
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

EQualPI: a Framework to Evaluate the
Quality of the Implementation of the

CMMI Practices

Isabel de Jesus Lopes Margarido

JURI VERSION 1.0

Programa Doutoral em Engenharia Informática

Advisor: Raul Moreira Vidal, FEUP

Co-advisor: Marco Paulo Amorim Vieira, FCTUC

Porto, January 21, 2016

c© Isabel de Jesus Lopes Margarido, 2016

EQualPI: a Framework to Evaluate the Quality of the
Implementation of the CMMI Practices

Isabel de Jesus Lopes Margarido

Programa Doutoral em Engenharia Informática

Porto, January 21, 2016

Abstract

The Capability Maturity Model Integration R© (CMMI) allows organizations to improve the qual-
ity of their products and customer satisfaction; reduce cost, schedule, and rework; and make their
processes more predictable. However, this is not always the case, as there are differences in perfor-
mance among CMMI organizations, depending not only on the context of the business, projects,
and team, but also on the methodologies used in the implementation of the model practices. CMMI
version 1.3 is more focused on the performance of the organisations than previous versions. How-
ever, the Standard CMMI Appraisal Method for Process ImprovementSM (SCAMPI) is not focused
on evaluating performance.

To evaluate practices performance it is necessary to consider the goal of executing the practice,
and the quality of implementation of a practice is reflected on its outputs. Therefore, if we can
establish a relationship between the methods used to implement a practice and the performance
results of that practice, we can use such relationship in a framework to evaluate the quality of
implementation of the practice. We consider that it is possible to objectively measure the quality
of implementation of the CMMI practices by applying statistical methods in the analysis of or-
ganisations’ data, in order to evaluate process improvement initiatives and predict their impact on
organisational performance.

In this research we develop a framework to evaluate the quality of the implementation of the
CMMI practices that supports the comparison of the quality of the implementation before and after
improvements are put in place. Considering the extent of the CMMI model we demonstrate the
framework in the Project Planning’s Specific Practice 1.4 "Estimate Effort and Cost". We consider
that the quality of implementation of this practice is measured by the Effort Estimation Accuracy,
defined by a set of controllable and non-controllable factors, and it can be improved by acting
on the controllable factors. To implement and validate our framework we conducted literature
reviews, case studies on high maturity organisations, data analysis of a survey performed by the
Software Engineering Institute (SEI) and on the Team Software ProcessSM (TSP) Database, which
we used to build a regression model, and conducted an experiment with students to define a process
improvement.

This Ph.D. thesis provides to software development organisations a framework for self-assessing
the quality of the implementation of the CMMI practices, EQualPI. The framework is also useful
to the CMMI Institute, to evaluate the performance of the organisations from one SCAMPI A to
the next. The framework is already populated with a performance indicator model to evaluate the
quality of implementation of the effort estimation process, recommendations to support organisa-
tions willing to implement CMMI to avoid a set of problems and difficulties, factors to consider
when implementing measurement and analysis for CMMI high maturity levels. Additionally, with
the validation of the EQualPI framework, we provide the procedure we used to analyse data from
the SEI TSP Database and define process variables and a defects classification specific for require-
ments.

i

ii

Resumo

O Capability Maturity Model Integration R© (CMMI) permite às organizações melhorar a quali-
dade dos seus produtos e satisfação dos seus clientes; reduzir custos, calendário e a necessidade
de refazer trabalho. Com o CMMI os processos passam a ser mais previsíveis. No entanto nem
sempre é este o caso, dado que há uma diferença de desempenho entre organizações que usam
CMMI, que depende não somente do negócio, projectos e equipas mas também das metodolo-
gias usadas na implementação das práticas modelo. A versão 1.3 do CMMI é mais focada na
performance das organizações do que as anteriores, no entanto o seu método de avaliação, Stan-
dard Appraisal Method for Process Improvement SM (SCAMPI), não tem como objectivo avaliar
o desempenho das organizações.

Para avaliar o desempenho de práticas é necessário considerar o objectivo de as executar e que
a qualidade de implementação de uma prática se reflecte nos seus resultados. Por esse motivo,
podemos estabelecer uma relação entre os métodos utilizados na implementação de uma prática e
os resultados da sua performance. Consideramos que é possível medir objectivamente a qualidade
de implementação das práticas do CMMI aplicando métodos estatísticos na análise dos dados de
organizações, para dessa forma avaliar as iniciativas de melhoria de processos e prever o impacto
que essas melhorias vão ter na performance da organização.

Nesta investigação científica deselvovemos uma framework para avaliar a qualidade de im-
plementação das práticas CMMI que permite comparar a qualidade da implementação antes de
depois de introduzir uma melhoria. No entanto, o CMMI é extenso, por esse motivo vamos
demonstrar a framework na área específica do processo de Planeamento de Projectos 1.4 "Esti-
mar esforço e custo". Consideramos que a qualidade de implementação desta prática é medida
através da precisão da estimativa de esforço, definida por um conjunto de factores controláveis e
não controláveis, e que o seu valor pode ser melhorado actuando sobre os factores controláveis.
Para implementar e validar a nossa framework efectuámos revisões de literatura, casos de estudo
em organizações de alta maturidad, análises de dados sobre um inquérito realizado pelo Software
Engineering Institute (SEI) e sobre a base de dados do Team Software ProcessSM (TSP), que uti-
lizámos para implementar um modelo de regressão linear, e conduzimos uma experiência com
estudantes para definir uma melhoria de processo.

Como resultado desta tese de Doutoramento disponibilizamos às organizações a EQualPI, uma
framework de auto-avaliação da qualidade de implementação das práticas CMMI. Esta framework
também é útil para o CMMI Institute poder avaliar o desempenho das organizações aquando da
recertificação. A EQualPI tem já incluído um modelo de um indicador de performance para avaliar
a qualidade de implementação da prática de estimação de esforço, um conjunto de recomendações
de suporte às organizações que pretendem implementar o CMMI evitando um conjunto de proble-
mas e dificuldades, bem como recomendações sobre factores a considerar quando se implementa
a prática de Measurement Analysis em níveis de alta maturidade. Adicionalmente, da validação
da EQualPI, resultou o procedimento que seguimos na análise dos dados TSP que se encontram
na base de dados do SEI, e na definição das variáveis de processo. Resultou também uma lista de

iii

iv

classificação de defeitos específica para documentos de requisitos.

Acknowledgments

This adventure would have not been possible without the love and support of my better half, who
took care of me in all the hard moments; my parents and my sisters who are always there for me
and understood my long absences to do this research; my native reviewer and Mena.

I thank the SEI for receiving me so well, in particular Paul Nielsen, Anita Carlton, Rusty
Young, Eileen Forrester, Gene Miluk, Jim Over, Mike Conrad, Bob Stoddard and Jim McCurley.
Special thanks to Dave Zubrow and Bill Nichols for the great work we did together, and Dennis
Goldenson for his advice and support.

I thank my SEPG friends Mike Campo, Kess Hermus and Mia for the great moments we spent
together and CMMI talks.

My PhD colleagues, Professors and CISUC colleagues for all discussions and good times.

A big thank you to my MBFs, for all the hangouts and my friends, close and absent, for sup-
porting me.

I also have to thank my supervisors, co-authors and reviewers, who contributed to this research.

Finally, I cannot finish without thanking to the person without whom I could not have done
this research, Watts Humphrey.

Isabel de Jesus Lopes Margarido

v

vi

Contents

1 Introduction 1
1.1 Conducted Research . 2

1.1.1 Problem Definition . 2
1.1.2 Research Questions and Hypothesis . 3
1.1.3 Beneficiaries . 4

1.2 Thesis Organisation . 4

2 Fundamental Concepts 5
2.1 Measurement . 6
2.2 Process Performance Measurement and Improvement 7
2.3 CMMI Architecture and Appraisal Method . 9
2.4 TSP Architecture and Certification . 13
2.5 Effort Estimation in CMMI and TSP . 15

3 State of the Art 19
3.1 Related Work on Process Improvement . 19

3.1.1 Historical Perspective on CMMI and Metrics Programs 19
3.1.2 CMMI and TSP . 20
3.1.3 Problems in Process Improvements, Metrics Programs and CMMI 22
3.1.4 SCAMPI Limitations . 24
3.1.5 CMMI V1.3 Changes . 27
3.1.6 Methods and Models for Process Measurement and Evaluation 29

3.2 Survey on MA Performance in HML Organisations 36
3.3 Defect Classification Taxonomies . 38
3.4 Related Research on Effort Estimation . 42

4 The EQualPI Framework 47
4.1 Framework Overview . 47
4.2 EQualPI Architecture . 51
4.3 Repository . 57

4.3.1 Data Model . 57
4.3.2 Effort Estimation Evaluation Model . 64

4.4 Manage Configurations . 66
4.5 Procedures . 68

4.5.1 EQualPI Setup, Tailoring and Evaluation 68
4.5.2 CMMI Implementation . 72
4.5.3 MA Recommendations for High Maturity 80
4.5.4 Process Improvements . 81

vii

viii CONTENTS

5 EQualPI Validation 85
5.1 Evaluation of the Estimation Process . 85

5.1.1 Data Dictionary . 86
5.1.2 Data Extraction and Characterization 87
5.1.3 Data Munging . 89
5.1.4 Process Variables Definition and Data Aggregation 90
5.1.5 TSP Estimation Model . 91
5.1.6 Effort Estimation Accuracy Model . 93
5.1.7 Cross Validation of the Standard Error 97
5.1.8 Limits to Generalisation and Dataset Improvements 98

5.2 CMMI HML Implementation . 99
5.2.1 Further analysis of the HML Survey Data 100
5.2.2 Case Studies . 102
5.2.3 Problems Analysis and Limits to Generalisation 110

5.3 Requirements Process Improvement . 113
5.3.1 Experiments with Students . 115
5.3.2 Adoption by an Organisation . 119

6 Conclusions 121
6.1 Research Achievements . 121
6.2 Answering Research Questions . 123
6.3 Challenges and Limits to Generalisation . 125
6.4 Future Research Work . 126

References 129

A Effort Estimation Methods 137
A.1 Effort Estimation Methods . 137
A.2 Factors Related with the Process . 140
A.3 Factors Related with the Project Execution . 150

List of Figures

2.1 Measurement components. 5
2.2 CMMI maturity levels in the staged representation. 10
2.3 Personal Software Process (PSP) training: introduced stepwise in a sequence of

small projects; people get convinced by seeing their performance improved with
practice (Faria, 2009). The last step is Team Software Process (TSPSM) training. . 13

3.1 Subset of the CMM(I) releases. 20
3.2 Average defects per thousand lines of code of delivered software in TSP and CMM

different maturity levels (Davis and Mullaney, 2003). 21
3.3 Multi-model representation (Phillips, 2010). 27
3.4 Representation of OPM and OID (Phillips, 2010). 28
3.5 CMMI static process metamodel (Hsueh et al., 2008) 33
3.6 Obstacles identified by the organisations respondents found in the implementation

of HML (TR2010). 37
3.7 HP defects classification scheme (Freimut et al., 2005) 40
3.8 Defect classifier per authors by chronological order from left to right. 41

4.1 Bottom-up evaluation of practices implementation. 48
4.2 Building the evaluation framework (Lopes Margarido et al., 2011b). Legend: ML

– Maturity Level, PA – Process Area, SG – Specific Goal, SP – Specific Practice,
n – one or more, PI – performance indicator. 49

4.3 EQualPI architecture level 0 - deployment perspective. 52
4.4 EQualPI architecture level 1 - static perspective. 53
4.5 EQualPI repository metamodel. Legend: PA- Process Area, ML - Maturity Level,

SG- Specific Goal, SP- Specific Practice, GG- Generic Goal, GP- Generic Prac-
tice, PI- Performance Indicator . 55

4.6 EQualPI repository metamodel. Legend: Proj- Project, Dep- Department, Org-
Organisation, PI- Performance Indicator, G/P- Goal or Practice. 56

4.7 Contents of the repository . 57
4.8 Data Entry elements. 58
4.9 Structure of the data dictionary . 59
4.10 Iterative projects overview. 60
4.11 Organisation elements. 61
4.12 Project elements. 62
4.13 Cycle elements. 63

ix

x LIST OF FIGURES

4.14 Estimation and Development processes feedback loop. The planned values, that
are outcomes of the Estimation process, feed the development process, which is
also affected by external elements of context and client information, for example.
One of the outcomes of the development process is the actual data of how the
process was executed, which can be used for appraisal and to feed the organisation
database of historical data. Legend: REQ - requirements, V&V - verification and
validation, PI - product integration, TS - technical solution. 64

4.15 Contents of the repository . 68
4.16 Flowchart of the setup of the EQualPI framework. 70
4.17 Evaluation of the Schedule Estimation Error. Legend: PI - Performance Indicator,

Org - organisation, D1 - department 1, P1 - project 1. 71
4.18 Aggregation of evaluation in the source perspective and target perspective. Leg-

end: PI - Performance Indicator, Org - organisation, D1 - department 1, P1 -
project 1, alt - alternative, opt - optional, mandat - mandatory, -̂ AND, v - OR. . . 72

4.19 CMMI Implementation Checklist: list of activities to follow in order to avoid
common problems. 79

5.1 Use case of the TSP Database. 88
5.2 Actual models coefficients. The significant ones are signalled in bold. 92
5.3 EEA and MER histograms and statistics. The upper graph and table refers to EEA

and the lower to MER. 94
5.4 EEA and MER models outliers. 95
5.5 EEA and MER coefficients: Beta, Standard Error and Significance 96
5.6 Relation between giving incentives to people who use use and improve MA, and

the achievement of the HML goal (Lopes Margarido et al., 2013). 101
5.7 Statistics and hypotheses that were tested. 101
5.8 HML 2009 survey – further data analysis. Results of the tests done with the groups

of organisations that achieved and did not achieve HML and that were shown to
have the same variance through the Levene test. 102

5.9 Relation between understanding the CMMI intent with PPM and PPB by their
creators, and the achievement of the HML goal. 102

5.10 Relation between managers who use PPM and PPB understanding the obtained
results, and the achievement of the HML goal. 103

5.11 Relation between PPM and PPB creators understanding the CMMI intent and
managers who use them understanding their results. 103

5.12 Relation between the availability of experts to work in PPM and managers who
use them understanding their results. 104

5.13 Relation between performing data integrity checks and the achievement of the
CMMI HML goal. 105

5.14 Problems found in the case study organisations, the organisations surveyed by the
SEI (DS) and the literature review (LR). 111

5.15 Major software sources of software failures. 114
5.16 Results of the 1st experiment are represented the upper pictogram and of the 2nd

are in the bottom. 117
5.17 Results of the McNemar test. The experiments have approximate results. 118
5.18 Percentage of defects found in requirements reviews by type. 119

List of Tables

2.1 Rules to aggregate implementation-level characterisations (CMU/SEI, 2011). . . 12
2.2 Specific Goals and Practices of Project Planning (Chrissis et al., 2011). 16

3.1 Some of the problems identified in the implementation of CMMI (Leeson, 2009). 24
3.2 KPI categories - based on (Sassenburg and Voinea, 2010) 32
3.3 Related Frameworks . 34
3.4 Top 10 Higher-severity problem factors impacting software maintainability (Chen

and Huang, 2009). 39

4.1 MA recommendations for HML (based on (Goldenson et al., 2008; McCurley and
Goldenson, 2010; Lopes Margarido et al., 2013)) 80

5.1 Summary of information of the validation of the package Performance Indicators
Models. 86

5.2 TSP Planning and Quality Plan Guidelines (Humphrey, 2006) that we considered
in our model. 90

5.3 Process Variables used to verify process compliance or determine the value of the
planned metrics that define the process variable. 91

5.4 EEA and MER Models summaries. 97
5.5 EEA and MER ANOVA . 97
5.6 4-fold cross validation of the standard error of the estimates of the models EEA

and MER. 98
5.7 Summary of information of the validation of the package CMMI Implementaion. 99
5.8 Summary of information of the validation of the package Process Improvements. 113
5.9 Classification of type of defect for requirements (final version) (Lopes Margarido

et al., 2011a). 116

A.1 Effort Estimation methods. 137
A.2 Factors considered on effort estimation. 140
A.3 Factors causing effort estimation deviations. 150

xi

xii LIST OF TABLES

Acronyms and Definitions

Acronyms

AIM Accelerated Improvement Method
BSC Balanced Score Card
BU Business Unit
CAR Causal Analysis and Resolution (process area)
CI Configuration Item
CI, II COCOMO I, COCOMO II
CISQ Consortium of IT Software Quality
CISUC Centre for Informatics and Systems of the University of Coimbra
CL Capability Level
CM Configuration Management (process area)
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
CMMI-ACQ CMMI for Acquisition
CMMI-DEV CMMI for Development
CMMI-SVC CMMI for Services
CMU Carnegie Mellon University
COCOMO Constructive Cost Model
DAR Decision Analysis and Resolution (process area)
DEI Department of Informatics Engineering
DL Deliverable
DoD Department of Defence (funding the SEI)
DOE Design of Experiments
EEA Effort Estimation Accuracy
f Function
FCT/UNL Faculty of Science and Technology, Universidade NOVA de Lisboa
FCTUC Faculty of Sciences and Technology, University of Coimbra
FEUP Faculty of Engineering, University of Porto
FI Fully Implemented
FL Fuzzy Logic
FPA Function Point Analysis
FSS Feature Subset Selection
GA Genetic Algorithm
GG Generic Goal
GH Generic Hypothesis
GP Genetic Programming
GQiM Goal Question (Indicator) Metric
GQM Goal Question Metric

xiii

xiv ACRONYMS AND DEFINITIONS

H0 Null Hypothesis
H1 Alternative Hypothesis
HML High Maturity Level
HP Hewlett-Packard
ICSE International Conference on Software Engineering
ID Identifier
IEEE Institute of Electrical and Electronics Engineers
IPM Integrated Project Management (process area)
ISAM Integrated Software Acquisition Metrics
ISO International Organisation for Standardisation
IT Information Technology
ITIL Information Technology Infrastructure Library
KLOC Thousand Lines of Code
KPI Key Performance Indicators
LI Largely Implemented
LSR Least Squares Regression
M2DM Metamodel Driven Measurement
MA Measurement and Analysis (process area)
MARE Mean Absolute Relative Error
MER Magnitude Error Relative
MIEIC Integrated Master in Informatics Engineering and Computation
MinBU Minimum number of Business Units
MK II FPA Mark II Function Point Analysis
ML Maturity Level
MLP Multy-layer Perceptron
MMR Multidimensional Measurement Repository
MMRE Mean Magnitude Relative Error
MRE Magnitude Relative Error
N/A Not Applicable
NI Not Implemented
NY Not Yet
ODM Ontology Driven Measurement
OID Organisational Innovation and Deployment (process area)
OMG Object Management Group
OPM Organisational Performance Management (process area, CMMI V1.3)
OPP Organisational Process Performance (process area)
OT Organisational Training (process area)
PA Process Area
PB Publication
PBC Performance Benchmarking Consortium
PI Performance Indicator
PIm Partially Implemented
PMC Project Monitoring and Control (process area)
PMI Project Management Institute
PMP Project Management Professional
PP Project Planning (CMMI process area)
PPB Process Performance Baseline
PPM Process Performance Model

ACRONYMS AND DEFINITIONS xv

PPQA Process and Product Quality Assurance (process area)
PRED Percentage of Predictors
Price-S Parametric Review Information for Costing and Evaluation – Software
PROBE PROxy-Based Estimation Method
ProDEI Doctoral Program in Informatics Engineering
PSM Practical Software Measurement
PSO Particle Swam Optimization
PSP Personal Software Process
QPM Quantitative Project Management (process area)
QUASAR Quantitative Approaches on Software Engineering and Reengineering
RBF Radial Basis Function
RD Requirements Development (process area)
REQM Requirements Management (process area)
RSK Risk
RSKM Risk Management (process area)
SAM Supplier Agreement Management (process area)
SBO Software Benchmarking Organisation
SCAMPI Standard CMMI Appraisal Method for Process Improvement
SD Standard Deviation
SEER-SEM Software Evaluation and Estimation Resources – Software Estimation Model
SEI Software Engineering Institute
SEMA Software Engineering Measurement and Analysis
SG Specific Goal
SLIM Software Lifecycle Management
SME Small Medium Enterprise
SoftEng Software Engineering Laboratory (FEUP)
SP Specific Practice
SPI Software Process Improvement
SPR Software Productivity Research
SVM Support Vector Regression
TIES Software Engineering Research Topics
TRW Tandem Random Walk
TS Technical Solution (process area)
TSP Team Software Process
UCP Use Case Points
UML Unified Modelling Language
USA United States of America
V Version
VAR Variance Account For
VARE Variance Absolute Relative Error
WP Work Product

xvi ACRONYMS AND DEFINITIONS

Definitions

Affirmations "Oral or written statement confirming or supporting implementation (or lack
of implementation) of a model practice provided by the implementers of the
practice, provided via an interactive forum in which the appraisal team has
control over the interaction (CMU/SEI, 2011)."

