
Enhancing Data S

PhD The
Professor Jorge Bernardino and Profess

Ricardo Santos

Enhancing Data Security in Data Warehousing

PhD Thesis in Information Science and Technology supervised by
ssor Jorge Bernardino and Professor Marco Vieira and presented to the

Sciences and Technology of the University of Coimbra

February 2014

urity in Data Warehousing

supervised by
or Marco Vieira and presented to the Faculty of

of the University of Coimbra

Enhancing Data Security in
Data Warehousing

Ricardo Jorge Ribeiro dos Santos

Thesis submitted to the University of Coimbra in partial fulfillment

of the requirements for the degree of Doctor of Philosophy

February 2014

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

v

The work presented in this thesis has been developed within the Software

and Systems Research Group of the Center for Informatics and Systems of

the University of Coimbra (CISUC) as part of the requirements of the

Doctoral Program in Information Science and Technology of the

University of Coimbra.

This work has been supervised by Dr. Jorge Fernandes Rodrigues

Bernardino, Professor at the Department of Informatics and Systems

Engineering of the Superior Institute of Engineering of Coimbra (ISEC) of

the Polytechnic Institute of Coimbra (IPC), and Dr. Marco Paulo Amorim

Vieira, Professor at the Department of Informatics Engineering of the

Faculty of Sciences and Technology (FCTUC) of the University of

Coimbra (UC).

Abstract

vii

Abstract

Data Warehouses (DWs) store sensitive data that encloses many business

secrets. They have become the most common data source used by

analytical tools for producing business intelligence and supporting

decision making in most enterprises. This makes them an extremely

appealing target for both inside and outside attackers. Given these facts,

securing them against data damage and information leakage is critical.

This thesis proposes a security framework for integrating data

confidentiality solutions and intrusion detection in DWs. Deployed as a

middle tier between end user interfaces and the database server, the

framework describes how the different solutions should interact with the

remaining tiers. To the best of our knowledge, this framework is the first

to integrate confidentiality solutions such as data masking and

encryption together with intrusion detection in a unique blueprint,

providing a broad scope data security architecture.

Packaged database encryption solutions are been well-accepted as the

best form for protecting data confidentiality while keeping high database

performance. However, this thesis demonstrates that they heavily

increase storage space and introduce extremely large response time

overhead, among other drawbacks. Although their usefulness in their

security purpose itself is indisputable, the thesis discusses the issues

concerning their feasibility and efficiency in data warehousing

environments. This way, solutions specifically tailored for DWs (i.e., that

account for the particular characteristics of the data and workloads are

capable of delivering better tradeoffs between security and performance

than those proposed by standard algorithms and previous research.

This thesis proposes a reversible data masking function and a novel

encryption algorithm that provide diverse levels of significant security

strength while adding small response time and storage space overhead.

Both techniques take numerical input and produce numerical output,

using data type preservation to minimize storage space overhead, and

simply use arithmetical operators mixed with eXclusive OR and modulus

viii

operators in their data transformations. The operations used in these data

transformations are native to standard SQL, which enables both solutions

to use transparent SQL rewriting to mask or encrypt data. Transparently

rewriting SQL allows discarding data roundtrips between the database

and the encryption/decryption mechanisms, thus avoiding I/O and

network bandwidth bottlenecks. Using operations and operators native to

standard SQL also enables their full portability to any type of DataBase

Management System (DBMS) and/or DW. Experimental evaluation

demonstrates the proposed techniques outperform standard and state-of-

the-art research algorithms while providing substantial security strength.

From an intrusion detection view, most Database Intrusion Detection

Systems (DIDS) rely on command-syntax analysis to compute data access

patterns and dependencies for building user profiles that represent what

they consider as typical user activity. However, the considerable ad hoc

nature of DW user workloads makes it extremely difficult to distinguish

between normal and abnormal user behavior, generating huge amounts

of alerts that mostly turn out to be false alarms. Most DIDS also lack

assessing the damage intrusions might cause, while many allow various

intrusions to pass undetected or only inspect user actions a posteriori to

their execution, which jeopardizes intrusion damage containment.

This thesis proposes a DIDS specifically tailored for DWs, integrating a

real-time intrusion detector and response manager at the SQL command

level that acts transparently as an extension of the database server. User

profiles and intrusion detection processes rely on analyzing several

distinct aspects of typical DW workloads: the user command, processed

data and results from processing the command. An SQL-like rule set

extends data access control and statistical models are built for each

feature to obtain individual user profiles, using statistical tests for

intrusion detection. A self-calibration formula computes the contribution

of each feature in the overall intrusion detection process. A risk exposure

method is used for alert management, which is proven more efficient in

damage containment than using alert correlation techniques to deal with

the generation of high amounts of alerts. Experiments demonstrate the

overall efficiency of the proposed DIDS.

Keywords: Data Security, Data Warehousing, Data Masking, Encryption,

Database Intrusion Detection, Database Security Frameworks.

ix

Resumo

As Data Warehouses (DWs) armazenam dados sensíveis que muitas

vezes encerram os segredos do negócio. São actualmente a forma mais

utilizada por parte de ferramentas analíticas para produzir inteligência de

negócio e proporcionar apoio à tomada de decisão em muitas empresas.

Isto torna as DWs um alvo extremamente apetecível por parte de

atacantes internos e externos à própria empresa. Devido a estes factos,

assegurar que o seu conteúdo é devidamente protegido contra danos que

possam ser causados nos dados, ou o roubo e utilização ou divulgação

desses dados, é de uma importância crítica.

Nesta tese, é apresentada uma framework de segurança que possibilita a

integração conjunta das soluções de confidencialidade de dados e

detecção de intrusões em DWs. Esta integração conjunta de soluções é

definida na framework como uma camada intermédia entre os interfaces

dos utilizadores e o servidor de base de dados, descrevendo como as

diferentes soluções interagem com os restantes pares. Consideramos esta

framework como a primeira do género que combina tipos distintos de

soluções de confidencialidade, como mascaragem e encriptação de dados

com detecção de intrusões, numa única arquitectura integrada,

promovendo uma solução de segurança de dados transversal e de grande

abrangência.

A utilização de pacotes de soluções de encriptação incluídos em

servidores de bases de dados tem sido considerada como a melhor forma

de proteger a confidencialidade de dados sensíveis e conseguir ao mesmo

tempo manter um nível elevado de desempenho nas bases de dados.

Contudo, esta tese demonstra que a utilização de encriptação resulta

tipicamente num aumento extremamente considerável do espaço de

armazenamento de dados e no tempo de processamento e resposta dos

comandos SQL, entre outras desvantagens ou aspectos negativos

relativos ao seu desempenho. Apesar da sua utilidade indiscutível no

cumprimento dos pressupostos em termos de segurança propriamente

ditos, nesta tese discutimos os problemas inerentes que dizem respeito à

sua aplicabilidade, eficiência e viabilidade em ambientes de data

Resumo

x

warehousing. Argumentamos que soluções especificamente concebidas

para DWs, que tenham em conta as características particulares dos seus

dados e as actividades típicas dos seus utilizadores, são capazes de

produzir um melhor equilíbrio entre segurança e desempenho do que as

soluções previamente disponibilizadas por algoritmos standard e outros

trabalhos de investigação para bases de dados na sua generalidade.

Nesta tese, propomos uma função reversível de mascaragem de dados e

um novo algoritmo de encriptação, que providenciam diversos níveis de

segurança consideráveis, ao mesmo tempo que adicionam pequenos

aumentos de espaço de armazenamento e tempo de processamento.

Ambas as técnicas recebem dados numéricos de entrada e produzem

dados numéricos de saída, usam preservação do tipo de dados para

minimizar o aumento do espaço de armazenamento, e simplesmente

utilizam combinações de operadores aritméticos conjuntamente com OU

exclusivos (XOR) e restos de divisão (MOD) nas operações de

transformação de dados. Como este tipo de operações se conseguem

realizar recorrendo a comandos nativos de SQL, isto permite a ambas as

soluções utilizar de forma transparente a reescrita de comandos SQL para

mascarar e encriptar dados.

Este manuseamento transparente de comandos SQL permite requerer a

execução desses mesmos comandos ao Sistema de Gestão de Base de

Dados (SGBD) sem que os dados tenham de ser transportados entre a

base de dados e os mecanismos de mascaragem/desmascaragem e

encriptação/ decriptação, evitando assim o congestionamento em termos

de I/O e rede. A utilização de operações e operadores nativos ao SQL

também permite a sua portabilidade para qualquer tipo de SGBD e/ou

DW. As avaliações experimentais demonstram que as técnicas propostas

obtêm um desempenho significativamente superior ao obtido por

algoritmos standard e outros propostos pelo estado da arte da

investigação nestes domínios, enquanto providenciam um nível de

segurança considerável.

Numa perspectiva de detecção de intrusões, a maioria dos Sistemas de

Detecção de Intrusões em Bases de Dados (SDIBD) utilizam formas de

análise de sintaxe de comandos para determinar padrões de acesso e

dependências que determinam os perfis que consideram representativos

da actividade típica dos utilizadores. Contudo, a carga considerável de

Resumo

xi

natureza ad hoc existente em muitas acções por parte dos utilizadores de

DWs gera frequentemente um número avassalador de alertas que, na sua

maioria, se revelam falsos alarmes. Muitos SDIBD também não fazem

qualquer tipo de avaliação aos potenciais danos que as intrusões podem

causar, enquanto muitos outros permitem que várias intrusões passem

indetectadas ou apenas inspeccionam as acções dos utilizadores após

essas acções terem completado a sua execução, o que coloca em causa a

possível contenção e/ou reparação de danos causados.

Nesta tese, propomos um SDIBD especificamente concebido para DWs,

integrando um detector de intrusões em tempo real, com capacidade de

parar ou impedir a execução da acção do utilizador, e que funciona de

forma transparente como uma extensão do SGBD. Os perfis dos

utilizadores e os processos de detecção de intrusões recorrem à análise de

diversos aspectos distintos característicos da actividade típica de

utilizadores de DWs: o comando SQL emitido, os dados processados, e os

dados resultantes desse processamento. Um conjunto de regras tipo SQL

estende o alcance das políticas de controlo de acesso a dados, e modelos

estatísticos são construídos baseados em cada variável relevante à

determinação dos perfis dos utilizadores, sendo utilizados testes

estatísticos para analisar as acções dos utilizadores e detectar possíveis

intrusões. Também é descrito um método de calibragem automatizado da

contribuição de cada uma dessas variáveis no processo global de detecção

de intrusões, com base na eficiência que vão apresentando ao longo do

tempo nesse mesmo processo. Um método de exposição de risco é

definido para fazer a gestão de alertas, que é mais eficiente do que as

técnicas de correlação habitualmente utilizadas para este fim, de modo a

lidar com a geração de quantidades elevadas de alertas. As avaliações

experimentais incluídas nesta tese demonstram a eficiência do SDIBD

proposto.

Palavras-chave: Segurança de Dados, Data Warehousing, Mascaragem de

Dados, Encriptação, Detecção de Intrusões em Bases de Dados,

Frameworks de Segurança em Bases de Dados.

Resumo

xii

xiii

Acknowledgements

Firstly, I would like to leave a warm thank you to my advisors. To

Professor Marco Vieira by opening new paths and perspectives along the

way, and especially to Professor Jorge Bernardino, whose support was

and goes far beyond scientific and technical advice. The friendship and

respect that I have for both is invaluable and will endure throughout our

lives. I would also like to give a warm word of gratitude to Professor

Deolinda Rasteiro her amiability and availability whenever I required her

assistance.

To my parents and grandparents, who always encouraged and supported

me unconditionally in the early stages of my life and provided a safe

haven so that I could grow healthy and complete as a person. I would not

be here today if it was not for them.

I would also like to thank my family and closer friends that encouraged

me in one way or another along these past years to pursue my dreams

and which helped me to become a better person, especially my brother,

Jorge Santos, and my great friends Adelino Ferreira, Alfredo Cabral,

Antonio Ramos, Carlos Ribeiro, Fernando Pais, Julio Valente and Manuel

Vaz, among many others.

To my remaining friends, family and all those who in one way or another

contributed to my aggrandizement throughout my life and made me a

better person, thank you.

Finally, I would like to thank the most important people in my life. I want

to thank my wife for the strength and encouragement passed onto me,

always cemented in her patience and persistency, and to apologize for the

time spent in which I was not available to her. To my sons, my greatest

treasures, I thank them for their support and the meaning their existence

gives my life, wishing that I can serve as an example of strength and

courage to overcome the obstacles of life.

Acknowledgements

xiv

xv

Agradecimentos

Em primeiro lugar, gostaria de deixar um caloroso agradecimento aos

meus orientadores. Ao professor Marco Vieira, pelo abrir de novos

caminhos e perspectivas ao longo desta caminhada, e especialmente ao

professor Jorge Bernardino, cujo apoio foi e vai muito para além do

aconselhamento e esclarecimentos técnicos e científicos. A amizade e

respeito que nutro pelos dois é inestimável e perdurará pela vida fora.

Queria também deixar um agradecimento especial à professora Deolinda

Rasteiro, pela amabilidade e disponibilidade demonstradas sempre que

necessitei da sua ajuda.

Aos meus pais e avós, que sempre me incentivaram e apoiaram de forma

incondicional nas etapas iniciais da minha vida e proporcionaram um

porto de abrigo para que pudesse crescer de forma saudável e completa

como pessoa. Não estaria aqui hoje se não fosse por eles.

Queria também agradecer a alguns dos meus familiares e amigos mais

próximos que me foram encorajando de uma maneira ou de outra ao

longo destes últimos anos a perseguir os meus sonhos, e que me

ajudaram a ser uma pessoa melhor, nomeadamente o meu irmão, Jorge

Santos, e os meus grandes amigos Adelino Ferreira, Alfredo Cabral,

António Ramos, Carlos Ribeiro, Fernando Pais, Júlio Valente e Manuel

Vaz, entre tantos outros.

Aos meus restantes amigos, família e todos aqueles que, de uma forma ou

de outra, contribuíram para o meu engrandecimento ao longo da vida e

me tornaram uma pessoa melhor, muito obrigado.

Por último, deixo os agradecimentos às pessoas mais importantes da

minha vida. Quero agradecer à minha esposa pela força e encorajamento

transmitidos, sempre cimentadas na sua paciência e persistência, e pedir-

lhe desculpa pelo tempo que não pude estar disponível para ela. Aos

meus filhos, os meus maiores tesouros, agradeço o seu apoio e o

significado que a sua existência confere à minha vida, desejando que eu

possa servir de exemplo de força e coragem para vencerem os obstáculos

da vida.

Agradecimentos

xvi

xvii

List of Publications

This thesis relies on the scientific research presented in the following peer

reviewed papers.

Peer reviewed papers published in conference proceedings, focusing on

surveying data security issues in data warehousing:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “A Survey on Data

Security in Data Warehousing”, in EUROCON 2011 - International Conference

on Computer as a Tool, Lisbon, Portugal, 2011

Peer reviewed papers published in conference proceedings, focusing on

data masking and encryption:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “A Data Masking

Technique for Data Warehouses”, in IDEAS 2011 – International Database

Engineering & Applications Symposium, Lisbon, Portugal, 2011

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Balancing

Security and Performance for Enhancing Data Privacy in Data Warehouses”,

in TRUSTCOM 2011 - IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, Changsha, China, 2011

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Evaluating the

Feasibility Issues of Data Confidentiality Solutions from a Data Warehousing

Perspective”, DaWaK 2012 – International Conference on Data Warehousing and

Knowledge Discovery, Vienna, Austria, 2-5 September 2012

Ricardo Jorge Santos, Deolinda M. L. Rasteiro, Jorge Bernardino and Marco

Vieira, “A Specific Encryption Solution for Data Warehouses”, in DASFAA

2013 - International Conference on Databases Systems for Advanced Applications,

Wuhan, China, 22-25 April 2013

List of Publications

xviii

Peer reviewed book chapters, focusing on data masking and encryption:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Using Data

Masking for Balancing Security and Performance in Data Warehousing”,

Handbook of Research on Computational Intelligence for Engineering, Science, and

Business, Chapter 15, IGI Global, ISBN 978-1-4666-2518-1 (hardcover) -- ISBN

978-1-4666-2519-8 (eBook), DOI: 10.4018/978-1-4666-2518-1.ch015, 2013

Peer reviewed papers published in conference proceedings, focusing on

database intrusion detection:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “DBMS

Application Layer Intrusion Detection for Data Warehouses”, ISD 2012 –

International Conference on Information Systems Development, Prato, Firenze,

Italy, 28-29 August 2012

Ricardo Jorge Santos, Jorge Bernardino, Marco Vieira and Deolinda Rasteiro,

“Securing Data Warehouses from Web-based Intrusions”, WISE 2012 –

International Conference on Web Information Systems Engineering, Paphos,

Cyprus, 2012

Currently submitted journal papers for peer reviewing, focusing on

database intrusion detection:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Research

Challenges in Data Warehouse Intrusion Detection”, ACM SIGMOD Record,

submitted 30 September 2013 (accepted for publication with changes on 21

January 2014)

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “DIDS-DW: A

Database Intrusion Detection System for Data Warehouses”, IEEE

Transactions on Dependable and Secure Computing (TDSC), submitted 26

October 2013

List of Publications

xix

The following peer reviewed papers refer parallel research work that was

also published during the development of this thesis, although they are

not in the core of the work presented:

Peer reviewed papers published in conference proceedings, focusing on

real-time data warehousing:

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira , “24/7 Real-Time

Data Warehousing: A Tool for Continuous Actionable Knowledge”, in

COMPSAC 2011 - IEEE Signature Conference on Computer Software &

Applications, Munich, Germany, 2011

Ricardo Jorge Santos, Jorge Bernardino and Marco Vieira, “Leveraging 24/7

Availability and Performance for Distributed Real-Time Data Warehouses”,

in COMPSAC 2012 - IEEE Signature Conference on Computer Software &

Applications, Izmir, Turkey, 2012

Peer reviewed papers published in conference proceedings, focusing on

health care systems:

Ricardo Jorge Santos, Jorge Bernardino and Jorge Henriques, “A 24/7

Monitorization Tool for Avoiding Hypotensive Episodes in Critical Care”, in

IDEAS 2010 - International Database Engineering & Applications Symposium,

Montreal, Canada, 2010

Ricardo Jorge Santos, Jorge Bernardino and Jorge Henriques, “The HTP Tool:

Monitoring, Detecting and Predicting Hypotensive Episodes in Critical

Care”, in EUROCON 2011 - International Conference on Computer as a Tool,

Lisbon, Portugal, 2011

xx

xxi

Table of Contents

Chapter 1. Introduction .. 1

1.1 Data Security in Databases... 2

1.1.1.Preventive Data Security Techniques .. 3

1.1.2.Reactive Data Security Techniques .. 4

1.2 Issues concerning Data Security in Data Warehouses 6

1.2.1.Data Masking .. 6

1.2.2.Data Encryption ... 7

1.2.3.Database Intrusion Detection Systems .. 9

1.2.4.Data Security Research Challenges in Data Warehousing 11

1.3 Thesis Statement and Main Contributions 11

1.4 Thesis Structure ... 14

Chapter 2. Background and Related Work ... 17

2.1. Data Warehousing .. 17

2.1.1.The Data Warehouse: Concepts and Definitions 19

2.1.2.Data Warehousing Environments ... 20

2.1.3.Data Warehousing Environments vs Operational Systems ... 23

2.2. Data Masking ... 26

2.2.1.Forms of Data Masking ... 26

2.2.2.Commercial Data Masking Solutions .. 29

2.2.3.Using Data Masking in Data Warehouses 29

2.3. Data Encryption... 32

2.3.1.Standard Encryption Techniques and Algorithms 35

2.3.2.Other Encryption Techniques and Algorithms........................ 40

2.3.3.DBMS Data Encryption Packages .. 49

2.3.4.Using Data Encryption in Data Warehouses 50

2.4. Database Intrusion Detection Systems ... 55

2.4.1.How Intrusion Detection Systems Operate 55

2.4.2.Intrusion Detection Techniques ... 59

2.4.3.Using Database Intrusion Detection Systems in Data

Warehousing Environments .. 68

2.5. Summary .. 70

Chapter 3. Data Warehouse Security Framework ... 73

3.1. Overview of the Data Warehouse Security Middle Tier 74

3.1.1.The Security Framework Database .. 76

3.1.2.The Data Warehouse Security Interface 77

Table of Contents

xxii

3.1.3.Analyzing the User Statement a Priori 78

3.1.4.Executing the User Statement ... 79

3.1.5 Analyzing the Processed Data and Dataset Result a

Posteriori .. 80

3.2. Guidelines for Enhancing Data Masking and Encryption

Performance in Data Warehousing ... 82

3.2.1.Numerical vs Textual Masked or Ciphered Input and

Output ... 82

3.2.2.Preserving Column Datatypes.. 83

3.2.3.Using Only Native SQL Operations to Mask/Encrypt Data ... 83

3.2.4.Masking and Encryption Algorithm Design 84

3.3. Guidelines for Enhancing Intrusion Detection in Data

Warehousing .. 86

3.3.1.Using Individual User Profiles ... 86

3.3.2.Analyzing the Targeted Tables and Columns, Processed

Data and Resulting Datasets .. 87

3.3.3.Intrusion Detection and Prevention a Priori and a

Posteriori .. 88

3.3.4.Using Risk Exposure for Alert Management 88

3.3.5.Fine-Tuning Intrusion Detection Features 89

3.4. Summary ... 90

Chapter 4. MOBAT: A Data Masking Solution for Data Warehouses 91

4.1 MOBAT Masking Expression .. 92

4.2 Functional Architecture .. 95

4.3 Security Issues .. 98

4.3.1 Threat Model ... 98

4.3.2 Using Column Datatype Key Lengths and Consecutive

MOD Operations ... 99

4.3.3 Data-at-rest is Always Masked ... 100

4.3.4 Attack Costs on MOBAT.. 100

4.4 Experimental Evaluation .. 102

4.4.1 Analyzing Storage Space ... 104

4.4.2.Analyzing Loading Time... 110

4.4.3.Analyzing Query Performance ... 116

4.5 Discussion on MOBAT ... 124

4.6 Summary ... 128

Chapter 5. SES-DW: A Specific Encryption Solution for Data W. 131

5.1 SES-DW Encryption Cipher ... 132

5.2 Functional Architecture .. 136

5.3 Security Issues .. 139

Table of Contents

xxiii

5.3.1 Using Variable Key Lengths and MOD-XOR Mixes 139

5.3.2 Attack Costs on SES-DW ... 140

5.3.3 SES-DW Entropy .. 143

5.4 Experimental Evaluation .. 144

5.4.1.Analyzing Storage Space .. 145

5.4.2.Analyzing Loading Time .. 147

5.4.3.Analyzing Query Performance .. 153

5.5 Discussion on SES-DW ... 162

5.6 Summary .. 165

Chapter 6. DW-DIDS: An Intrusion Detection Mechanism for Data

Warehouses .. 166

6.1. Selecting Intrusion Detection Features in Data Warehouses 167

6.2. DW-DIDS Architecture... 174

6.3. Learning Phase: Building User Behavior Profiles 177

6.4. Detection Phase: Intrusion Detection against User Commands 178

6.5. Alert and Response Management ... 180

6.5.1.Defining the Risk Exposure .. 181

6.5.2.Defining the Probability .. 184

6.5.3.Defining the Impact ... 186

6.5.4.Calibrating Feature Weight .. 187

6.6. Experimental Evaluation .. 189

6.6.1.Building User Profiles ... 192

6.6.2.Intrusion Detection Efficiency .. 194

6.6.3.Analyzing the Generated Alerts per Risk Exposure

Measure .. 197

6.6.4.Database Response Time Overhead due to Intrusion

Detection .. 200

6.7. Discussion on DW-DIDS .. 200

6.8. Summary .. 205

Chapter 7. Conclusions and Future Work ... 207

References ... 217

Appendix A. Sales Data Warehouse .. 227

A.1. Purpose ... 227

A.2. Data Schema ... 227

A.3. Table Scale Size .. 227

A.4. Query Workloads .. 228

Appendix B. Data Masking and Encryption Experimental Results 242

B.1. Data Masking Chapter Loading Time Results 243

B.2. Data Masking Chapter Query Workloads Exec. Time Results 244

Table of Contents

xxiv

B.3. Encryption Chapter Loading Time Results 245

B.4. Encryption Query Workloads Execution Time Results 246

Appendix C. Intrusion Detection Experimental Results 247

Appendix D. Intrusion Detection Benchmark ... 249

D.1. DWID-Bench: Data Warehouse Intrusion Detection Benchmark . 250

D.2. DWID-Bench Database Schema ... 250

D.3. DWID-Bench “Non-intrusion” Workload .. 252

D.4. DWID-Bench “Intrusion” Workload ... 255

D.5. DWID-Bench Rules and Execution Procedure 269

D.6. DWID-Bench Metrics .. 272

D.7. Discussion ... 274

D.8. Summary and Future Work ... 275

xxv

List of Figures

Figure 2-1. Generic Data Warehouse Functional Architecture 21

Figure 2-2. Data masking using a reference table ... 26

Figure 2-3. Data masking using a masking function .. 27

Figure 2-4. The Shannon Encryption Model (adapted from [Vaudenay, 2006]) .. 33

Figure 2-5. DES Round Function [Vaudenay, 2006] ... 36

Figure 2-6. AES Step-by-Step Algorithm [Vaudenay, 2006] 38

Figure 2-7. Transparent Encryption Setting for OPES [Agrawal et al., 2004] 41

Figure 2-8. Encryption-as-a-Service Service-Provider Model [Hacigumus et al.,

2002] .. 42

Figure 2-9. TEA Schema ... 44

Figure 2-10. The Blowfish Algorithm ... 46

Figure 2-11. The Blowfish Transformation Function (F) .. 47

Figure 2-12. Typical ID System Architecture (adapted from [Scarfone and Mell,

2007]) ... 56

Figure 2-13. The quiplet construction process [Kamra et al., 2008]) 61

Figure 3-1. Typical DW user action information flow ... 74

Figure 3-2. Step sequence of the submittance of a SQL user statement 74

Figure 3-3. Integrated Data Warehouse Security Framework................................. 76

Figure 3-4. Inform. flow concerning the a priori analysis of the user statement ... 78

Figure 3-5. Information flow concerning the execution of the user statement 80

Figure 3-6. Information flow concerning the a posteriori analysis of the user

statement .. 81

Figure 4-1. The MOBAT Data Security Architecture.. 95

Figure 4-2a. Storage Size in Oracle for the TPC-H 1GB Fact Table p/ Solution .. 105

Figure 4-2b. Storage Overhead (%) in Oracle for the TPC-H 1GB Fact Table per

Solution ... 105

List of Figures

xxvi

Figure 4-3a. Storage Size in SQL Server for the TPC-H 1GB Fact Table per

Solution ... 105

Figure 4-3b. Storage Overhead (%) in SQL Server for the TPC-H 1GB Fact Table

per Solution .. 105

Figure 4-4a. Storage Size in Oracle for the TPC-H 10GB Fact Table p/ Solution 107

Figure 4-4b. Storage Overhead (%) in Oracle for the TPC-H 10GB Fact Table per

Solution ... 107

Figure 4-5a. Storage Size in SQL Server for the TPC-H 10GB Fact Table per

Solution ... 107

Figure 4-5b. Storage Overhead (%) in SQL Server for the TPC-H 10GB Fact Table

per Solution .. 107

Figure 4-6a. Storage Size in Oracle for the Sales DW Fact Table per Solution 108

Figure 4-6b. Storage Overhead (%) in Oracle for the Sales DW Fact Table per

Solution ... 108

Figure 4-7a. Storage Size in SQL Server for Sales DW Fact Table p/ Solution 108

Figure 4-7b. Storage Overhead (%) in SQL Server for the Sales DW Fact Table per

Solution ... 108

Figure 4-8a. Loading Time in Oracle for TPC-H 1GB Fact Table p/ Solution...... 111

Figure 4-8b. Loading Time Overhead (%) in Oracle for the TPC-H 1GB Fact Table

per Solution .. 111

Figure 4-9a. Loading Time in SQL Server for the TPC-H 1GB Fact Table per

Solution ... 111

Figure 4-9b. Loading Time Overhead (%) in SQL Server for the TPC-H 1GB Fact

Table per Solution .. 111

Figure 4-10a. Loading Time in Oracle for the TPC-H 10GB Fact Table per

Solution ... 112

Figure 4-10b. Loading Time Overhead (%) in Oracle for the TPC-H 10GB Fact

Table per Solution .. 112

Figure 4-11a. Loading Time in SQL Server for the TPC-H 10GB Fact Table per

Solution ... 113

Figure 4-11b. Loading Time Overhead (%) in SQL Server for the TPC-H 10GB

Fact Table per Solution.. 113

Figure 4-12a. Loading Time in Oracle for the Sales DW Fact Table p/ Solution . 114

List of Figures

xxvii

Figure 4-12b. Loading Time Overhead (%) in Oracle for the Sales DW Fact Table

per Solution .. 114

Figure 4-13a. Loading Time in SQL Server for the Sales DW Fact Table per

Solution ... 114

Figure 4-13b. Loading Time Overhead (%) in SQL Server for the Sales DW Fact

Table per Solution ... 114

Figure 4-14a. Query Workload Execution Time per Solution in Oracle for TPC-H

1GB .. 118

Figure 4-14b. Query Workload Execution Time Overhead (%) per Solution in

Oracle for TPC-H 1GB .. 118

Figure 4-15a. Query Workload Execution Time per Solution in Oracle for TPC-H

1GB .. 118

Figure 4-15b. Query Workload Execution Time Overhead (%) per Solution in

SQLServer for TPC-H 1GB ... 118

Figure 4-16a. Query Workload Execution Time per Solution in Oracle for TPC-H

10GB .. 119

Figure 4-16b. Query Workload Execution Time Overhead (%) per Solution in

Oracle for TPC-H 10GB .. 119

Figure 4-17a. Query Workload Execution Time per Solution in SQL Server for

TPC-H 10GB ... 119

Figure 4-17b. Query Workload Exec. Time Overhead (%) per Solution in

SQLServer for TPC-H 10GB ... 119

Figure 4-18a. Query Workload Execution Time per Solution in Oracle for the

Sales DW ... 121

Figure 4-18b. Query Workload Execution Time Overhead (%) per Solution in

Oracle for the Sales DW .. 121

Figure 4-19a. Query Workload Execution Time per Solution in SQL Server for the

Sales DW ... 121

Figure 4-19b. Query Workload Exec. Time Overhead (%) per Solution in

SQLServer for the Sales DW .. 121

Figure 4-20. TPC-H 10GB Individual Query Execution Time Overhead per Query

per Solution in Oracle 11g .. 124

Figure 5-1. The SES-DW Data cipher for encryption .. 133

Figure 5-2. The SES-DW Data cipher for decryption ... 135

List of Figures

xxviii

Figure 5-3. The SES-DW Data Security Functional Architecture 136

Figure 5-4a. Loading Time in Oracle for the TPC-H 1GB Fact Table per

Encryption Solution ... 148

Figure 5-4b. Loading Time Overhead (%) in Oracle for the TPC-H 1GB Fact Table

per Encryption Solution .. 148

Figure 5-5a. Loading Time in SQL Server for the TPC-H 1GB Fact Table per

Encryption Solution ... 148

Figure 5-5b. Loading Time Overhead (%) in SQL Server for the TPC-H 1GB Fact

Table per Encryption Solution ... 148

Figure 5-6a. Loading Time in Oracle for the TPC-H 10GB Fact Table per

Encryption Solution ... 149

Figure 5-6b. Loading Time Overhead (%) in Oracle for the TPC-H 10GB Fact

Table per Encryption Solution ... 149

Figure 5-7a. Loading Time in SQL Server for the TPC-H 10GB Fact Table per

Encryption Solution ... 150

Figure 5-7b. Loading Time Overhead (%) in SQL Server for the TPC-H 10GB Fact

Table per Encrypt. Solution .. 150

Figure 5-8a. Loading Time in Oracle for the Sales DW Fact Table per Encryption

Solution ... 151

Figure 5-8b. Loading Time Overhead (%) in Oracle for the Sales DW Fact Table

per Encrypt. Solution .. 151

Figure 5-9a. Loading Time in SQL Server for the Sales DW Fact Table per

Encryption Solution ... 151

Figure 5-9b. Loading Time Overhead (%) in SQL Server for the Sales DW Fact

Table per Encryption Solution ... 151

Figure 5-10a. Query Workload Execution Time in Oracle for the TPC-H 1GB per

Encryption Solution ... 154

Figure 5-10b. Query Workload Exec. Time Overhead (%) in Oracle for the TPC-H

1GB per Encryption Solution ... 154

Figure 5-11a. Query Workload Execution Time in SQL Server for the TPC-H 1GB

per Encryption Solution .. 155

Figure 5-11b. Query Workload Exec. Time Overhead (%) in SQL Server for the

TPC-H 1GB p/ Encryption Solution .. 155

List of Figures

xxix

Figure 5-12. Query Workload CPU Time Overhead (%) for the TPC-H 1GB per

Encryption Solution in each DBMS ... 155

Figure 5-13a. Query Workload Execution Time in Oracle for the TPC-H 1GB per

Encryption Solution .. 156

Figure 5-13b. Query Workload Exec. Time Overhead (%) in Oracle for the TPC-H

1GB per Encryption Solution ... 156

Figure 5-14a. Query Workload Execution Time in SQL Server for the TPC-H

10GB per Encryption Solution ... 157

Figure 5-14b. Query Workload Exec. Time Overhead (%) in SQL Server for the

TPC-H 10GB p/ Encryption Solution .. 157

Figure 5-15. Query Workload CPU Time Overhead (%) for the TPC-H 10GB per

Encryption Solution in each DBMS ... 157

Figure 5-16a. Query Workload Execution Time in Oracle for the Sales DW per

Encryption Solution .. 158

Figure 5-16b. Query Workload Exec. Time Overhead (%) in Oracle for the Sales

DW per Encryption Solution ... 158

Figure 5-17a. Query Workload Execution Time in SQL Server for the Sales DW

per Encryption Solution ... 159

Figure 5-17b. Query Workload Exec. Time Overhead (%) in SQL Server for Sales

DW p/ Encryption Solution .. 159

Figure 5-18. Query Workload CPU Time Overhead (%) for the Sales DW 2GB per

Encryption Solution in each DBMS ... 159

Figure 5-19. TPC-H 10GB Individual Query Execution Time Overhead per

Encryption Algorithm in Oracle 11g... 162

Figure 6-1. DW-DIDS Architecture ... 175

Figure 6-2. DW-DIDS Learning Stage Workflow per SQL User Command 178

Figure 6-3. DW-DIDS Intrusion Test/Detection Stage Workflow for each SQL

User Command .. 180

Figure 6-4. The risk exposure matrix .. 182

Figure 6-5a. DW-DIDS TP and FP rates ... 195

Figure 6-5b. RBAC-DIDS TP and FP rates ... 195

Figure 6-5c. DC-DIDS TP and FP rates ... 195

Figure 6-6a. DW-DIDS Accuracy (ACC) and Precision (PREC) 195

List of Figures

xxx

Figure 6-6b. RBAC-DIDS Accuracy (ACC) and Precision (PREC) 195

Figure 6-6c. DC-DIDS Accuracy (ACC) and Precision (PREC) 195

Figure 6-7a. F-Score for the 9-1 Scenario .. 196

Figure 6-7b. F-Score for the 8-2 Scenario .. 196

Figure 6-7c. F-Score for the 5-5 Scenario... 196

Figure 6-8. Percentage of Alerts per Risk Exposure Method in each Setup 198

Figure 6-9. DW-DIDS TPR and FPR considering only High, Very High and

Critical Risk Exposure Alerts ... 199

Figure 6-10. DW-DIDS Accuracy and Precision considering only High, Very

High and Critical Risk Exposure Alerts.. 199

Figure 6-11. DW-DIDS F-Score considering only High, Very High and Critical

Risk Exposure Alerts ... 199

Figure 6-12. Database Response Time Overhead for each DIDS per Setup 200

Figure 6-13. Risk Exposure Approach versus Alert Correlation for Alert

Management ... 202

Figure D-1. DWID-Bench experimental setup... 250

Figure D-2. TPC-DS store sales E-R diagram [TPC-DS] ... 252

Figure D-3. DWID-Bench benchmark methodology .. 271

Figure D-4. Benchmark Testing Phase execution flow for n “non-intrusion” DW

End Users and ni “intrusion” DW End Users .. 272

List of Figures

xxxi

xxxiii

List of Tables

Table 2-1. Main Differences between Operational Systems and Data W. 25

Table 2-2. Database intrusion detection techniques and their coverage 67

Table 4-1. Example of original dataset and resulting MOBAT masked dataset ... 94

Table 4-2. Experimental Encryption/Masking Scenarios .. 104

Table 4-3. TPC-H 1GB Lineitem Fact Table Storage Size Overhead 109

Table 4-4. TPC-H 10GB Lineitem Fact Table Storage Size Overhead 109

Table 4-5. Sales DW 2GB Fact Table Storage Size Overhead 110

Table 4-6. TPC-H 1GB Lineitem Fact Table Loading Time Overhead 115

Table 4-7. TPC-H 10GB Lineitem Fact Table Loading Time Overhead 116

Table 4-8. Sales DW 2GB Fact Table Loading Time Overhead 116

Table 4-9. TPC-H 1GB Query Workload Execution Time Overhead 122

Table 4-10. TPC-H 10GB Query Workload Execution Time Overhead 122

Table 4-11. Sales DW 2GB Query Workload Execution Time Overhead 123

Table 5-1. Estimated SES-DW entropy values ... 144

Table 5-2. TPC-H 1GB Lineitem Fact Table Loading Time Overhead 152

Table 5-3. TPC-H 10GB Lineitem Fact Table Loading Time Overhead 153

Table 5-4. Sales DW 2GB Fact Table Loading Time Overhead 153

Table 5-5. TPC-H 1GB Query Workload Execution Time Overhead 160

Table 5-6. TPC-H 10GB Query Workload Execution Time Overhead 160

Table 5-7. Sales DW 2GB Query Workload Execution Time Overhead 161

Table 6-1. SQL Intrusion Action Type Classification .. 169

Table 6-2. SQL Intrusion Detection Features ... 172

Table 6-3. SQL Intrusion Detection Features Coverage per Intrusion Action

Class ... 174

Table 6-4. “Non-Intrusion” True User Workloads (TUW) 190

List of Tables

xxxiv

Table 6-5. Required Storage Space for building User Profiles 193

Table 6-6. Workload Quantification for each User Scenario 194

Table 6-7a. Alerts per Risk Exposure Measure w/ Profiles built from 5 TUW

Executions .. 197

Table 6-7b. Alerts per Risk Exposure Measure w/ Profiles built from 25 TUW

Executions .. 197

Table 6-7c. Alerts per Risk Exposure Measure w/ Profiles built from 50 TUW

Executions .. 197

Table 6-7d. Alerts per Risk Exposure Measure w/ Profiles built from 100 TUW

Executions .. 197

Table A-1. Scale-size features of the Sales Data Warehouse 227

Table B-1. Data Masking TPC-H 1GB Loading Time ... 243

Table B-2. Data Masking TPC-H 10 GB Loading Time .. 243

Table B-3. Data Masking Sales DW Loading Time ... 243

Table B-4. Data Masking TPC-H 1GB Query Workload Execution Time 244

Table B-5. Data Masking TPC-H 10GB Query Workload Execution Time 244

Table B-6. Data Masking Sales DW Query Workload Execution Time 244

Table B-7. Encryption TPC-H 1GB Loading Time .. 245

Table B-8. Encryption TPC-H 10 GB Loading Time ... 245

Table B-9. Encryption Sales DW Loading Time .. 245

Table B-10. Encryption TPC-H 1GB Query Workload Execution Time 246

Table B-11. Encryption TPC-H 10GB Query Workload Execution Time 246

Table B-12. Encryption Sales DW Query Workload Execution Time 246

Table C-1. DW-DIDS ID Results for Profiles built from 5 “True” User

Workloads ... 247

Table C-2. DW-DIDS ID Results for Profiles built from 25 “True” User

Workloads ... 247

Table C-3. DW-DIDS ID Results for Profiles built from 50 “True” User

Workloads ... 248

List of Tables

xxxv

Table C-4. DW-DIDS ID Results for Profiles built from 100 “True” User

Workloads .. 248

Table D-1. “Non-Intrusion” DW End-User Workload – Query Ordering 254

Table D-2. “Intrusion” Workload ... 267

Table D-3. “Intrusion” Workload – Query Ordering .. 268

Table D-4. DWID-Bench DIDS benchmarking examples 274

List of Tables

xxxvi

.

1

Chapter 1

Introduction

Data is a major asset for any enterprise, not only for knowing the past,

but also to support today’s business and to predict future trends [Baer,

2004; Kobielus, 2009]. Data Warehouses (DWs) gather all the relevant

historical and current business data, reflecting the business measures and

its results, as well as how and when it occurs. Given its nature, this data

translates into business knowledge, providing invaluable information to

generate added business value and support decisions.

In fact, DWs are today’s backbone for enterprise business intelligence,

playing a main role in the enterprise’s outcome [Kobielus, 2009]. Given

these facts, we may state that DWs are the core of sensitive business data

and store the secrets of the business itself. This makes them a major target

for both inside and outside attackers. Consequently, securing DWs

against data damage and information leakage is a critical goal.

The awareness of the importance of data security has been growing in the

recent years. In fact, a survey on enterprise data security conducted by

the Independent Oracle Users Group (IOUG) in 2012 [McKendrick, 2012],

shows that almost 50% of the inquired companies increased their

investment in IT security, while 9% of the inquired companies stated that

they had sustained security breaches in company data. The same report

also shows that almost 40% of the companies are expecting a security

breach in 2013.

Although several other studies have also demonstrated that efficiently

securing sensitive data has become an imperative concern in many

enterprises [McKendrick, 2012; Yuhanna, 2009], database attacks are

increasing every year in number and complexity, and the caused damage

is frequently only discovered after a significant loss of business or

financial value [Yuhanna, 2009]. As organizations scale up, the amount of

data moving across their systems and business units, and the risk of data

Chapter 1

2

breaches and abuse also grows [McKendrick, 2012]. This introduces the

need for integrating effective security measures into databases, given that

they are the central component of enterprise information systems.

Regardless of their security purpose, the techniques that are selected for

implementing data security in DWs need to consider that data

warehousing environments have unique types of user activities, as well

as database features1 and performance requirements, which do not exist

in any other type of database system. Therefore, the implementation and

usage of the chosen techniques must not jeopardize the feasibility,

efficiency and effectiveness of those features and requirements.

In this thesis, we focus on enhancing data security in databases,

specifically in the context of data warehousing environments, namely in

what concerns data masking, encryption and intrusion detection. The

following sections characterize data security in databases, summarily

describing the most commonly used techniques, and point out the main

issues presented by these techniques from a data warehousing

perspective. The chapter continues by presenting the thesis statement, its

main achievements and contributions, as well as the structure of the

document, which concludes this chapter.

1.1 Data Security in Databases

In this thesis, we adopt the security concepts and definitions described in

[Avizienis et al., 2004]. Thus, when referring to data security in databases,

it is defined as the composite set of the following attributes:

 Integrity: absence of improper modification or deletion of data that

may compromise its correctness, completeness, consistency or

authenticity;

 Confidentiality: absence of improper disclosure of data, i.e., users

do not access data they are not supposed to access;

 Availability: readiness of service, i.e., the required database service

and data are always available whenever requested.

1 In this thesis, we consider a feature as a variable for assessing the characteristics

of a given subject. For example, a database feature can be the storage size of a

database or its throughput, among other variables.

Introduction

3

To comply with these attributes, many techniques have been proposed in

the past. These can be divided in two classes: preventive and reactive

techniques. Preventive data security techniques effectively protect data in

advance of security problems or attacks, and independently from the

occurrence of those problems or attacks (e.g. data masking, encryption,

and data access policies, among others), while reactive security

techniques are used to effectively respond to the occurrence of a security

problem or attack, either while it occurs or after it has taken place (e.g.

intrusion detection and prevention systems). The following subsections

summarily describe the most common types of techniques for each class.

1.1.1. Preventive Data Security Techniques

Besides basic data integrity rules such as the enforcement of referential

integrity and low-level hardware and/or software data storage integrity

checks against data corruption such as data block checksum functions

and error-correcting codes (e.g. CRC), used in all databases, the most

commonly used preventive data security techniques for protecting

sensitive data are probably those that include data masking, encryption

and the implementation of data access policies [Huey, 2008].

As one of the earliest methods for protecting data, DataBase Management

Systems (DBMS) traditionally use some form of access control to enforce

policies regarding the data they manage. Using data access policies allows

defining the data that each user is authorized to access and the actions

that s/he is authorized to execute. This is accomplished through user

authentication, which is the process of verifying the user’s identity in the

system and applying the set of policies defined for the user or the role to

which s/he belongs.

Data masking, as the term itself indicates, is the process of obscuring data,

either by replacing true values with false values or by hiding a part of its

values, in specific data elements. In databases, the main goal of data

masking is to replace stored true data with realistic but unreal data, so the

true data is unavailable to unauthorized users. An extensive survey on

data masking techniques is given in [Ravikumar et al., 2011]. To assure a

significant level of security, the false values should not allow attackers to

easily discover ways of retrieving the true values, either by comparison or

inference techniques. Organizations have strived to solve privacy issues

Chapter 1

4

with hand-crafted solutions or repurposed data manipulation tools

within the enterprise to solve the problem of sharing sensitive

information. The most common solutions are probably to use scripts with

triggers in order to mask and unmask each value, use built-in DBMS data

masking packages such as the Oracle Data Masking (ODM) pack [Natan,

2005; Oracle, 2010c], or to embed the masking/unmasking logic within

user applications themselves.

Data encryption techniques are an evolutionary and more complex form of

data masking which intends to strengthen the security level, obeying to a

series of universal principles defined by the encryption research

community. It is defined that an encryption algorithm is a procedure or

function that handles a given input, performs a series of rounds

composed by mixing and transformation actions with that input or part(s)

of it, depending on a given encryption key or set of keys, and generates a

given output from those mixes and transformations [Vaudenay, 2006].

The algorithms of these procedures or functions are either developed

internally within the enterprise to be used in a private manner, or

publically disclosed for discussing its merits and proving its secureness

by the research community and entities such as the National Institution of

Standards and Technology (NIST), so it can be accepted for usage. In the

recent past, encryption packages have been progressively implemented in

many commercial and open source DBMS such as Oracle, Microsoft SQL

Server and MySQL.

1.1.2. Reactive Data Security Techniques

Currently, all main DBMS have audit control, comply with ACID

(Atomicity, Consistency, Isolation, Durability) requirements, and supply

extensive authentication, authorization, and access control (AAA)

features for assuring that the right users access and/or modify only the

data that they are supposed to access and/or modify. All main DBMS also

have available data masking and encryption packages that can be used

transparently with databases and user applications in a straightforward

manner. These preventive techniques work effectively in guaranteeing

that only authorized users may access and manage the data that they are

supposed to access and manage. However, they are unable to distinguish

if the user that has logged in is truly who s/he is supposed to be and/or if

that user has or not malicious intentions; if a masqueraded user or

Introduction

5

malicious insider that has gained clearance by hacking or taking

advantage of valid login credentials, those preventive mechanisms are

unable to protect data.

Given the increase of sophisticated attacks (e.g. Distributed Denial of

Service attacks) and rising internal theft, traditional AAA features along

with data masking and/or encryption are no longer enough to protect

data [McKendrick, 2012; Yuhanna, 2009]. Additionally, attackers that gain

direct access to databases mostly represent authorized users logging with

permission to access data, meaning that they are able to bypass

traditional intrusion detection systems (IDS), which typically work at the

network and operating systems (OS) levels. This has lead to the

development of reactive data security techniques, which monitor and

analyze user actions in the database and try to determine if they are

harmful or not in order to adequately deal with them, protecting data

from attackers that bypass preventive security techniques.

Gartner Research has identified Database Activity Monitoring (DAM) as

one of the most important strategies for decreasing information leakage

in organizations [Mogull, 2006; Nicolett and Wheatman, 2007].

Considering an intrusion as an unauthorized attempt to violate the

integrity, confidentiality or availability of a system, the detection of

intrusion actions against data and inherent database services is the main

goal of Database Intrusion Detection Systems (DIDS) [Lappas and

Pelechrinis, 2007]. DIDS are mainly host-based intrusion detection

systems that operate at the database level, i.e., they inspect user

commands and/or data workloads just before, during or after that data

and/or workloads are processed by the database server. In DIDS there is

typically a learning phase (i.e., previous to intrusion detection), in which

database and/or user activity logs assumed as having “normal” or

intrusion-free activity are used in order to build the “non-intrusive”

normal user behavior profiles. To perform intrusion detection, there are

mainly two types of approaches: misuse detection, looking for well-

known predefined attack patterns; and anomaly detection, looking for

deviations from the typical user behavior [Newman, 2011].

Chapter 1

6

1.2 Issues concerning Data Security in Data Warehouses

In spite of the diversity of available data security techniques, their

feasibility, efficiency and effectiveness in data warehousing environments

has not been undoubtedly proven. On the contrary, in this thesis we

demonstrate that several of the currently available data security

techniques are in fact unfeasible or, at least, introduce lacks of efficiency

and effectiveness or performance overheads with orders of magnitude

that jeopardize their feasibility. In the next sections, we point out the

issues concerning the data security techniques focused in this thesis, from

a data warehousing perspective.

This thesis focuses on enhancing data masking, encryption and DIDS

specifically designed for usage in DWs. Therefore, in the following

subsections we point out the main issues of each of these techniques from

a data warehousing perspective, which make the ground for our work.

1.2.1. Data Masking

Data masking routines are generally simpler in complexity and faster

than encryption routines. However, they provide lower security strength

[Ravikumar et al., 2011]. As we previously mentioned, encryption

algorithms intended to be accepted and widely used by the database

community are typically published with open access in order to enable

discussing its merits and proving its secureness by both security and

database research communities and entities such as the National Institute

of Standards and Technology (NIST). This means that before they are put

to use, most encryption algorithms go through very thorough and

exhaustive analysis and testing processes. If they have been approved,

those processes confer a sense of secureness to whoever intends to use

them.

For example, the Advanced Encryption Standard (AES) [AES, 2001]

became an encryption standard only after a five year long

standardization process that included extensive benchmarking on a

variety of platforms. Since the appearance of the encryption field within

data security, both database developers and users feel much more

confident and relaxed with using encryption, rather than simple masking,

to protect their sensitive data. This has introduced a confidence issue

Introduction

7

concerning the use of data masking in highly sensitive databases such as

those in DWs.

Data masking routines provided by most commercial tools such as Oracle

Data Masking (ODM) typically change data in an irreversible manner, i.e.,

after masking data it is not possible to subsequently retrieve the original

true values. Oracle states that the ODM should be used as a fast and easy

way to generate production databases for supporting outsourcing and

software development. The ODM can also be used to mask Microsoft SQL

Server and DB2 databases for the same purpose. ODM requires new data

to be loaded into the database first, and only applies the masking

procedures afterwards. It is not possible to load previously masked data;

masking in the ODM is an a posteriori process. Most commercial solutions

work in a similar fashion as the ODM [Gartner, 2009; Huey, 2008].

As not being able to retrieve the original values makes data masking

solutions useless in live end user databases [Bertino and Sandhu, 2005a;

Gartner, 2009; Huey, 2008; Nadeem and Javed, 2005; Natan, 2005;

Ravikumar et al., 2011; Yuhanna, 2009], the lack of confidence in their

security strength in some cases and their irreversibility in other cases has

made masking techniques the main choice for protecting published data

or production data, instead of protecting data in live sensitive end user

databases such as DWs.

1.2.2. Data Encryption

Published research and best practice guides state that encryption is the

best method to protect sensitive data at the database level while

maintaining high database performance [Agrawal et al., 2004; Ge and

Zdonik, 2007; Hacigumus et al., 2004; Huey, 2008; Natan, 2005; Oracle,

2005; Oracle, 2010a; Oracle, 2010c; Vimercati et al., 2007]. However,

despite their security strength, encryption techniques introduce

performance key costs from a data warehousing point of view:

 Large processing time/resources for encrypting sensitive data, since

DWs require accessing and processing huge amounts of data, this

creates a high demand on computational resources that

significantly rises processing time and the required storage space

in their databases;

Chapter 1

8

 Extra storage space of encrypted data, since DWs usually have many

millions or billions of rows, even a small modification of any

datatype size to hold encrypted output introduces large storage

space overhead;

 Overhead of query response time and allocated resources for decrypting

data to process those queries. Given the huge amount of data

typically accessed in order to process DW queries, this is probably

the most significant drawback concerning the use of encryption in

DWs [Agrawal et al., 2004].

As the number and complexity of “data-mix” encryption rounds increase,

their security strength often improves while performance degrades, and

vice-versa. Balancing performance with security in DWs is a complex

issue, which depends on the requirements and context of each particular

environment. Most encryption algorithms are not suitable for DWs

because they have been designed as a “one fits all” security solution for

general-purpose data. Thus, they are designed for encrypting blocks of

text, i.e., sets of character-values by default. This has led DBMS to

implement encryption routines that just output textual or binary

attributes.

Since in most enterprises the business facts are essentially numerical

values, it is fair to state that most DW columns store numerical values

[Kimball and Ross, 2013]. Thus, using encryption means that they need to

be converted to a textual or binary format. When those values are

decrypted for query processing, they need to be converted back into

numerical format in order to process sums, averages, etc. Since most

decision support queries process mathematical functions and calculus

against numerical attributes, conversion operations add computational

overheads with considerable performance impact and represent a

potentially critical drawback.

Although many encryption algorithms such as [Agrawal et al., 2004; Ge

and Zdonik, 2007; Hacigumus et al., 2004; Radha and Kumar, 2005;

Vimercati et al., 2007] and built-in DBMS packages such as [Oracle, 2010a]

for specific use within databases have been proposed in the past, the

introduced performance costs in DWs are very significant and may

jeopardize their feasibility or make them unacceptable to users, as we

demonstrate in this thesis.

Introduction

9

1.2.3. Database Intrusion Detection Systems

Most Database Intrusion Detection Systems (DIDS) rely on command-

syntax analysis to compute data access patterns and dependencies for

building user profiles [Mathew et al., 2010]. However, as we have

previously mentioned, the considerable ad hoc nature of Data Warehouse

(DW) decision support workloads makes it extremely difficult to

distinguish between normal and abnormal user behavior. Although

several DIDS proposed in the recent past are available to be used in DWs,

they suffer from a series of drawbacks in these environments:

 Most are poor at detecting novel attacks in dealing with ad hoc

workloads such as those in DWs and typically spawn too low true

intrusion detection rates (allowing many intrusions to pass

undetected) or too high false alarm rates [Pietraszek, 2004;

Pietraszek and Tanner, 2005; Srivastava et al., 2006; Treinen and

Thurimella, 2006];

 Thresholds2 are typically used to assess the probability of a given

action being an intrusion. Given the sensitivity of DW data, using

low thresholds is preferable (which consequently generates more

alerts), because the potential cost of non-detection is often too high

or unacceptable. However, in this case the number of false alarms

is often so large that it frequently leads to wasting immense time

and resources, or they are simply just too much to be checked

[Pietraszek, 2004; Srivastava et al., 2006];

 Although alert correlation techniques have been proposed to deal

with large amounts of generated alerts and decrease false positive

rates, they are not the best choice for alert management in DW

environments. In fact, as these techniques filter sets of alerts in

order to decide if each alert is relevant or not, they may allow true

intrusions that are capable of producing a great amount of

damage to pass undetected, even though they were initially

alerted;

2 When mentioned in intrusion detection processes, the term threshold is typically

a value that sets the limit between normal and abnormal behaviour, given a

range domain of possible values that are outputted by those processes.

Chapter 1

10

 Most DIDS do not assess the damage that each potential intrusion

is capable of causing to the data and/or enterprise. Given the

business value of DWs, this is a critical issue because it would

allow to define which alerts should be checked first, since

different data also has different importance to the enterprise;

 Many DIDS execute the intrusion detection (ID) process a

posteriori, i.e., after the intrusion action has finished its execution.

This disables intrusion response and prevention while the

intrusion occurs. Given their value, avoiding corruption or

exposure of data in DWs as early as possible is a critical issue,

making real-time intrusion detection and response capabilities is

an essential requirement.

The overstated number of alerts and false alarms, together with the

potentially low reliability on correlation techniques and the hypothesis

that many intrusions may only be detected and dealt with a posteriori

jeopardizes the credibility, efficiency and effectiveness of existing DIDS

[Bockermann et al., 2009; Lee, 2002; Pietraszek, 2004; Pietraszek and

Tanner, 2005; Treinen and Thurimella, 2006].

Another problem that makes it difficult to develop adequate DIDS is the

absence of intrusion detection benchmarks at the database level.

Benchmarks are an essential instrument used in the development and

implementation of many systems. They are widely used because they

provide a manner to test those systems and supply solution providers

and clients with measures that allow comparing between different

solutions, while providing feedback to developers that enables them to

improve those solutions. In the past, the KDD99 benchmark [DARPA] has

been widely used for testing intrusion detection solutions. However, this

benchmark focuses on intrusion actions at the network and operating

system (OS) level. In what concerns databases, a need arises for dealing

with intruders that are able to bypass intrusion detection mechanisms

working at the network and OS level. In spite of the criticality of

protecting DW data against intrusions and the importance of having

available benchmarks for testing and improving DIDS, to the best of our

Introduction

11

knowledge there is no benchmark focusing on the specific features3 of

intrusion detection in DW environments at the data level.

1.2.4. Data Security Research Challenges in Data Warehousing

The two main characteristics that differentiate one data confidentiality

solution from the other is its ability to secure the protected data against

attacks and its speed and efficiency in doing this. Given the specificities of

data warehousing environments, we believe there are specific security

and performance issues and tradeoffs to evaluate and discuss, regarding

the use of data masking and encryption solutions in DWs, which can lead

to the development of solutions with better tradeoffs. We also believe that

higher efficiency and effectiveness can be achieved in DIDS for DWs if

they are designed and/or improved taking in consideration those

specificities of data warehousing environments. These are our

motivations, which establish the foundations for the research work

presented in this thesis.

1.3 Thesis Statement and Main Contributions

This thesis makes several contributions for enhancing data security in

DWs at the database server level. We propose specific solutions for

implementing data confidentiality, namely novel data masking and

encryption techniques, as well as a Database Intrusion Detection System,

which consider the unique specificities of data warehousing

environments. A framework for integrating all the proposed solutions

together is also proposed, supporting the implementation of a unique

system that allows increasing the DW’s overall security strength.

In detail, the main contributions of this thesis are:

 A body of knowledge on performance of encryption solutions in

large analytical databases. While encryption solutions are

typically characterized and analyzed from a security perspective,

we present research findings concerning their performance. It is

3 The explicit mention to intrusion detection features refer to the variables that

are used for building user profiles and that are employed for intrusion detection

purposes. For example, the DIDS proposed in this thesis uses features such as the

elapsed time for processing each SQL user command, the number of processed

rows, the size of the resulting dataset, etc.

