA03, IA22, IA23, IA24, IA25 and IA26), and the DW 

end user “intrusion” workload is defined by 18 intrusion actions (all 

intrusion actions that can be executed by “Any” user type). The definition 

of the number of streams each type of user should be running for each 

benchmark run will be described in the next section. 
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The chosen instructions that compose the intruder actions were guided 

by the assumption that each table has its own relative sensitivity, given 

the importance and business knowledge revealed by its contents. 

Obviously, the Store_sales fact table is much more sensitive (and therefore, 

more important from the intruder’s perspective) than the Date_dim 

dimension table, since the first stores the operational secrets of the 

business and the second just serves as support for temporal definitions of 

the business. Thus, the majority of the defined intrusion actions were 

designed for targeting actions against the most important tables (which, 

for the store sales DW, concern the tables that store sales, items, 

promotions and customer information, namely tables Store_sales, Item, 

Customer, Customer_address, Customer_demo and Promotion). 

Table D-2. “Intrusion” Workload 

  TARGET TABLES 

Intrusion  

Action 

SQL  

Action 

Class 

User Type 
Store_ 
sales 

(facts) 

 Customer 
(dim) 

Item 

(dim) 

 Promotion   
(dim) 

 Date_dim  

(dim) 

Time_dim 
(dim) 

Store 
(dim) 

Customer_ 
address  

(dim) 

  Customer_ 

demo  

(dim) 

Household 
_demo 

(dim) 

 Income_  

band  

(dim) 

IA01 A Any X X X X X X X X X X X 

IA02 B ETL, DBA X X X X X X X X X X X 

IA03 B DBA X           

IA04 C Any X           

IA05 F Any X           

IA06 D Any X X X  X       

IA07 D Any X  X  X       

IA08 D Any X  X  X   X    

IA09 E Any X  X  X   X    

IA10 D Any X  X  X       

IA11 D Any X  X         

IA12 E Any X  X         

IA13 E Any X    X       

IA14 E Any X    X   X    

IA15 E Any X  X  X   X    

IA16 E Any X  X  X   X    

IA17 H ETL, DBA X           

IA18 H ETL, DBA X           

IA19 H ETL, DBA X           

IA20 H ETL, DBA X           

IA21 H ETL, DBA X           

IA22 I DBA X           

IA23 I DBA X           

IA24 I DBA X           

IA25 I DBA X           

IA26 I DBA X           

IA27 G ETL, DBA X           

IA28 C Any X X X X X X X X X X X 

IA29 C Any  X      X X   

IA30 D Any  X      X X   

IA31 D Any   X X X       

IA32 H ETL, DBA   X         

IA33 H ETL, DBA    X        

IA34 H ETL, DBA    X        
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The Date_dim dimension table is also often used in the “intrusion” action 

instructions; however, it is a static table, i.e., it has fixed content and does 

not change over time. Furthermore, its content does not reveal any 

business information nor does it require external knowledge to be 

regenerated. Therefore, it can be easily and quickly rebuilt in case the 

content is damaged and is not so important as those previously 

mentioned. 

Table D-3 shows the order in which each intrusion action should be 

executed for each user “intrusion” workload stream. The number of 

intrusion actions in each benchmark run ranges from 28+18+34 = 80 (for a 

setup composed by 1 “Intrusion” ETL User + 1 “Intrusion” DW End User 

+ 1 “Intrusion” DBA User) to 28+180+34 = 242 (for a setup composed by 1 

“Intrusion” ETL User + 10 “Intrusion” DW End Users + 1 “Intrusion” 

DBA User). 