Artefacts "Tangible forms of objective evidence indicative of work being performed that
represents either the primary output of a model practice or a consequence of
implementing a model practice (CMU/SEI, 2011)."

Benchmark To take a measurement against a reference point. Benchmarking is a process
of comparing and measuring an organisation with the business leaders located
anywhere (Kasunic, 2006). The acquired information helps the organisation to
improve its performance.

Constellation VBVBBB
Self-directed Teams Teams whose members sense the project needs without being told, help when-

ever is necessary and "do whatever is needed to get the job done" (Humphrey,
2006).

Data Sufficiency Rules Coverage rules that determine how much evidence (Affirmations and Arte-
facts) needs to be provided in the SCAMPI A (Byrnes, 2011).

Fully Implemented Sufficient artefacts and or/affirmations are present and judged to be adequate
to demonstrate practice implementation (CMU/SEI, 2011). No weaknesses
are noted.

Largely Implemented Sufficient artefacts and or/affirmations are present and judged to be adequate to
demonstrate practice implementation (CMU/SEI, 2011). One or more weak-
nesses are noted.

Not Implemented Some or all data required are absent or judged to be inadequate (CMU/SEI,
2011). Data supplied does not support the conclusion that the practice is im-
plemented. One or more weaknesses are noted.

Not Yet "The basic unit or support function has not yet reached the stage in the se-
quence of work, or point in time to have implemented the practice. (CMU/SEI,
2011)"

Organisational Scope A subset of the organisational unit that is determined by selecting support func-
tions and basic units to supply data for the SCAMPI appraisal (CMU/SEI,
2011).

Organisational Unit The part of the organisation that is subject of a SCAMPI appraisal and to which
results will be generalised (CMU/SEI, 2011).

Partially Implemented Some or all data required are absent or judged to be inadequate (CMU/SEI,
2011). Some data are present to suggest some aspects of the practice are im-
plemented. One or more weaknesses are noticed.
OR
Data supplied to the team conflict. One or more weaknesses are noted.

Sampling Factors Rule to select the organisation Basic Units into subgroups that determine the
organisational scope to be target of the SCAMPI A (Byrnes, 2011). Are used
to ensure adequate representation of the organisational unit.

Standard Processes Processes that the organisation statistically controls to assure that the organi-
sation and projects quantitative objectives are achieved.

Subgroups Subset of the organisational unit defined by sampling factors, that are basic
units with common attributes (CMU/SEI, 2011).

Chapter 1

Introduction

When we open the CMMI(Capability Maturity Model Integration) for development (Chrissis

et al., 2011) book and read the preface the models are presented as "collections of best practices

that help organisations improve their processes" and the CMMI for development (DEV) "provides

a comprehensive integrated set of guidelines to develop products and services". For years several

successful stories have been presented to the world, showing the benefits organisations achieved

when using the model, going from improving the quality of the products and processes, to reducing

schedule, costs and amount of rework. Consequently, processes become more predictable and

customer satisfaction increases (Goldenson et al., 2004). The model is an improvement tool that

can be implemented step by step, used to improve a process area, evaluate capability or maturity,

or simply improve selected practices. CMMI also guides organisations in building measurement

capability to provide the information necessary to support management needs, as stated in the

Measurement and Analysis process area (Chrissis et al., 2011). For adequate use, it is necessary

to understand the model as a whole. In the staged representation the CMMI model is composed by

5 maturity levels, each of them achieved with the implementation of the specific and generic goals

prescribed in the model in a current maturity level and all the precedent ones. To satisfy a goal the

generic and specific practices, or acceptable alternatives to them, need to be fulfilled. The levels 4

and 5 are called high maturity levels. In these levels the organisations need to have knowledge on

simulation, modelling and statistical analysis that support building process performance models

that are relevant to indicate the status of objective and measurable organisation goals, and have

process performance baselines to quantitatively control process/product execution. In maturity

level 5 the organisations use their knowledge and capability of anticipating the behaviour of their

standard sub-processes to support decisions regarding performance improvements or resolution of

problems. This implies that decisions are made based on evidence of the success of the solutions.

There is plenty information, tips and cases of what makes CMMI work to help organisations

improve, but it is still their choice how they shape their processes to respond to their business

needs and reflect their culture. Besides, a process may be defined but the real process is the one

actually being executed. Even on strict sets of rules the real process may still differ from the docu-

mented desired process. As each organisation has a choice on how to implement the model, use the

1

2 Introduction

practices and perform their work, there is high variability when comparing performance results.

Therefore, there are unsuccessful cases and organisations achieving a maturity model but not per-

forming accordingly. The Software Engineering Institute (SEI) and the United States Department

of Defence (DoD) (Schaeffer, 2004) expressed concern with high maturity implementation as not

all organisations understood it well, which reflected on their performance and the release of V1.3

was intended to fix this problem (Campo, 2012).

CMMI Version 1.3 emphasises improvements on the organisations’ performance, i.e. it clari-

fies that organisations need to focus processes on their business goals and do performance improve-

ments to achieve those goals that are continuously improving. The Standard Appraisal Method for

Process ImprovementSM (SCAMPISM) appraises the alignment of the organisation’s processes, ac-

tivities and results with the CMMI model but its objective is not to measure performance. And to

the best of our knowledge there is no tool to measure organisations’ performance and evaluate it

as a result of the quality of implementation of the CMMI practices and/or goals.

1.1 Conducted Research

This research has the following main objectives:

Objective 1 – Identify problems and difficulties in the implementation of CMMI to help to define

the problem to tackle.

Objective 2 – Develop and validate a framework to evaluate the quality of implementation of the

CMMI practices.

Objective 3 – Demonstrate the evaluation of quality of implementation by building the perfor-

mance indicator model to evaluate the particular case of the Project Planning process’s Spe-

cific Practice 1.4 "Estimate Effort and Cost".

1.1.1 Problem Definition

The problem is composed by three main aspects. One is that CMMI has a high variability of
performance. Schreb (2010) compiled the problems of CMMI: implementations that do not im-

pact projects, wide range of solutions for the same practice not all leading to high performance,

and highly variable approaches to implementation that may not lead to performance improvement.

The model is not prescriptive, it only provides guidance and therefore the performance of the or-

ganisations implementing it depends on factors related to the business and teams, but also on the

methods used to perform the work and quality of implementation of the model. In fact, as Peter-

son stated, the big issue is CMMI implementation (Schreb, 2010). Furthermore, we state, that the

quality of the implementation of the practices has an impact in performance indicators, related to

the organisations’ objectives.

Another aspect of the problem is the quality of implementation of the model. Some organ-

isations have difficulties in the selection of the implementation methods others simply copy the

1.1 Conducted Research 3

model as if it was a standard which leads to bad implementations. We consider that if the quality

of implementation is good, the performance of the organisation using CMMI is improved.

Lastly, we consider that there is a need for a performance evaluation method that can help

organisations to assess the quality of implementation of the practices and if they are actually

improving their results or not. Even though the version 1.3 of the CMMI model is more focused

in the organisation performance, the objective of the SCAMPI is not to measure performance but

appraise organisations’ compliance with the model. Regarding this problem we consider that it

should be possible to define metrics that measure the quality of the implementation of the CMMI

model and measure the effects of process improvements. Having this capability would help to

avoid implementation problems by early recognition of failures.

We synthesise the problem that we tackled in the following statement:

Not all organisations using CMMI achieve the best performance results, which could be

achieved using a good implementation of the model. If a relationship can be established be-

tween methods used to implement a practice and the performance results of that practice, such

relationship can be used in a framework to evaluate the quality of implementation of that practice.

1.1.2 Research Questions and Hypothesis

Our research questions are the following:

• Why some organisations do not achieve the expected benefits when implementing CMMI?

• Why SCAMPI does not detect implementation problems, or does not address performance

evaluation in all maturity levels?

• What additional recommendations can we provide to organisations to help them avoid prob-

lems when implementing CMMI?

• How can we evaluate the quality of implementation of the CMMI practices ensuring that

organisations fully get their benefits and perform as expected?

• Is it possible to define metrics to evaluate the quality of implementation of CMMI practices

focused on their effectiveness?

• Can we determine the effects, expressed in a percentage, of non-controllable factors in an

evaluation metric?

Based on the problem statement and the theory that there is a relationship between the quality

of implementation of a CMMI practice and the quality of the outcome of the application of that

practice, we theorise that it is possible to objectively measure the quality of implementation of the

CMMI practices by applying statistical methods, in the analysis of organisations’ data, in order to

evaluate process improvement initiatives and predict their impact on organisational performance.

To demonstrate our theory we endeavoured on a quest to model a quality indicator to measure

the quality of implementation of the CMMI Project Planning Specific Practice 1.4 "Estimate Effort

and Cost".

4 Introduction

1.1.3 Beneficiaries

With the development and demonstration of our framework we will provide organisations a tool

that can help them to:

• Implement CMMI, by providing a pool of methods, that can be adapted to implement the

practices, and performance indicators to monitor them;

• Choose methods not only for their adequacy to the context but for their performance, in

terms of efficacy and efficiency, when compared to others;

• Monitor process performance in order to act before problems occur;

• Anticipate impact of process changes on the performance indicators;

• Prioritise performance improvements;

• More accurately understand the origin of certain results.

The CMMI Institute will be able to assess that there were actual performance improvements

in a given organisation from one appraisal to the next.

1.2 Thesis Organisation

This dissertation is organised in five chapters. This first one, 1 Introduction presents the the moti-

vation and problem that drove the research work done on this PhD thesis; states the objectives of

the research, the research questions and hypothesis and indicates the beneficiaries of our research

work.

In chapter 2 Fundamental Concepts, we present the concepts necessary to understand this

research and the remainder chapters of the thesis.

Chapter 3 State of the Art gives the necessary information to delimit the problem and the

contributes of other researchers to help solve some of the problem components.

We present our contribution to solve open points identified on prior research, on chapter 4

The EQualPI Framework, the core of our research, where we detail the framework to evaluate the

quality of implementation of the CMMI practices and how organisations can use it.

On chapter 5 EQualPI Validation, we validate the framework we detailed on the previous

chapter.

In chapter 6 Conclusions we guide the reader in how the framework is extended to other

practices, indicate our achievements and their impact in the problem resolution and define the

boundaries of this research. We leave the research open and point directions for future work that

needs to be done in this area.

Chapter 2

Fundamental Concepts

Software Engineering is a discipline that appeared from the necessity of producing software

applying engineering principles van Vliet (2007). IEEE defines it as "the application of system-

atic, discipline, quantifiable approach to the development, operation, and maintenance of soft-

ware; that is the application of engineering to software" (IEEE, 1990). This concept is aligned

with Humphrey (1988), who defined a Software Engineering Process as being the "total set of

software engineering activities needed to transform user requirements into software". The pro-

cess may include requirements specification, design, implementation, verification, installation,

operational support, and documentation. Fuggetta (2000) extends the definition by stating that a

software process is defined as a coherent set of policies, organisational structures, technologies

and artefacts necessary to develop, deploy and maintain a software product.

If software engineering is a "quantifiable approach" it needs to be measurable, hence apply

measurement. In figure 2.1 we represent the measurement components and the relations between

them. We clarify these concepts in the next section.

Figure 2.1: Measurement components.

5

6 Fundamental Concepts

2.1 Measurement

There are several definitions for the adequate terms to use in software engineering with respect to

expressions such as measures, metrics, metrication, etc. (Zuse, 1997). Ragland (1995) clarifies the

definitions of the terms measure, metric and indicator, based on the definitions of the Institute of

Electrical and Electronics Engineers, Inc. (IEEE) and the Software Engineering Institute (SEI),

and provides illustrative examples.

To measure (verb) is to ascertain or appraise to a standard that may be universal or local. It

is considered an act or process of measuring; the result of measurement. The measure (noun) is

the result of the act of measuring. An example of a measure is a single data point, for instance

"today I produced 10 pages of my thesis". The data point to register would be 10, i.e. the value.

However, that information would be insufficient to analyse the measure. It is necessary to define

the measurement unit, that in this case is number of pages, and the purpose of the measure, in

this case to know how long it took me to produce my thesis. In ISO (2001), a metric is defined as "a

measurement scale and the method used for measurement". Such term is often used to designate

the data point and all information that allows collecting and analysing it, and that is the definition

we are following when we refer to it in this thesis. So, the definition of metric (ISO, 2001) is more

suited to the measurement protocol that we define later in this sub-section.

An indicator (Ragland, 1995) is a device or variable that is set to describe the state of a

process, based on its results, or occurrence of a predefined condition. The indicator provides

insight into software development processes and improvements concerning attaining a goal. The

indicator compares a metric with a baseline or expected result.

In the Practical Software Measurement (PSM) (McGarry et al., 2002) definition a base mea-
sure measures a single property or characteristic of an attribute that can be a product, process or

resource. Base measures are used to calculate derived measures or, using the previous definition,

metrics. A performance indicator is a measure that provides an estimate or evaluation of an at-

tribute. The performance indicator is derived from a base measure or other derived measures. This

means that even a performance indicator can be derived from other performance indicators. A

leading indicator anticipates quality, as it is a measure that allows forecasting and diagnosis (Fer-

guson, 2010; Investopedia, 2007). On the other hand, a lagging indicator follows an event or

tendency, therefore allows appraising (Investopedia, 2007).

Regardless the scientific field, measurement (Pfleeger et al., 1997) generates quantitative de-

scriptions of key processes, products and resources, they are part of their outputs and are useful

to understand their behaviour. The enhanced understanding of processes, products and resources

is useful to better select techniques and tools to control and improve them. Pfleeger et al. (1997)

consider that software measurement exists since the first compiler counted the number of lines in a

program listing. In 1974, Donald Knuth reported on using measurement data, instead of theory, to

optimise FORTRAN compilers, based on natural language. In the CMMI for development model

constellation (CMMI-DEV), the process measurement is considered to be a set of definitions,

methods and activities used to take measurements of a process and the corresponding products for

2.2 Process Performance Measurement and Improvement 7

the purpose of characterising and understanding it (Chrissis et al., 2011).

One of the requirements for establishing a process measurement program is to put in place

a measurement system. Kueng (2000) mentions two important characteristics of a measurement

system: it shall focus on the processes and not in the entire organisation or in organisation units,

and the measurement system shall evaluate performance holistically, by measuring quantitative

and qualitative aspects. Kitchenham et al. (1995) enunciate some of the necessary concepts to

develop a validation framework to help researchers and practitioners to understand:

• How to validate a measure;

• How to assess the validation work of other people;

• When it is appropriate to apply a measure according with the situation.

In the same work, Kitchenham et al. (1995) define measurement protocols as necessary ele-

ments to allow the measurement of an attribute repeatedly and consistently. These characteristics

contribute to the independence of the measures from the measurer and the environment. The mea-

surement protocol depends on how the measured value is obtained and on the use that will be

given to the measure. A measure is therefore applied to a specific attribute on a specific entity
using a specific measurement unit for a specific purpose.

Doing proper measurement and analysis is fundamental to evaluate processes and products

development performance, and to improve them. Process measurement allows inferring the per-

formance of the processes.

2.2 Process Performance Measurement and Improvement

CMMI-DEV defines process performance as a measure of the actual results achieved by follow-

ing a process (Chrissis et al., 2011). It is characterised for both process measures and product

measures. The process performance models depend on historical data of the processes perfor-

mance and on which data is collected by the measurement system in place.

According with CMMI-DEV (Chrissis et al., 2011), the process performance model (PPM)

describes the relationships among the attributes and the work products of a process. The relation-

ships are established from the historical data of the process performance and the calibration of

the model is done using data collected from the product, process and metrics of a project. Con-

sequently, the process performance models are used to predict the results achieved by following

the process that the model represents. Kitchenham et al. (1995) indicate that in predictive models,

such as COCOMO (COnstructive COst MOdel), variability of the predicted values may occur,

caused by the incompleteness of the model, as there are factors that affect what is being predicted

that may not be considered in the model. The model error is the sum of the model incompleteness

and the measurement error.

When the data collected on measures is stable and the process performance model is ade-

quately supporting the prediction of the behaviour of the projects it is possible to understand the

8 Fundamental Concepts

normal behaviour of the process, i.e., under known circumstances. The process performance
baseline (PPB) characterises the behaviour of the process, by establishing the maximum and min-

imum values where the process behaves under the expected causes of variation. If a project or

process behaves out of the boundaries, by a certain threshold, the model shall allow the anticipa-

tion of that occurrence. In that case the team needs to identify the special causes of the variation.

If the variation brings negative consequences then the team needs to act in order to prevent the de-

viation of the project or process. CMMI-DEV (Chrissis et al., 2011) defines process performance

baseline as a documented characterisation of the actual results achieved by following a process.

The baseline is used as a benchmark1 to compare the actual performance of the process with its

expected performance.

In his doctoral thesis, Dybå (2001) indicates that a broad definition of Software Process Im-
provement (SPI) would include the following activities:

• Define and model a software process;

• Assess the process;

• Refine the process;

• Innovate by introducing a new process.

Our perception is that to achieve process improvement it is necessary to measure the initial perfor-

mance to compare it with the final performance. The objective of the process improvement is to

improve the process performance. For that reason we introduce the term Software Process Per-
formance Improvement. So Dybå’s activities are here updated to include the term performance:

• Define and model a software process performance;

• Assess the process performance;

• Refine the process;

• Innovate by introducing a new process or new process version.

Considering that a process improvement must be measured and valuable, it has to result in

performance gains, hence, a process improvement should not be done without considering that

the process performance must be improved. Some may argue that a process improvement per

se implies a performance improvement. Nonetheless, many organisations do "improvements"

without measuring the performance of the process as is and the final performance. Moreover, even

if a particular process improvement leads to its better performance it may have a negative impact

in other processes that cannot be perceived if the organisation does not do an overall control. In

fact, an improvement of a process may coincide with a process improvement project but may result

from another process change that may have been planned or not. For these reasons we consider

1For a definition of benchmark please refer to Acronyms and Definitions.

2.3 CMMI Architecture and Appraisal Method 9

that it is important to align process improvements with the organisation goals and focus in the right

outcome.

The task of identifying performance indicators that can show how the process is performing

is not trivial. First of all, performance indicators per se do not necessarily show if the organisa-

tion is doing better or worse. Those indicators need to be related with the organisation business

objectives and that is what it makes metrics implementation a challenge. To make the task easier

organisations can use tools such as the Goal Question (Indicator) Metric, Balanced Score Card or

the Goal-driven Measurement (Park et al., 1996).

Process performance improvements result in updates in Process Performance Baselines and

eventually in Process Performance Models. The Process Performance Baselines help defining Pro-

cess Performance Models and there are bidirectional relations between what needs measurement

and what builds measurement (processes, performance, models, baselines and improvements).

CMMI has practices of Measurement and Analysis, at maturity level 2, and practices to build pro-

cess performance models and establish process performance baselines in the the Organisational

Process Performance process area (PA), at maturity level 4.

2.3 CMMI Architecture and Appraisal Method

CMMI has two representations designated continuous and staged (Chrissis et al., 2011). The

continuous representation is organised in Capability Levels (CL), going from 0 to 3, while the

staged representation is organised in Maturity Levels (ML) that range from 1 to 5. In our research

we refer to the staged representation, because CLs are just applied to individual process areas,

whereas MLs are applied across Process Areas. However, the framework we developed is usable

in both representations as one organisation may select just a process area to evaluate or do a

broader evaluation.

In figure 2.2 we present the CMMI maturity levels. To achieve a ML it is necessary to accom-

plish the Specific and Generic Goals of that ML and the precedent ones.

In the Initial level (ML 1) there are no formal processes (Chrissis et al., 2011). In ML 2,

Managed, the processes are planned and executed according with the organisation’s policy. The

projects have documented plans necessary for their management and execution. At this ML, the

process description and procedures can be specific of a project. The statuses of the projects are

visible to management and commitments with relevant stakeholders are established and revised as

needed.

In ML 3, Defined, the standard processes are used to establish consistency across the organisa-

tion and are continuously established and improved. The procedures used in a project are tailored

from the organisation set of standard processes. The interrelationships of process activities and

detailed measures of processes, work products and services are used to manage processes.