Chapter 1

12

not within the scope of this thesis to discuss the scientific merit or

soundness of the security strength of each technique, but rather to

evaluate their impact in database performance and applicability in

data warehousing environments. This is obtained by analyzing the

design and measured performance of several state-of-the-art and

standard encryption algorithms in DWs of various sizes.

 A body of knowledge on performance of database intrusion

detection techniques focusing on their applicability in data

warehousing environments. We present state-of-the-art intrusion

detection techniques and make a clear distinction between them

given the way that they determine which features to use and how

they manage intrusion detection. Based on this and on the

characteristics of typical data warehousing environment

workloads, we discuss the suitability or unsuitability of each

distinct type of technique for detecting intrusions in DWs. We also

point out alert management and intrusion response issues, which

can become a critical matter in intrusion damage containment.

 A novel data masking technique that introduces small database

performance overheads while providing considerable security

strength. The technique is used transparently by means of a

middleware security broker and sustains the reversible features to

retrieve the true original values from the masked values, which

makes it useful in live databases such as DWs. It also promotes

user action auditing and accountability. Although its security

strength is not as high as that of encryption techniques, we believe

that this data masking technique is secure enough to be used in

scenarios where the performance overheads introduced by

encryption are unacceptable, presenting itself as a feasible solution

by balancing security and performance tradeoffs.

 A novel data encryption algorithm for numerical values that

provides considerable security strength while introducing small

database performance overhead. Similarly to the data masking

technique, our encryption solution is used transparently by means

of a middleware security broker and promotes user action

auditing and accountability. The proposed encryption technique

avoids storage space and computational overhead by preserving

Introduction

13

each encrypted column’s original datatype. Each encrypted

column may have its own security strength by defining the

number of encryption rounds to execute, which also defines how

many encryption keys are used, since each round uses a distinct

key (thus, the true key length is the number of rounds multiplied

by the length of each round’s encryption key). This enables

columns that store less sensitive information to be protected with

smaller-sized keys and rounds and thus, process faster than more

sensitive columns. Both data masking and encryption techniques

maintain the stored data masked or encrypted at all times,

requiring only rewriting SQL user commands to function properly

and minimal changes to the original data schemas. They use only

standard SQL operations and operators, which makes them

directly implementable and executable in any DBMS and database

setup in a low-cost and straightforward manner. Contrarily to

solutions that pre-fetch data to perform masking and unmasking

or encryption and decryption, by simply rewriting SQL

commands we avoid I/O and network bandwidth congestion due

to data roundtrips between the database and the

encryption/decryption or masking/unmasking mechanisms, and

consequent response time overhead.

 A specifically designed DIDS for DWs that works as an

extension of any DBMS, adding real-time intrusion detection and

response capabilities for each user action executed. The solution

acts transparently at the application layer between user

applications and the database without affecting their joint

functionality. While other DIDS just analyze the user command or

its resulting dataset, the proposed DIDS analyzes four distinct

aspects of the user’s action: SQL command, plus the accessed and

processed data, plus the resulting dataset, and enables stopping

the user actions, both before and after they are executed by the

DBMS, with the ability to avoid the disclosure of their results to

the user or application that requested the execution. A declarative

SQL-like form for defining intrusion detection and response rules

at a fine-grain level is also proposed. These rules allow defining a

large spectrum of possibilities for the detection of a wide range of

intrusions as well as adequately dealing with them.

Chapter 1

14

 A risk exposure approach to be used in the DIDS for ranking

alerts, improving the efficiency of damage or leakage containment

by pointing out the intrusions that might cause more damage. In

cases where the number of generated alerts to be checked is high,

the approach enables handling intrusions that indicate a

potentially higher risk to the enterprise more rapidly, efficiently

and effectively than using correlation techniques.

 A security framework that integrates the proposed data masking

and encryption solutions with the DIDS into a single conformed

workflow between users and the database, which provides a mean

for increasing the overall security strength of any DW by enabling

each solution to optionally function individually or all together.

The framework also defines the guidelines for each type of

solution, given the characteristics of DWs and each solution’s

individual purpose.

 Although not included as fully developed and tested research and

therefore, not included as a regular chapter, in Appendix D we

include an initial proposal for a DW Intrusion Detection

Benchmark to test DIDS in DWs at the SQL level, given a

controlled DW environment with mixed intrusion and non-

intrusion SQL workloads. The main contribution of the

benchmark is to provide a feasible and objective mean for

evaluating the efficiency of the intrusion detection processes and

impact on database performance at the SQL level for DW DIDS.

The proposed measures intend to produce insight for aiding

developers in the improvement of their solutions and allow

providers and users to compare between different solutions.

1.4 Thesis Structure

This chapter discussed the importance of DWs and securing them. It

presented key definitions and issues concerning data security in data

warehousing environments, creating the ground for the research

presented in this thesis. The chapter also presented the objectives and

main contributions of the thesis.

Introduction

15

Chapter 2 discusses background and related work in the domain

background. We characterize data warehousing environments and

describe the current state-of-the-art solutions and techniques in data

masking, encryption and database intrusion detection. We conclude the

chapter by pointing out the issues in each of these subjects from a data

warehousing perspective [Santos et al., 2011a; Santos et al., 2012a, Santos

et al., 2014].

Chapter 3 presents the integrated security framework, describing each of

its components and how they work together to accomplish their security

goals. The framework is defined in a generic way to demonstrate how

each individual solution can come together to form a broad scoped

overall security approach. The set of principles that drived the

development of each data masking, encryption and intrusion detection

solution proposed in this thesis is also included.

Chapter 4 proposes a novel reversible data masking technique for

numerical values that provides significant security strength and complies

with the principles defined in the security framework [Santos et al., 2011b;

Santos et al., 2011c]. Besides demonstrating the proof of the masking

solution’s security strength, this chapter also includes an experimental

evaluation to demonstrate that the proposed approach is computationally

faster than existing standard and state-of-the-art encryption solutions.

Chapter 5 proposes a novel encryption algorithm for numerical values

[Santos et al., 2013]. This technique also complies with the set of principles

defined by the security framework. The chapter includes the proof of the

proposed solution’s security strength along with an experimental

evaluation that also show that it is computationally faster than standard

and state-of-the-art encryption solutions.

Chapter 6 presents our approach to develop a DIDS focusing on the

specificities of data warehousing environments, which is based on the

detection of anomalous user activities by joining the syntax-based

analysis of the user commands with features of the processed data and

the command execution’s resulting datasets [Santos et al., 2012b; Santos et

al., 2012c]. The DIDS works transparently as an extension of the database

server, placed between the user interface(s) and the DBMS, and uses a

risk exposure alert management approach that enables it to be more

efficient than commonly used alert correlation techniques. An

Chapter 1

16

experimental evaluation is included to demonstrate its efficiency against

other state-of-the-art intrusion detection solutions proposed in former

research.

The last chapter presents the conclusions on this thesis and points out

future research directions derived from our work.

Appendix A describes the Sales DW purpose along with its data schema,

scale and storage sizes, as well as a list of queries that make up the

decision support workloads used in the experimental evaluations

presented in the thesis.

Appendix B shows the data masking and encryption experimental results

included in Chapters 4 and 5, with its respective statistical measures

(averages and standard deviations).

Appendix C shows the intrusion detection experimental results included

in Chapter 6, with its respective statistical measures.

Finally, Appendix D describes in detail our initial proposal for a DW

intrusion detection benchmark.

17

Chapter 2

Background and Related Work

Data Warehouses present unique characteristics that differ from other

types of database systems. In order to discuss data security from a data

warehousing perspective, summarizing those characteristics along with

those belonging to the data security solutions focused in this thesis is an

essential requirement. This chapter summarily describes the concepts

concerning DWs and presents relevant background and related work

focusing on standards and state-of-the-art solutions proposed by research

in the data security domains focused in this thesis, namely data masking,

encryption and DIDS.

The chapter is structured as follows: Section 2.1 summarizes the concepts

of data warehousing and the typical characteristics of those environments

in what concerns database features and workloads, while Sections 2.2 and

2.3 respectively describe the state-of-the-art data masking and encryption

techniques that are currently available for usage in DWs and discusses

the issues concerning their use in these analytical environments. Section

2.4 describes the main intrusion techniques and methods used in DIDS

and discusses their applicability from a data warehousing perspective.

Finally, Section 2.5 concludes the chapter.

2.1. Data Warehousing

In an enterprise, the transactional (alias operational) systems typically

consist of a set of applications and data sources that enable accomplishing

and storing business transactions, and guarantee their operationability

[Kimball and Ross, 2013]. Transactional databases are designed to

manage the data for supporting each individual business transaction

instead of cross-enterprise business analysis. Transactional systems

typically consist of many users reading and writing small amounts of

data; for example, on an ATM bank system, there are hundreds or

Chapter 2

18

thousands of users accessing their account balances at the same time, or

withdrawing/transferring a given amount of money. Another

characteristic of the ATM system is that it does not require keeping long

periods of historical data; it only needs the current balance and latest

movement records to be able to adequately support user requests and

business transactions.

In contrast, Decision Support Systems (DSS) are usually accessed by

fewer users but that query large amounts of data to obtain business

analysis information to aid decision making. Using the same bank ATM

system as an example, the difference is that the people from the bank that

need to make decisions regarding the business (i.e., business managers,

administrators, executives, etc.) want to know the average balance for the

last six months or a year for the accounts with certain geographical

region, for instance, in order to make strategic decisions like opening a

new branch office or encourage people to increase their investments by

offering better interests. To execute this kind of query, the system needs

to keep historical data of the balances plus it would read millions of

records of all clients within certain region and compute that average.

These type of analytical actions result in very demanding data access

patterns, that if running on top of a transactional database can lock large

amounts of data and consume computational resources in a way that

could compromise the transactional system’s availability, ultimately

making it incapable of supporting the business transactions. Moreover,

many transactional systems operate isolated from each other with little or

no integration, and each system typically manages its own dataset. As a

result, the same data is represented and stored in many different ways

throughout the enterprise, one for each system. Consequently, there can

be multiple distinct versions of the truth, which can be inaccurate,

outdated or simply invalid.

To relieve resource consumption, reduce the operational risk in the

transactional applications that support business, deliver a unique source

of true information and provide an optimized data structure for

analytical cross-enterprise decision support purposes, Data Warehouses

are used, clearly separating the analytical business processes from the

transactional business processes. In the next subsection, we present the

concepts and definitions concerning DWs.

Background and Related Work

19

2.1.1. The Data Warehouse: Concepts and Definitions

The origin of the Data Warehouse concept can be traced back to the

research carried out at the Massachussets Institute of Technology and at

IBM in the late 1970s, focusing on ways to define an architectural model

for the flow of data from operational systems to decision support

environments. From this research work at MIT, for the first time a

differentiation between the operational and analytical processing is made.

In 1988, Devlin and Murphy from IBM introduced the term “Business

Data Warehouse” [Devlin and Murphy, 1988] that precedes the actual

“Data Warehouse” term.

In 1992, Bill Inmon published the first edition of his book “Building the

Data Warehouse” [Inmon, 1992] where he defines the term “Data

Warehouse” and also consolidated the terms and techniques that have

been the foundation for DWs since then. In 1996, Ralph Kimball defined

the Star Schema and Multidimensional modeling techniques [Kimball,

1996], which enriched the DW definitions. The Inmon and Kimball

approaches were widely accepted by research and commercial database

communities and became the common guidelines for building DWs.

In the past, there have been many definitions on what is a Data

Warehouse. Although the Inmon and Kimball approaches differ from

each other, as well as other derived approaches, they agree on most

characteristics that define the concept of what a DW is.

A generic definition of a DW is given by [Kimball, 1996; Kimball and

Ross, 2002; Kimball and Ross, 2013]:

“A Data Warehouse consists of a considerable sized database, which

consistently aggregates all the historical data belonging to a given

specific business field or business area, in a previously well-defined

level of detail that is considered adequate and relevant for decision

support purposes by the business itself. The data in a DW can be

separated and combined by means of every possible measure in a

business”.

According to [Simitsis, 2005], the most popular definition of DW is that in

[Inmon, 1996; Inmon, 2002]:

“A Data Warehouse is a centralized repository for the entire

enterprise, containing data that is used for analyzing the business

Chapter 2

20

and supporting decision making. The Data Warehouse has four

main attributes: it is subject-oriented (meaning the data in it is

organized so that all the data elements relating to the same business

event or subject are linked together and that the DW is developed in

a way that satisfies the analytical requirements of the users that will

query it); it is non-volatile (meaning that the data loaded into the

database is never erased or over-written, i.e., once the data is

committed it remains static and read-only and is retained for future

reporting and analysis); it is integrated (meaning it joins data from

several operational data sources into a conformed format in a

consistent way); and it is time-variant (meaning that it stores the

history of the business to which it was designed for).”

Based on these definitions, in this thesis we consider a DW as a large-

sized non-volatile cross-enterprise analytical database that stores

historical, non-volatile, integrated, consolidated, updated and consistent

data, in a level of detail and format considered adequate for providing

decision support information in a given business area or field by the

business stakeholders.

Having explained the principles and concepts that define a DW, it is also

important to understand the environments in which they function.

Therefore, in the next subsection we characterize data warehousing

environments.

2.1.2. Data Warehousing Environments

The DW obtains its data from the operational data sources (which may

consist of transactional databases, flat files, legacy systems, etc.) through

the execution of Extraction, Transformation and Loading (ETL) processes,

but clearly separates the analytical decision support processes (which

mainly consist on executing On-Line Analytical Processing (OLAP)

operations in order to generate a diverse variety of Business Intelligence

(BI) reports) from the transactional business processes.

Background and Related Work

21

Figure 2-1 shows the traditional generic functional architecture of a DW,

composed by the ETL Layer, and the Data and Metadata Repository Layers4.

The ETL Layer is responsible for the execution of ETL processes and

typically contains a staging area which is used to store extracted and

transformed data until it is time to load that data into the DW database(s).

The Data and Metadata Layer contains all DW databases, in which the

Metadata Repository is used to describe in detail all DW objects and their

relationships. In some DWs, the databases are divided into data

structures named as Data Marts, which focus on storing the decision

support data for a specific business subject within the enterprise. The

Presentation Layer represents all front-end interfaces that are available to

the DW end users for accessing its data.

Figure 2-1. Generic Data Warehouse Functional Architecture

Separating the analytical business processes from the operational

transactional business processes allows the enterprise to gain at least two

major advantages:

 It enables physically and logically separating the transactional

databases from the analytical databases and defining adequate

specific allocated resources for each type of process. This means that

4 Diverse architectures such as that defined in [Kimball and Ross, 2013] also

include the Presentation Layer as part of the DW itself, but in this thesis we

consider the first two layers as the DW core and the third as a separate tier

representing the user interfaces.

Chapter 2

22

each database can be designed and defined the best possible way in

order to adequately fulfill its purposes and maximize its performance

regarding those purposes;

 Reporting and ad hoc decision support querying is requested by the

Presentation Layer to the mechanisms existing in the Data and Metadata

Layer, which are isolated apart from the transactional business

databases and thus, does not affect the functionality and/or

availability of the operational source systems and vice-versa.

Bearing in mind the way a DW operates, there have been several

definitions of what is considered a data warehousing environment.

According to [Chaudhuri et al., 1997]:

“Data Warehousing is a collection of decision support technologies

that aim at enabling an enterprise to make better and faster

decisions.”

Another definition of data warehousing is given in [Castro, 2009]:

“The concept of data warehousing consists of architectures, tools,

technologies, algorithms and methodologies that allow for the

construction, usage, management and maintenance of the hardware

and software used for a data warehouse, as well as the data itself.”

Based on these definitions, in this thesis we consider data warehousing

environments as the full setup of hardware and software in which the

ETL processes and databases belonging to DWs operate, plus their user

workloads.

In what concerns the characterization of the type of users in data

warehousing environments - considering users as anyone who may

regularly access the DW database(s) for any reason - we consider three

main classes of users, given their typical activities:

1) The Database Administrator (DBA) or similar, which is anyone that

can create or modify any database object. Typical actions on behalf

of this user are the creation or modification of tables, indexes and

views in the DW, for example. DBAs typically have full (or almost)

access privileges to the databases.

Background and Related Work

23

2) The ETL User, which is any person or software responsible for

updating the contents of the DW. Typical actions are new row

inserts in fact tables and new row inserts or row updates in

dimensional tables.

3) The DW End User, which is any person belonging to the business

that queries the databases with the purpose of obtaining decision

support information or produce business knowledge, either by

directly querying it or by using business intelligence and OLAP

tools.

In the next subsection, we describe the differences between operational

systems and data warehousing environments.

2.1.3. Data Warehousing Environments vs Operational Systems

From a perspective attending to its purpose, as we have previously

explained, a DW is mainly a database (or set of databases) system that has

been specifically designed to provide decision support information and

produce business knowledge, while an operational system is specifically

designed to support individual business transactions and store its

respective data. Given that the business often requires the operational

system to be online in order to accomplish a transaction, operational

system requirements focus on enabling high availability in order to avoid

compromising the accomplishment of the transactions themselves. On the

other hand, since most decision support queries often require processing

a large amount of data, DWs focus on enabling high throughput [Kimball

and Ross, 2013].

From a perspective attending to the size and shape of its contents, a DW

is composed of consolidated historical business data, mostly conformed

and within data schemas that allow optimizing the execution of OLAP

queries by tools that deliver the intended decision support information

and produce the intended business knowledge. In most cases, storing the

complete business history implies taking up a very large amount of

storage space, often ranging from gigabytes to terabytes. In contrast,

operational systems aim to keep their data sources “light”, i.e., small in

size and content, in order to minimize processing efforts and

consequently keep their availability as high as possible, therefore keeping

Chapter 2

24

only the exact amount of data which is required to support current and

near-future business transactions.

In what concerns their data schemas, transactional databases have highly

normalized schemas, mainly to avoid data redundancy and keep each

table small-sized, while DWs have denormalized schemas. Most DW

database schemas are based on star schemas, where business facts are

stored in a central table called fact table (e.g. sales table) and the tables

containing the business descriptors are called dimension tables (e.g.

customer and product tables) [Kimball and Ross, 2013]. Dimension tables

are linked to the fact table by their primary keys (e.g. CustomerID and

ProductID) and are usually small in size (typically less than 10% of DW

total storage space) and have a small amount of rows (up to tens of

thousands), when compared with fact tables, which are typically very

large in size and a huge amount of rows (millions or billions). Business

facts are mainly stored in numerical-typed attributes within fact tables;

since fact tables typically take up at least 90% of the DW total storage size,

in many cases DW databases are mostly composed by numerical values

[Kimball and Ross, 2013].

Attending to the user’s responsibility among the business, the typical DW

user is a business manager or someone that holds a considerable role of

responsibility in the enterprise, while the typical user of operational

systems are mainly transactional operators with low responsibility and

with few or none decision making privileges. Since they mainly consist of

business managers and decision makers, the number of DW users it

typically low (a few tens).

While in operational systems end users typically execute intensive read

and write instructions, DW end users only execute read-only instructions

such as queries, i.e., they are not allowed to change data, while DBAs and

ETL users may insert or modify data. More than 90% of actions executed

in DWs are typically decision support queries, (i.e. SELECT statements),

mainly executed against fact tables [Kimball and Ross, 2013]. Reporting

(i.e. periodically running reports for answering predefined decision

support queries) is typical in DWs. Besides predefined reporting, in many

cases a very significant amount of decision support queries are ad hoc,

which makes them mostly unpredictable in their syntax and frequency. In

Background and Related Work

25

operational systems, the queries are almost fully simple and predefined

and repetitive.

Although decision support queries may typically access huge amounts of

data, their response usually results in small datasets with a few hundred

bytes and a relatively low number of columns (no more than a few tens).

Most queries in DWs are CPU intensive and can take up to hours, while

operational system queries are intended to be computationally fast and

deliver very small response times.

Table 2-1 summarizes the main differences between operational systems

and DWs, based on [Inmon, 2002; Kimball and Ross, 2013; Ponniah, 2010].

Table 2-1. Main Differences between Operational Systems and Data Warehouses

 Operational Systems Data Warehouses

Workload nature/purpose Transactional Analytical

Temporal nature of the data Current Historical and current

Typical database storage size As small as possible Very large to huge

Typical number of tables Medium to high Small

Typical data schema type Highly normalized Denormalized

Typical number of users Medium to large Small

Typical user’s responsibility
towards the business

Low High

Typical type of command
Read/Write of small
amounts of data

Read-only on large
amounts of data

Typical command complexity Simple Medium to High

Typical operation dynamics
Static, predefined,
predictable and
repetitive

Dynamic, ad hoc,
random and iterative

Typical command response time Small Large

Typical command action
Read/write of a single
row or few rows

Reporting and
aggregation on many
rows, with roll-up, drill-
down, slice and dice

Amount of data typically
processed by each command

Small Large or Very Large

Typical data update frequency
Often in a given period
of time

Once periodically

Dataset size typically resulting
from a command execution

Small Variable (often Small)

Chapter 2

26

Conclusively, it is widely recognized that DW/BI systems have

profoundly different needs, clients, structures, and rhythms than those of

operational systems. DW users have drastically different needs than

operational system users [Kimball and Ross, 2013]. Thus, we can make

the assumption that data warehousing environments also require distinct

security solutions that are designed taking those specific characteristics

under account and that are able to cope with those specific requirements

and needs.

The following sections present the background in data masking,

encryption and intrusion detection.

2.2. Data Masking

An extensive survey on data masking (alias data obfuscation) techniques

is given in [Ravikumar et al., 2011]. The main goal of data masking is to

replace true data with realistic but not real data, so the true data is not

readable by unauthorized users. To assure a significant level of security

strength, the masked values should not allow attackers to easily discover

ways of retrieving the true values.

In this section, we shall explain the diverse forms of masking data, refer

available commercial masking packages and discuss the issues

concerning the use of data masking in data warehousing environments.

2.2.1. Forms of Data Masking

One way to accomplish data masking is to use value referencing, i.e., to

create and use a reference table for each masked value, as shown in

Figure 2-2.

Original Values Reference Table Masked Values

16 Original Masked 3

12 9 1 2

9 12 2 1

31 16 3 5

9 23 4 1

16 31 5 3

23 4

Figure 2-2. Data masking using a reference table

Background and Related Work

27

Another way is to use a function against each original value to produce a

new masked value, such as shown in Figure 2-3.

Original Values (xi) Masking Function f(xi) Masked Values (yi)

16

f(xi)=(3+9xi)MOD17

 11

12 9

9 16

31 10

9 16

16 11

23 6

Figure 2-3. Data masking using a masking function

There are several types of functions as shown in Figure 2-3 that can be

used for data masking, such as:

 Deterministic masking: A deterministic function f(x) = yi, where f(xi)

always produces the same yi for a given value xi;

 Condition-based masking: Applying different mask formats to the

same dataset depending on the rows that match specific conditions

(e.g. applying different national identifier masks based on country of

origin);

 Compound masking: A set of related columns is masked as a group

to ensure that the masked data across the related columns retain the

same relationship (e.g. city, state, and zip code values may need to be

consistent after masking, for maintaining referential integrity).

These functions are mainly used in two ways, which can be used

separately or mixed together:

 Substituting, where each value is replaced by the output of a

deterministic function or reference (e.g. Figures 2-2 and 2-3);

 Shuffling, where values switch places. This occurs by swapping the

values between two or more predefined similar typed columns in the

same row or in different rows, or swapping the characters that

compose the value in a predefined form (e.g. 12345 becomes 52143),

or mixing both these types of swap.

Chapter 2

28

The references and functions shown in Figures 2-2 and 2-3 show data

masking operations that are reversible, i.e., the original value can be

retrieved from the masked value if an authorized user executes a valid

query that should obtain a true result. This is the typical DW setting,

where data should be masked for avoiding disclosure to unauthorized

users, but all authorized user queries must be able to retrieve the true

exact response. However, there are situations in which the released data

should not reveal their true values or, at least, not all their true values, in

any case (including authorized users). These cases mostly refer to

published data for public consulting or outsourcing purposes, or the

creation of production and testing databases for aiding software

development processes. In these cases, several typical types of techniques

allow the disclosure of only part of the true data or entirely false data,

such as:

 Random number generators (RNG), widely used for generating

statistically independent and apparently random values for simply

replacing the original true values in whole or in part;

 Random shuffling, where shuffling is used in conjunction with RNG

for randomly swapping the values;

 Nulling, where sensitive values that should not be disclosed are

simply replaced by a null value;

 Deleting, where rows with sensitive values are erased;

 Masking out, where predefined parts of the sensitive values are

replaced by universal characters (e.g. credit card number 9255 0614

0015 8925 becomes 9255 XXXX XXXX 8341 or 9X5X 0X1X 0X1X 8X2X);

 A mix of the previous techniques.

More recently, research has also proposed non-deterministic methods for

masking data, such as perturbation techniques [Agrawal et al., 2005;

Procopiuc and Srivastava, 2011; Xiao et al., 2009]. The work in [Agrawal et

al., 2005] proposes a solution based on data perturbation techniques and

explains data reconstruction for responding to queries, in a data

warehousing environment. Recent similar work proposing data

anonymization solutions which rely on perturbation or differential

Background and Related Work

29

techniques have been published in [Procopiuc and Srivastava, 2011] and

[Xiao et al., 2009].

2.2.2. Commercial Data Masking Solutions

Many similar commercial data masking packages have been developed.

Oracle, for instance, has developed the Oracle Data Masking (ODM) pack

[Oracle, 2010c], protecting data by replacing real values with realist-

looking data with the same type and characteristics as the original data.

ODM provides masking primitives such as random numbers, dates and

constants, as well as other built-in routines that shuffle the values in a

column across different rows. However, once applied, the ODM does not

allow retrieving the real values, i.e., the original values are forever

inaccessible.

ODM provides a centralized library of out-of-the-box mask formats for

common types of sensitive data such as credit card and phone numbers,

national identifiers (e.g. social security numbers), etc. By leveraging the

ODM Format Library, data privacy rules can be applied across enterprise-

wide databases from a single source, ensuring consistent compliance with

regulations. ODM supports the concept of application masking templates,

which are XML representations of the mask definitions. Security

administrators, software vendors or service providers can then import

these predefined XML templates into the ODM in order to ease and

accelerate the data masking implementation process. The ODM

automatically identifies and ensures referential integrity.

Oracle states that ODM is to be used mainly as a fast and easy way to

generate production databases for supporting outsourcing and software

application development. The ODM can also be used to mask Microsoft

SQL Server and DB2 databases for the same purposes. ODM requires new

data to be loaded into the database first, and only applies the masking

procedures afterwards. It is not possible to load previously masked data.

Masking in ODM is an a posteriori process. Most commercial data

masking solutions work in a similar fashion as ODM.

2.2.3. Using Data Masking in Data Warehouses

Organizations have partly strived to solve confidentiality and privacy

issues by using hand-crafted solutions or repurposed data manipulation

Chapter 2

30

tools developed within the enterprise to solve the problem of sharing

sensitive information. The most common solution is probably to use

scripts with triggers in order to mask and unmask each value, or to

embed the masking/unmasking logic within the user applications

themselves, keeping their secrecy aspects mostly within the development

team.

However, these proprietary solutions are not the best way to achieve a

standard data masking solution. On one hand, embedding them into

applications makes their maintenance complex and costly. On the other

hand, not disclosing them to the security and database research

communities and keeping them as a hidden black box solution keeps

their security strength unproven. Another common solution is to use

standard commercial masking tools such as ODM.

Since DWs mainly require masking solutions to guarantee that the

masked values can be reengineered to retrieve their original true values,

we can state that using RNG, random shuffling, nulling, deleting, and

masking out techniques are mostly not suitable for data warehousing

environments. Thus, most leading commercial data masking packages

such as ODM are also not applicable to most data warehousing scenarios.

Consequently, to be useful, DW data masking routines must be based on

reversible shuffling or substituting techniques.

Designing an efficient substitution or shuffling routine is far from being a

trivial task. If the masking values produced by those methods can be

easily determined by comparison or other type of inference then the

original true data can be easily retrieved by attackers, making the

routines useless. For example, if the shuffle algorithm simply runs down

a table swapping the column data of the sensitive columns in between

every group of two rows, it would not take much effort from the attacker

to break security.

Shuffling routines can ensure higher security strength than simple

substitution routines, because they shuffle the values and can add the use

of a value-function for changing their values before or after the shuffle.

However, shuffling routines may become extremely complex, namely in

determining how to swap the values in order to guarantee both an

acceptable security strength and processing time overheads. On one

hand, limiting the shuffling between columns of the same row allows

Background and Related Work

31

minimizing data access time for the masking actions but reduces security

strength, compared with shuffling throughout the typically huge number

of rows in DW sensitive fact tables. On the other hand, shuffling the

values spaced throughout those table rows greatly increases the leaps the

DBMS engine needs to execute in the datafile to retrieve the true data in

the correct order, since the masked values for each row are distributed up

and down the table. Given the large amount of data typically processed

in DW queries, the number of leaps to orderly access the data may easily

produce dramatic and unacceptable response time overheads.

When using data referencing, if the number of possible values to

substitute a certain value has low cardinality (e.g. swapping values TRUE

and FALSE for a boolean column with masking values 1 and 2) the

reference lookup is fast but there is a security problem because the

attacker can easily infer which is which. On the other hand, if the

cardinality of the column to mask by referencing is high, then the number

of rows to seek in the reference table will also be high, increasing security

but decreasing response time for retrieving each value. Thus, there is

always a tradeoff between security and performance to deal with: if the

security level increases, performance typically decreases.

Substitution and shuffling techniques also present important security and

performance issues. The main problem is that developing a value

substitution function that uses one or more linear transformations is not

secure because the attacker can build systems of equations and inference

models to discover how the function masks a value. To deal with this

problem, other bit-level manipulation operations need to be included,

along with the execution of a significant number of rounds. These

features are the basis for data encryption, which we explain in the next

section. Data encryption solutions are the successors of the simpler forms

of data masking substitution techniques and obey common principles and

rules established by the security research and regulations communities

and organizations.

For decision support purposes, in most DWs the user queries need to

obtain a true and accurate result. Given this requirement, since

perturbation techniques produce errors in data reconstruction, they

should be avoided and are mainly inadequate from a data warehousing

perspective.

Chapter 2

32

Therefore, the following needs to be considered when applying data

masking in DWs:

 Since it is not easy to ensure strong security strength (mainly when

compared with encryption solutions), data masking has been

considered a poor solution to protect data for real live DW

databases, from the security perspective;

 The data masking routines provided by most standard commercial

tools typically change data in an irreversible manner, i.e., transform

data in a way that makes it not possible to subsequently retrieve the

original true values, making them useless for real live DW

databases;

 On the other hand, solutions that allow retrieving the true original

data mostly rely on cross-referencing actions, which imply huge

table joins in DWs. Given the consequent high performance

degradation, they have been discarded for use with real-live DWs;

 Given those security, usability and performance issues and

drawbacks (assumed by the research and commercial

communities), data masking is mostly recommended as an easy,

efficient and fast solution in the development lifecycle of user

applications and not for real-live databases. These facts have

pushed data masking to a type of solution used mainly for testing

software development rather than protect live sensitive data

[Gartner, 2009; Huey, 2008; Natan, 2005; Oracle, 2005; Oracle, 2010a;

Oracle, 2010c; Ravikumar et al., 2011; Yuhanna, 2009].

The next section describes standard and state-of-the-art encryption

techniques and discusses the issues involving the use of data encryption

solutions in DWs.

2.3. Data Encryption

The high security requirements for confidentiality in many scenarios

involving end-to-end data communication have led to the development

of encryption algorithms. The frontier between data masking and

encryption is often blurry, since they mainly aim to achieve the same

purposes. However, while data masking can be simply considered as any

action that changes a given value or set of values into another value or set

Background and Related Work

33

of values that should not allow retrieving the original value or set of

values by unauthorized users, encryption is mainly defined as a set of

actions that obey a strict number of principles and rules defined and

accepted by the security communities and is always a reversible action

[Vaudenay, 2006]. Encryption makes ground on cryptography, defined as

applying a coding algorithm to a plaintext (alias original input value) that

results in a ciphertext (encrypted output value), which allows reversible

action in order to retrieve the plaintext once again [Vaudenay, 2006].

Typical encryption algorithms include iterative bit shifting and exclusive

Or (XOR) operations executing in a predefined number of rounds. These

operations rely on a key, which influences the “data mix” output of each

round. The higher the key length and the number of rounds executed, the

higher is the assumed security strength, given that the attacker typically

needs to generate a large amount of possible key values and decryption

rounds in order to break security [Elminaam et al., 2010]. Thus,

encryption is an advanced form of data masking, with well-accepted and

well-defined assumptions and high complexity, in order to make it

extremely difficult for attackers to break security when compared with

simpler forms of data masking.

We consider describing and analyzing ciphers according to the principles

following the Shannon Theory, where the Shannon Encryption Model is

as illustrated in Figure 2-4 [Vaudenay, 2006]:

“The purpose of encryption is to ensure communication secrecy. We

assume that we want to communicate, which means to transmit

information through a channel.”

Plaintext
Source

Encipherer CK
Plaintext X Decipherer C-1Ciphertext Y

Key Source

Key K

X

Figure 2-4. The Shannon Encryption Model (adapted from [Vaudenay, 2006])

Chapter 2

34

Following the Shannon Theory, a cipher is given by:

1) A plaintext source (with its corresponding distribution);

2) A secret key or keys;

3) A ciphertext space;

4) A rule or set of rules represented as ��, which transform any

plaintext X with a key K into a ciphertext Y as � = ��(�);

5) A rule or set of rules represented as ��
�� which enables recovering

plaintext X from the ciphertext Y using key K as � = ��
�� (�).

Categorization methods for encryption techniques commonly used in

data security are based on the form of the input data they operate on. The

two types are Block Ciphers and Stream Ciphers.

A block cipher is a type of symmetric-key encryption algorithm that

transforms a fixed-length block of plaintext (unencrypted text) data into a

block of ciphertext (encrypted text) data of the same length. All

intermediate blocks are called states. This transformation takes place

under the action of a user-provided secret key. Decryption is performed

by applying the reverse transformation to the ciphertext block using the

same secret key. The fixed length is called the block size.

Stream ciphers take a string (the encryption key) and deterministically

generate a set of random-seeming text (called keystream) from that key.

That keystream is then XORed against the message to encipher. To

decipher the text, the recipient simply hands the same key to the stream

cipher to produce an identical keystream and XORs it with the ciphertext,

thus retrieving the original message.

In the following subsections, we shall describe the standard encryption

techniques and algorithms as well as state-of-the-art encryption

algorithms that have been specifically proposed by research to be applied

in databases, and discuss the issues concerning their use in data

warehousing environments.

Background and Related Work

35

2.3.1. Standard Encryption Techniques and Algorithms

Data Encryption Standard (DES). The Data Encryption Standard (DES)

was the first encryption standard to be approved and recommended by

the National Institute of Standards and Technology (NIST), and became a

standard in 1977 [DES, 1977]. DES is a 64 bit block cipher, which means

that data is encrypted and decrypted in 64 bit chunks, and uses a 56 bit

encryption key. This has implications in short data lengths. Even 8 bit

data, when encrypted by the algorithm will always result in a 64 bit

chunk. Its algorithm is thus a set of permutations over the set of 64 bit

block strings.

DES consists of a 16-round Feistel scheme, which is the most popular

block cipher skeleton [Vaudenay, 2006]. It is fairly easy to use a random

function in order to construct a permutation. In addition, encryption and

decryption hardly require separate implementations. A Feistel scheme is

a ladder structure which creates a permutation from a function. In each

round, the input string is split into two parts of equal length, and the

result of passing one part through a round function is XORed to the other

part, then obtaining two parts which are then exchanged (except in the

final round). The round function uses subkeys derived from a secret key.

The round function of DES has a 32-bit input, 48-bit subkey parameter

input, and a 32-bit output. For every round, the 48-bit subkey is

generated from a secret key by a key schedule. Basically, every 48-bit

subkey consists of a permutation and a selection of 48 out of the 56 bits of

the secret key. The round function is illustrated in Figure 2-5, consisting

of [Vaudenay, 2006]:

 An expansion of the main input (one out of two input bits is

duplicated in order to get 48 bits);

 A XOR with the subkey;

 Eight Substitution Boxes (S-boxes) which transform a 6-bit input into

a 4-bit output; and

 A permutation of the final 32 bits.

Chapter 2

36

Figure 2-5. DES Round Function [Vaudenay, 2006]

As referred, the DES cipher uses eight S-boxes in its round function (S1 to

S8). In cryptography, an S-box (Substitution-box) is a basic component of

symmetric key algorithms which performs substitution. In block ciphers,

they are typically used to obscure the relationship between the key and

the ciphertext. In many cases, the S-boxes are carefully chosen to resist

cryptanalysis. In general, an S-box takes some number of input bits, m,

and transforms them into a number of output bits, n: an m×n S-box can be

implemented as a lookup table with 2m words of n bits each. Fixed tables

are normally used, as in DES, but in some ciphers the tables are generated

dynamically from the key; e.g. the Blowfish encryption algorithm [Radha

and Kumar, 2005].

Background and Related Work

37

3DES. DES has been proven to be an insecure cipher [Kim et al., 2010].

There has considerable controversy over its design, particularly in the

choice of a 56 bit key [Nadeem and Javed, 2005]. As an enhancement of

DES, the Triple DES (3DES) encryption standard was proposed [3DES,

2005]. In 3DES encryption algorithm is similar to the original DES

algorithm, but it is applied three times to increase the encryption level,

using three different 56 bit keys. Thus, the effective key length is 168 bits.

Since the algorithm increases the number of cryptographic operations it

needs to execute, it is a well known fact that the 3DES algorithm is one of

the slowest block cipher methods.

Advanced Encryption Standard (AES). After the DES standard was

deemed as no longer appropriate, the US Government started a process

leading to the Advanced Encryption Standard (AES). The AES is a

symmetric block cipher algorithm defined in the Federal Information

Processing Standard (FIPS) no. 197 [AES, 2001]. The AES algorithms are

block ciphers with a significant increase in the block size – from the old

standard of 64 bits up to 128 bits. AES provides three approved key

lengths: 128, 192 and 256 bits.

The AES consists of several rounds of a substitution-permutation

network. Its design consists of writing 128-bit message blocks as a 4x4

square matrix of bytes. Encryption is performed through 10, 12 or 14

rounds depending on whether the key size is 128, 196 or 256 bits. Each

round (except the final one) consists of four transformations:

1) SubBytes, a byte-wise substitution defined by a single table of 256

bytes;

2) ShiftRows, a circular shift of all rows (row i of the matrix is rotated

by i positions to the left for i = 0, 1, 2, 3);

3) MixColumns, a linear transformation performed on each column

and defined by a 4x4 matrix of GF(28) elements (explained

further);

4) AddRoundKey, a simple bitwise XOR with a round key defined by

another matrix.

The final round is similar, except for MixColumns which is omitted. The

round keys are generated by a separate key schedule.

Chapter 2

38

More formally, one block s is encrypted by the following process, in

which W is the output subkey sequence from the key schedule algorithm,

as shown in Figure 2-6.

Figure 2-6. AES Step-by-Step Algorithm [Vaudenay, 2006]

The block s is also called state and represented as a matrix of terms si, j for

i, j {0, 1, 2, 3}. Each term is a byte, i.e., elements of a set Z of cardinality

256. SubBytes(s) is defined as follows:

FOR i = 0 TO 3 DO

 FOR j = 0 TO 3 DO

 si, j = S-box(si, j)

Where S-box is the substitution table. Mathematically, it is a permutation

of {0, 1, …, 255}. ShiftRows(s) is defined as follows:

REPLACE [s1,0, s1,1, s1,2, s1,3] by [s1,1, s1,2, s1,3, s1,0]

 {ROTATE row 1 BY ONE POSITION TO THE LEFT}

REPLACE [s2,0, s2,1, s2,2, s2,3] by [s2,2, s2,3, s2,0, s2,1]

 {ROTATE row 2 BY TWO POSITIONS TO THE LEFT}

REPLACE [s3,0, s3,1, s3,2, s3,3] by [s3,3, s3,0, s3,1, s3,2]

 {ROTATE row 3 BY THREE POSITIONS TO THE LEFT}

Defining the set Z as the set of all the 256 possible combinations

 a0 + a1.x + a2.x2 + … + a7.x7

Background and Related Work

39

where a0, a1, a2, …, a7 are either 0 or 1 and x is a formal term. Elements of Z

are thus defined as polynomials of degree at most 7. AddRoundKey(s, k) is

defined as follows:

FOR i = 0 TO 3 DO

 FOR j = 0 TO 3 DO

 si, j = si, j Å ki, j

Here, the Å operation over Z is defined as an addition modulus, i.e.

�� �� .��

�

���

� Å �� �� .��

�

���

� = �(�� + �� ��� 2).��

�

���

Given that a multiplication in Z defined as follows:

1) Perform the regular polynomial multiplication;

2) Make the Euclidian division of the product by the x8 + x4 + x3 + x +

1 polynomial and take the remainder;

3) Reduce all its terms modulus 2.

This provides Z with the structure of the unique finite field of 256

elements. This finite field is denoted by GF(28). This means that any

addition, multiplication, or division by any nonzero element of Z with the

same properties always results in a regular number. Matrix operations

with terms in Z can be further defined. Thus, MixColumns(s) can be

defined as:

FOR i = 0 TO 3 DO

 LET v BE THE 4-DIMENSIONAL VECTOR WITH COORDINATES

 s0,i, s1,i, s2,i, s3,i

 REPLACE s0,i, s1,i, s2,i, s3,i BY THE COORDINATES OF M v

Where M is a 4x4 matrix over Z defined by

The substitution table S-box is defined by the inversion operation x-1

(except for x = 0, which is mapped to zero) in the finite field GF(28). This

operation has good nonlinear properties [Vaudenay, 2006].

Chapter 2

40

AES is considered fast and able to provide stronger encryption, compared

to other well-known encryption algorithms such as DES [Nadeem and

Javed, 2005]. Brute force attack (in which the attacker tries all the possible

key combinations to unlock the encryption) is the only known effective

attack known against it.

2.3.2. Other Encryption Techniques and Algorithms

Besides the existence of standard encryption algorithms, the data security

research community has also proposed several solutions for encrypting

databases.

One of the main issues in database performance due to using encryption

is the inability to effectively manage useful indexing, since encryption

changes data values and thus renders the traditional index building as

useless. One way to deal with this is to ensure order preservation of the

generated encrypted values. Based on this principle, several approaches

have been proposed in order to enable direct querying against encrypted

data.

Order Preserving Encryption Scheme (OPES). In [Agrawal et al., 2004]

an Order Preserving Encryption Scheme (OPES) for numeric data is

proposed, flattening and transforming plain text distributions onto target

distributions defined from value-based buckets, given the attribute’s

domain values. This solution allows any comparison operation to be

directly applied on encrypted data, such as equality and range queries, as

well as SUM, AVG, MAX, MIN and COUNT queries. The authors define

a threat model with the following assumptions, given the transparent

encryption setting shown in Figure 2-7:

 The storage system used by the database software is vulnerable to

compromise;

 The database software (DBMS) is trusted;

 All disk-resident data (alias data-at-rest) is encrypted.

Background and Related Work

41

Figure 2-7. Transparent Encryption Setting for OPES [Agrawal et al., 2004]

OPES works as a three stage process [Agrawal et al., 2004]:

1) Model: The input and target distributions are modeled as piece-wise

linear splines;

2) Flatten: The plaintext database P is transformed into a “flat”

database F such that the values in F are uniformly distributed;

3) Transform: The flat database F is transformed into the ciphered

database C such that the values in C are distributed according to the

target distribution.

The results of query processing over data encrypted by OPES are exact.

They neither contain any false positives nor miss any answer tuple. OPES

also handles updates gracefully; a value in a column can be modified or a

new value can be inserted without requiring changes in the encryption of

other values. The basic idea of OPES is to take as input a provided target

distribution and transform the plaintext values in such a way that the

transformation preserves the order while the transformed values follow

the target distribution.

Chapter 2

42

Executing SQL over Encrypted Data in the Database-Service-Provider

Model. A similar solution for processing queries without decrypting data

was proposed earlier by [Hacigumus et al., 2002], which uses the

“Database as a Service” provider model based on Internet availability. The

authors focus on assuring the owner of the data that the data stored in the

service-provider site is protected against those service providers

themselves, if they cannot be trusted, by keeping data always encrypted

and executing SQL queries directly against the encrypted data. To

accomplish this, they propose splitting the computation of the queries

into two phases: the first phase computes as much as possible against the

encrypted data at the service provider server without having to decrypt

it, and a second phase which processes the results obtained in the first

phase at the client. The data in the service provider is protected because

the decryption only occurs at the client side. The service-provider

architecture for this solution is shown in Figure 2-8.

Figure 2-8. Encryption-as-a-Service Service-Provider Model [Hacigumus et al., 2002]

The encrypted data is stored at the service-provider according to the

following:

Background and Related Work

43

 For each relation R(��, ��, …, ��) of the original plaintext data, an

encrypted relation RS(etuple, ��
�, ��

� , …, ��
�) is stored on the service-

provider server;

 The attribute etuple stores an encrypted string that corresponds to a

tuple in relation R;

 Each attribute ��
� corresponds to the index for attribute �� that will be

used for query processing at the server.

Thus, each original unencrypted table is mapped to an encrypted table at

the service-provider server. To accomplish this, they define a series of

partitions on that server for each attribute, given the domain values of

attributes R. ��, define an identification function to assign an identifier to

each partition of each attribute, and finally define a mapping function to

those partitions which ensures order-preservation of the attribute’s

original values. A practical evolution of the initial proposal was

published in [Hacigumus et al., 2004], based on the same model. In this

work, the authors focus on improving their transformation and mapping

functions, by exploring homomorphism techniques to support

aggregation in relational databases against encrypted data without

decryption in the presence of logical predicates.

Encryption in Column-Oriented DBMS. The authors of [Ge and Zdonik,

2007] propose a lightweight database encryption scheme for column-

stores in DWs with trusted servers, named FCE. This technique

introduces low decryption overhead to enable making comparisons of

ciphertexts and hence makes indexing operations fast. The authors also

propose a relaxed measure of security to demonstrate FCE’s security

strength based on information theoretic concepts. Using this same

measure, they also show that order-preserving encryption techniques are

insecure under straightforward attack scenarios.

Tiny Encryption Algorithm (TEA). In an effort to trying to simplify

encryption algorithms, the Tiny Encryption Algorithm (TEA) [Wheeler

and Needham, 1994] was proposed in 1994. This simple algorithm uses a

larger number of rounds against a small number of data transformations

than, rather than a more complex set of transformations with few rounds.

The main objective of the authors of the TEA was to provide a very

simple encryption algorithm instead of a complicated one. The authors

Chapter 2

44

claim that it uses little setup time and does a weak non-linear iteration a

sufficient number of rounds that makes it secure enough. There are no

preset tables or long setup times. It assumes 32 bit words and the authors

suggest executing 32 rounds. The TEA schema is shown in Figure 2-9.

Figure 2-9. TEA Schema

The proposed encoding routine, written in C, using four 32 bit keys k[0]

to k[3] (making up a 128 bit key), executing 32 rounds to encrypt 64 bits of

data in v[0] and v[1], is [Wheeler and Needham, 1994]:

void code(long* v, long* k) {
unsigned long y = v[0],z = v[1], sum = 0, /* set up */
 delta = 0x9e3779b9, /* a key schedule constant
*/
 n=32;
while (n-->0) { /* basic cycle start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
} /* end cycle */
v[0]=y ; v[1]=z ;
}

Background and Related Work

45

TEA is a Feistel type routine although addition and subtraction are used

as the reversible operators rather than XOR. The routine relies on the

alternate use of XOR and ADD to provide nonlinearity. A dual shift

causes all bits of the key and data to be repeatedly mixed. The top five

and bottom four bits are probably slightly weaker than the middle bits.

These bits are generated from only two versions of z (or y) instead of

three, plus the other y or z. Thus, the convergence rate to even diffusion is

slower. However, the shifting evens this out with a possible delay of one

or two extra cycles [Wheeler and Needham, 1994].

Blowfish Encryption Algorithm. The Blowfish encryption algorithm

[Schneier, 2013] is one of the most common public domain encryption

algorithms. Blowfish is a variable length key, 64 bit symmetric block

cipher. This algorithm was first introduced in 1993. Each round of the

algorithm consists of a key-dependent permutation and a key-and-data-

dependent substitution. All operations are based on XORs and additions

on 32-bit words. The key has a variable length (with a maximum length of

448 bits) and is used to generate several subkey arrays. It has been

extensively analyzed and deemed “reasonably secure” by the

cryptographic community. Though it suffers from weak keys problem, no

attack is known to be successful against it [Nadeem and Javed, 2005]. A

graphical representation of the Blowfish algorithm can be seen in Figure

2-10.

As shown in Figure 2-10, a 64-bit plaintext message is first divided into 32

bits. The “left” 32 bits are XORed with the first element of a P-array to

create a new value named as P’, run through a transformation function

called F, then XORed with the “right” 32 bits of the message to produce a

new value named as F’. F’ then replaces the “left” half of the message and

P’ replaces the “right” half, and the process is repeated 15 more times

with successive members of the P-array. The resulting P’ and F’ are then

XORed with the last two entries in the P-array (entries 17 and 18), and

recombined to produce the 64-bit ciphertext.

A graphical representation of the F transformation function is shown in

Figure 2-11. The function divides a 32-bit input into four bytes and uses

those as indices into an S-array. The lookup results are then added and

XORed together to produce the output.

Chapter 2

46

Figure 2-10. The Blowfish Algorithm

Background and Related Work

47

Figure 2-11. The Blowfish Transformation Function (F)

The P-array and S-array values used by Blowfish are precomputed based

on the user’s key. In effect, the user’s key is transformed into the P-array

and S-array; the key itself may be discarded after the transformation. The

P-array and S-array need not be recomputed (as long as the key doesn’t

change), but must remain secret. The P and S-arrays are summarized as

follows (according to [Schneier, 2013]):

 P is an array of eighteen 32-bit integers;

 S is a two-dimensional array of 32-bit integer of dimension 4x256;

 Both arrays are initialized with constants, which happen to be the

hexadecimal digits of π (a pretty decent random number source);

 The key is divided up into 32-bit blocks and XORed with the initial

elements of the P and S arrays. The results are written back into the

array. A message of all zeros is encrypted; the results of the

encryption are written back to the P and S arrays. The P and S arrays

are now ready for use.

Chapter 2

48

Snuffle (alias Salsa20) Encryption Algorithm. Recently, the Snuffle 2005

encryption algorithm (also known as Salsa20) was proposed [Bernstein,

2005; Bernstein, 2008]. The goal of Salsa20 is to produce a 64-byte block

given a key, nonce5 and block counter. The author recommends executing

a number of 20 rounds, although 8 or 12 rounds are acceptable when

required to gain speed against sacrificing some security. This solution can

be seen as a 256-bit stream cipher and is based on a hash function with a

long chain of simple operations, instead of a short chain of more complex

operations (typical in standard encryption algorithms), on 32-bit words:

 32-bit additions, producing the sum a + b mod 232 of two 32-bit words

a, b (which breaks linearity over Z/2);

 32-bit exclusive-or (XOR), producing a Å b of two 32-bit words a, b

(which breaks linearity over Z/232); and

 Constant-distance 32-bit rotation, producing the rotation a <<< b of a

32-bit word a by b bits to the left, where b is constant (diffusing

changes from high bits to low bits).

The author of Salsa20 states that although these operations may be

considered too simplistic, they can easily emulate any circuit and are

therefore capable of reaching the same security level as any other

selection of operations. The real question for the cipher designer is

whether a different mix of operations could achieve the same security

level at higher speed.

Salsa20 expands a 256-bit key and a 64-bit nonce (unique message

number) into a 270-byte stream. It encrypts a b-byte plaintext by XORing

the plaintext with the first b bytes of the stream and discarding the rest of

the stream. It decrypts a b-byte ciphertext by XORing the ciphertext with

the first b bytes of the stream. There is no feedback from the plaintext or

ciphertext into the stream.

Salsa20 generates the stream in 64-byte (512-bit) blocks. Each block is an

independent hash of the key, the nonce, and a 64-bit block number; there

5 In cryptography, a nonce is an arbitrary number used only once in a

cryptographic communication. It is often a random or pseudo-random number

issued in an authentication protocol to ensure that old communications cannot be

reused in replaying attacks. [Vaudenay, 2006]

Background and Related Work

49

is no chaining from one block to the next. The Salsa20 output stream can

therefore be accessed randomly, and any number of blocks can be

computed in parallel.

There are no hidden preprocessing costs in Salsa20. In particular, Salsa20

does not preprocess the key before generating a block; each block uses the

key directly as input. Salsa20 also does not preprocess the nonce before

generating a block; each block uses the nonce directly as input.

This solution is relatively simple when compared with other standard

encryption algorithms such as AES and has been recognized by the

cryptology research community as an interesting alternative to those

algorithms in contexts where speed is more important than confidence

[Tsunoo et al., 2007; Bernstein, 2008].

2.3.3. DBMS Data Encryption Packages

Many DBMS vendors such as Microsoft SQL Server and Oracle TDE

provide built-in standard encryption packages. These routines run in the

DBMS kernel and are optimized to work against their data structures and

across a large diversity of platforms.

Oracle has developed TDE (Transparent Data Encryption) [Oracle, 2005;

Oracle, 2010a] incorporating both AES and 3DES, providing column and

tablespace encryption. These routines can be used transparently without

requiring user application source code modifications. As Oracle,

Microsoft SQL Server also provides column and datafile 3DES and AES

encryption routines.

When using Oracle TDE tablespace encryption, all data in the tablespace’s

physical datafiles is encrypted and almost no storage space overhead is

generated. When using column encryption, a storage space overhead

between 1 and 52 bytes per encrypted value is added. The generation of

independently encrypted values for each column is done by using an

optional feature (SALT) in the encryption, which implies adding 16 bytes

of the storage space per encrypted column to each row. If the NO SALT

option is used, those extra 16 bytes are saved, but all encrypted values in

the column rely on one key only in the encryption algorithm, which

lowers its security strength. Tablespace encryption uses only the database

master key and the tablespace’s encryption key, which makes its security

level lower than column encryption.

Chapter 2

50

Encryption in Oracle TDE is transparently handled, including index

operations and table joins, even if the columns for the join condition are

encrypted. In TDE column encryption, the index needs to be a normal B-

Tree index. With TDE column encryption, the data remains encrypted in

the RAM (in the database cache), but with TDE tablespace encryption the

Oracle database will automatically decrypt data before it arrives in

database memory (SGA). This means that all data in the SGA is always

decrypted, which must be considered a weakness in security for this type

of encryption.

2.3.4. Using Data Encryption in Data Warehouses

One of our main objectives in this thesis is to discuss if the commonly

used data encryption algorithms are too slow for DWs. We are not

interested in discussing in detail each step of each algorithm focusing on

their security, but rather to compare and analyze the generic guidelines of

the different types of encryption algorithms and how their performance is

affected as well as how it affects DW performance.

When processing SQL on encrypted data, there are many database

performance issues that arise. For example, certain basic queries are not

supported, i.e., they cannot be executed because they cannot be handled

by the encryption/decryption schemas, or their execution is too inefficient

(especially joins and ordering operations), resulting in the introduction of

large response time overhead. Regarding this last issue, if no order

preserving scheme is ensured by the encryption solution indexing

becomes mostly useless, with its corresponding impact in database

performance.

Many decision support workloads are based on actions in which the end-

user interacts with the system, like performing an OLAP analysis through

ad hoc querying or performing drill-down or roll-up reporting. When

performing this type of analysis, the end user is typically in front of a

computer waiting for the system to answer the query; therefore, if the

DBMS is slow the end-user can lose interest in the business analysis, leave

the query running and forget the business question s/he originally

wanted or feel exasperated by having to wait for a long time to get the

answer [Castro, 2009]. This may compromise the acceptability and

Background and Related Work

51

credibility of the DW system among its users and ultimately, jeopardize

its usefulness.

As we have mentioned earlier, encryption algorithms typically execute a

significant number of bit management operations using one or more

encryption keys. In what concerns performance issues, the quality of each

set of operations in achieving the intended “data mix” affects how fast the

algorithm can execute. When comparing encryption algorithms referring

to what, how and how many operations they execute, most encryption

algorithms such as AES carry out considerably short chains of complex

operations, while other hash-based solutions such as Salsa20 execute

longer chains of simpler operations.

The argument in favor of using complicated operations such as the use of

S-boxes is that they provide a large amount of mixing at reasonable speed

on many CPUs, and thus achieve many desired security levels more

quickly than simple operations on those CPUs; a single table lookup can

mangle its input quite thoroughly – more thoroughly than a chain of

simple integer operations – in fewer rounds. This provides a large

amount of mixing at reasonable speed on many CPUs, reaching many

desired security levels more quickly than simple operations. The

counterargument is that potential speedup is fairly small and is

accompanied by huge slowdowns on other CPUs.

On the other hand, simple operations such as bit additions and XORs are

consistently fast, independently from the CPU. It is also not obvious that

a series of S-box lookups (even with rather large S-boxes, as in AES,

increasing L1 cache pressure on large CPUs and forcing different

implementation techniques for small CPUs) is generally faster than a

comparably complex series of simpler integer operations.

In what concerns the use of packaged encryption routines in DBMS’,

Oracle recommends the use of tablespace encryption when there is no

way of determining which columns are sensitive and which are not, or

when the majority of the data in the tablespace is sensitive [Oracle,

2010a]. They state that column encryption should be preferred when a

small number of well defined columns are sensitive. This last scenario is

typical in data warehousing environments, which makes column

encryption the recommended solution according to Oracle. However, as

Chapter 2

52

we have shown in [Santos et al., 2012a], when applying column

encryption in DWs the storage overhead will be very significant.

On the other hand, since DWs are business knowledge data sources by

nature, we can assume that most of its data is sensitive. In this sense, we

may also state that TDE tablespace encryption should also be highly

considered. Nevertheless, data coming from tablespace encryption is

made immediately transparent once that data is loaded into the SGA

(located in RAM), making decryption straightforward and minimizing

resource consumption, but also allowing third party access to the real

data, lowering the level of security. Although we are focused on

performance, we believe this is a very relevant drawback in data security

and that it should not be considered a good solution, given the risk of

data exposure.

There are also many situations where certain users or applications may

require querying data that is less sensitive or not sensitive at all to the

business. Since tablespace encryption encrypts the entire content of the

tablespace, in these scenarios using tablespace encryption would require

giving those users or applications the encryption keys or passwords that

allow them to access the data. Using column encryption would enable to

keep the columns that store less sensitive data unencrypted is this

desirable, avoiding the disclosure of security keys or passwords to ensure

the access to that data. Furthermore, tablespace encryption adds

computational overhead to decrypt less sensitive or non-sensitive

columns for query processing, that wouldn’t be selected for encryption

when using column encryption.

Other encryption solutions proposed by research work such as [Agrawal

et al., 2004] distribute data in well-defined groups to allow direct

operations on encrypted data. However, the impact in performance

produced by these solutions, in response time and storage space

overhead, depends on the skew in the target distributions, which can be a

very serious problem in DWs. There is no easy way around this. The

proposal from [Hacigumus et al., 2002] also suffers from the same

problem.