Table D-3. “Intrusion” Workload – Query Ordering 

Sequence 
Order 

 ETL 
User 

 DW End Users  DBA 
User 1 2 3 4 5 6 7 8 9 10 

1 IA02 IA05 IA07 IA31 IA10 IA16 IA28 IA07 IA29 IA05 IA28 IA01 

2 IA05 IA16 IA28 IA13 IA04 IA06 IA14 IA12 IA01 IA10 IA08 IA28 

3 IA09 IA15 IA06 IA15 IA15 IA31 IA29 IA29 IA04 IA08 IA09 IA14 

4 IA33 IA07 IA04 IA09 IA09 IA08 IA30 IA09 IA08 IA31 IA13 IA03 

5 IA17 IA06 IA13 IA16 IA08 IA07 IA13 IA14 IA15 IA12 IA29 IA22 

6 IA34 IA01 IA05 IA30 IA28 IA04 IA04 IA05 IA12 IA29 IA01 IA19 

7 IA14 IA10 IA30 IA05 IA13 IA13 IA01 IA08 IA11 IA01 IA15 IA05 

8 IA28 IA12 IA14 IA28 IA30 IA28 IA08 IA28 IA31 IA14 IA04 IA25 

9 IA16 IA28 IA08 IA06 IA06 IA11 IA09 IA13 IA30 IA06 IA06 IA34 

10 IA04 IA29 IA12 IA12 IA29 IA30 IA12 IA06 IA09 IA07 IA31 IA06 

11 IA31 IA31 IA01 IA08 IA01 IA15 IA06 IA31 IA13 IA30 IA11 IA12 

12 IA01 IA30 IA31 IA29 IA12 IA01 IA10 IA10 IA05 IA11 IA07 IA24 

13 IA21 IA09 IA16 IA01 IA11 IA05 IA05 IA04 IA14 IA16 IA12 IA31 

14 IA13 IA04 IA10 IA04 IA31 IA10 IA07 IA11 IA06 IA09 IA05 IA16 

15 IA06 IA14 IA11 IA11 IA16 IA09 IA15 IA16 IA07 IA04 IA16 IA15 

16 IA18 IA11 IA09 IA07 IA05 IA12 IA16 IA15 IA28 IA15 IA30 IA20 

17 IA30 IA13 IA15 IA10 IA14 IA29 IA31 IA30 IA16 IA13 IA14 IA23 

18 IA07 IA08 IA29 IA14 IA07 IA14 IA11 IA01 IA10 IA28 IA10 IA33 

19 IA27           IA32 

20 IA08           IA17 

21 IA32           IA21 

22 IA15           IA09 

23 IA20           IA11 

24 IA29           IA30 

25 IA12           IA08 

26 IA11           IA10 

27 IA10           IA27 

28 IA19           IA18 

29            IA26 

30            IA29 

31            IA02 

32            IA04 

33            IA07 

34            IA13 
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D.5. DWID-Bench Rules and Execution Procedure 

In this section we define the rules for implementing the DWID-Bench 

setup and its execution procedure. The rules for implementing the 

benchmark are the following: 

 The store sales data schema should be implemented exactly as 

described in the TPC-DS benchmark; 

 The database maintenance routines should run exactly as described 

in TPC-DS, representing the “non-intrusion” ETL workload 

streams. Each of these ETL streams may execute concurrently with 

DW End User streams or DBA streams, or alone. The “non-

intrusion” ETL streams do not overlap; all operations need to have 

finished on “non-intrusion” ETL workload x before any procedure 

can start on behalf of “non-intrusion” ETL workload x+1. The first 

refresh data set can only start after 3*S (where S represents the 

number of running “non-intrusion” DW end user query streams) 

“non-intrusion” queries have completed their execution. Each 

subsequent refresh set can start after completion of an additional 64 

queries (the total number of instructions in two complete 

workloads). The purpose of linking data maintenance operations to 

completion of queries is so that the updates are interspersed among 

execution of queries in the benchmark runs, although concurrent 

execution of updates and queries is not required; 

 Each “non-intrusion” query instruction should be exactly as 

described in the TPC-DS benchmark, while each “non-intrusion” 

instruction should be exactly as defined in Table D-1 (including 

instruction modification and the substitution of query parameters 

for both types of workloads); 

 The same hardware and software should be used during the 

complete benchmark run without changes. The only allowed 

changes are those concerning the updating of both DW and DIDS 

databases and logs; 

 The DIDS cannot be specifically optimized a priori for the set of SQL 

actions defined in the intrusion workload, i.e., it may not know or 

take in account information regarding previous knowledge of the 
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intrusion workloads before the workloads’ execution in the 

benchmark run; 

 Each stream should be run only once, to avoid repeating instruction 

ordering; 

 The driver system shall submit “intrusion” and “non-intrusion” 

workloads through one or more sessions on the SUT. Each session 

corresponds to one stream composed by a complete “intrusion” or 

“non-intrusion” user workload; 

 If any of the workloads fails to execute, the benchmark results are 

invalid. 

The DWID-Bench benchmark is defined by the execution of the Training 

Phase, followed by the Testing Phase. The Training Phase includes all 

activity required to bring the SUT to the configuration that immediately 

precedes the execution of the “non-intrusion” and “intrusion” workloads 

that will measure the intrusion detection and performance metrics of the 

DIDS, which composes the Testing Phase. For fairness of the database 

performance measures, the database server should be restarted before 

starting the Testing Phase, in order to reinitialize the database cache. The 

benchmark methodology is shown in Figure D-3. The Training Phase 

includes: 

1) The execution of all SQL DDL commands that create the store sales 

DW data schema (datafiles, tables and views) and constraints, as 

well as any performance optimization objects (e.g. indexes); 

2) The execution of all data loading procedures to populate the DW 

with the initial data defined by TPC-DS for the chosen scale factor 

as defined in that benchmark; 

3) During the execution of the two previous steps, the DIDS can access 

and analyze the executed operations to build the “normal” ETL 

and/or DBA user profiles, in any way, if needed; 

4) The execution of one to five “non-intrusion” ETL data maintenance 

workload streams as the first one to five refresh sets as defined in 

TPC-DS and following the rules previously presented in this 

section, and one to ten DW End User “non-intrusion” workload 
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streams, for allowing the DIDS to build the “normal” non-intruder 

ETL and DW end user profiles, in any way. 