At ML 4, Quantitatively Managed, the organisation establishes quantitative objectives for

quality and process performance. The projects have quantitative objectives, based on the goals

of the organisation, customers, end-users and process implementers expectations. The projects

10 Fundamental Concepts

Figure 2.2: CMMI maturity levels in the staged representation.

selected sub-processes are quantitatively managed, i.e., the data of specific measures of the pro-

cess performance are collected and analysed. The process performance baselines and models are

developed by setting the process performance objectives necessary to achieve the business goals.

The processes performance becomes predictable, based on the projects and processes historical

data.

At ML 5, Optimizing, the quantitative understanding of the business objectives and perfor-

mance supports the organisation improvement decisions. The defined and standard processes per-

formance, the supporting technology, innovations and business objectives are continuously im-

proved based on the revision of the organisational performance and business objectives. The

improvements are quantitatively managed. Maturity Levels 4 and 5 are known as High Maturity

Levels (HMLs).

In CMMI the process areas are organised in categories, namely Process Management, Project
Management, Engineering and Support (Chrissis et al., 2011). The Process Areas include Spe-
cific Goals to accomplish, each of them presenting Specific Practices that help achieve those

goals. Besides, at levels 2 and 3 the model includes Generic Goals, with the respective Generic
Practices, applicable across process areas. When organisations are appraised at a ML or CL, the

analysis is focused on what the organisations practices are to achieve the Specific Goals within

that level.

SCAMPI is the method used to benchmark the maturity of a company in terms of the CMMI

model (Davis and McHale, 2003). This method is used to identify strengths and weaknesses of the

processes and determine the company’s capability and maturity level. There are three SCAMPI

2.3 CMMI Architecture and Appraisal Method 11

classes: A, B, and C. Class A is the most formal one, and is required to achieve a rating for public

record. The other two apply when companies are implementing internal improvements at lower

costs. In the remainder of this section we present two of the SCAMPI rules that we believe should

be considered in the evaluation of CMMI implementations, i.e., not the rules focused on planning

the SCAMPI but the sampling factors and data sufficiency rules2.

It is not cost and effort effective to appraise an entire organisation and all its projects, therefore,

it is important to have sampling rules that ensure that the subset of the organisation and projects

that are appraised are representative of the overall organisation. Sampling organisation units is

done by following the steps:

Sample Rule 1 - Understand the organisation unit and how it is organised. The organisation unit

is composed by basic units and support functions;

Sample Rule 2 - Determine the organisation unit process drivers that influence how the processes

are implemented;

Sample Rule 3 - Organise basic units and support functions into subgroups by applying sampling

factors (e.g. location, customer, size, organisational structure and type of work);

Sample Rule 4 - Use equation 2.1 to determine the minimum representative sample that is col-

lected from the subgroups and are included in the organisational scope.

A good principle is to evaluate elements of the organisation in proportion to their contribution:

MinimumNumbero f BasicUnits : MinBU =
SubgroupsxBU

TotalBU
(2.1)

where MinBU is the minimum number of basic units to be selected from a given subgroup,

Subgroups is the number of subgroups, BU is the number of basic units in the given subgroup and

Total BU is the total number of basic units. When the computed value is less than 1 the required

number of BU is 1, when is greater than one the number of BU is given by rounding the number

to 0 decimal places.

The coverage rules (CMU/SEI, 2011; Byrnes, 2011) determine how much should be collected

in the appraisal:

Coverage Rule 1 – Each basic unit or support function sampled must address all practices in the

process areas for which they supply data.

Coverage Rule 2 – For each subgroup at least one basic unit shall provide both artefacts and

affirmations. The sampled basic unit shall provide data for all process areas.

Coverage Rule 3 – For at least 50 percent of the basic units within each subgroup, both artefacts

and affirmations shall be provided for at least one process area.

2The definitions of these terms can be found on Acronyms and Definitions.

12 Fundamental Concepts

Coverage Rule 4 – For all sampled basic units in each subgroup either artefacts or affirmations

shall be provided for at least one process area.

Coverage Rule 5 – Both artefacts and affirmations shall be provided for each support function

for all process areas relating to the work performed by that support function.

Coverage Rule 6 – The artefacts and affirmations provided by a support function shall demon-

strate the work performed for at least one basic unit in each subgroup.

Coverage Rule 7 – In cases where multiple support functions exist within the organizational unit,

all instances of the support function shall be included in the appraisal scope.

After all evidence are collected the appraisal team characterises the implementation of CMMI

practices, for each model practice and each basic unit or support function. The practices imple-

mentation is classified as a weakness or a strength. Based on this classification each practice in

each basic unit or support function is characterised as Fully Implemented (FI), Largely Imple-
mented (LI), Partially Implemented (PIm), Not Implemented (NI) or Not Yet (NY)3. The rules

for aggregating implementation-level characterisations to derive organisational unit-level charac-

terisation are summarized in Table 2.1.

Table 2.1: Rules to aggregate implementation-level characterisations (CMU/SEI, 2011).

Characterisation Implementation
Fully Implemented (FI) All FI or NY, with at least one FI
Largely Implemented (LI) All LI or FI or NY, with at least one LI
Largely or Partially Implemented (LI or PIm) At least one LI or FI and at least one PIm or NI
Partially Implemented (PIm) All PIm or NI or NY, with at least one PIm
Not Implemented (NI) All NI or NY, with at least one NI
Not Yet (NY) All NY

If any practice is not characterised as FI it is necessary to explain the gap between the or-

ganisation practice and what the model expects (CMU/SEI, 2011). A weakness, "ineffective, or

lack of, implementation of one or more reference model practices", is only documented if it has

impact on the goal. A goal is rated Satisfied if and only if all associated practices at organisational

unit level are characterised as LI or FI and the aggregation of weaknesses of the goal do not have

negative impact on its achievement.

CMMI establishes quality principles - what to do. It presents guidelines in a set of good

practices to achieve goals that also concern the organisation as a whole, but does not define the

processes. The Team Software Process (TSP) is used together with the Personal Software Process

(PSP) providing organisations disciplined processes to be used by individuals and teams (Davis

3The definitions of these terms can be found on Acronyms and Definitions.

2.4 TSP Architecture and Certification 13

and Mullaney, 2003). PSP was defined by Humphrey himself while developing 60 software pro-

grams applying all SW-CMM (Software Capability Maturity Model) practices up to level 5. While

PSP is used by individuals TSP helps them work together as self-managed teams. TSP shows how

to do things - steps to do the work and forms to register plans and work execution information.

2.4 TSP Architecture and Certification

TSP includes process scripts to achieve high maturity performance that are followed by self-

directed teams, i.e., teams where decisions are made together. In such teams anyone can assume

the roles necessary for project completion, there is a team leader, who is part of the team, and a

coach, who is an observer helping individuals and team to be on track. "All team members par-

ticipate in planning, managing and tracking their own work" which is "key for high motivation

and high performance in knowledge-based work" Faria (2009). The team members shall receive

training in Personal Software Process (PSP), so that individual team members skills are built.

Figure 2.3: Personal Software Process (PSP) training: introduced stepwise in a sequence of small
projects; people get convinced by seeing their performance improved with practice (Faria, 2009).
The last step is Team Software Process (TSPSM) training.

14 Fundamental Concepts

"PSP training is a path for self-improvement and discipline, consisting of developing several

products and improving the process by adding quality practices. The training is done in steps

(figure 2.3) beginning with PSP0, where developers write their development process and follow

it. During development, programmers record information about the program: size, development

time, and number of defects (Davis and Mullaney, 2003). At the beginning of PSP1 programmers

use the data collected in the previous phases to plan their work, estimate the necessary effort

to develop the program and its size. Such data is used in PSP2 to alert programmers for their

mistakes, when they are made and the quality practices to avoid them. They plan expected number

of defects inserted and removed in each development phase, hence learning to manage defects and

yield. PSP training towards expertise goes from simple and unplanned to complex and predictable.

"I find that PSP is the exact application of engineering to software and, as van Vliet (2007) stated

"discipline is one of the keys" to successfully complete a development project. The benefit of PSP

is that programmers see their results improving during training; at the end their skills and programs

are unequivocally better. The processes are embraced not imposed. Furthermore, programmers

become aware of their personal data, allowing them to set individual goals for improving their own

development process towards making better products faster." (Lopes Margarido, 2013)

The introduction of TSP in an organisation is done gradually in two phases, the Pilot and the

Roll-out. The pilot phase includes training a controlled small number of project teams and their

managers, launch the teams with TSP followed by a TSP coach, execute the project using TSP

and gather data that will support results evaluations at the end of the project (Faria, 2009). The

roll-out phase requires the train and certification of internal TSP trainers and coaches to gradually

launch additional teams at a sustainable pace. As people integrate new teams they bring in their

knowledge and experience using TSP.

The basis of TSP teams is individual team members that have built their skills and completed

PSP training. The team is built in the project launch week, by setting goals, assigning roles, tailor-

ing the team’s processes and designing detailed balanced plans with the active participation of all

team members. Team management is done by managing communication and coordination, track-

ing the project and analysing risks. The project is developed and planned iteratively, it has a launch

and a post-mortem meeting and is done in cycles, each of them beginning with a launch/relaunch4

meeting and finishing with a post-mortem meeting. This iterative development should be based on

the most adequate development model, which is determined by the technical and business context

of the project (Faria, 2009). It can be done in small iterations, using spiral with increasing func-

tionalities and/or complexity, or it can be sequential, following a waterfall model. The status of

the project is reviewed weekly.

A TSP project includes different phases:

• Planning, done in the launch and relaunch meetings, in which all team members participate,

so everyone’s commitment is assured. Roles are assigned, the processes are selected, size

of work products and effort to do tasks are estimated;
4In case of not being the first launch meeting

2.5 Effort Estimation in CMMI and TSP 15

• Development, not only of the Code itself but eliciting Requirements, doing High-Level

Design and Detailed Design;

• Defect Removal, which includes PSP processes of personal review, unit testing and com-

pile, and also inspections, peer-reviews, integration and system testing.

TSP and PSP require collecting "four core measures, which are the basis for quantitative

project and quality management and project improvement, at personal, team and organisation

levels Faria (2009)". The actual and planned of size, effort, quality and schedule are recorded and

controlled.

TSP-PACE (or just PACE), TSP Performance and Capability Evaluation, is the process to

evaluate the TSP data of software development organisations and programs towards the TSP cer-

tification of organisations (Nichols et al., 2013). The program certification involves assessing the

quality of the following TSP elements:

• Data;

• Training;

• Coaching;

• Launches and relaunches;

• Post-launch coaching;

• Project cycle postmortem reports;

• Project postmortem reports.

For organisational certification the teams under the certification scope are assessed in the afore-

mentioned dimensions and the organisation is also assessed in scope, quality and quantity of the

gathered data, and customer satisfaction data, regarding the work done by the TSP teams. All

data are analysed in five dimensions, that constitute the profile: coverage, process fidelity, perfor-

mance, costumer satisfaction and overall. Each profile has multiple variables that are evaluated.

2.5 Effort Estimation in CMMI and TSP

The CMMI Project Management category includes the Project Planning (PP) Process Area (Chris-

sis et al., 2011). Project Planning is among the first activities necessary to start a software devel-

opment project and plays an important role in the course of the project. The plan can be revisited

whenever necessary, being it because of the process used is done in cycles at the beginning of

which detailed estimates are provided for the necessary tasks to execute them, as in Scrum or TSP,

or just because the scope changed and it is necessary to re-plan to accommodate the necessary ac-

tivities. Therefore, project planing plays an important role not only on the execution of the project

but also on the quality of the outcomes. As a CMMI process area Project Planning is part of ML 2

16 Fundamental Concepts

with the purpose of establishing and maintaining plans that define the project activities (Chrissis

et al., 2011). We include the specific goal and practice summary of this on table 2.2 to show what

goals are expected to be achieved when planning projects following CMMI, in order to be able to

develop the project plan, involve relevant stakeholders, have the team commitment to the plan and

maintain the plan.

Table 2.2: Specific Goals and Practices of Project Planning (Chrissis et al., 2011).

SG 1 Establish Estimates
SP 1.1 Estimate the Scope of the Project
SP 1.2 Establish Estimates of Work Product (WP) and Task Attributes
SP 1.3 Define Project Lifecycle Phases
SP 1.4 Estimate Effort and Cost

SG 2 Develop a Project Plan
SP 2.1 Establish the Budget and Schedule
SP 2.2 Identify Project Risks
SP 2.3 Plan Data Management
SP 2.4 Plan the Project’s Resources
SP 2.5 Plan Needed Knowledge and Skills
SP 2.6 Plan Stakeholder Involvement
SP 2.7 Establish the Project Plan

SG 3 Obtain Commitment to the Plan
SP 3.1 Review Plans That Affect the Project
SP 3.2 Reconcile Work and Resource Levels
SP 3.3 Obtain Plan Commitment

Focusing of the estimation process, to establish the estimates (SG1) of project planning pa-

rameters, that need to be identified, have sound basis, consider project requirements from relevant

stakeholders, be documented along with the information sustaining the estimates and have team

commitment. The goal can be accomplished by following SP1.1. to SP1.4. All the estimation

is done under the project scope (SP1.1), that is broke down, and depends on the estimates of the

WP and task attributes (SP1.2) and on the definition of the project lifecycle phases. Therefore,

SP1.4"Estimate Effort and Cost" is done using the prior SPs as inputs.

TSP provides a project planning framework compliant with the CMMI and a set of planning

guidelines to support planning (Humphrey, 2006). Ideally, the teams use their historical TSP data

but if unavailable the values in the guidelines can be initially used. In case the data are not adequate

for that project/team case it is recommended they use their best estimate. TSP teams will rapidly

get their own data to estimate next because they will be gathering data as they work and feeding

their historical database.

There are several TSP plans produced. The overall plan is produced by the team and is later

adjusted once the next phase balanced plan is done. The bottom-up plan is done considering task

decomposition for the next phase and is done by each team member individually. That plan is then

load balanced to consider the individual plans and produce the team’s balanced plan for the next

phase.

2.5 Effort Estimation in CMMI and TSP 17

TSP does not provide initial values to estimate Requirements, Requirements Inspections and

High-Level Design. However, guidelines are provided in the Quality Plan (Humphrey, 2006,

pages 148, 149) to define the time balance between inspection and development of requirements

and high level design, for example, the guideline for the ratio between detailed design and coding

time higher than 1.

For the implementation phase, TSP provides guidelines for the development rate per hour of

the total code, which requires estimating the product/component size; percentage of time spent

in phase (Humphrey, 2006, page 131); and ratio between defect removal and corresponding de-

fect insertion phase. The implementation phases are Detailed Design, Detailed Design Review,

Detailed Design Inspection, Coding, Code Review, Compiling, Code Inspection and Unit Test.

In TSP the method used to produce the estimates of size and time are is the one used on PSP,

the PROxy-Based Estimation (PROBE) (Humphrey, 2005). The method is based on the definition

of any item that can be used as a proxy. It requires that the team has the capability to provide an

initial draft of the detailed design that allows them to estimate the size (added, modified, removed

and actual) of the parts that compose the solution to develop. When there is no historical data,

expert judgement is used to estimate size and time, PROBE D. When there is some data that can

be used size is estimated based on it and so is time, PROBE D. PROBE C uses historical data

to estimate size and time and in a regression model with correlation higher than 50%. While

PROBE A, the desired method, uses historical data of the proxy to do the estimation using a linear

regression model when the correlation is higher than 50%.

18 Fundamental Concepts

Chapter 3

State of the Art

This chapter presents the results of the literature review done to define the problem, understand

the previous contributions of other researchers, and identify the open ends of the problem that still

need to be addressed. This is needed to understand the ground basis of our work and the areas to

which other researchers already contributed.

3.1 Related Work on Process Improvement

In this section we discuss the evolution of metrics programs and the CMMI model pointing the

problems that persist. We then analyse which frameworks exist to help solve the problem and

indicate the limitations that remain. By the end of the section the motivation for our research and

the problem we tackled shall be clear.

3.1.1 Historical Perspective on CMMI and Metrics Programs

In 1978 a group of Hewlett-Packard (HP) engineers went to Japan to study the techniques used

in manufacturing that led to significant improvements (Grady, 1992). Those techniques were

analysed to realise how they could be applied to the HP’s software development processes. The

HP experience is a good example of the implementation of high maturity practices even before the

idealisation of the CMMI level 5 [consultant personal statement, 2009].

According to Jones (1991), since 1979 it has been possible to have stable metrics and accu-

rate applied measurement of software. Organisations such as IBM, Hewlett-Packard, Tandem,

UNISYS, Wang and DEC, measured productivity and quality and used data to make planned im-

provements. Du Pont, General Electric and Motorola were innovative in software measurements.

ITT, AT&T, GTE and Northern Telecom were pioneers in quality and reliability measures. Several

management companies such as Software Productivity Research; DMR Group, Peat, Marwick &

Mitchell, Nolan, Norton & Company, and Ernst and Young, were more effective than universities

in using metrics and in transferring the technologies of measurement throughout their client base.

Phil Crosby assembled a maturity framework in 1979 and at the beginning of the 1980’s IBM

begun the assessment of the capabilities of many of its development laboratories. Later, the SEI

19

20 State of the Art

incorporated Deming1 principles and Shewhart2 concepts of process management, published by

Deming in 1982 (Humphrey, 1992). Crosby’s framework originated an assessment process and

generalised maturity framework that was published by Radice in 1985. In April 1986, Watts S.

Humphrey stated in the IEEE Spectrum that complex systems could be programmed with high

quality and reliability if were done by strong technical teams using a highly disciplined soft-

ware process (Callison and MacDonald, 2009). The concepts of the SEI and MITRE Corporation

were compiled in a technical report by Humphrey that was published in 1987 (Humphrey, 1992).

In 1989, Humphrey added that the problems in software engineering are not technological but

have a managerial nature (Dybå, 2001). The Personal/Team Software Process were released in

1990 (Callison and MacDonald, 2009) and in 1991 Mark Paulk clarified the content of the ma-

turity framework with the publication of the Capability Maturity Model by the SEI (Humphrey,

1992). Since its creation until our days the CMM evolved giving place to the CMMI, which is

now in its version (V) 1.3. The evolution of the model is represented in the chronological diagram

in Figure 3.1.

Figure 3.1: Subset of the CMM(I) releases.

3.1.2 CMMI and TSP

The implementation of the CMMI maturity level 5 includes a set of demonstrated benefits for the

organisations (Goldenson et al., 2004):

• Improve the quality of the products and processes;

• Reduce the development cost and the schedule;

• Increase the customer satisfaction;

• Add predictability to the processes;

• Reduce rework by reducing the quantity of defects detected later in the life-cycle and that

imply spending time in finding and correcting them.

1Deming espouses the Shewhart concepts (Humphrey, 1992).
2Plan, Do, Check, Act cycle, is the foundation of process improvement work (Humphrey, 1992).

3.1 Related Work on Process Improvement 21

However, not all organisations achieve the same results. The 2003 TSP report indicates that

the defect density (number of defects per a thousand lines of code) in products delivered is lower

in organisations using TSP than in CMM level 5 organisations. The evidence is graphically rep-

resented in Figure 3.2 that shows the number of defects per a thousand lines of code (KLOC)

delivered to the customer.

Figure 3.2: Average defects per thousand lines of code of delivered software in TSP and CMM
different maturity levels (Davis and Mullaney, 2003).

From these results we could consider that since TSP performs better in quality than CMM,

it would be preferable to use TSP rather than CMMI. However, the question is whether they are

even comparable. In fact, regarding CMMI, the model is not prescriptive and for that reason

the organisations using it present different performance results ()such variance depends on the

methods used to implement it). Furthermore, TSP only covers part of the CMMI practices.

The Accelerated Improvement Method (AIM) implementation guidance (McHale et al., 2010)

provides information on TSP evidences that allow achieving CMMI ML3, but ML4 and 5 are not

yet covered. The AIM is a process improvement initiative that combines the best of CMMI, TSP

and Six Sigma measurement and analysis techniques. The new TSP version implements 70% of

the specific practices up to maturity level 3 (SEI, 2010).

Webb et al. (2007) extended TSP to directly address the CMMI process areas that are not

completely addressed by TSP practices by publishing additional process scripts, items that were

added to existent processes, metrics and requirements.