The lightweight encryption in column-oriented DBMS proposed in [Ge

and Zdonik, 2007] aims on providing low decryption overheads.

However, their experiments show at least 50% of response time overhead

Background and Related Work

53

to retrieve the encrypted tuples, which is still extremely high for many

DW scenarios, such as long running queries. The fact that is aimed at

column-DWs also narrows its applications.

Topologies involving middleware solutions such as [Radha and Kumar,

2005] typically request the encrypted data from the database a priori and

execute the decrypting actions themselves locally. The proposal in [Radha

and Kumar, 2005] aims to ensure efficient query execution over encrypted

databases, by evaluating most queries at the application server and

retrieving only the necessary records from the database server. Only one

query (Q6) of the TPC-H benchmark is used in their experimental

evaluation, against a very small data subset (ranging from 10MB to 50MB,

where query execution time rises up to 5 times for the last).

This dataset size cannot be considered realistic for DWs, given its typical

very large sized databases. In a DW environment, previously

transporting all the required data from the database to the middleware is

unreasonable, since the amount of data accessed for processing decision

support queries is typically much larger than a few tens of MB. This

would strangle the network due to bandwidth consumption of data

roundtrips between middleware and database, jeopardizing data

throughput and consequently, response time. Thus, all encrypted data

should be processed at the DBMS itself, eliminating network overhead

from the critical path.

After considering the referred issues that influence performance (and

security tradeoffs) of the described encryption solutions and to finish this

discussion, we have come to the following conclusions:

 Both standard encryption algorithms and specific research database

encryption solutions show large performance overheads;

 The type and number of operations for producing the “data mix”

output in each round of the algorithm, the length of the used

encryption keys, the size of the input and output blocks, and the

number of rounds to execute, are all variables that affect both

security and performance;

 In many software implementations of the security techniques, the

CPU architecture also varies the performance outcome;

Chapter 2

54

 Typically, most secure encryption algorithms will execute between 8

and 20 rounds against 64, 128 bit (or more) sized blocks, using a 128

or 256 bit key;

 Encryption algorithms which make use of chains of simple

operations such as bit additions and XORs scale better and have

reduced CPU dependency than solutions that make use of more

complex operations such as S-box lookups;

 Salsa20 seems to provide consistent speed in a wide variety of

applications across a wide variety of platforms. It is faster and

simpler than the complex-operations approach of the standard

algorithms 3DES and AES, while granting significant security

strength. However, most commercial vendors just include AES and

3DES routines. The AES became a standard only after a five-year

long standardization process that included extensive benchmarking

on a variety of platforms ranging from smart cards to high end

parallel machines. Thus, the adoption of encryption standards is

probably only due to legal impositions and public reliability issues,

given that only AES and 3DES are the current well-accepted

encryption standards.

 All major DBMS provide encryption to be used transparently by user

applications;

 When using tablespace encryption, the requested data is decrypted

and loaded into RAM memory (in the database cache) as clear text,

while column encryption does not and is thus more secure;

 Tablespace encryption does not create significant storage space

overhead, while column encryption does;

 Despite the well-known pros and cons, the best choice between

tablespace encryption and column encryption isn’t obvious;

 Leading DBMS use standard encryption algorithms AES and 3DES,

producing alphanumeric or binary values as a result of the

encryption process, even for numerical-typed attributes;

 In DWs, transporting encrypted data to third party decrypting agents

would create unbearable communication bandwidth consumption

and compromise throughput.

Background and Related Work

55

2.4. Database Intrusion Detection Systems

Generically, intrusion detection (ID) is defined as the process of

monitoring the events occurring in a computer system and analyzing

them for signs of possible incidents, which are violations or imminent

threats of violation of computer security policies, acceptable user policies,

or standard security practices [Scarfone and Mell, 2007]. ID systems are

typically classified in two main types, depending on the environment in

which they operate:

1) Network-based ID systems, which perform surveillance using

network traffic or other network-based data;

2) Host-based ID systems, which are located at the host that is aimed to

be protected, analyzing the activity that happens there.

In this thesis, we specifically focus on Database Intrusion Detection Systems

(DIDS), which are host-based ID systems that analyze user actions

occurring at the database level in order to detect (and eventually stop or

prevent) intrusion actions. This section characterizes the way a typical ID

system operates and presents a descriptive analysis of selected samples

from each different type of approach and/or technique that can be applied

in DIDS, in order to characterize the broad scope of existing solutions.

2.4.1. How Intrusion Detection Systems Operate

The main requirements that ID systems are required to cope with are:

 The quest for adequately defining and building profiles that

accurately represent “normal”/“intrusion-free” behavior or

workloads, as well as identifying attack signatures;

 Given those profiles and/or attack signatures, define which

behavioral features as well as techniques and models that maximize

the performance and accuracy of the intrusion detection processes;

 Reporting system status to security staff and notifying them about

generated alerts;

 Promote a way of stopping or preventing the attack whenever an

intrusion alert is raised (this feature may or not be present in the ID

system; if it is the case, literature often refers to the ID system as an

Chapter 2

56

Intrusion Detection and Response System, or an Intrusion Detection

and Prevention System).

The typical components of an ID system according to [Scarfone and Mell,

2007] are shown in Figure 2-12 and are described as:

 A Sensor or Agent, which are responsible for capturing both the

information relating to the ID features that is necessary for building

the “normal”/“intrusion-free” profiles and/or attack signatures, as

well as the required information to execute the ID processes;

 A Management Server, which is a centralized device that receives the

information from the Sensor or Agent and manages the profile

building processes and the intrusion detection and response

processes of the ID system;

 A Repository, for storing the behavior profiles and/or attack

signatures, activity logs, generated alert information and other

relevant data that is useful to the ID system; and

 A Console, which is the interface responsible for the interaction

between security managers/staff and the ID system, i.e., it enables a

mean for configuring the ID system and displays the required

information concerning the behavior profiles, system status,

generated alerts, etc.

Sensor or Agent Management Server

Repository

Console

Activity Source

Figure 2-12. Typical ID System Architecture (adapted from [Scarfone and Mell, 2007])

Background and Related Work

57

Referring to Figure 2-12, the Activity Source is where the activity that

should be analyzed is generated; in a DIDS, it can represent a user or an

applications that generates SQL workloads to execute against the DW.

This activity is then captured by the Sensor or Agent and sent on to the

Management Server either to build behavior profiles and previously define

attack signatures (if the activity is considered “intrusion-free” and the ID

system is in the learning phase) or to perform intrusion detection and

consequent alert generation (and/or response actions if this is required).

The Management Server will both read and write data from the Repository

in order to retrieve or store all relevant information accordingly with

what it needs to do. The Console allows the security managers/staff to

configure the ID system and retrieve all relevant information for

assessing system status, user behavior and alert notifications.

In DIDS systems there is typically a learning or training phase (i.e.,

previous to intrusion detection), in which database and/or user logs

assumed as having “normal” or intrusion-free activity are used in order

to build the user behavior profiles and/or define attack

signatures[Newman, 2011]. After this learning phase, the intrusion

detectors match user actions against those profiles and/or attack

signatures to find significant deviations which are signaled as potential

intrusions.

From the intrusion perspective, an intruder in a data warehousing

environment can be one of the following [Treinen and Thurimella, 2006]:

 An authorized user, which is someone belonging to the enterprise that

has regular access to authorized database interfaces and acts with

malicious intent (also commonly referred to as the insider threat);

 A masqueraded user, which is someone that obtains the credentials of

an authorized user and impersonating that user takes control of an

authorized interface (which refers to the insider threat when the

attacker is someone from within the enterprise but without regular

authorized database access, and refers to an outsider threat when it

someone from outside the enterprise that manages to obtain the

credentials);

 An external attacker (commonly referred to as the outsider threat),

which is someone from outside the enterprise that is able to bypass

Chapter 2

58

the database security and gain direct database access using SQL

injection6 or other exploiting techniques;

 Any combination of the above.

Considering the possible intruders’ intentions, there are mainly three

types of attacks mobilized against DWs [Douligeris and Mitrokotsa,

2004]:

 Attacks aiming at corrupting data (integrity attacks). In these types of

attack, the intruder seeks access to the database for executing actions

that compromise its integrity, such as corrupting or deleting the data

in a given database object (e.g. such as a table or view);

 Attacks aiming at stealing information (confidentiality attacks). In these

attacks, the intruder is focused on breaking confidentiality issues,

such as stealing business information, rather than damaging data;

 Attacks aiming at making the DW unavailable (availability attacks). These

attacks aim on making database services unavailable to users, i.e.,

they are mainly Denial of Service (DoS) attacks (e.g. flooding

database services and bandwidth with a large number of requests,

halting or crashing database server instances, deleting database

objects, etc).

The way how ID processes are designed to operate is mainly based on

two approaches, depending on what they intend to search for:

6 SQL injection is a type of attack executed through means of a third party

interface (e.g. a web application) in which the attacker appends malicious code to

an authorized command that will be executed on behalf of that interface. SQL

injection is often considered as a particular form of attack on its own, following

very well-defined guidelines. Although the actions performed through SQL

injection can also be detected by DIDS, the forms of detecting SQL injection

attacks have been extensively studied and belong to a category of security

mechanisms that are differentiated appart from those that we intend to focus on

in this thesis. As a reference, the work in [Halfond et al., 2006; Kim, 2011; Kindy

and Pathan, 2012] presents detailed surveys and countermeasures on SQL

injection.

Background and Related Work

59

1) Misuse or signature-based detection, which searches for well-known

attack patterns and signatures defined a priori to the attack itself;

and

2) Anomaly detection, which searches for deviations from typical user

behavior by matching their actions against assumed “intrusion-

free” profiles that significantly represent that typical user behavior.

The first approach is mainly efficient against previously well-known and

expected intrusion actions. However, they are mostly incapable of acting

against intrusions that reveal new forms of attack or malicious actions

that seem “normal” (which, in many cases, refer to the insider threat),

opening a much wider spectrum of analysis possibilities that results in a

threat that is much harder to tackle and mitigate. Given the published

work that refers trends indicating an increase of attacks referring to the

insider threat [Jabbour and Menasce, 2009], to overcome those issues

anomaly detection techniques have been proposed in the most recent

DIDS.

In the past, several types of intrusion detection techniques and methods

have been proposed to build behavior profiles and perform intrusion

detection processes that may be used in DIDS, which we shall describe

and discuss in the following subsections.

2.4.2. Intrusion Detection Techniques

The most common way to distinguish between distinct ID techniques is to

classify the way they select and analyze the features used for building

user profiles and execute the intrusion detection processes. In this

subsection, we distinguish and describe a set of main types/classes of

analysis techniques, referring prominent research work in each of these

classes.

Temporal Analysis. These techniques focus on temporal features such as

the time span between user actions and the duration of those actions.

The approach in [Lee et al., 2000] uses a mean and standard deviation

model built from time signatures to check for outliers within a predefined

range in real-time database systems. This solution considers a transaction

as a set of read or write actions for each data object which is executed in

predefined update time periods. For example, the update of a temporal

Chapter 2

60

data object (event) can trigger a rule such that the update time is checked

against the expected update time (condition) and rejects the update

(action) if the predicate returns false, considering it an intrusion.

The training period occurs until a significant mean with 99% confidence

level of a normal distribution is obtained for each object/update pair.

Database behavior is monitored by sensors at the transaction level, which

are assumed to be small in size and have predefined semantics such as

write-only operations and well-defined data access patterns. If a

transaction tries to update a temporal data object that has already been

updated in that period, an alarm is raised.

Dependency and Relation Analysis. Intrusion detection techniques

based on dependency and relation analysis determine dependencies

and/or relations among the distinct sets of user actions and/or accessed

data in order to determine which columns, rows, tables, etc. and/or which

commands are usually issued or processed together.

For example, the DEMIDS system [Chung et al., 1999] builds user profiles

based on their activity by determining frequent itemsets from

feature/value pairs and computes distance measures of user activity

against the learnt frequent itemsets to detect intrusions, given a

threshold. The features are typically based on the syntactical analysis of

user commands, where the itemset domains are the sets of attributes

issued together.

Another approach using frequent itemset mining is presented in [Zhong

and Qin, 2004]. This approach summarizes each user command into a

tuple <Op, F, T, C> where Op is the type of SQL command (insert, select,

etc), F is the set of attributes, T is the set of tables, C is the constrained

condition set. An algorithm mines user query profiles using these tuples,

based on the pattern of the submitted queries at the transaction level. The

algorithm adapts the support and confidence of association rule mining

by adding query structure and attribute relations to the computation.

The Role-Based Access Control (RBAC) DIDS proposed in [Kamra et al.,

2008] improves a previous approach [Bertino et al., 2005b] using features

named quiplets for summarizing each user command. Considering a

generic command:

Background and Related Work

61

SELECT {Target-List}
 FROM {Relation-List}
 WHERE {Qualification}

A quiplet is defined as (C, PR, PA, SR, SA) where C is the SQL main

command (insert, select, etc.), PR is the Projection-Relation information,

PA is the Projection-Attribute information, SR is the Selection-Relation

information, and SA is the Selection-Attribute information. The authors

define three types of quiplets with different granularities: given a relation

(alias table) R1 with attributes A1, B1, C1, D1 and a relation R2 with

attributes A2, B2, C2, D2 and given the user command SELECT R1.A1,

R1.C1, R2.B2, R2.D2 FROM R1, R2 WHERE R1.B1 = R2.B2, will

generate, as shown in Figure 2-13:

1) The coarse c-quiplet (select, <2>, <4>, <2>, <2>)

2) The medium m-quiplet (select, <1,1>, <2,2>, <1,1>, <1,1>)

3) The fine f-quiplet (select, <1,1>, <[1,0,1,0], [0,1,0,1]>,

<1,1>, <[0,1,0,0], [0,1,0,0]>)

Figure 2-13. The quiplet construction process [Kamra et al., 2008])

For anomaly detection when the database has role-based users (i.e., it is

possible to link each user action to a given role), a Naïve Bayes Classifier

(NBC) is used as follows:

 For all queries in the audit logs, and for each role, the classifier for

each type of quiplet is built (training phase);

 For each submitted query, if any of its classifiers is different from the

ones in its roles, the action is considered an intrusion and an alert is

generated (testing phase).

If role-based access policies are not implemented in the database, they

propose unsupervised anomaly detection. In this case, positional and

distance functions are defined for the quiplets and clustering techniques

(k-centers and k-means) map every user to its representative cluster,

which is the cluster with the highest number of training records for that

user after the clustering phase (training phase).

Chapter 2

62

For each new query to test, two approaches can be used:

1) Given the determination of its representative cluster, use the NBC

as in the Role-Based anomaly detection to perform a similar test; or

2) Verify if the new query is a statistical outlier using the MAD

(Median of Absolute Deviations) test [Pham-Gia and Hung, 2001],

which if true considers the action as an intrusion and generates an

alert.

Sequence Alignment Analysis. Sequence alignment mainly consists in

determining common sequences of events (such as commands, data

attributes, accessed values, etc). DIDS using this type of techniques

typically learn and identify the repeatable series of events with significant

length and eventually break them into smaller-sized subsets to label or

classify those sequences and their subsets as normal user behavior. In the

detection phase, each sequence of new events is matched against the

learnt user sequences and their subsets for measuring how they differ in

order to evaluate its probability of being an intrusion.

The solution presented in [Kundu et al., 2010] identifies sequences of

accessed attributes, commands and tables for building user profiles. The

proposed features are the command types (insert, select, etc.), designed

sensitive attributes, all attributes, operations on attributes, and mixes of

all features. This work also defines criteria for choosing among user-

based, role-based or organization-based profiles, given the working

context of the database.

In the learning phase, it builds sequence models given a threshold for

determining the maximum number of differences. In the detection phase,

it also uses a threshold for computing the highest number of differences

allowed between the tested sequences and those retained in the learning

phase, to consider the sequences as normal or abnormal.

Integrating Dependency with Sequence Alignment Analysis. An

approach for finding dependency relationships among transaction-level

attributes with high support and confidence rules is proposed in [Hu and

Panda, 2004]. These authors observed that in real-world applications,

although the transaction application can often change, the whole database

structure and essential data correlations rarely change. They assume that

whenever an attribute is updated, this action is linked to a sequence of

Background and Related Work

63

other events logged in the database (e.g. due to an update of a given

attribute, other attributes are also read or written). Thus, each update is

defined by three sets: the read set, a set of attributes that have been read

because of the update; the pre-write set, a set of attributes that have been

written before the update and because of it; and the post-write set, a set of

attributes that have been written after the update as a consequence of it.

Transactions that do not follow any of the mined data dependency rules

are marked as malicious.

The work in [Srivastava et al., 2006a; Srivastava et al., 2006b] improves

that of [Hu and Panda, 2004] by considering attribute sensitivity, i.e.,

giving a measure of importance to each attribute. They propose three

levels of attribute sensitivity, considering its support in the analyzed

transactions: high, medium and low. A weighted data mining algorithm

is used to mine the dependencies between database attributes and

generate rules that reflect that dependency, given the measured

sequences of operations (read, write) and the sensitivity of each attribute.

Any transaction that does not follow these rules is identified as malicious.

The authors also present an extension to the Entity-Relationship model to

syntactically capture the sensitivity level of the attributes.

In [Fonseca et al., 2008], a generic learning algorithm for representing

transactions by directed graphs describing execution paths is proposed.

New profiles that deviate from the ones learnt from those execution paths

are seen as unauthorized sequences of SQL commands. The features used

to build the execution paths are the command type (select, insert, delete,

etc.), target objects (tables) and selected columns, and restriction

attributes, all of which are obtained from typical DBMS audit entries

[Newman, 2011] storing information on the UserID, SessionID,

CommandID, TransactionID, user command, object owner, and a

timestamp of its execution.

Statistical Analysis. Statistical analysis is used in several DIDS for

computing user activity and/or data statistics ID features.

The approach presented in [Spalka and Lehnhardt, 2005] makes use of

statistical functions on reference values obtained from the data in

relations (alias tables) and -relations (changes of the values of the

monitored objects/attributes for all reference values, per attribute,

between two runs of the DIDS) for anomaly detection.

Chapter 2

64

An extension is defined as the set of all rows of an insertion/modification

of data and a relation refers to a table or view. The reference values

include count, minimum, maximum, average, standard deviation, ranges,

computed ratios, zero length checking and bit counting. A misuse

detection method is also included, which works by examining database

objects (Database, Default, Function, Index, Privilege, Procedure, Rule,

Schema, Statistics, Table, Trigger, and View) and all operations on them.

This is done by previously defining if each pair <Database object,

operation> is dangerous or not.

The work proposed in [Mathew et al., 2010] is based on computing

summarized statistics such as counting, maximum, minimum, mean,

median, standard deviation and cardinality values of each attribute from

the dataset resulting or affected by the execution of each user command.

These statistics are stored in a vector with fixed dimension named as an

S-Vector, regardless of how large the command’s result dataset may be.

When the dataset for obtaining the S-Vector is large, the authors propose

sampling the dataset by fetching the first initial k tuples or a subset of

randomly picked k tuples, for maintaining performance and scalability.

The set of each user’s S-Vectors is then used for applying techniques such

as clustering, naïve Bayes, support vector machines or decision trees in

order to obtain models that represent the user’s normal behavior given

the information in those S-Vectors. In the intrusion detection phase,

statistical deviation and outlier verification is applied to inspect each user

command and classify it as normal or abnormal.

Information-Theoretic Analysis. Approaches using information-

theoretic analysis compute measures like entropy and information gain

for characterizing user profiles and compare them with those of

subsequent user actions to see how they differ from the original ones.

The work in [Lee and Xiang, 2001] describes such a solution. Features are

composed by a tuple of audit data with n variables for each data object

(e.g. IP address, message size, etc). Entropy is used as a measure of

regularity of audit data (e.g. event types such as a list of commands),

where each record represents a class; the smaller the entropy, the fewer

the number of distinct records (i.e., the higher the redundancies), the

more regular the audit dataset. The fact that many events are repeated (or

redundant) in a dataset suggests that they are likely to appear in the

Background and Related Work

65

future. Anomaly detection models constructed using datasets with small

entropy will likely be simpler and have better detection performance.

Conditional entropy is used to define temporal sequences of audit data.

H(X|Y) shows how much uncertainty remains for the rest of the audit

events in a sequence X after seeing Y. For anomaly detection, it is used as

a measure of regularity of sequential dependencies. If the audit trail is a

sequence of events of the same type, then the conditional entropy is 0 and

the event sequences are deterministic. Conversely, large conditional

entropy indicates that the sequences are not as deterministic and hence

much harder to model.

Relative conditional entropy between distributions is used for measuring

regularities (distance) between two audit datasets, where the training

dataset is a validated audit dataset and the tested dataset is the one that

needs to be inspected. Once again, the best solution is the one with

smaller relative conditional entropy. Information gain is introduced to aid

the feature selection and construction process to improve the detection

performance because of its direct connection with conditional entropy.

The higher information gain owned by the feature, the smaller

conditional entropy, and hence the better detection performance.

Command Template Analysis. Command modeling DIDS use a

command database log to analyze all the regular user commands and

build some sort of summarized templates that are able to generically

represent the typical user workloads.

In [Lee et al., 2002], an algorithm summarizes a set of supposed

“legitimate” queries into SQL templates that represent the models of all

those queries. Each conditional filtering variables in the WHERE clause of

similar commands are considered as parameters. To see if an unbounded

variable should be used for each parameter or a finite list of values, a

Kolmogorov-Smirnov test is done at a 90% confidence level. The

algorithm also tabulates the frequency of each learnt fingerprint, i.e., how

often it occurs in the set of SQL statements.

Taking a new fingerprint F and a previously defined fingerprint F’, F is

considered legitimate if F differs from F’ only by: 1) any extra conditions

in the WHERE clause of F that are missing from F’ are joined with the

AND operator; and 2) F selects an equal or fewer number of columns

Chapter 2

66

than F’. They also propose a method for deducing missing fingerprints

(i.e., ranges of queries that are similar to the database log queries used in

the learning phase), based on mixing the possible combination of

conditions in the WHERE clause from the previously acquired

fingerprints. In the testing phase, each command significantly differing

from the computed fingerprints is considered abnormal.

In [Bockermann et al., 2009] the authors propose applying a grammar-

based analysis using machine-learning techniques instead of commonly

used vector-based data. This approach applies tree-kernel based learning,

which has become popular in natural language processing, using the

parse-tree structure of SQL for correlating commands with applications

and to differentiate between benign and malicious ones by inspecting

changes in command syntax trees.

They derive a distance measure induced by a tree-kernel function to

measure the similarity of SQL commands using their parse-trees. Support

vector machines are used in the learning phase and clustering is applied

for distinguishing benign from malicious commands by outlier detection.

This method promotes a context sensitive similarity that enables locating

the nearest non-intrusive command for a malicious statement, which

helps in root cause analysis.

Table 2-2 summarizes the approaches previously described, mentioning

each type of technique along with the actions and user action elements

that can be analyzed. It also shows if each approach allows implementing

intrusion prevention, i.e., if it enables stopping the intrusion action a priori

to its execution.

Background and Related Work

67

Table 2-2. Database intrusion detection techniques and their coverage

 Elements that can be analyzed Intrusion
Prevention
Capability Technique Reference

Command
Syntax

Accessed
Columns

Processed
Rows

Result
Dataset

Temporal Analysis [Lee et al., 2000] X Yes

Dependency and
Relation Analysis

[Chung et al., 1999] X X Yes

[Zhong and Qin, 2004] X X X Yes

[Bertino et al., 2005b] X X Yes

[Kamra et al., 2008] X X Yes

Sequence Analysis [Kundu et al., 2010] X Partial

Integrated
Dependency and
Sequence Analysis

[Hu and Panda, 2004] X X Partial

[Srivastava et al., 2006] X X Partial

[Fonseca et al., 2008] X X Partial

Statistical Analysis
[Spalka and Lehnhardt, 2005] X X X Partial

[Mathew et al., 2010] X X X No

Information-Theory
Analysis

[Lee and Xiang, 2001] X Partial

Command
Template Analysis

[Lee, 2002] X X Yes

[Bockermann et al., 2009] X X Yes

In what concerns intrusion prevention, which is the capability of stopping

the intrusion action when it occurs or even before it occurs, it can be seen

that several solutions enable full intrusion prevention, while others can

only partially accomplish this. In [Lee et al., 2000], the temporal analysis

technique detects any queries that request execution outside a predefined

time schedule and may therefore deny their execution and prevent the

intrusion action. The sequence analysis technique used in [Kundu et al.,

2010] may enable intrusion prevention by avoiding subsequent user

actions when it detects a suspicious sequence of actions. However, it

needs to wait for a significant amount of actions that make up that

sequence, meaning that it will probably only detect the intrusion after

some of those actions have finished their execution, which makes it only

capable of partial intrusion prevention.

All the solutions based on dependency and relation analysis that were

described [Bertino et al., 2005; Kamra et al., 2008; Zhong and Qin, 2004]

are fully capable of enabling intrusion prevention, since they may check

each individual user command syntax and if they find those commands

suspicious their execution can be stopped before their execution occurs.

Chapter 2

68

The solutions integrating a mix of dependency and sequence analysis

such as [Fonseca et al., 2008; Hu and Panda, 2004; Srivastava et al., 2006a;

Srivastava et al., 2006b] are capable of performing only partial intrusion

prevention, for the same reasons pointed out in the previous paragraph

concerning the solution proposed in [Kundu et al., 2010].

The solutions presented in [Mathew et al., 2010; Spalka and Lehnhardt,

2005], which are based on statistical analysis, are mostly incapable of

intrusion prevention, as they mostly rely on analyzing the changes in

data or execution results after they have been processed. This means they

can only detect the intrusion a posteriori to the attack. However, the

approach in [Spalka and Lehnhardt, 2005] can be adapted to check a priori

statistical data concerning the rows requested to be processed by the user

action, enabling it to have partial intrusion prevention capabilities. For

this same reason, the information-theory analysis approach presented in

[Lee and Xiang, 2001] may also accomplish partial intrusion prevention.

The solutions based on command template analysis proposed in

[Bockermann et al., 2009; Lee et al., 2002] can fully enable intrusion

prevention due to same reason as those previously mentioned that use

dependency and relational analysis [Bertino et al., 2005; Chung et al., 1999;

Kamra et al., 2008; Kamra, 2010; Zhong and Qin, 2004].

Besides the previously described specific ID techniques and approaches

that can be used in databases, other research works have been published

that can also contribute to this intrusion detection field. For example,

although it does not present itself as a DIDS, the work in [Motwani et al.,

2008] describes a method for auditing SQL queries to measure their

suspiciousness from a privacy and confidentiality perspective that may

be useful for intrusion detection purposes. A generic survey on how data

mining techniques can be applied to intrusion detection is shown in [Pei

et al., 2004].

2.4.3. Using Database Intrusion Detection Systems in Data Warehousing
Environments

By observing Table 2-2 it can be seen that most DIDS focus on analyzing

user command syntax (i.e., parsing the SQL-expression syntax of queries

to construct user profiles). As pointed out in [Mathew et al., 2010], the

most common problems with this type of approach is:

Background and Related Work

69

 Regular user queries may differ widely in syntax yet produce

“normal” (i.e., good non-intrusive) output, which generates false

positives (i.e., false alarms);

 Queries may be crafted by the attacker to differ slightly in syntax

from the “normal” user behavior profiles yet produce “abnormal”

(i.e., malicious and intrusive) output, which generates false negatives

(i.e., attacks that pass undetected).

Given the expressiveness of the SQL language and the need to determine

query equivalence or similarity, it is evident that syntax analysis is

complex and very difficult to perform correctly. In fact, query

containment and equivalence is NP-complete for conjunctive queries and

uncertain for queries involving negation [Mathew et al., 2010].

In databases where typical user workloads have a well-defined number

of distinct commands that are issued repetitively, relying on command

syntax analysis may be feasible to achieve high ID efficiency. This is

typically what occurs in transactional systems. However, in analytical

systems such as DW’s many actions are ad hoc and have variable

execution times with variable data access patterns and dimension-size

frequencies and thus, are mostly unpredictable and broad-scoped. This

makes distinguishing between normal and abnormal commands in DWs

an extremely difficult task. In such analytical databases, limiting ID to

command syntax analysis by simply modeling SQL command templates

or static frequent data access patterns (e.g. which tables or columns are

accessed) is unreliable or, at least, minimalist.

Regarding the previously presented characteristics of DW user

workloads, the ID solutions relying on temporal analysis such as

presented in [Lee et al., 2000] are inadequate and mostly produce very

poor ID results due to the unpredictable rate and execution time of those

workloads. Due to the ad hoc nature of most of those workloads, ID

solutions such as [Bockermann et al., 2009; Lee et al., 2002] that are based

on command template analysis lack the necessary dynamics to efficiently

perform the ID processes and therefore also produce poor ID results.

Although the approach proposed in [Mathew et al., 2010] adds a data-

centric analysis of each user command execution’s resulting dataset, the

analysis is performed a posteriori to that execution. Given the time span

Chapter 2

70

between the start of the intrusion and its detection, together with resource

consumption and sensitivity of the targeted data, many enterprises can

suffer huge losses if their DIDS either takes too long to alert a malicious

intrusion or is unable to prevent or stop its execution. In this sense, these

approaches alone are not efficient solutions for intrusion detection in

DWs.

Conclusively, the unpredictable execution frequency and ad hoc nature of

the user workloads make time-based and SQL templating ID approaches

such as [Bockermann et al., 2009; Lee et al., 2002; Lee et al., 2000] mostly

inadequate. On the other hand, DIDS performing ID at a coarse-grained

basis such as database sessions or transaction command sets, instead of a

fine-grained basis such as analyzing each SQL command, risk that a series

of malicious commands may be executed before the intrusion can be dealt

with. Therefore, data dependency and sequence alignment approaches

such as [Chung et al., 1999] that are able to inspect each user command a

priori to its execution, but only after a considerable amount of actions

have been executed, should be used carefully according to each DW

context.

Data-centric techniques such as [Mathew et al., 2010; Spalka and

Lehnhardt, 2005] are capable of bringing added value to a priori ID

techniques by executing an a posteriori analysis of the data affected by the

user action. Combining these techniques with data access pattern analysis

techniques such as [Bertino et al., 2005; Kamra et al., 2008], that deem the

processed data, seem a priori the most feasible and efficient DIDS for

DWs.

2.5. Summary

This chapter presents the background and related work concerning the

data security domains focused by the research work in this thesis, namely

data masking, encryption and database intrusion detection.

The concepts concerning DWs are described and data warehousing

environments are characterized. The differences and characteristics that

distinguish operational systems from DWs have also been detailed.

We have also enumerated and described the standard and state-of-the-art

techniques and methods in data masking, encryption and database

Background and Related Work

71

intrusion detection systems, and discussed the issues concerning their

applicability in data warehousing environments.

Chapter 2

72

73

Chapter 3

Data Warehouse Security
Framework

Despite the fact that published research and best practice guides from

many DBMS vendors state that the best way to protect data in databases

is to use encryption solutions together with intrusion detection systems,

to the best of our knowledge there has been no proposal regarding a

conceptual framework for integrating these distinct solutions together. In

this chapter, we propose a framework that enables integrating together

the proposed masking, encryption and intrusion detection solutions,

which are presented in the following chapters.

The proposed framework can be seen as a middle tier between the user

interfaces and the DBMS, working as an extension of the DBMS itself. We

define the sequence of steps within the scope of the framework, that

occur from the moment a user statement arrives at the data warehouse to

be processed, and describe the information flow and each of its

components. We also define a series of principles that drive the

development of the masking, encryption and DIDS solution proposed in

this thesis. These guidelines deal with the issues of data security and

provide a body of knowledge for the development of specific solutions

for data warehousing environments.

The chapter is organized as follows. Section 3.1 details the middle tier and

how it enables integrating data masking, encryption and intrusion

detection to deal with user actions in a single pass-through overall

process. Section 3.2 presents the guidelines for enhancing data masking

and encryption in data warehouses and Section 3.3 presents the

guidelines for enhancing intrusion detection in data warehouses. Finally,

Section 3.4 concludes the chapter.

Chapter 3

74

3.1. Overview of the Data Warehouse Security Middle Tier

The typical information flow of data warehouse user actions between the

interface used by the user and the DW database(s) is shown in Figure 3-1.

In practice, the user interface typically issues a SQL statement and sends

it to the DBMS, which then processes it against the respective database(s),

receive the processed results, and finally send it back to the user interface

that requested its execution.

User Interface Data Warehouse
Database(s)

DBMS
User query

Response

Write

Read

Figure 3-1. Typical DW user action information flow

In the context of our work, each SQL statement is parsed and analyzed

once it arrives at the DBMS. Whenever required, data masking,

encryption and intrusion detection are applied given the command itself

and its targeted data, immediately before the command is executed.

Intrusion detection is also applied to the processed data and results after

its execution finishes and before disclosing the results back to the users.

The sequence of steps given a request to process a SQL statement issued

by the user is shown in Figure 3-2.

User Statement
Submitted

Parse User
Statement

Analyze User
Statement

Execute User
Statement

Analyze
Processed Data

and Results

Submit Results
back to User

Mask/Encrypt or
Demask/Decrypt

LEGEND
 Regular Flow (mandatory for all user statements)
 Optional (depending on using masking/encryption or not)
 Conditional (user notification or resulting dataset feedback depending if there is any generated alert against the user statement or not)

Alert Alert

Alert and Intrusion Response Management

Figure 3-2. Step sequence of the submittance of a SQL user statement

As shown in the figure, each user statement is parsed and then analyzed

before it is executed by the DBMS, to make an a priori verification of its

suspiciousness. If it is considered an intrusion, then an alert should be

raised against this user action and its execution can be stopped at this

Data Warehouse Security Framework

75

step. Contrarily, if it is not considered an intrusion, then the user

statement can be processed by the DBMS against the Data Warehouse

Database(s) with or without use of the data masking or encryption

processes, according to the security measures defined for the targeted

data. After the user statement finishes being processed by the DBMS, the

processed data and resulting dataset are also be analyzed for

suspiciousness. If it is considered an intrusion, then an alert is also raised

against the user action and disclosure of the results can be stopped at this

step, otherwise the results are sent back to the user.

To accomplish the aimed functionality according to this sequence of

steps, the framework includes intrusion detection, masking and

encryption components, defining an information flow as shown in Figure

3-3.

The middle tier includes mandatory and optional components,

considering that the intrusion detection processes are mandatory and the

masking and encryption processes are optional, given the functionalities

defined by the security administrators. For example, parts of the database

may require encryption or masking due to security requirements, while

other parts of the database may not require encryption or masking. This

means that a user command is always subjected to the intrusion detection

components, but might not require going through the masking or

encryption components.

The main elements of the information flow of the middle tier and each of

its components are described in the following subsections.

Chapter 3

76

Data Warehouse
Security
Interface

Command
Parser

Command
Analyzer

Security
Framework
Database

Data Warehouse
Database(s)

Command
Rewriter

Response
Analyzer

Standard DW
Component

Additional Security
Component

LEGEND

Optional Masking /
Encryption Component

Standard Information Flow

Additional Information Flow

Optional/Conditional Standard Information Flow

Optional/Conditional Additional Information Flow

DBMS

User Interface

Figure 3-3. Integrated Data Warehouse Security Framework

3.1.1. The Security Framework Database

The Security Framework Database is a database that stores all the user data

that enables identifying each DW user (name and password) and his/her

data access policies (attributed role(s) and SQL grant privileges) and a

historical command log that stores all the issued user commands against

the data warehouse database(s), together with the information required

for each component of the masking, encryption and intrusion detection

processes.

Data Warehouse Security Framework

77

For masking and encryption, the Security Framework Database stores all the

necessary masking and encryption keys for each DW database that needs

to be masked or encrypted. On the other hand, for intrusion detection

purposes, the Security Framework Database stores all the DW user behavior

profiles that will be used to assess the incoming user statements. It also

contains the complete history of all the generated alerts in an alert log

that identifies the user command to which each alert refers and attributes

for enabling the Data Warehouse Security Administrator to confirm if that

alert concerns a true intrusion action or a false alarm. The rulebase for the

risk exposure method and the risk exposure measure computed for each

alert is also stored in the database.

3.1.2. The Data Warehouse Security Interface

The Data Warehouse Security Interface is used by the Data Warehouse

Security Administrator for managing the Security Framework Database and

all the masking, encryption and intrusion detection components.

Whenever the Data Warehouse Security Administrator wants to protect a

data warehouse database by applying the framework, the following

actions should be performed:

 After entering the DBA login and database connection data, the

Data Warehouse Security Interface scans all the data access policies

defined in the Data Warehouse Database(s) for identifying

authorized users and respective permissions;

 A user command log is created in the Security Framework Database

for recording all future user actions requested to execute against

the Data Warehouse Database(s);

 All user behavior profiles are then built using the Data Warehouse

Database(s) command log and the existing data.

The interface allows the Data Warehouse Security Administrator to define

the rules to be used by the intrusion detection risk exposure method. It

also displays the information concerning all the generated intrusion alerts

and allows the Data Warehouse Security Administrator to confirm the

authenticity of each alert, i.e., if it refers to a true intrusion or a false

alarm.

Chapter 3

78

The Data Warehouse Security Administrator may use the Data Warehouse

Security Interface to define, at any time, which attributes should be

masked or encrypted. Each time this type of action is required, all the

data concerning such attributes is immediately masked or encrypted by

replacing the original values with the new masked or encrypted ones.

Whenever the Data Warehouse Database(s) needs to be updated, this must

always be done through the middle tier instead of directly through the

DBMS.

3.1.3. Analyzing the User Statement a Priori

Before the user statement can be processed by the DBMS, it must be

analyzed to verify its suspiciousness and assess if it is an intrusion or not.

The information flow referring to this initial process is shown in Figure 3-

4.

Data Warehouse
Security
Interface

Command
Parser

Command
Analyzer

Security
Framework
Database

User Interface

Figure 3-4. Information flow concerning the a priori analysis of the user statement

First, the user statement must go through the Command Parser component.

The Command Parser component is responsible for parsing the SQL

statement, splitting it into its individual sub-queries (if it has any sub-

query) and extracting the relevant intrusion detection features (defined

by the DIDS – the DIDS proposed in this thesis is explained in Chapter 6,

including its respective features), which are finally passed to the

Command Analyzer component. The command itself and the information

that traces it back to the user that requested its execution, as well as the

Data Warehouse Security Framework

79

moment when that execution was requested, are stored in the Security

Framework Database.

Afterwards, the query (and sub-queries’ set) is passed on to the Command

Analyzer component. An important aspect is that the DBMS should be

configured to only process SQL statements that have gone through the

Command Analyzer component. All SQL statements that avoid going

through the Command Analyzer should be rejected by the DBMS. The

Command Analyzer retrieves the information regarding the user behavior

profile to which each command concerns from the Security Framework

Database, and performs the respective intrusion detection tests on each

command to verify if it should be considered an intrusion. If the user

command is considered an intrusion, the Security Framework Database is

updated by flagging the command as a potential intrusion and an alert is

generated, which is passed on to the Data Warehouse Security Interface in

order to be communicated to the Data Warehouse Security Administrator,

and the user action may be stopped. If the user action is not considered

an intrusion, it can then be executed by the DBMS against the Data

Warehouse Database(s), which is the next step.

3.1.4. Executing the User Statement

A user statement that has not been considered an intrusion by the

Command Analyzer component may be executed by the DBMS. There are

two possibilities:

1) If the user statement does not contain any reference to masked or

encrypted columns, then it is immediately executed by the DBMS;

2) If the user statement contains any reference to masked or

encrypted columns, then it is passed on to the Command Rewriter

component to be modified in order to correctly execute against the

masked and/or encrypted data, and then it is executed by the

DBMS.

The information flow referring to this process of executing the user

statement is shown in Figure 3-5. In practice, for each user statement

deemed as a non-intrusion, the Command Analyzer component notifies the

Response Analyzer component to wait for a response so the targeted

processed data and the statement’s execution results can also be

analyzed.

Chapter 3

80

As we explain further in chapters 4 and 5, the proposed data masking and

encryption algorithms only use operators and transformations that are

native to standard SQL. This allows them to simply rely on SQL rewriting

to accomplish their masking/unmasking and encryption/decryption

purposes. After receiving a user statement from the Command Analyzer,

the Command Rewriter queries the Security Framework Database(s) to

retrieve the necessary data masking and encryption keys for that user

statement and applies the required SQL rewriting to the user statement

and sends it to be executed by the DBMS. When a user statement

completes its execution, the results are sent to the Response Analyzer

component to perform an a posteriori verification.

Command
Analyzer

Security
Framework
Database

Data Warehouse
Database(s)

Command
Rewriter

Response
Analyzer

DBMS

Figure 3-5. Information flow concerning the execution of the user statement

3.1.5 Analyzing the Processed Data and Dataset Result a Posteriori

After the user statement has been processed by the DBMS against the

Data Warehouse Database(s), the results are sent to the Response Analyzer to

check if the processed data and the results themselves are suspicious,

given the behavior profile of the typically accessed data and resulting

Data Warehouse Security Framework

81

datasets of the user to which the statement belongs. The information flow

referring to this process is shown in Figure 3-6.

Data Warehouse
Security
Interface

Security
Framework
Database

Response
Analyzer

DBMS

User Interface

Figure 3-6. Information flow of the a posteriori analysis of the user statement

The Response Analyzer retrieves the information from the Security

Framework Database regarding the features belonging to the behavior

profile of the typically accessed data and resulting datasets of the user to

which the statement belongs, and performs the respective intrusion

detection tests against the values of the processed data and resulting

dataset to verify if it should be considered an intrusion. If it is considered

Chapter 3

82

an intrusion, then the Security Framework Database is updated by flagging

the command as a potential intrusion and an alert is generated, which is

then passed on to the Data Warehouse Security Interface in order to

communicate the event to the Data Warehouse Security Administrator,

and the user action can be stopped. If the user action is not considered an

intrusion, the results are simply sent back to the user that requested the

execution and the Security Framework Database is updated by flagging the

action as a non-intrusion that has completed its execution.

3.2. Guidelines for Enhancing Data Masking and Encryption
Performance in Data Warehousing

In this section, we present the guidelines that drived the development of

the data masking and encryption solutions proposed in Chapters 4 and 5.

These generic principles intend to deal with the data masking and

encryption issues pointed out in Chapter 2, and establish the foundations

for each proposed solution in the context of the middle tier presented in

the previous section.

3.2.1. Numerical vs Textual Masked or Ciphered Input and Output

As mentioned in Chapter 2, standard encryption algorithms were

conceived for encrypting general-purpose data and therefore, receive and

output textual or binary data, while data warehouse data is mostly

composed by numerical datatype fact table columns that typically take up

90% or more of the total storage space [Kimball and Ross, 2013]. Most

data warehouse user workloads request processing arithmetic functions

such as sums, averages, etc., which implies that those textual or binary

values need to be converted back into their numerical format.

Since working with text values is much more computationally expensive

than working with numerical values, standard ciphers are much slower

than ciphers specifically designed for receiving numerical inputs and

producing numerical outputs.

Therefore, to avoid the overhead processing time concerning the referred

datatype conversions, the masking and encryption solutions proposed in

this thesis were specifically designed to receive numerical input and

produce numerical output.

Data Warehouse Security Framework

83

3.2.2. Preserving Column Datatypes

Considering that numerical datatype sizes usually range from 1 to 8

bytes, while standard encryption outputs have lengths of 8 to 32 bytes

[Natan, 2005] and that data warehouses have a huge amount of rows that

typically take up many gigabytes or terabytes of space, even a small

increase of any column size required by changing numeric datatypes to

textual or binary (in order to store encryption outputs) introduces very

large storage space overhead. This consequently increases the amount of

data to process, as well as the required storage and processing resources,

which also degrades database performance.

While the importance of encrypting text values might be significant or not

for data warehouses (depending on its context), efficiently encrypting

numerical values is critical, as these represent the business facts. The

masking and encryption solutions proposed in this thesis allow

preserving the original datatype and length of each encrypted column,

which allows maintaining their original data storage space.

3.2.3. Using Only Native SQL Operations to Mask/Encrypt Data

Another issue previously pointed out concerns the data roundtrips

between the database and the encryption and decryption mechanisms.

Topologies involving middleware solutions such as the one proposed in

[Radha and Kumar, 2005] typically request all the encrypted data from

the database and execute decrypting actions themselves locally, finally

sending the decrypted results back to the user that requested them. Given

the typically large amount of data accessed for processing DW queries,

previously acquiring all the data from the database for encrypting or

decrypting in a middle tier is unfeasible. This strangles the database

server and/or network with communication costs due to bandwidth

consumption and I/O bottlenecks, jeopardizing throughput and

consequently, response time.

As our approach is based on operators supported by native SQL, it

requires only query rewriting for masking/encrypting and

unmasking/decrypting actions. In fact, using only native SQL operators

and functions brings several major benefits:

Chapter 3

84

 It allows building the sequence of steps for all masking/encrypting

and unmasking/decryption processes as a unique SQL statement,

and no external languages or resources need to be instantiated;

 Computing the masking/encrypting and unmasking/decrypting

operations as a SQL statement enables them to run directly against

the data, avoiding data roundtrips between the database and the

masking and encrypting mechanisms and thus, avoiding I/O and

network overhead from the critical path;

 Contrarily to what happens with standard encryption algorithm

implementations, which are typically OS platform and CPU

dependent, using only native SQL makes our solutions DBMS

platform independent, making them usable in any data

warehouse running on any CPU model, without depending on

any programming language or external OS resource;

 Since the SQL statements can run directly against the masked or

encrypted data, it means that the data can remain masked or

encrypted at all times, only disclosing the computed results back

to the user which requested the statement’s execution.

3.2.4. Masking and Encryption Algorithm Design

As discussed in Chapter 2, the complexity of each transformation round

in masking and encryption algorithms is directly linked with the security

strength achieved by the algorithm, as is the number of rounds it executes

and the size of the used encryption key(s). It is assumed by the security

community as a general rule that, as the number of complex operations,

encryption key lengths, and/or number of encryption rounds increase, the

algorithms security strength also increases or, at least, remains the same

[Vaudenay, 2006]. However, increasing the complexity of the “data mix”,

the number of rounds or the encryption key length also introduces a

performance drawback, since it requires more machine resources and

processing time.

In what concerns the design of “data mixing” for each masking or

encryption round, we discard bit shifting and permutations, commonly

used by most ciphers [Vaudenay, 2006], since there is no standard SQL

support for these actions. We also discard the use of substitution boxes

(e.g. AES uses several 1024-byte S-boxes, each of which converts 8-bit

Data Warehouse Security Framework

85

inputs to 32-bit outputs), because of their complexity and resource

consumption.

Our masking and encryption approaches are based on the widely used

and well known XOR and MOD operators, which are available to be

implemented in native SQL. In practice, we propose the use of a set of

arithmetic operators combined with XOR and MOD operators to

transform numerical data.

The XOR operator is widely used in most encryption algorithms. In fact,

it is the baseline for achieving perfect secrecy in the most basic encryption

transformation, the Vernam Cipher7 [Vaudenay, 2006]. Its properties in

achieving perfect secrecy given certain conditions and its ease in mixing

up the input values makes the XOR operator an excellent candidate for

building data transformation functions for masking or encryption

purposes.

The modulus (MOD) remainder operator is another good candidate for

data transformation functions with masking or encryption purposes,

because it enables building non-invertible functions. For a function to be

directly invertible, each output must correspond to no more than one

input, i.e., more than one different inputs cannot generate the same

output; a function with this property is called one-to-one, or information-

preserving, or an injection [Bartle, 1976]. An injective function is a

function that preserves distinctness: it never maps distinct elements of its

7 The Vernam Cipher was published in 1926 by Gilbert Vernam from AT&T. It is

based on an encryption key with the same bit length as the input plaintext and

applies a XOR operation against both values to get the encrypted output.

Shannon proved that this cipher achieved perfect secrecy if the keys are

generated in a randomly uniform distribution and the same key is only used

once to encrypt one input value. In this case, there is no information leakage

because the same key is never used twice and the attacker needs to test all

possible encryption key values in each case to guarantee absolute success in the

attack, requiring on average half of that number in order to succeed. Statistically,

perfect secrecy means that the a posteriori distribution of the plaintext X after the

encrypted ciphertext Y is known is equal to the a priori distribution of the

plaintext: the conditional distribution of X given Y is equal to the original

distribution. Formally, for all x and y such that Pr [Y = y] ≠ 0, we have Pr [X = x |

Y = y] = Pr [X = x].

Chapter 3

86

domain to the same element of its codomain. From an information theory

perspective, this means that for an injective function, each input-output

pair has intrinsically the exact same probability of occurrence. This

provides information to break the cipher’s key if the attacker has access to

its algorithm and set of outputs. Therefore, the main objective of a cipher

should be to assure a maximum of non-injective transformations in order

to introduce uncertainty over which inputs generate the output, thus

avoiding information disclosure to break the cipher.

The MOD operator is non-injective, given that for X MOD Y = Z, the same

output Z, considering Y a constant, can have an undetermined number of

possibilities in X as an input which will generate the same value Z when

applying the operator (e.g. 15 MOD 4=3, 19 MOD 4=3, 23 MOD 4=3, 27

MOD 4=3, etc). Since MOD operations are non-injective, this means that

the transformation functions that use MOD are also non-injective. Given

that injectivity is a required property for having invertibility, masking or

encryption algorithms that use MOD transformations are therefore, non-

invertible.

3.3. Guidelines for Enhancing Intrusion Detection in Data Warehousing

This section presents the guidelines that drove the development of the

intrusion detection solution proposed in Chapter 6. These principles

intend to deal with the data warehouse intrusion detection issues pointed

out in Chapter 2 in the context of the middle tier presented in Subsection

3.1.

3.3.1. Using Individual User Profiles

In typical transactional systems, it is normal to have a very high number

of predefined queries that are issued in a repetitive manner by each user,

making most queries extremely predictable. For example, each teller in a

supermarket store is always repeating queries to retrieve individual

product prices. Furthermore, independently from the number of tellers,

all of them mostly repeat the same type of query. Considering a

generalization of this typical operational business environment, it is easy

to understand that user profiling in transactional systems is relatively

simple and user role profiles can be built, instead of building an

individual profile per each user.

Data Warehouse Security Framework

87

Decision support systems do not have the same user characteristics as

those of operational transactional systems. As previously mentioned in

Chapter 2, distinguishing normal from abnormal user behavior in data

warehouses is a very difficult task, given the typical high amount of ad

hoc queries issued by the users. On the other hand, given that each user

has its own data query demands that are closely linked to his/her

business role, the portion of ad hoc queries inherent to each user should

typically contribute to reveal a unique profile that distinguishes each user

from the remaining. Therefore, in this work we claim that user profiles in

DWs should be built with the highest detail, i.e., individual profiles

should be built for each user in order to obtain high intrusion detection

rates, against role-based profiling as suggested in other approaches such

as [Kamra et al., 2008].

3.3.2. Analyzing the Targeted Tables and Columns, Processed Data and
Resulting Datasets

None of the intrusion detection techniques proposed in the past is

capable of analyzing all the aspects directly linked with user behavior in

what concerns database usage in an integrated manner. For instance, the

RBAC intrusion detection approach proposed by [Kamra et al., 2008]

profiles the columns and tables accessed by the users that belong to a

given role. In our opinion, reducing the analysis of user behavior merely

to this type of approach is too simplistic.

Most intrusion detection techniques focus on features that enable the

analysis of which tables and columns are being targeted by the user

actions. Few techniques focus on the data processed by the user actions or

on the resulting datasets themselves, which are a consequence of

processing those user actions. We argue that such distinct approaches

should be integrated so the features can reflect the impact produced by

the user actions for all the previously referred aspects or dimensions.

Therefore, the DIDS proposed in this thesis uses features that enable

analyzing the targeted tables and columns included in the user actions,

the data processed by those actions and its resulting datasets, in an

integrated manner, which never occurs in current DIDS.

Chapter 3

88

3.3.3. Intrusion Detection and Prevention a Priori and a Posteriori

In the past, each DIDS approach for analyzing user actions from a timely

perspective could be divided into two main groups: 1) analyzing the user

action a priori to its execution; or 2) analyzing the user action a posteriori,

i.e., after it finished its execution. Of course, the second type of analysis

would not be able to provide intrusion prevention, which we consider

critical for data warehouses. In this work we consider that both types of

analysis should be used, before and after the user actions are executed

and before its results are disclosed.

The DIDS approach proposed in this thesis focuses not only on building

user profiles regarding features holding information on the issued SQL

commands, but also includes features that infer information on the

processed data and resulting datasets. This enables our solution to

perform intrusion detection and prevention both a priori and a posteriori to

the execution of user actions, before the results are disclosed back.

3.3.4. Using Risk Exposure for Alert Management

When analyzing user actions, most DIDS output numerical measures that

require defining thresholds to determine if those values imply

considering the respective user actions as intrusions or non-intrusions.

While defining high thresholds could potentially produce less false

alarms and give higher assurance that a generated alert would in fact

refer to a true intrusion, this could also potentiate the number of false

negatives, i.e., the number of true intrusions that pass by undetected.

Given the value and sensitivity of data warehouse data, it is preferable to

define low thresholds for the intrusion detection processes. However, this

typically generates an extremely high number of alerts that mostly turn

out to be false alarms, wasting time and resources. There can typically be

a significant amount of alerts with low probability of referring to an

intrusion, but those alerts however may produce a very high negative

impact on the business, given that DIDS typically do not assess the

damage that those intrusions can produce on the business. Furthermore,

not all intrusions represent the same potential amount of danger to the

enterprise.

In this work we propose a risk exposure method that evaluates the risk to

the enterprise represented by each alert without excluding any of them,

Data Warehouse Security Framework

89

given the probability that it really refers to an intrusion and the potential

impact that the action may produce on the business. This allows

considering all generated alerts instead of excluding any of them just

because they have low probability thresholds. Ranking the alerts using a

measure of risk exposure enables checking them by their order of

importance, which means that security staff will spend time and

resources more efficiently, by quickly dealing with intrusions that can

produce greater damage rather than wasting time checking for intrusions

that represent a lower risk of damage. Considering that none of the

generated alerts are discarded and that ranking them by the risk they

present to the enterprise, makes the proposed risk exposure method a

much more reliable and efficient alert management approach than those

using correlation techniques.

3.3.5. Fine-Tuning Intrusion Detection Features

In the proposed DIDS approach, each individual feature can generate

intrusion alerts. The diversity of user behavior characteristics caught by

each feature in each data warehouse environment depends on

heterogeneous (and sometimes unpredictable) events such as the business

context itself and the role played by each user, for example. This means

that the same feature can produce very different false positive (i.e., false

alarm), true positive (i.e., real intrusions detection), true negative (i.e., true

normal user behavior) and false negative (i.e., intrusions that pass

undetected) rates in different data warehousing environments.

Although in most data warehouses it may be very difficult to define a

priori which features should be deemed as more efficient to the intrusion

detection processes, the DIDS should be able to fine tune its sensitivity

over time. Considering that the features that produce the best intrusion

detection results are the most reliable for the intrusion detection

processes, these processes should be able to reflect the relative individual

efficiency between the complete set of feature to improve the overall

results.

The DIDS proposed in this thesis uses a calibration technique that

computes a measure to assure that the features that show a higher

efficiency in intrusion detection are those who’s alerts have higher

probability of referring true intrusions. This is made effective in our

Chapter 3

90

approach by using this measure in the risk exposure method to assess the

probability of each alert, given the feature that generated it, i.e., the

feature’s efficiency measure is directly linked with the probability that the

generated alert refers to a true intrusion. Through time, the system is self-

adaptive by fine-tuning each feature’s measure according to its intrusion

detection efficiency, given its true positive and false positive rates.

3.4. Summary

In this chapter we presented the middle tier that enables the integration

of the proposed data masking, encryption and intrusion detection for

data warehousing environments, and described each of its components.

We also described the information flow and how each individual

component works within the execution path of each individual user

action to form an overall security solution that deals with those actions in

real-time.

The guidelines that drove the development of each data masking,

encryption and intrusion detection solution proposed in this thesis were

also presented. The following chapters will explain in detail how each of

these solutions operate and demonstrate their efficiency.

91

Chapter 4

MOBAT: A Data Masking Solution
for Data Warehouses

The irreversibility and lack of proven security strength attributed to data

masking routines have made them an unacceptable choice when it comes

to securing sensitive data in live production and reporting databases

[Natan, 2005; Ravikumar et al., 2011]. On the other hand, data masking is

the main choice for generating test databases for software development

environments or when there is a need to publish data that has values with

privacy issues. However, we argue that it may be worth considering the

usage of a reversible data masking solution in a data warehousing

context, as it can effectively provide an alternative solution for protecting

data with some level of security strength while introducing low

overheads in database storage space and response time performance.

In this chapter, we propose MOBAT (MOdulus BAsed data masking

Technique), a low cost and straightforward data masking technique for

numerical values that aims at balancing the tradeoff between data

security and database performance. The data masking function uses the

MOD-modular operator (which returns the remainder of a division

expression) and simple arithmetic operations to mask data. Storage space

overhead is avoided by preserving each masked column’s datatype and

by simply using SQL rewriting to mask and unmask values. This also

allows avoiding I/O and network bandwidth bottlenecks by discarding

data roundtrips between the database and the masking and unmasking

mechanisms.

Note that this proposal does not intend to replace any standard

encryption algorithms currently available as built-in packages in most

DBMS, but rather should be viewed as an alternative solution for

protecting the confidentiality of DW data. The main objective is to

provide a significant level of security while introducing very small

Chapter 4

92

overheads in storage space and database performance, i.e., acceptable

tradeoffs between security and performance, which is a critical issue in

order to assure the feasibility of these solutions in DWs.

To evaluate our proposal, we include experiments using two leading

commercial DBMS, Oracle 11g and Microsoft SQL Server 2008, and one

open-source DBMS, MySQL Server 5.5. The experiments allow to

compare the proposed data masking solution against the built-in AES

(with 128 bit and 256 bit security) and 3DES168 encryption algorithms

provided in the referred DBMS, as well as research state-of-the-art

proposals such as Order-Preserving Encryption (OPES) and Salsa20 (alias

Snuffle), using the TPC-H decision support benchmark and a real-world

sales DW.

The remainder of this chapter is organized as follows. In Section 4.1 we

present and describe our masking technique and point out the main

issues regarding its use, while Section 4.2 describes its functional

architecture. In Section 4.3 we discuss our solution’s security and

performance issues. Section 4.4 presents the experimental evaluations

that were conducted using the well-known TPC-H decision support

benchmark and a real-world DW to assess the proposed data masking

technique’s performance and compare it against standard and state-of-

the-art encryption algorithms. Section 4.5 includes a discussion on the

proposed data masking solution and on the results obtained in the

experiments. Finally, Section 4.6 presents our conclusions.

4.1 MOBAT Masking Expression

Generally, most facts in DWs are columns with numerical values

[Kimball and Ross, 2013]. Since fact tables usually represent more than

90% of the DW’s total size [Kimball and Ross, 2013], it is fair to assume

that numeric type columns also represent the largest portion of business

data. The solution proposed in this chapter aims at masking the DW’s

numerical values while introducing small overheads in the computational

efforts for query processing.