The Testing Phase includes: 

1) The execution of the same number of “non-intrusion” ETL and 

“non-intrusion” DW End User workload streams as those used in 

the Training Phase; 

2) The execution of one “intrusion” DBA stream, one to ten 

“intrusion” DW End User streams, and one “intrusion” ETL stream, 

concurrently with the “non-intrusion” workloads. 

1. STORE_SALES DW CREATION
- Create database instance
- Create database datafiles 
(tablespaces)
- Create tables, primary keys and 
referential constraints
- Load data into tables
- Create bitmap join indexes (when 
allowed by the DBMS)

2. NON-INTRUSION WORKLOAD 
EXECUTION
- Execution of 1 to 10 “non-intrusion” 
DW End User workload streams with 1 
to 5 “non-intrusion” ETL workload 
streams

3. NON-INTRUSION+INTRUSION 
WORKLOAD EXECUTION
- Execution of 1 to 10 “non-intrusion” 
DW End User workload streams with 1 
to 5 “non-intrusion” ETL workload 
streams + 1 to 10 “intrusion” DW End 
User workload streams + 1 “intrusion” 
DBA workload stream + 1 “intrusion” 
ETL workload stream

FINISH?

5. COMPUTE 
BENCHMARK 
MEASURES

Yes

Build DBA “Non-intrusion” 
profiles (if needed)

Build ETL and DW End 
User “Non-intrusion” 
profiles (if needed)

Run DIDS for test against 
intrusions and update user 
profiles (if needed)

4. GENERATE NEW “NON-
INTRUSION” AND “INTRUSION” 
WORKLOAD
- Substitution of the random parameters 
based on the sequence generated 
values from the PRNG
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Figure D-3. DWID-Bench benchmark methodology 
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Figure D-4 illustrates the execution sequence of the Testing Phase. Note 

that the “non-intrusion” ETL workload is executed as defined in TPC-DS, 

with the only difference that it refreshes the database after completing the 

processing of a group of 64 queries instead of 192 (because the complete 

DWID-Bench “non-intrusion” workload has 32 queries, instead of 99 as 

defined in TPC-DS; 64 is an approximate proportional number). 

Non-intruder DW End User 1 Workload (32 queries)

Non-intruder DW End User 2 Workload (32 queries)

Non-intruder DW End User n Workload (32 queries)

Non-intruder 
ETL User 

Workload 1

Intruder DW End User 1 Workload (18 intrusion action instructions)

Intruder DW End User 2 Workload (18 intrusion action instructions)

Intruder DW End User ni Workload (18 intrusion action instructions)

Intruder ETL User Workload (28 intrusion action instructions)

Intruder DBA User Workload (34 intrusion action instructions)

Non-intruder 
ETL User 

Workload 2

Non-intruder 
ETL User 

Workload n/2

Non-intrusion 
DW End User 

Workload 
Streams

Non-intrusion 
ETL Streams

Intrusion 
Workload 
Streams

Time

3*n queries 
completed

64 queries 
completed

(n/2)-3 groups of 64 
queries completed

 
Figure D-4. Benchmark Testing Phase execution flow for n “non-intrusion” DW 

End Users and ni “intrusion” DW End Users 

The following section defines the benchmark’s metrics. 

D.6. DWID-Bench Metrics 

To evaluate the overall efficiency of a DIDS in a data warehousing 

environment, we propose focusing on the following aspects concerning 

intrusion detection in DWs: 
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 The efficiency of the intrusion detection processes themselves, i.e., 

their ability to effectively detect intrusion actions (true positives) 

and minimize the number of false alarms (false positives), and 

minimize the number of intrusions that pass undetected (false 

negatives); 

 How quickly after an intrusion action occurs is the DIDS able to 

produce an alert, given that in many cases it is critical to detect an 

intrusion as quickly as possible, before it may damage the DW; 

 The ability of the DIDS to evolve by improving its intrusion 

detection efficiency through time. 