PSP and TSP are the application of high maturity to teams (Davis and Mullaney, 2003),

while CMMI defines the capability of an entire organisations. They have different natures and

purposes: CMMI gives guidance and organisations are free to select the most adequate methods

22 State of the Art

to implement the practices; TSP provides all necessary tools to have a mature process in place and

improve it. To help us understand why organisations using CMMI can have different performance,

and sometimes even an unacceptable one, we analyse in the next section the problems that can arise

while implementing process improvements, metrics programs and CMMI.

3.1.3 Problems in Process Improvements, Metrics Programs and CMMI

A survey was conducted to understand what CMMI level 4 and 5 companies used in the CMMI im-

plementation, which showed that practices were not clearly institutionalised (Radice, 2000). The

SEI concluded that some companies did not understand the statistical nature of the CMMI level

4 and certified CMMI HML companies did not have a consensus on the necessary characteristics

of level 4 (Hollenbach and Smith, 2002). Even more recently, the performance of high maturity

organisations is being questioned (Bollinger and McGowan, 2009).

In 2004 the Department of Defence (DoD) of the United States of America (USA), pointed

out problems resultant from having CMMI levels (Schaeffer, 2004). Among other problems, it

was recognised that not all programs of the organisations are appraised. Therefore, practices were

not implemented organisation wide and organisations let the baselines erode once they achieved a

certain maturity level. In response to the DoD problem, Pyster (2006) proposed a set solutions, of

which the following are examples (the ones related to acquisition are identified with the word in

parentheses):

• Guaranteeing that when contracting an organisation with a certain maturity level, the per-

forming team uses the maturity processes being referenced (acquisition);

• Doing periodical appraisals after the contract to ensure that the tailoring of adequate pro-

cesses for the specific program include adequate high maturity processes (acquisition);

• Recognising that CMMI is relatively new and will take time to “fully permeate companies”;

• Improving the appraisals by providing guidance on how to select representative samples and

aggregate results from subordinate organisations, when appraising large organisations.

The last suggestion that Pyster made may improve the SCAMPI and avoid the certification of

organisations where the practices are not institutionalised. The other suggestions are important for

the contractors that demand that their suppliers have a specific CMMI maturity level, but do not

tackle the root problem that may exist either in CMMI or in SCAMPI, or perhaps in both.

Many companies face problems when implementing CMMI HML that arise from complex

practices such as measurement and quantitative management or the use of effective performance

models for predicting the future course of controlled processes. In fact, part of the difficulties

found in the processes evolution and new Process Areas implementation are related to the need to

move towards a statistical thinking and quantitative management (Takara et al., 2007).

Kitchenham et al. (2006) analysed a CMMI level 5 corporation’s database to find that data

were collected but metrics could not be correlated and did not have meaning for upper manage-

ment. According with Monteiro et al. (2010), some authors (Hall et al. 1997; Berander and

3.1 Related Work on Process Improvement 23

Jönsson 2006; Agresti 2006) argue that several measurement programs in organisations fail be-

cause they define too many measures that are not actually implemented and analysed in decision

making. Kitchenham et al. (2006) disclosed important concerns that shall be taken into consid-

eration when storing data and what needs to be considered when designing the database, so data

analysers and decision makers can actually make use of them. They also proposed the use of the

M3P framework that extends the GQM (Goal Question Metric) by providing links between the

collected metrics, the development environment and the business context.

Regarding the metrics definition, it is important to understand how the data is collected and

analysed, what are the common and special causes of variation. As already mentioned many met-

rics exist, expressed in natural language or the values that allow their calculation are expressed in

natural language (Goulão, 2008). Breuker et al. (2009) mention there are different definitions of

the same software metrics in the literature (books and papers), tools for metrics collection’s spec-

ification and the tools that actually collect the metrics. Literature needs to clearly define software

metrics and practitioners shall be aware of this problem when implementing the measurement and

analysis system.

Leeson (2009) added more problems that can occur in CMMI implementation, that we com-

pile in table 3.1. Those problems are classified as Program Management to refer to the manage-

ment of the implementation of CMMI, Maturity Level 2 and Maturity Level 3, to refer to problems

that occur in the implementation of those ML.

In her doctoral thesis, Barcellos (2009) states that metrics programs are failing because they

are producing metrics that do not allow the analysis of the performance and capabilities of their

processes (Goh et al. 1998; Fenton and Neil, 1999; Niessink and Vliet, 2001; Gopal et al., 2002;

Wang and Li, 2005; Kitchenham et al., 2006; Sargut and Demirors, 2006; Curtis et al., 2002;

Rackzinski and Curtis, 2008). In her literature review, she also states that there are problems of

metrics adequacy (Wheeler and Poling, 1998; Kitchenham et al., 2006; Tarhan and Demoirs, 2006;

Boria, 2007; Kitchenham et al., 2007; Curtis et al., Barcellos, 2009).

The SEI and the Systems and Software Consortium, Inc. (SSCI) published a report in 2009

reporting reasons contributing to the success of programs. The authors concluded that people

acting as individuals or as teams contribute to program success or failure (SEI and SSCI, 2009).

The main points were decision making, communication, teams experience, adequate coaching and

understanding the program purpose and goals. It is recognised that a good process is not enough

for a program to succeed and the factors that are considered as overriding the above mentioned

are "effective leadership and objective governance for the program" and "willingness and ability

of program personnel to think through problems and tailor the prescribed process to the needs of

the program".

Even though the SEI, and now the CMMI Institute, publish good performance results from

organisations that implement CMMI process improvement programs to ensure that CMMI users

are benefiting from using the model, all the problems mentioned in this section are the result of

24 State of the Art

Table 3.1: Some of the problems identified in the implementation of CMMI (Leeson, 2009).

Program Management Problems
Senior management is not involved in establishing the objectives, policies and the need for
processes.
Sponsor does not play its role and delegates authority.
Software Engineering Performance Group is not managed.
Organisations are focused in achieving a maturity level more than improving the quality of their
products or services.
Maturity Level 2 Problems
Organisations lack a global view of the model. Organisations do not understand the relationship
and differences between measurement and project monitoring, GP (Generic Practice) 2.8, 2.9
and 2.10, process areas and practices, maturity levels and capability levels.
Some organisations misinterpret ML 2 and 3, which causes the failure of many programmes.
Assume that ML2 is only for project managers. Developers and engineers need to be involved.
Measurements are not related to customer and business objectives.
Quality Assurance is focused on product compliance instead of assuring the quality of the pro-
cesses.
Maturity Level 3 Problems
Some organisations define theoretical processes that do not correspond to actual activities to
achieve ML 3.
A communication process is not established. So experiences and suggestions from people who
know how to do their job are not gathered and consequently are not fed back.
Organisations do not consider HML, when implementing ML 3, and fail to understand the end-
picture not seeing the direction they are taking at lower levels before moving to HML.

a deficient implementation of CMMI. Such problems become more nefarious when they are not

detected in the appraisal.

3.1.4 SCAMPI Limitations

The SCAMPI appraisal method has already missed implementation problems. After analysing the

description of the method, some of its features can be regarded as limitations that may be in the

origin of this problem.

Appraisal Team Quality
Armstrong et al. (2002), in their presentation of the changes and features of the SCAMPI V1.1,

stated that the appraisal method is focused on practices implementation. That is, the SCAMPI ap-

praisal team is focused in verifying whether the practices are implemented or not. The objective of

the appraisal is not to verify how people are actually doing the work or the quality of their results.

With such an orientation malpractices may be missed by the appraisal team. In fact, the appraisal

results reflect the knowledge, experience and the skill of the appraisal team (CMU/SEI, 2011).

Organisation Honesty

3.1 Related Work on Process Improvement 25

SCAMPI relies on the organisation honesty, which provides evidences and supports the choice

of the projects that are going to be appraised (Armstrong et al., 2002). Either the lead appraiser is

very rigorous in the choice of the projects and critique about the evidences or the outcome of the

appraisal may be biased by the organisation.

Limited Number of Affirmations
In the appraisal only a small number of affirmations sustain the practices. In version 1.2 to

classify a practice as fully implement, and therefore contributing to the level achievement, a direct

and indirect artefact could suffice (CMU/SEI, 2011). Back in 2003, Radice described a 50% : 50%

rule that stated that there should be an affirmation in 50% of the practices and 50% of the projects

covering one row per one column (Radice, 2003). The SCAMPI V1.3 coverage rules, that we

previously described, also limit the number of affirmations. We consider that an affirmation from

a single BU, that does not come out on an interview because the coverage rules do not demand it,

could suffice to demonstrate that the BU was not following one of the practices.

Coverage of the Organisation
As mentioned by the DoD, not all programs of the organisation are analysed in the appraisal (Scha-

effer, 2004). During the appraisal only a small percentage of the organisation projects and business

units may be appraised, therefore it is difficult to have guarantees that the entire organisation is

working in the same way in all projects or programs – that means that the practices may not be

institutionalised. In face of the limitations of SCAMPI V1.1 description in providing guidance

to the selection of the projects for the appraisal, Moore and Hayes (2005) proposed the applica-

tion of Design of Experiments (DOE) to construct a representative sample of the organisational

units being appraised. DOE is a statistical technique that helps understanding the influence of the

different experimental factors on the response of the system. When applied to the SCAMPI the

method allows an accurate appraisal planning and execution, as it supports the construction of a

representative sample of the organisational unit and the selection of the personnel to interview and

questions to be asked when collecting affirmations. The projects are selected from the analysis

of the influential factors of the organisation unit. In order to reduce the number of projects the

authors propose the use of fractional factorial design of instantiations and apply the method in

sequence (early SCAMPI C’s and later SCAMPI A’s or B’s) in order to eliminate factors based on

results. Later, Moore and Hayes (2006) presented useful information on how to use the previously

mentioned method, DOE, to select the most appropriate projects for an appraisal, fulfilling the

SCAMPI V1.2 description. SCAMPI V1.3 clearly defines the sampling rules.

Evidence Collection
Pricope and Horst (2009) indicated that the SCAMPI is described in natural language and does

not provide activity-oriented graphical description of the appraisal process. For those reasons

the authors proposed a method to measure SCAMPI appraisals by using the Unified Modelling

Language (UML) to represent the metamodel of the SCAMPI. The metamodel includes all the

26 State of the Art

SCAMPI elements, such as types of evidences, activities performed in the appraisal, roles, etc.

Besides the model, the authors proposed quality metrics to evaluate the appraisal, introducing a

quality metric for activities. The metrics allow determining the level of weakness or strength of the

appraisal elements. The method proposed by Pricope and Horst introduced the quantitative novelty

in the SCAMPI and is useful for quantifying the appraisal that was conducted. However, it does

not evaluate how practices are being actually done nor evaluates the organisation performance.

Sunetnanta et al. (2009) proposed a model that constitutes a Configuration Items (CI) reposi-

tory, where all projects configuration items are pooled together. The authors’ idea was to use this

repository in organisations working with different offshore units but we consider that the model

is applicable to any organisation. The CMMI appraiser needs to set up the rules to identify the

projects’ CI that constitute evidence of the sub practices of the model. The repository allows the

collection of evidences as the projects are ongoing, as well as analysing the projects and appraisal

results. The quantitative assessment of the projects is done by score, i.e. number of times an ac-

tivity is executed, and by compliance, i.e. by checking if the activity was executed or not. By the

time of the appraisal all the evidences are already available. There is a limitation on the method

that the authors do not mention, though. The evidences still need to be evaluated and analysed by

the appraisal team. A CI may be generated but if it is empty it shows that the expected activity

was not performed, and even when generated it is necessary to assess whether people actually did

the practice or just produced an artefact that is mandatory.

Pilots on Results-based Appraisals

McCarthy (2009) reported results of pilot projects being assessed with results-based ap-

praisals, including the Telecommunication Quality Management System – TL 9000 standard, to

identify and validate an appraisal method that would assess performance measures. The informa-

tion collected on SCAMPI would be useful to trigger the appraisal team for further investigation

in face of unexpected performance, have results-oriented findings, have records for posterior as-

sessments and recommendations related to performance and benchmarking. From the identified

challenges the appraisals took longer (more 5% to 10% when compared with a regular appraisal)

and became more expensive. The industry benchmarks varied in value which raised doubts of

their applicability. Besides, the measurement repository built in the pilot environment had no

documented linkage to processes and practices in standard process or in the CMMI.

CMMI has been facing the paradigm of how well high maturity organisations are perform-

ing since quite a long time (Bollinger and McGowan, 2009; Campo, 2012). SEI released ver-

sion 1.3 that included improvements in the model, focusing in the performance of the organi-

sations (Phillips and Shrum, 2010), but the new SCAMPI version still does not measure their

performance.

3.1 Related Work on Process Improvement 27

3.1.5 CMMI V1.3 Changes

The CMMI product team worked on the definition of the version 1.3 of the CMMI constellations

and the SCAMPI. The new version of the CMMI model was designed to be more compatible with

the multi-model tendency that has been occurring. Figure 3.3 depicts the relationships between

different models. To implement good practices organisations follow quality principles, such as

CMMI constellations, ISO standards and the Project Management Institute (PMI) documentation.

To know how to follow the quality principles organisations use operational practices, for exam-

ple TSP, Agile and the Information Technology Infrastructure Library (ITIL). We consider that

methods also include techniques and procedures used to generate the products and/or services.

Organisations also use improvement techniques that help them evolve and shape their processes,

such as Lean, Six Sigma and Theory of Constraints. We consider that those improvement tech-

niques can also be used to define organisations processes.

Figure 3.3: Multi-model representation (Phillips, 2010).

With the new version of the CMMI, the SEI intended to do the following improvements (Phillips,

2010):

• Simplify/clarify the terminology;

• Update selected process areas to provide interpretation of practices for organisations with

respect to Agile methods, quality attributes, product lines, systems of systems, customer

satisfaction, among others;

• Simplify Generic Goals and remove the ones of the high maturity levels;

28 State of the Art

• Clarify High Maturity concepts, such as process models and modelling, business objectives

thread to high maturity, common causes, high maturity expectations in individual process

areas, among other changes;

• Add a new process area in ML 5, called OPM (Organisational Performance Management),

that substitutes OID (Organisational Innovation and Deployment);

• Revise QPM (Quantitative Project Management) SP to reflect the connection between CAR

(Causal Analysis and Resolution) and QPM;

• Lighten the model in number of pages, generic goals and practices, and specific goals and

practices.

Figure 3.4 represents the combination of OPM and OID that gave origin to OPM. With OPM

the improvements are driven by the intention to achieve quantitative objectives of quality and

process performance. The drivers of the improvements will not only be the organisation but also

the customer.

Figure 3.4: Representation of OPM and OID (Phillips, 2010).

The version 1.3 of the SCAMPI has the following changes (Phillips, 2010):

• Includes details on the definition of the appraisal scope and on how to sample the organisa-

tion units and projects;

• Clarifies doubts per example about direct and indirect artefacts;

• Improves the appraisal efficiency.

Regardless the improvements in defining the scope and collecting enough evidences SCAMPI

appraisers raised some limitations on the coverage rules. One example was given by Heather

3.1 Related Work on Process Improvement 29

Oppenheimer, on August 20113, stating that for some support functions some activities of a PA

are assumed by one group and others are used by basic units because they support their work. This

means that the support function cannot provide all the evidences for the PA. We also consider that

there is another problem with the coverage rules. It is possible to leave lack of institutionalisation

undetected, because not all basic units need to provide artefacts/affirmations. Some of them may

not be doing a PA that regards their work at all.

The CMMI model evolved to focus on the improvements in the performance of the organi-

sations, paying more attention to results. This may help to avoid implementations more oriented

to achieving a maturity level rather than improving organisation’s performance. The model was

also updated to cope with multi-model environments. Having guidance for different models may

prevent poor practice’s implementation.

SCAMPI is addressing part of its problems, in particular by better defining the scope of the

appraisal, i.e. how to sample from the organisational units and how much evidences are necessary.

However, we consider that the implementation problems may remain undetected and the perfor-

mance problems persist, because the SCAMPI is not evaluating the implementation performance,

which is out of its scope. For this reason it is necessary to do further research in this area in order

to have a framework that measures organisations performance and evaluates the quality of imple-

mentation of the CMMI practices.

3.1.6 Methods and Models for Process Measurement and Evaluation

Next we present other research contributions that may help understanding and solving the problem

addressed in this work. With this analysis we clearly define what was is still needed to tackle the

problem and motivate our approach.

Metrics Definition

In 2009 the SEI and the Object Management Group (OMG) announced the creation of the

Consortium of IT Software Quality (CISQ). The CISQ is sponsored by OMG and the SEI is work-

ing with them in the development of software-related standards and appraiser licensing programs.

The metrics would be unambiguously defined contributing to the possibility of automate the mea-

surement and analysis process (Curtis, 2010). The consortium published code quality standards

to be consistently applicable to any organisation: the Automated Function Points (AFP) (CISQ,

2014), as a standard measure of size, with rules to measure different software code files, and Au-

tomated Quality Characteristic Measures (CISQ, 2016) conformant with ISO/IEC 25010 quality

characteristics of security, reliability, performance efficiency and maintainability, and providing

"measures of internal quality at the source code level". CISQ is currently developing Automated

3http://www.linkedin.com/groupAnswers?viewQuestionAndAnswers=&discussionID=
64637798&gid=54046&commentID=54099629&trk=view_disc&ut=0b8g1zukIS5R01 – last accessed
on 17-11-2011.

http://www.linkedin.com/groupAnswers?viewQuestionAndAnswers=&discussionID=64637798&gid=54046&commentID=54099629&trk=view_disc&ut=0b8g1zukIS5R01
http://www.linkedin.com/groupAnswers?viewQuestionAndAnswers=&discussionID=64637798&gid=54046&commentID=54099629&trk=view_disc&ut=0b8g1zukIS5R01

30 State of the Art

Enhancement Points, a measure of size to be used in productivity analysis, Technical Debt, mea-

suring the cost, effort and risk of the remaining defects in code at release, and Quality-Adjusted

Productivity to consider the quality in the measurement of productivity.

An anonymous research group from Switzerland worked on the definition of metrics to assess

the quality of the CMMI implementation. The results of their work were not published since they

concluded that such task would be impossible to execute. Their justification for that is that it is

difficult to define metrics applicable to all organisations, because each organisation has its own

business objectives. A member of the group shared with us the unpublished documentation of

their work (Group, 2007). They did an exhaustive work identifying metrics that would allow the

control of 11 process areas that the researchers referred to as processes. One of the problems in

the research work is that, instead of first reviewing the literature in search of the metrics for the

processes that they intended to monitor, they opted to introduce new ones. There is a large number

of metrics identified in software engineering and most of them is never used. We noticed that the

metrics are described but the goal that would support each metric is ignored. In our opinion, if the

metrics defined by the research group are of use they need to be mapped with the questions that

the organisation would want to have answered in order to verify that a certain objective would be

achieved. The way the metrics document was built reveals that the usage of the BSC and GQM

was not considered.

With the existence of a size measurement standard, already released by CISQ, and future

releases of productivity standards that take the quality of the developed code into account, organi-

sations can collect data, the same way, making it comparable. Moreover, the fact that productivity

will be based on the quality of the produced work makes the metric more useful and relevant. This

will facilitate the task of benchmarking organisations performance. Which will help overcoming

some of the aforementioned limitations of process performance assessments.

Metrics Analysis

The SEI Software Engineering Measurement and Analysis (SEMA) group (SEI, 2016) pub-

lishes the results of the state of measurement and analysis practices and conducts research of the

most effective ways to implement measurement and analysis processes from the Process Area

MA (Measurement and Analysis) at ML 2 to the high maturity techniques that are necessary to

implement levels 4 and 5. SEMA developed the Quantified Uncertainty in Early Lifecycle Cost

Estimation (Ferguson et al., 2011) that considers "program change driver uncertainties common to

program execution in a DoD Major Defense Acquisition Program lifecycle". The method includes

the use of Bayesian Belief Networks,to generate likely scenarios and Monte Carlo Simulation to

estimate the distribution of the program cost.

The Performance Benchmarking Consortium (PBC) (Kasunic, 2006) was created in 2006 with

the objective of providing tools and credible data for goal-setting and performance improvement

and combining data from different provenances to create a superset of information for bench-

marking and performance comparison. The benefits of the initiative would be to establish the

3.1 Related Work on Process Improvement 31

specifications for the collection and comparison of data of different source vendors and provide

existing data to organisations to help them establishing and achieving their business goals. PBC

members would contribute with their assets to a repository, and PBC would specify the measure-

ments, in order to make the members data comparable. The subscriber organisations would be able

to access the repository, have access to performance reports and submit performance data adherent

to the measurements specifications. A large database was built with performance data of several

organisations, but the analysis of the data allowed to conclude that they were not comparable be-

cause the organisations had their own definitions of each measure. They tried to use the TL9000

standard to define metrics but the standard has too many metrics, which would not be acceptable

in the software industry [Mike Philips, 2010 personal communication].