Our MOdulus-BAsed data masking Technique (MOBAT), which allows

replacing sensitive data with realistic (but not real) data without heavily

impacting database performance, is based on a quite simple masking

expression. Assume a table T with a set of N numerical columns Ci = {C1,

MOBAT: A Data Masking Solution for Data Warehouses

93

C2, C3, …, CN) to be masked and a total set of M rows Rj = {R1, R2, R3, …,

RM). Each value to mask in the table will be identified as a pair (Rj, Ci),

where Rj and Ci respectively represent the row and column to which the

value refers. The masking expression depends on the following

predefinitions:

 K1 is a 128 bit random generated value, constant for table T;

 K2 is a 128 bit random generated value, ranging between the

minimum and maximum positive integer value possible of column

Ci, given the maximum storage size of the column’s datatype. There

is a K2 for each column Ci to be masked, represented by K2, i;

 K3 is a public key based on a 128 bit column appended to each row

Rj in T, filled in with a random value in [1; 2128], represented by K3, j.

Assume each value to be masked represented as (Rj, Ci). Each new

masked value (Rj, Ci)’ is obtained by applying the following Formula (1)

for row j and column i of table T:

(Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) + K2, i (1)

Since K1 and K2, i are constant values for the table and each column,

respectively, and K3, j is stored along with each row in the table, the

inverse formula of (1) for retrieving the original value is shown as

Formula (2):

(Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) – K2, i (2)

Given that an independent value of K3, j is required for each row, if the

values of K3, j were stored in a lookup table separate from table T a heavy

join operation between those tables would be required to unmask data,

which should be avoided at all cost due to the typical enormous number

of rows in fact tables. In order to avoid table joins in query processing

when using MOBAT, the values of K3, j must be stored along with each

row j in table T. To accomplish this, there are two possible solutions:

1) A new column is added to table T for storing each K3, j value;

2) Table T is recreated with the inclusion of K3, j using the CREATE

TABLE statement from the start and then restoring the table’s data.

The second option implies additional efforts and amount of time to

rebuild table T, depending on its size. However, it should speed up query

Chapter 4

94

response time, when compared with the first option, since the new

column K3, j is physically included with the original data in each row from

the start; the second option may make it to be physically stored apart

from the remaining original data in the table because it is added a

posteriori to its creation. The impact on database performance can be

compared be observing the results in Section 4.4.

A third option for defining K3, j values which speeds up MOBAT

performance is to use any long integer typed column CZ, which is already

part of the original data structure of table T, as K3, j, instead of creating an

extra column for K3,j in T. In this case, no changes in table T data structure

are required, eliminating storage space overhead in T. However, this

limits the security strength of the masking Formula (1), since the value of

K3, j also depends on the range and cardinality of the values of CZ, and the

predictability of knowing the values of CZ on behalf of an attacker. The

results for this third option for defining K3,j are also shown in Section 4.4.

As a simple example on how MOBAT is applied, consider the following:

assume a table T that requires two masked columns, Column1 and

Column2. Suppose that the generated values for masking keys K1 = 9264

for table T and K2,1 = 12 and K2,2 = 78254 for each respective column. Table

4-1 shows the original data for T on the left and its resulting masked

content on the right, represented as T’.

Table 4-1. Example of original dataset and resulting MOBAT masked dataset

T – Original dataset T’ – MOBAT Masked dataset

Column1 Column2 K3,j Column1’ Column2’ K3,j

11 91873 7537 22 162590 7537

2 38824 1808 6 115270 1808

18 71624 29636 22 148034 29636

19 38824 50877 22 112521 50877

15 84624 34997 22 155673 34997

12 46926 41395 17 120841 41395

It can be seen in Table 4-1 that the same original values of Column2 result

in different masked values and that the same masked values in Column1’

also correspond to different original true values in Column1, achieving

apparent randomness. Of course, this is a very small dataset used only to

illustrate these features. We discuss MOBAT’s security issues further on

MOBAT: A Data Masking Solution for Data Warehouses

95

in Section 4.3. In the next section we explain how to query the masked

database.

4.2 Functional Architecture

The functional architecture for using MOBAT in practice is shown in

Figure 4-1, and comprises three key entities:

 The masked database and its DBMS;

 The MOBAT security middleware interface;

 User/client interfaces to query the masked database.

The MOBAT middleware interface acts as a broker between the masked

database DBMS and the user interfaces, using the MOBAT masking and

unmasking methods, ensuring that the queried data is securely processed

and proper results are returned to those interfaces. All communications

are executed through SSL/TLS secure connections, to protect SQL

instructions and returned results between the system’s entities. In the

Black Box, the middleware will store all the generated masking keys and

predefined data access policies for the database to which it concerns.

User
Interface

MOBAT
Middleware

Interface

DBMS Masked DW
Database

Black Box
(Masking Keys,

User Access Definitions,
SQL Command Log)

User
Queries

Query
Results

Query
Results

Rewritten
User Queries

Figure 4-1. The MOBAT Data Security Architecture

The Black Box is stored in the Security Framework Database database server,

as described in Chapter 3, and there is one Black Box created for each

masked DW database. This process is similar to the creation of an Oracle

Wallet, which keeps all the encryption keys and definitions for each

Oracle Database [Huey, 2008; Oracle, 2010a]. However, contrarily to what

happens in Oracle, where the DBA is free to access the Oracle Wallet

whenever s/he wishes, in our solution only the MOBAT middleware itself

can access the Black Box, i.e., absolutely no user has direct access to its

Chapter 4

96

content because it is encrypted using the AES standard encryption

algorithm [AES, 2001] with a 256 bit key only known by MOBAT.

The MOBAT middleware also creates a historical command log for

recording all the instructions and actions executed against the database,

for auditing and control purposes. In case of losing the Black Box of a

certain database, there is no way to restore its true data, except to crack

the masking keys or restoring a replica that has been previously backed

up.

Masking keys’ privacy depends on where the keys are stored and who

has access to them. Our solution uses three masking keys (K1, K2 and K3):

two are private and one is public. The private masking keys are generated

by the MOBAT middleware, and encrypted and stored by it in the Black

Box. The values of those keys are never shown or known by the DBA or

any other user. To obtain true results, all user queries or actions must

pass through the MOBAT middleware, which will store a copy of those

instructions in the Black Box command history log.

Each time a user requests the execution of a query or any other action, the

MOBAT middleware will receive and parse the instructions, fetch the

necessary masking keys, rewrite the query, send it to be processed by the

DBMS and retrieve the processed results, and finally send those results

back to the user interface that issued the request. Thus, MOBAT is

transparently used, since SQL command rewriting is transparently

managed by the middleware. The only change required to user

applications is that commands should be sent to the middleware, instead

of directly to the DBMS.

To mask a database, a DBA must require this action through the MOBAT

middleware. After inputting the DBA login and database connection

information, the MOBAT middleware will attempt to log on to that

database. If it succeeds, it then scans all the data access policies defined in

the database for identifying authorized users and respective permissions.

The Black Box is then created for that database and updated with those

user access definitions and data policies, and an action log for recording

all further user actions requested to execute in the database is also

created, as explained earlier. Afterwards, the tables and columns to be

masked are chosen by the DBA. All the required private masking keys for

MOBAT: A Data Masking Solution for Data Warehouses

97

each table and column are then generated, encrypted by an AES256

algorithm and stored in the respective Black Box.

Finally, the MOBAT middleware applies the data masking formula on all

rows of all columns to be masked, replacing the original values with the

new masked values. Inserting new data or modifying or deleting existing

data must always be done through the MOBAT middleware, which

applies the masking routine to any value referring to any masked

column, and stores the masked value directly in place for update and

insert actions. Contrarily to most standard commercial data masking

solutions, MOBAT also allows reversing the masked database back to its

original data, if masking is no longer needed.

Whenever user applications wish to execute a query, they submit it to the

MOBAT middleware instead of directly querying the database. The

middleware then rewrites the received query in order to process it with

the real data values, using Formula (2) to replace the respective masked

columns used in the query, and checking the user access definitions in the

Black Box to see if it comes from an authorized user. To rewrite the user

query, the MOBAT middleware searches for which tables and columns it

needs to process, and looks up the Black Box for retrieving the needed K1

and K2,i data masking keys for each of those tables and columns, as well

as the additional K3, j key columns used by MOBAT in those tables.

As an example, suppose the LineItem table of the TPC-H benchmark

[TPC-H] has three numerical fact columns (i = 3) (L_Quantity,

L_ExtendedPrice, and L_Discount) masked by MOBAT. Suppose also that

MOBAT has generated and filled in a new column L_KeyK3 for the j rows

of the LineItem table, which will act as the public K3, j key values, and has

stored the value of 9342 (for example) for key K1 referring to the LineItem

table, as well as K2, L_Quantity = 12, K2, L_ExtendedPrice = 51234, and K2, L_Discount = 4 (for

example also). Consider TPC-H query 6:

SELECT SUM(L_ExtendedPrice * L_Discount) AS Revenue
 FROM LineItem
 WHERE L_ShipDate>=TO_DATE('1994-01-01')
 AND L_ShipDate<TO_DATE('1995-01-01')
 AND L_Discount BETWEEN 0.05 AND 0.07
 AND L_Quantity<24

Chapter 4

98

The new query, rewritten by the MOBAT middleware and submitted to

the DBMS is as follows:

SELECT SUM((L_ExtendedPrice +
 MOD(MOD(L_KeyK3,9342),51234)-51234)
 *(L_Discount+MOD(MOD(L_KeyK3,9342),4)-4))
 AS Revenue
 FROM LineItem
 WHERE L_ShipDate>=TO_DATE('1994-01-01')
 AND L_ShipDate<TO_DATE('1995-01-01')
 AND (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4)
 BETWEEN 0.05 AND 0.07
 AND (L_Quantity+MOD(MOD(L_KeyK3,9342),12)-12)<24

As shown in the example, query parsing and rewriting is a

straightforward operation, replacing each masked column with their

respective unmasking Formula (2). This is valid for any type of query,

including equality and range queries, as well as built in functions. These

changes to the queries are handled transparently by the middleware and

kept hidden from the users. Only the query results are returned to the

user interface.

4.3 Security Issues

In this section we discuss the security issues concerning the use of the

proposed data masking technique. We present the threat model, explain

why we use the MOD operator as the base operation for the masking

expression and highlight the advantages of having data-at-rest masked at

all times, and describe the attack costs for breaking MOBAT’s security.

4.3.1 Threat Model

All user queries and instructions that come through are managed by the

MOBAT middleware, which transparently parses and rewrites them to

query the DBMS and retrieve the intended results. The stored copy of

those commands can never be changed or erased, and users never see the

rewritten instructions. For security purposes, any historical logging on

the DBMS should be shut off or made secure (e.g. via encryption) before

requesting the execution of the rewritten instructions, so that they are not

stored in the DBMS as plain text, since this would disclose the masking

keys. Note that for security auditing and to be able to comply with legal

auditing regulations, the MOBAT command log always stores a copy of

MOBAT: A Data Masking Solution for Data Warehouses

99

all the issued user commands. All communications between user

applications, the MOBAT middleware and the DBMS are performed

through encrypted SSL/TLS connections. In what concerns the Black Box,

all contents are encrypted using the standard AES 256 bit algorithm,

making it as secure in this aspect as any other similar encryption solution

for stored data (e.g. Oracle 11g TDE and Microsoft SQL Server 2008 TDE).

The MOBAT middleware allows any user with administration privileges

to query the read-only historical command log, so anyone can watch over

anyone to check for misuse. All database access is controlled by the

middleware, extracting the predefined data access policies in the first

instantiation with the database to mask, from the data access policies

previously defined using the DBMS. Subsequent changes in data access

policies by DBAs must be done through the MOBAT middleware. As

these changes are also stored in the Black Box history command log,

changes in data access policies with the purpose of executing malicious

actions can always be checked.

The only allowed access to the masking keys in the Black Box is done by

the middleware, which is managed only by the middleware itself. We

assume that the DBMS is a trusted server because it is expected to

correctly execute the SQL commands that are sent to it. However, we

consider the database as untrusted as it may be compromised by an

attacker able to bypass the network and MOBAT access controls, gaining

direct access to the database itself. We also assume that the MOBAT

expressions are public, so the attacker can replicate the masking and

unmasking mechanisms, meaning that the goal of the attacker is to obtain

the private masking keys in order to break security.

4.3.2 Using Column Datatype Key Lengths and Consecutive MOD
Operations

In order to minimize the impact in data storage space and query response

time overheads, the private keys for each column have the same length as

the defined column datatype. Although this might imply using small

sized keys and make the masking expression to produce a small amount

of possible distinct outputs, it should not be very significant from a

practical perspective. For example, if the masked column has a bit

datatype, there is no point in generating masked values in a range of

Chapter 4

100

[0…2128], since the attacker probably knows a priori that it can only hold a

0 or 1 by observing the column’s name. Given that the best practices in

DWs suggest using meaningful names for the columns in the database

tables for the sake of readability [Kimball and Ross, 2013], this also

suggests that there is not much to gain in incrementing the size of the

masked output range of values because this will probably not imply an

increase of the level of security strength.

As previously mentioned, the MOD operator is used as the main

operation in the masking expression because it is non-injective, given that

for X MOD Y = Z, the same output Z, considering Y as a constant, can

have an undetermined number of possibilities in X as an input that will

generate the same value Z. This is illustrated in Section 4.1 (Table 4-1),

where the same original values originate different masked values and

vice-versa. Since MOD operations are non-injective, the masked outputs

are also non-injective. Given that injectivity is a required property for

invertibility, the proposed masking expression is thus not directly

invertible, enforced by using two consecutive MOD operations. Thus, the

objective of the attacker should be focused on obtaining the private

masking keys in order to break security.

4.3.3 Data-at-rest is Always Masked

Since MOBAT operates simply by rewriting SQL commands to be

processed against the data, this enables running SQL directly against the

masked data, which means that the data-at-rest stored within the

database files is masked at all times.

This also means that even if someone gains direct access to the database,

s/he will only see masked data values. As the masked values are realistic-

looking and maintain their original column datatypes, if an attacker was

to query the database s/he would view expected values, although they

would be incorrect. This means that MOBAT would potentially be able to

produce misleading effects against attackers.

4.3.4 Attack Costs on MOBAT

As known (and as we assume the attackers have access to the masking

expression), the level of security of data masking or encryption solutions

does not depend on its secrecy, but on its keys [Elminaam et al., 2010;

MOBAT: A Data Masking Solution for Data Warehouses

101

Nadeem and Javed, 2005]. The quality of each set of operations in

achieving the intended “data mix” affects the performance of the

algorithm. Thus, there is always a tradeoff between security and

performance in these algorithms, because the achievement of higher

complexity often implies the consumption of a higher amount of

resources and processing time.

As mentioned before, there keys are used in our proposal: K1 is a unique

value generated once for each table and made constant for all values to

mask in that table; K2 is a unique value generated once for each column in

each table and made constant for all values to mask in that column; and

K3 is a value generated for each row in the table, made constant for all the

values in the columns to mask in that row. Since K3 is public (given that it

is stored in the fact table), only key values K1 and K2 need to be

discovered for retrieving the real data values.

K1 is a 16 byte integer key, i.e., a set of 128 bits. K2 depends on the

maximum storage size defined for each column, typically varying

between 1 and 128 bits. This means that our technique implies a

minimum of 2129 key combinations, for K1 and K2 together (at least 16

bytes + 1 bit), and roughly needs an average number of 2128 tests (half of

the total amount of possible brute force tests = 50% chance) for

discovering the keys using brute force, for each masked column in the

table, since K2 is column dependant. Consequently, the minimum number

of combinations needed to discover all the needed key values for a i

number of columns is i * 2129, resulting in an average of i * 2128 i * 3.4 x

1038 brute force tests in order to discover the keys.

This is however the worst case scenario for the attacker and executing a

chosen ciphertext attack would allow the attacker to reduce the key

search space in the following way (considering the masking expression

defined in Formula (1)):

Consider x’1,i and x’2,i as the masked values for two given rows

(respectively 1 and 2) of column i and x1,i and x2,i as their respective

original true values, i.e., x’1, i = (R1, Ci)’, x’2, i = (R2, Ci)’, x1, i = (R1, Ci), and x2,

i = (R2, Ci). In this case,

x’1, i = x1, i – ((K3, 1 MOD K1) MOD K2, i) + K2, i

x’2, i = x2, i – ((K3, 2 MOD K1) MOD K2, i) + K2, i

Chapter 4

102

Knowing that K3, j is a public value key, if the attacker chooses two

masked outputs where K3, j have very small values (close to zero), then it

is highly probable that those values are smaller than the K1 private key,

i.e., K3, 1 < K1 and K3, 2 < K1. In this case, the masking expression would be

reduced to:

x’1, i = x1, i – (K3, 1 MOD K2, i) + K2, i

x’2, i = x2, i – (K3, 2 MOD K2, i) + K2, i

where all values are known except for the private key K2, i.

Building up an expression with the difference between both variables, we

have:

(x’1, i – x’2, i) = (x1, i – (K3, 1 MOD K2, i) + K2, i) – (x2, i – (K3, 2 MOD K2, i) + K2, i)

 = (x1, i – (K3, 1 MOD K2, i)) – (x2, i – (K3, 2 MOD K2, i))

Finally, isolating the expressions with known values from those having

unknown values:

(x’1, i – x’2, i) – (x1, i – x2, i) = (K3, 1 MOD K2, i – K3, 2 MOD K2, i)

which would significantly reduce the search space for K2, i. After breaking

K2, i the attacker could then discover K1 in a similar manner by using the

original expressions of Formula (1) for the masked values.

To evaluate the database performance when using the proposed masking

solution, the following section presents experimental results obtained by

MOBAT against standard and state-of-the-art encryption solutions.

4.4 Experimental Evaluation

To evaluate the proposed masking technique, we used the TPC-H

decision support benchmark [TPC-H] (1GB and 10GB scale sizes) and a

real-world sales DW storing one year of commercial data taking up 2GB

of storage space (full description of TPC-H can be found in [TPC-H

Specifications], while full description of the sales DW including its

description, size, data schema and query workload can be seen in

Appendix A). We tested all scenarios using the Oracle 11g and Microsoft

SQL Server 2008 R2 DBMS with default settings, on a Pentium IV 2.8GHz

CPU with a 1.5TB SATA hard disk and 2GB of RAM, 512MB of which

devoted to the database memory cache. Oracle 11g ran on Windows XP

Professional, while SQL Server ran on Windows 2003 Server.

MOBAT: A Data Masking Solution for Data Warehouses

103

Although we include experiments from both DBMS, it is not our aim to

compare the results between the DBMS, but rather to compare the

performance of each standard and research solution with that of MOBAT

within the same DBMS.

The columns chosen for testing the masking solution were those referring

to numerical datatype columns belonging to the fact tables. The database

schema of TPC-H has one fact table (LineItem), and seven dimension

tables. The Sales DW database schema has one fact table (Sales) and four

dimension tables connected to it. In the TPC-H setups, four columns of

LineItem were masked (L_Quantity, L_ExtendedPrice, L_Tax and

L_Discount), given that they are the numerical fact columns. In the Sales

DW, five numerical columns were masked (S_ShipToCost, S_Tax,

S_Quantity, S_Profit, and S_SalesAmount), for the same reasons.

Since our solution is column-based, for fairness we compare it with

column-based AES128 and 3DES168 encryption algorithms. Note that

tablespace encryption has functional primitives that speedup

performance, which makes it unfair to compare it with column-based

techniques [Huey, 2008; Oracle, 2010a]. Moreover, best practices for

encryption in the documentation from both DBMSs [Huey, 2008; Oracle,

2010a] recommend using column-based encryption when the sensitive

data consists on a small number of well-defined columns. We used the

AES128 and 3DES168 Transparent Data Encryption (TDE) algorithms

provided by both DBMS for comparison because they are, respectively,

the fastest and slowest available algorithms in those DBMS [Huey, 2008;

Oracle, 2010a], and OPES [Agrawal et al., 2004] and Salsa20/20 [Bernstein,

2005; Bernstein, 2008]. OPES and Salsa20 were implemented using C#.

Table 4-2 shows the experimental encryption/masking scenarios. The

results for MOBAT where the new K3, j masking key columns are added to

the fact tables are referenced as MOBAT_AddCol; and the results for

MOBAT where the K3, j columns are added in the fact tables from the start

and completely rebuilt are referenced as MOBAT_CreateCol. The results

for the tests using an existing table column as K3, j instead of adding a new

column to the fact table is referred as MOBAT_ColKey, where L_OrderKey

and S_SaleID are used as CZ in the TPC-H and real-world sales DW,

respectively; i.e., each value of L_OrderKey and S_SaleID in each row j of

tables LineItem and Sales, respectively, function as K3, j for MOBAT.

Chapter 4

104

Table 4-2. Experimental Encryption/Masking Scenarios

Reference/Label Description

Standard Standard data without masking/encryption

AES128 Col Data encrypted with TDE AES 128 bit key column encryption

3DES168 Col Data encrypted with TDE 3DES168 column encryption

OPES Data encrypted with Order-Preserving Encryption [Agrawal et al., 2004]

Salsa20 Data encrypted with Salsa20/20 encryption [Bernstein, 2008]

MOBAT AddCol
Data masked by MOBAT formula (1), where a column for masking keys
K3, j has been added to the existing fact table

MOBAT CreateCol
Data masked by MOBAT formula (1), where a column for masking keys
K3, j was added to the fact table, which has been completely recreated

MOBAT ColKey
Data masked by MOBAT formula (1), using a numerical column from
the original fact table data structure as key K3, j

All loading time and query response time results shown in this section

are an average of six executions in each described setup/scenario. Given

the resulting standard deviations are relatively small assures that this

number of executions if sufficient enough to be representative for

comparisons. The complete set of results and respective statistical

measures can be seen in Appendix B.

4.4.1 Analyzing Storage Space

Figures 4-2a and 4-2b respectively show the results of total data storage

space (in MB) and percentage of storage space overhead for loading the

TPC-H 1GB LineItem fact table in Oracle, while Figures 4-3a and 4-3b

show the same results in SQL Server. To execute the loading processes, all

indexes were dropped on the fact tables.

As shown, the standard storage space for the TPC-H LineItem fact table

without using any sort of encryption or masking solution takes up 772MB

of storage space in Oracle and 1237MB of storage space in SQL Server.

There is a significant difference in the standard data storage space sizes

between the DBMS because they have distinct ways of storing data, in

which Oracle standardly uses a type of compression algorithm while SQL

Server does not.

Note that the resulting values registered for MOBAT refer to

MOBATAddCol (adding a column to the fact table) and MOBATCreateCol

(recreating the fact table with the addition of a column), involving the

MOBAT: A Data Masking Solution for Data Warehouses

105

creation of an extra public key column (referred to as K3,j as described in

the previous sections). The MOBAT ColKey setup (in which the column

used as the public key column is a column that originally belongs to the

fact table) is not included, since it does not require changing the fact table

data structure to handle the implementation of MOBAT. Thus, the

overhead for MOBATColKey is actually inexistent, making it the best

technique in what concerns avoiding storage space overhead.

Oracle TPC-H 1GB

LineItem Fact Table Storage Size (MB)

Oracle TPC-H 1GB

LineItem Storage Size Overhead (%)

Figure 4-2a. Storage Size in Oracle

for the TPC-H 1GB Fact Table per

Solution

Figure 4-2b. Storage Overhead (%)

in Oracle for the TPC-H 1GB Fact

Table per Solution

SQL Server TPC-H 1GB

LineItem Fact Table Storage Size (MB)

SQL Server TPC-H 1GB

LineItem Storage Size Overhead (%)

Figure 4-3a. Storage Size in SQL

Server for the TPC-H 1GB Fact Table

per Solution

Figure 4-3b. Storage Overhead (%)

in SQL Server for the TPC-H 1GB

Fact Table per Solution

Chapter 4

106

As shown, OPES and MOBAT produce much smaller storage space

overheads than the remaining solutions. OPES shows a 2% overhead for

both DBMS, corresponding to an extra 18MB of storage space in Oracle

and 21MB in SQL Server, and 12% and 8% overhead for MOBAT

respectively in Oracle and SQL Server, corresponding to an extra 96MB

and 102MB of storage space. OPES produces a small storage space

overhead because the smallest and largest gaps between the sorted values

for its target distributions are mostly small in the TPC-H database. This

attests what is explained in [Agrawal et al., 2004], where the authors

express that they would expect a small increase of the required space for

the ciphertexts.

Salsa20 introduces more storage space overhead than OPES and MOBAT,

namely 38% in Oracle, corresponding to adding 292MB, and 26% in SQL

Server, which adds 316MB of extra storage space. The standard

encryption solutions produce the highest overhead, with AES being the

worst by requiring 154% in Oracle and 95% in SQL Server of storage

space overhead, corresponding to respectively adding 1188MB and

1173MB and 154%, while 3DES168 produced a storage space overhead of

104% in Oracle and 76% in SQL Server, respectively corresponding to

800MB and 944MB of extra storage space.

Figures 4-4a and 4-4b respectively show the results of total data storage

space (in MB) and percentage of storage space overhead for loading the

TPC-H 10GB LineItem fact table in Oracle, while Figures 4-5a and 4-5b

show the same results in SQL Server. Figures 4-4a to 4-5b show that the

extra storage space added to the 10GB database by each solution is

approximately proportional to those of the 1GB database, which means

ten times bigger. Thus, the analysis of the results for the 10GB sized TPC-

H database is similar to that of the 1GB sized TPC-H database.

MOBAT: A Data Masking Solution for Data Warehouses

107

Oracle TPC-H 10GB

LineItem Fact Table Storage Size (MB)

Oracle TPC-H 10GB

LineItem Storage Size Overhead (%)

Figure 4-4a. Storage Size in Oracle

for the TPC-H 10GB Fact Table

per Solution

Figure 4-4b. Storage Overhead (%)

in Oracle for the TPC-H 10GB Fact

Table per Solution

SQL Server TPC-H 10GB

LineItem Fact Table Storage Size (MB)

SQL Server TPC-H 10GB

LineItem Storage Size Overhead (%)

Figure 4-5a. Storage Size in SQL

Server for the TPC-H 10GB Fact Table

per Solution

Figure 4-5b. Storage Overhead (%)

in SQL Server for the TPC-H 10GB

Fact Table per Solution

Figures 4-6a and 4-6b show the total data storage space (in MB) and

percentage of storage space overhead for loading the Sales DW fact table

in Oracle, while Figures 4-7a and 4-7b show the same results in SQL

Server. It can be seen that the standard storage space for the Sales fact

table without using any encryption or masking solution takes up 1664MB

of storage space in Oracle and 1932MB of storage space in SQL Server.

Chapter 4

108

Oracle Sales DW 2GB

Sales Fact Table Storage Size (MB)

Oracle Sales DW 2GB

Sales Storage Size Overhead (%)

Figure 4-6a. Storage Size in Oracle

for the Sales DW Fact Table

per Solution

Figure 4-6b. Storage Overhead (%)

in Oracle for the Sales DW Fact

Table per Solution

SQL Server Sales DW 2GB

Sales Fact Table Storage Size (MB)

SQL Server Sales DW 2GB

Sales Storage Size Overhead (%)

Figure 4-7a. Storage Size in SQL

Server for the Sales DW Fact Table

per Solution

Figure 4-7b. Storage Overhead (%)

in SQL Server for the Sales DW Fact

Table per Solution

As shown in Figures 4-6a to 4-7b, OPES and MOBAT continue to produce

much smaller storage space overheads than the remaining solutions,

similarly to the occurred with TPC-H. OPES shows a 4% overhead for

both DBMS, corresponding to an extra 64MB of storage space, and

MOBAT presents 25% and 33% overhead respectively in Oracle and SQL

Server, corresponding to an extra 415MB and 636MB of storage space.

OPES continues to present the best results because of the same reasons

that were previously mentioned, i.e., the data values in the Sales DW

MOBAT: A Data Masking Solution for Data Warehouses

109

allow it to generate target distributions which do not require much

additional space to store the ciphertexts.

Salsa20 also introduces more storage space overhead than OPES and

MOBAT, namely 88% in Oracle, corresponding to adding 1464MB, and

94% in SQL Server, which adds 1818MB of extra storage space. The

standard encryption solutions produce the highest overhead, with AES

also being the worst by requiring 462% in Oracle and 591% in SQL Server

of storage space overhead, corresponding to respectively adding 7688MB

and 11424MB of storage space, while 3DES168 produced a storage space

overhead of 308% in Oracle and 390% in SQL Server, respectively

corresponding to 5125MB and 7532MB of extra storage space.

Tables 4-3, 4-4 and 4-5 summarize the fact table storage space results

respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for each

DBMS, highlighting the best solutions in each case.

Table 4-3. TPC-H 1GB Lineitem Fact Table Storage Size Overhead

Oracle TPC-H 1GB

Storage Size (Overhead)

SQL Server TPC-H 1GB

Storage Size (Overhead)

Standard 772MB 1237MB

AES128/256 1960MB (+1188MB / 154%) 2410MB (+1173MB / 95%)

3DES168 1572MB (+800MB / 104%) 2181MB (+944MB / 76%)

OPES 790MB (+18MB / 2%) 1258MB (+21MB / 2%)

Salsa20 1064MB (+292MB / 38%) 1553MB (+316MB / 26%)

MOBAT 868MB (+96MB / 12%) 1339MB (+102MB / 8%)

Table 4-4. TPC-H 10GB Lineitem Fact Table Storage Size Overhead

Oracle TPC-H 10GB

Storage Size (Overhead)

SQL Server TPC-H 10GB

Storage Size (Overhead)

Standard 7712MB 12272MB

AES128/256 19580MB (+11868MB / 154%) 23909MB (+11637MB / 95%)

3DES168 15704MB (+7992MB / 104%) 21637MB (+9365MB / 76%)

OPES 7892MB (+180MB / 2%) 12480MB (+208MB / 2%)

Salsa20 10629MB (+2917MB / 38%) 15407MB (+3135MB / 26%)

MOBAT 8671MB (+959MB / 12%) 13284MB (+1012MB / 8%)

Chapter 4

110

Table 4-5. Sales DW 2GB Fact Table Storage Size Overhead

Oracle Sales DW 2GB

Storage Size (Overhead)

SQL Server Sales DW 2GB

Storage Size (Overhead)

Standard 1664MB 1932MB

AES128/256 9352MB (+7688MB / 462%) 13356MB (+11424MB / 591%)

3DES168 6789MB (+5125MB / 308%) 9464MB (+7532MB / 390%)

OPES 1726MB (+62MB / 4%) 2005MB (+73MB / 4%)

Salsa20 3128MB (+1464MB / 88%) 3750MB (+1818MB / 94%)

MOBAT 2079MB (+415MB / 25%) 2568MB (+636MB / 25%)

4.4.2. Analyzing Loading Time

In this subsection, we analyze the loading time for populating the fact

table of each DW, which is affected by both the execution of the masking

or encryption processes and the need to write additional data taking up

extra storage space. Figures 4-8a and 4-8b respectively show the results of

total loading time (in seconds) and percentage of time overhead for

loading the TPC-H 1GB LineItem fact table in Oracle, while Figures 4-9a

and 4-9b show the same results in SQL Server. It can be observed that the

standard loading time for the TPC-H LineItem fact table without using

any sort of encryption solution is 310 seconds in Oracle and 212 seconds

in SQL Server.

As shown in the figures, MOBAT produces much smaller loading time

overheads than the remaining solutions, introducing between 3% and 8%

of overhead in both DBMS, respectively corresponding to adding

between 6 and 25 seconds of loading time. OPES comes after MOBAT in

loading time performance, showing an overhead of 49% in Oracle and

44% in SQL Server, which respectively correspond to adding 151 and 93

seconds. Salsa20 introduces more loading time overhead than OPES and

MOBAT, namely 73% in Oracle, corresponding to adding 227 seconds,

and 70% in SQL Server, which adds 149 seconds of extra loading time.

MOBAT: A Data Masking Solution for Data Warehouses

111

Oracle TPC-H 1GB

LineItem Fact Table Loading Time (sec)

Oracle TPC-H 1GB

LineItem Loading Time Overhead (%)

Figure 4-8a. Loading Time in Oracle

for the TPC-H 1GB Fact Table per

Solution

Figure 4-8b. Loading Time Overhead

(%) in Oracle for the TPC-H 1GB Fact

Table per Solution

SQL Server TPC-H 1GB

LineItem Fact Table Loading Time (sec)

SQL Server TPC-H 1GB

LineItem Loading Time Overhead (%)

Figure 4-9a. Loading Time in SQL

Server for the TPC-H 1GB Fact Table

per Solution

Figure 4-9b. Loading Time Overhead

(%) in SQL Server for the TPC-H 1GB

Fact Table per Solution

Chapter 4

112

Similarly to what occurred with storage space, the standard encryption

solutions produced the highest loading time overheads. AES with 128 bit

security produced 190% in Oracle and 123% in SQL Server, respectively

corresponding to adding 589 and 260 seconds to the standard loading

time. AES with 256 bit security shows an overhead of 209% in Oracle and

139% in SQL Server, respectively corresponding to 648 and 295 seconds of

extra loading time. 3DES168 introduces 192% loading time overhead in

Oracle, corresponding to adding 596 seconds, and 129% in SQL Server,

which adds 273 seconds of extra loading time.

Figures 4-10a and 4-10b respectively show the results of total loading

time (in seconds) and percentage of loading time overhead for loading

the TPC-H 10GB LineItem fact table in Oracle, while Figures 4-11a and 4-

11b show the same results in SQL Server.

From observing the results in Figures 4-10a to 4-11b, it can be seen that

the extra loading time added to the 10GB database by each encryption

solution is approximately over-proportional to those of the 1GB database,

as occurred with the storage space, which means slightly over ten times

bigger. Thus, the analysis of the results for the 10GB sized TPC-H

database is also similar to that of the 1GB sized TPC-H database.

Oracle TPC-H 10GB

LineItem Fact Table Loading Time (sec)

Oracle TPC-H 10GB

LineItem Loading Time Overhead (%)

Figure 4-10a. Loading Time in

Oracle for the TPC-H 10GB Fact

Table per Solution

Figure 4-10b. Loading Time Overhead

(%) in Oracle for the TPC-H 10GB Fact

Table per Solution

MOBAT: A Data Masking Solution for Data Warehouses

113

SQL Server TPC-H 10GB

LineItem Fact Table Loading Time (sec)

SQL Server TPC-H 10GB

LineItem Loading Time Overhead (%)

Figure 4-11a. Loading Time in SQL

Server for the TPC-H 10GB Fact Table

per Solution

Figure 4-11b. Loading Time Overhead

(%) in SQL Server for the TPC-H

10GB Fact Table per Solution

Figures 4-12a and 4-12b respectively show the results of total loading

time (in seconds) and percentage of time overhead for loading the Sales

DW fact table in Oracle, while Figures 4-13a and 4-13b show the same

results in SQL Server. It can be seen that the standard loading time for the

Sales fact table without using any encryption solution is 1195 seconds in

Oracle and 1247 seconds in SQL Server.

As seen in both figures, MOBAT continues to produce much smaller

loading time overheads than the remaining solutions, similarly to the

occurred with TPC-H. MOBAT AddCol shows 15% and 16% overhead in

Oracle and SQL Server, respectively corresponding to an extra 178 and

200 seconds in loading time. MOBAT CreateCol shows 9% and 10% in

Oracle and SQL Server, corresponding to adding 113 seconds in Oracle

and 120 seconds in SQL Server, and when using MOBAT ColKey the

loading time overhead was 5% in Oracle and 6% in SQL Server,

corresponding to 65 seconds of extra loading time in Oracle and 71

seconds of extra loading time in SQL Server.

Chapter 4

114

Oracle Sales DW 2GB

Sales Fact Table Loading Time (sec)

Oracle Sales DW 2GB

Sales Loading Time Overhead (%)

Figure 4-12a. Loading Time in

Oracle for the Sales DW Fact Table

per Solution

Figure 4-12b. Loading Time

Overhead (%) in Oracle for the Sales

DW Fact Table per Solution

SQL Server Sales DW 2GB

Sales Fact Table Loading Time (sec)

SQL Server Sales DW 2GB

Sales Loading Time Overhead (%)

Figure 4-13a. Loading Time in SQL

Server for the Sales DW Fact Table per

Solution

Figure 4-13b. Loading Time

Overhead (%) in SQL Server for the

Sales DW Fact Table per Solution

MOBAT: A Data Masking Solution for Data Warehouses

115

OPES comes after MOBAT in loading time performance, showing a 61%

overhead in Oracle and 57% in SQL Server, respectively corresponding to

an extra 734 seconds and 716 seconds of loading time, and Salsa20

presents 102% and 97% overhead for respectively in Oracle and SQL

Server, corresponding to 1213 and 1212 seconds of extra loading time.

The standard encryption solutions continue to produce the highest

overhead, where AES with 128 bit security produced 199% in Oracle and

159% in SQL Server, respectively corresponding to adding 2379 and 1985

seconds to the standard loading time. AES with 256 bit security shows an

overhead of 210% in Oracle and 171% in SQL Server, respectively

corresponding to 2504 and 2134 seconds of extra loading time. 3DES168

introduces 209% loading time overhead in Oracle, corresponding to

adding 2500 seconds, and 168% in SQL Server, which adds 2092 seconds

of extra loading time.

Tables 4-6, 4-7 and 4-8 summarize the fact table loading time results (in

hh:mm:ss format) respectively for the TPC-H 1GB, TPC-H 10GB and Sales

DW, for each DBMS, highlighting the best solutions in each case.

Table 4-6. TPC-H 1GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 1GB

Loading Time (Overhead)

SQL Server TPC-H 1GB

Loading Time (Overhead)

Standard Loading Time 00:05:10 00:03:32

AES128 00:14:59 (00:09:49 / 190%) 00:07:52 (00:04:20 / 123%)

AES256 00:15:58 (00:10:48 / 209%) 00:08:27 (00:04:55 / 139%)

3DES168 00:15:06 (00:09:56 / 192%) 00:08:05 (00:04:33 / 129%)

OPES 00:07:41 (00:02:31 / 49%) 00:05:05 (00:01:33 / 44%)

Salsa20 00:08:57 (00:03:47 / 73%) 00:06:01 (00:02:29 / 70%)

MOBAT AddCol 00:05:35 (00:00:25 / 8%) 00:03:47 (00:00:15 / 7%)

MOBAT CreateCol 00:05:23 (00:00:13 / 4%) 00:03:41 (00:00:09 / 4%)

MOBAT ColKey 00:05:18 (00:00:08 / 3%) 00:03:38 (00:00:06 / 3%)

Chapter 4

116

Table 4-7. TPC-H 10GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 10GB

Loading Time (Overhead)

SQL Server TPC-H 10GB

Loading Time (Overhead)

Standard Loading Time 00:53:31 00:37:52

AES128 02:49:45 (01:56:14 / 217%) 01:31:24 (00:53:32 / 141%)

AES256 03:05:14 (02:11:43 / 246%) 01:43:49 (01:05:57 / 174%)

3DES168 02:53:44 (02:00:13 / 225%) 01:33:55 (00:56:03 / 148%)

OPES 01:22:23 (00:28:52 / 54%) 00:55:25 (00:17:33 / 46%)

Salsa20 01:38:01 (00:44:30 / 83%) 01:08:08 (00:30:16 / 80%)

MOBAT AddCol 00:59:57 (00:06:26 / 12%) 00:42:30 (00:04:38 / 12%)

MOBAT CreateCol 00:57:29 (00:03:58 / 7%) 00:40:34 (00:02:42 / 7%)

MOBAT ColKey 00:56:02 (00:02:31 / 5%) 00:39:41 (00:01:49 / 5%)

Table 4-8. Sales DW 2GB Fact Table Loading Time Overhead

Oracle Sales DW 2GB

Loading Time (Overhead)

SQL Server Sales DW 2GB

Loading Time (Overhead)

Standard Loading Time 00:19:55 00:20:47

AES128 00:59:34 (00:39:39 / 199%) 00:53:52 (00:33:05 / 159%)

AES256 01:01:39 (00:41:44 / 210%) 00:56:21 (00:35:34 / 171%)

3DES168 01:01:35 (00:41:40 / 209%) 00:55:39 (00:34:52 / 168%)

OPES 00:32:09 (00:12:14 / 61%) 00:32:43 (00:11:56 / 57%)

Salsa20 00:40:08 (00:20:13 / 102%) 00:40:59 (00:20:12 / 97%)

MOBAT AddCol 00:22:53 (00:02:58 / 15%) 00:24:07 (00:03:20 / 16%)

MOBAT CreateCol 00:21:48 (00:01:53 / 9%) 00:22:47 (00:02:00 / 10%)

MOBAT ColKey 00:21:00 (00:01:05 / 5%) 00:21:58 (00:01:11 / 6%)

4.4.3. Analyzing Query Performance

To analyze the query performance of the masking technique and the

selected encryption algorithms, we defined a query workload for each

database. The TPC-H workload included the benchmark queries 1, 3, 6, 7,

8, 10, 12, 14, 15, 17, 19 and 20 (which correspond to all queries in TPC-H

that access the LineItem fact table). For the Sales DW, the workload was a

set of 29 queries, all processing the Sales fact table, as a set of usual

decision support reports, gathering daily (9 queries), monthly (9 queries)

and annual (11 queries) values, including actions such as row selection,

MOBAT: A Data Masking Solution for Data Warehouses

117

joining, aggregates, and ordering. These queries represent typical

reporting workloads against the fact table for each database. For fairness,

databases were optimized in a best practice manner (including primary

keys, foreign keys, and referential integrity constraints and join indexes).

As previously mentioned, all response time results are an average

obtained from six executions in each scenario on each DBMS. The

standard execution time (average of the execution times of the workload

against a non-encrypted database) for each scenario is 625, 6155, and 2233

seconds in Oracle 11g, and 580, 5301, and 2211 seconds in SQL Server

2008, for the 1GB, 10GB TPC-H and Sales DW, respectively.

Figures 4-14a and 4-14b respectively show the total workload execution

time and its overhead in Oracle and Figures 4-15a and 4-15b show the

total workload execution time and overhead in SQL Server, for the TPC-

H 1GB database.

It can be seen that MOBAT executes much faster than the remaining

solutions, introducing overheads between 22% and 35% of query

workload execution time in Oracle, respectively corresponding to adding

between 138 and 221 seconds to total execution time, and overheads

between 23% and 40% in SQL Server, respectively corresponding to

adding between 132 and 233 seconds to total execution time.

All the remaining encryption solutions are approximately leveled and

present overheads between 176% and 203% in Oracle, corresponding to

adding an extra 1102 to 1270 seconds to total execution time, and

overheads between 163% and 195% in SQL Server, corresponding to

adding an extra 943 to 1132 seconds to total execution time. Regarding

these solutions, Salsa20 was the fastest with AES128 coming afterwards,

followed by OPES and AES256, with 3DES168 as the slowest solution.

This means that MOBAT produces overheads that are roughly one sixth

of the encryption solutions, on average, in the chosen experimental

setups.

Chapter 4

118

Oracle TPC-H 1GB

Query Workload Execution Time (sec)

Oracle TPC-H 1GB

Query Workload Exec. Time Overhead (%)

Figure 4-14a. Query Workload

Execution Time per Solution in

Oracle for TPC-H 1GB

Figure 4-14b. Query Workload

Execution Time Overhead (%) per

Solution in Oracle for TPC-H 1GB

SQL Server TPC-H 1GB

Query Workload Execution Time (sec)

SQL Server TPC-H 1GB

Query Workload Exec.Time Overhead (%)

Figure 4-15a. Query Workload

Execution Time per Solution in SQL

Server for TPC-H 1GB

Figure 4-15b. Query Workload

Execution Time Overhead (%) per

Solution in SQLServer for TPC-H 1GB

Figures 4-16a and 4-16b respectively show the total workload execution

time and its overhead in Oracle and Figures 4-17a and 4-17b show the

total workload execution time and overhead in SQL Server, for the TPC-

H 10GB database. As can be observed, the results lead to similar results as

those seen in the TPC-H 1GB database, in what concerns the ranking of

the tested solutions. MOBAT remains the solution having the best

MOBAT: A Data Masking Solution for Data Warehouses

119

execution time, with lower overhead for all scenarios in both DBMS.

When compared with the results for the TPC-H 1GB database, it can be

seen that the differences between the solutions are slightly enforced with

the higher amount of data that need to be processed in the 10GB scale

size.

Oracle TPC-H 10GB

Query Workload Execution Time (sec)

Oracle TPC-H 10GB

Query Workload Exec. Time Overhead (%)

Figure 4-16a. Query Workload

Execution Time per Solution in

Oracle for TPC-H 10GB

Figure 4-16b. Query Workload

Execution Time Overhead (%) per

Solution in Oracle for TPC-H 10GB

SQL Server TPC-H 10GB

Query Workload Execution Time (sec)

SQL Server TPC-H 10GB

Query Workload Exec.Time Overhead (%)

Figure 4-17a. Query Workload

Execution Time per Solution in SQL

Server for TPC-H 10GB

Figure 4-17b. Query Workload Exec.

Time Overhead (%) per Solution in

SQLServer for TPC-H 10GB

Chapter 4

120

Furthermore, MOBAT executes much faster than the remaining solutions,

introducing overheads between 17% and 22% of query workload

execution time in Oracle, respectively corresponding to adding between

1063 and 1372 seconds to total execution time, and overheads between

13% and 21% in SQL Server, respectively corresponding to adding

between 680 and 1119 seconds to total execution time.

All the remaining encryption solutions are approximately leveled and

present overheads between 155% and 192% in Oracle, corresponding to

adding an extra 9549 to 11818 seconds to total execution time, and

overheads between 139% and 184% in SQL Server, corresponding to

adding an extra 7390 to 9757 seconds to total execution time. Regarding

these solutions, Salsa20 continues being the fastest, followed by OPES,

AES128 and AES256, with 3DES168 as the slowest solution. This means

that MOBAT continues to produce overheads that are roughly one eighth

to one tenth of the encryption solutions, on average, in the chosen

experimental setups, similar to what occurred in the TPC-H 1GB.

Figures 4-18a and 4-18b respectively show the total workload execution

time and its overhead in Oracle and Figures 4-19a and 4-19b show the

total workload execution time and overhead in SQL Server, for the Sales

DW database.

As shown, MOBAT also executes much faster than the remaining

solutions in the Sales DW, introducing overheads between 78% and 128%

of query workload execution time in Oracle, respectively corresponding

to adding between 1733 and 2851 seconds to total execution time, and

overheads between 64% and 124% in SQL Server, which respectively

correspond to adding between 1426 and 2735 seconds to total execution

time.

MOBAT: A Data Masking Solution for Data Warehouses

121

Oracle Sales DW

Query Workload Execution Time (sec)

Oracle Sales DW

Query Workload Exec. Time Overhead (%)

Figure 4-18a. Query Workload

Execution Time per Solution in

Oracle for the Sales DW

Figure 4-18b. Query Workload

Execution Time Overhead (%) per

Solution in Oracle for the Sales DW

SQL Server Sales DW

Query Workload Execution Time (sec)

SQL Server Sales DW

Query Workload Exec.Time Overhead (%)

Figure 4-19a. Query Workload

Execution Time per Solution in SQL

Server for the Sales DW

Figure 4-19b. Query Workload Exec.

Time Overhead (%) per Solution in

SQLServer for the Sales DW

All the remaining encryption solutions continue approximately leveled

and present overheads between 598% and 815% in Oracle, corresponding

to adding an extra 13349 to 18192 seconds to total execution time, and

overheads between 588% and 759% in SQL Server, corresponding to

adding 13001 to 16773 seconds to total execution time. Regarding these

solutions, Salsa20 continues to be the fastest with OPES and AES128

Chapter 4

122

coming afterwards, followed by AES256 and 3DES168 as the slowest

solution. This means that MOBAT produces overheads that are roughly

one sixth to one eighth of the encryption solutions, on average, in the

chosen experimental setups.

Tables 4-9, 4-10 and 4-11 summarize the query workload execution time

results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for

each DBMS, highlighting the best solutions in each case.

Table 4-9. TPC-H 1GB Query Workload Execution Time Overhead

Oracle TPC-H 1GB

Execution Time (Overhead)

SQL Server TPC-H 1GB

Execution Time (Overhead)

Standard Loading Time 00:10:25 00:09:40

AES128 00:29:58 (00:19:33 / 188%) 00:26:31 (00:16:51 / 174%)

AES256 00:30:37 (00:20:12 / 194%) 00:27:26 (00:17:46 / 184%)

3DES168 00:31:35 (00:21:10 / 203%) 00:28:32 (00:18:52 / 195%)

OPES 00:30:13 (00:19:48 / 190%) 00:27:09 (00:17:29 / 181%)

Salsa20 00:28:47 (00:18:22 / 176%) 00:25:23 (00:15:43 / 163%)

MOBAT AddCol 00:14:06 (00:03:41 / 35%) 00:13:33 (00:03:53 / 40%)

MOBAT CreateCol 00:13:29 (00:03:04 / 29%) 00:12:55 (00:03:15 / 34%)

MOBAT ColKey 00:12:43 (00:02:18 / 22%) 00:11:52 (00:02:12 / 23%)

Table 4-10. TPC-H 10GB Query Workload Execution Time Overhead

Oracle TPC-H 10GB

Execution Time (Overhead)

SQL Server TPC-H 10GB

Execution Time (Overhead)

Standard Loading Time 01:42:35 01:28:21

AES128 04:42:07 (02:59:32 / 175%) 03:42:24 (02:14:03 / 152%)

AES256 04:48:03 (03:05:28 / 181%) 03:50:46 (02:22:25 / 161%)

3DES168 04:59:33 (03:16:58 / 192%) 04:10:58 (02:42:37 / 184%)

OPES 04:41:29 (02:58:54 / 174%) 03:40:15 (02:11:54 / 149%)

Salsa20 04:21:44 (02:39:09 / 155%) 03:31:31 (02:03:10 / 139%)

MOBAT AddCol 02:05:27 (00:22:52 / 22%) 01:47:00 (00:18:39 / 21%)

MOBAT CreateCol 02:01:54 (00:19:19 / 19%) 01:42:42 (00:14:21 / 16%)

MOBAT ColKey 02:00:18 (00:17:43 / 17%) 01:39:41 (00:11:20 / 13%)

MOBAT: A Data Masking Solution for Data Warehouses

123

Table 4-11. Sales DW 2GB Query Workload Execution Time Overhead

Oracle Sales DW 2GB

Execution Time (Overhead)

SQL Server Sales DW 2GB

Execution Time (Overhead)

Standard Loading Time 00:37:13 00:36:51

AES128 04:53:24 (04:16:11 / 688%) 04:42:03 (04:05:12 / 665%)

AES256 05:08:04 (04:30:51 / 728%) 04:57:07 (04:20:16 / 706%)

3DES168 05:40:25 (05:03:12 / 815%) 05:16:24 (04:39:33 / 759%)

OPES 04:51:05 (04:13:52 / 682%) 04:40:45 (04:03:54 / 662%)

Salsa20 04:19:42 (03:42:29 / 598%) 04:13:32 (03:36:41 / 588%)

MOBAT AddCol 01:24:44 (00:47:31 / 128%) 01:22:26 (00:45:35 / 124%)

MOBAT CreateCol 01:13:55 (00:36:42 / 99%) 01:11:53 (00:35:02 / 95%)

MOBAT ColKey 01:06:06 (00:28:53 / 78%) 01:00:37 (00:23:46 / 64%)

To demonstrate the effects of using masking and encryption on each

individual query, Figure 4-20 shows the results for individual query

execution time in Oracle for the TPC-H 10GB scenarios, with a

logarithmic scale. These results show that all queries have similar

proportional overhead to those of the complete workload. This is also

true for all the other scenarios, making it redundant to include all of

them. Query Q1 presents the most significant results because it processes

more than 90% of the fact table data, while the other process less than

10%. It can be seen that mostly all queries processed using the encryption

solutions have introduced overheads of several orders of magnitude

higher than MOBAT, individually matching what has been shown in the

total query workload results through Figures 4-14 to 4-19.

The individual query execution times for the Sales DW are not included,

given that this set of queries can produce a certain amount of insight as a

whole (and shown in the total query workload execution graphs in

Figures 4-18a to 4-19b), but should mainly not be considered as

appropriate for individual analysis, since this DW is a specific real-world

database and it is not a standard nor a benchmark.

Chapter 4

124

Figure 4-20. TPC-H 10GB Individual Query Execution Time Overhead per Query

per Solution in Oracle 11g

4.5 Discussion on MOBAT

Contrarily to typical commercial data masking tools which provide data

masking routines that, once applied, do not allow reversing the

operations to retrieve the original data, the technique proposed in this

chapter manages full masking and unmasking processes. MOBAT

accomplishes continuous data protection similarly to commercial

masking tools, since it maintains data-at-rest masked at all times, and

adds the advantage of enabling its usage in live databases.

Basing the masking and unmasking processes simply on SQL rewriting

enables executing direct queries against masked/unmasked data without

having that data transferred between the database and the

masking/unmasking mechanisms, thus avoiding the I/O and network

bandwidth congestion that other solutions introduce due to those data

roundtrips.

MOBAT: A Data Masking Solution for Data Warehouses

125

High-level SQL rewriting also makes MOBAT a straightforward portable

technique to be universally used in any DBMS regardless of the CPU and

operating system, contrarily to what occurs with most standard

encryption packages supplied by DBMS. Most of these packages are CPU

optimized, i.e., designed and programmed for specific processor models

and therefore depending on those CPUs, meaning that they may fail to

execute on other machines. MOBAT is completely processor-

independent, since all CPUs support basic modular and arithmetic

operations.

As we discussed before, while DW data is mainly composed by numerical

values, standard encryption algorithms are designed to output generic

textual values. In the encryption packages supplied by commercial

DBMS, the output they produce is textual or varbinary type values (char,

varchar, varbinary, etc). Given that most sensitive columns in DW fact

tables store numerical values, using these packages to encrypt data

requires converting those values to a textual or varbinary format. Once

decrypted for processing, these values also must be transformed back into

numerical format in order to apply arithmetical operations such as sums,

averages, etc. This is a significant drawback, introducing extra

computational overheads with evident impact in performance. MOBAT is

specifically designed for masking numerical values, and in this sense, it is

much more performance efficient for protecting DW facts. The data

loading and query execution response time results shown in the

experimental evaluations demonstrate this, and show that using

encryption does in fact introduce extremely high storage space, loading

time and query response time overhead.

In what concerns storage space, OPES and MOBAT introduce much

smaller storage space overheads than the remaining solutions (less than

25% of extra storage space), followed by Salsa20 at a considerable

difference (adding approximately 30% of storage space in TPC-H and

almost 100% in the Sales DW), while the standard encryption solutions

produce the highest storage space overheads by far. The standard

encryption solutions introduce the highest overheads, roughly requiring

duplicating the original database storage space for the TPC-H scenarios

tested and between 308% and 591% of extra storage space in the Sales DW

scenarios.

Chapter 4

126

Note that in the best case scenarios for the standard encryption

algorithms in TPC-H 10GB, an overhead of 104% in Oracle implies using

more 8GB of storage space, and for an overhead of 308% in the Sales DW

implies using more 5GB of storage space. OPES only requires a storage

space overhead of 2% for TPC-H, which means that the worst case

scenarios would imply using more 208MB of storage space in TPC-H

10GB and 62MB in the Sales DW. MOBAT would require almost 1GB of

extra storage space for the TPC-H 10GB worst case scenario, and 73MB of

extra storage space for the Sales DW. Salsa20 requires approximately

three times more storage space overhead than MOBAT, and ten to twenty

times more than OPES. These results show that Salsa20 and the standard

encryption solutions effectively introduce a much higher increase of extra

storage space than OPES and MOBAT.

In what concerns loading time, MOBAT is much faster than all the

remaining solutions, introducing 3% to 16% of extra loading time in the

tested scenarios. OPES has the second best performance, introducing 46%

to 71% of extra loading time, more than four times worse than MOBAT

on average. Salsa20 presents loading time overheads from 72% to 114%,

on average roughly nine or ten times worse than MOBAT, while the

standard encryption solutions introduce overheads of more than 100%,

reaching more than 200% in several scenarios. In practice, while MOBAT

introduces an extra 6 minutes of loading time in the worst case scenario,

the standard algorithms introduce at least almost one hour of extra

loading time.

Considering the results obtained in the query workload executions,

MOBAT is also much faster than the remaining solutions. By observing

the results, it can be seen that the relative differences between the

solutions are approximately proportional throughout the different

scenarios, with MOBAT always as the fastest solution and therefore

introducing the smallest execution time overheads by several orders of

magnitude, roughly one sixth, on average, of the remaining solutions. In

practice, MOBAT adds less than 12 minutes of extra execution time in all

TPC-H 10GB and Sales DW scenarios, and the remaining solutions

introduce at least 30 more minutes up to more than 2 hours.

All the results in all scenarios and databases for both DBMS also show

that the performance of CreateCol Masking is better than AddCol Masking,

MOBAT: A Data Masking Solution for Data Warehouses

127

which was expected. The performance results of ColKey Masking are the

best, given the absence of changes in the original fact table data structure

and size.

Given that decision support environments typically execute long running

queries (i.e., queries that can run for many minutes up to hours), the

response time overheads introduced due to the use of encryption

solutions represent high absolute values that can easily make query

responses overdue and jeopardize the usefulness of the DW itself.

Considering the magnitude of the results shown in the experimental

evaluations, even a minimum gain in response/CPU time can be

considered as an important achievement.

Although not nearly as secure as standard or state-of-the-art encryption

algorithms, the proposed data masking technique is able to provide at

least acceptable security while requiring a small amount of computational

resources, introducing small response time and storage space overhead.

Moreover, it keeps the data-at-rest always masked. Assuming that

implementing a minimum amount of security strength concerning data

confidentiality is better than not implementing any security at all, this

makes the proposed masking technique a feasible and valid alternative

for data warehousing contexts in which minimizing response time is so

critical that using encryption to protect the DW is not acceptable.

Given that the proposed masking technique is straightforward and nearly

effortless to implement, the masking keys may be periodically refreshed

by rebuilding the masked table values, frequently switching the values of

all or any one of the K1, K2, and K3 keys before refreshing masked data in

order to ensure that data is properly protected. Although it is not possible

to absolutely prove that a particular algorithm is absolutely secure

[Elminaam et al., 2010; Ge and Zdonik, 2007; Kim et al., 2010; Mattson,

2004; Nadeem and Javed, 2005; Natan, 2005], we believe that our

technique is secure enough to be acceptable for use and that the small

overheads introduced in both data loading and query execution

performance are also acceptable, allowing us to state that it may be

considered as a valid alternative for enhancing data confidentiality in

DWs.

Chapter 4

128

4.6 Summary

In this chapter we proposed a data masking solution specifically designed

for enhancing data confidentiality in DWs. The proposed data masking

formula is composed by a set of two consecutive modulus (division

remainder) operations and two simple arithmetic operations. It requires

small computational efforts and can be easily implemented in any DBMS.

The proposed solution is transparently used and to query the database

the user interfaces only need to send their queries to a middleware

instead of to the DBMS. Data at rest is always masked and only the

processed results are returned to the authorized user interfaces that

requested them. All SQL commands and actions are encrypted and stored

in a log by the middleware security broker, which can be audited by

security staff. If an attacker bypasses the broker and gains direct access to

stored data, s/he just views masked “realistic-looking” but not real

values.