Given this, in DWID-Bench we define the Data Warehouse Intrusion 

Detection Benchmark Coefficient (���������) metric, which involves two 

main components that respectively measure a DIDS’ efficiency and speed 

in intrusion detection time, where ne represents the number of 

benchmark runs, F-scorei the F-score10 obtained by the DIDS in each 

benchmark run, tQWorkloads the total execution time (in seconds) of the 

“non-intrusion” and “intrusion” workloads of all benchmark runs, and 

tIDProcesses the total execution time (in seconds) of the DIDS of all 

benchmark runs: 

��������� =  
∑ �∗��������

��
���  

∑ ���
���

∗  
∆�����������

∆������������ ∆������������
∗ 100 

Evaluates the intrusion 

detection efficiency 

through time, giving 

higher weight to the 

most recent F-scores 

Evaluates the impact of the time 

taken to execute the intrusion 

detection processes 

Given its expression, ��������� will output a real value in the range 

[0...100]. A higher benchmark value indicates a better DIDS. To illustrate 

the outcome of the proposed metric, consider the following values shown 

in Table D-4 as fictional examples of three DIDS to be evaluated by 

DWID-Bench. 

 

                                                      
10 The F-score measure was explained in Chapter 6, Subsection 6.6.2. 
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Table D-4. DWID-Bench DIDS benchmarking examples 

 1st Benchmark Run (ne = 1) 2nd Benchmark Run (ne = 2) 

 F-score1 ∆������  ∆������� ������ F-score2 ∆������  ∆������� ������ 

DIDS 1 60% 1000 200 50.0 80% 2000 400 61.1 

DIDS 2 70% 1000 200 58.3 70% 2000 400 58.3 

DIDS 3 70% 1000 250 56.0 60% 2000 500 50.7 

 

Observing the table, it can be seen that after the first benchmark run, 

DIDS 2 and DIDS 3 are those presenting the highest intrusion detection 

efficiency, i.e., they have higher F-score than DIDS 1, but since DIDS 2 

takes less time in its intrusion detection processes than DIDS 3 it outputs 

a higher benchmark value, making it the best DIDS after the first 

benchmark run. Moreover, although DIDS 1 executes its intrusion 

detection processes faster than DIDS 3, this last DIDS presents a higher 

intrusion detection efficiency with an F-score that overcomes the fact that 

it is slower. 

However, after the second benchmark run, and assuming that they all 

take the same time in execution as the first benchmark run, DIDS 1 

improves its intrusion detection efficiency to an F-score of 80%, which 

allows it to improve its benchmark value to a measure that makes it the 

best solution. And DIDS 1 is in fact the best solution after both 

benchmark runs, since its F-score average and running times are the same 

as DIDS 2, but its most recent intrusion detection efficiency has the best 

results of all DIDS. On the other hand, the fact that DIDS 3 presented 

worse results in the second benchmark run has made it the worst DIDS. 

Therefore, the ��������� results shown in Table D-4 demonstrate that the 

benchmark metric is indeed able to track the efficiency of the intrusion 

detection processes and its evolution, along with the ability to also 

measure the impact of the required time spent by those processes. 

D.7. Discussion 

The proposed benchmark abstracts the diversity of the described classes 

of possible intrusion actions, while retaining custom normal user activity 

and DW environment requirements. As it is necessary to execute a large 

number of queries and data maintenance operations to completely 

manage any business analysis environment, no benchmark can succeed in 
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exactly mimicking a particular environment and remain broadly 

applicable. We acknowledge that the definition and implementation of 

benchmarks is not a trivial task and that there are always discussable 

issues concerning the objectivity and effectiveness of each proposal. 

However, in DWID-Bench we have tried to provide a wide coverage of 

possible intrusion activity in DWs, while simulating their execution in a 

realistic-like data warehousing environment. Given the importance of 

intrusion detection in DWs and the lack of both DIDS at the SQL level as 

available packages supplied by DBMS vendors as well as standard 

benchmarks to test them, we believe that the issues presented in this 

appendix are worthy of notice and hope that our work may drive the 

discussion around the subject in both the benchmarking and intrusion 

detection research communities, and possibly make way for a 

standardized benchmark for this purpose. 

D.8. Summary and Future Work 

In this appendix we have proposed a novel benchmark that focuses on 

evaluating DIDS at the SQL command level in DW environments. The 

proposed metrics provide an objective and comprehensive mean of 

evaluating the intrusion detection efficiency and ability to improve, as 

well as the impact on database response time, of proposed DIDS for DWs. 

The benchmark’s implementation procedures and metrics also comply 

with the principles of comprehensibility and reproducibility required in 

benchmarking proposals. 

While this benchmark offers a representative scenario of possible 

intrusion attacks on DWs, it does not reflect the entire range of 

possibilities. As future work, we intend to increase and develop the 

“intrusion” workload for widening the coverage of possible intrusion 

actions and therefore produce more thorough tests. 

 