From the results of the SEI experiments on creating the PBC and running pilot projects of

SCAMPI appraisals oriented to results (see subsection 3.1.4 SCAMPI Limitations) it becomes

clear that it is necessary to create a standard of software engineering metrics.

The Software Productivity Research (SPR) is a consulting services provider, created by Capers

Jones. Capers Jones analyses data related to software processes performance, gathered by several

organisations in USA. In his work he classifies software development projects in categories and

supports the choice of the adequate quality decisions according with the characteristics of the

projects, based on data (Jones, 2010).

The Software Benchmarking Organisation (SBO) is using the data of Capers Jones (2008) to

apply benchmarking in the comparison of the behaviour of European projects with USA data. The

results showed that projects of European organisations behave similarly to the USA’s projects. Sassen-

burg and Voinea (2010) identified Key Performance Indicators (KPI) that would:

• Support project management in analysing, planning and monitoring projects;

• Inform top management of the status of the project and the direction that it is heading;

• Support business units in measuring their capability improvements;

• Support organisations in comparing/benchmarking business units.

They have a set of questions that allow to identifying KPI of different categories: project

performance, process efficiency, product scope and product quality. We summarise them in table

3.2:

SBO’s results indicate that it is possible to apply benchmarking techniques to the processes

performance data and organisations data becomes comparable by these means. The benchmark-

ing structure that is applied in SBO is done in three phases, each one of them involving a certain

number of processes that are characterised by process definition elements (Sassenburg, 2009). The

description of the method to perform benchmarking in organisations does not correspond to the

expectations when asking for the benchmarking process. One of the outcomes of benchmarking

is the definition of a process that is applicable to any objects that we intend to compare. In this

particular case, the objects would be organisations.

32 State of the Art

Table 3.2: KPI categories - based on (Sassenburg and Voinea, 2010)

Question KPI Category KPI
How predictable is the project? Project Performance Cost, schedule, staffing rate, productiv-

ity.
How fast is my process? Project Efficiency Effort distribution (cost of the quality

model).
How much of the product? Product Scope Features, deferral rate, size, re-use.
How well are we doing? Product Quality Complexity, test coverage, removal ef-

ficiency, defect density.

Evaluate Factors of Success
From a literature review, Jeffery and Berry (1993) extended a framework to evaluate and com-

pare reasons for the success and failure of metrics programs. They analysed several authors’

recommendations for the success of metrics programs and used Fenton’s categories, namely con-

text, inputs, process and products, to classify them. Based on that, they built a questionnaire to

conduct a case study to analyse organisations in those perspectives. They provided the organisa-

tion’s context and goals for the metrics program. The framework also includes a scoring scheme,

to classify the extent to which the criteria were met. Later on, Wilson et al. (2001) adapted the

Jeffery and Mike framework to be used in SPI.

Niazi et al. (2005) created a maturity model to assess and improve the implementation process

of SPI. They related critical factors with maturity stage based on their occurrence in the literature

and considering the inputs from interviews that they conducted. Those factors are related to the

way SPI is conducted and not to improving processes outputs.

Metrics Repositories
Palza et al. (2003) designed an object-oriented model named Multidimensional Measurement

Repository (MMR) to collect, store, analyse and report measurement data in order to facilitate the

implementation of CMMI. MMR is based on PSM and the Software Measurement Process (ISO

15939).

The Alarcos research group proposed a measurement model (García et al., 2006) and an on-

tology for software measurement (Canfora et al., 2006). In 2007 they presented a proposal to

support consistent and integrated measurement of software by providing the following elements:

the Generic measurement metamodel, to represent the data related to the measurement process

and the GenMETRIC, a tool that allows the specification of software measurement (García et al.,

2007).

The Quantitative Approaches on Software Engineering and Reengineering (QUASAR) re-

search group worked on the unambiguous definition of metrics. They also applied metamodel

based approaches, in particular by using Ontology Driven Measurement (ODM), as defined by Goulão

(2008). This model was an evolution of the MetaModel Driven Measurement (M2DM) for the

evaluation of object-oriented designs of software engineering metrics (Abreu, 2001). In 2009

3.1 Related Work on Process Improvement 33

the ODM method was being applied to SQL databases in a Master Science thesis supervised by

Goulão. Metrics metamodels can be used in the unambiguous definition of our framework’s per-

formance indicators.

Software Process Measurement

The Alarcos research group applied a metamodel approach to the management of software pro-

cess performance measurement. They developed an integrated framework to model and measure

the software processes based on number of activities, steps, dependencies between activities of the

process, activity coupling, number of work products, number of process roles, and so on (García

et al., 2003). In our research, process measurements are not restricted to the process itself but

include the performance (efficiency and effectiveness) of its outcomes.

The Integrated Software Acquisition Metrics (ISAM) is an SEI project that consists in devel-

oping a common measurement framework for acquirers and developers based on TSP and PSP

practices. Our framework not only measures CMMI practices but also evaluates the quality of

their implementation.

Process Modelling or Simulation

Hsueh et al. (2008) showed that UML and software simulation can be used in the design,

verification and validation of processes. They designed a static process metamodel that establishes

the relations between the elements of CMMI and process components. Figure 3.5 presents the

metamodel of CMMI. In their work, static processes are modelled with class diagrams and include

the relationships between process elements and processes in CMMI. Process elements behaviour

is modelled using state-chart diagrams. Finally, dynamic processes sequences are modelled with

activity diagrams. The process verification is done by the definition of process rules and CMMI

verification rules, using the Object Constraint Language.

Figure 3.5: CMMI static process metamodel (Hsueh et al., 2008)

34 State of the Art

Mishra and Schlingloff (2008) proposed a formal specification based product development

model that integrates product and process quality in the implementation of processes. They

demonstrated the model in process compliance with CMMI, without considering performance.

Process Modelling and Measurement
Colombo et al. (2008) designed a metamodel to support multi-project process measurement

to calculate across-process-multi-projects metrics aligned with CMMI. They developed an open

source tool named Spago4Q that supports different development models, such as waterfall and

agile. The CMMI assessment framework is supported by the Assessment component of Spago4Q.

The tool is available online and is announced as being “a platform to measure, analyse and monitor

quality of processes, products and services”. Such tool may be useful to support the implementa-

tion of our framework.

In table 3.3 we summarise the existent frameworks and give some comments about them. The

authors are identified by their last name initial or research group.

Table 3.3: Related Frameworks

Framework Type Description Ref. Comments
Metrics Definition Standard of code size metric

that allows automation.

CISQ Useful to have common and

unambiguous metrics defini-

tion. To be released a pro-

ductivity metric that consid-

ers quality

Metrics for CMMI Process

Areas.

Anon Too many metrics unrelated

to goals.

Metrics Analysis Performance Benchmark

Consortium.

K Not comparable metrics due

to different definitions.

Publication of projects data. J Too many metrics unrelated

to goals.

Using projects data for

benchmarking KPI.

SV KPI that can be used to

evaluate practices at higher

level and characterise organ-

isations performance.

Evaluate Factors
of Success

Based on questionnaire and

score. Used to evaluate:

JB WHB

NWZ

Based on how programs

(SPI, Metrics) are conducted.

- Metrics Programs;

- Software Process Improve-

ments.

Continued on next page

3.1 Related Work on Process Improvement 35

Table 3.3 – Continued from previous page

Framework Type Description Ref. Comments
Metrics Repository Data model of software de-

velopment.

KKJC Model for a metrics database

considering context.

Multidimensional Measure-

ment Repository.

PFA

GBC

Formal specification of met-

rics and building repositories.

Metamodel design for soft-

ware engineering metrics.

CGPRV

GCLRP

Ontology for measurement

and a measurement tool.

G

Software Process
Measurement

Model and measure software

processes.

GRPC

SEI

Based on process structure

characteristics.

Measurement framework for

TSP and PSP practices.

Process Modelling
or Simulation

Models/metamodels of

CMMI based on UML.

HSYY

MS

Focused on compliance.

Process Modelling
and Measurement

Metamodel to support multi-

project process measurement

aligned with CMMI.

CDFORR Support CMMI assessment,

not particularly focused on

the quality implementation of

the practices.

SCAMPI Mod-
elling

Graph representation of the

SCAMPI and quantitative

evaluation.

PH SNG Focused on compliance.

Repository for distributed

projects to collect evidences

as they are being executed.

Performance Mea-
surement

Performance measurement

on SCAMPI for CMMI

organisations benchmarking.

M Introduced overhead on

SCAMPI.

The frameworks mentioned so far can tackle some of the issues regarding the identified prob-

lem. However, they are not directly tackling the performance of process improvements. Also, one

of the limitations verified in software engineering is there are several data repositories fed by dif-

ferent organisations, but not all are reliable as organisations should provide the same metrics under

the same definition, collected systematically. The AFP standard allows organisations to automate

their data collection on code size, if organisations use it and make their data available in public

repositories will be a excellent source for this area of research. In the mean time, organisations

using TSP already collect data using a similar measurement protocol and metrics definitions, as

36 State of the Art

TSP includes a set of forms to collect relevant metrics that are used to evaluate the quality of

the process. Therefore, we validated our framework using TSP data (see details in section 5.1

Evaluation of the Estimation Process).

3.2 Survey on MA Performance in HML Organisations

What can organisations do to ensure that they properly achieve HML? This question is indirectly

answered in the reports of two surveys conducted by the SEI: TR2008 (Goldenson et al., 2008)

and TR2010 (McCurley and Goldenson, 2010). The surveys, regarding the use and effects of

measurement and analysis in HML organisations, were focused on the value added by PPM and

the results were considered comparable. In 2008 the respondents were the sponsors (assisted their

delegates), or their delegates, from organisations appraised at CMMI HMLs, and in 2009 similar

questions were asked to lead appraisers of organisations pursuing HMLs.

The SEI analysis is relevant to organisations pursuing any ML of CMMI, including problems

and good practices that may have helped the organisations to achieve HML. In one question or-

ganisations had to indicate their routine while using PPM. The 2009 respondents indicated their

most common problem was the long time it takes to accumulate historical data, which some or-

ganisations remediated by doing real time sampling of processes when they had no prior data

available. In both surveys, the respondents gave different importance to obstacles found in the

implementation of PPM (Figure 3.6).

To measure the strength of the relationship between two variables and the accuracy of pre-

dicting the rank of the response the authors used the Goodman and Kruskal’s gamma. In 2008

the gamma value between the quality of the managers training and their capability to understand

PPM results was not very strong. However, that relation was stronger when the training was more

formal. 80% of respondents considered that the builders and maintainers of PPM understood

CMMI’s definition of PPM and PPB very well or even better, but their perception of the circum-

stances under which PPM and PPB are useful was lower. The results improved in 2009, over 50%

of appraisers considered that the builders and maintainers of PPM understood all concepts very

well or extremely well.

Organisations reported difficulties in collecting data manually. Regarding the automated sup-

port for MA activities responses to the 2008 survey showed that the organisations used spread-

sheets, automated data collection and management software and, less frequently, statistical pack-

ages, workflow automation or report preparation software. Automation was considered to have

a moderately strong relation with the overall value of PPM. There was also a strong relationship

between the overall value of PPM and the following variables:

• Models with emphasis on "healthy ingredients" (listed next), and models for purposes con-

sistent with those ingredients;

• Diversity of models used to predict product quality and process performance;

3.2 Survey on MA Performance in HML Organisations 37

0%

5%

10%

15%

N
ot

 e
no

ug
h

co
nt

ex
tu

al
 in

fo
rm

at
io

n
fo

r
da

ta
 c

at
eg

or
is

at
io

n

In
co

ns
is

te
nt

 m
ea

su
re

s
fo

r
ag

gr
eg

at
io

n
ac

cr
os

s
th

e
or

ga
ni

sa
tio

n

P
ro

ce
ss

 p
er

fo
rm

an
ce

 m
od

el
er

s
w

ith
ou

t a
cc

es
s

to
 s

ta
tis

tic
ia

ns

F
re

qu
en

cy
 o

f d
at

a
co

lle
ct

io
n

in
su

ffi
ci

en
t f

or
 m

id
-c

ou
rs

e
co

rr
ec

tio
ns

In
su

ffi
ci

en
t a

lig
nm

en
t o

f M
A

 w
ith

 b
us

in
es

s
an

d
te

ch
ni

ca
l g

oa
ls

 a
nd

 o
bj

ec
tiv

es

M
an

ag
em

en
t t

ho
ug

ht
 P

P
M

 w
as

 to
o

ex
pe

ns
iv

e
or

 e
xp

en
da

bl
e

T
oo

 m
uc

h
tim

e
re

po
rt

in
g

in
st

ea
d

of
 a

na
ly

si
ng

 d
at

a
F

oc
us

ed
 o

n
fin

al
 r

at
he

r
th

an
 in

te
rim

 o
ut

co
m

es
In

su
ffi

ci
en

t m
en

to
rin

g/
co

ac
hi

ng
 o

f m
od

el
er

s
R

es
is

ta
nc

e
to

 c
ol

le
ct

 n
ew

/a
dd

iti
on

al
 d

at
a

af
te

r
M

L3

E
m

ph
as

is
 o

n
st

at
is

tic
s

m
or

e
th

an
 d

om
ai

n
kn

ow
le

dg
e

re
su

lti
ng

 in
 in

ne
fe

ct
iv

e
m

od
el

s

O
th

er

Obstacle

P
er

ce
nt

ag
e

of
 r

es
po

nd
en

ts
Year

2008

2009

Obstacles Found in the Implementation of High Maturity

Figure 3.6: Obstacles identified by the organisations respondents found in the implementation of
HML (TR2010).

• Use of statistical methods: regression analysis for prediction, analysis of variance, SPC

charts, designs of experiments;

• Data quality and integrity checks;

• Use of simulation or optimisation methods: Monte Carlo simulation, discrete event simula-

tion, Markov or Petri-net models, probabilistic models, neural networks, optimisation.

The SEI compiled a set of "healthy ingredients" to be considered in process performance

modelling (Goldenson et al., 2008):

• Modelling uncertainty in the model’s predictive factors;

• Ensuring models have controllable factors and possible non-controllable factors;

• Identify factors directly associated with sub-processes to construct the models;

• Predicting final and interim project outcomes;

• Using confidence intervals of the expected outcome to enable "what if" analysis;

• Enable identifying and implementing mid-course corrections during projects execution to-

wards successful completion.

When analysing the relations between the achievement of HML and certain practices some

revealed differences between achieving and not achieving HML:

38 State of the Art

• All organisations with poor or fair documentation relative to process performance and qual-

ity measurement results failed to achieve high maturity, whilst most of the organisations

with excellent and good documentation achieved HML;

• Using simulation/optimisation techniques had a strong relation with HML achievement.

The relation with the number of such methods used and achieving HML was very high.

Particularly, all organisations using two of those methods achieved HML;

• There was a very strong relation between achieving HML and, respectively: having models

with emphasis on healthy ingredients, and the models for purposes consistent with those

ingredients;

• All organisations that used statistical techniques substantially, achieved HML;

• The frequency of using PPM predictions in status and milestones reviews had a quite strong

relation with the achievement of the target HML.

In general the gamma between variables was higher in the 2009 survey. McCurley and Gold-

enson (2010) justify the improvements from the 2008 to the 2009 surveys results: "There may be

a trend over time” and/or “The perspectives of the sponsors or the appraisers are more accurate".

The results of both surveys indicate several improvements that HML organisations may consider

to get full advantage of having PPM in place, but also show the obstacles that organisations that

intend to implement HML practices may find.

3.3 Defect Classification Taxonomies

To define and validate the improvement component of the framework we developed in our re-

search, we conducted an experiment of improving the requirements review process, by intro-

ducing a defect type classification specific to requirements (details on 3.3 Defect Classification

Taxonomies). The literature reviewed that supported us on the definition of the classification is

discussed in this subsection.

In 2009, Chen and Huang performed an e-mail survey with several software projects, and

presented the top 10 higher-severity problem factors affecting software maintainability, as sum-

marised in table 3.4. The authors indicated the following causes of software defects:

• a significant percentage of defects is caused by incorrect specifications and translation of

requirements, or incomplete ones (Apfelbaum and Doyle, 1997; Monkevich, 1999);

• half of the problems rooted in requirements are due to ambiguous, poorly written, un-

clear and incorrect requirements, the other half result of omitted requirements (Mogyorodi,

2001).

3.3 Defect Classification Taxonomies 39

Table 3.4: Top 10 Higher-severity problem factors impacting software maintainability (Chen and
Huang, 2009).

Software Development Factors Problem Dimension
1 Inadequacy of source code comments Programming Quality
2 Documentation obscure/untrustworthy Documentation Quality
3 Changes not adequately documented Documentation Quality
4 Lack of traceability Documentation Quality
5 Lack of adherence to standards Programming Quality
6 Lack of integrity/consistency Documentation Quality
7 Continually changing requirements System Requirements
8 Frequent turnover within the project

team
Personnel Resources

9 Improper usage of techniques Programming Quality
10 Lack of consideration for software

quality requirements
System Requirements

In 2003, Lutz and Mikulski analysed the impact and causes of requirements defects discov-

ered in the testing phase, resulting from non documented changes or defects in the requirements,

and proposed guidelines to distinguish and respond to each situation. Their work emphasises the

importance of requirements management. Considering the problems that occur in the require-

ments specifications we present next, work that is related with or includes a requirements defects

classification.

Code Defects Classifications, 1992
ODC is applicable in all the development phases except the requirements phase. The defect

types used are: function, interface, checking, assignment, timing/serialisation, build/package/merge,

documentation and algorithm. For each defect it is necessary to indicate if the feature is incorrect

or missing (Chillarege et al., 1992). Such classifiers do not seem completely adequate to classify

requirements defects, and Documentation is too generic to give further information on the defect.

Hewlett-Packard (HP) (Grady, 1992) categorises the defects by mode, type and origin, (see figure

3.7). From the types of defects with origin in the requirements specification phase, the require-

ments specifications seem to be vague and the interfaces ones are too detailed and more adequate

to design specification defects.

Quality Based Classifiers, 1976 – 2010
In 1976, Bell and Thayer conducted a research to verify the impact of defects in software

requirements. Not surprisingly, they concluded that software systems meeting defective require-

ments will not effectively solve basic needs. They aggregated the defects in categories, as pre-

sented on table in figure 3.8. In 1981, Basili and Weiss categorised defects found in requirements

documents and gathered a set of questions to be asked while reviewing them (as a review check-

list). The table in figure 3.8 shows the distribution of the 79 errors by different categories. Later,

in 1989, Ackerman et al. analysed the effectiveness of software inspections as a verification

40 State of the Art

Figure 3.7: HP defects classification scheme (Freimut et al., 2005)

process. They presented a sample requirements checklist to use in inspections of requirements

documents, containing questions organised by defect categories: completeness, consistency and

ambiguity. And in 1991, Sakthivel performed a survey about requirement verification techniques

and presented a requirements defects taxonomy based on a literature review (Walia and Carver,

2007). The classes that the author proposed are: incomplete, inconsistent, infeasible, untestable,

redundant and incorrect. For each class, Sakthivel presented different defects and an example.

Hayes (2003), developed a requirements fault taxonomy for NASA’s critical/catastrophic

high-risk systems. Hayes stated that ODC refers to design and code while their approach em-

phasised requirements, so they adapted the Nuclear Regulatory Commission (NRC) requirement

fault taxonomy from NUREG/CR-6316 (1995). Afterwards, in 2006, Hayes et al. analysed a soft-

ware product related with the previous to build a common cause tree. In both works unachievable

was reserved for future. In 2006, the same was also done with infeasible and non verifiable (table

in figure 3.8 shows their results).

Defects classification is important to support the analysis of the root causes of defects. In

2010, Kalinowski et al. were aware that Defect Causal Analysis (DCA) could reduce defect rates

by over 50%, reducing rework, and improving quality and performance. To enhance DCA, they

improved their framework named Defect Prevention Based Process Improvement (DPPI) used to

conduct, measure and control DCA. The authors mentioned the necessity of collecting metrics for

DCA and the importance of considering:

1. Context when collecting metrics;

2. Stability of the inspection;

3.3 Defect Classification Taxonomies 41

Figure 3.8: Defect classifier per authors by chronological order from left to right.

3. Technology/similarity of projects in inspections.

When demonstrating their approach they reported the requirements defects distribution, clas-

sified by nature (see on figure 3.8).