Since it basically works by transparently rewriting user queries, the

approach minimizes the required changes to user applications, and does

not jeopardize network bandwidth. The masked database can be directly

used for production purposes, while applications under development

may directly query the database without passing through the MOBAT

application (e.g. for software testing purposes), therefore retrieving

realistic data, but never the real data. This also avoids disclosure of the

real original data if any attacker bypasses database access control and is

able to retrieve data directly from the database.

Although it was not conceived as a direct alternative to standard

encryption solutions, we have compared it with the AES and 3DES

encryption algorithms provided by leading commercial DBMS, as well as

two state-of-the-art encryption proposals. The experimental results show

that the storage space increase and the degradation of database

performance in response time introduced by these standard and research

solutions is very significant from the DW perspective. This enforces

stating that those techniques are in fact too complex to be used in DW

scenarios.

Given that most DW data consists on numerical values, our masking

technique is tailored for this kind of data, thus showing better database

performance than the remaining encryption solutions, while managing to

MOBAT: A Data Masking Solution for Data Warehouses

129

maintain a significant level of security strength. Thus, it is an efficient

overall solution and a valid alternative for balancing performance and

security issues from the DW perspective. In the next chapter, we propose

an encryption solution based on the masking solution that enhances its

security while maintaining low performance overhead.

131

Chapter 5

SES-DW: A Specific Encryption
Solution for Data Warehouses

As we discussed in Chapter 2 and demonstrated in Chapter 4, database

storage size and response time overheads introduced by using encryption

in very large databases such as DWs may jeopardize their feasibility.

However, given the value of DW data, it is not advisable to avoid using

encryption to secure that data just because of those overheads. This arises

the need for encryption solutions that are capable of maintaining

database performance as high as possible while providing significant

security strength. Although the data masking solution proposed in the

previous chapter provides some security strength, it is far from being a

full-poof solution. Therefore, in this chapter we propose an encryption

algorithm that computes a series of data transformations based on the

data masking solution proposed in the previous chapter, which improves

its security strength while maintaining low performance overhead.

The proposed Specific Encryption Solution tailored for Data Warehouses

(SES-DW) consists on a lightweight encryption cipher for numerical

values, which uses only mixes of standard SQL operators such as

eXclusive OR (XOR) and modulus (MOD, that return the remainder of a

division expression), together with additions and subtractions, similarly

to the data masking solution proposed in the previous chapter. Storage

space overhead is also avoided by preserving each encrypted column’s

datatype, while using only standard SQL operators enables the

transparent use of SQL rewriting in order to avoid I/O and network

bandwidth bottlenecks by discarding data roundtrips between the

database and the encryption and decryption mechanisms (similarly to the

masking solution presented in Chapter 4).

Also similarly to what we mentioned in the previous chapter it is

important to note that it is not our aim to propose an encryption solution

Chapter 5

132

as strong in security as any state-of-the-art encryption algorithm, but

rather a technique that provides a considerable level of overall security

strength while introducing small performance overhead, i.e., that presents

better security-performance balancing. Nevertheless, we include a

thorough security analysis of the proposed cipher. As the data masking

technique proposed in the previous chapter, this encryption technique fits

into the middleware layer of the security framework described in Chapter

3, working transparently between user interfaces and the DBMS.

Experiments are included in order to compare the proposed solution with

the standard encryption algorithms available in current DBMS, namely

AES and 3DES, and also with state-of-the-art proposals such as Order-

Preserving Encryption (OPES) and Salsa20 (alias Snuffle), using the TPC-

H decision support benchmark and a real-world DW running on top of

the Oracle 11g and Microsoft SQL Server 2008 DBMS.

The remainder of this chapter is organized as follows. Section 5.1 presents

the encryption cipher and Section 5.2 describes its functional architecture.

Section 5.3 presents a security analysis on the proposed cipher. Section 5.4

presents the experimental evaluation. Section 5.5 includes a discussion on

the proposed encryption solution and on the results obtained in the

experiments. Section 5.6 presents our conclusions.

5.1 SES-DW Encryption Cipher

Given x as the plaintext value to cipher and y as the encrypted ciphertext,

the external view for encrypting x using the SES-DW cipher is shown in

Figure 5-1, and considers the following assumptions:

 NR is the number of rounds executed by the cipher;

 RowK is a 2128 bit random encryption key (in a database table T, each

row j has its own RowK, meaning each encrypted table T has a

vector RowK[j] where j = [1…number of rows in T);

 Operation[t] is a random binary vector with NR elements (i.e., each

element is randomly 1 or 0), where t represents each encryption

round’s number (i.e., t = 1...NR);

 XorK[t] and ModK[t] are vectors where each element is a random

value encryption subkey with the same bit length as the plaintext x,

(where t = 1...NR);

SES-DW: A Specific Encryption Solution for Data Warehouses

133

 F(t) is a MOD/XOR mix function (explained further), where t

represents each encryption round’s number (i.e., t = 1...NR).

F(1)Operation[1]

x

ModK[1]

RowK

output

input

XorK[1]

F(2)Operation[2] ModK[2]

output

input

XorK[2]

F(NR)Operation[NR] ModK[NR]

output

input

XorK[NR]

y
Figure 5-1. The SES-DW Data cipher for encryption

The MOD/XOR mix function F(t) for encryption, considering input as the

function’s input and output as its output, is defined as:

IF Operation[t] = 1 THEN
 output = input+(RowK MOD ModK[t])–ModK[t]
ELSE
 output = input
END_IF

Given this, the SES-DW cipher encryption function for encrypting x by

executing NR rounds is as shown:

FUNCTION Encrypt(x, NR)
 EncrOutput = x
 FOR t = 1 TO NR
 IF Operation[t] = 1 THEN
 EncrOutput = EncrOutput+(RowK MOD ModK[t])–ModK[t]
 END_IF
 EncrOutput=EncrOutput XOR XorK[t]
 END_FOR
RETURN EncrOutput

Chapter 5

134

As illustrated, SES-DW randomly mixes MOD with XOR throughout the

encryption rounds, given a random distribution of 1 and 0 values of the

vector Operation. In the rounds where Operation[t] = 0, only XOR is used

with the respective XorK[t]; in rounds where Operation[t] = 1, SES-DW

first performs MOD with addition and subtraction using the respective

ModK[t] and RowK[j], and afterwards XOR with the respective XorK[t]. To

avoid generating a ciphertext that may overflow the bit length of x it must

be assured that the bit length of the term using MOD (EncrOutput +

(RowK[j] MOD ModK[t]) - ModK[t]) is smaller or equal to the bit length of

x.

As a practical example of encrypting with SES-DW, consider the

encryption of an 8 bit numerical value (x = 126) executing 4 rounds (NR=

4), for a row that has RowK = 15467801, given the following assumptions

for Operation, XorK and ModK:

Operation = [0, 1, 0, 1]

XorK = [31, 2, 28, 112]

ModK = [87, 36, 123, 19]

Then for t = 1 (round 1), EncrOutput = 126 XOR 31 = 97

For t = 2 (round 2), EncrOutput = (97+(15467801 MOD 36)-36) XOR 2
 = 64

For t=3 (round 3), EncrOutput = 64 XOR 28 = 92

For t=4 (round 4), EncrOutput = (92+(15467801 MOD 19)-19) XOR 112
 = 40

Thus, Encrypt(126, 4) = 40. To decrypt, SES-DW inverts the cipher. Figure

5-2 shows the external view of the SES-DW decryption cipher steps, in

which F-1(x) also represents the reverse MOD/XOR mix function for

decryption.

SES-DW: A Specific Encryption Solution for Data Warehouses

135

Operation[NR-1]

F-1(NR)Operation[NR]

y

ModK[NR]

RowK

output

input

XorK[NR-1]

F-1(NR-1) ModK[NR-1]

output

input

XorK[1]

F-1(1)Operation[1] ModK[1]

output

input

XorK[NR]

x

Figure 5-2. The SES-DW Data cipher for decryption

Given this, the SES-DW cipher decryption function for decrypting y with

NR rounds is:

FUNCTION Decrypt(y, NR)
 DecrOutput = y
 FOR t = NR DOWNTO 1
 DecrOutput = DecrOutput XOR XorK[t]
 IF Operation[t] = 1 THEN
 DecrOutput = DecrOutput-(RowK MOD ModK[t])+ModK[t]
 END_IF
 END_FOR
RETURN DecrOutput

Considering the encryption example previously shown, we now

demonstrate the decryption process for y = 40, given the same Operation,

RowK, XorK and ModK:

For t=4 (round 1), DecrOutput=(40 XOR 112)-(15467801 MOD 19)+19
 =92

For t=3 (round 2), DecrOutput=92 XOR 28=64

For t=2 (round 3), DecrOutput=(64 XOR 2)-(15467801 MOD 36)+36
 =97

For t=1 (round 4), DecrOutput=97 XOR 31=126

Chapter 5

136

Thus, Decrypt(40, 4) = 126, which is the original x plaintext value.

Although the SES-DW cipher aims to work only with numerical values,

we maintain the designation of plaintext and ciphertext respectively for the

true original input value and ciphered output value.

5.2 Functional Architecture

The functional architecture for using SES-DW in practice is shown in

Figure 5-3, which is similar to what was presented for MOBAT in the

previous chapter. The architecture is made up by three entities:

 The encrypted database and its DBMS;

 The SES-DW security middleware interface;

 User/client interfaces to query the encrypted database.

The SES-DW middleware interface acts as a broker between the DBMS and

the user interfaces, using the SES-DW encryption and decryption

methods and ensuring the queried data is securely processed and the

proper results are returned to those interfaces. All communications are

executed through SSL/TLS secure connections, to protect SQL instructions

and returned results between the system’s entities.

User
Interface

SES-DW
Middleware

Interface

DBMS Encrypted
DW Database

Black Box
(Encryption Keys,

User Access Definitions,
SQL Command Log)

User
Queries

Query
Results

Query
Results

Rewritten
User Queries

Figure 5-3. The SES-DW Data Security Functional Architecture

The Black Box is stored in the Security Framework Database database server,

and there is one Black Box created for each encrypted DW database. Only

the SES-DW middleware itself can access the Black Box, where all

encryption keys and predefined data access policies for the database are

stored.

SES-DW: A Specific Encryption Solution for Data Warehouses

137

As in MOBAT, the SES-DW middleware also creates a history command

log that can also be used for intrusion detection purposes, when

integrated with the DIDS proposed in the following chapter. All Black Box

contents are encrypted using AES with a 256 bit key, and there is no way

to restore its true data, except by cracking the encryption keys. These keys

are generated by the SES-DW middleware and are never shown or

known by the DBA or any other user.

To obtain true results, all user queries or actions must pass through the

SES-DW middleware, which will store a copy of those instructions in the

Black Box command history log. Each time a user requests any action, the

middleware will receive and parse the instructions, fetch the encryption

keys, rewrite the command, send it to be processed by the DBMS and

retrieve the results, and finally send those results back to the user

interface that issued the request. Thus, SES-DW is transparently used,

since SQL command rewriting is transparently managed by the

middleware. Obviously, user applications should send the commands to

the middleware, instead of querying the DBMS directly.

To encrypt a database, a DBA requires it through the SES-DW

middleware. After entering login and database connection information,

the middleware connects to the database and creates the corresponding

Black Box, as explained earlier. Afterwards, the middleware allows the

DBA to define which tables and columns to encrypt. All the required

encryption keys (RowK, XorK, ModK) for each table and column are

generated, encrypted by an AES256 algorithm and stored in the Black

Box. Finally, the middleware encrypts all values in each column that were

marked for encryption. Subsequent updates on the database data must

always be done through the middleware, which will apply the cipher to

the values and store them directly in the database.

In order to implement SES-DW encryption in a given table T, consider the

following: suppose table T with a set of N numerical columns Ci = {C1, C2,

…, CN} to be encrypted and a total set of M rows Rj = {R1, R2, …, RM}. Each

value to encrypt in the table is identified as a pair (Rj, Ci), where Rj and Ci

respectively represent the row and column to which the value refers (j =

{1..M} and i = {1..N}). To use the SES-DW cipher, we generate the

following encryption keys and requirements:

Chapter 5

138

 An encryption key TabK, a 128 bit random generated value,

constant for table T;

 Vector RowK[j], with j = {1..M}, for each row j in table T. Each

element holds a random 128 bit value;

 Define NRi with i = {1..N}, which gives the number of encryption

rounds to execute for each column Ci. We define NRi =

SBLi/BitLength(Ci), where SBLi is the desired security bit strength

for the XorK and ModK encryption keys of column Ci and

BitLength(Ci) is the datatype bit length of column Ci (e.g. if we

want to secure a 16 bit column Ci with a security strength of 256

bits, then the number of encryption rounds would be 256/16 = 16);

 Vectors XorKi[t] and ModKi[t], with t = {1..NRi}, for each Ci, filled

with randomly generated unique values. The bit length of each

key is equal to the bit length of each Ci’s datatype;

 A vector Operationi[t], with t = {1..NRi}, for each column Ci, filled

randomly with 1 and 0 values, so that the count of elements equal

to 1 is the same as the count of elements equal to 0 (e.g. Operationi

= [0, 1, 0, 0, 1, 1, 0, 1], with NRi = 8). This makes

Prob(Operation[t]=0) Û Prob(Operation[t]=1), i.e., the probability

of executing or not MOD operations in each cipher round is

uniformly distributed, in order to avoid information leakage in

attempting to break security.

Since the number of rows in a DW fact table is often very big, the need to

store a RowK[j] encryption key for each row j poses a challenge. If these

values were stored in a lookup table separate from table T, a heavy join

operation between those tables would be required to decrypt data. Given

the typically huge number of rows in fact tables, this must be avoided.

For the same reasons, storing RowK[j] in RAM is also impracticable. To

avoid table joins, as well as oversized memory consumption, the values of

RowK[j] must be stored along with each row j in table T, as an extra

column CN+1. This is the only change needed in the DW data structure in

order to use SES-DW. To secure the value of RowK[j], it should be XORed

with key TabK before being stored. To retrieve the true value of RowK[j]

in order to use the SES-DW algorithms, we need to simply calculate (Rj,

CN+1) XOR TabK.

SES-DW: A Specific Encryption Solution for Data Warehouses

139

5.3 Security Issues

Most security issues and assumptions concerning the threat model,

datatype preservation, having data-at-rest masked or encrypted at all

times, and the use of MOD and XOR operations for SES-DW are similar

to those described in the previous chapter for MOBAT. In this section we

present the security proof specifically concerning the SES-DW algorithm,

as well as the entropy produced by SES-DW.

5.3.1 Using Variable Key Lengths and MOD-XOR Mixes

The bit length of the encryption subkeys XorK and ModK are the same as

the bit length of each encrypted column, meaning that an 8 bit sized

column datatype will have 8 bit sized encryption subkeys. It is obvious

that using 8 bit subkeys on their own is not secure at all. However, since

all keys are distinct in each round, executing 16 rounds would be roughly

equivalent to having a 16*8 = 128 bit key in the encryption process. As

discussed in [Elminaam et al., 2010; Kim et al., 2010; Mattson, 2004;

Nadeem and Javed, 2005], there is no easy way of obtaining impartial and

widely accepted values for defining the minimum number of secure

rounds for each algorithm. It is up to the DW security administrator to

decide how strongly secure each column should be, which defines how

many rounds should be executed, considering the bit length of the

column’s datatype.

As previously mentioned in Chapter 3, the MOD operator is used in the

cipher because it is non-injective and consequently makes our cipher not

directly invertible. It is also true that the same ciphered output values are

most likely to come from different original input values and have

approximately the same probability for any output value within the full

range of possible output values. This is formally demonstrated in

Subsection 5.3.3, where the cipher’s entropy is computed, showing a

nearly uniform probability distribution.

Randomly using the XOR and MOD operators as the two possible

operators for each round also increases the number of possibilities an

attacker needs to test in exhaustive searches for the output values of each

encryption round, since the attacker does not know the rounds in which

MOD is used with XOR and needs to test both hypothesis (XOR and

MOD-XOR). Furthermore, if the attacker does not know the security

Chapter 5

140

strength chosen for encrypting each column, s/he does not know how

many encryption rounds were executed for each ciphered value.

By making the values of XorKi and ModKi distinct between columns, we

also make encrypted values independent from each other between

columns. Even if the attacker breaks the security of one column in one

table row, the information obtained from discovering the remaining

encryption keys is limited. Thus, the attacker cannot infer information

enough to break overall security; in order to succeed, s/he must perform

recover all the keys for all columns.

5.3.2 Attack Costs on SES-DW

To break security by key search in a given column Ci, the attacker needs

to have at least one pair (plaintext, ciphertext) for a row j of Ci, as well as

the security bit strength involved, as explained in Section 5.2, because it

will indicate the number of rounds that were executed. In this case, taking

that known plaintext, its respective ciphertext, and the CN+1 value (storing

RowKj XOR TabK, as explained in Section 5.2), s/he may then execute an

exhaustive key search.

The number of cipher rounds for a column Ci is given by NRi, and β is the

bit-length of Ci’s datatype. Since half the values of vector Operation are

zeros and the other half are ones, the probability of occurrences of 1 and 0

is equal, i.e., Prob(Operation[t]=0) = ½ = Prob(Operation[t]=1), where the

number of possible values for Operation[t] is 2NRi.

Considering β, each XorK and ModK subkey also has a length of β bits

and thus, each XorK and ModK subkeys have a search space with 2β

possible values. TabK is a 128 bit value, thus with a search space of 2128

possible values. Considering the cipher’s algorithm and given the

probability of {0, 1} values in Operation, a XOR is executed in all rounds

(NRi), while a MOD is executed before the XOR in half the rounds

(NRi/2). Given this, the key search space dimension considering the

combination of XOR and MOD/XOR rounds is given by G(x):

SES-DW: A Specific Encryption Solution for Data Warehouses

141

�(�) = ∑ �(�)
����

���

�
��� .2(��)����

�
�����

���

�
� �

� , x = 1

�(� − 1) + (−1)� �
�����

���

�
 � �

� , 2 <= x <= NRi/2

�(�) = �(� − 1) , NRi/2+1 <= x <= NRi

�(� − 1) + (−1)(��
���

�
) �

��
���

�
��

�������
� , NRi+1 <= x <= NRi + NRi/2 - 1

�
���

���

�

� , x = NRi + NRi/2

Considering Y as the number of attempts to discover the keys, Y is a

discrete random variable with support S = {1…N }, where N represents

the search space’s dimension. For one attempt, considering a random

variable B, it has only two possibilities:

� = �
 0, ����� �ℎ� ������� �� ��� ����������
1, ����� �ℎ� ������� �� ����������

�

Therefore, B follows a Bernoulli distribution with probability p =

Prob(B=1) = 1/N. Since the number of attempts is limited, given the search

space is finite, variable Y also has a finite support S = {1…N}. The

probability of being successful after k attempts is given by:

����(� = �) = ����(�̅ ∩ �̅ ∩ … ∩ �̅ ∩ �) = �1 −
�

�
�

���
.

�

�
 , k=1… N

Note that the probability of needing more than m attempts is given by:

����(� > �)

= � ����(� = �)
�

�����

= � �1 −
1

�
�

���

.
1

�
= (1 − 1/�)�.��1 − �1 −

1

�
�

���

��
�

�����

The probability of needing n more attempts, given m initial unsuccessful

attempts (for m > 1 and n > 1) is defined by Prob(Y >m+n | Y >m) =

Prob(Y>m+n) / Prob(Y>m), since the event {Y > m+n} is contained in {Y > m},

which means that after having m unsuccessful attempts, being successful

after n more attempts only depends on those n additional attempts and

Chapter 5

142

not on the initial m attempts, i.e., it does not depend on the past. For the

complete search space, the average number of attempts is then given by:

� �.����(� = �) =
1

�
� � �1 −

1

�
�

���

= (∗)
�

���

�

���

From the series theory it is known that

 ∑ �� =
�

���

��
��� , if |�|<1

Which is the case in

(∗) for �1 −
�

�
�.

Thus,

(∑ ����
���)� = �

�

���
�

�
Û ∑ �.������

��� =
�

(���)�
 , |�| < 1

Thus, the average number of attempts for finding the keys is

(∗) =
1

�
.

1

�1 − �1 −
1
�

��

� = �

which is equal to the dimension of the key search space (N). Note

however, that this is the worst case complexity. It is possible for the

attacker to reduce the key search space by chosen plaintext attacks. Since

the same TabK key is used for encrypting all RowK, as explained in section

5.2 (CN+1(row j) = RowK[j] Å TabK), the information leakage is given by

y1 Å y2 = (x1 Å TabK) Å (x2 Å TabK) Û

Û y1 Å y2 = (x1 Å x2) Å (TabK Å TabK)

Û y1 Å y2 = x1 Å x2

This implies that CN+1(row j) Å CN+1(row j+1) = RowK[j] Å RowK[j+1],

reducing the possible search space for RowK to 264 instead of 2128 in each

row. If the attacker manages to use very low RowK values, which are most

probably smaller than the value of the ModK encryption keys (i.e.

RowK<ModK[t]), then the (RowK MOD ModK[t]) – ModK[t] operation in

the cipher will be reduced to RowK – ModK[t], thus further reducing

complexity. In this case, for example, taking more than one (plaintext,

SES-DW: A Specific Encryption Solution for Data Warehouses

143

ciphertext) pair y1 = Encrypt(x1,2) and y2 = Encrypt(x2,2) for 2 encryption

rounds on the same row, where Operation=[0,1]:

��Å �� = (��Å ����[1] + ���� − ����[2]) Å (��Å ����[1] + ���� − ����[2])

Considering that each xi has a length of bits, given the encryption key

RowK has a reduced search space of 264 (as previously mentioned) and

each XorK and ModK have a search space of 2, the key search space in

this example is given by 22+64. Since XorK[1] and ModK[2] are just half the

keys for the 2 round SES-DW, to obtain the remaining XorK[2] and

ModK[1] keys, the search space is incremented by 22.

As the number of XorK and ModK encryption keys is the same as the

number of rounds, the generic expression for the reduced key search

space in this type of attack is given by G(x) = 2NRi*+64 + 2NRi*. Note that for

an 8 bit value (= 8) encrypted by 16 rounds (NRi = 16), using 16 XorK

and ModK subkeys with 8 bits each (each total key length for XorK and

ModK is 16*8 = 128 bits), the key search space complexity is 2192 + 2128 ≅

6.3x1057, which remains a considerable measure of security strength.

5.3.3 SES-DW Entropy

In information theory, entropy is a measure of randomness or uncertainty

[Vaudenay, 2006]. In this context, the term usually refers to Shannon’s

entropy, which quantifies the randomness of a variable based upon the

knowledge of the information contained in its message. The entropy of a

discrete variable X with n bits in length is given by the following

expression, where Prob(xi) is the probability of occurrence of each xi

within the probability distribution of all possible integer values [1…2n]:

�������(�) = − ∑ �����(� = ��).��������(� = ��)���

���

Since numeric datatype storage sizes are typically 8, 16, 32, 64 or 128 bits,

each of our cipher’s input/output values (as well as the encryption keys)

respectively have a number of 28, 216, 232, 264, or 2128 possible combinations.

While it is computationally fast to obtain the probability distribution in

the first case by combining all possible input and encryption key values

(with all 8 bit values = [1...28]) using two cipher rounds (the minimum

number of rounds), for the remaining (216, 232, 264 and 2128) the task gets

exponentially time-expensive.

Chapter 5

144

Therefore, after a series of statistical regression experiments using the

calculated 8 bit probability distribution for SES-DW, we found that the

logarithmic regression (� = � + �.��(�)) generated the most adjusted

statistical model for representing the cipher’s probability distribution

(with correlation R2 >= 0.98 and a standard error of 0.001). Knowing that

the accumulated probability for n bits must be equal to 1, using the

logarithmic regression function we must ensure that:

� � + �.��(�) ��
��

�

= 1

This expression leads to ����(��) = �� + ��.��(��), which represents the

estimated probability distribution function for n bits SES-DW, where:

�� =
���.�.��.��(�)

����
+ � �� =

���������
�

�
�

����� �
�

�
 – � . ���� . �� (�)

Given ����(�), the entropy of SES-DW for n = 8, 16, 32, 64 and 128 bits is

shown in Table 5-1. As can be seen, the entropy produced for n bits is

nearly n, thus meaning the generated ciphertexts are very close to a

uniformly random n bit value and therefore, have very little information

leakage because very little can be inferred from the output generated by

the cipher.

Table 5-1. Estimated SES-DW entropy values

Number of bits (n) SES-DW Entropy

8 7.967144

16 15.972308

32 31.979863

64 63.986246

128 127.989741

5.4 Experimental Evaluation

In these experiments we used the TPC-H benchmark [TPC-H]

implemented in its 1GB and 10GB scale sizes, and a real-world sales DW

storing one year of commercial data taking up 2GB of storage space (as

we previously mentioned, full description of the sales DW can be seen in

SES-DW: A Specific Encryption Solution for Data Warehouses

145

Appendix A). We tested all scenarios using the Oracle 11g and Microsoft

SQL Server 2008 DBMS with default settings, on a Pentium Core2Duo

3GHz CPU with a 1.5TB SATA hard disk and 2GB RAM (512MB of

devoted to database memory cache), running Windows 2003 Server.

As in the experiments involving the data masking solution, the columns

chosen for testing the masking solution were those referring to numerical

datatype columns belonging to the fact tables. The TPC-H schema has

one fact table (LineItem), and seven dimension tables. In TPC-H setups,

four numerical columns of LineItem were encrypted (L_Quantity,

L_ExtendedPrice, L_Tax and L_Discount). The Sales DW database schema

has one fact table (Sales) and four dimension tables. In the Sales DW, five

numerical columns were encrypted (S_ShipToCost, S_Tax, S_Quantity,

S_Profit, and S_SalesAmount).

In these experiments, we compare the storage size overhead and query

response time of SES-DW with the column-based AES (with 128 bit and

256 bit security) and 3DES168 algorithms available as built-in options of

each DBMS, and OPES [Agrawal et al., 2004] and Salsa20/20 [Bernstein,

2005; Bernstein, 2008]. OPES and Salsa20 were implemented using C#. We

use the column-based solutions for the same reasons as explained in the

previous chapter in Section 4.4 (see Table 4-2).

All loading time and query response time results shown in this section

were obtained from an average of six executions in each described

setup/scenario, given the relatively small standard deviation values, as in

Chapter 4. The complete set of results and respective statistical measures

can be seen in Appendix B. Note that the experiments included in this

chapter cannot be directly compared with those of the data masking

chapter, since different CPUs were used.

5.4.1. Analyzing Storage Space

The storage space results measured in these experimental evaluations are

exactly the same as those presented for the data masking experimental

evaluation in Subsection 4.4.1, making it redundant and unnecessary to

repeat the analysis here. This happens because the implementation of

SES-DW requires exactly the same changes to the DW data schemas as

MOBAT, and the remaining encryption algorithms that we tested against

Chapter 5

146

are also the same as in the previous experiments. Therefore, in this

subsection we just remind the main storage space results and conclusions.

For TPC-H 1GB:

 OPES and SES-DW produce much smaller storage space overheads

than the remaining solutions;

 OPES adds a 2% overhead for both DBMS, corresponding to 18MB

of extra storage space in Oracle and 21MB in SQL Server;

 SES-DW adds 8% and 12% overhead respectively in Oracle and

SQL Server, corresponding to an extra 96MB and 102MB of storage

space;

 Salsa20 introduces 38% overhead in Oracle, corresponding to

adding 292MB, and 26% in SQL Server, which adds 316MB of extra

storage space;

 The standard encryption solutions produce the highest overhead,

with AES being the worst by requiring 154% in Oracle and 95% in

SQL Server of storage space overhead, corresponding to

respectively adding 1188MB and 1173MB and 154% in each DBMS,

while 3DES168 produced a storage space overhead of 104% in

Oracle and 76% in SQL Server, respectively corresponding to

800MB and 944MB of extra storage space.

In what concerns the TPC-H 10GB DW, the extra storage space added to

the 10GB database by each encryption solution is approximately

proportional to those of the 1GB database, which means ten times bigger.

Thus, the analysis of the results for the 10GB sized TPC-H database is

similar to that of the 1GB.

For the Sales DW:

 OPES and SES-DW continue to produce much smaller storage space

overheads than the remaining solutions, similarly to the occurred

with TPC-H;

 OPES shows a 4% overhead for both DBMS, corresponding to an

extra 62MB of storage space in Oracle and 73MB in SQL Server

SES-DW: A Specific Encryption Solution for Data Warehouses

147

 SES-DW presents 25% and 33% overhead for SES-DW respectively

in Oracle and SQL Server, corresponding to an extra 415MB and

636MB of storage space;

 Salsa20 also introduces more storage space overhead than OPES

and SES-DW, namely 88% in Oracle, corresponding to adding

1464MB, and 94% in SQL Server, which adds 1818MB of extra

storage space;

 The standard encryption solutions continue to produce the highest

overhead, with AES also being the worst by requiring 462% in

Oracle and 591% in SQL Server of storage space overhead,

corresponding to respectively adding 7688MB and 11424MB of

storage space, while 3DES168 produced a storage space overhead of

308% in Oracle and 390% in SQL Server, respectively corresponding

to 5125MB and 7532MB of extra storage space.

5.4.2. Analyzing Loading Time

Figures 5-4a and 5-4b respectively show the results for the total loading

time (in seconds) and percentage of time overhead for loading the TPC-H

1GB LineItem fact table in Oracle, while Figures 5-5a and 5-5b show the

same results in SQL Server. It can be observed that the standard loading

time for the TPC-H LineItem fact table without using any sort of

encryption solution is 253 seconds in Oracle and 171 seconds in SQL

Server.

As shown, SES-DW produces much smaller loading time overheads than

the remaining solutions with the same bit security. SES-DW with 128 bit

security shows 10% and 12% overhead in Oracle and SQL Server,

respectively corresponding to an extra 26 and 20 seconds in loading time.

SES-DW with 256 bit security shows 16% and 18% in Oracle and SQL

Server, respectively corresponding to adding 41 and 30 seconds, and

when using 1024 bit security (at least four times higher than the

remaining solutions) the loading time overhead was 78% in Oracle and

66% in SQL Server, respectively corresponding to an extra 198 and 113

seconds of loading time.

Chapter 5

148

Oracle TPC-H 1GB

LineItem Fact Table Loading Time (sec)

Oracle TPC-H 1GB

LineItem Loading Time Overhead (%)

Figure 5-4a. Loading Time in Oracle

for the TPC-H 1GB Fact Table per

Encryption Solution

Figure 5-4b. Loading Time Overhead

(%) in Oracle for the TPC-H 1GB Fact

Table per Encryption Solution

SQL Server TPC-H 1GB

LineItem Fact Table Loading Time (sec)

SQL Server TPC-H 1GB

LineItem Loading Time Overhead (%)

Figure 5-5a. Loading Time in SQL

Server for the TPC-H 1GB Fact Table

per Encryption Solution

Figure 5-5b. Loading Time Overhead

(%) in SQL Server for the TPC-H 1GB

Fact Table per Encryption Solution

OPES comes after SES-DW 128 and 256 bit security in loading time

performance, showing an overhead of 40% in Oracle and 34% in SQL

Server, which respectively correspond to adding 100 and 110 seconds.

Salsa20 introduces more loading time overhead than OPES and the

SES-DW: A Specific Encryption Solution for Data Warehouses

149

referred bit security versions of SES-DW, namely 66% in Oracle,

corresponding to adding 166 seconds, and 64% in SQL Server, which

adds 110 seconds of extra loading time.

Note that, although SES-DW 1024 does introduce higher overhead than

OPES and Salsa20, it does use a much higher security bit strength, which

consequently has impact on its performance.

Similarly to what occurred with storage space, the standard encryption

solutions produced the highest loading time overheads. AES with 128 bit

security produced 140% in Oracle and 123% in SQL Server, respectively

corresponding to adding 355 and 211 seconds to the standard loading

time. AES with 256 bit security shows an overhead of 151% in Oracle and

138% in SQL Server, respectively corresponding to 383 and 236 seconds of

extra loading time. 3DES168 introduces 144% loading time overhead in

Oracle, corresponding to adding 364 seconds, and 127% in SQL Server,

which adds 218 seconds of extra loading time.

Figures 5-6a and 5-6b respectively show the results of total loading time

(in seconds) and percentage of loading time overhead for loading the

TPC-H 10GB LineItem fact table in Oracle, while Figures 5-7a and 5-7b

show the same results in SQL Server.

Oracle TPC-H 10GB

LineItem Fact Table Loading Time (sec)

Oracle TPC-H 10GB

LineItem Loading Time Overhead (%)

Figure 5-6a. Loading Time in Oracle

for the TPC-H 10GB Fact Table per

Encryption Solution

Figure 5-6b. Loading Time Overhead

(%) in Oracle for the TPC-H 10GB Fact

Table per Encryption Solution

Chapter 5

150

SQL Server TPC-H 10GB

LineItem Fact Table Loading Time (sec)

SQL Server TPC-H 10GB

LineItem Loading Time Overhead (%)

Figure 5-7a. Loading Time in SQL

Server for the TPC-H 10GB Fact Table

per Encryption Solution

Figure 5-7b. Loading Time Overhead

(%) in SQL Server for the TPC-H

10GB Fact Table per Encrypt. Solution

From observing the results in Figures 5-6a to 5-7b, it can be seen that the

extra loading time added to the 10GB database by each encryption

solution is approximately proportional to those of the 1GB database, as

occurred with the storage space, which means ten times bigger. Thus, the

analysis of the results for the 10GB sized TPC-H database is also similar

to that of the 1GB sized TPC-H database.

Figures 5-8a and 5-8b respectively show the results of total loading time

(in seconds) and percentage of time overhead for loading the Sales DW

fact table in Oracle, while Figures 5-9a and 5-9b show the same results in

SQL Server. It can be seen that the standard loading time for the Sales fact

table without using any encryption solution is 994 seconds in Oracle and

1013 seconds in SQL Server.

As seen in both Figures, SES-DW continues to produce much smaller

loading time overheads than the remaining solutions, similarly to the

occurred with TPC-H. SES-DW with 128 bit security shows 13% and 15%

overhead in Oracle and SQL Server, respectively corresponding to an

extra 130 and 148 seconds in loading time. SES-DW with 256 bit security

shows 22% in both DBMS, corresponding to adding 217 seconds in Oracle

and 224 seconds in SQL Server, and when using 1024 bit security the

SES-DW: A Specific Encryption Solution for Data Warehouses

151

loading time overhead was 82% in Oracle and 86% in SQL Server,

corresponding to an extra 814 and 868 seconds of loading time.

Oracle Sales DW 2GB

Sales Fact Table Loading Time (sec)

Oracle Sales DW 2GB

Sales Loading Time Overhead (%)

Figure 5-8a. Loading Time in Oracle

for the Sales DW Fact Table per

Encryption Solution

Figure 5-8b. Loading Time

Overhead (%) in Oracle for the Sales

DW Fact Table per Encrypt. Solution

SQL Server Sales DW 2GB

Sales Fact Table Loading Time (sec)

SQL Server Sales DW 2GB

Sales Loading Time Overhead (%)

Figure 5-9a. Loading Time in SQL

Server for the Sales DW Fact Table per

Encryption Solution

Figure 5-9b. Loading Time Overhead

(%) in SQL Server for the Sales DW

Fact Table per Encryption Solution

Chapter 5

152

OPES comes after SES-DW in loading time performance, showing a 56%

overhead in Oracle and 53% in SQL Server, respectively corresponding to

an extra 561 seconds and 541 seconds of loading time, and Salsa20

presents 91% and 86% overhead for respectively in Oracle and SQL

Server, corresponding to an extra 908 and 866 seconds of loading time in

each DBMS.

The standard encryption solutions continue to produce the highest

overhead, where AES with 128 bit security produced 169% in Oracle and

139% in SQL Server, respectively corresponding to adding 1682 and 1403

seconds to the standard loading time. AES with 256 bit security shows an

overhead of 191% in Oracle and 154% in SQL Server, respectively

corresponding to 1895 and 1560 seconds of extra loading time. 3DES168

introduces 197% loading time overhead in Oracle, corresponding to

adding 1955 seconds, and 158% in SQL Server, which adds 1598 seconds

of extra loading time.

Overall, the loading time results presented in this section mostly confirm

those shown in the previous chapter, although different CPUs were used

between them. Tables 5-2, 5-3 and 5-4 summarize the fact table loading

time results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW,

for each DBMS, highlighting the best solutions in each case.

Table 5-2. TPC-H 1GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 1GB

Loading Time (Overhead)

SQL Server TPC-H 1GB

Loading Time (Overhead)

Standard Loading Time 00:04:13 00:02:51

AES128 00:10:08 (00:05:55 / 140%) 00:06:22 (00:03:31 / 123%)

AES256 00:10:36 (00:06:23 / 151%) 00:06:47 (00:03:56 / 138%)

3DES168 00:10:17 (00:06:04 / 144%) 00:06:29 (00:03:38 / 127%)

OPES 00:05:53 (00:01:40 / 40%) 00:03:49 (00:00:58 / 34%)

Salsa20 00:06:59 (00:02:46 / 66%) 00:04:41 (00:01:50 / 64%)

SES-DW128 00:04:39 (00:00:26 / 10%) 00:03:11 (00:00:20 / 12%)

SES-DW256 00:04:54 (00:00:41 / 16%) 00:03:21 (00:00:30 / 18%)

SES-DW1024 00:07:31 (00:03:18 / 78%) 00:04:44 (00:01:53 / 66%)

SES-DW: A Specific Encryption Solution for Data Warehouses

153

Table 5-3. TPC-H 10GB Lineitem Fact Table Loading Time Overhead

Oracle TPC-H 10GB

Loading Time (Overhead)

SQL Server TPC-H 10GB

Loading Time (Overhead)

Standard Loading Time 00:42:56 00:29:56

AES128 01:46:15 (01:03:19 / 147%) 01:09:04 (00:39:08 / 131%)

AES256 01:52:22 (01:09:26 / 162%) 01:15:32 (00:45:36 / 152%)

3DES168 01:48:47 (01:05:51 / 153%) 01:11:30 (00:41:34 / 139%)

OPES 01:02:46 (00:19:50 / 46%) 00:42:22 (00:12:26 / 42%)

Salsa20 01:14:41 (00:31:45 / 74%) 00:51:46 (00:21:50 / 73%)

SES-DW128 00:50:24 (00:07:28 / 17%) 00:35:37 (00:05:41 / 19%)

SES-DW256 00:53:36 (00:10:40 / 25%) 00:38:40 (00:08:44 / 29%)

SES-DW1024 01:20:44 (00:37:48 / 88%) 00:58:36 (00:28:40 / 96%)

Table 5-4. Sales DW 2GB Fact Table Loading Time Overhead

Oracle Sales DW 2GB

Loading Time (Overhead)

SQL Server Sales DW 2GB

Loading Time (Overhead)

Standard Loading Time 00:16:34 00:16:53

AES128 00:44:36 (00:28:02 / 169%) 00:40:16 (00:23:23 / 139%)

AES256 00:48:09 (00:31:35 / 191%) 00:42:53 (00:26:00 / 154%)

3DES168 00:49:09 (00:32:35 / 197%) 00:43:31 (00:26:38 / 158%)

OPES 00:25:55 (00:09:21 / 56%) 00:25:54 (00:09:01 / 53%)

Salsa20 00:31:42 (00:15:08 / 91%) 00:31:19 (00:14:26 / 86%)

SES-DW128 00:18:44 (00:02:10 / 13%) 00:19:21 (00:02:28 / 15%)

SES-DW256 00:20:11 (00:03:37 / 22%) 00:20:37 (00:03:44 / 22%)

SES-DW1024 00:30:08 (00:13:34 / 82%) 00:31:21 (00:14:28 / 86%)

5.4.3. Analyzing Query Performance

To analyze the query performance of the encryption algorithms, we

defined a decision support query workload for each database similar to

what was described in the data masking technique’s experimental

evaluation in the previous chapter. The TPC-H workload included the

benchmark queries were the same as those used in the data masking

Chapter 5

154

experiments in the previous chapter (i.e., TPC-H queries number 1, 3, 6, 7,

8, 10, 12, 14, 15, 17, 19 and 20, which correspond to all that access the

LineItem fact table). For the Sales DW, the workload was also the same

set of 29 queries all processing the Sales fact table. For fairness, databases

were also optimized in a best practice manner (including primary keys,

foreign keys, and referential integrity constraints and join indexes).

As we previously mentioned, all response time results are an average

obtained from six executions in each scenario on each DBMS. The

standard execution time (average of execution time of the workload

against a non-encrypted database) for each scenario is 492, 5037, and 1766

seconds in Oracle 11g, and 452, 4694, and 1690 seconds in SQL Server

2008, for the 1GB, 10GB TPC-H and Sales DW, respectively.

Figures 5-10a to 5-11b show the total workload execution time and its

overhead in Oracle and SQL Server for the TPC-H 1GB database, while

Figure 5-12 shows the CPU execution time overhead in Oracle and SQL

Server for the same database. SES-DW with 128-bit and 256-bit security

has the best response and CPU time overheads for all scenarios,

respectively 106% and 154% of execution time overhead in Oracle,

corresponding to 523 and 759 seconds of added response time, and 105%

and 152% in SQL Server, corresponding to 475 and 688 seconds of added

response time. The results are followed by Salsa20 and further by AES,

while OPES has results leveled between AES and 3DES, while SES-DW

with 1024 bit security presents values approximately similar to AES.

Oracle TPC-H 1GB

Query Workload Execution Time (sec)

Oracle TPC-H 1GB

Query Workload Exec. Time Overhead (%)

Figure 5-10a. Query Workload

Execution Time in Oracle for the

TPC-H 1GB per Encryption Solution

Figure 5-10b. Query Workload Exec.

Time Overhead (%) in Oracle for the

TPC-H 1GB per Encryption Solution

SES-DW: A Specific Encryption Solution for Data Warehouses

155

SQL Server TPC-H 1GB

Query Workload Execution Time (sec)

SQL Server TPC-H 1GB

Query Workload Exec. Time Overhead (%)

Figure 5-11a. Query Workload

Execution Time in SQL Server for the

TPC-H 1GB per Encryption Solution

Figure 5-11b. Query Workload Exec.

Time Overhead (%) in SQL Server for

the TPC-H 1GB p/ Encryption Solution

Query Workload CPU Time Overhead (%)

 Oracle TPC-H 1GB SQL Server TPC-H 1GB

Figure 5-12. Query Workload CPU Time Overhead (%) for the TPC-H 1GB per

Encryption Solution in each DBMS

It can be seen that in what concerns the processing efforts of the

encryption algorithms themselves, which can be observed through

analyzing the CPU execution time overhead, the results shown in Figure

5-12 show that SES-DW introduces an overhead of approximately 200%

to 270% respectively with 128 and 256 bit security. Salsa20, which is the

Chapter 5

156

best of the remaining solutions, introduces approximately 300%, while all

other solutions add nearly 400% of CPU execution time overhead.

Figures 5-13a to 5-14b show the total workload execution time and its

overhead in Oracle and SQL Server for the TPC-H 10GB database, while

Figure 5-15 shows the CPU execution time overhead in Oracle and SQL

Server for the same database. As can be observed, the results lead to

similar conclusions as those seen in the TPC-H 1GB database, in what

respects the ranking performance of the tested solutions. SES-DW

remains the solution having the best response and CPU time overheads

for all scenarios, with 128-bit and 256-bit security in both DBMS. When

compared with the results for the TPC-H 1GB database, it can be seen that

the differences between the solutions are slightly enforced with the

higher amount of data which needs to be processed in the 10GB scale size.

Oracle TPC-H 10GB

Query Workload Execution Time (sec)

Oracle TPC-H 10GB

Query Workload Exec. Time Overhead (%)

Figure 5-13a. Query Workload

Execution Time in Oracle for the

TPC-H 1GB per Encryption Solution

Figure 5-13b. Query Workload Exec.

Time Overhead (%) in Oracle for the

TPC-H 1GB per Encryption Solution

SES-DW: A Specific Encryption Solution for Data Warehouses

157

SQL Server TPC-H 10GB

Query Workload Execution Time (sec)

SQL Server TPC-H 10GB

Query Workload Exec. Time Overhead (%)

Figure 5-14a. Query Workload

Execution Time in SQL Server for the

TPC-H 10GB per Encryption Solution

Figure 5-14b. Query Workload Exec.

Time Overhead (%) in SQL Server for

the TPC-H 10GB p/ Encryption Solution

Query Workload CPU Time Overhead (%)

 Oracle TPC-H 10GB SQL Server TPC-H 10GB

Figure 5-15. Query Workload CPU Time Overhead (%) for the TPC-H 10GB per

Encryption Solution in each DBMS

Figures 5-16a to 5-17b show the results of total workload execution time

and respective overhead for the Sales DW fact table in both DBMS. It can

be seen that SES-DW continues to produce much smaller execution time

overheads than the remaining solutions, similarly to the occurred with

TPC-H. SES-DW with 128 bit security shows 262% and 236% overhead in

Oracle and SQL Server, respectively corresponding to an extra 4627 and

3988 seconds in response time. SES-DW with 256 bit security shows 409%

Chapter 5

158

and 361% in Oracle and SQL Server, corresponding to adding 7223

seconds in Oracle and 6101 seconds in SQL Server, and when using 1024

bit security the loading time overhead was 610% in Oracle and 493% in

SQL Server, respectively corresponding to an extra 10773 and 8332

seconds of loading time.

Salsa20 comes after SES-DW 128 bit and 256 bit in execution time

performance, showing a 539% overhead in Oracle and 492% in SQL

Server, and OPES presents more than 700% and 600% overhead

respectively in Oracle and SQL Server. The standard encryption solutions

continue to produce the highest overhead, roughly between 700% and

800% of extra loading time in both DBMS.

Oracle Sales DW

Query Workload Execution Time (sec)

Oracle Sales DW

Query Workload Exec. Time Overhead (%)

Figure 5-16a. Query Workload

Execution Time in Oracle for the

Sales DW per Encryption Solution

Figure 5-16b. Query Workload Exec.

Time Overhead (%) in Oracle for the

Sales DW per Encryption Solution

SES-DW: A Specific Encryption Solution for Data Warehouses

159

SQL Server Sales DW

Query Workload Execution Time (sec)

SQL Server Sales DW

Query Workload Exec. Time Overhead (%)

Figure 5-17a. Query Workload

Execution Time in SQL Server for the

Sales DW per Encryption Solution

Figure 5-17b. Query Workload Exec.

Time Overhead (%) in SQL Server for

Sales DW p/ Encryption Solution

Figure 5-18 shows the CPU time overhead per solution for the Sales DW

in each DBMS. In what concerns CPU time overhead, by observing Figure

5-18 and comparing it with the results from the TPC-H 1GB in Figure 5-12

and TPC-H 10GB in Figure 5-15, it can be seen that the CPU execution

time overhead obtained in the Sales DW are very leveled and similar to

those obtained in the TPC-H databases. This reveals a similar difference

and impact in CPU processing efforts between the different solutions.

Query Workload CPU Time Overhead (%)

 Oracle Sales DW 2GB SQL Server Sales DW 2GB

Figure 5-18. Query Workload CPU Time Overhead (%) for the Sales DW 2GB per

Encryption Solution in each DBMS

Chapter 5

160

Tables 5-5, 5-6 and 5-7 summarize the query workload execution time

results respectively for the TPC-H 1GB, TPC-H 10GB and Sales DW, for

each DBMS. We highlight SES-128 as the solution that achieves the best

results.

Table 5-5. TPC-H 1GB Query Workload Execution Time Overhead

Oracle TPC-H 1GB

Execution Time (Overhead)

SQL Server TPC-H 1GB

Execution Time (Overhead)

Standard Loading Time 00:08:12 00:07:32

AES128 00:22:37 (00:14:25 / 176%) 00:20:31 (00:12:59 / 172%)

AES256 00:24:56 (00:16:44 / 204%) 00:22:10 (00:14:38 / 194%)

3DES168 00:28:22 (00:20:10 / 246%) 00:22:42 (00:15:10 / 201%)

OPES 00:25:35 (00:17:23 / 212%) 00:22:06 (00:14:34 / 193%)

Salsa20 00:21:08 (00:12:56 / 158%) 00:18:51 (00:11:19 / 150%)

SES-DW128 00:16:55 (00:08:43 / 106%) 00:15:27 (00:07:55 / 105%)

SES-DW256 00:20:51 (00:12:39 / 154%) 00:19:00 (00:11:28 / 152%)

SES-DW1024 00:24:13 (00:16:01 / 195%) 00:22:05 (00:14:33 / 193%)

Table 5-6. TPC-H 10GB Query Workload Execution Time Overhead

Oracle TPC-H 10GB

Execution Time (Overhead)

SQL Server TPC-H 10GB

Execution Time (Overhead)

Standard Loading Time 01:23:57 01:18:14

AES128 04:13:11 (02:49:14 / 202%) 03:54:23 (02:36:09 / 200%)

AES256 05:17:53 (03:53:56 / 279%) 04:37:30 (03:19:16 / 255%)

3DES168 06:07:33 (04:43:36 / 338%) 05:13:41 (03:55:27 / 301%)

OPES 04:46:45 (03:22:48 / 242%) 03:55:55 (02:37:41 / 202%)

Salsa20 04:03:43 (02:39:46 / 190%) 03:45:40 (02:27:26 / 188%)

SES-DW128 02:44:53 (01:20:56 / 96%) 02:37:26 (01:19:12 / 101%)

SES-DW256 03:20:56 (01:56:59 / 139%) 02:51:29 (01:33:15 / 119%)

SES-DW1024 04:09:36 (02:45:39 / 197%) 03:48:33 (02:30:19 / 192%)

SES-DW: A Specific Encryption Solution for Data Warehouses

161

Table 5-7. Sales DW 2GB Query Workload Execution Time Overhead

Oracle Sales DW 2GB

Execution Time (Overhead)

SQL Server Sales DW 2GB

Execution Time (Overhead)

Standard Loading Time 00:29:26 00:28:10

AES128 03:55:01 (03:25:35 / 698%) 03:43:49 (03:15:39 / 695%)

AES256 04:18:10 (03:48:44 / 777%) 03:56:20 (03:28:10 / 739%)

3DES168 04:24:20 (03:54:54 / 798%) 04:08:18 (03:40:08 / 782%)

OPES 03:56:29 (03:27:03 / 703%) 03:26:21 (02:58:11 / 633%)

Salsa20 03:08:14 (02:38:48 / 540%) 02:46:59 (02:18:49 / 493%)

SES-DW128 01:46:36 (01:17:10 / 262%) 01:34:42 (01:06:32 / 236%)

SES-DW256 02:29:58 (02:00:32 / 410%) 02:10:06 (01:41:56 / 362%)

SES-DW1024 03:29:06 (02:59:40 / 610%) 02:47:12 (02:19:02 / 494%)

To demonstrate the effects of using encryption on each individual query,

the results for individual query execution time in Oracle for the TPC-H

10GB scenarios are shown in Figure 5-19, with a logarithmic scale. These

results show that all queries have similar proportional overhead to those

of the complete workload. This is also true for all the other scenarios,

making it redundant to include all. It can be seen that most queries

processed by AES and 3DES have overheads of several orders of

magnitude higher than SES-DW.

Chapter 5

162

Figure 5-19. TPC-H 10GB Individual Query Execution Time Overhead per

Encryption Algorithm in Oracle 11g

For the same reasons as in the experimental evaluation subchapter of the

proposed data masking solution, the individual query execution time

results for the Sales DW are not included, given this set of queries can

produce a certain amount of insight as a whole, but should mainly not be

considered as appropriate for individual analysis, since this DW is a

specific real-world database and it is not a standard nor a benchmark.

5.5 Discussion on SES-DW

Contrarily to typical encryption packages such as those supplied by the

leading commercial DBMS, SES-DW preserves the encrypted columns’

datatype and bit length. This avoids introducing storage space overhead

and type conversions in decryption, consequently decreasing the amount

of data that needs to be accessed in order to process queries, as well as

computation efforts, when compared with typical encryption. As the data

masking technique proposed in the previous chapter, SES-DW

accomplishes continuous data protection similarly to commercial

encryption packages, since it maintains data-at-rest encrypted at all times,

while adding the mentioned benefits of datatype preservation.

SES-DW: A Specific Encryption Solution for Data Warehouses

163

SES-DW also has similar advantages to MOBAT, such as executing direct

queries against encrypted/decrypted data without having that data

transferred between the database and the encryption/decryption

mechanisms. This also avoids I/O and network bandwidth congestion

that other solutions introduce due to those data roundtrips, enabled by

the fact that the encrypting and decrypting processes simply rely on SQL

rewriting. As MOBAT, SES-DW is a straightforward and portable

technique to be universally used in any DBMS regardless of the CPU and

operating system, contrarily to what occurs with most standard

encryption packages supplied by DBMS.

Another advantage in SES-DW that is similar to MOBAT is that SES-DW

is specifically designed for masking numerical values, and in this sense, is

therefore much more performance efficient for protecting DW facts, when

compared with standard encryption techniques that require executing

data type conversions. The data loading and query execution response

time results shown in the experimental evaluations demonstrate this, as it

also proves that using encryption does in fact introduce extremely high

storage space, loading time and query response time overheads.

In what concerns storage space, SES-DW presents similar overhead as

MOBAT, concerning the addition of an extra column in the fact table.

OPES and SES-DW introduce much smaller storage space overheads than

the remaining solutions (less than 25% of extra storage space), followed

by Salsa20 at a considerable difference (adding approximately 30% of

storage space in TPC-H and almost 100% in the Sales DW), while the

standard encryption solutions produce the highest storage space

overheads by far.

In what concerns loading time, SES-DW with 128 bit and 256 bit security

(those similar to the key lengths of the other solutions) is much faster

than all the remaining solutions, introducing 10% to 29% of extra loading

time in the tested scenarios. OPES has the second best performance,

introducing 34% to 61% of extra loading time, more than two times worse

than SES-DW on average. Salsa20 presents loading time overheads from

64% to 102%, on average roughly four times worse than SES-DW, while

the standard encryption solutions introduce overheads of more than

100%, reaching more than 200% in several scenarios. On the other hand,

while SES with 1024 bit security does present greater overhead than

Chapter 5

164

OPES and Salsa20, it does have a superior bit security strength than these

solutions.

Considering the results obtained in the query workload executions, SES-

DW with security strengths similar to the remaining solutions is also

much faster. By observing the results, it can be seen that the relative

differences between the solutions are approximately proportional

throughout the different scenarios, with SES-DW being always the fastest

solution (using the same bit security strength as the key length of the

remaining solutions) and therefore introducing the smallest execution

time overheads by several orders of magnitude, roughly half to a quarter,

on average, of the remaining solutions.

SES-DW can be considered as a much more efficient overall solution,

introducing small overheads when compared to the remaining solutions,

for similar key sizes. Note that the worst result for SES-DW is that with

1024 bit security, which is similar to Salsa20. However, it does refer to

using 1024 bit encryption, far higher than the remaining tested solutions.

As we previously mentioned, given that decision support environments

typically execute long running queries (i.e., queries that can run for many

minutes up to hours), the response time overheads introduced due to the

use of encryption solutions represent high absolute values that can easily

make query responses overdue and jeopardize the usefulness of the DW

itself. Considering the magnitude of the results shown in the

experimental evaluations, even a minimum gain in response/CPU time

can be considered as an important achievement.

The proposed encryption technique is straightforward and nearly

effortless to implement in a similar fashion as the data masking

technique, and the encryption keys may also be periodically refreshed

and used to refresh the encrypted table values without much effort, by

frequently switching the values of all or any one of the set of encryption

keys for each encrypted column before refreshing encrypted data in order

to ensure that data is properly protected. Therefore, given all of its

security and performance features discussed and demonstrated in this

chapter, we believe our technique is secure enough to be acceptable for

use and that it may be considered as a valid alternative for enhancing

data confidentiality in DWs.

SES-DW: A Specific Encryption Solution for Data Warehouses

165

5.6 Summary

In this chapter we propose an encryption solution specifically designed

for enhancing data confidentiality in DWs. The proposed encryption

algorithm requires only operations that can be executed using standard

SQL, such as modulus, exclusive or and arithmetic operators. As the

masking technique, it requires small computational efforts and is

straightforward and easily implemented in any DBMS. The proposed

solution is transparently used and to query the database the user

interfaces only need to send their queries to a middleware broker instead

of the DBMS. Data-at-rest is always encrypted and only the final

processed results are returned to the authorized user interfaces that

requested them. All SQL commands and actions are encrypted and stored

in a log by the middleware security broker, which can be audited by any

security staff.

We have compared SES-DW with the AES and 3DES encryption

algorithms provided by leading commercial DBMS, as well as two state-

of-the-art encryption proposals. The experimental results confirm the

same kind of storage space and database performance results as in the

previous chapter. Given that most DW data consists on numerical values,

our encryption technique is tailored for this kind of data. Given both

security proof and performance results, our technique shows better

security strength versus database performance tradeoffs than the

remaining encryption solutions. Thus, it is an efficient overall solution

and a valid alternative for balancing performance and security issues

from the DW perspective.

166

Chapter 6

DW-DIDS: An Intrusion Detection
Mechanism for Data Warehouses

In a defense in depth scenario, an intruder needs to overcome a series of

security mechanisms against invasive or unauthorized actions, such as

routers, firewalls, network-based intrusion detectors, OS-based intrusion

detectors, and finally, Database Intrusion Detection Systems (DIDS). The

DIDS represents the last bastion of defense before any intruder gains

access to the data itself. In this chapter, we propose a Data Warehouse

Database Intrusion Detection System (DW-DIDS) based on the analysis of

user actions at the SQL command level, including measures concerning

what data was processed as well as the resulting datasets from the

command’s execution. The proposed DIDS complies with the principles

defined by the framework presented in Chapter 3.

To accomplish this, we define what an intruder is and what types of

attack can occur against data warehouses, proposing a classification of

each intruder action according to those intents. Given this classification

and the characteristics of typical end user workloads, we propose a set of

features analyzed by the DIDS which we consider relevant to analyze and

monitor their behavior.

We then define how to construct each user’s behavior profile using the

chosen Intrusion Detection (ID) features in a defined learning phase for

the DIDS, and how to perform ID in the detection phase for generating

alerts.

For performing alert and response management, we propose a risk

exposure method that assesses the risk inherent to each generated alert,

given its probability and impact, which indicates the alerts that

potentially present greater risk to the enterprise. This allows security staff

to quickly check the alerts showing the highest risk and deal with the

Intrusion Detection Mechanism

167

potentially most dangerous intrusions first. The approach includes a SQL-

like set of rules that allow determining the probability that each alert

refers to a true intrusion given the feature that generated that alert, as

well as the impact that the user action can produce on the enterprise.

These rules also enable to deal with intrusions automatically, given the

alert’s risk exposure measure.