Functional and Quality Based Classifiers, 1992 – 2009
Next we present defect classification taxonomies that are functional and quality based. In our

research we consider that the functional classifiers represent the function of the requirement in the

product (e.g. interface, performance, environment, functional).

Schneider et al. (1992), identified two classes of requirements defects to use when review-

ing user requirements documents: Missing Information and Wrong Information(figure 3.8). In

1995, Porter et al. compared requirements inspection methods. They performed an experiment

where two Software Requirements Specification (SRS) documents were inspected with a com-

bination of ad hoc, checklist and scenario inspection methods. The checklist was organised in

42 State of the Art

categories, resembling a defect classification: omission (missing functionality, performance, envi-

ronment or interface) and commission (ambiguous or inconsistent information, incorrect or extra

functionality, wrong section). The scenarios also included categories: data type consistency, incor-

rect functionality, ambiguity, and missing functionality. The authors concluded from their results

that the scenario inspection method was the most effective for requirements.

Later, in 2007, Walia and Carver repeated an experiment to show the importance of require-

ments defects taxonomy. They involved software engineering students in a SRS document review

using a defect checklist. The students repeated the review, after being trained in the error abstrac-

tion process. The results of the experiment showed that error abstraction leads to more defects

found without losses of efficiency and the abstraction is harder when people are not involved in

the elaboration of the SRS and have no contact with developers. Requirements defects were clas-

sified as: general, missing functionality, missing performance, missing interface, missing envi-

ronment, ambiguous information, inconsistent information, incorrect or extra functionality, wrong

section, other faults. This experiment was applied to error abstraction; we consider that a similar

experiment is useful to validate defects classification.

Along the years researchers introduced classifiers to fulfil the specificities of requirements de-

fects. Some reused existent classifications and conducted experiments to analyse the impact of

different methodologies in SRS inspections. The table in figure 3.8 summarises the relation be-

tween authors and classifiers.

3.4 Related Research on Effort Estimation

We did a literature review, designed to gather information to answer the following research ques-

tions:

• Which effort estimation methods exist?

• How can we define the effort estimation accuracy?

• Which factors are considered on effort estimation?

• Which factors affect effort estimation accuracy?

Part of our strategy was to analyse errors in schedule, effort and duration of projects and find

the causes of those deviations, already identified by other researchers.

Jørgensen and Shepperd (2007), defines estimation approach to name the method used to es-

timate, which includes regression, analogy, expert judgement, work break-down, function points,

classification and regression trees, simulation, neural networks, theory, Bayesian and combination

of estimates. We found several effort estimation methods that other researchers classified. We

merged overlapping classifications: expert based (Moløkken and Jørgensen, 2004), expert judge-

ment/expert estimation (Lopez-Martin, 2011) and Knowledge-based (Jun and Lee, 2001); Model

3.4 Related Research on Effort Estimation 43

Based (Moløkken and Jørgensen, 2004), Statistical Model (Jun and Lee, 2001) and Algorith-

mic Model (Lopez-Martin, 2011); Artificial Intelligence (AI) (Jun and Lee, 2001) and Machine

Learning (Lopez-Martin, 2011). The following classifications were considered:

• Expert Based/Expert judgement/Expert Estimation/Knowledge-Based – intuitive pro-

cesses that aimed at deriving estimates based on the experience of experts on similar projects,

expert consultation (Lopez-Martin, 2011). Include Intuition and experience, and Analogy

by comparing completed similar tasks (Moløkken and Jørgensen, 2004);

• Model Based/Statistical Model – are software cost models, including formal estimation

models and algorithm driven methods (Moløkken and Jørgensen, 2004); based on mathe-

matical functions between causing factors and resulting efforts, where the estimating pa-

rameters are based on historical data (Jun and Lee, 2001), and linear and non-linear re-

gression (Lopez-Martin, 2011). For example, COCOMO, Use-Case based, FPA metrics,

Putnam’s SLIM, Doty, TRW, Bailey&Basili;

• Artificial Intelligence/Machine learning – includes fuzzy logic models, neural networks,

genetic programming, regression trees and case-based reasoning (Jun and Lee, 2001; Lopez-

Martin, 2011);

• Parametric models – use historical data (system size, complexity, skills and experience of

the project personnel, hardware limitations, software development tools, stability of user re-

quirements, and reuse of SW routines) (Morgenshtern et al., 2007). An example is Function

Points estimation that uses the number of entities and their complexity to determine size;

• Other – Price-to-win, Capacity Related, Top-down, Bottom-up, Other (Moløkken and Jør-

gensen, 2004). Although, the authors consider that Top-down and Bottom-up can also be

interpreted as expert judgement methods.

We compile the summary of methods we found on table A.1 and how they were classified, on

Appendix A. From all the methods in use, the one that seems to have more accurate results is fuzzy

logic, even better than particle swarm optimisation (Morgenshtern et al., 2007). These methods

are good to gather estimates but explaining and varying the factors can be more complex when

compared to regression models with variables without transformations. People experience should

not be neglected, in particular because in some situations expert estimates can be expected to be

more accurate than formal estimation models (Morgenshtern et al., 2007). Even TSP recommend-

eds teams to use expert judgement when there is no prior TSP data available and the guidelines

are not applicable to the project (Humphrey, 2006).

We also analysed the methods used to evaluate and compare the accuracy of the estimation

methods. We present their equations on the next paragraphs.

MeanMagnitudeRelativeError : MMRE =
1
n

n

∑
i=1

∣∣∣∣Esti−Acti
Acti

∣∣∣∣ (3.1)

44 State of the Art

In 3.1 MMRE is the Mean MRE, in a given project i, where n is the number of samples,

Est is the estimated and Act is the actual. The metric is better when lower. The MRE penalises

overestimation more than underestimation (Jørgensen, 2004). The Relative Error RE is the fraction

of 3.1, without the module, showing the direction of the estimate.

Percentageo f Predictors(r) : PRED =
k
n

(3.2)

In the PRED(r) equation (3.2) k is the number of projects in a set of n that whose MRE <= r,

that is, fall within r of the actual value. A cost model is considered accurate when MMRE is at

most 0.25 and PRED(25) is at least 75% (Braga et al., 2008).

Jørgensen (2007) used 3.3 to determine estimation accuracy as follows:

EstimationAccuracy : z =
Est
Act

(3.3)

Magnitudeo f ErrorRelative : MERi =
|Acti−Esti|

Esti
(3.4)

MER (3.4) is calculated for each observation i whose effort is predicted, and its aggregation

over multiple observations gives the Mean MER (MMER) (Smith et al., 2001; Lopez-Martin,

2011; Hari and Prasad Reddy, 2011).

Other equations referenced by Hari and Prasad Reddy (2011) are the Variance Accounted-For,

equation 3.5, Mean Absolute Relative Error, equation 3.6, and Variance Absolute Relative Error,

equation 3.7.

VarianceAccountedFor : VAR = 1− var(Act−Est)
var(Act)

(3.5)

MeanAbsoluteRelativeError : MARE = mean
abs(Act−Est)

Act
(3.6)

VarianceAbsoluteRelativeError : VARE = var
abs(Act−Est)

(Act)
(3.7)

Statistic analysis of the models residuals was also used by Grimstad and Jorgensen (2006),

including the Standard Deviation of residual error (3.8).

StandardDeviation : SD = ∑
(Act−Est)2

n−1
(3.8)

From the analysis of all the variables used by other researchers, when analysing effort esti-

mation accuracy, we found that statistic methods would be more adequate, however other authors

compared them to MMRE and PRED concluding that they did not lead to a significant improve-

ment (Jørgensen, 2004). From the variables more commonly used in effort estimation MMER is

preferable to MMRE, because MER measures the inaccuracy relative to the estimate (Foss et al.,

2003). Therefore we used it in our model to evaluate the quality of implementation of the practice

"Estimate Effort" (see 5.1 Evaluation of the Estimation Process).

3.4 Related Research on Effort Estimation 45

We also analysed the factors influencing the effort estimation accuracy, grouped as factors to

be considered on the:

• Estimation Process - including experience and skills of estimators and executors; com-

plexity of products, processes, tools; schedule, time constraints; level of detail; uncertainty

of project, technology; personnel availability, turnover; support tools; people localisation;

cumulative complexity; methodology, development phases; customer involvement; internal

and external communication;

• Project Execution - including project execution, priorities, information completeness; per-

sonnel availability and turnover; progress and status control; risk management; reporting.

We include the tables detailing the factors of the effort estimation process and the factors of

the development process on appendix A. The raised factor were considered when building the data

model and dictionary (4.3.1 Data Model). This literature reviewed served as input to base our

research when designing the experiment, analysed data and implemented the Effort Estimation

Accuracy model (5.1 Evaluation of the Estimation Process).

46 State of the Art

Chapter 4

The EQualPI Framework

In this chapter we present the EQualPI Framework (Framework to Evaluate the Quality of Imple-

mentation of Process Improvements). To design its metamodel we based ourselves in the SPEM

2, CMMI architecture, measurement principles and the necessary alignment that must exist be-

tween the organisation (quantitative) business goals and the performance indicators. EQualPI is

composed by a Metamodel that defines the rules and relations between its elements, a Repository
that includes the mathematical models and data to perform a quantitative evaluation of the imple-

mented practices and a set of Procedures, including the steps to prepare EQualPI to be used in an

organisation.

4.1 Framework Overview

When organisations use CMMI their processes are aligned with the process areas they use and they

implement those practices using operational practices, of which TSP is an example Phillips (2010).

In our research we call methods to the definitions of the operational practices. We evaluate quality

of implementation by determining the degree of support of the methods used by the organisation

in the definition of their processes to the CMMI practices and use performance indicators to both

measure the quality of implementation and the organisation performance. In this context we define

the following concepts:

• Method - good practices, procedures, techniques, etc., that define how the work is done and

support doing it. Methods are used to achieve a certain work objective.

• Process - includes a set of reusable elements, the methods, which can be optional, alter-

native or mandatory, and are used to perform work. The processes are tailorable, meaning

that some methods or activities are optional and others can have alternative ones, decided

according with the implied needs of the work to perform.

• Quality of Implementation (of a practice) - refers to the way that the work related to a

practice is performed. One way of working is better than another if it consistently produces

better results in a more effective way. We characterise the quality of implementation of a

47

48 The EQualPI Framework

CMMI practice by a combination of efficiency and effectiveness of implementation, on one

hand, and compliance of implementation on the other (i.e., alignment with CMMI recom-

mendations or with what is prescribed by the concrete implementation method used), all

measured by appropriate performance indicators (PI), possibly dependent on the practice

and implementation method used. By considering these three quality characteristics, we are

looking both at how the work is done and what its performance results are.

• Performance Indicators - derived metrics that measure the organisation performance and/or

the quality of implementation. Their aggregation indicates the degree of institutionalisation

of the practices that is necessary to achieve generic goals and high maturity, and conse-

quently to allow practices’ evaluation.

• Controllable factors - methods, that are distinguishable, enumerable and reusable and in

some cases quantifiable. They can be related to each other or not.

To build the EQualPI we followed a bottom-up approach, as represented in figure 4.1, based

in the principle that the quality of the practices implemented in lower maturity levels is reflected

on the practices of higher maturity levels. The practices used individually, in each team, project,

organisation unit and in the organisation give the implementation quality as a whole. The result of

the evaluation is signalled in a colour scheme (red, yellow and green), defined by the threshold of

the performance indicator.

Figure 4.1: Bottom-up evaluation of practices implementation.

To be compliant with the CMMI model the organisation needs to implement the Specific Goals

(SG) and Generic Goals (GG) goals enounced in the model, in the current maturity level and all

the precedent ones (Chrissis et al., 2011). To satisfy a goal the Generic Practices and Specific

Practices or acceptable alternatives to them need to be fulfilled.

4.1 Framework Overview 49

Our approach to the problem is represented in figure 4.2. For each Specific Goal and/or Spe-

cific Practice we identified the methods that are documented in the literature and the ones that are

used in the organisations to implement the CMMI goal or practice. The organisation’s processes

and tools are documented in the Quality Management System.

Figure 4.2: Building the evaluation framework (Lopes Margarido et al., 2011b). Legend: ML –
Maturity Level, PA – Process Area, SG – Specific Goal, SP – Specific Practice, n – one or more,
PI – performance indicator.

The practices implementation is reflected in the implementation of the generic goals. We map

the methods with the CMMI practices and/or goals, and evaluate the quality of implementation.

That quality is related to the percentage of the CMMI practice that the method covers and the way it

is implemented. The SCAMPI evaluates if a practice is fully implemented, partially implemented

or not implement and in certain cases the evidence of a practice is a documented process and

records of its usage, and collateral evidences of its application (refer to 2.3 CMMI Architecture

and Appraisal Method). The effectiveness of the methods application is not considered. To analyse

the practice implementation we based the evaluation on the recommendations about the method

that can be found in the literature.

The percentage of usage of a practice is reflected in the generic practices. For example, if

100% of the projects use the process, tailored from the organisation’s set of standard processes,

then the process is institutionalised as a standard process and "GG3 – Institutionalize a Defined

Process" is fulfilled. We consider that the percentage of usage of a method in the organisation can

be used to evaluate GG and higher maturity practices.

The purpose of the research is to develop a framework that allows organisations to select and

adapt methods that improve the quality of implementation of CMMI practices, allowing them to

50 The EQualPI Framework

monitor practices performance and anticipate the impact of changing their processes in the perfor-

mance of practices. Our goal is to help improve and replicate success by identifying the elements

in the way of doing work (controllable factors) that have most impact in the efficacy and efficiency

of the processes. Those elements are related to the methods used in the execution of the process.

The framework is composed of a metamodel, shaping a repository of performance indicators, to

evaluate the quality of implementation of CMMI practices, dependent on the methods used to

implement those practices. The performance indicators are tailorable, defined as mandatory or

optional, and mapped with profiles according to maturity level and the methods of the organi-

sation. Additionally, the framework includes procedures for setup (tailoring), use in practice to

evaluate quality of implementation and do process improvements, and supporting choice of in-

dicators. However, CMMI has 22 Process Areas, with the respective Specific Goals and several

Specific Practices, and maturity levels 2 and 3 have Generic Goals, with their corresponding Spe-

cific Goals. Developing a framework to include the entire model in a single Ph.D. research would

be infeasible. Consequently, we decided to demonstrate our theory by analysing the factors that

influence the quality of implementation of the CMMI Project Planning SP 1.4 "Estimate Effort

and Cost".

We consider that the results of project estimation are determinant in projects’ success. For

example, with good effort estimation the uncertainty in the plan is lower, and the team is less

stressed and subject to extra unconsidered tasks that should have been considered as part of the

scope of the project, but forgotten. We also believe that it would be easier to determine how

the framework can be extended by demonstrating it in this particular area because we think that

PP SP1.4 depends on the quality of other CMMI practices. We focused on effort estimation and

left cost out of the research because effort estimates are a dominant factor considered in cost

estimation.

The quality of a project plan depends on the quality of estimates and some of the factors that

influence those estimates can and need to be controlled. We focused our research on the factors

that we can control, to do better Effort Estimation, i.e. in indicators that are drivers of the results.

Those indicators are the ones related to the Effort Estimation process and they show how well

the process is defined and executed. Other factors, in particular the ones related to the project

execution itself were monitored with two purposes: understand the percentage of the effect that

they have on the Effort Estimation Accuracy and to characterise our datasets, so that the research

can be reproducible.

Our goal was to demonstrate that it is possible to evaluate the quality of implementation of

the CMMI practices based on the performance resultant from the methods used in their imple-

mentation. Such evaluation shall support organisations to achieve the benefits of the model and

anticipate the impact of changes in their processes.

We consider that a performance indicator that shows the quality of effort estimates is the Effort

Estimation Accuracy, based on the deviation between the estimated and actual effort. The effort

estimation deviation depends on several factors, such as:

• Definition of the estimation process;

4.2 EQualPI Architecture 51

• Execution of the estimation process;

• Execution of the project.

These factors contribute to the quality of implementation of the Effort Estimation Accuracy,

also designated as construct or dependent variable. We determined the percentage of the estimation

accuracy that is affected by the outputs of the estimation process – quality of the process and its

execution – and focus on the analysis of factors that contribute to that percentage. Therefore

other external factors related to the execution of the project and the team had to be controlled and

recorded but are out of the scope of the research. In practice, we formulate the problem as follows:

the dependent variable Effort Estimation Accuracy, Y , is a function of n controllable factors Xc and

i non-controllable factors Xnc (see equation 4.1).

DependentVariableDe f inition : Y = f (Xc1,Xc2, ...Xcn,Xnc1,Xnc2, ...Xnci) (4.1)

Regarding the performance indicators we understand that some of them depend on the imple-

mentation methods. However we wanted them to be good predictors of the performance of the

organisation regarding Effort Estimation Accuracy and to be usable. We consider that usable

performance indicators are the ones that bring added value and can be collected in a cost effective

manner (without high costs and overhead). They allow the organisations to improve their perfor-

mance by following the guidelines of implementation of the methods, knowing current and desired

performance and knowing impact of process changes on performance indicators.

4.2 EQualPI Architecture

In this section we present the EQualPI Framwork complemented with technical description.

In figure 4.3 we present the architecture level 0, the deployment perspective, of the EQualPI

framework. This perspective is used to give the physical context in which EQualPI will oper-

ate, within an organisation context. We also identify external agents that communicate with the

framework.

In the company work environment and while people do their work, metrics are collected

from Workstations to the Company Database, where the data on those metrics are stored. The

EQualPI framework is composed of a EQualPI Client, that presents the User Interface (UI),

which allows the user to access the EQualPI Server where evaluations are performed. The server

includes the Repository and Procedures, both shaped by the Metamodel. The performance in-

dicators to evaluate the quality of implementation of the CMMI practices are stored in the Repos-

itory. They may depend on the methods used to implement those practices and on the business

goals. For that reason the performance indicators are tailorable, defined as mandatory or optional,

and mapped with profiles according with maturity level and methods used by the organisation.

Furthermore, organisations can add metrics that are not yet in the system, but they must be aligned

52 The EQualPI Framework

Figure 4.3: EQualPI architecture level 0 - deployment perspective.

with business goals, methods and CMMI practices and respect the data dictionary rules. Addition-

ally, EQualPI includes procedures for setup (tailoring), use in practice and support the choice of

indicators.

We used a metamodel to define our framework. According with Álvarez et al. (2001), in a

model architecture a model at one layer specifies the models in the layer below and it is viewed

as an instance of some model in the layer above: "The four layers are the meta-metamodel layer

(M3), the metamodel layer (M2), the user model layer (M1) and the user object layer (M0)." In

our case we represent the metamodel layer M2 and the user model layer M1. Figure 4.4 presents

the level 1 of EQualPI’s architecture, the static perspective, including the layers of the framework

and the metamodel. This perspective represents the modules that are part of EQualPI, which is

implemented in a three-tier architecture.

EQualPI has three layers: Presentation, Business and Data. In the Data Layer all data are

stored, including the data of the organisation and the data that comes with EQualPI, belonging

to the Repository. The Repository has the Data Dictionary, which describes all variables prop-

erties and all base and derived measures that allow to evaluate CMMI practices. The Domain
Model explains the relation between variables that are specified in the Data Dictionary. Finally,

the Repository also includes the Performance Indicators Models that are the ones that actually

evaluate the quality of implementation of a given practice. The organisation data is composed of

Organisation Metrics, Evaluation, which includes all evaluations, and Organisation Settings

4.2 EQualPI Architecture 53

Figure 4.4: EQualPI architecture level 1 - static perspective.

that determine the practices and methods in used, mapped with the organisation goals. The set-

tings history is also stored, so if an organisation needs to see an old evaluation it can also see the

settings that were used by then.

The Business Layer includes all Procedures that are necessary to use EQualPI and include:

• EQualPI Setup, how to align business goals with performance indicators and practices.

The information that needs to be provided to start using the framework.

• Tailoring, with instructions to select the practices, methods and performance indicators the

organisation will use.

54 The EQualPI Framework

• Evaluation, that explains how the evaluation and aggregation is done.

• CMMI Implementation, that includes guidelines and a checklist to help implement CMMI

avoiding problems that often occur when implementing the model.

• Process Improvements, the steps to do process improvements and how to use the frame-

work to evaluate them.

The Business Layer allows to Setup (the) Framework, receiving the data of the organisation and

preparing EQualPI to work with those data. It is possible to consult the History of the organisation,

such as previous evaluations and settings, and actually evaluate the quality of implementation or

of improvements using the Evaluate Quality module. The metamodel shapes the Business and

Data Layers, as they follow the definitions it contains.

The Presentation Layer includes the User Interface that can only communicate with the Busi-
ness Layer, the UI formats and presents the information to the end user. Through it the user sends

the information that is necessary to setup the framework and the data of the organisation, formatted

according with the data dictionary. To evaluate quality the user inserts the parameters necessary to

do it; EQUalPI presents the results of the evaluation in the UI. The user can also send parameters

to consult previous evaluations, whose results are presented in the UI as well.

A metamodel can support the design and implementation of a framework and establishes de-

pendencies and rules necessary to use it in practice. In practice, it describes and analyses relations

between concepts. We represent the metamodel of the repository in figure 4.5 and of the evaluation

in figure 4.6.

Regarding 4.5, the organisation selects the constellation of the CMMI framework to be imple-

mented, in the figure designated as Reference Model. According with the organisation goals the

practices to be implemented are selected, which all together they may allow achieving a maturity

level. The organisation goals are aligned with performance indicators and methods that support

them and the CMMI practices that are being implemented. The Performance Indicators allow

the evaluation of practices and are derived measures, calculated through Base Measures that the

organisation collects through time. There are Process PI evaluating the process and Product PI
that are related to the product. Leading indicators, helping to predict the outcome of the work

done following a given method, and Lagging indicators, used to appraise the process and prod-

uct implementation performance. A lagging indicator in a phase of the project lifecycle may be

leading indicator in the next phase.

For instance, assume that we want to evaluate the quality of implementation of practice "SP2.2

Conduct Peer Reviews" of the Verification process area and that reviewing follows two TSP guide-

lines: use checklists derived from historical data, and review at a moderate pace. Here, one can

measure efficacy by review yield (percentage of defects detected), efficiency by defect detection

rate (defects detected per hour), and compliance by checklist usage (a qualitative PI with val-

ues, not used, ad-hoc check-list, and checklist derived from historical data) and review rate (size

reviewed per hour), compared with some recommended values.

4.2 EQualPI Architecture 55

Figure 4.5: EQualPI repository metamodel. Legend: PA- Process Area, ML - Maturity Level, SG-
Specific Goal, SP- Specific Practice, GG- Generic Goal, GP- Generic Practice, PI- Performance
Indicator

A rich set of PI usually combines process and product indicators, and leading and lagging

indicators. In the given example, review yield is a lagging performance indicator, as the remaining

defects can only be known a posteriori. Compliance indicators are often leading indicators; they

influence and can be used to predict and control the values of lagging indicators. In the example,

review rate is commonly considered a leading indicator of the review yield in TSP literature. The

density of defects found in a review is a product performance indicator, whilst the review rate is

clearly a process performance indicator.

To conduct an evaluation (see figure 4.6) the Goals/Practices are mapped with one or more

Methods that implement them and the PIs used to evaluate those methods and, consequently, the

Practices. A PI has a Threshold that at a given time has a particular value and is established by

the organisation from the analysis of what is considered to be the limit of the normal behaviour

for that indicator. Thresholds have different levels, used to determine the PI semaphore colour

(red, yellow, green), established according with the organisation quantitative business goals and

56 The EQualPI Framework

Figure 4.6: EQualPI repository metamodel. Legend: Proj- Project, Dep- Department, Org- Or-
ganisation, PI- Performance Indicator, G/P- Goal or Practice.

processes baselines, and define its normal behaviour regarding a PI. The evaluation of a method

can be done by aggregating the result of the evaluation of one or more PIs; similarly the evaluation

of a practice is given by the aggregation of the evaluation results of their implementing methods.

Notice that a practice can be implemented by a group of methods, therefore, a method can be

mandatory, alternative or optional.

The PI can be collected at a given Source, a Project, a Department or in the Organisation.

Moreover, the evaluation of the several projects can be aggregated to evaluate a department, and

the results of a department can be aggregated to evaluate the entire organisation. In any of these

cases what is evaluated may be a PI, a method or a practice. This approach also helps monitoring

if the organisation quantitative goals are achieved.

There are three dimensions of aggregation of evaluation results, the already mentioned target
(practice, method, PI) and source (project, department and organisation), to which we add time.

Aggregation in time is done by analysing the organisation’s data in a selected period, given the

methods and thresholds at that moment. Aggregation at organisation level indicates the degree

of institutionalisation of the practices necessary to achieve generic goals and high maturity, and

consequently, allow their evaluation. A project, department or organisation can also use target

aggregation to evaluate a method or a CMMI goal/practice. The evaluation by aggregation of

colours is done as follows:

• Green – all green;

• Yellow – at least one yellow and no reds;

• Red – at least one red.

4.3 Repository 57

We are aware that results aggregation can be complex and not simple sum or median of PIs’

evaluations, but the aggregation at source level is out of the scope of this research.

4.3 Repository

Looking at the Data Layer of EQualPI, in particular to the Repository and its modules (see figure

4.7), the repository contains a Data Dictionary of the base and derived measures that are used to

evaluate the quality of implementation of the practices. Organisation’s performance data is stored

in this database in the variables of the data dictionary and the way they relate with each other is

given by the Domain Model. The repository also includes the Performance Indicator Models,

that are used to evaluate CMMI practices.

Figure 4.7: Contents of the repository

4.3.1 Data Model

We now describe the data dictionary and its variables and include the schemas of the domain

model, to help better understand them. The data dictionary is defined in a matrix where the rows

are variables and the columns are elements used to define each variable. Even though the data

model was designed focused on getting data from a TSP repository it can be adapted to get data

from other development processes.

Figure 4.8 defines the elements of the data dictionary Data Entry. A Data Entry is a row

of the data dictionary, that is a Variable, and has several properties that are represented in the

columns: Type of Value, Level, Name, Data Element Name, Definition, Valid Values, Limits or

Data Validation, Missing Value, Primary Source, Secondary Source, Role in Research, Type of

Indicator, Process, Input or Output.

The Variable includes a Name, which is a logical name, a Data Element Name that is the

unique name to designate that variable in the data dictionary, and a Description – altogether these

columns are Definition elements. The Constraint elements that characterise the variable are

the Valid Values, Limits or Data Validation and Missing Value. The column Level is Meta-
information used to characterise where the data is collected. Finally, the Data Entry includes

information about the Source of the variable, which is where the data is normally stored. There

are two columns for that purpose, the Primary Source that is the most common source for that

variable, and the Secondary Source that is an alternative place to look for the data if it cannot

58 The EQualPI Framework

Data Entry

«column»
 Definition
 Constraint
 Meta-information
 Source

Figure 4.8: Data Entry elements.

be found in the primary source. We first defined the data dictionary based on projects and organ-

isation’s data that are collected during projects execution and we complemented it with the data

that is collected in TSP projects. Hence, the source of information is present in the data dictionary

because we used TSP data to demonstrate the framework and we had to know where organisations

could get them.

We represent the structure of the data dictionary in figure 4.9. Each variable will have a time
stamp, a measurement unit and a measured value. The valid values of the variables are defined in

the data dictionary. As they are necessary for the performance models the variables are related to a

process. The cases we have developed so far relate variables with the estimation or development
process, of which the variables may be an input or output. Notice that the input of a process can

be the output of another. As previously explained, the construct of a performance indicator, that

is the performance indicator model factors, can be characterised by a set of controllable and

non-controllable factors. The variables play a role in the model, they can be context variables,

hence, non-controllable factors, and may also be grouping variables to allow aggregation. Context

variables help characterising the scenario in which the data collection is done. Another role that

variables play is of quality indicator, consequently controllable factors. The quality indicators

may be of performance (efficacy or efficiency) and of compliance with the process.

There are three dimensions to consider when using the data dictionary:

• Time: this dimension has different variables, depending on the level where it is being anal-

ysed.

• Level: this dimension considers where the data is collected/analysed.

• Type of Value: some variables have a suffix that indicates if the value is planned, baseline,

actual or benchmark (_<Type of Value>). These suffixes are explained later in this section.

DataCollection_Period is a time dimension that exists at the Level Organisation, therefore it

mainly characterises Organisation_ID. It may have more than one value and corresponds to the

time interval when the projects/cycles, from which the data was gathered, occurred. This variable

can have intervals of time when characterised by CMMI_ML and/or TSP_Partner, i.e. we can

characterise periods of the organisation and expect that the results in projects are different if those

periods have an influence on the results of the projects. Even if the organisation is not rated with

4.3 Repository 59

Grouping

Context

Variable

- Time Stamp :date
- Units :char
- Value

Quality Indicator

Performance
Indicator Model

Factors

Controllable

Non-controllable

Performance

- Efficiency :int
- Effectiveness :int

Compliance

Level

- Organisation :char
- Project :char
- Cycle :char
- Individual :char

Type of Value

- Actual :char
- Planned :char
- Baseline :char
- Benchmark :char

Valid Values Process

- Estimation :char
- Development :char

Relation to the
Process

- Input :char
- Output :char

Role in Model

Figure 4.9: Structure of the data dictionary

a CMMI level nor is a TSP partner the time interval is still relevant to characterise the usage of a

technology, for example.

Start Date and End Date are related with several time variables such as the TSP launch

(TSP_Launch_Start, TSP_Launch_End), the project or cycle itself, and in that case there are

planned, baseline and actual dates: (Start_Date_Planned, End_Date_Planned, Start_Date_Actual,
End_Date_Actual). Baseline also includes a start date and end date and refers to the period of

time in which the baseline was applicable. This time interval is different from Start_Date_Baseline
and End_Date_Baseline, which refer to the plan itself.

In figure 4.10 we represent the metamodel of an organisation project, which is based on the

SPEM2 (OMG, 2008) and the SPAGO4Q (Colombo et al., 2008) metamodel, and was adapted to

60 The EQualPI Framework

better describe iterative projects of which spiral, prototyping, TSP or agile development models

are examples.

Proj ect CycleOrganisation

Phase Task

Team

RoleIndiv idual

WorkProduct Tool

Program

1..*

1

1..*1 0..*1

1

1

1..*

1

1

1

1..*1

0..*

1

1

1..*

1..*

1

1..* 1..*

1..*

0. .1

Figure 4.10: Iterative projects overview.

In a high level view an Organisation has one or more Projects, whose development is com-

prised by one or more development phases. In certain cases more than a product can be developed

through time in different projects, which are related to the same Program. In the case of applying

TSP, for example, projects are done iteratively in cycles and each Cycle comprises one or more

development phases. Each Phase includes a set of Tasks that have a Role associated, performed

by one or more team members. Those tasks are necessary to develop the Work Product and a

Tools may be necessary to do the task. If the project was developed using Scrum (Schwaber and

Sutherland, 2013) the cycle would be a sprint and the tasks to execute in a given cycle would be

items in the sprint backlog.

Regarding the analysis of TSP metrics the data can be analysed at different levels (column

Level of the TSP Data Dictionary): Organisation, Project, Cycle, Team or Individual. The in-

dividual data are aggregated in team data, team data are aggregated at the project level and the

aggregation of projects’ data helps to characterise the organisation. On the other hand, the team

data can be used to characterise a project cycle. These are the levels where data can be collected

and analysed. When using the data dictionary it is possible to filter the variables per Level and

only analyse the ones that are at each one of the described levels.

The diagram in figure 4.11 represents the variables that are exclusive of the organisation level.

4.3 Repository 61

The Organisation has a primary_key, which is Organisation_ID. The DataCollection_Period
represents the interval of time in which the organization collected the data, however there may be

more than one intervals of time if there are different organisation characteristics for that period

of time, namely regarding a CMM or CMMI maturity level and/or a period of time in which the

organisation becomes TSP_Partner (yes or no). The Business Goals may also vary through time

or just remain unchanged in the time interval that the data were collected.

Organisation
{root}

 Organisation_Type :text

«id»
*PK Organisation_ID

«column»
 Organisation_Size

«PK»
+ PK_Organisation()

DataCollection_Period

- Start_Date :yyyy-mm-dd
- End_Date :yyyy-mm-dd

CMMI_MLTSP_Partner

Business Goal
{leaf}

 BusinessGoal :text
 BusinessGoal_Value

«column»
*PK BusinessGoal_ID

«PK»
+ PK_Business Goal()

0..1 1

1

0..*

1

0..*

1

1..*

1

1..*

Figure 4.11: Organisation elements.

The variables in figure 4.12 are related to the Project; however, they can also can be defined at

Cycle level. A Project is developed for a Client or several clients and it includes a set of Stake-
holder Goals that can be of the Client, different organisation departments or upper managers,

and the Team. Any goal is characterised by a description StakeholderGoal and can have a target

value StakeholderGoal_Value that the team tries to achieve. The StakeholderGoal_Status gives

information of whether the team met the goal or not, and if it has a target value it gives the current

value. Project Goals include the goals that were already specific of the project but also the goals

that the team accepted and with which it is committed; they can include the goals of the remainder

stakeholders but can vary in coverage or target value.

All projects have a set of attributes that characterise them. In the particular case of the Pro-
grammingLanguage, it has a meaning when related with the DataCollection_Period, the pro-

gramming language can already be set in the market and well documented and discussed by the

community, or it can be in its early stage, where information is scarce and limitations are unknown.

62 The EQualPI Framework

Organisation::
DataCollection_Period

- Start_Date :yyyy-mm-dd
- End_Date :yyyy-mm-dd

Project

«column»
*PK Project_ID
 Project_Type
 TSP_Launch_Start
 TSP_Launch_End
 ProgrammingLanguage
 Programming_Generators
 Development_Environment
 Management_Systems
 SupportTools
 Complexity
 Criticality
 Constraints

«PK»
+ PK_Project()

Client

«column»
*PK Client_ID
 Client_Type

«PK»
+ PK_Client()

Project Goal

«column»
*PK ProjectGoal_ID
 ProjectGoal
 ProjectGoal_Value
 ProjectGoal_Status

«PK»
+ PK_Project Goal()

Stakeholder Goal

«column»
*PK StakeholderGoal_ID
 StakeholderRole
 StakeholderGoal
 StakeholderGoal_Value
 StakeholderGoal_Status

«PK»
+ PK_Stakeholder Goal()

Team Member

«column»
*PK TeamMember_ID
 TSPRole
 TSPRole_RepresentativeType
 WorkRole
 TSP_Training
 PSP_Training
 TeamMember_Extra
 TeamMember_Experience
 TeamMember_ExperienceYears
 TeamMember_Used
 TeamMember_Added

«PK»
+ PK_Team()

TeamExperience_TSP

Baseline

«column»
*PK Baseline_ID
 Baseline_Start_Date
 Baseline_End_Date

«PK»
+ PK_Baseline()

Milestone

«column»
*PK Milestone_ID
 Milestone_Planned
 Milestone_Added
 Milestone_Actual
 Milestone_Status

«PK»
+ PK_Milestone()

Risk

«column»
*PK Risk_ID
 Risk_Description
 Risk_Date_Creation
 Risk_Type
 Risk_Owner
 Risk_Date_Followup
 Risk_Added
 Risk_Status
 Risk_Status_Date

«PK»
+ PK_Risk()

Issue

«column»
*PK Issue_ID
 Issue_Description
 Issue_Date_Creation
 Issue_Date_Followup
 Issue_Type
 Issue_Owner
 Issue_Added
 Issue_Status
 Issue_Status_Date

«PK»
+ PK_Issue()

Assumption

«column»
*PK Assumption_ID
 Assumption
 Assumption_Status

«PK»
+ PK_Assumption()

1 0..*

1 1..*

0..* 0..*1 0..*

1..*

1..*

1

0..*

1 1..*

1

1..*

1

0..*

1
1..*

1

1..*

1..*

1..*

Figure 4.12: Project elements.

A Project has a team assigned who executes it. In the particular case of TSP projects there

are roles specific of TSP, TSPRole, that are assumed by team members, and have Primary and

Secondary representatives, TSPRole_RepresentativeType. More generically, each member as a

WorkRole, that determines what the team member does in the project (e.g. Developer, Tester,

Project Manager). Not all TSP team members have TSP and PSP training and that is also iden-

tified. The difference between a TeamMember_Extra and a TeamMember_Added is that the

extra team member only participates in the project in “at peak of work” circumstances and its par-

ticipation is short in time. Added team members become part of the team either because their need

was not foreseen at the beginning or a change in the scope demands a bigger or more specialised

team.

4.3 Repository 63

Often, Assumptions made by the team regarding the project are documented at the begin-

ning of the project, Risks are identified and managed throughout the project and Issues are also

recorded. They are all updated and managed over the project duration. Project plans have Base-
lines and may have Milestones, although in TSP many teams do not identify milestones. In the

level cycle we identified several variables that are often compared with the baseline.

As mentioned before, in some software development lifecycles projects are developed in cycles

that we represent in figure 4.13. In case of TSP, each cycle begins with a launch meeting, where

it is planned by the team and a post-mortem meeting, where the cycle is analysed by the team and

processes may be updated if necessary. The plan of a cycle is organised in weeks, where tasks

are executed by team members in order to produce work products, here designated as Program
Elements. Those program elements can be Requirements, Detailed Design, Test Cases, etc. or the

Code itself; in this last case they are part of a Component which can be part of a Module. In the

same way Tasks are assigned to Team Members, so are Program Elements. The development

of a program element includes different Phases and it is only complete when particular phases

finish successfully. The Phase can refer to an introduction of defects phase, for instance Coding,

Detailed Design, or defects removal phase, such as Inspection or Unit Testing.

Cycle

«column»
*PK Cycle_ID
 Start_Date_Baseline
 Start_Date_Planned
 Start_Date_Actual
 End_Date_Planned
 End_Date_Baseline
 End_Date_Actual
 Effort_Hours_Planned
 Effort_Hours_Baseline
 Effort_Hours_Actual
 Schedule_Weeks_Planned
 Schedule_Weeks_Actual

«PK»
+ PK_Cycle()

Week

«column»
*PK Week_ID
 Week_StartDate_Planned
 Week_Start_Date_Actual
 Week_End_Date_Actual
 Week_Hours_Planned
 Effort_Hours_Actual
 Week_Hours_Cumulative_Planned
 Week_Hours_Cumulative_Actual
 Week_Added

«PK»
+ PK_Week()

Productivity

«column»
*PK Produtivity_ID
 Productivity_Unit
 Productivity_Baseline
 Productivity_Benchmark
 Productivity_Planned
 Productivity_Actual

«PK»
+ PK_Productivity()

Program Element

«column»
*PK ProgramElement
 ProgramElement_Size_Planned
 ProgramElement_Size_Benchmark
 ProgramElement_Size_Baseline
 ProgramElement_Size_Actual
 ProgramElement_Size_Percentage

«PK»
+ PK_Program Element()

Module

«column»
*PK Module_ID
 Module_Effort_Planned
 Module_Effort_Actual
 Module_Status
 Module_Added
 Module_Complete

«PK»
+ PK_Module()

Component

«column»
*PK Component_ID
 Component_Effort_Planned
 Component_Effort_Actual
 Component_Status
 Component_Added
 Component_Complete

«PK»
+ PK_Component()

Code Size

- Code_Size_Planned :int
- Code_Size_Actual :int

Phase

«column»
*PK Phase_Name
 Phase_Effort_Hours_Planned
 Phase_Effort_Hours_Baseline
 Phase_Effort_Hours_Benchmark
 Phase_Effort_Hours_Actual
 Phase_Effort_Percentage_Planned
 Phase_Effort_Percentage_Baseline
 Phase_Effort_Percentage_Benchmark
 Phase_Effort_Percentage_Actual
 DefectsInjectionRate_Planned
 DefectsInjectionRate_Baseline
 DefectsInjectionRate_Benchmark
 DefectsInjectionRate_Actual
 DefectsRemovalRate_Planned
 DefectsRemovalRate_Baseline
 DefectsRemovalRate_Benchmark
 DefectsRemovalRate_Actual
 Defects_Injected_Planned
 Defects_Injected_Baseline
 Defects_Injected_Benchmark
 Defects_Injected_Actual
 Defects_Injected_Percentage_Planned
 Defects_Injected_Percentage_Actual
 Defects_Removed_Planned
 Defects_Removed_Baseline
 Defects_Removed_Benchmark
 Defects_Removed_Actual
 Defects_Removed_Percentage_Planned
 Defects_Removed_Percentage_Actual
 Defects_Remaining
 Defects_Yield
 Defects_Fix_Time
 Defects_Type
 Defects_Injected_Type
 Defects_Removed_Type
 Phase_Name_Added

«PK»
+ PK_Phase()

Task

«column»
*PK Task_ID
 Task
 Task_Effort_Hours_Planned
 Task_Effort_Hours_Baseline
 Task_Effort_Hours_Actual
 Task_Date_Planned
 Task_Date_Actual
 Task_Date_Week_Planned
 Task_Date_Week_Actual

«PK»
+ PK_Task()

Project::Team Member

«column»
*PK TeamMember_ID
 TSPRole
 TSPRole_RepresentativeType
 WorkRole
 TSP_Training
 PSP_Training
 TeamMember_Extra
 TeamMember_Experience
 TeamMember_ExperienceYears
 TeamMember_Used
 TeamMember_Added

«PK»
+ PK_Team()

Estimation

+ Estimation

+ Expert

(from TSP Model)

«flow»

«flow»

«flow»

1 1..*

«flow»

1 1..*

1

1
«flow»

«flow»«flow»

«flow»

«flow»

«flow»

«flow»

1 1..*

«flow»

1..*

1..*

1..*

1..*

«flow» 1..*

1..*

1..*

1..*

1..*

1..*1

1

1..*

1..*

11..*

«flow»

1

1

«flow»

0..*

1

1 0..*

«flow»

1..* 1..*

«flow»

«flow»

Figure 4.13: Cycle elements.