The chapter is organized as follows. In Section 6.1 we describe the basics

of intrusion behavior in data warehousing environments, classifying the

types of intrusion actions and proposing the relevant features for

monitoring user behavior and performing intrusion detection. In Section

6.2 we present the overall architecture of the proposed DIDS, describing

each of its components and how they operate together during the

workflow of the user command’s execution. Section 6.3 describes how to

build user profiles, while Section 6.4 describes how to perform ID given

each user action. Section 6.5 presents the risk exposure method for alert

and response management. Section 6.6 includes an experimental

evaluation of the proposed DIDS against two other ID techniques

proposed by recent state-of-the-art research. In Section 6.7 we discuss

open issues regarding the proposed DIDS and finally, Section 6.8

summarizes and concludes the chapter.

6.1. Selecting Intrusion Detection Features in Data Warehouses

Selecting the appropriate features for performing intrusion detection

requires understanding what an intruder is and which are the distinct

type of intentions that can drive an attack, i.e., what the intruder aims to

achieve with the attack.

From a database perspective, an intruder in a data warehousing

environment can be one of the following [Treinen and Thurimella, 2006]:

 An authorized user, which is someone that has regular access to

authorized database interfaces and acts with malicious intent;

 A masqueraded user, which is someone that obtains the credentials

of an authorized user and impersonating that user takes control of

an authorized interface connecting to the database;

 An insider attacker, which is someone that holds valid credentials

to access the database as a regular activity;

Chapter 6

168

 An external attacker, which is someone that does not have valid

credentials to access the database, but is able to bypass database

security mechanisms and gain direct database access using SQL

injection or other exploiting techniques;

 Any combination of the above.

Considering the possible intruders’ intentions, there are mainly three

types of attacks mobilized against DWs [Douligeris and Mitrokotsa,

2004]:

 Attacks aiming at corrupting data (integrity attacks). In this type

of attack, the intruder seeks access to the database for executing

actions that compromise its integrity, such as corrupting or deleting

the data in a given database object (e.g. such as a table or view);

 Attacks aiming at stealing information (confidentiality attacks). In

these attacks, the intruder focuses on confidentiality issues, such as

stealing business information, rather than damaging data;

 Attacks aiming at making the DW unavailable (availability

attacks). These attacks aim on making database services

unavailable, i.e., they are mainly Denial of Service (DoS) attacks (e.g.

flooding database services and bandwidth with a large number of

requests, and halting or crashing database server instances).

Given these intruder intents and types of attacks, we define ten classes of

intrusion action types (A...J) as shown in Table 6-1. This classification

distinguishes the intruder’s intentions apart from each other (shown in

the “Attack Profile/Intent/Focus” column), defining a taxonomy for each

action accordingly to what s/he might be aiming to achieve with the

attack.

Considering that integrity attacks focus on compromising the consistency

and accurateness of the data content itself, we consider as integrity

attacks all intruder actions that attempt to insert new false data values

(class H), change the existing data values in order to make them incorrect

or inaccurate (class I) and deleting existing data (class J). Any one of these

attacks will cause inaccurate query responses against the affected data

and they can also compromise referential integrity constraints if

dimensional data is affected.

Intrusion Detection Mechanism

169

Table 6-1. SQL Intrusion Action Type Classification

SQL
Action
Class

Security dimension affected
by the intrusion Intruder Command

Action Description
Attack Profile/Intent/Focus

Confid Integrity Availab

A X
Attempts to discover
valid database
credentials/logins

Brute force attack or dictionary-based
attacks for attempting to obtain valid
application/database logins

B X

Query retrieving
information on
database objects or
data structures

Retrieving information on database
tables, views, triggers, etc. as well as
index column names and types, in order
to compose further attack instructions

C X

Malicious
modification of
auxiliary data
structures

Erasing or renaming performance
optimization data structures (e.g.
erasure of indexes or materialized
views), database objects (e.g. tables or
physical datafiles)

D X X
Query retrieving all
data from a table
(integral table copy)

Retrieving all possible information of
fact tables (in order to steal business
secrets or strangle network bandwidth)
or dimension tables (e.g. customer
information)

E X
Query retrieving a
significant portion of
data from a table

Stealing of selected sensitive factual
(e.g. fact rows about sales concerning a
given product or time period, or the
rows with a small well-chosen set of
sensitive table columns) or dimensional
data (e.g. a list of customer credit cards
or addresses)

F X
Query retrieving a
specific and relatively
small portion of data

Stealing a small amount of specifically
targeted data (e.g. total year sales value
of a given product)

G X Query flooding

Execution of an overwhelming amount
of concurrent queries that access large
volumes of data (creating database
server processing bottlenecks) or that
return large volumes of data (causing
network bandwidth strangulation)

H X Insertion of false data
Insertion of rows with false data in fact
tables and/or dimension tables to
compromise user query results

I X
Malicious
modification of data

Modification of stored data values in
fact tables and/or dimension tables to
compromise user query results

J X Deletion of data
Deletion of fact and/or dimensional
table rows to produce false user query
results and erase sensitive data

We consider as confidentiality attacks all those that attempt to disclose

information that should not be disclosed. In these intruder actions, there

Chapter 6

170

can be distinct intentions such as: attempting to retrieve valid credentials

to access the database with certain privileges (class A, which will allow

the intruder to gain access to certain parts of the database), retrieving

information on the database structures, such as table names and column

names, for example (class B, which will allow identifying how the data is

stored in the database and how the business is analyzed); and retrieving

all or certain amounts of data from the database (classes D, E and F,

which discloses business information to the intruder that s/he may use in

her/his benefit or dismay the enterprise).

Data availability attacks aim at keeping the database services from

providing the responses back to the users or to simply keep them from

operating. We consider as availability attacks user actions that: attempt to

rename or delete database objects that hold data, such as tables or

materialized views, or which are required to process regular user

commands, such as table views (class C); request the database server to

process a huge amount of data in a single command (e.g. retrieving all

data from a fact table, defined in class D); and overwhelming the

database server with commands, alias known as query flooding (class G).

As can be seen, the classes defined in Table 6-1 cover a broad scope of

intentions posed by intrusions. This classification is generic and can be

easily modified in order to widen its scope by including other classes of

different types of attack.

As we previously discussed, a DIDS at the database command level

should be able to analyze all the aspects triggered by the execution of the

user’s action: the commands themselves, the processed data, and the

resulting datasets. Given the described issues, the features required for

monitoring database user actions are those focusing on the following

usability dimensions:

 Action-type: what type of actions are being requested;

 Traceability: from who/where does the requested action come;

 Selectivity: what data will be affected by that action and what

data composes the resulting dataset;

 Time: when are the actions requested to execute as well as their

duration.

Intrusion Detection Mechanism

171

In order to analyze the referred dimensions given each user action, we

need to capture observable measures of user behavior from each of the

following inputs:

 The user’s ID and his/her session ID. Identifying the user and

session allows building individual behavior profiles, as well as trace

back each requested database command;

 The SQL commands issued by the user. The SQL command allows

using features that identify the type of command (insert, update,

select, delete, etc.) and accessed data structures (columns, tables,

materialized views, etc.), selection attributes and values, grouping

attributes, union queries, etc.;

 A timestamp of the issued execution request. This allows defining

the temporal behavior of each user, identifying sequences of

measures as well as frequencies of occurrences, how long does it

take to process each command (elapsed time), etc.;

 The data processed by each SQL command. The measures from the

processed data allow using features concerning the data that is

processed by each command that is not intrinsic to the command

(e.g. how many rows were processed in the command’s execution);

 The dataset resulting from each SQL command’s execution. The

measures from the dataset resulting from the command’s execution

allow using features that enable analyzing what sort of data is

returned to the user (the size of the resulting dataset, how many

rows and columns, data values, etc.).

Considering these inputs and the characterization of data warehousing

environments and intrusion actions previously described, the intrusion

detection features considered interesting to capture the relevant measures

for the proposed DIDS are shown in Table 6-2. Note that although these

features may seem general-purpose and well fit for intrusion detection in

most types of databases, they are in fact the most relevant features for

collecting the required information for monitoring data warehouse user

actions and analyze their behavior, given the characteristics inherent to

data warehouse user activity, as described in [Bockermann et al. 2009;

Douligeris and Mitrokotsa, 2004; Kimball and Ross, 2013; TPC-H; TPC-

DS; Treinen and Thurimella, 2006].

Chapter 6

172

Table 6-2. SQL Intrusion Detection Features

F# FeatureName Description

User-based features

F1 #ConsecFailedLoginAttempts The number of consecutive failed database login attempts
by a UserID or from an IPAddress (accumulated or in a
given timespan)

F2 #SimultaneousSQLSessions The number of active simultaneous database connections on
behalf of a UserID or IPAddress

F3 #UnauthorizedAccessAttempts The number of consecutive requests to execute
unauthorized actions (e.g. requesting to modify read-only
data, or query data that he does not have access privileges)
from a UserID or IPAddress

SQL Command-based features

F4 CPUTime CPU time spent by the DBMS to process each command

F5 ResponseSize Size (in bytes) of the result of the command’s execution

F6 #ResponseLines Number of lines and columns in the result of the
command’s execution

F7 #ResponseColumns Number of columns in the result of the command’s
execution

F8 #ProcessedRows Number of accessed rows for processing the command’s
execution

F9 #ProcessedColumns Number of accessed columns for processing the command’s
execution

F10 CommandLength Number of characters in the command

F11 #GroupBy Number of GROUP BY columns in the command

F12 #Union Number of UNION clauses in the command

F13…F17 #Sum, #Max, #Min, #Avg,
#Count

Number of appearances of SUM, MAX, MIN, AVG and
COUNT functions in the command

F18, F19 #And , #Or Number of appearances of AND and OR operators in the
command’s WHERE clause(s)

F20 #LiteralValues Number of appearances of literal values in the command’s
WHERE clause(s)

Session-based features

F21…F27 #Select, #Insert, #Delete,
#Update, #Create, #Alter,
#Drop

Number of executed SELECT, INSERT, DELETE,
UPDATE, CREATE, ALTER, and DROP commands per
session

F28 #Insert-Select Number of executed INSERT commands that used
SELECT commands for inserting or building datasets, per
session

F29 #Create-Select Number of executed CREATE commands that used
SELECT commands for inserting or building datasets, per
session

F30 TimeBetwCommands Time period (in seconds) between execution of commands,
per session

F31 #SimultaneousCommands Number of commands simultaneously executing, per
session

Intrusion Detection Mechanism

173

Table 6-2. SQL Intrusion Detection Features (continued)

F# FeatureName Description

Table-based features

F32 #ProcessedRows Number of accessed rows per table

F33 #ProcessedColumns Number of accessed columns per table

F34...F38 #Sum, #Max, #Min, #Avg,
#Count

Nr. of appearances of SUM, MAX, MIN, AVG and
COUNT functions executed per table

F39…F42 #Select, #Insert, #Delete,
#Update

Number of executed SELECT, INSERT, DELETE, and
UPDATE commands per table

Column-based features

F43 #GroupBy Number of issued GROUP BY clauses per column

F44…F48 #Sum, #Max, #Min, #Avg,
#Count

Nr. of SUM, MAX, MIN, AVG and COUNT functions
executed per column

F49, F50 #Select, #Update Number of executed SELECT, and UPDATE commands
per column

As can be observed in Table 6-2, the features are divided into five main

groupings: user-based, command-based, session-based, table-based and

column-based. This allows testing features by applying different levels of

grouping (per user / per user session / per SQL command / per table / per

column) as roll-up and drill-down techniques, widening the detection

scope and coverage of user behavior variability.

Table 6-3 shows the coverage of the intrusion detection features defined

in Table 6-2 against the intrusion action classes described in Table 6-1.

Given the diverse types of intrusion detection techniques discussed in

Chapter 2, the set of proposed features presented in our approach

manages to cover an extremely broad scope of possible forms of intrusion

detection. For example, features F1, F2, F3, F4, F5, F30, F31 are commonly

used in intrusion detection systems that inspect network traffic; F6,

F8…F29, F34…F50 are widely used for SQL command analysis; F4, F5, F6,

F13…F17, F34…F38, F44…F48 are used in statistical intrusion detection

systems; F4, F21…F27, F30, F31, F39…F42, F49, F50 are used for sequence

analysis; F6…F9, F11, F12, F21…F29, F32, F33, F39…F43, F49, F50 focus on the

accessed data and are used in intrusion detection systems for data access

pattern analysis; and features F4…F7, F30…F33 are used in intrusion

detection systems that analyze the action’s resulting dataset.

Chapter 6

174

Table 6-3. SQL Intrusion Detection Features Coverage per Intrusion Action Class

SQL Action
Class

Intrusion Detection Features

A F1, F2, F3, F8, F9, F10, F12, F18, F19, F20, F30, F31, F32, F33, F49

B F2, F3, F8, F9, F18, F19, F20, F30, F31, F32, F33, F49

C
F3, F8, F9, F10, F18, F19, F20, F22, F23, F24, F25, F26, F27, F28, F30, F31, F32, F33, F40, F41, F42,
F50

D
F2, F3, F4, F5, F6, F7, F8, F9, F10, F12, F18, F19, F20, F21, F22, F25, F26, F28, F29, F30, F31, F32,
F33, F39, F49

E
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F25,
F26, F28, F29, F30, F31, F32, F33, F34, F35, F36, F37, F38, F39, F43, F44, F45, F46, F47, F48, F49

F
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F25,
F26, F28, F29, F30, F31, F32, F33, F34, F35, F36, F37, F38, F39, F43, F44, F45, F46, F47, F48, F49

G
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F18, F19, F20, F21, F22, F28, F29, F30, F31, F32, F33,
F39, F40, F43, F49

H F2, F3, F4, F8, F9, F10, F18, F19, F20, F22, F28, F29, F30, F31, F32, F33, F39, F40, F49

I F2, F3, F4, F8, F9, F10, F18, F19, F20, F24, F26, F30, F31, F32, F33, F42, F50

J F2, F3, F4, F8, F10, F18, F19, F20, F23, F27, F30, F31, F32, F41

6.2. DW-DIDS Architecture

The Data Warehouse Database Intrusion Detection System’s (DW-DIDS)

architecture is shown in Figure 6-1. The DataBase Administrator (DBA) is

the person in charge of managing the DW Database(s), namely managing

all database objects such as datafiles, tablespaces, tables, indexes, views,

etc. The Authorized End User is a regular authorized DW end user that is

interested in querying data for decision support purposes or an ETL tool.

The Intruder represents the attackers as defined in the previous section.

The DW Security Administrator is responsible for handling the DW-DIDS

through the Security Manager Interface by managing the contents of the

DW-DIDS Database (which is a part of the Security Framework Database, as

explained in Chapter 3). This database contains:

 A historical SQL command log for storing all commands requested

to be executed by the DBMS;

 The individual user feature profiles and respective statistical

models;

 A historical alert log for storing and monitoring all generated alerts;

Intrusion Detection Mechanism

175

 A rule-base dataset containing the rules for computing risk

exposure and indicating how to deal with intrusions according to

each generated alert (the syntax of the risk exposure rules will be

explained further in Section 6.5).

The generated alerts stored in the alert log are also manually confirmed

as true or false positive outcomes by the DW Security Administrator, after

their veracity have been checked out. The true and false positive

outcomes are used to fine-tune each feature’s contribution in the overall

intrusion detection process, as explained further in Subsection 6.5.4.

Database Intrusion Detection Engine

Command AnalyzerDataBase
Management System

Security Manager
Interface

Intrusion
Response Manager

DW
Database(s)

DW-DIDS
Database

SQLCommandLog
UserFeatureStats

AlertLog
RuleBase

DBA, ETL and End
User Interfaces

Command Parser Response Parser

DW Security Administrator

1

2

3

12

6, 14

5

7, 15

7, 15

8
9

10

11

16

Authorized
End User

DataBase
Administrator

Intruder

7, 15

13

Response Analyzer

4

Figure 6-1. DW-DIDS Architecture

In our approach, intrusion detection is handled at the SQL command

level in two moments:

1) when the DBMS receives a command to execute, that command is

analyzed before it is executed (step 2);

2) after its execution is completed (if the command is not considered

an intrusion in step 2), its response and the data that was processed

is also analyzed before being returned to the user which requested

the execution (step 10).

Chapter 6

176

The sequence of steps is labeled in Figure 6-1. In practice, before

executing any command, the Command Parser retrieves the command text

and starting date/time, as well as user identification (User type, UserID,

IPAddress, SessionID), parses the command according to the intrusion

detection features and passes all the information to the Command Analyzer

(step 3). The Command Analyzer stores this information in the SQL

Command Log and retrieves the respective user features’ statistical models

(step 4), and applies the intrusion detection algorithms (explained in the

next subsections) to determine if an alert should be generated concerning

the analyzed command. The information referring the parsed user

command and its outcome results from the intrusion detection tests is

then passed on to the Intrusion Response Manager (IRM) (step 5).

When the IRM receives indication that an alarm should be generated, it

retrieves the probability, impact and risk exposure rule set from the DW-

DIDS Database (step 6), evaluates the intrusion’s risk exposure and stores

the data concerning the alert and the features which generated it in the

database (for future reference), and notifies the DW Security Administrator

through the Security Manager Interface (step 7). Moreover, it also takes the

suitable actions for dealing with the possible intrusion through the

DBMS, accordingly to what is defined by the risk exposure rules. The

IRM takes action against intrusions by suspending or killing its execution,

or killing the user session, either automatically or on request of the DW

Security Administrator after s/he has seen the alert information and

decided what action should be taken.

If the command is not considered an intrusion a priori to its execution, i.e.,

if no alarm is generated after analyzing the command, DW-DIDS will

simply update each feature’s statistical model for the corresponding user

in the DW-DIDS Database and notify the DBMS to execute the command.

In this case, after its execution, the resulting dataset and the data that was

processed is parsed by the Response Parser and analyzed by the Response

Analyzer (in a similar way as the applied by the Command Parser to the

user command) (steps 10 to 13).

If the Response Analyzer does not request to generate an alarm against the

command’s resulting dataset, i.e., if it is not considered an intrusion, then

each feature’s statistical models for the concerning user is updated once

more in the DW-DIDS Database and the command’s results are disclosed

Intrusion Detection Mechanism

177

back to the user that requested them. On the other hand, if the IRM

receives indication that an intrusion alert should be generated, then it

takes action similarly to what was previously described for steps 6 and 7.

6.3. Learning Phase: Building User Behavior Profiles

Our user profiling approach is based on adjusting a probabilistic

distribution for each ID feature { F1, …, F50 } (as shown in Table 6-2) per

user, except F1 and F3 (which use absolute values), from observations

(feature values) extracted in an initial training (alias learning) stage. To

obtain those observations, we assume the existence of a previous

“intrusion-free” database command log or a set of queries supplied by the

DW administrator, which also identify the user that issued each

command.

To build the user profiles, each SQL user command in that log or set of

queries is parsed and executed against the DW to extract the required

information, i.e., the observations from the command itself, those

referring to the data processed by the command, and the resulting

dataset, for building each feature’s statistical distribution per user. The

workflow of this training stage is shown in Figure 6-2, where the

continuous lines show the flow a priori to the user command’s execution

and the dashed lines indicate the flow a posteriori.

Statistical adjustment tests are performed in order to obtain each

population’s distribution model at a level of 5% significance using Qui-

square (which is valid for any distribution), Kolmogorov-Smirnov (which

is valid for a continuous distribution) or Shapiro-Wilks (valid for normal

distributions) to verify if each set of observations comes from a

population with a given distribution function F0, specified on the null

hypothesis.

Chapter 6

178

DBMS

Command Parser/Analyzer

Feature Value Extraction

<SQLCommandID, UserID,
UserRole, SessionID,

CommandText, StartDateTime>

<SQLCommandID, IPAddress,
UserID, UserType, SessionID,

ResponseDateTime,
ElapsedCPUTime,
ProcessedRows,

ProcessedColumns,
ResponseSize, ResponseRows,

ResponseColumns>

UserID, SessionID,
CommandText

<UserID, set of Features F1...Fn,
Feature Values V1...Vn>

User Stat Model Generator

Update User Behavior Profile

Execute User
Command

Response Analyzer

Feature Value Extraction

User Command
Execution Information
and Resulting Dataset

<UserID, set of Features F1...Fn,
Feature Values V1...Vn>

5 0

1 2

3

5

6

7

DW-DIDS
Database

SQLCommandLog
UserFeatureStats

4, 8

Figure 6-2. DW-DIDS Learning Stage Workflow for each SQL User Command

6.4. Detection Phase: Intrusion Detection against User Commands

The testing phase workflow for performing intrusion detection is shown

in Figure 6-3, where continuous lines show the flow a priori to the user

command’s execution and the dashed lines indicate the flow a posteriori.

To detect an intrusion, each user command is analyzed before it is

executed by the DBMS. A statistical test is performed for each feature

given its original statistical model for the respective user and a new

sample set built by gathering the existent observations with the current

respective user session sample set for that feature. New statistical tests are

performed to adjust a new probability distribution to the former data

collection. Afterwards, we test if the new distribution matches the

original distribution of the feature (Ho).

The Chi-square, Kolmogorov-Smirnov or Shapiro-Wilk statistical tests,

mentioned in the previous subsection, are always used as the testing

methods in all cases, all performed at a level of 5% significance. These

Intrusion Detection Mechanism

179

methods test whether one distribution (e.g. one data set) is significantly

different from another (e.g. a normal distribution) and produce a binary

answer, corresponding to yes or no. We use the Shapiro-Wilk test if the

sample size is small (between 3 and 2000) and the Kolmogorov-Smirnov

test if the sample size is big (greater than 2000). The Chi-square test is

used to verify if a data sample came from a population with a specific

distribution.

If no test in this first phase (i.e., a priori to the user command’s execution

by the DBMS) rejects H0, then the DBMS is notified to run the command.

After the command has been processed, feature value extraction is

performed on the resulting dataset and the processed data and the

corresponding statistical tests are executed in a similar fashion as

described in the previous paragraph. In any testing phase, for each

feature’s test result that rejects the distribution’s equality (Ho) in any

moment, the respective user action is considered an intrusion and an

alarm is generated.

For features F1 and F3 a different approach is chosen, considering the

following: in systems such as ATM, banking, e-governance, and most

web applications, for instance, the number of allowed consecutive

unsuccessful login attempts is typically three (which is the most used

option) to five (usually the maximum number of allowed consecutive

unsuccessful attempts). It is considered common to accept two

consecutive unsuccessful attempts followed by a successful attempt as a

non-intrusion, while more consecutive unsuccessful attempts indicate a

possible intrusion tentative or a true user that has forgotten his/her login

information. Thus, DW-DIDS considers an intrusion more than two

consecutive failed login attempts (F1>2) on behalf of a given user/IP

address and generates the correspondent alert.

In a similar fashion, a situation where a user that manages to login and

tries to view or process data to which s/he does not have or is not

supposed to access may also match an intrusion action. Therefore, two

consecutive attempts from a given user/IP address for accessing

unauthorized data or for executing an unauthorized command (e.g. an

INSERT, UPDATE, DROP, etc., by a DW End User, which has only

SELECT statement privileges) (F3>=2) is also considered an intrusion by

DW-DIDS, generating the correspondent alert.

Chapter 6

180

Figure 6-3. DW-DIDS Intrusion Test/Detection Stage Workflow for each SQL User Command

6.5. Alert and Response Management

For each user action that flags an alert, the Intrusion Response Manager

(IRM) evaluates the potential damage the action may cause to the

enterprise, assessing the action’s risk exposure according to the feature(s)

that generated the alert. After computing that risk exposure measure, it

notifies the DW Security Administrator about the alert and adequately

Intrusion Response Manager

 Probability and Impact Assessment
 Risk Exposure Evaluation
 Update Alert Log
 Notify Security Administrator
 Take Defined Response Actions

DBMS

Command Parser/Analyzer

Feature Value Extraction

<SQLCommandID, IPAddress,
UserID, UserType, SessionID,

CommandText, StartDateTime>

<SQLCommandID,
IPAddress, UserID,

UserType, SessionID,
ResponseDateTime,
ElapsedCPUTime,
ProcessedRows,

ProcessedColumns,
ResponseSize,

ResponseRows,
ResponseColumns>

UserID, SessionID, IPAddress,
CommandText

Stat. test shows intrusion?

For each feature Fn
perform statistical

hypothesis test

<Set of Features F1...Fn and Feature Values V1...Vn,
SQLCommandID, IPAddress, UserID, UserRole,

SessionID, CommandText, StartDateTime,
Probability, Impact and Risk Exposure Ruleset> Yes

No intrusion <UserID, set of Features F1...Fn,
Feature Values V1...Vn>

User Stat Model Update

Execute User
Command

Response Parser/Analyzer

Feature Value Extraction

Stat. test shows
intrusion?

For each feature Fn
perform statistical

hypothesis test

Yes

No intrusion

User Command
Execution Resultset

<UserID, set of Features F1...Fn,
Feature Values V1...Vn>

Disclose
results to

User

Disclosure
authorization

<Set of Features F1...Fn and Feature Values V1...Vn,
SQLCommandID, IPAddress, UserID, UserRole,

SessionID, CommandText, StartDateTime,
Probability, Impact and Risk Exposure Ruleset>

DW-DIDS
Database

SQLCommandLog
UserFeatureStats

1

2

34

5

5

6, 12 6, 12

7

8

910

11

11

13

Intrusion Detection Mechanism

181

responds to the intrusion accordingly with the defined risk exposure rule.

In this section we define risk exposure and explain how this measure is

computed in order to rank the alerts and take action against the attack.

We also show how to calibrate the contribution of each intrusion

detection feature in the overall intrusion detection process.

6.5.1. Defining the Risk Exposure

Many DIDS evaluate what data is accessed, while others focus on how

data is accessed. Both assess the probability of a given user action being

suspicious to classify that particular action or set of actions to which it

belongs as an intrusion; when that probability exceeds a predefined

threshold, an alert is generated. As we have previously mentioned, any

thresholds used to filter out intrusion alerts given their probability should

be defined with low values that minimize the risk of false negatives, i.e.,

to minimize the number of true intrusions that pass undetected. Given

the sensitivity of DW data, it is preferable to have low thresholds, as the

potential cost of undetection is often considered too high or unacceptable.

However, this exponentially increases the number of generated alerts in

most scenarios, making alert management one of the most critical issues

in intrusion detection scenarios.

To improve the efficiency of intrusion detection systems when the

number of generated alerts is extremely high, alert correlation techniques

such as [Debar and Wespi, 2001; Ning et al., 2002; Pietraszek, 2004;

Pietraszek and Tanner, 2005; Valdes and Skinner, 2001; Yu et al., 2007]

have been proposed. These techniques typically filter sets of alerts to

distinguish which are worthy of being checked from those that are more

probably false alarms. However, we argue that alert correlation on itself

is not the best way to determine which alerts should be checked and in

which order of priority.

Since the value of DWs resides on the fact that they store the secrets of the

business, the impact resulting from an intrusion on the enterprise is

intimately linked with what data was exposed or corrupted. When using

alert correlation techniques, there can be an alert that has been positively

correlated for checking but has a low potential impact on the enterprise

(e.g. the exposed or damaged data is not very sensitive), while an alert

referring a true intrusion with high impact can be filtered out if it has a

Chapter 6

182

low correlation value. Moreover, not evaluating the potential impact of

the intrusion means that security staff do not know which alerts are more

important, implying that resources may be wasted in checking intrusion

alerts referring to actions that would cause minimal damage to the

enterprise, while a highly prejudicial intrusion occurs and is left to be

dealt with later on.

To avoid this, we propose considering all alerts admissible and apply a

method for ranking them, given a measure of risk exposure. Given a user

action, risk exposure is a function of both the probability that the action has

of referring an intrusion and the impact that it may produce, i.e., the

potential magnitude of the cost to the enterprise related with the damage

or disclosure of the data targeted by the action. The computation of the

risk exposure of each alert is done according to the matrix shown in

Figure 6-4, given its measured probability and impact.

Figure 6-4. The risk exposure matrix

The risk exposure method assures that all generated alerts will be ranked

and automatically inform security staff to check out and deal with the

most significant intrusions (given alerts with higher risk exposure) prior

to possible intrusions that might potentially produce less damage, thus

performing alert management more efficiently.

To determine which actions are taken as a response for each alert given

its risk exposure assessment, the DW Security Administrator should define

rules with the following syntax (where the values enclosed in {} represent

sets of values to choose from and those in [] are optional clauses):

Intrusion Detection Mechanism

183

 GIVEN RISK EXPOSURE AS {VeryLow, Low, High, VeryHigh,
 Critical}
 ON FEATURE {FeatureName1, FeatureName2, ...},
 [AllFeatures]
 [WHERE {List of filtering conditions}]
 [WHEN {List of time-based conditions}]
 TAKE ACTION {DoNothing, PauseUserCommand,
 TerminateUserCommand, KillUserSession}
 FOR USERS {User1, User2, ...} [, [AllUsers,]
 USERS WITH ROLE {Role1, Role2, ...}

This SQL-like rule covers all user action classes and dimensions

mentioned in Section 6.1. The FOR USERS, WHEN and WHERE clauses

allow conditioning the application of the intrusion response actions

defined in the TAKE ACTION clause, according to the specified features

included in the ON FEATURE clause to which the generated alert refers.

The FOR USERS clause allows the rule to be applied only to a limited

subset of users, the WHEN clause allows the rule to be valid only during a

given time schedule, and the WHERE clause allows the rule to be valid

only given certain conditions using feature weight values – feature

weighting is explained in the next subsection.

As an example of defining risk exposure rules, consider feature

#ConsecFailedLoginAttempts from Table 6-2. Supposing the DW Security

Administrator wants to be alerted each time an alert is risen by this feature

and defines that High and Very High risk exposure assessments for this

feature should terminate the respective user commands, while a Low

assessment should suspend the user command until the administrator

checks if everything is alright, for all users. This is accomplished by:

GIVEN RISK EXPOSURE AS Low
 ON FEATURE #ConsecFailedLoginAttempts
 TAKE ACTION PauseUserCommand
 FOR USERS AllUsers

GIVEN RISK EXPOSURE AS VeryHigh, High
 ON FEATURE #ConsecFailedLoginAttempts
 TAKE ACTION TerminateUserCommand
 FOR USERS AllUsers

As another example, if all users requesting to execute any command that

generates critical alerts – regardless of the feature that generated them –

should immediately be banned, the following rule can be defined:

Chapter 6

184

GIVEN RISK EXPOSURE AS Critical
 ON FEATURE AllFeatures
 TAKE ACTION TerminateUserCommand, KillUserSession
 FOR USERS AllUsers

On the other hand, considering that all the command that generate alerts

which present a Very Low risk exposure measure can be executed

normally, although the Security Manager Interface still displays the alert to

the DW Security Administrator so they can be checked out, the following

rule can be defined:

GIVEN RISK EXPOSURE AS VeryLow
 ON FEATURE AllFeatures
 TAKE ACTION DoNothing
 FOR USERS AllUsers

6.5.2. Defining the Probability

DW-DIDS defines the probability of each intrusion alert with rules, given

the feature that generated the alert. In a similar manner to the risk

exposure rules, these rules have the following syntax:

DEFINE PROBABILITY AS {VeryLow, Low, High, VeryHigh}
 ON FEATURE {FeatureName1, FeatureName2, ...},
 [AllFeatures]
[WHERE {List of filtering conditions}]
 [WHEN {List of time-based conditions}]
 FOR USERS {User1, User2, ...}, [AllUsers,]
 USERS WITH ROLE {Role1, Role2, ...}

It is quite obvious that, depending on each DW’s context, each feature has

its own importance in the overall intrusion detection process, which is

directly related to its risk probability, i.e., its efficiency in producing high

true positive rates (detection of a high amount of true intrusions) and low

false positive rates (small amounts of false alarms). To define this

importance, each feature has a weight attributed to it, which is a real

value within the range [0…1]. Using the probability rule syntax, we

propose that the risk probability of each feature Fi should have a

significance directly linked to its weight, as:

DEFINE PROBABILITY AS VeryLow
 ON FEATURE Fi WHERE Weight(Fi)<0.25
 FOR AllUsers
DEFINE PROBABILITY AS Low
 ON FEATURE Fi WHERE Weight(Fi)>=0.25 AND Weight(Fi)<0.50
 FOR AllUsers

Intrusion Detection Mechanism

185

DEFINE PROBABILITY AS High
 ON FEATURE Fi WHERE Weight(Fi)>=0.50 AND Weight(Fi)<0.75
 FOR AllUsers

DEFINE PROBABILITY AS VeryHigh
 ON FEATURE Fi WHERE Weight(Fi)>=0.75
 FOR AllUsers

After the learning phase in which all user profiles are built and DW-DIDS

runs for the first time to detect and respond to intrusions, we suggest

giving an equal weight of 0.5 to all features (Weight(Fi)=0.5), since it

is not possible to know a priori which features will reveal to be more

significant in the intrusion detection process. However, after the DW

security staff checks each generated intrusion alert, the value of each

feature’s weight is calibrated by its revealed efficiency. This weight

calibration technique is explained in Subsection 6.5.4.

For the fixed value features F1 and F3 we use predefined constants for

defining the probability rule. For example, in banking and e-governance

applications the number of consecutive unsuccessful login attempts that

are allowed typically ranges from three to five. As mentioned before, it is

common to accept that two consecutive unsuccessful login attempts

followed by a successful attempt as a non-intrusion, while more

consecutive unsuccessful tries indicate a possible intrusion attempt.

Given this, the probability of an intrusion given the number of

consecutive failed login attempts can be defined as:

DEFINE PROBABILITY AS VeryLow
 ON FEATURE #ConsecFailedLoginAttempts
 WHERE #ConsecFailedLoginAttempts<=2
 FOR AllUsers

DEFINE PROBABILITY AS Low
 ON FEATURE #ConsecFailedLoginAttempts
 WHERE #ConsecFailedLoginAttempts=3
 FOR AllUsers

DEFINE PROBABILITY AS High
 ON FEATURE #ConsecFailedLoginAttempts
 WHERE #ConsecFailedLoginAttempts=4
 FOR AllUsers

DEFINE PROBABILITY AS VeryHigh
 ON FEATURE #ConsecFailedLoginAttempts
 WHERE #ConsecFailedLoginAttempts>=5
 FOR AllUsers

Chapter 6

186

Note that this is only an example and that although the statistical features

have a proposed predefined set of rules given their computed

importance/weight in the overall intrusion detection process, the DW

Security Administrator can define new rules to widen the probability scope

(in the same way s/he can add new features). To give an example on

using temporal conditioning on any feature, consider a context in which

no user is expected to access the DW between 8p.m. and 7a.m. on the

server time clock. This may be defined in a rule as:

DEFINE PROBABILITY AS VeryHigh
 ON FEATURE #ProcessedRows, CommandLength
 WHERE (Server.Time>20:00 OR Server.Time<7:00) AND
 (#ProcessedRows>0 OR CommandLength>0)

 FOR AllUsers

Given the wide scope allowed by the defined rules, there may be more

than one type of probability assessed when checking the rules that

concern a generated intrusion alert. For instance, the same feature might

have a High probability given from one of the rules and a VeryHigh

probability attributed by another rule. In this case, the Intrusion Response

Manager always chooses to assign the highest value (in this case,

VeryHigh).

6.5.3. Defining the Impact

The assessment of the impact caused by a user action is also defined by

rules in a similar fashion as those previously described. This assessment

is based on which, how much, and when sensitive data can be exposed or

damaged by the user command, as well as who is the user. The impact for

the actions ranged by each user’s command is managed by the following

rules, valid for the list of nominal-based, value-based and/or temporal-

based conditions is defined through rules with the following syntax:

DEFINE IMPACT AS VeryLow, Low, High, VeryHigh
 ON FEATURE {FeatureName1, FeatureName2, ...},
 [AllFeatures]
 [ON COMMAND Insert, Update, Delete, Select,
 CreateAll, DropAll, AlterAll,
 CreateTable, DropTable, AlterTable,
 CreateIndex, DropIndex, AlterIndex,
 CreateProcedure, DropProcedure,
 AlterProcedure, CreateFunction,
 DropFunction, AlterFunction,
 CreateView, DropView, AlterView,

Intrusion Detection Mechanism

187

 CreateTrigger, DropTrigger,
 AlterTrigger, AllCommands, DML, DDL]
 [WITH COLUMNS {Column1, Column2, ...}, [AllColumns]]
[WHERE {List of filtering conditions}]
 [WHEN {List of time-based conditions}]

[JOINED WITH {Column1, Column2, ...}, [AllColumns]]
 FOR USERS {User1, User2, ...}, [AllUsers,]
 USERS WITH ROLE {Role1, Role2, ...}

This impact assessment is left entirely to the DW Security Administrator, as

it depends on the nature and structure of each DW itself and is mostly

unique in each real-world context. The clauses are used in a similar

manner to those in the probability rules, plus the clause that allows

distinguishing which is the user command (ON COMMAND), which

columns are processed (WITH COLUMNS), and the clause defining the

impact of two or more columns being processed or shown together by the

same command (JOINED WITH COLUMNS).

As an example, suppose that a credit sales DW has a Sales fact table with

column SalesAmount, storing the total amount value of each sale. It is

probable that a command that retrieves a single row or two of

SalesAmount values from the fact table probably represents low exposure

risk for the enterprise in case of an intrusion, while that risk may

probably be very high if the number of retrieved rows is higher (e.g.

greater than 20). This can be defined by the following rules:

DEFINE IMPACT AS Low
 ON FEATURE #ProcessedRows
 ON COMMAND Select
 WITH COLUMNS Sales.SalesAmount
 WHERE COUNT(*)<=2 FOR USERS AllUsers

DEFINE IMPACT AS VeryHigh
 ON FEATURE #ProcessedRows
 ON COMMAND Select
 WITH COLUMNS Sales.SalesAmount

 WHERE COUNT(*)>=20 FOR USERS AllUsers

6.5.4. Calibrating Feature Weight

The efficiency of intrusion detection mechanisms is typically analyzed

recurring to several measures [Kamra et al., 2008; Kamra, 2010]:

 True Positive (TP): an alert referring to a true intrusion;

 False Positive (FP): an alert which reveals a false alarm;

Chapter 6

188

 True Negative (TN): a user action that is correctly classified as a non-

intrusion by the ID process;

 False Negative (FN): an intrusion action that is misclassified by the ID

process as a non-intrusion (i.e., resulting in a missed intrusion).

The importance of each feature in DW-DIDS is computed by a self-

calibrating technique, using its individual ∑TP and ∑FP values. For each

feature Fi, its weight is given by:

Weight (Fi) = 0.5 +

�
∑ ��� � ∑ ���
∑ ���� ∑ ���

�

�
 , ∑ ��� > 0 ∨ ∑ ��� > 0

where ∑ ��� and ∑ ��� respectively represent the total number of true

positives and false positives achieved by all the alerts generated by

feature Fi. In our approach we assume a priori that each statistical feature

initially has the same relevance. When DW-DIDS runs for the first time

(and until the first alert generated by Fi, which allows computing TPi and

FPi), each feature’s weight is set to an initial value of 0.50, as previously

explained in Subsection 6.5.2. This value represents a neutral value in the

formula, where the number of alerts generated by the feature refers to a

true intrusion are the same as the number of alerts referring to false

alarms:

∑ ��� = ∑ ��� �
∑ ��� � ∑ ���

∑ ���� ∑ ���
� = 0 Weight (Fi) = 0.5 +

�

�
 = 0.5

Every time an intrusion alert is generated, it needs to be checked a

posteriori by the DW Security Administrator and then its status (true

positive or false positive) is stored in the DW-DIDS Database. Each

feature’s weight linked to that alert is then updated accordingly to the

calibration weight formula. In case ∑ ��� > ∑ ��� , the second term of the

sum is positive, which makes the feature’s weight higher than 0.5.

Contrarily, when ∑ ��� < ∑ ��� the second term of the sum is negative,

which makes the feature’s weight lower than 0.5, implying it erroneously

alerts intrusions more than it accurately does. As the values of TPi or FPi

grow, the computed weight will also respectively get higher or lower,

meaning that as the values of TPi and FPi vary through time the

computed weight will faithfully reflect the feature’s intrusion detection

probability.

Intrusion Detection Mechanism

189

6.6. Experimental Evaluation

Given the inexistence of an intrusion detection benchmark at the SQL

command level, we used the well-known TPC-H decision support

benchmark [TPC-H] to build the “true” non-intrusion workloads and a

set of diverse artificially created “intrusion” workloads in the

experiments.

For the “true” DW users, the respective workloads were taken from the

TPC-H benchmark due to its representativeness of typical DW

workloads, and defined according to the following assumptions:

 A number of randomly chosen TPC-H benchmark queries were

selected for each user’s workload, i.e., each user has different

queries to execute, as well as a different number of queries to

execute;

 Within the queries for each workload, several were randomly

picked for modifying the benchmark’s fixed parameters (namely in

their WHERE clause) by randomly changing their values to obtain a

larger scope of diverse user actions from the benchmark queries;

 A number of randomly built queries (by randomly picking a set of

tables, columns, functions to execute, grouping and sorting, and

literal restrictions for columns in the WHERE clauses) were also

generated for each workload, representing the ad hoc user queries in

DW environments;

 The proportion of TPC-H and randomly built queries used in each

workload is respectively 80% and 20% (on average), representing

the typical reporting behavior in DW’s as the majority of the

running tasks, while ad hoc queries are simulated by the random

queries, in smaller number.

Given that TPC-H has 23 predefined queries, the composed workload for

each “true” user is shown in Table 6-4 for a setup consisting of 10 users,

where O means that we are using the original TPC-H query, and M

stands for a TPC-H query with modified parameters, as explained

previously.

Chapter 6

190

Table 6-4. “Non-Intrusion” True User Workloads (TUW)

 Users

Queries 1 2 3 4 5 6 7 8 9 10

TPC-H Q1 O O M M O

TPC-H Q2 M O O O

TPC-H Q3 M O O M O

TPC-H Q4 O M M M O

TPC-H Q5 M O M

TPC-H Q6 O M O M

TPC-H Q7 M O O M

TPC-H Q8 M O M O

TPC-H Q9 M O M O

TPC-H Q10 O M O O

TPC-H Q11 O M M

TPC-H Q12 M O O M O

TPC-H Q13 O M M

TPC-H Q14 O M O

TPC-H Q15 M M O O

TPC-H Q16 O M M O

TPC-H Q17 O M O M

TPC-H Q18 M O O M M

TPC-H Q19 M O M O

TPC-H Q20 O M O M M

TPC-H Q21 O M M M O

TPC-H Q22 M O

TPC-H Q23 O M M O O

Nr. of Random Queries 2 3 1 5 3 2 5 1 2 2

To build each “intruder” workload, we generated a random number of

actions for each intrusion action type defined in Section 6.1 and executed

them in a random order. The types of intrusion actions cover a wide

range of attacks against the database, accordingly with the DW attack

actions and classes formerly described in Section 6.1, as follows:

 Inserting a random amount of rows;

 Changing a random amount of rows and columns;

 Deleting a random amount of rows and columns;

Intrusion Detection Mechanism

191

 Selecting a random amount of columns from a random number of

tables, without range value restrictions (1);

 Selecting a random amount of columns with a random amount of

functions (MAX, SUM, etc.) from a random number of tables,

without range value restrictions (2);

 Selecting a random amount of columns from a random number of

tables with a random amount of grouping columns, without range

value restrictions (3);

 Selecting a random amount of columns with a random amount of

functions (MAX, SUM, etc.) from a random number of tables with a

random amount of grouping columns, without range value

restrictions (4);

 Similar to (1), with range value restrictions;

 Similar to (2), with range value restrictions;

 Similar to (3), with range value restrictions;

 Similar to (4), with range value restrictions;

 Union queries with a random number of columns and tables;

 Query flooding;

 Unauthorized DW end user actions (create, drop, etc).

For comparison with other DIDS, we repeated the experiments using the

fine-grained Role-Based access control DIDS (RB-DIDS) solution

proposed in [Kamra et al., 2008] and the clustered Data-Centered DIDS

(DC-DIDS) proposed in [Mathew et al., 2010]. Both these solutions are

explained in Chapter 2. The machine used in these experiments was the

same used for the experiments presented in Chapter 5, with a Core2Duo

3GHz CPU and 2GB of RAM, using Oracle 11g as the DBMS.

DC-DIDS was implemented accordingly to the referred paper, using K-

means clustering [Mathew et al., 2010]. In their paper [Kamra et al., 2008],

the authors of RB-DIDS define vectors named quiplets that store

information on the columns used in the WHERE selection clause as well

as the accessed tables and columns to be displayed included in the

SELECT projection clause. They also propose three types of granularity

(coarse, medium-grain and fine-grained quiplets) for building the user

profiles. For fairness, we include the results from the implementation

Chapter 6

192

using the medium-coarse quiplet, which obtained the best results in our

tests, using K-means clustering with 10 iterations and the statistical

Median Absolute Deviation (MAD) test for the detection process.

For our testing scenario, we consider that the most sensitive data relates

to the most recent data. Since TPC-H has approximately seven years of

business data, the implementation of DW-DIDS defined the data from the

most recent year to have very high impact due to intrusion actions, the

data from the two previous years as high impact, the data from the two

years before that as low impact and the remaining as having very low

impact. Of course, this is not a real scenario, but we consider it to be a

sufficiently realistic setup to test our approach. As we previously

explained, the definition of impact on the data is directly related to the

sensitivity of the data values themselves, which varies from case to case.

This is why this assessment should be done by the DW Security

Administrator according to the specific business context.

Four user scenarios were considered for testing, with a total of 10 users in

each scenario. Scenario 10-0 specifies a setup without any intruder

activity, i.e., there is no “intruder” workload running, while in scenarios

9-1, 8-2 and 5-5 there are respectively one, two and five “intruders”

amongst the 10 users.

6.6.1. Building User Profiles

Each user profile is comprised by the set of statistical models (one per

feature) that refer to his/her workloads. To build the statistical models for

each feature of each “true” user, we used 5, 25, 50 and 100 executions of

the “True” Users’ Workloads (TUW) previously shown in Table 6-4. The

data and user workload in the learning phases are considered intrusion-

free and representative of normal usage because they are built and run

“as defined” in the TPC-H benchmark. We shall now analyze the time

and resources required to build these profiles.

Table 6-5 shows the required storage space (in kilobytes) for building the

user profiles. As can be seen, the smallest user profile database was built

from 305 SQL commands, referring to the 5-5 Scenario with the execution

of 5 TUW workloads, while the largest user profile database, referring to

Scenario 10-0 with the execution of 100 TUW workloads, which contains a

set of 12000 SQL queries.

Intrusion Detection Mechanism

193

As shown in Table 6-5 in the largest setup, RBAC-DIDS, DC-DIDS and

DW-DIDS respectively needed nearly 234 KB, 1031 KB and 2767 KB of

storage space, corresponding to an average of 20, 88 and 236 bytes of data

per SQL command. Given that the storage space typically required by

DWs ranges through many gigabtyes or terabtyes, we may conclude that

the measured sizes for the user profiles can be considered insignificant.

Table 6-5. Required Storage Space for building User Profiles

Scenario # Executions
TUW SQL
Commands

Required Storage Space (Kbytes)

RBAC-DIDS DC-DIDS DW-DIDS

10-0

5 600 11.7 51.6 138.3

25 3000 58.6 257.8 691.7

50 6000 117.2 515.6 1383.4

100 12000 234.4 1031.3 2766.8

9-1

5 540 10.5 46.4 124.5

25 2700 52.7 232.0 622.5

50 5400 105.5 464.1 1245.1

100 10800 210.9 928.1 2490.1

8-2

5 485 9.5 41.7 111.8

25 2425 47.4 208.4 559.1

50 4850 94.7 416.8 1118.1

100 9700 189.5 833.6 2236.3

5-5

5 305 6.0 26.2 71.4

25 1525 29.8 131.1 356.8

50 3050 59.6 262.1 713.7

100 6100 119.1 524.2 1427.3

In what concerns the time spent in building the user profiles, the

measured costs can also be deemed insignificant when compared with

the typical response time of long running queries, intrinsic characteristics

of user actions in DW environments. For building all the user profiles,

RBAC-DIDS took less than 1 minute, DC-DIDS took approximately 4

minutes and DW-DIDS nearly 6 minutes.

Chapter 6

194

6.6.2. Intrusion Detection Efficiency

The complete “true” user and intruder workload of the testing (intrusion

detection) phase for each scenario is shown in Table 6-6.

Table 6-6. Workload Quantification for each User Scenario

Scenario # “True” Queries # Attack Queries

10-0 1250 0

9-1 1130 100

8-2 1020 200

5-5 660 500

Based on the previously mentioned TP, TN, FP and FN measures, derived

calculations are commonly used to measure the efficiency of intrusion

detection mechanisms, such as [Kamra et al., 2008; Kamra, 2010]:

 TP Rate (TPR) =
��

�����

 FP Rate (FPR) =
��

�����

 Accuracy =
�����

�����������

 Precision =
��

�����

For the performed experiments, Figures 6-5a to 6-5c respectively show the

TP Rate (TPR) and FP Rate (FPR) of DW-DIDS, RBAC-DIDS and DC-DIDS

for each scenario using the user profiles built in the learning stage for

each TUW training set, and Figures 6-6a to 6-6c show their Accuracy and

Precision. All results are the average of 10 repeated executions for each

setup (and there full statistical measures can be seen in Appendix C).

Intrusion Detection Mechanism

195

Figure 6-5a. DW-DIDS

TP and FP rates
Figure 6-5b. RBAC-DIDS

TP and FP rates
Figure 6-5c. DC-DIDS

TP and FP rates

Figure 6-6a. DW-DIDS

Accuracy (ACC) and

Precision (PREC)

Figure 6-6b. RBAC-DIDS

Accuracy (ACC) and

Precision (PREC)

Figure 6-6c. DC-DIDS

Accuracy (ACC) and

Precision (PREC)

As shown in Figures 6-5.a to 6-5.c, the TP rates resulting from the

scenarios in which the user profiles were built from only 5 TUW

executions are relatively low for all DIDS (ranging from 52% to 78%),

while in those built from 25 or more TUW executions the TP rates ranged

between 85% and 94% for DW-DIDS and between 79% and 94% for RB-

DIDS, while DC-DIDS obtains the worst TPR result, ranging between 65%

and 72%.

The observed FP rates are all relatively low for DW-DIDS and RB-DIDS

(ranging from 1% to 7%) in all scenarios except the 5-5 scenario, where

14% to 23% of the alerts result in false alarms for DW-DIDS, 15% to 30%

for RB-DIDS, and 19% to 31% for DC-DIDS. This should be somewhat

expected, since the 5-5 scenario represents an environment with heavy

intrusion activity (±50% of the total input workload). This results in a

heavy increase of alarm generation, and given the high difficulty in

distinguishing normal from abnormal behavior (as previously described),

the probability of generating false alarms consequently increases.

Chapter 6

196

As seen in Figures 6-6.a to 6-6.c, the accuracy is high in all scenarios

except 5-5, ranging between 90% and 99% for DW-DIDS, between 83%

and 99% for RB-DIDS, and between 82% and 90% for DC-DIDS. In the 5-5

scenario, DW-DIDS maintains the best accuracy results between 72% and

90%, RB-DIDS between 62% and 89%, and DC-DIDS between 68% and

78%. The precision results are considerably high for DW-DIDS in all

scenarios, ranging from 58% to 83%, variable in RB-DIDS by ranging from

36% to 83%, and the poorest for DC-DIDS, ranging from 29% to 50%.

Another commonly used metric to evaluate ID efficiency is the F-score (or

F-measure) [Kamra et al., 2008; Kamra, 2010]. This measure is preferred by

many authors to score efficiency, because it scores the balance (as a

harmonic mean) between Precision and Recall (alias TP rate) in a single

output:

 F-score =
�∗���������∗������

����������������

Figures 6-7.a to 6-7.c show the F-score results in each scenario for each

DIDS. It can be seen that DW-DIDS obtains the best results for all

scenarios and TUW setups, followed by RB-DIDS, while DC-DIDS has the

worst results in most cases. DW-DIDS and RB-DIDS present very similar

results for the setups in which the training SQL dataset is fairly

significant in size (>=25 TUW), although DW-DIDS has always a slight

advantage. On the other hand, the DC-DIDS presents better results than

RB-DIDS when the training dataset is small (5 TUW) in the 9-1 and 8-2

scenarios, suggesting that in these cases the data-centric analysis

produces more efficient results than the command-centric analysis. Since

DW-DIDS includes analysis on both data and command features, this

mostly explains why DW-DIDS presents better results in all cases.

Figure 6-7a. F-Score for

the 9-1 Scenario
Figure 6-7b. F-Score for the

8-2 Scenario
Figure 6-7c. F-Score for

the 5-5 Scenario

Intrusion Detection Mechanism

197

6.6.3. Analyzing the Generated Alerts per Risk Exposure Measure

Given that one of the main advantages of ranking the alerts using the risk

exposure approach is to separate the most urgent alerts that need to be

checked out from those which represent a lower risk to the enterprise, we

shall now analyze the generated alerts per risk exposure measure. Tables

6-7a to 6-7d show the number of generated alerts for each risk exposure

measure, in each scenario. Recall the previously presented Table 6-6

referring to the number of “true” SQL instructions versus the number of

“intrusion” SQL instructions for each scenario (10-0, 9-1, 8-2 and 5-5).

Table 6-7a. Alerts per Risk Exposure Measure w/ Profiles built from 5 TUW Executions

 Scenario Very Low Low High Very High Critical
Total #
Alerts

 10-0 11 13 14 12 7 57

 9-1 27 28 28 30 12 125

 8-2 41 52 59 42 29 223

 5-5 88 93 116 111 89 497

Table 6-7b. Alerts per Risk Exposure Measure w/ Profiles built from 25 TUW Executions

 Scenario Very Low Low High Very High Critical
Total #
Alerts

 10-0 2 2 3 3 3 13

 9-1 22 30 31 29 15 127

 8-2 40 52 57 47 29 225

 5-5 103 118 139 116 63 539

Table 6-7c. Alerts per Risk Exposure Measure w/ Profiles built from 50 TUW Executions

 Scenario Very Low Low High Very High Critical
Total #
Alerts

 10-0 1 2 3 4 2 12

 9-1 20 30 30 26 17 123

 8-2 36 50 59 49 31 225

 5-5 108 123 138 125 69 563

Table 6-7d. Alerts per Risk Exposure Measure w/ Profiles built from 100 TUW Executions

 Scenario Very Low Low High Very High Critical
Total #
Alerts

 10-0 1 1 2 4 2 10

 9-1 22 23 26 35 20 126

 8-2 34 51 55 54 32 226

 5-5 109 125 131 136 71 572

Chapter 6

198

By observing the previous tables it can be seen that in scenario 10-0, while

there are no “intrusion” actions, DW-DIDS using profiles built from 25

TUW raises 19 false alerts (corresponding to 1,5% of user statements),

while in the remaining setups that amount of false alarms decreases to 1%

or less, as a result of building more accurate profiles due to having more

TUW to build it from.

Figure 6-8 shows the percentage of alerts per risk exposure measure,

given each scenario and user profile database setup. It can be seen that

the most relevant alerts (very high and critical) represent approximately

one third of all alerts, which should be the ones first deserving full

attention on behalf of the security staff, instead of wasting potentially

precious time checking the remaining alerts.

 Scenario 10-0 Scenario 9-1 Scenario 8-2 Scenario 5-5

5 TUW
Executions

25 TUW
Executions

50 TUW
Executions

100 TUW
Executions

Figure 6-8. Percentage of Alerts per Risk Exposure Method in each Setup

Intrusion Detection Mechanism

199

It can be seen that the alerts that are potentially most critical to the

enterprise (assuming this to be Very High + Critical) are approximately 35-

40% of the total number of alerts in most cases. This gives a measure of

how many alerts (60-65%) can be left to check subsequently to those that

are most urgent to check.

To analyze the efficiency of the risk exposure alert ranking method, we

recalculated the TPR, FPR, Accuracy, Precision and F-score measures for

DW-DIDS, considering only the generated alerts referring to attacks that

fell within the High, Very High and Critical measures, i.e. filtering those

which present a greater threat to the enterprise. Figures 6-9 to 6-11 show

these results.

Figure 6-9. DW-DIDS

TPR and FPR

considering only High,

Very High and Critical

Risk Exposure Alerts

Figure 6-10. DW-DIDS

Accuracy and Precision

considering only High,

Very High and Critical

Risk Exposure Alerts

Figure 6-11. DW-DIDS

F-Score considering only

High, Very High and

Critical Risk Exposure

Alerts

Considering Figure 6-9, the TP rate presents nearly the same results as

when all alerts are considered (Figure 6-5a), but the FP rate is much better

than the previous, obtaining much fewer false alarms. The measured

accuracy and precision, shown in Figure 6-10, is very high and also

significantly better than the previous (Figure 6-6a). In fact, the accuracy

for the majority of the scenarios in almost 100%, while in many setups the

precision rises above 90%. Figure 6-11 shows that the overall F-score

measure translates this, by presenting almost 10% of improvement for

each scenario considering the previous results shown in Figures 6-7a to 6-

7c.

Chapter 6

200

Conclusively, this allows to state that considering the alerts referring to

higher risk exposure present higher efficiency results in intrusion

detection, thus demonstrating that the risk exposure method is an

adequate form of defining the priority on which alerts should be checked

first and consequently reduce intrusion damage.

6.6.4. Database Response Time Overhead due to Intrusion Detection

In what concerns the impact on database performance, i.e. the increase of

query response time, we measured an average overhead for each DIDS in

each scenario as shown in Figure 6-12.

Figure 6-12. Database Response Time Overhead for each DIDS in each Scenario

By observing the previous figure, it can be seen that RB-DIDS is the

fastest, introducing an overhead of equal or lesser than 2% to user query

workload response time, while DW-DIDS is the slowest, given that it

joins data-centric and command-centric analysis and processes a

significantly higher amount of data than the remaining DIDS in the

intrusion detection process, introducing response time overheads ranging

from 4% to 11%. However, although DW-DIDS does in fact have the

worse results, we argue that its intrusion detection efficiency shown in

the experiments make these overheads worthwhile when compared to

the remaining solutions.

6.7. Discussion on DW-DIDS

In DW-DIDS, all risk exposure, probability and impact rules are stored in

the DW-DIDS Database and used by the Intrusion Response Manager (IRM)

as formerly explained. Although probability is initially predefined, each

rule may be redefined by the DW Security Administrator at any time for

fine tuning. For instance, the DW Security Administrator may grant a

Intrusion Detection Mechanism

201

different probability to any feature or grant higher or lower weights to

specific features that s/he knows are most likely to lead to better or less

reliable ID rates given the DW’s context.

The conditional clauses in the DW-DIDS rules (similarly to SQL clauses)

allow an extremely wide range of definitions that, due to space feasibility

issues, are not included. We just want to make clear that, besides the

examples described in the former subsections, the algorithms can be

easily adapted to cope with a wide range of rule possibilities using

standard SQL functions with the DW-DIDS features, tables and columns,

and the DW’s tables and columns, providing a very wide intrusion

detection scope coverage.

Using qualitative measures instead of quantitative measures allows

providing a much more comprehensive rank; it is humanly much more

intuitive and straightforward to interpret a High or Low measure of

evaluation than the difference between a value of 0.46 and 0.58, or having

just a High measure instead of differencing values such as 0.76 and 0.78.

The qualitative measures smoothen the ranges of the quantitative values,

providing better understanding to security staff.

Combining quantitative probability and impact assessments into a unique

qualitative risk exposure measure also improves the efficiency of alert

management. For example, if an alert refers to an attack with Low

probability – probably, a false positive – or refers to an attack with Low

impact – probably, against non-sensitive data – it can be assessed as

having Low risk exposure, which means that checking it can be postponed

(or the intrusion may even be tolerated); if another alert with higher risk

exposure – and thus, probably capable of causing greater damage – is

generated simultaneously, it is more significant and quickly dealt with.

The credibility and assertiveness of these assumptions are demonstrated

by the experimental results shown in Figures 6-9, 6-10 and 6-11 described

in Subsection 6.6.3, where the analysis containing the most relevant alerts

(i.e. High, Very High and Critical risk exposure) shows particularly good

accuracy, precision and F-score results.

Figure 6-12 illustrates the alert correlation and risk exposure approaches for

alert management. Standard alert correlation techniques are a weakness in

most existing DIDS because they may exclude part of the generated alerts

and do not consider the impact of the user actions, while our approach

Chapter 6

202

considers all the alerts, focusing on their importance rather than solely on

their probability.

The alert correlation approach might lead to wasting time dealing with an

attack on unimportant data while an attack on vital data occurs. With the

risk exposure alert ranking method proposed in this thesis, it is

guaranteed that the attacks focusing on the most sensitive data or capable

of producing more damage to the enterprise can be dealt with first,

effectively increasing damage containment. Furthermore, while alert

correlation may exclude some alert that refers to an intrusion potentially

capable of producing high impact on the enterprise, the risk exposure

does not exclude any alert, but rather ranks them given their respectively

assessed risk measure.

Intrusion Detector

Alert Correlator

Intrusion Detector

Risk Exposure
Assessment

Generated
Alerts

Generated
Alerts

Filtered Alerts
considered

Relevant

Ranked
Alerts (All)

Filtered
Alerts

considered
Irrelevant

Trash Security Staff Security Staff

ALERT MANAGEMENT USING
ALERT CORRELATION APPROACH

ALERT MANAGEMENT USING
RISK EXPOSURE APPROACH

Figure 6-12. Risk Exposure Approach vs Alert Correlation for Alert Management

Although discussable, we argue that the contribution of each feature to

the overall intrusion detection efficiency is subjective. The rules that

define attack probability depend on the intrusion detection features in

DW-DIDS are initially tuned to 0.5 by default, given the system has no

Intrusion Detection Mechanism

203

knowledge a priori on which feature is more relevant for the intrusion

detection process. However, if the DW Security Administrator has know-

how or any way of defining the relevance of each feature a priori, the rules

provide a way to accomplish this by adding whichever extra rules s/he

wishes to the rule base. On the other hand, the rules that define the

sensitivity of data (i.e. impact rules) must be defined by the DW Security

Administrator because it depends on the nature and importance of that

data to the enterprise, which only s/he (and mainly business managers)

know, and depends on the DW context itself. Therefore, there isn't any

automatic setup for these rules because, from our point of view, it is not

relevant.

Our proposal is both syntax-centric and data-centric. Although this rises

its execution time overhead, we argue that this is worthwhile because it

allows our approach to analyze the complete set of dimensions affecting

the data due to the user action – the command itself, the processed data

and the data resulting from the command’s execution – which is left out

by the IDS used for comparison in the experiments (they only analyze

command syntax - RBAC - and resulting dataset - Data-Centric). To the

best of our knowledge, no other DIDS proposes this threefold analysis.

The main reasons why we chose the role-based and data-centered

approaches proposed in [Kamra et al., 2008; Mathew, 2010] is that DIDS

analyzing data access patterns such as [Bertino et al., 2005; Kamra et al.,

2010] and analyzing the targeted data such as [Mathew et al., 2010; Spalka

and Lehnhardt, 2005] seem more adequate for DW intrusion detection

than solutions using other techniques such as sequence alignment,

fingerprinting commands or transactional read-write rules, as we

previously discussed in Chapter 2. Therefore, we chose one of each type

of these intrusion detection techniques.

The differences in storage size and time cost are justified by the type of

dataset required by each DIDS to build the profiles: RBAC-DIDS just

parses the SQL command and splits it into the relevant features, which

basically works by accessing the command log and executing string

manipulation; DC-DIDS considers, on average, a higher number of

features than RBAC-DIDS and executes statistics per feature on each

resulting command’s dataset, thus requiring data access actions, which

are much more time-expensive than those executed by RBAC-DIDS; and

Chapter 6

204

DW-DIDS executes both types of actions of RBAC-DIDS and DC-DIDS,

plus accessing the data rows processed by the command, and has the

highest number of features. Although this makes DW-DIDS the slowest

solution in building the profiles and the one that requires the highest

amount of storage space, collecting and combining the information

regarding the user command with the resulting dataset and the rows

processed by the command enables it to compose the richest feature

dataset, which would add value to improve its intrusion efficiency, as

was demonstrated in the experiments.

By analyzing all results, it may be concluded that DW-DIDS showed the

best results, followed closely by RB-DIDS in most scenarios, mainly when

the training set was significantly large (>=25 TUW), while DC-DIDS

obtained the worst results. By integrating features that enable both data-

centric and command-centric analysis, DW-DIDS is capable of producing

the expected added value when compared with the application of those

distinct analysis in separate. We may also conclude that a training set of 5

TUW is insufficient in size for producing an efficient user profile

database, as these scenarios yielded relatively low intrusion detection

efficiency. The better results were obtained using the highest number of

user workloads in the training stage.

The results presented in the experiments suffer from the predefined data

values and user commands used in the setups. Although both the DW-

DIDS and RBAC-based approaches obtained good results in our

experiments, it is extremely difficult to state that these results can be

generalized to assess the efficiency of both DIDS. Most DIDS use the well-

known KDD99 benchmark [DARPA] to compare results. However, this

benchmark uses network-based traffic for its purpose, which in our case

is not applicable. In fact, given the absence of an SQL-based intrusion

detection benchmark, the results published in this field of research are

not comparable and thus, they cannot be generalized. We therefore argue

that research in both the data warehousing and intrusion detection

communities should make an effort to propose a benchmark for DIDS at

the SQL level, possibly a compromise between the well-known TPC-DS

or TPC-H decision support benchmarks and the KDD99 benchmark.

Intrusion Detection Mechanism

205

6.8. Summary

In this chapter, we proposed a DIDS specifically designed for DWs, which

can work transparently between the user interfaces and the database

server as an extension of the DBMS itself. User behavior profiles are built

using features that enable analyzing the diverse dimensions of DBMS

user behavior: SQL commands, processed data and result datasets.

Statistical tests are used to verify user actions against those profiles and

generate intrusion alerts.

The probability of each alert referring to a true intrusion and the impact

that might be caused by the user action to which the alert refers can be

managed by a set of SQL-like rules previously defined by the DW

Security Administrator. This rule-base allows extending DBMS data

access policies and provides a mean to assess the risk exposure of each

intruder action for an extremely wide range of possibilities. The risk

exposure method is used to rank the generated alerts and prioritize

response to intrusions, presenting clear advantages when compared to

standard correlation techniques: it does not allow any intrusion alert to be

neglected and it enables rapidly responding to alerts which may cause

greater damage to the enterprise. The experimental results show the

proposed approach achieves high intrusion detection efficiency and

accuracy results in the tested setups.

Chapter 6

206

207

Chapter 7

Conclusions and Future Work

Protecting business secrets from disclosure is a critical issue for many

enterprises. This implies that ensuring data confidentiality in extremely

sensitive data repositories such as DWs, which store many of those

secrets, is of vital importance. To deal with this, many data security

solutions have been proposed in the past. Research and best practice

guides have stated that the best way to promote confidentiality at the

database level is probably to use a mix of DIDS together with encryption

for live user databases, and use data masking techniques for protecting

sensitive published or outsourced data.

Despite the development of these solutions for protecting data

confidentiality, internal as well as external attacks against databases in

the recent past have been rising in both number and complexity. This

makes the continuous development and improvement of data security

solutions an imposing business requirement, in which this thesis seeks to

make a contribution. In this sense, this thesis addressed the feasibility

issues involving solutions that promote data confidentiality and deal with

intrusions against DWs at the database level, focusing on data masking,

encryption and DIDS.

As discussed, data masking solutions are typically not used to protect live

databases because they are not considered secure enough, and have been

mostly applied as an irreversible process as a mean to secure sensitive

data that has to be outsourced or publicly published. On the other hand,

it is revealed throughout this thesis that the database performance

overheads introduced by encryption techniques might effectively lead

business stakeholders and end users to consider their use infeasible in

many data warehousing environments. Finally, the reasons why there

should be DIDS specifically tailored for data warehousing environments

have also been discussed, as well as the issues relating alert management

Chapter 7

208

and dealing with intrusions against DWs according to the potential cost

they represent to the business.

Founded on the research and analysis of current commercial and state-of-

the-art data masking and encryption solutions as well as database

intrusion detection techniques, the overall objective of this thesis was the

proposal of new feasible, efficient and effective solutions in these fields

that contribute to enhance data security in data warehousing

environments. To achieve this overall objective given the importance of

securing confidentiality in DWs and comparing with the currently

available data security solutions from the fields covered, our work

introduces a series of solid key contributions, which are detailed in the

following paragraphs:

 A body of knowledge focusing on the impact on database

performance caused by the use of encryption in very large

databases. Most discussions around the development of new

encryption techniques are focused on their security proof, i.e., on

the demonstration of how secure they are against attackers. The

focus on their performance, i.e., how fast they are able to execute, is

often considered a secondary issue. We have built a body of

knowledge focusing on the development guidelines of modern

encryption solutions and their performance concerning

implementations to be used against very large databases.

Experimental evaluations included in state-of-the-art standards and

published research as well as experimental results throughout this

thesis effectively show that the storage space and response time

overheads introduced by encryption algorithms dramatically

degrade database performance to a magnitude that jeopardizes

their feasibility in data warehousing environments. Since database

performance is a critical issue in DWs, we conclude that current

encryption solutions are not suitable. Data warehouses operate in a

well-determined specific environment with tight security,

performance and scalability requirements and, therefore, need

specific solutions able to cope with these directives. Since there is

always a tradeoff between security strength and performance,

developing specific data confidentiality solutions for DWs must

always balance security requirements with the desire for high

performance, i.e., ensuring a strong level of security while keeping

Conclusions and Future Work

209

database performance acceptable. This is a critical issue that justifies

the development of new solutions in this domain, given the lack of

specific solutions for data warehousing environments.

 A body of knowledge on database intrusion detection techniques.

Although intrusion detection has been well studied in the past

decades, it has mostly focused on network and operating system

level intrusions rather than on the data level intrusions. We have

built a body of knowledge that gathers, describes and classifies the

most recently proposed intrusion detection techniques that can be

used at the data level to develop DIDS. We have discussed their

usage from a data warehousing perspective, given the typical DW

workloads. We have justified why DWs are database systems with

unique user and data processing requirements that differ from

other types of systems and require distinctively tailored intrusion

detection approaches. To the best of our knowledge, we have

concluded that up to date there has been no database intrusion

detection proposal that accounts for: 1) the impact that the intrusion

might cause to the business; 2) realizing intrusion detection and

response both a priori and a posteriori to the execution of the user

action; and 3) performing intrusion detection by analyzing the user

action, processed data and the outcome of processing the user

action, together in the same workflow. We have also discussed why

alert correlation techniques are not the most appropriate solutions

for performing alert management, given that these techniques

exclude possible intrusions that could be alerted, by relying solely

on probability assessments. Given the sensitivity of DW data and its

critical security requirements, these facts justify the development of

new DIDS that incorporate these capabilities.

 An integrated data security framework that enables the use of

data masking, encryption and intrusion detection in a single

workflow. To the best of our knowledge, this is the first framework

that transversally integrates a diversity of solutions across several

distinct security domains/purposes such as masking, encryption

and intrusion detection. The proposed framework describes the

implementation of an architecture that enables integrating all

solutions proposed in this thesis together in a unique workflow.

The framework also proposes the guidelines for improving or

Chapter 7

210

developing new data masking, encryption and DIDS from a data

warehousing perspective, considering the issues pointed out by the

discussion derived from the bodies of knowledge in each domain

presented in Chapter 2. This framework provides an overall

functional security architecture and guides the development of the

solutions proposed in this thesis for each referred domain.

 A reversible data masking technique for numeric values on live

databases using only standard SQL operators. Although data

masking techniques are not seen as reliable solutions to be used in

live sensitive databases and are mostly used as an irreversible

process which is applied to the data that is to be publicly available

or outsourced, we have shown that they might still be a viable

option in data warehousing environments in which response time is

a critical concern. Given the overhead introduced by using

encryption, using a lightweight data masking solution that provides

some security strength is better than not having any sort of security

at all. In this thesis, we have proposed a reversible data masking

technique, which provides a certain level of security strength while

producing low database performance overheads. It relies on data

type preservation and restrains its data transformations to

operators existing in standard SQL, requiring only SQL rewriting to

achieve its security purpose. This gives it several advantages: 1)

data type preservation avoids database storage space overhead and

extra computational efforts in datatype conversions when

compared with standard encryption; 2) executing SQL commands

directly against the masked data; 3) due to the previous advantage,

it avoids data roundtrips between the database and the

masking/unmasking mechanisms, thus avoiding critical path I/O

and network bandwidth consumption bottlenecks, contrarily to

other solutions which require this; 4) data-at-rest is masked at all

times; 5) It executes faster than standard and state-of-the-art

encryption algorithms; and 6) the solution can be transversally and

transparently applied and used in any DBMS against any database.

The experimental results have confirmed these advantages and

demonstrated that it can effectively be a valid way to protect data

confidentiality in DWs.

Conclusions and Future Work

211

 A lightweight encryption algorithm for securing numeric values

using only standard SQL operators. We have proposed a novel

encryption algorithm that, although might not be as secure as other

standard and state-of-the-art encryption algorithms, presents

significantly better database performance while providing

considerable security strength, i.e., better performance-security

tradeoffs. It follows similar guidelines as those on which the data

masking technique was based, also relying on data type

preservation and restraining its data transformations to operators

existing in standard SQL, requiring only SQL rewriting to achieve

its security purpose. Thus, it also achieves the same advantages,

when compared with standard and state-of-the-art encryption

algorithms. The experimental results have also confirmed these

advantages and the included security proof makes it an acceptable

alternative to the former, making it a feasible and efficient

encryption option to protect data confidentiality in DWs.

 A DIDS focused on typical end user workloads and intrusions in

DWs, capable of analyzing the user action, processed data and

resulting outcome from the execution of the user action, performing

intrusion detection and response both a priori and a posteriori, and a

risk exposure method for ranking alerts and responding to possible

intrusions in a much more reliable and efficient way than standard

alert correlation techniques. Our DIDS specifically accounts for the

characteristics of DW users, gathering the set of features that allow

adequately building their behavior profiles and analyze their

actions. The proposed features handle intrusion detection by

analyzing from several aspects of user workloads, such as the user

command, the data processed by the command and the results of its

processing. The intrusion detection processes may run before the

command’s execution and after it finishes executing (but before

disclosing results back to the user). Each generated intrusion alert is

never discarded, but ranked by a risk exposure method that is able

to prioritize dealing with the intrusions that potentially present a

higher threat to the business. The proposed set of risk exposure

rules (including probability and impact) enables defining a

particularly large scope of possibilities that provide a wide

coverage of intrusions. The relevance of each feature in the

Chapter 7

212

intrusion detection processes is adjusted according to its efficiency

given its TP and FP rates and self-calibrates through time.

Therefore, the proposed solution is effectively better than those that

perform intrusion detection in only one of the mentioned moments

or only on one aspect of the user action, and particularly better than

those that rely on alert correlation techniques for alert management

purposes. The experimental results demonstrate its efficiency

against similar state-of-the-art intrusion detection solutions,

comproving these statements.

Future Work

The work presented in this thesis represents the initial ground for our

research in data security for data warehousing. Related to the issues and

questions addressed in this thesis, we propose the following priority

developments and improvements:

 Increase the scope of both data masking and encryption

techniques to consider protecting the confidentiality of textual

attributes, besides numerical attributes. Both data masking and

encryption techniques proposed in this thesis were specifically

designed as intended to mask and encrypt numeric values, because

in most DWs the main portion of sensitive data is numerical.

Nevertheless, other datatypes may also be used to store sensitive

data. A natural and logical improvement of the proposed solutions

is its adaptation to be able to accomplish protecting data of all

datatypes. Therefore, researching the best ways to develop and

implement these improvements, and verify their feasibility, namely

by assessing performance impact as well as security strength, is one

of the future works to be executed.

 Investigate ways to enhance the security strength of the proposed

data masking and encryption solutions, without losing focus on

their feasibility for data warehousing environments. As we have

discussed in this thesis, the execution performance and security

strength of both data masking and encryption techniques depend

on their algorithm, keys and block length. Investigating changes to

the proposed data masking formula or encryption algorithm in any

Conclusions and Future Work

213

one of these aspects to improve their performance or their security

and respective tradeoffs is always an open research possibility for

future work, as in any other similar solution. Additionally, any of

the proposed solutions can use the row masking keys to enable a

method for injecting false rows into the fact tables. This would

make it increasingly difficult to distinguish true and false data,

increasing the overall DW security level and misleading attackers

that gain direct access to the database. To achieve this, instead of

generating independent random numbers for the values of the

masking or encryption row keys in each fact table row j, we

redefine those keys Kj as a multiple of the sum of the true original

values of all Ci, j columns to be masked, for each true row j:

Kj = (Ci, j) * k, { i = 1…n } where k is a random integer constant

that does not overflow for Kj and n is the number of masked

columns C in row j)

For false rows, random values for filling each column Ci,j would be

generated, and the value of Kj would be equal to any value different

from those possibly generated by Formula (3). Thus, true rows are

verifiable through testing if Kj is a multiple of the sum of the true

unmasked values of all masked columns, using the MOD remainder

operator. The following formula shows how to test if a certain row j

is true or false:

Given R = K3,j MOD (Ci, j) , { i = 1…n }

IF R=0 THEN row j is True ELSE row j is False

However, although potentially increasing the fact table’s security

strength, there is a tradeoff between security and performance that

needs to be considered when using this false data injection method.

The more false data is injected, the stronger is the level of security

of the table. However, the more data is injected, the more data is

scanned and verified by the queries, decreasing database

performance. The increased overall security strength for each fact

table is directly dependent on how many false rows should be

injected into each table, and how to distribute the false rows

throughout the existing data. Thus, the injection of false data to

increase security strength is at least, arguable, since it increases the

Chapter 7

214

amount of data to be accessed when the queries are being

processed, consequently introducing overhead in response time.

 Investigate ways to enhance the efficiency and effectiveness of

the intrusion detection methods. Our intrusion detection approach

appears to work best when the number of intrusions is relatively

low. This happens because its statistical probability provides that a

greater number of false alarms is likely to be generated given an

increasing number of attack attempts. However, the statistical

approach used to detect abnormal commands was our first

approach. As future work, testing techniques such as the Naive

Bayes Classifier, Clustering, SVM, etc. for the intrusion detection

process should be approached and their efficiency should be

compared in order to choose the most efficient solution(s).

 Improve the practical application and performance of the risk

exposure method rules. The execution of the verification tasks

referring to the impact and probability rules introduce extra

response time because they need to be processed before the user

command is executed and before the results are disclosed back to

the user. Given the expressiveness of the rules’ syntax (similar to

SQL), the efforts in processing them may be significant. Therefore,

the impact produced in database performance by the referred

verification tasks for the generated alerts should be thoroughly

evaluated and analyzed, and ways of improving and optimizing the

execution of these tasks should be researched.

 Develop a database intrusion detection benchmark. Benchmarks

are an essential instrument used in the development and

implementation of many systems. They provide a mean to test

those systems and significantly contribute to supply end users and

developers with feedback on their performance, allowing to

compare between different solutions, as well as give the developers

insight for improving the proposed solutions. In the past, the

KDD99 benchmark [KDD99] has been widely used for testing

intrusion detection solutions, as we have previously mentioned.

However, this benchmark focuses on intrusion actions at the

network and operating system (OS) level, and the datasets and

attack loads used in most published research are either synthetic or

Conclusions and Future Work

215

come from real-world applications. To the best of our knowledge,

there has been no proposal from the research community regarding

an intrusion detection benchmark focusing on the data level. In

such a sensitive matter as data security, we find that the inexistence

of a recognized standard database intrusion detection benchmark at

the data level is an important lack in assessing the feasibility,

credibility and efficiency of DIDS. Therefore, we propose a first

draft version of such a benchmark, which can be seen in Appendix

D of this thesis.

 Realize and produce a survey with an objective comparison

between distinct state-of-the-art database intrusion detection

techniques and mechanisms using the proposed database

intrusion detection benchmark. Once the benchmark is defined

and accepted by the database research and security communities,

use it to test a sample of distinct state-of-the-art intrusion detection

techniques (e.g. those described in Chapter 2). The obtained results

can then be used to produce a formal report to disclose them to

those communities and drive discussion around them as well as

around the benchmark itself.

 Demonstrate the feasibility, efficiency and effectiveness of the

proposed solutions in real-world data warehousing contexts.

Perform implementations and tools using the proposed solutions in

real-world DWs and gather feedback to measure and analyze their

accomplishments in order to assess their feasibility, efficiency and

effectiveness in real-world data warehousing contexts.

In conclusion, this thesis has focused on proposing feasible, efficient and

effective techniques that can enhance data security in data warehousing

environments. Overall, the main objective for the future is to investigate

ways of enhancing these proposals and go from research prototypes and

laboratory environments to real-world scenarios as much as possible. We

will aim verifying our experimental results and expectations and to

provide both the research community as well as the industrial

community with knowledge and tools that can truly enhance data

security in data warehousing environments. We also wish that our work

can make way for innovative solutions in this domain, not only data

Chapter 7

216

masking, encryption and intrusion detection techniques specifically

designed for DWs, but also for the conception of a novel standard

database intrusion detection benchmark at the database level. Ultimately,

we hope our work is considered as an effective concrete valid

contribution to keep the secrets of the business safe.

217

References

3DES (2005), Triple DES, National Bureau of Standards, National Institute of

Standards and Technology (NIST), Federal Information Processing

Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3.

AES (2001), Advanced Encryption Standard, National Bureau of Standards,

National Institute of Standards and Technology (NIST), Federal

Information Processing Standards (FIPS)-197.

Agrawal, R., Kiernan, J., Srikant, R. and Y. Xu (2004), “Order-Preserving

Encryption for Numeric Data”, ACM SIG International Conference

on Management Of Data (SIGMOD).

Avizienis, A., Laprie, J., Randell, B. and C. Landwehr (2004), Basic

Concepts and Taxonomy of Dependable and Secure Computing,

IEEE Transactions on Dependable and Secure Computing (TDSC), Vol.

1, No. 1, January-March.

Baer, H. (2004), On-Time Data Warehousing with Oracle Database 10g –

Information at the Speed of Your Business, Oracle White Paper,

Oracle Corporation.

Barker, E., Barker, W., Burr, W., Polk, W. and M. Smid (2012),

Recommendation for Key Management, Special Publication, National

Institute of Standards and Technology (NIST), available at

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-

57_part1_rev3_general.pdf .

Bartle, R. G. (1976), The Elements of Real Analysis, 2nd Edition, John Wiley &

Sons.

Bernstein, D. J. (2005), Snuffle 2005: The Salsa Encryption Function,

http://cr.yp.to/snuffle.html.

Bernstein, D. J. (2008), The Salsa20 Family of Stream Ciphers, New Stream

Cipher Designs - The eSTREAM Finalists 2008, Springer LNCS 4986.

References

218

Bertino, E. and R. Sandhu (2005a), Database Security – Concepts,

Approaches and Challenges, IEEE Transactions on Dependable and

Secure Computing (TDSC), Vol. 2, No. 1.

Bertino, E., Leggieri, T. and E. Terzi (2005b), “Intrusion Detection in

RBAC-Administered Databases”, Annual Computer Security

Applications Conference (AC-SAC).

Bockermann, C., Apel, M. and M. Meier (2009), “Learning SQL for

Database Intrusion Detection using Context-Sensitive Modeling”,

International Conference on Knowledge Discovery and Machine

Learning (KDML).

Castro, V. G. (2009), The Use of Alternative Data Models in Data Warehousing

Environments, PhD dissertation thesis, School of Mathematical and

Computer Sciences, Heriot-Watt University, Edinburgh, UK.

Chaudhuri, S. and U. Dayal (1997), An Overview of Data Warehousing

and OLAP technology, SIGMOD Record, 26(1), September.

Chung, C. Y., Gertz, M. and K. Levitt (1999), “DEMIDS: A Misuse

Detection System for Database Systems”, IFIP TC11 WG11.5

Conference on Integrity and Internal Control in Information Systems,

Kluwer Academic Publishers.

DARPA archive, Task Description of the KDD99 Benchmark,

http://www.kdd.ics.uci.edu/databases/kddcup99/task.html.

Debar, H. and A. Wespi (2001), “Aggregation and Correlation of

Intrusion-Detection Alerts”, International Conference on Recent

Advances in Intrusion Detection (RAID).

DES (1977), Data Encryption Standard, National Bureau of Standards,

National Institute of Standards and Technology (NIST), Federal

Information Processing Standards (FIPS) Pub 46, 1977.

Devlin, B. A. and P. T. Murphy (1988), An Architecture for a Business and

Information System, IBM Systems Journal, Vol. 27, No. 1, USA.

Douligeris, C. and A. Mitrokotsa (2004), DDoS Attacks and Defense

Mechanisms: Classification and State-of-the-Art, International

Journal of Computer Networks (IJCN), Elsevier B. V., 44.

References

219

Elminaam, D., Kader, H. and M. Hadhoud (2010), Evaluating the

Performance of Symmetric Encryption Algorithms, International

Journal of Network Security, Vol. 10, No. 3.

Fonseca, J., Vieira, M. and H. Madeira (2008), “Online Detection of

Malicious Data Access using DBMS Auditing”, ACM International

Symposium on Applied Computing (SAC).

Gartner Inc. (2009), Selection Criteria for Data Masking Technologies,

Research Report ID G00165388, February.

Ge, T. and S. Zdonik (2007), “Fast, Secure Encryption for Indexing in a

Column-Oriented DBMS”, International Conference on Data

Engineering (ICDE).

Hacigumus, H., Iyer, B. R., Li, C. and S. Mehrotra (2002), “Executing SQL

over Encrypted Data in the Database-Service-Provider Model”,

ACM SIG International Conference on Management Of Data

(SIGMOD).

Hacigumus, H., Iyer, B. R. and S. Mehrotra (2004), “Efficient Execution of

Aggregation Queries over Encrypted Relational Databases”,

International Conference on Databases Systems for Advanced

Applications (DASFAA).

Halfond, W., Viegas, J. and A. Orso (2006), “A Classification of SQL

Injection Attacks and Prevention Techniques”, International

Symposium on Secure Software Engineering (SSE).

Hu, Y. and B. Panda (2004), “A Data Mining Approach for Database

Intrusion Detection”, International Symposium on Applied Computing

(SAC).

Huey, P. (2008), Oracle Database Security Guide 11g, Oracle Corporation.

Inmon, W. H. (1996), Building the Data Warehouse, 2nd Edition, John Wiley

& Sons, Inc.

Inmon, W. H. (2002), Building the Data Warehouse, 3rd Edition, John Wiley

& Sons, Inc.

Jabbour, G. and D. Menasce (2009), “The Insider Threat Security

Architecture: A Framework for an Integrated, Inseparable, and

References

220

Uninterrupted Self-Protection Mechanism”, International

Conference on Computational Science and Engineering (ICCSE).

Kamra, A., Terzi, E. and E. Bertino (2008), Detecting Anomalous Access

Patterns in Relational Databases, Springer VLDB Journal (17).

Kamra, A. (2010), Mechanisms for Database Intrusion Detection and Response,

PhD dissertation thesis, Purdue University, USA, August.

Kim, J. (2011), “Injection Attack Detection Using the Removal of SQL

Query Attribute Values”, International Conference on Information

Science and Applications (ICISA).

Kim, J., Lee, Y. and S. Lee (2010), DES with any reduced masked rounds is

not secure against side-channel attacks, International Journal of

Computers and Mathematics with Applications, 60.

Kimball, R. (1996), The Data Warehouse Toolkit, 1st Edition, Wiley & Sons,

Inc.

Kimball, R. and M. Ross (2002), The Data Warehouse Toolkit, 2nd Edition,

Wiley & Sons, Inc.

Kimball, R. and M. Ross (2013), The Data Warehouse Toolkit, 3rd Edition,

Wiley & Sons, Inc.

Kindy, D. A. and A. K. Pathan (2012), A Detailed Survey on Various Aspects

of SQL Injection: Vulnerabilities, Innovative Attacks and Remedies,

Computing Research Repository (CoRR), Cornell University, USA.

Kobielus, J. (2009), The Forrester Wave: Enterprise Data Warehousing

Platforms, Forrester Research Report, Q1.

Kundu, A., Sural, S. and A. K. Majumdar (2010), Database Intrusion

Detection Using Sequence Alignment, International Journal of

Information Security (9).

Lappas, T., and K. Pelechrinis (2007), Data Mining Techniques for (Network)

Intrusion Detection Systems, Technical Report, Department of

Computer Science and Engineering, University of California,

Riverside.

References

221

Lee, S. Y., Low W. L. and P. Y. Wong (2002), “Learning Fingerprints for a

Database Intrusion Detection System”, European Symposium on

Research in Computer Security (ESORICS).

Lee, V. C. S., Stankovic, J. A. and S. H. Son (2000), “Intrusion Detection in

Real-time Database Systems via Time Signatures”, Real-time

Technology and Applications Symposium (RTAS).

Lee, W. (2002), Applying Data Mining to Intrusion Detection: the Quest

for Automation, Efficiency, and Credibility, SIGKDD Explorations,

Vol. 4, Issue 2.

Lee, W. and D. Xiang (2001), “Information-Theoretic Measures for

Anomaly Detection”, IEEE Symposium on Security and Privacy

(S&P).

Marsland, S. (2011), Machine Learning, CRC Press, §4.1.1, 2011.

Mathew, S., Petropoulos, M., Ngo, H. Q. and S. Upadhyaya (2010), “A

Data-Centric Approach to Insider Attack Detection in Database

Systems”, International Conference on Recent Advances in Intrusion

Detection (RAID).

Matsumoto, M. and T. Nishimura (1998). “Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number

generator”, ACM Transactions on Modeling and Computer Simulation

8 (1): 3–30.

Mattson, U. T. (2004), Database Encryption – How to Balance Security with

Performance, Protegrity Corporation Technical Paper.

McKendrick, J. (2012), IOUG Enterprise Data Security Survey 2012:

Closing the Security Gap, The Independent Oracle Users Group

(IOUG) Security Report, November.

Mogull, R. (2006), Top Five Steps to Prevent Data Loss and Information Leaks,

Gartner Research Report.

Motwani, R., Nabar, S. U. and D. Thomas (2004), “Auditing SQL

Queries”, International Conference on Data Engineering (ICDE).

Nadeem, A. and M. Y. Javed (2005), “A Performance Comparison of Data

Encryption Algorithms”, IEEE International Conference on

Information and Communication Technologies (ICICT).

References

222

Natan, R. B. (2005), Implementing Database Security and Auditing, Digital

Press.

Newman, A. C. (2011), Intrusion Detection and Security Auditing in Oracle,

Application Security Inc. White Paper.

Nicolett, M., and J. Wheatman (2007), DAM Technology Provides

Monitoring and Analytics with Less Overhead, Gartner Research

Report.

Ning, P., Cui, Y. and D.S. Reeves (2002), “Analyzing Intensive Intrusion

Alerts via Correlation”, International Conference on Recent Advances

in Intrusion Detection (RAID).

Oracle Corporation (2005), Security and the Data Warehouse, Oracle White

Paper, April.

Oracle Corporation (2010a), Oracle Advanced Security Transparent Data

Encryption Best Practices, Oracle White Paper, July.

Oracle Corporation (2010b), Oracle Real Application Clusters (RAC),

http://www.oracle.com/us/products/database/options/real-

application-clusters/index.htm, September.

Oracle Corporation (2010c), Data Masking Best Practices, Oracle White

Paper.

Ponniah, P (2010), Data Warehouse Fundamentals for IT Professionals, 2nd

Edition, Wiley & Sons, Inc.

Pei, J., Upadhyaya, S. J., Farooq, F. and V. Govindaraju (2004), “Data

Mining for Intrusion Detection”, Keynote in International

Conference on Data Engineering (ICDE).

Pietraszek, T. (2004), “Using Adaptive Alert Classification to Reduce

False Positives in Intrusion Detection”, International Conference on

Recent Advances in Intrusion Detection (RAID).

Pietraszek, T., and A. Tanner (2005), Data Mining and Machine Learning

– Towards Reducing False Positives in Intrusion Detection,

Information Security Technical Report, 10(3).

References

223

Pietraszek, T. (2006), Alert Classification to Reduce False Positives in Intrusion

Detection, PhD dissertation thesis, University of Freiburg,

Germany, July.

Radha, V. and N. H. Kumar (2005), “EISA – An Enterprise Application

Security Solution for Databases”, International Conference on

Information Systems Security (ICISS).

Ravikumar, G. K., Manjunath, T. N., Ravindra, S. H. and I. M. Umesh

(2011), A Survey on Recent Trends, Process and Development in

Data Masking for Testing, International Journal of Computer Science

Issues (IJCSI), Vol. 8, Issue 2.

Santos, R. J., Bernardino, J. and M. Vieira (2011a), “A Survey on Data

Security in Data Warehousing”, International Conference on Computer as a

Tool (EUROCON).

Santos, R. J., Bernardino, J. and M. Vieira (2011b), “A Data Masking

Technique for Data Warehouses”, International Database Engineering &

Applications Symposium (IDEAS).

Santos, R. J., Bernardino, J. and M. Vieira (2011c), “Balancing Security and

Performance for Enhancing Data Privacy in Data Warehouses”, in IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications (TRUSTCOM).

Santos, R. J., Bernardino, J. and M. Vieira (2012a), “Evaluating the

Feasibility Issues of Data Confidentiality Solutions from a Data

Warehousing Perspective”, International Conference on Data

Warehousing and Knowledge Discovery (DAWAK).

Santos, R. J., Bernardino, J. and M. Vieira (2012b), “DBMS Application

Layer Intrusion Detection for Data Warehouses”, International

Conference on Information Systems Development (ISD).

Santos, R. J., Bernardino, J., Vieira, M. and D. Rasteiro (2012c), “Securing

Data Warehouses from Web-based Intrusions”, International

Conference on Web Information Systems Engineering (WISE).

Santos, R. J., Rasteiro, D. M. L., Bernardino, J. and M. Vieira (2013), “A

Specific Encryption Solution for Data Warehouses”, International

Conference on Databases Systems for Advanced Applications (DASFAA).

Scarfone, K. and P. Mell (2007), Guide to Intrusion Detection and

Prevention Systems (IDPS), Recommendations of the National

References

224

Institute of Standards and Technology (NIST), Special Publication 800-

94.

Schneier, B. (2013), The Blowfish Encryption Algorithm,

http://www.schneier.com/blowfish.html.

Schulman, A. (2007), Top 10 Database Attacks, The Chartered Institute for

IT – Enabling the Information Society,

http://www.bcs.org/content/ConWebDoc/8852.

Simitsis, A. (2005), Modelling and Optimization of Extraction-Transformation-

Loading (ETL) Processes in Data Warehouse Environments, PhD

dissertation thesis, School of Electrical and Computer Engineering,

National Technical University of Athens, Greece.

Spalka, A. and J. Lehnhardt (2005), “A Comprehensive Approach to

Anomaly Detection in Relational Databases”, IFIP International

Conference on Data and Applications Security and Privacy (DBSec).

Srivastava, A., Sural, S. and A. K. Majumdar (2006), Database Intrusion

Detection using Weighted Sequence Mining, Journal of Computers,

Vol. I, No. 4.

TPC-H, Transaction Processing Performance Council, The TPC Decision

Support Benchmark H, http://www.tpc.org/tpch/

TPC-H Specifications, Transaction Processing Performance Council, The

TPC Decision Support Benchmark H Standard Specifications review

2.16.0, http://www.tpc.org/tpch/spec/tpch2.16.0.pdf

TPC-DS, Transaction Processing Performance Council, The TPC Decision

Support Benchmark, http://www.tpc.org/tpcds/

Treinen, J. and R. Thurimella (2006), “A Framework for the Application of

Association Rule Mining in Large Intrusion Detection

Infrastructures”, International Conference on Recent Advances in

Intrusion Detection (RAID).

Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T. and H. Nakashima (2007),

Differential Cryptanalysis of Salsa20/8, in Workshop Record of SASC

2007: The State-of-the-art of Stream Ciphers, eSTREAM Report

2007/010.

References

225

Vaudenay, S. (2006), A Classical Introduction to Cryptography – Applications

for Communications Security, Swiss Federal Institute of

Technologies (EPFL), Springer Science+Business Media Inc.

Valdes, A. and K. Skinner (2001), “Probabilistic Alert Correlation”,

International Conference on Recent Advances in Intrusion Detection

(RAID).

Vimercati, S. C., Foresti, S., Jajodia, S., Paraboschi, S. and P. Samarati

(2007), “Over-encryption: Management of Access Control

Evolution on Oursourced Data”, International Conference on Very

Large DataBases (VLDB).

Wheeler, D. and R. Needham (1995), TEA, a Tiny Encryption Algorithm,

International Workshop on Fast Software Encryption, Springer

Lecture Notes in Computer Science, Volume 1008, pp 363-366.

Yu, Z., Tsai, J. P. and T. Weigert (2007), An Automatically Tuning

Intrusion Detection System, IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 37, No. 2.

Yuhanna, N. (2009), Your Enterprise Database Security Strategy 2010,

Forrester Research, September.

Zhong, Y. and X. Qin (2004), “Database Intrusion Detection based on User

Query Frequent Itemsets Mining with Item Constraints”,

International Information Security Conference (InfoSecu).

226

227

Appendix A

Sales Data Warehouse

In this appendix we describe the purpose and data schemas of the Sales

DW as well as its scale and query workloads used in the experimental

evaluations included in this thesis.

A.1. Purpose

The Sales DW is withdrawn from a real-world enterprise data mart of an

online retail business, which aims on analyzing sales revenue, given

customers, products and promotions.

A.2. Data Schema

The Sales DW data schema is shown in Figure A-1. It is a star schema

with a central fact table named Sales, which stores the relevant measures

regarding sales and promotions, and four dimension tables that describe

the business, respectively containing the descriptive information

concerning Customers, Products and Promotions, as well as a temporal

dimension named as Time.

A.3. Table Scale Size

The number of rows and approximate storage space size for the Sales DW

used in the experimental evaluations is shown in Table A-1,

corresponding to one year of business activity.

Table A-1. Scale-size features of the Sales Data Warehouse

 Number of Rows Storage Size

Time 8 760 0,12 MB

Customers 250 000 90 MB

Products 50 000 7 MB

Promotions 89 812 10 MB

Sales 31 536 000 1 927 MB

Appendix A

228

Figure A-1. Sales Data Warehouse Star Schema

A.4. Query Workloads

Following is the list of 29 queries against the Sales DW data schema that

were used in the experiments.

Sales Data Warehouse

229

Q1. YEAR SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA
SELECT
 P_Department,
 Profit/TotalProfit*100 AS ProfitQuota
FROM
 (SELECT
 P_Department,
 SUM(S_profit) AS Profit
 FROM
 Products, Sales, Times
 WHERE
 S_ProductID=P_ProductID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')
 GROUP BY
 P_Department) A,
 (SELECT
 SUM(S_profit) AS TotalProfit
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')) B
ORDER BY
 ProfitQuota DESC

Q2. MONTH SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA
SELECT
 P_Department,
 Profit/TotalProfit*100 AS ProfitQuota
FROM
 (SELECT
 P_Department,
 SUM(S_profit) AS Profit
 FROM
 Products, Sales, Times
 WHERE
 S_ProductID=P_ProductID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
 GROUP BY
 P_Department) A,
 (SELECT
 SUM(S_profit) AS TotalProfit
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')) B
ORDER BY
 ProfitQuota DESC

Appendix A

230

Q3. DAY SALES PROFITS QUOTA PER DEPARTMENT, ORDERED BY QUOTA
SELECT
 P_Department,
 Profit/TotalProfit*100 AS ProfitQuota
FROM
 (SELECT
 P_Department,
 SUM(S_profit) AS Profit
 FROM
 Products, Sales, Times
 WHERE
 S_ProductID=P_ProductID AND
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
 GROUP BY
 P_Department) A,
 (SELECT
 SUM(S_profit) AS TotalProfit
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')) B
ORDER BY
 ProfitQuota DESC

Q4. YEAR TOTAL SALES, PROFIT AND SHIPCOST VALUES
SELECT
 SUM(S_salesamount) AS TotalSalesAmount,
 SUM(S_profit) AS TotalSalesProfit,
 SUM(S_shiptocost) AS TotalShipToCost
FROM
 Sales, Times
WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')

Q5. MONTH TOTAL SALES, PROFIT AND SHIPCOST VALUES
SELECT
 SUM(S_salesamount) AS TotalSalesAmount,
 SUM(S_profit) AS TotalSalesProfit,
 SUM(S_shiptocost) AS TotalShipToCost
FROM
 Sales, Times
WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')

Sales Data Warehouse

231

Q6. DAY TOTAL SALES, PROFIT AND SHIPCOST VALUES
SELECT
 SUM(S_salesamount) AS TotalSalesAmount,
 SUM(S_profit) AS TotalSalesProfit,
 SUM(S_shiptocost) AS TotalShipToCost
FROM
 Sales, Times
WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')

Q7. TOP 100 CUSTOMERS OF A YEAR WITH HIGHEST TOTAL SALES VALUE,
ORDERED BY VALUE
SELECT
 TOP 100
 S_CustomerID, C_Name, C_City, TotalSalesAmount
FROM
 (SELECT
 S_CustomerID,
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')
 GROUP BY
 S_CustomerID) A, Customers
WHERE
 C_CustomerID=S_CustomerID
ORDER BY
 TotalSalesAmount DESC

Q8. TOP 100 CUSTOMERS OF A MONTH WITH HIGHEST TOTAL SALES VALUE,
ORDERED BY VALUE
SELECT
 TOP 100
 S_CustomerID, C_Name, C_City, TotalSalesAmount
FROM
 (SELECT
 S_CustomerID,
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
 GROUP BY
 S_CustomerID) A, Customers
WHERE
 C_CustomerID=S_CustomerID
ORDER BY
 TotalSalesAmount DESC

Appendix A

232

Q9. TOP 100 CUSTOMERS OF A DAY WITH HIGHEST TOTAL SALES VALUE,
ORDERED BY VALUE
SELECT
 TOP 100
 S_CustomerID, C_Name, C_City, TotalSalesAmount
FROM
 (SELECT
 S_CustomerID,
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
 GROUP BY
 S_CustomerID) A, Customers
WHERE
 C_CustomerID=S_CustomerID
ORDER BY
 TotalSalesAmount DESC

Q10. YEAR TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT OF
BRAND #1, ORDERED BY PROMOTION/PRODUCT
SELECT
 S_PromotionID, PR_Description, S_ProductID, P_Name,
 Qty, SalesAmount
FROM
 (SELECT
 S_PromotionID, S_ProductID,
 SUM(S_quantity) AS Qty,
 SUM(S_salesamount) AS SalesAmount #
 FROM
 Sales, Times, Products
 WHERE
 S_ProductID=P_ProductID AND
 P_Brand='BRAND #1' AND
 S_PromotionID>0 AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')
 GROUP BY
 S_PromotionID, S_ProductID
 ORDER BY
 S_PromotionID, S_ProductID), Products, Promotions
WHERE
 S_PromotionID=PR_PromotionID AND
 S_ProductID=P_ProductID

Sales Data Warehouse

233

Q11. MONTH TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT
OF BRAND #1, ORDERED BY PROMOTION/PRODUCT
SELECT
 S_PromotionID, PR_Description, S_ProductID, P_Name,
 Qty, SalesAmount
FROM
 (SELECT
 S_PromotionID, S_ProductID,
 SUM(S_quantity) AS Qty,
 SUM(S_salesamount) AS SalesAmount
 FROM
 Sales, Times, Products
 WHERE
 S_ProductID=P_ProductID AND
 P_Brand='BRAND #1' AND
 S_PromotionID>0 AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
 GROUP BY
 S_PromotionID, S_ProductID
 ORDER BY
 S_PromotionID, S_ProductID), Products, Promotions
 WHERE
 S_PromotionID=PR_PromotionID AND
 S_ProductID=P_ProductID

Q12. DAY TOTAL SALES QUANTITY AND VALUE PER PROMOTION/PRODUCT OF
BRAND #1, ORDERED BY PROMOTION/PRODUCT
SELECT
 S_PromotionID, PR_Description, S_ProductID, P_Name,
 Qty, SalesAmount
FROM
 (SELECT
 S_PromotionID, S_ProductID,
 SUM(S_quantity) AS Qty,
 SUM(S_salesamount) AS SalesAmount
 FROM
 Sales, Times, Products
 WHERE
 S_ProductID=P_ProductID AND
 P_Brand='BRAND #1' AND
 S_PromotionID>0 AND
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
 GROUP BY
 S_PromotionID, S_ProductID
 ORDER BY
 S_PromotionID, S_ProductID), Products, Promotions
WHERE
 S_PromotionID=PR_PromotionID AND
 S_ProductID=P_ProductID

Appendix A

234

Q13. YEAR TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY
COUNTRY/ZONE
SELECT
 C_Country, ZipCode,
 SUM(S_salesamount) AS TotalSalesAmount
FROM
 (SELECT
 DISTINCT(SUBSTR(c_zipcode,1,3)) AS ZipCode
 FROM
 Customers), Sales, Customers, Times
WHERE
 S_CustomerID=C_CustomerID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY') AND
 SUBSTR(C_ZipCode,1,3)=ZipCode
GROUP BY
 C_Country, ZipCode
ORDER BY
 C_Country, TotalSalesAmount DESC, ZipCode

Q14. MONTH TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY
COUNTRY/ZONE
SELECT
 C_Country, ZipCode,
 SUM(S_salesamount) AS TotalSalesAmount
FROM
 (SELECT
 DISTINCT(SUBSTR(c_zipcode,1,3)) AS ZipCode
 FROM
 Customers), Sales, Customers, Times
WHERE
 S_CustomerID=C_CustomerID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY') AND
 SUBSTR(C_ZipCode,1,3)=ZipCode
GROUP BY
 C_Country, ZipCode
ORDER BY
 C_Country, TotalSalesAmount DESC, ZipCode

Q15. DAY TOTAL SALES VALUE PER COUNTRY/ZONE, ORDERED BY
COUNTRY/ZONE
SELECT
 C_Country, ZipCode,
 SUM(S_salesamount) AS TotalSalesAmount
FROM
 (SELECT
 DISTINCT(SUBSTR(c_zipcode,1,3)) AS ZipCode
 FROM
 Customers), Sales, Customers, Times
WHERE
 S_CustomerID=C_CustomerID AND

Sales Data Warehouse

235

 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
 SUBSTR(C_ZipCode,1,3)=ZipCode
GROUP BY
 C_Country, ZipCode
ORDER BY
 C_Country, TotalSalesAmount DESC, ZipCode

Q16. YEAR TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT,
ORDERED BY SALES VALUE
SELECT
 S_ProductID, P_Name, C_Gender,
 SUM(CASE WHEN C_Income<600 THEN S_salesamount
 ELSE 0 END) AS MinimumIncome,
 SUM(CASE WHEN C_Income>=600 AND C_Income<1000 THEN S_salesamount
 ELSE 0 END) AS ReasonableIncome,
 SUM(CASE WHEN C_Income>=1000 AND C_Income<1500 THEN S_salesamount
 ELSE 0 END) AS MediumIncome,
 SUM(CASE WHEN C_Income>=1500 AND C_Income<2500 THEN S_salesamount
 ELSE 0 END) AS HighIncome,
 SUM(CASE WHEN C_Income>=2500 THEN S_salesamount
 ELSE 0 END) AS VeryHighIncome
FROM
 Sales, Products, Customers, Times
WHERE
 S_CustomerID=C_CustomerID AND
 S_ProductID=P_ProductID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')
GROUP BY
 S_ProductID, P_Name, C_Gender
ORDER BY
 MinimumIncome+ReasonableIncome+MediumIncome+
 HighIncome+VeryHighIncome DESC

Q17. MONTH TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT,
ORDERED BY SALES VALUE
SELECT
 S_ProductID, P_Name, C_Gender,
 SUM(CASE WHEN C_Income<600 THEN S_salesamount
 ELSE 0 END) AS MinimumIncome,
 SUM(CASE WHEN C_Income>=600 AND C_Income<1000 THEN S_salesamount
 ELSE 0 END) AS ReasonableIncome,
 SUM(CASE WHEN C_Income>=1000 AND C_Income<1500 THEN S_salesamount
 ELSE 0 END) AS MediumIncome,
 SUM(CASE WHEN C_Income>=1500 AND C_Income<2500 THEN S_salesamount
 ELSE 0 END) AS HighIncome,
 SUM(CASE WHEN C_Income>=2500 THEN S_salesamount
 ELSE 0 END) AS VeryHighIncome
FROM
 Sales, Products, Customers, Times
WHERE
 S_CustomerID=C_CustomerID AND

Appendix A

236

 S_ProductID=P_ProductID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
GROUP BY
 S_ProductID, P_Name, C_Gender
ORDER BY
 MinimumIncome+ReasonableIncome+MediumIncome+
 HighIncome+VeryHighIncome DESC

Q18. DAY TOTAL SALES VALUE PER CUSTOMER AGE CLASS, PER PRODUCT,
ORDERED BY SALES VALUE
SELECT
 S_ProductID, P_Name, C_Gender,
 SUM(CASE WHEN C_Income<600 THEN S_salesamount
 ELSE 0 END) AS MinimumIncome,
 SUM(CASE WHEN C_Income>=600 AND C_Income<1000 THEN S_salesamount
 ELSE 0 END) AS ReasonableIncome,
 SUM(CASE WHEN C_Income>=1000 AND C_Income<1500 THEN S_salesamount
 ELSE 0 END) AS MediumIncome,
 SUM(CASE WHEN C_Income>=1500 AND C_Income<2500 THEN S_salesamount
 ELSE 0 END) AS HighIncome,
 SUM(CASE WHEN C_Income>=2500 THEN S_salesamount
 ELSE 0 END) AS VeryHighIncome
FROM
 Sales, Products, Customers, Times
WHERE
 S_CustomerID=C_CustomerID AND
 S_ProductID=P_ProductID AND
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
GROUP BY
 S_ProductID, P_Name, C_Gender
ORDER BY
 MinimumIncome+ReasonableIncome+MediumIncome+
 HighIncome+VeryHighIncome DESC

Q19. YEAR TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY,
ORDERED BY VALUE
SELECT
 C_Country, SalesAmount,
 SalesAmount/TotalSalesAmount*100 AS SalesQuota
FROM
 (SELECT
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')),
 (SELECT
 C_Country,
 SUM(S_salesamount) AS SalesAmount

Sales Data Warehouse

237

 FROM
 Sales, Customers, Times
 WHERE
 S_CustomerID=C_CustomerID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')
 GROUP BY
 C_Country)
ORDER BY
 SalesAmount DESC

Q20. MONTH TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY,
ORDERED BY VALUE
SELECT
 C_Country, SalesAmount,
 SalesAmount/TotalSalesAmount*100 AS SalesQuota
FROM
 (SELECT
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')),
 (SELECT
 C_Country,
 SUM(S_salesamount) AS SalesAmount
 FROM
 Sales, Customers, Times
 WHERE
 S_CustomerID=C_CustomerID AND
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
 GROUP BY
 C_Country)
ORDER BY
 SalesAmount DESC

Q21. DAY TOTAL SALES VALUE AND RESPECTIVE QUOTA PER COUNTRY,
ORDERED BY VALUE
SELECT
 C_Country, SalesAmount,
 SalesAmount/TotalSalesAmount*100 AS SalesQuota
FROM
 (SELECT
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')),

Appendix A

238

 (SELECT
 C_Country,
 SUM(S_salesamount) AS SalesAmount
 FROM
 Sales, Customers, Times
 WHERE
 S_CustomerID=C_CustomerID AND
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
 GROUP BY
 C_Country)
ORDER BY
 SalesAmount DESC

Q22. LIST OF PRODUCTS NEVER SOLD DURING THE YEAR, ORDERED BY
PRODUCT
SELECT
 S_ProductID, P_Name, P_Brand, P_Category, P_Department
FROM
 Sales, Products
WHERE
 S_ProductID=P_ProductID AND
 S_ProductID NOT IN
 (SELECT
 DISTINCT(S_ProductID)
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-01-2008','DD-MM-YYYY'))
ORDER BY
 S_ProductID

Q23. LIST OF PRODUCTS NEVER SOLD DURING THE MONTH, ORDERED BY
PRODUCT
SELECT
 S_ProductID, P_Name, P_Brand, P_Category, P_Department
FROM
 Sales, Products
WHERE
 S_ProductID=P_ProductID AND
 S_ProductID NOT IN
 (SELECT
 DISTINCT(S_ProductID)
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY'))
ORDER BY
 S_ProductID

Sales Data Warehouse

239

Q24. LIST OF PRODUCTS NEVER SOLD DURING THE DAY, ORDERED BY
PRODUCT
SELECT
 S_ProductID, P_Name, P_Brand, P_Category, P_Department
FROM
 Sales, Products
WHERE
 S_ProductID=P_ProductID AND
 S_ProductID NOT IN
 (SELECT
 DISTINCT(S_ProductID)
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY'))
ORDER BY
 S_ProductID

Q25. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE YEAR,
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES
SELECT
 S_CustomerID, C_Name, C_City, C_ZipCode, C_Country
FROM
 (SELECT
 S_CustomerID,
 COUNT(*) AS Conta
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')
 GROUP BY
 S_CustomerID), Customers
WHERE
 S_CustomerID=C_CustomerID AND
 Conta>0
ORDER BY
 C_Country, C_City, C_ZipCode, Conta DESC

Q26. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE MONTH,
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES
SELECT
 S_CustomerID, C_Name, C_City, C_ZipCode, C_Country
FROM
 (SELECT
 S_CustomerID,
 COUNT(*) AS Conta
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND

Appendix A

240

 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
 GROUP BY
 S_CustomerID), Customers
WHERE
 S_CustomerID=C_CustomerID AND
 Conta>0
ORDER BY
 C_Country, C_City, C_ZipCode, Conta DESC

Q27. NUMBER OF PURCHASES MADE PER CUSTOMER DURING THE DAY,
ORDERED BY COUNTRY, CITY, ZONE, NUMBER OF PURCHASES
SELECT
 S_CustomerID, C_Name, C_City, C_ZipCode, C_Country
FROM
 (SELECT
 S_CustomerID,
 COUNT(*) AS Conta
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date=to_date('01-12-2008','DD-MM-YYYY')
 GROUP BY
 S_CustomerID), Customers
WHERE
 S_CustomerID=C_CustomerID AND
 Conta>0
ORDER BY
 C_Country, C_City, C_ZipCode, Conta DESC

Q28. MONTHLY TOTAL SALES VALUE AND RESPECTIVE QUOTA FOR THE YEAR,
ORDERED BY MONTH
SELECT
 SalesMonth, MonthTotalSalesAmount,
 MonthTotalSalesAmount/TotalSalesAmount AS MonthQuota
FROM
 (SELECT
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')) a,
 (SELECT SalesMonth,
 SUM(TotSalesAmount) AS MonthTotalSalesAmount
 FROM
 (SELECT
 to_char(T_Date,'Month') AS SalesMonth,
 S_salesamount AS TotSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND

Sales Data Warehouse

241

 T_Date>=to_date('01-01-2008','DD-MM-YYYY') AND
 T_Date<=to_date('31-12-2008','DD-MM-YYYY')) b
 GROUP BY
 SalesMonth) c
ORDER BY
 SalesMonth

Q29. DAILY TOTAL SALES VALUE AND RESPECTIVE QUOTA FOR A MONTH,
ORDERED BY DAY
SELECT
 T_Date, DayTotalSalesAmount,
 DayTotalSalesAmount/TotalSalesAmount AS DayQuota
FROM
 (SELECT
 SUM(S_salesamount) AS TotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')) a,
 (SELECT
 T_Date,
 SUM(S_salesamount) AS DayTotalSalesAmount
 FROM
 Sales, Times
 WHERE
 S_TimeID=T_TimeID AND
 T_Date>=to_date('01-11-2008','DD-MM-YYYY') AND
 T_Date<=to_date('30-11-2008','DD-MM-YYYY')
 GROUP BY
 T_Date) b
ORDER BY
 T_Date

242

Appendix B

Data Masking and Encryption
Experimental Results

In this appendix we present the averages and standard deviations for the

data masking and encryption experimental results described in the thesis.

As mentioned in the respective chapters, each result is obtained from the

execution of six rounds of experiments, referring to the following legend

labels:

Reference/Label Description

Standard Standard data without masking/encryption

AES128 Col Data encrypted with TDE AES 128 bit key column encryption

3DES168 Col Data encrypted with TDE 3DES168 column encryption

OPES Data encrypted with OPES

Salsa20 Data encrypted with Salsa20/20

MOBAT AddCol
Data masked by MOBAT, where a column for masking keys has
been added to the existing fact table

MOBAT CreateCol
Data masked by MOBAT, where a column for masking keys was
added to the fact table, which has been completely recreated

MOBAT ColKey
Data masked by MOBAT, using a numerical column from the
original fact table data structure as key K3, j

SES-DW128 Data encrypted using SES-DW with 128 bit security

SES-DW256 Data encrypted using SES-DW with 256 bit security

SES-DW1024 Data encrypted using SES-DW with 1024 bit security

Data Masking and Encryption Experimental Results

243

B.1. Data Masking Chapter Loading Time Results

Tables B-1 to B-3 show the results in seconds for the average (µ) and

standard deviation (σ) of the data masking loading experiments, obtained

using a Pentium IV 2.8 GHz CPU with 2GB RAM.

Table B-1. TPC-H 1GB Loading Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 310 9,86777 212 8,99475

AES128 899 46,94247 472 36,75193

AES256 958 44,63968 507 31,48409

3DES168 906 33,61551 485 21,38157

OPES 461 20,87444 305 22,10521

Salsa20 537 26,42794 361 26,65626

MOBAT AddCol 335 14,81949 227 12,39097

MOBAT CreateCol 323 14,70876 221 11,69447

MOBAT ColKey 318 12,81143 218 11,93016

Table B-2. TPC-H 10 GB Loading Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 3211 121,9969 2272 96,2474

AES128 10185 387,1303 5484 233,5230

AES256 11114 434,7008 6229 254,6556

3DES168 10424 508,4449 5635 257,1251

OPES 4943 222,8019 3325 160,8512

Salsa20 5881 185,4172 4088 180,0211

MOBAT AddCol 3597 181,0830 2550 155,7417

MOBAT CreateCol 3449 151,5198 2434 154,1759

MOBAT ColKey 3362 144,0208 2381 131,4362

Table B-3. Sales DW Loading Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 1195 74,2938 1247 70,9444

AES128 3574 155,6558 3232 111,3055

AES256 3699 162,8546 3381 117,3645

3DES168 3695 140,0080 3339 146,1417

OPES 1929 117,5107 1963 71,6937

Salsa20 2408 84,0577 2459 97,3811

MOBAT AddCol 1373 83,7072 1447 76,2599

MOBAT CreateCol 1308 79,9533 1367 80,6815

MOBAT ColKey 1260 80,7588 1318 78,5291

Appendix B

244

B.2. Data Masking Chapter Query Workloads Execution Time Results

Tables B-4 to B-6 show the results in seconds for the average (µ) and

standard deviation (σ) of the data masking query workload execution

experiments, obtained using a Pentium IV 2.8 GHz CPU with 2GB RAM.

Table B-4. TPC-H 1GB Query Workload Execution Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 625 50,6069 580 54,4009

AES128 1798 223,0013 1591 199,6768

AES256 1837 212,8436 1646 172,8946

3DES168 1895 175,8836 1712 186,4174

OPES 1813 158,0126 1629 137,4651

Salsa20 1727 163,8821 1523 154,9399

MOBAT AddCol 846 76,7923 813 82,0243

MOBAT CreateCol 809 79,0004 775 69,8340

MOBAT ColKey 763 86,0046 712 76,4791

Table B-5. TPC-H 10 GB Query Workload Execution Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 6155 481,3438 5301 406,6876

AES128 16927 1701,2962 13334 949,9173

AES256 17283 1767,3377 13846 1213,7299

3DES168 17973 1741,0874 15058 1266,3514

OPES 16889 1575,5657 13215 1172,8934

Salsa20 15704 1118,5171 12691 1054,1071

MOBAT AddCol 7527 762,7053 6420 715,2876

MOBAT CreateCol 7314 819,1865 6162 480,4649

MOBAT ColKey 7218 702,9792 5981 447,6100

Table B-6. Sales DW Query Workload Execution Time

 Oracle SQL Server

 µ σ µ σ

Standard 2233 172,8706 2211 200,3533

AES128 17604 1399,6442 16923 1974,8563

AES256 18484 1619,3473 17827 1578,0671

3DES168 20425 1777,9447 18984 1827,5253

OPES 17465 1376,6070 16845 1497,5728

Salsa20 15582 845,2452 15212 1435,1688

MOBAT AddCol 5084 390,5519 4946 279,9171

MOBAT CreateCol 4435 462,5449 4313 240,3703

MOBAT ColKey 3966 283,0312 3637 264,4148

Data Masking and Encryption Experimental Results

245

B.3. Encryption Chapter Loading Time Results

Tables B-7 to B-9 show the results in seconds for the average (µ) and

standard deviation (σ) of the encryption loading experiments, obtained

using a Core2Duo 3 GHz CPU with 2GB RAM.

Table B-7. TPC-H 1GB Loading Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 253 12,2420 171 9,6231

AES128 608 28,4159 382 14,3341

AES256 636 29,6265 407 19,2423

3DES168 617 31,9687 389 20,1096

OPES 353 17,3743 229 21,5238

Salsa20 419 24,6833 281 21,5931

SES-DW128 279 15,9888 191 15,8537

SES-DW256 294 20,3858 201 18,3346

SES-DW1024 451 21,4445 284 19,7159

Table B-8. TPC-H 10 GB Loading Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 2576 132,6468 1796 99,7148

AES128 6375 302,7141 4144 214,7684

AES256 6742 342,2266 4532 193,2705

3DES168 6527 384,4802 4290 245,6537

OPES 3766 153,7396 2542 102,1442

Salsa20 4481 190,5514 3106 129,0725

SES-DW128 3024 140,4549 2137 103,1846

SES-DW256 3216 153,7929 2320 109,6005

SES-DW1024 4844 200,5901 3516 133,9737

Table B-9. Sales DW Loading Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 994 38,4313 1013 47,0286

AES128 2676 125,6391 2416 97,7693

AES256 2889 89,9725 2573 111,7741

3DES168 2949 78,9573 2611 123,8752

OPES 1555 77,0835 1554 57,2072

Salsa20 1902 84,6333 1879 78,4652

SES-DW128 1124 46,8944 1161 54,5001

SES-DW256 1211 57,4479 1237 64,4903

SES-DW1024 1808 71,6928 1881 89,6482

Appendix B

246

B.4. Encryption Query Workloads Execution Time Results

Tables B-10 to B-12 show the results in seconds for the average (µ) and

standard deviation (σ) of the encryption query workload execution

experiments, obtained using a Core2Duo 3 GHz CPU with 2GB RAM.

Table B-10. TPC-H 1GB Query Workload Execution Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 492 48,4052 452 39,2937

AES128 1357 124,1525 1231 124,3141

AES256 1496 130,1163 1330 153,0616

3DES168 1702 167,9543 1362 159,4373

OPES 1535 136,5459 1326 99,6848

Salsa20 1268 95,7280 1131 98,4518

MOBAT AddCol 1015 93,4154 927 89,7789

MOBAT CreateCol 1251 126,5178 1140 106,7907

MOBAT ColKey 1453 117,9790 1325 96,2909

Table B-11. TPC-H 10 GB Query Workload Execution Time

 Oracle 11g SQL Server 2008

 µ σ µ σ

Standard 5037 531,1588 4694 459,2833

AES128 15191 1358,3464 14063 993,7016

AES256 19073 1116,7794 16650 1276,2821

3DES168 22053 2105,4593 18821 1447,4942

OPES 17205 1205,4704 14155 1256,6578

Salsa20 14623 965,2504 13540 1080,3754

SES-DW128 9893 671,6570 9446 580,0519

SES-DW256 12056 973,8139 10289 916,5035

SES-DW1024 14976 1520,3692 13713 1153,3621

Table B-12. Sales DW Query Workload Execution Time

 Oracle SQL Server

 µ σ µ σ

Standard 1766 143,4475 1690 181,5121

AES128 14101 1409,7929 13429 1117,5437

AES256 15490 1160,3142 14180 1013,8596

3DES168 15860 1645,6413 14898 1467,3108

OPES 14189 1272,7239 12381 1149,5012

Salsa20 11294 1078,3294 10019 868,6609

SES-DW128 6396 374,6025 5682 434,3993

SES-DW256 8998 512,0796 7806 612,9569

SES-DW1024 12546 1131,3574 10032 980,1660

247

Appendix C

Intrusion Detection Experimental
Results

In this appendix we present the experimental results on intrusion

detection described in Chapter 6 of the thesis. Tables C-1 to C-4 show the

results for the average (µ) and standard deviation (σ) of the number of

true positives (TP), false positives (FP), true negatives (TN) and false

negatives (FN) generated by DW-DIDS in each scenario (“number of true

users”-“number of intruders”).

Table C-1. DW-DIDS ID Results for Profiles built from 5 “True” User Workloads

 TP FP TN FN

Scenario µ σ µ σ µ σ µ σ

10-0 0 0 57 2,7358 1193 70,1898 0 0

9-1 62 3,3922 54 2,5322 1076 58,6154 38 1,0416

8-2 131 7,4332 76 4,2092 944 55,5715 69 2,9680

5-5 327 20,9846 282 15,3613 378 21,0100 173 10,0307

Table C-2. DW-DIDS ID Results for Profiles built from 25 “True” User Workloads

 TP FP TN FN

Scenario µ σ µ σ µ σ µ σ

10-0 0 0 14 0,9442 1236 66,7567 0 0

9-1 81 4,8560 42 2,0296 1088 63,1729 19 1,9311

8-2 167 7,9252 54 2,6129 966 57,5426 33 1,4605

5-5 427 25,1637 221 12,8374 439 26,4010 73 3,9543

Appendix C

248

Table C-3. DW-DIDS ID Results for Profiles built from 50 “True” User Workloads

 TP FP TN FN

Scenario µ σ µ σ µ σ µ σ

10-0 0 0 12 0,7048 1238 65,5332 0 0

9-1 85 4,4048 38 1,0416 1092 67,4688 15 1,1095

8-2 177 11,1384 48 1,9226 972 53,1624 23 0,9102

5-5 459 27,7095 204 11,5661 456 23,2852 41 2,3537

Table C-4. DW-DIDS ID Results for Profiles built from 100 “True” User Workloads

 TP FP TN FN

Scenario µ σ µ σ µ σ µ σ

10-0 0 0 9 0,8625 1241 75,2322 0 0

9-1 88 5,0469 32 1,2429 1098 65,9825 12 0,7329

8-2 183 11,0307 43 2,0296 977 54,1515 17 1,4190

5-5 477 28,3424 193 11,2083 467 28,4039 23 1,8280

Appendix D

Intrusion Detection Benchmark

As current work under development, in this appendix we present a draft

proposal for a DW Intrusion Detection Benchmark (DWID-Bench) for

testing DIDS in DWs at the SQL level, given a controlled DW

environment with mixed intrusion and non-intrusion SQL workloads.

The benchmark’s main aim is to provide a feasible and objective mean of

evaluating the efficiency of the intrusion detection processes and impact

in database performance at the SQL level for DW DIDS. The proposed

measures intend to produce insight for aiding developers in the

improvement of their solutions and allow solution providers and clients

to compare between different solutions.

To accomplish this, we consider the typical DW user workloads and

intrusion detection techniques described in Chapter 2 and the SQL

intrusion action type classification described in Chapter 6. The chosen

“intrusion” workload covers a broad scope of distinct types of SQL

intrusion actions against DWs. The “intrusion” workload is executed

concurrently with defined “non-intrusion” workloads, which are selected

from the well-known TPC-DS benchmark to represent a typical decision

support user workload, in order to simulate a scenario as close to reality

as possible.

The remainder of this appendix is organized as follows. In Section D.1 we

present the benchmark and describe its setup. In Section D.2 we present

the database schema used in the benchmark. Sections D.3 and D.4

respectively explain the “non-intrusion” and “intrusion” workloads and

how they are defined. Section D.5 describes the benchmark’s execution

rules and procedures, while Section D.6 describes its proposed metrics. In

Section D.7 we discuss open issues regarding the development of the

benchmark and finally, Section D.8 summarizes the benchmark proposal

and points out future work.

Appendix D

250

D.1. DWID-Bench: Data Warehouse Intrusion Detection Benchmark

Figure D-1 shows the key components of the experimental setup required

to run DWID-Bench. As in TPC-DS [TPC-DS], the main elements are the

System Under Test (SUT) and the Driver System. The goal of the Driver

System is to emulate the client applications and respective users and

control all the aspects of each benchmark run. In the Driver System we

include both the “non-intruder” and “intruder” users. Additionally, the

Driver System also records the raw data needed to calculate the

benchmark measures (which are computed afterwards by analyzing the

data collected during each benchmark run).

Figure D-1. DWID-Bench experimental setup

The SUT represents a client-server system fully configured to run both

intruder and non-intruder workloads coming from the Driver System and

includes the DIDS to be evaluated. From the benchmark point of view,

the SUT is composed by the DIDS and the set of processing units used to

run the workloads and to store all the data processed. In other words, the

SUT can be any (hardware + software) system able to run the complete

benchmark workload and execute the DIDS algorithms under the

conditions specified by the benchmark procedure. The communication

between the Driver System and the SUT may be executed through any

type of LAN or WAN network infrastructures.

D.2. DWID-Bench Database Schema

In DWID-Bench, we partially use the data schemas proposed by TPC-DS.

The TPC-DS has been released after we had partially executed the

experiments presented throughout the thesis, and is the latest and

probably the currently mostly used benchmark for measuring the

throughput performance of Decision Support Systems (DSS). The TPC-DS

Intrusion Detection Benchmark

251

benchmark has been mapped to a typical business environment and

claims to significantly represent DSS that:

 Examine large volumes of data;

 Give answers to real-world business questions;

 Execute queries of various operational requirements and

complexities (e.g. ad-hoc instructions, reporting actions, data mining

operations, etc);

 Are characterized by high CPU and I/O load;

 Are periodically synchronized with transactional source databases

through database maintenance functions.

Assuming these features are common to a typical DW environment, as

described in [Kimball and Ross, 2013], we accept the TPC-DS as

representative of DSS and partially use its defined data schemas and

workloads in DWID-Bench. The “intrusion” and “non-intrusion” DWID-

Bench workloads focus on users with ETL and DW End User privileges,

since these are the type of actions covered by the TPC-DS benchmark. We

also define a set of actions for simulating DBA users as a mix of ETL +

DW End User actions, plus DDL commands relating to the creation of

tables, constraints and indexes belonging to the chosen schema.

The TPC-DS focuses on a generic retail business DSS for any industry that

must manage, sell and distribute products. Its schema models the sales

and sales returns process for an organization that employs three primary

sales channels: stores, catalogs, and the Internet. Each of these channels

has two fact tables, for storing the facts concerning sales and sales

returns. There is also another fact table for modeling inventory for the

catalog and Internet sales channels. Each fact table is linked with its

respective dimensions in a star schema, which means the complete TPC-

DS data schema is a set of seven star schemas, interlinked by their shared

dimensions.

In DWID-Bench, we chose to use the TPC-DS store sales star schema,

illustrated in Figure D-2. We chose this particular schema because it

represents a common business DW scenario for many enterprises, within

the set of proposed star schemas in TPC-DS. Moreover, the Store_Sales

fact table is the biggest sized fact table of all generated tables in the

Appendix D

252

complete TPC-DS database. As shown in Figure D-2, it is composed of

one fact table and ten dimension tables. In the following sections, we

explain how the “intrusion” and “non-intrusion” workloads are defined.

Figure D-2. TPC-DS store sales E-R diagram [TPC-DS]

D.3. DWID-Bench “Non-intrusion” Workload

The TPC-DS models a database that is continuously available 24 hours a

day, 7 days a week, for data modifications against any/all tables and

various types (e.g. ad hoc, reporting, iterative OLAP and data mining) of

queries originating from multiple concurrent user sessions. This

environment allows potentially long running and multi-part queries

where the DBA cannot assume that the database can be inactive during

any particular period. Queries and data maintenance functions may

execute concurrently. Since we use the store sales star schema for our DW

database, we use the predefined TPC-DS query and data maintenance

workloads for the store sales star schema as our chosen “non-intruder”

workloads in DWID-Bench.

From the DWID-Bench perspective, each session with an open connection

to the database refers to a given type of user (ETL, DW end user, or DBA,

as described in Chapter 6 of this thesis). The benchmark expects each

session to execute a stream of actions, which depend on the type of user

and defined as the following:

Intrusion Detection Benchmark

253

 For sessions simulating “non-intrusion” users with ETL database

privileges, data maintenance routines for all the tables of the store

sales data schema are executed, exactly as defined in TPC-DS;

 For sessions simulating “non-intrusion” DW end users (i.e. typical

business managers, analysts and decision makers), each session will

execute a query stream with the complete set of SQL queries

defined in TPC-DS that request processing data from the store sales

star schema, thus totalizing 32 distinct queries for each stream,

taken from the total of 99 queries defined in TPC-DS. The complete

set of selected TPC-DS queries for composing the DWID-Bench

“non-intrusion” workload is thus { Q3, Q6, Q7, Q8, Q13, Q19, Q27,

Q28, Q34, Q36, Q42, Q43, Q44, Q46, Q47, Q48, Q52, Q53, Q55, Q59,

Q61, Q63, Q65, Q67, Q68, Q70, Q73, Q79, Q88, Q89, Q96, Q98 }. For

each benchmark run, each stream is expected to execute each

distinct query once, in which their execution order is defined by the

query ordering established in TPC-DS;

 For sessions simulating users with DBA privileges, the workload

definition is very difficult to define, given the dynamic and huge

scope of actions they can execute. The TPC-DS benchmark does not

have any type of approach on actions coming from users with this

profile, and to present an abstraction that strictly defines a finite set

of particular actions for this type of user may risk the

representativeness of the workload for this type of users in what

concerns the benchmark. From this perspective, we consider the

DBA user as someone that has privileges to execute any type of

action that can be performed by ETL and DW end users (i.e., DML

commands – insert, update and select; delete is not considered,

since typical DW maintenance involves only modifying or insertion

of new data), plus common database object creation and

maintenance actions such as creating, modifying and deleting tables

and indexes (i.e., any sort of DDL commands – drop, create, etc).

Thus, in DWID-Bench we define the DBA workload as the mix of

the ETL and DW end user workloads together, plus all the DDL

commands needed for creating tables, constraints and indexes (i.e.,

primary and secondary indexes, possible bitmap join indexes, key

and referential integrity constraint instructions) for the store sales

star schema.

Appendix D

254

The execution matrix for the “non-intrusion” workloads can be seen in

Table D-1, displaying the query order for the maximum of 20 DW End

User streams that can be executed in DWID-Bench. It shows the order in

which each of the 32 queries chosen from the TPC-DS queries (identified

by their number in TPC-DS) should be executed, depending on which

user (1 to 20) it refers to. The assumptions and rules on how each user

workload should be executed for each user stream in each benchmark run

will be explained further in Section D.5.

Table D-1. “Non-Intrusion” DW End-User Workload – Query Ordering

Query
Sequence

Number

DW End-User Stream Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 96 98 98 89 79 73 34 70 98 88 43 7 68 61 46 27 48 61 42 47

2 7 96 59 52 8 98 88 53 59 52 48 43 88 53 42 47 63 8 19 55

3 44 13 88 53 89 88 44 6 70 13 53 13 44 98 79 73 61 67 47 13

4 19 36 6 7 46 19 53 34 44 7 96 36 28 89 6 46 34 42 53 44

5 43 63 27 63 48 65 7 13 73 27 63 98 3 68 96 13 36 88 7 73

6 27 3 28 13 59 3 73 28 3 34 70 8 19 13 8 59 52 70 48 28

7 36 6 68 19 19 79 36 98 7 65 36 88 53 43 89 88 53 13 79 27

8 46 28 8 96 6 13 89 79 36 28 7 28 52 63 88 68 28 28 70 67

9 63 27 63 8 28 6 28 48 61 42 98 59 27 36 28 36 88 46 36 34

10 59 8 19 36 44 52 6 47 65 67 47 96 98 96 55 44 73 89 73 52

11 98 52 55 43 88 7 65 46 67 36 28 55 67 65 48 19 42 6 59 36

12 70 61 42 47 36 36 42 55 6 48 55 63 61 42 36 79 89 53 96 7

13 67 88 53 3 61 61 47 52 47 6 44 3 8 19 47 53 67 34 65 6

14 28 68 67 46 55 53 59 44 55 59 27 52 7 7 59 61 8 47 55 96

15 47 67 44 59 52 68 8 3 42 61 59 47 55 44 27 3 59 79 44 88

16 3 79 61 55 27 28 19 19 34 68 67 46 48 67 44 28 65 19 88 53

17 89 43 73 27 63 42 61 42 79 47 52 53 63 3 65 6 6 48 63 8

18 6 47 96 42 47 67 3 43 28 98 42 67 43 48 98 65 46 27 89 65

19 52 19 36 34 70 48 67 61 89 70 65 27 42 55 19 52 68 52 27 79

20 42 53 43 68 7 63 98 7 46 73 88 70 65 8 53 63 44 55 46 3

21 8 55 52 44 96 8 48 73 19 3 34 61 59 88 68 98 43 96 28 63

22 88 46 70 67 68 46 79 89 8 79 73 34 36 47 43 55 3 36 52 46

23 65 65 7 6 43 55 46 36 96 89 79 73 70 52 3 96 98 59 68 59

24 34 70 79 28 65 89 96 8 88 19 6 6 34 28 7 67 70 68 43 43

25 48 59 65 65 98 96 68 63 43 96 68 89 79 70 34 43 96 98 61 61

26 73 48 34 61 42 27 63 68 53 46 89 65 89 73 73 48 79 3 34 89

27 55 34 3 73 34 44 27 67 52 53 61 44 46 79 70 7 55 73 3 42

28 53 89 13 98 3 43 43 88 68 55 46 79 96 34 67 70 13 43 13 70

29 79 7 46 70 13 47 52 65 13 44 13 42 73 27 13 34 19 63 6 68

30 13 73 89 48 73 70 13 59 48 63 8 48 47 6 63 89 27 7 8 48

31 68 44 47 79 67 59 70 96 27 43 3 19 13 59 52 8 47 44 67 19

32 61 42 48 88 53 34 55 27 63 8 19 68 6 46 61 42 7 65 98 98

Intrusion Detection Benchmark

255

In the following section we define the benchmark’s “intrusion” workload.

D.4. DWID-Bench “Intrusion” Workload

The chosen intrusion actions intend to provide a wide coverage of the

possible types of attacks described in Section 6.1 and most of the database

threats discussed in published work [Schulman, 2007] that can be dealt

with at the SQL level. Considering these threats, the types of attacks

against DWs (described in Chapter 6), the classes of intruder actions

presented in Table 6-1, and focusing on the specific business of the TPC-

DS store sales data schema, we assume that the possible “intruder”

profile is an attacker that has access to the database and pursues answers

for the following generic questions:

 How are the store sales DW data structures (i.e. table, indexes and

column names and types) implemented in the database, and how

can they be reached? (SQL intrusion action class B defined in Table

6-1)

 How can the optimization data structures such as indexes be

deleted so database performance is degraded? (SQL action class B

and C)

 How can the existing data structures such as tables and views be

deleted so that DW availability is affected and business information

is lost? (SQL action class C)

 How to obtain the complete set of business values from the fact or

dimension tables? (SQL action class D)

 How to obtain the full set of business values for a certain item, item

brand, class or category, time period, city, county or state? (SQL

action class E and F)

 How to obtain the grouped set (e.g. sum, average, count) of

interesting business values for a certain item, item brand, item class,

item category, time period, city, county or state? (SQL action class

F)

 How to flood the database services with requests that can

overwhelm them by creating CPU and I/O server and network

bottlenecks? (SQL action class G)

Appendix D

256

 How can false data be inserted into the store sales fact table so that

decision support may be compromised? (SQL action class H)

 How to modify or erase data so that decision support may become

compromised? (SQL action class I and J)

In DWID-Bench we assume a set of instructions that are able to respond

to these questions as the set of representative “intrusion” actions for the

chosen database schema.

For each intrusion action in which there are parameter variables (shown

in brackets []), these should be given a value as defined in the list of

random parameter variables. Each parameter value should be refreshed

for each query in each intrusion action stream, so that the same

parameters which are used in more than one action in the stream does not

have its value repeated amongst the remaining actions (e.g. ITEM_K

should have five distinct values for actions IA06, IA12, IA17, IA22, and

IA34, shown further on).

The random generator is defined as a Mersenne Twister Pseudo-Random

Number Generator8 [Matsumoto and Nishimura, 1998], which is, by far,

the most widely used PRNG [Marsland, 2011]. Its name derives from the

fact that its period length9 is chosen to be a Mersenne prime. The most

commonly used version of the Mersenne Twister algorithm is based on

8 A pseudorandom number generator (PRNG), also known as a deterministic

random bit generator (DRBG) is an algorithm for generating a sequence of

numbers that approximates the properties of random numbers [Barker et al.,

2012]. The sequence is not truly random in that it is completely determined by a

relatively small set of initial values, called the PRNG's state, which includes a

truly random seed. Although sequences that are closer to truly random can be

generated using hardware random number generators, pseudorandom numbers

are important in practice for their speed in number generation and their

reproducibility.
9 A PRNG can be started from an arbitrary starting state using a seed state. It will

always produce the same sequence thereafter when initialized with that state.

The period of a PRNG is defined as the maximum over all starting states of the

length of the repetition-free prefix of the sequence. The period is bounded by the

size of the state, measured in bits. However, since the length of the period

potentially doubles with each bit of 'state' added, it is easy to build PRNGs with

periods long enough for many practical applications.

Intrusion Detection Benchmark

257

the Mersenne prime 219937−1 (alias MT19937). It has a period of 219937−1

iterations (≈4.3×106001), is proven to be equidistributed in (up to) 623

dimensions (for 32-bit values), and runs faster than other statistically

reasonable generators [Marsland, 2011].

For DWID-Bench, the following piece of pseudocode is assumed as the

PRNG, generating uniformly distributed 32-bit integers in the range [0,

232 − 1] with the MT19937 algorithm (withdrawn from an original code

listing written by Matsumoto and Mishimura and available at

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html):

/*
 Extracted from a C-program for MT19937, with initialization improved
 2002/1/26, coded by Takuji Nishimura and Makoto Matsumoto.

 Before using, initialize the state by using init_genrand(seed).

 Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 All rights reserved.

 Any feedback is very welcome.
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

#include <stdio.h>

/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */

static unsigned long mt[N]; /* the array for the state vector */
static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

/* initializes mt[N] with a seed */
void init_genrand(unsigned long s)
{
 mt[0]= s & 0xffffffffUL;
 for (mti=1; mti<N; mti++) {
 mt[mti] =
 (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
 /* In the previous versions, MSBs of the seed affect */
 /* only MSBs of the array mt[]. */
 /* 2002/01/09 modified by Makoto Matsumoto */
 mt[mti] &= 0xffffffffUL;
 /* for >32 bit machines */
 }
}

/* initialize by an array with array-length */

Appendix D

258

/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
void init_by_array(unsigned long init_key[], int key_length)
{
 int i, j, k;
 init_genrand(19650218UL);
 i=1; j=0;
 k = (N>key_length ? N : key_length);
 for (; k; k--) {
 mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
 + init_key[j] + j; /* non linear */
 mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
 i++; j++;
 if (i>=N) { mt[0] = mt[N-1]; i=1; }
 if (j>=key_length) j=0;
 }
 for (k=N-1; k; k--) {
 mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
 - i; /* non linear */
 mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
 i++;
 if (i>=N) { mt[0] = mt[N-1]; i=1; }
 }

 mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
}

/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void)
{
 unsigned long y;
 static unsigned long mag01[2]={0x0UL, MATRIX_A};
 /* mag01[x] = x * MATRIX_A for x=0,1 */

 if (mti >= N) { /* generate N words at one time */
 int kk;

 if (mti == N+1) /* if init_genrand() has not been called, */
 init_genrand(5489UL); /* a default initial seed is used */

 for (kk=0;kk<N-M;kk++) {
 y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
 }
 for (;kk<N-1;kk++) {
 y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
 mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
 }
 y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
 mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];

 mti = 0;
 }

 y = mt[mti++];

 /* Tempering */
 y ^= (y >> 11);
 y ^= (y << 7) & 0x9d2c5680UL;
 y ^= (y << 15) & 0xefc60000UL;

Intrusion Detection Benchmark

259

 y ^= (y >> 18);

 return y;
}

/* generates an integer random number on [0, x[*/
long random(long x)
{
 return trunc(genrand_int32()*(1.0/4294967296.0)*x);
}

/* EXAMPLE OF USAGE – Generate first 10 random numbers in [0, 100[*/
/* 123456789 used as the initial seed */
int main(void)
{
 int i, x=100;
 unsigned long s=123456789;
 init_genrand(s);
 printf("10 random outputs in [0, 100[\n");
 for (i=0; i<10; i++) {
 printf(random(x));
 printf("\n");
 }
 return 0;
}

The random function based on the Mersenne Twister should be used the

following way:

 For each benchmark run, the PRNG should be reinitialized using

seed 123456789 (execute function init_genrand(123456789));

 Given random(x), where x represents a fixed integer value, the

function result should be a randomized number belonging to range

[0…x-1];

 Given random(x), where x represents a list of values, the function

result should be one of those values randomly chosen from the list.

All random values should be generated sequentially for all random

parameters of the previous user workload, before moving on to generate

the random values for the random parameters of the next user workload,

i.e., the random values should be sequentially generated for the complete

set of random parameters (R_TABLE, R_INDEX, ..., P_VALUE2) in the

parameters’ order, for user 1, and then moving on to user 2, and so on

and so forth.

The complete list of defined used random parameter variable values is:

Appendix D

260

List of Random Parameter Variables

DEFINE R_TABLE = random(’Store_sales’, ’Time_dim’, ’Date_dim’, ’Customer’, ’Item’,

’Store ’, ’Customer_address’, ’Customer_demographics’, ’Household_demographics’,

’Promotion’, ’Income_band’)

DEFINE R_INDEX = random(select index_name from dba_indexes where table_name =

[D_TABLE])

DEFINE ITEM_K = random(select max(i_item_sk) from item)

DEFINE ITEM_N = random(select distinct i_product_name from item)

DEFINE RD_DOM = random(14)+1

DEFINE RD_MOY = random(12)+1

DEFINE RD_YEAR = random(6)+1998

DEFINE CA_TYPE = random(‘ca_state’, ’ca_county’, ’ca_city’)

DEFINE CA_VALUE = random(select distinct [SS_CATYPE] from customer_address)

DEFINE CA_STATE = random(select distinct ca_state from customer_address)

DEFINE I_TYPE = random(‘i_brand’, ’i_class’, ’i_category’)

DEFINE I_VALUE = random(select distinct [SS_ITYPE] from item)

DEFINE SS_COLUMN = random(’ss_wholesale_cost’, ’ss_list_price’, ’ss_salesprice’,

’ss_ext_discount_amt’, ’ss_ext_sales_price’, ’ss_ext_wholesale_cost’, ’ss_ext_list_price’,

’ss_ext_tax’, ’ss_coupon_amt’, ’ss_net_paid’, ’ss_net_paid_inc_tax’, ’ss_net_profit’)

DEFINE SS_VALUE = random(select max([SS_COLUMN]) from store_sales)

DEFINE SS_TICKET = random(select max(ss_ticket_number) from store_sales)

DEFINE SS_ITEM_T = random(select ss_item_sk from store_sales where ss_ticket_number

= SS_TICKET)

DEFINE SS_SDATE = random(select max(d_date_sk) from date_dim)

DEFINE SS_STIME = random(select max(t_date_sk) from time_dim)

DEFINE SS_SITEM = random(select max(i_item_sk) from item)

DEFINE SS_SCUST = random(select max(c_customer_sk) from customer)

DEFINE SS_SCDEMO = random(select max(cd_demo_sk) from customer_demographics)

DEFINE SS_SHDEMO = random(select max(hd_demo_sk) from

household_demographics)

DEFINE SS_SADDR = random(select max(ca_address_sk) from customer_address)

DEFINE SS_SSTORE = random(select max(s_store_sk) from store)

DEFINE SS_SPROMO=random(select max(p_promo_sk) from promotion)

Intrusion Detection Benchmark

261

DEFINE SS_STICK = (select max(ss_ticket_number) from store_sales)+1

DEFINE SS_ITICK = random(select ss_item_sk from store_sales where ss_ticket_number =

[SS_STICK])

DEFINE SS_QUANTITY = random(99)+1

For i = 1 to 12

 DEFINE SS_VALUES[i] = random(9999999)/100

Next

DEFINE I_COLUMN = random(‘i_current_price’,’i_wholesale_cost’)

DEFINE I_VALUE_2 = random(select max[I_COLUMN] from item)

DEFINE P_COLUMN_1 = random(‘p_start_date_sk’, ’p_end_date_sk’, ’p_item_sk’,

’p_cost’)

DEFINE P_VALUE_1 = random(select max([P_COLUMN_1]) from promotion)

DEFINE PROMO_K = random(select max(p_promo_sk) from promotion)

DEFINE P_COLUMN_2 = random(‘p_start_date_sk’, ’p_end_date_sk’, ’p_cost’)

DEFINE P_VALUE_2 = random(select max([P_COLUMN_2]) from promotion)

The complete list of proposed intrusion actions that represent the

“intruder” workload is as follows, composed by 34 SQL instructions

(Intrusion Action IA01 to IA34.

Intrusion Action IA01. Query for retrieving information on the tables and columns of the

database schema.

select table_name, column_name, data_type from user_tab_columns;

Intrusion Action IA02. Deleting an index from the database.

drop index [D_INDEX];

Intrusion Action IA03. Deleting the fact table.

drop table store_sales;

Intrusion Action IA04. Retrieving all data from the fact table.

select * from store_sales;

Intrusion Action IA05. Query flooding by requesting several joins on all data from the

fact table to be processed and returned.

Appendix D

262

select * from

 (select * from store_sales) a, (select * from store_sales) b, (select * from store_sales) c,

 (select * from store_sales) d, (select * from store_sales) e, (select * from store_sales) f,

 (select * from store_sales) g, (select * from store_sales) h, (select * from store_sales) i,

 (select * from store_sales) j;

Intrusion Action IA06. Query retrieving all sales, date, item and customer data for all

sales of a given item.

select * from store_sales, item, customer, date_dim

where ss_item_sk = [ITEM_K] and ss_item_sk = i_item_sk and

 ss_customer_sk = c_customer_sk and ss_sold_date = d_date_sk;

Intrusion Action IA07. Query retrieving all sales, item and date data for all sales in a

random period of two weeks.

select * from store_sales, item, date_dim

where ss_sold_date_sk = d_date_sk and

 d_year = [RD_YEAR] and d_moy = [RD_MOY] and

 d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14

Intrusion Action IA08. Query retrieving all sales, customer address, date and item data

for all sales in a given state, county or city.

select store_sales.*, customer_address.*, item.*, d_year, d_moy, d_dom

from store_sales, customer_address, item, date_dim

where ss_addr_sk = ca_address_sk and

 ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and

 [CA_TYPE] = [CA_VALUE];

Intrusion Action IA09. Query retrieving all sales, item, date and customer address data

for all sales of a given item in a given state in a random period of two weeks.

select store_sales.*, item.*, d_year, d_moy, d_dom, customer_address.*

from store_sales, date_dim, item, customer_address

where ss_item_sk = i_item_sk and

 i_product_name = [ITEM_N] and ss_sold_date_sk = d_date_sk and

 d_year = [RD_YEAR] and d_moy = [RD_MOY] and

 d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14 and

 ss_addr_sk = ca_address_sk and ca_state = [CA_STATE];

Intrusion Action IA10. Query retrieving all sales, item and date data for all sales of all

items of a given brand, class or category.

select * from store_sales, item, date_dim

where ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and

Intrusion Detection Benchmark

263

 [I_TYPE] = [I_VALUE];

Intrusion Action IA11. Query retrieving the total quantity and total value of a given sales

column, per item, for all items.

select ss_item_sk, i_product_name,sum(ss_quantity),sum([SS_COLUMN])

from store_sales, item

where ss_item_sk = i_item_sk

group by ss_item_sk;

Intrusion Action IA12. Query retrieving the total quantity and total value of a given sales

column as well as the row count of those sales, for a given item.

select ss_item_sk, i_product_name, sum(ss_quantity), sum([SS_COLUMN]), count(*)

from store_sales, item

where ss_item_sk = i_item_sk and ss_item_sk = [ITEM_K];

Intrusion Action IA13. Query retrieving the total value of a given sales column as well as

the row count of those sales, per day, in a given period of two weeks.

select d_year, d_moy, d_dom, sum([SS_COLUMN]), count(*)

from store_sales, date_dim

where ss_sold_date_sk = d_date_sk and

 d_year = [RD_YEAR] and d_moy = [RD_MOY] and

 d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14

group by d_year, d_moy, d_dom

order by d_year, d_moy, d_dom;

Intrusion Action IA14. Query retrieving the total value of a given sales column as well as

the row count of those sales, per city per month, for a given state, county or city.

select ca_city, d_year, d_moy, sum([SS_COLUMN], count(*)

from store_sales, customer_address, date_dim

where ss_addr_sk=ca_address_sk and ss_sold_date_sk=d_date_sk and

 [CA_TYPE]=[CA_VALUE]

group by ca_city, d_year, d_moy

order by ca_city, d_year, d_moy;

Intrusion Action IA15. Query retrieving the total quantity and total value of a given sales

column as well as the row count of those sales, for a given item in a given state, per city

per day, in a given period of two weeks.

select ca_city, ca_county, ca_state, ss_item_sk, i_product_name, d_year,

 d_moy, d_dom, sum(ss_quantity), sum([SS_COLUMN]), count(*)

from store_sales, date_dim, customer_address, item

where ss_item_sk = i_item_sk and i_product_name = [ITEM_N] and

Appendix D

264

 ss_sold_date_sk = d_date_sk and

 d_year = [RD_YEAR] and d_moy = [RD_MOY] and

 d_dom >= [RD_DOM] and d_dom <= [RD_DOM]+14

 ss_addr_sk = ca_address_sk and ca_state = [CA_STATE]

group by ca_city, d_year, d_moy, d_dom

order by ca_city, d_year, d_moy, d_dom;

Intrusion Action IA16. Query retrieving the total value of a given sales column for all

sales of a given brand, class or category, per city per month.

select [I_TYPE], ca_city, d_year, d_moy, sum(R_COLUMN)

from store_sales, item, customer_address, date_dim

where ss_item_sk = i_item_sk and [I_TYPE] = [I_VALUE] and

 ss_addr_sk = ca_address_sk and ss_sold_date_sk = d_date_sk

group by ca_city, d_year, d_moy

order by ca_city, d_year, d_moy;

Intrusion Action IA17. Modifying the values of a given sales column for all the sales rows

of a certain item.

update store_sales set [SS_COLUMN] = [SS_VALUE] where ss_item_sk = [ITEM_K];

Intrusion Action IA18. Modifying the values of a given sales column for all the sales rows

of a certain item belonging to a certain ticket number.

update store_sales set [SS_COLUMN] = [SS_VALUE]

where ss_ticket_number = [SS_STICK] and ss_item_sk = [SS_ITICK];

Intrusion Action IA19. Modifying the values of a given sales column for all the sales rows

of a certain state, county or city.

update store_sales set [SS_COLUMN] = [SS_VALUE]

where (select count(*) from customer_address where

 ss_addr_sk = ca_address_sk and [CA_TYPE] = [CA_VALUE])>0;

Intrusion Action IA20. Modifying the values of a given sales column for all the sales rows

of a certain brand, class or category.

update store_sales set [SS_COLUMN] = [SS_VALUE]

where (select count(*) from item where ss_item_sk = i_item_sk and

 [I_TYPE]=[I_VALUE])>0;

Intrusion Action IA21. Modifying the values of a given sales column for all the sales rows

of a certain day.

update store_sales set [SS_COLUMN] = [SS_VALUE]

Intrusion Detection Benchmark

265

where (select count(*) from date_dim where ss_sold_date_sk = d_date_sk

 and d_year = [RD_YEAR] and d_moy = [RD_MOY] and

 d_dom = [RD_DOM])>0;

Intrusion Action IA22. Deleting all the sales rows of a certain item.

delete from store_sales where ss_item_sk = [ITEM_K];

Intrusion Action IA23. Deleting all the sales rows of a certain item belonging to a certain

ticket number.

delete from store_sales

where ss_ticket_number = [SS_STICK] and ss_item_sk = [SS_ITICK];

Intrusion Action IA24. Deleting all the sales rows of a certain state, county or city.

delete from store_sales where (select count(*) from customer_address where

ss_addr_sk=ca_address_sk and [CA_TYPE] = [CA_VALUE])>0;

Intrusion Action IA25. Deleting all the sales rows of a certain brand, class or category.

delete from store_sales where (select count(*) from item where

 ss_item_sk = i_item_sk and [I_TYPE] = [I_VALUE])>0;

Intrusion Action IA26. Deleting all the sales rows of a certain day.

delete from store_sales where (select count(*) from date_dim where

 ss_sold_date_sk=d_date_sk and d_year=[RD_YEAR] and

 d_moy=[RD_MOY] and d_dom=[RD_DOM])>0;

Intrusion Action IA27. Inserting false data in the store sales fact table.

insert into store_sales (*) values (SS_SDATE, SS_STIME, SS_SITEM, SS_SCUST,

 SS_SCDEMO, SS_SHDEMO, SS_SADDR, SS_SSTORE, SS_SPROMO, SS_STICK,

 SS_QUANTITY, SS_VALUE[1], SS_VALUE[2], SS_VALUE[3], SS_VALUE[4],

 SS_VALUE[5], SS_VALUE[6], SS_VALUE[7], SS_VALUE[8], SS_VALUE[9],

 SS_VALUE[10], SS_VALUE[11], SS_VALUE[12]);

Intrusion Action IA28. Retrieving all data from any table in the database.

select * from [R_TABLE];

Intrusion Action IA29. Retrieving the most sensitive customer data from all customer

tables the database.

select * from customer, customer_address, customer_demographics

where c_current_addr_sk = ca_address_sk and c_current_cdemo_sk = cd_demo_sk;

Appendix D

266

Intrusion Action IA30. Retrieving a portion of sensitive customer data from all customers

belonging to a given state, county or city.

select c_customer_sk, c_first_name, c_last_name, c_birth_day, c_birth_month,

 c_birth_year, c_email_address, customer_address.*, customer_demographics.*

from customer, customer_address, customer_demographics

where c_current_addr_sk = ca_address_sk and

 c_current_cdemo_sk = cd_demo_sk and [CA_TYPE] = [CA_VALUE];

Intrusion Action IA31. Retrieving the data of all promotions concerning a given item on a

given month.

select promotion.*, item.*, d_year, d_moy, d_dom

from promotion, item, date_dim

where p_item_sk = i_item_sk and

 i_product_name = [ITEM_N] and p_start_date_sk = d_date_sk and

 d_year = [RD_YEAR] and d_moy = [RD_MOY];

Intrusion Action IA32. Modifying the current price or wholesale cost of a given item.

update item set [I_COLUMN] = [I_VALUE_2]

where i_product_name = [ITEM_N];

Intrusion Action IA33. Modifying the start date, end date, item or cost of a given

promotion.

update promotion set [P_COLUMN_1] = [P_VALUE_1]

where p_promo_sk = [PROMO_K];

Intrusion Action IA34. Modifying the start date, end date, or cost of all promotions of a

given item.

update promotion set [P_COLUMN_2] = [P_VALUE_2]

where p_item_sk = [ITEM_K]

Table D-2 resumes the user types that may execute each instruction, the

action class and affected security dimensions, as well as the tables

targeted to be affected by the instruction. From observing the table it can

be seen that each DBA “intrusion” workload is composed by all 34

intrusion actions, the ETL “intrusion” workload is defined by 28 intrusion

actions (all except IA03, IA22, IA23, IA24, IA25 and IA26), and the DW

end user “intrusion” workload is defined by 18 intrusion actions (all

intrusion actions that can be executed by “Any” user type). The definition

of the number of streams each type of user should be running for each

benchmark run will be described in the next section.

Intrusion Detection Benchmark

267

The chosen instructions that compose the intruder actions were guided

by the assumption that each table has its own relative sensitivity, given

the importance and business knowledge revealed by its contents.

Obviously, the Store_sales fact table is much more sensitive (and therefore,

more important from the intruder’s perspective) than the Date_dim

dimension table, since the first stores the operational secrets of the

business and the second just serves as support for temporal definitions of

the business. Thus, the majority of the defined intrusion actions were

designed for targeting actions against the most important tables (which,

for the store sales DW, concern the tables that store sales, items,

promotions and customer information, namely tables Store_sales, Item,

Customer, Customer_address, Customer_demo and Promotion).

Table D-2. “Intrusion” Workload

 TARGET TABLES

Intrusion

Action

SQL

Action

Class

User Type
Store_
sales

(facts)

 Customer
(dim)

Item

(dim)

 Promotion
(dim)

 Date_dim

(dim)

Time_dim
(dim)

Store
(dim)

Customer_
address

(dim)

 Customer_

demo

(dim)

Household
_demo

(dim)

 Income_

band

(dim)

IA01 A Any X X X X X X X X X X X

IA02 B ETL, DBA X X X X X X X X X X X

IA03 B DBA X

IA04 C Any X

IA05 F Any X

IA06 D Any X X X X

IA07 D Any X X X

IA08 D Any X X X X

IA09 E Any X X X X

IA10 D Any X X X

IA11 D Any X X

IA12 E Any X X

IA13 E Any X X

IA14 E Any X X X

IA15 E Any X X X X

IA16 E Any X X X X

IA17 H ETL, DBA X

IA18 H ETL, DBA X

IA19 H ETL, DBA X

IA20 H ETL, DBA X

IA21 H ETL, DBA X

IA22 I DBA X

IA23 I DBA X

IA24 I DBA X

IA25 I DBA X

IA26 I DBA X

IA27 G ETL, DBA X

IA28 C Any X X X X X X X X X X X

IA29 C Any X X X

IA30 D Any X X X

IA31 D Any X X X

IA32 H ETL, DBA X

IA33 H ETL, DBA X

IA34 H ETL, DBA X

Appendix D

268

The Date_dim dimension table is also often used in the “intrusion” action

instructions; however, it is a static table, i.e., it has fixed content and does

not change over time. Furthermore, its content does not reveal any

business information nor does it require external knowledge to be

regenerated. Therefore, it can be easily and quickly rebuilt in case the

content is damaged and is not so important as those previously

mentioned.

Table D-3 shows the order in which each intrusion action should be

executed for each user “intrusion” workload stream. The number of

intrusion actions in each benchmark run ranges from 28+18+34 = 80 (for a

setup composed by 1 “Intrusion” ETL User + 1 “Intrusion” DW End User

+ 1 “Intrusion” DBA User) to 28+180+34 = 242 (for a setup composed by 1

“Intrusion” ETL User + 10 “Intrusion” DW End Users + 1 “Intrusion”

DBA User).

Table D-3. “Intrusion” Workload – Query Ordering

Sequence
Order

 ETL
User

 DW End Users DBA
User 1 2 3 4 5 6 7 8 9 10

1 IA02 IA05 IA07 IA31 IA10 IA16 IA28 IA07 IA29 IA05 IA28 IA01

2 IA05 IA16 IA28 IA13 IA04 IA06 IA14 IA12 IA01 IA10 IA08 IA28

3 IA09 IA15 IA06 IA15 IA15 IA31 IA29 IA29 IA04 IA08 IA09 IA14

4 IA33 IA07 IA04 IA09 IA09 IA08 IA30 IA09 IA08 IA31 IA13 IA03

5 IA17 IA06 IA13 IA16 IA08 IA07 IA13 IA14 IA15 IA12 IA29 IA22

6 IA34 IA01 IA05 IA30 IA28 IA04 IA04 IA05 IA12 IA29 IA01 IA19

7 IA14 IA10 IA30 IA05 IA13 IA13 IA01 IA08 IA11 IA01 IA15 IA05

8 IA28 IA12 IA14 IA28 IA30 IA28 IA08 IA28 IA31 IA14 IA04 IA25

9 IA16 IA28 IA08 IA06 IA06 IA11 IA09 IA13 IA30 IA06 IA06 IA34

10 IA04 IA29 IA12 IA12 IA29 IA30 IA12 IA06 IA09 IA07 IA31 IA06

11 IA31 IA31 IA01 IA08 IA01 IA15 IA06 IA31 IA13 IA30 IA11 IA12

12 IA01 IA30 IA31 IA29 IA12 IA01 IA10 IA10 IA05 IA11 IA07 IA24

13 IA21 IA09 IA16 IA01 IA11 IA05 IA05 IA04 IA14 IA16 IA12 IA31

14 IA13 IA04 IA10 IA04 IA31 IA10 IA07 IA11 IA06 IA09 IA05 IA16

15 IA06 IA14 IA11 IA11 IA16 IA09 IA15 IA16 IA07 IA04 IA16 IA15

16 IA18 IA11 IA09 IA07 IA05 IA12 IA16 IA15 IA28 IA15 IA30 IA20

17 IA30 IA13 IA15 IA10 IA14 IA29 IA31 IA30 IA16 IA13 IA14 IA23

18 IA07 IA08 IA29 IA14 IA07 IA14 IA11 IA01 IA10 IA28 IA10 IA33

19 IA27 IA32

20 IA08 IA17

21 IA32 IA21

22 IA15 IA09

23 IA20 IA11

24 IA29 IA30

25 IA12 IA08

26 IA11 IA10

27 IA10 IA27

28 IA19 IA18

29 IA26

30 IA29

31 IA02

32 IA04

33 IA07

34 IA13

Intrusion Detection Benchmark

269

D.5. DWID-Bench Rules and Execution Procedure

In this section we define the rules for implementing the DWID-Bench

setup and its execution procedure. The rules for implementing the

benchmark are the following:

 The store sales data schema should be implemented exactly as

described in the TPC-DS benchmark;

 The database maintenance routines should run exactly as described

in TPC-DS, representing the “non-intrusion” ETL workload

streams. Each of these ETL streams may execute concurrently with

DW End User streams or DBA streams, or alone. The “non-

intrusion” ETL streams do not overlap; all operations need to have

finished on “non-intrusion” ETL workload x before any procedure

can start on behalf of “non-intrusion” ETL workload x+1. The first

refresh data set can only start after 3*S (where S represents the

number of running “non-intrusion” DW end user query streams)

“non-intrusion” queries have completed their execution. Each

subsequent refresh set can start after completion of an additional 64

queries (the total number of instructions in two complete

workloads). The purpose of linking data maintenance operations to

completion of queries is so that the updates are interspersed among

execution of queries in the benchmark runs, although concurrent

execution of updates and queries is not required;

 Each “non-intrusion” query instruction should be exactly as

described in the TPC-DS benchmark, while each “non-intrusion”

instruction should be exactly as defined in Table D-1 (including

instruction modification and the substitution of query parameters

for both types of workloads);

 The same hardware and software should be used during the

complete benchmark run without changes. The only allowed

changes are those concerning the updating of both DW and DIDS

databases and logs;

 The DIDS cannot be specifically optimized a priori for the set of SQL

actions defined in the intrusion workload, i.e., it may not know or

take in account information regarding previous knowledge of the

Appendix D

270

intrusion workloads before the workloads’ execution in the

benchmark run;

 Each stream should be run only once, to avoid repeating instruction

ordering;

 The driver system shall submit “intrusion” and “non-intrusion”

workloads through one or more sessions on the SUT. Each session

corresponds to one stream composed by a complete “intrusion” or

“non-intrusion” user workload;

 If any of the workloads fails to execute, the benchmark results are

invalid.

The DWID-Bench benchmark is defined by the execution of the Training

Phase, followed by the Testing Phase. The Training Phase includes all

activity required to bring the SUT to the configuration that immediately

precedes the execution of the “non-intrusion” and “intrusion” workloads

that will measure the intrusion detection and performance metrics of the

DIDS, which composes the Testing Phase. For fairness of the database

performance measures, the database server should be restarted before

starting the Testing Phase, in order to reinitialize the database cache. The

benchmark methodology is shown in Figure D-3. The Training Phase

includes:

1) The execution of all SQL DDL commands that create the store sales

DW data schema (datafiles, tables and views) and constraints, as

well as any performance optimization objects (e.g. indexes);

2) The execution of all data loading procedures to populate the DW

with the initial data defined by TPC-DS for the chosen scale factor

as defined in that benchmark;

3) During the execution of the two previous steps, the DIDS can access

and analyze the executed operations to build the “normal” ETL

and/or DBA user profiles, in any way, if needed;

4) The execution of one to five “non-intrusion” ETL data maintenance

workload streams as the first one to five refresh sets as defined in

TPC-DS and following the rules previously presented in this

section, and one to ten DW End User “non-intrusion” workload

Intrusion Detection Benchmark

271

streams, for allowing the DIDS to build the “normal” non-intruder

ETL and DW end user profiles, in any way.

The Testing Phase includes:

1) The execution of the same number of “non-intrusion” ETL and

“non-intrusion” DW End User workload streams as those used in

the Training Phase;

2) The execution of one “intrusion” DBA stream, one to ten

“intrusion” DW End User streams, and one “intrusion” ETL stream,

concurrently with the “non-intrusion” workloads.

1. STORE_SALES DW CREATION
- Create database instance
- Create database datafiles
(tablespaces)
- Create tables, primary keys and
referential constraints
- Load data into tables
- Create bitmap join indexes (when
allowed by the DBMS)

2. NON-INTRUSION WORKLOAD
EXECUTION
- Execution of 1 to 10 “non-intrusion”
DW End User workload streams with 1
to 5 “non-intrusion” ETL workload
streams

3. NON-INTRUSION+INTRUSION
WORKLOAD EXECUTION
- Execution of 1 to 10 “non-intrusion”
DW End User workload streams with 1
to 5 “non-intrusion” ETL workload
streams + 1 to 10 “intrusion” DW End
User workload streams + 1 “intrusion”
DBA workload stream + 1 “intrusion”
ETL workload stream

FINISH?

5. COMPUTE
BENCHMARK
MEASURES

Yes

Build DBA “Non-intrusion”
profiles (if needed)

Build ETL and DW End
User “Non-intrusion”
profiles (if needed)

Run DIDS for test against
intrusions and update user
profiles (if needed)

4. GENERATE NEW “NON-
INTRUSION” AND “INTRUSION”
WORKLOAD
- Substitution of the random parameters
based on the sequence generated
values from the PRNG

D
ID

S
 L

e
a

rn
in

g
 P

h
a

s
e

D
ID

S
 T

e
s
tin

g
 P

h
a

s
e

No

Figure D-3. DWID-Bench benchmark methodology

Appendix D

272

Figure D-4 illustrates the execution sequence of the Testing Phase. Note

that the “non-intrusion” ETL workload is executed as defined in TPC-DS,

with the only difference that it refreshes the database after completing the

processing of a group of 64 queries instead of 192 (because the complete

DWID-Bench “non-intrusion” workload has 32 queries, instead of 99 as

defined in TPC-DS; 64 is an approximate proportional number).

Non-intruder DW End User 1 Workload (32 queries)

Non-intruder DW End User 2 Workload (32 queries)

Non-intruder DW End User n Workload (32 queries)

Non-intruder
ETL User

Workload 1

Intruder DW End User 1 Workload (18 intrusion action instructions)

Intruder DW End User 2 Workload (18 intrusion action instructions)

Intruder DW End User ni Workload (18 intrusion action instructions)

Intruder ETL User Workload (28 intrusion action instructions)

Intruder DBA User Workload (34 intrusion action instructions)

Non-intruder
ETL User

Workload 2

Non-intruder
ETL User

Workload n/2

Non-intrusion
DW End User

Workload
Streams

Non-intrusion
ETL Streams

Intrusion
Workload
Streams

Time

3*n queries
completed

64 queries
completed

(n/2)-3 groups of 64
queries completed

Figure D-4. Benchmark Testing Phase execution flow for n “non-intrusion” DW

End Users and ni “intrusion” DW End Users

The following section defines the benchmark’s metrics.

D.6. DWID-Bench Metrics

To evaluate the overall efficiency of a DIDS in a data warehousing

environment, we propose focusing on the following aspects concerning

intrusion detection in DWs:

Intrusion Detection Benchmark

273

 The efficiency of the intrusion detection processes themselves, i.e.,

their ability to effectively detect intrusion actions (true positives)

and minimize the number of false alarms (false positives), and

minimize the number of intrusions that pass undetected (false

negatives);

 How quickly after an intrusion action occurs is the DIDS able to

produce an alert, given that in many cases it is critical to detect an

intrusion as quickly as possible, before it may damage the DW;

 The ability of the DIDS to evolve by improving its intrusion

detection efficiency through time.

Given this, in DWID-Bench we define the Data Warehouse Intrusion

Detection Benchmark Coefficient (���������) metric, which involves two

main components that respectively measure a DIDS’ efficiency and speed

in intrusion detection time, where ne represents the number of

benchmark runs, F-scorei the F-score10 obtained by the DIDS in each

benchmark run, tQWorkloads the total execution time (in seconds) of the

“non-intrusion” and “intrusion” workloads of all benchmark runs, and

tIDProcesses the total execution time (in seconds) of the DIDS of all

benchmark runs:

��������� =
∑ �∗��������

��
���

∑ ���
���

∗
∆�����������

∆������������ ∆������������
∗ 100

Evaluates the intrusion

detection efficiency

through time, giving

higher weight to the

most recent F-scores

Evaluates the impact of the time

taken to execute the intrusion

detection processes

Given its expression, ��������� will output a real value in the range

[0...100]. A higher benchmark value indicates a better DIDS. To illustrate

the outcome of the proposed metric, consider the following values shown

in Table D-4 as fictional examples of three DIDS to be evaluated by

DWID-Bench.

10 The F-score measure was explained in Chapter 6, Subsection 6.6.2.

Appendix D

274

Table D-4. DWID-Bench DIDS benchmarking examples

 1st Benchmark Run (ne = 1) 2nd Benchmark Run (ne = 2)

 F-score1 ∆������ ∆������� ������ F-score2 ∆������ ∆������� ������

DIDS 1 60% 1000 200 50.0 80% 2000 400 61.1

DIDS 2 70% 1000 200 58.3 70% 2000 400 58.3

DIDS 3 70% 1000 250 56.0 60% 2000 500 50.7

Observing the table, it can be seen that after the first benchmark run,

DIDS 2 and DIDS 3 are those presenting the highest intrusion detection

efficiency, i.e., they have higher F-score than DIDS 1, but since DIDS 2

takes less time in its intrusion detection processes than DIDS 3 it outputs

a higher benchmark value, making it the best DIDS after the first

benchmark run. Moreover, although DIDS 1 executes its intrusion

detection processes faster than DIDS 3, this last DIDS presents a higher

intrusion detection efficiency with an F-score that overcomes the fact that

it is slower.

However, after the second benchmark run, and assuming that they all

take the same time in execution as the first benchmark run, DIDS 1

improves its intrusion detection efficiency to an F-score of 80%, which

allows it to improve its benchmark value to a measure that makes it the

best solution. And DIDS 1 is in fact the best solution after both

benchmark runs, since its F-score average and running times are the same

as DIDS 2, but its most recent intrusion detection efficiency has the best

results of all DIDS. On the other hand, the fact that DIDS 3 presented

worse results in the second benchmark run has made it the worst DIDS.

Therefore, the ��������� results shown in Table D-4 demonstrate that the

benchmark metric is indeed able to track the efficiency of the intrusion

detection processes and its evolution, along with the ability to also

measure the impact of the required time spent by those processes.

D.7. Discussion

The proposed benchmark abstracts the diversity of the described classes

of possible intrusion actions, while retaining custom normal user activity

and DW environment requirements. As it is necessary to execute a large

number of queries and data maintenance operations to completely

manage any business analysis environment, no benchmark can succeed in

Intrusion Detection Benchmark

275

exactly mimicking a particular environment and remain broadly

applicable. We acknowledge that the definition and implementation of

benchmarks is not a trivial task and that there are always discussable

issues concerning the objectivity and effectiveness of each proposal.

However, in DWID-Bench we have tried to provide a wide coverage of

possible intrusion activity in DWs, while simulating their execution in a

realistic-like data warehousing environment. Given the importance of

intrusion detection in DWs and the lack of both DIDS at the SQL level as

available packages supplied by DBMS vendors as well as standard

benchmarks to test them, we believe that the issues presented in this

appendix are worthy of notice and hope that our work may drive the

discussion around the subject in both the benchmarking and intrusion

detection research communities, and possibly make way for a

standardized benchmark for this purpose.

D.8. Summary and Future Work

In this appendix we have proposed a novel benchmark that focuses on

evaluating DIDS at the SQL command level in DW environments. The

proposed metrics provide an objective and comprehensive mean of

evaluating the intrusion detection efficiency and ability to improve, as

well as the impact on database response time, of proposed DIDS for DWs.

The benchmark’s implementation procedures and metrics also comply

with the principles of comprehensibility and reproducibility required in

benchmarking proposals.

While this benchmark offers a representative scenario of possible

intrusion attacks on DWs, it does not reflect the entire range of

possibilities. As future work, we intend to increase and develop the

“intrusion” workload for widening the coverage of possible intrusion

actions and therefore produce more thorough tests.