Certain variables in the data dictionary include _Planned, _Baseline, _Benchmark or _Ac-
tual extensions in their name. The baseline, as previously mentioned, refers to the variable value in

64 The EQualPI Framework

the current baseline. The planned is the value that is planned for the current cycle. The benchmark

value is the value considered when planning the project to support planning and estimating, and

the value can come from industry benchmarks, TSP Quality Guidelines Humphrey (2006), TSP

recommended values for pilot teams, organisation historical data, expert judgement or changes to

any of these benchmarks.

4.3.2 Effort Estimation Evaluation Model

The model of effort estimation uses the data dictionary variables. In this section we focus in the

fields Type of Variable, Process (Effort Estimation Process or Development Process) and Input
or Output. The following paragraphs describe how the Estimation and Development processes

are related when considering the dependent variable (Y) Effort Estimation Accuracy.

The diagram in Figure 4.14 represents the estimation process variables. At the launch of

the cycle all the components of the cycle are planned and the estimates of several variables are

produced. There is a bidirectional information flow between the Estimation package and all the

components of the software development cycle, because the estimates produced affect all planned

values in development and the actual values at the end of the development cycle are considered

for the estimation of the next cycle.

Estimation:
- Methods

Development:
- REQ
- V&V
- PI
- TS
- Architecture
- Detailed Design

Planned Values
Outputs

Actual Values

- Historical Data
- Context
- Client Specifications

- Context
- Client Feedback/Information

- Size
- Tasks
- Plan
- Defects
- Functionalities
- Effort

- Size
- Tasks
- Plan
- Defects
- Functionalities
- Effort
- Client Feedback/
Info

Inputs

- Project Historical Data
- Context
- Scope
- Detailed Requirements
- Architecture
- Design
- ...

Figure 4.14: Estimation and Development processes feedback loop. The planned values, that
are outcomes of the Estimation process, feed the development process, which is also affected by
external elements of context and client information, for example. One of the outcomes of the
development process is the actual data of how the process was executed, which can be used for
appraisal and to feed the organisation database of historical data. Legend: REQ - requirements,
V&V - verification and validation, PI - product integration, TS - technical solution.

First Instantiation

4.3 Repository 65

When the effort estimation process is first instantiated there are a set of controllable and non-

controllable factors that need to be considered. Controllable factors (Xc) (variables on which we

can act on) are:

• Choice of what is being estimated and considered to estimate effort;

• Choice of estimation methods.

Non-controllable factors (Xnc) (variables that we cannot yet control):

• Context;

• Scope;

• What will happen during the development cycle.

To evaluate the quality of implementation of PP SP1.4 these two parcels (controllable and non-

controllable factors) need to be considered. If we determine the percentage of the effort estimation

accuracy that each of these parcels represent we will know what is the percentage that we can

control while estimating. To determine the effort estimation accuracy at a given point in time t = i

we can consider the deviation as being a partial variation (equation 4.2).

ParcialE f f ortEstimationAccuracy : EEAt =
Actualt −Plannedt

Plannedt
(4.2)

The value of EEAt is determined considering only the effort estimated for the tasks that were

planned to the next moment of estimation and executed up to that moment.

The global deviation considers the project from start to end (see equation 4.3). The planned

values are the ones from the first plan or proposal.

GloablE f f ortEstimationAccuracy : EEAglobal =
Actual−Planned

Planned
(4.3)

The estimation process is instantiated throughout the project, as the uncertainty about it di-

minishes over time, the new knowledge must be considered in the project plan. It would be a

mistake not to consider the new information to better define what needs to be done, how it will be

done, the sequence of tasks and their duration. Ignoring such information to re-plan would be as

ignoring information to build what the client truly expects that can be obtained from the technical

knowledge that is gradually obtained.

Nth Instantiation
The outputs and actual values of the Development Process at the moment of a nth instantiation

of the Estimation Process become a valuable input for it and include what part of the plan was

already done. In other words, it is necessary to consider the actual values up to the execution

phase at which the project is. Tasks that were finished earlier than expected leave slots of time that

66 The EQualPI Framework

can be used to execute other tasks, people that become available earlier can start following tasks

or help other team members that are late to finish theirs.

Every output of the development process that adds detail to what is to be done and how it

needs to be done (such as detailed requirements, architecture, design, scope), change requests to

what have been done already and requirements that are added, changed or eliminated by the client

– all imply re-planning. Another aspect is the number of defects that are actually being detected,

which can trigger changes in the verification strategy, for example. By the analysis of complexity

and execution of the task itself it can be concluded if it is necessary to add or remove effort in

order to finish the task, or even add people or extra tasks, such as training.

Part of the non-controllable factors of the first instantiation of the estimation process are con-

sidered in the nth instantiation becoming controllable. The non-controllable parcel only becomes

more controllable if the agents that contribute to diminish uncertainty are considered when re-

planning. Then, there are re-planning cycles as there are development cycles. The objective of

this approach is to benefit from the reduction of uncertainty to better and more accurately plan

the next steps of the project. It is necessary to calculate a variation that is a sum of the parcels

deviation and compare it with the global deviation previously defined (see equation 4.4).

TotalE f f ortEstimationAccuracy : EEAtotal =
k

∑
t=1

EEAt =
k

∑
t=1

Actualt −Plannedt

Plannedt
(4.4)

4.4 Manage Configurations

To have a CMMI implementation and analyse its performance through time it is necessary to

manage the configurations. The module Manage Configurations in the business layer, is where

the configurations of the processes are stored, so they can be used when necessary. Those include

the following implementations:

• Current - the implementation that is loaded since the last setup of the framework;

• Previous - configurations of previous implementations are saved in the database. They are

loaded when the user intends to see the history of evaluations, as an evaluation is based on

the organisation data and the configuration of the framework;

• Pilot - configurations of process improvements in pilot projects. It may be possible that they

never leave the pilot state, if the organisation realises that they do not benefit the organisa-

tion;

• Deployment - configurations that result of successful pilots and are gradually being de-

ployed in the organisation. The deployment configuration co-exists for a period of time

with the current implementation, and when a selected percentage of projects is already fol-

lowing it with the desired performance results, the deployment implementation replaces the

current implementation that is saved in the history.

4.4 Manage Configurations 67

• Updated - used to establish the new baseline once the deployment of new configurations is

completed.

Current and Previous Implementation
The implementation configuration is the one reflecting the current processes configuration that

exist in the organisation. To evaluate that implementation the framework uses all data of the meth-

ods that are currently in place. If a pilot is in place or a process improvement is being deployed

the data of those configurations are not used to evaluate the current implementation. Otherwise it

would not be possible to compare a pilot or deployment configuration with the current implemen-

tation configuration. The previous implementation is also stored.

Pilot
The organisation may start one or more pilots to do a process improvement. The pilots must

be isolated from the organisation’s current implementation and from other pilots. Based on the

current configuration the organisation selects the change to introduce in the process improvement:

changing a method, using a different tool or changing a procedure. For that pilot one or more

projects will be done and the related data will be collected, eventually new performance indicators

will be monitored. The pilots will be executed for a period of time. The data collected to mon-

itor them will not be loaded when evaluating the current implementation of the organisation, are

loaded only to evaluate the pilot. To verify if the changes improved organisation performance, that

is to evaluate the pilot, for a period of time the pilot data are compared with the data of the current

configuration in the same period. If the pilot shows better performance than the organisation, the

deployment can be done. Even if the organisation does several different process improvements in

parallel only one can be deployed at a time.

Deployment
To prepare the deployment configuration the current configuration is loaded with the change

done by the pilot. The organisation begins gradually deploying the changes done and collects the

data on the projects that use the changes. In parallel the organisation keeps evaluating the cur-

rent implementation to ensure that the performance of the deployed improvement is better than

the one of the current configuration. However, the deployment may be not static. As people use

a new tool or functionality and/or a new methodology the process may need to be adjusted. So,

after the change, new data is collected and compared with the current implementation. When the

deployed improvement affects a significant part of the organisation (and that is a decision for the

organisation to make) and the process and tools are not updated for a given period of time, the

improvement is compared with the current implementation. If the performance is considered to be

better and other process areas are not negatively affected the deployed improvement may become

the current implementation. The organisation may keep the improvement and involve the entire

organisation, updating the current implementation accordingly. That only happens after training

and having tools in place so everyone is ready to use them. Furthermore, if the organisation has a

process performance model and baseline, they need time to become stable to be able to compare

68 The EQualPI Framework

the new performance. This may be one criterion for the organisation to keep the changes in de-

ployment longer.

Updated Implementation
The new configuration can be loaded from the stable deployment configuration. A new base-

line is established. If the data since the final deployment is stable it may be loaded in the current

implementation and the baseline may be set from there. From that point on, the whole organisation

operates with the new process and that is the one that is evaluated.

4.5 Procedures

The Business Layer’s package Procedures (see figure 4.15) and its modules give organisations

the necessary information to use the framework in practice.Procedures include:

• Instructions to deploy the framework and align it with the organisations practices and goals;

• Checklist to support the CMMI implementation;

• Instructions to populate the EQualPI database and calibrate the models;

• Instructions to evaluated the implemented practices;

• Instructions to conduct processes improvements pilots and deploy them.

Figure 4.15: Contents of the repository

4.5.1 EQualPI Setup, Tailoring and Evaluation

The preparation of the framework by an organisation, or setup, is done following the repository

metamodel that we presented in figure 4.5. The organisation must choose a reference model in

the CMMI framework, it may wish to implement a process area or a maturity level, or it may

implement just a subset of process areas that do not allow achieving a capability or maturity level

4.5 Procedures 69

but are relevant for the organisation. The organisation may choose to implement all specific prac-

tices to achieve a goal or it may indicate alternative practices. Similar choices can be made in the

case of implementing a generic goal, by following the generic practices or following alternative

ones. After this, the organisation must indicate the methods used to implement the goal or prac-

tice, and the performance indicators to evaluate them. The methods are selected from a pool of

methods existent in the EQualPI Repository along with the corresponding performance indicators,

but they may also be added by the organisation. EQualPI allows the implementation according

with the CMMI model, and the user just indicates the level and representation and all information

is automatically loaded. The steps of the setup are represented in figure 4.16.

After EQualPI is configured, and practices are mapped with methods and performance indica-

tors, the organisation needs to setup thresholds and quantitative goals per Performance Indicator.

The data used for that purpose, in case of not having historical data, can be a benchmark from the

industry. Depending on the indicator, the thresholds define performance intervals of acceptable

(green), alarming (yellow) or unacceptable (red) behaviour, triggered by reaching a given value or

going out of an interval of values.

To populate EQualPI’s database with Organisation Metrics, the organisation exports infor-

mation of the company database in the format of the data dictionary. When an organisation does an

evaluation the database needs be updated until the end date that the evaluation refers to. The organ-

isation may also choose the source (organisation, departement, project) and target (performance

indicator, method, practice) of the evaluation, as we explained in 4.2 EQualPI Architecture.

In practice, when an organisation uses the framework it tailors the CMMI process areas/practices,

methods, and corresponding performance indicators, that will be used. The organisation executes

the evaluation process, after defining the thresholds for the performance indicators according with

its business goals. From executing the evaluation framework the organisation will get a colour

for the quality of implementation of the CMMI practices, organisation performance and impact

of performance improvements (in case it changed its processes). The performance indicators are

based on the business goals, which may be financial, marketing, quality and related to the cus-

tomer. Those goals are drilled down to departments and projects goals. Having goals related to

better planning, faster development, customer satisfaction, etc., we can map them with perfor-

mance indicators that show us the predictability, productivity, re-work, defects delivered, etc.

70 The EQualPI Framework

To setup the framework an organisation must follow a set of steps according with the flowchart

in figure 4.16:

Figure 4.16: Flowchart of the setup of
the EQualPI framework.

1. Identify business goals;

2. Select the Reference Model (CMMI constela-

tion(s)) to use;

3. Select the model representation (staged, continu-

ous or none);

4. If staged was selected, select the Capability Level

or the Process Areas to implement;

5. If continuous was selected, select the Maturity Level

or the Process Area;

6. If none was selected select the Process Areas and

Generic Goals to implement;

7. Select the Specific Goals;

8. The framework suggests the use of Specific Prac-

tices or the user may use Alternative Practices;

9. If Alternative Practices were selected the user must

indicate them and map them with the Specific Goal;

10. If Specif Practices were selected they will be mapped

under the corresponding Specific Goals;

11. Per practice or alternative practice select the method(s)

and indicate which ones are mandatory, alternative

and optional;

12. If a method is not in the system add it and map it

with the practice it implements;

13. Per method EQualPI suggests a list of Performance

Indicators that are in the pool, according with the

maturity profile (in case the PAs selected do not

allow to achieve a level, then the Performance In-

dicators suggested indicate the maturity profile).

Select the performance indicators;

14. If the desired performance indicator does not exist

specify it according with the metamodel and data

dictionary, and map it with the method.

4.5 Procedures 71

An example of evaluation is depicted in figure 4.17. The analyst or stakeholder would select a

PI to analyse in a period of time. In the example given the PI is Schedule Estimation Error. When

analysing a project the person verifies in which interval of values the data point stands (in case

there are upper and lower thresholds) and analyse the colour of the evaluation accordingly. The

evaluation of a department would be given by aggregating the results of the department’s projects.

In the example, department 1 (D1) has three projects (P1, P3 and P4) and one is red, so it is

evaluated as red; D2 has a single project that is yellow, so the result for that department is yellow;

and D3 has one project P5 that is green, so the department evaluation is green. When evaluating

the organisation, D1 was evaluated as red so the organisation is red.

Figure 4.17: Evaluation of the Schedule Estimation Error. Legend: PI - Performance Indicator,
Org - organisation, D1 - department 1, P1 - project 1.

The example represented in 4.18 demonstrates the aggregation of results from a PI to a method

and to a goal or practice. The organisation has several methods that are part of its processes. Some

methods are mandatory, others are optional and in some cases there is a pool of alternative methods

and the team can choose one of them. The methods to use can also be imposed by the lifecycle in

case of a development process or the methodology used for project management (for example use

Scrum or TSP). When a project begins it is necessary to choose the methods that are going to be

used. In the figure methods 1 and 2, M1 and M2, are alternative methods to do the same activity,

M3 is an optional method and M4 is mandatory.

Taking the example of project P1, they chose the estimation method M2 and have to monitor

PI1 and PI5. At the moment that the project is analysed both indicators are green. The team opted

to use an optional method M3, monitored with PI3 and had to use M4, because it is a mandatory

method, and consequently monitored PI4. Since PI3 is red the project is red and so is M3. For

that project M2 is green because both PI1 and PI5 are green and M4 is yellow because PI4 is also

yellow.

72 The EQualPI Framework

When analysing CMMI specific practices we can see that SP1 uses M4, SP2 is mapped with

M1 or M2, SP3 with M1 or M2 and M3 and SP4 with M1 and M4. For project P1 SP1 is yellow,

because M4 is yellow, SP2 is green because M2 is also green and SP4 is red, because the team

decided to use the optional M3 and it is red. The project is red in terms of PI, methods and SP.

If a department has several projects it may evaluate its state by aggregating the results of its

projects. In the case of department D1, P1 is red which implies that the department is red too. The

department can also analyse its results in each PI by aggregating the PI results in each one of its

projects. In the case of D2, PI3 is yellow because in one of the projects the indicator was yellow

and the other did not have a red. A similar analysis can be done to evaluate how the department is

performing each method and each SP.

To evaluate the organisation the analyst aggregates the results of its departments, in this exam-

ple D1 is red so the result of the organisation is red. The organisation can also evaluate each PI,

Method and CMMI goals or practices by aggregating the results of each department. For example,

SP1 is yellow because D1 is yellow and D2 is green.

Figure 4.18: Aggregation of evaluation in the source perspective and target perspective. Legend:
PI - Performance Indicator, Org - organisation, D1 - department 1, P1 - project 1, alt - alternative,
opt - optional, mandat - mandatory, -̂ AND, v - OR.

4.5.2 CMMI Implementation

The module CMMI Implementation provides a checklist of problems that may occur when im-

plementing CMMI and a set of recommendations (R) on how to implement the model based on

4.5 Procedures 73

the problems (P), which we numbered. The implementation checklist is based on the literature re-

view that we conducted (discussed in 3.1.3 Problems in Process Improvements, Metrics Programs

and CMMI), the analysis that we did of the data of a survey performed by the SEI and three case

studies that we conducted in three high maturity organisations (research detailed on 5.2 CMMI

HML Implementation). We focused on how organisations prepare for SCAMPI when implement-

ing CMMI to achieve a maturity level.

The literature review showed us that many of the problems found in the high maturity levels

of CMMI are actually based in ML2. Next we detail the problems and challenges organisations

face when implementing CMMI:

P1. Underestimate time to implement HML
Processes improvements require time, to define, implement, involve people, train them and re-

fine practices before they are stable. CMMI just provides guidelines, so it is still necessary to plan

the time required to define the processes themselves. Moreover, when considering high maturity

there must be cycles to complete data collection and analysis to refine the models, particularly if

they are being implemented for the first time. It is important to plan all this work.

P2. Introduction of HML forgetting ML 2 and 3
CMMI builds maturity/capability that is base from one level to the next. The practices, metrics

and standard processes from ML 2 and 3 must be well defined as requirements for HML practices.

P3. Understand the statistical nature of level 4
Understanding the statistical needs to achieve ML 4 is not reduced to have knowledge of

statistics and modelling but knowing how to use them in the business without falling in the traps

of blind interpretations or over relying in models and baselines, without critically analysing them

in the context of the process execution, e.g. context events occurring when a project was using the

process.

P4. Copied processes
As stated before, CMMI provides guidelines, not processes. Using the model as is and con-

sidering it the process, leaves behind many details of how to do the work, hardly reflects the

organisation reality and culture and may not add value.

P5. Multicultural environment and P6. Impose processes
The processes must reflect the organisation culture that is also why people must be involved

in process definition. An additional benefit of this involvement is that it helps people understand,

relate with and embrace the changes.

P7. Dissemination problems

74 The EQualPI Framework

People must be aware of the changes taking place and have all information necessary to do

their work once they start using the new processes; hence the importance of coaching, training and

providing tool tips and help with the software to use.

P8. Lack of institutionalisation

Besides ensuring right level of dissemination and people involvement, to have institutionalisa-

tion also implies that different contexts are understood and contemplated in the program.

P9. Meaningless uncorrelated metrics

The metrics used shall be useful, that is to say, provide information that is needed to achieve

a goal. Furthermore, one must not fall in the temptation of blindly trusting causality or establish

relations between what is not correlated.

P10. Metrics definition (collect and analyse data)

Define metrics unambiguously, ensure that they are measuring exactly what is needed and

knowing to interpret them.

P11. First data collected were uncorrelated

The first data collection may not provide the correlations the organisation is looking for, so it

has to refine and do new cycles.

P12. Metrics categorisation

In the first cycles of data collection, at times the baselines are not stable enough. Also, unless

there is already a considerable amount of historical data, it not possible to distinguish between

different categories of data (for different markets, team experience, team sizes and project sizes).

Depending of the context some metrics may no be adequate to measure everything, for example,

the defined size metrics need to the nature of the work being measured.

P13. Baselines not applicable to all projects

Having unstable PPBs not specific to the different contexts. Time to collect data, insufficient

to gather information of different contexts and verify if new metrics were needed, there were

differences in performance and in which context, in certain circumstances, the procedure to collect

the data should be different.

P14. Abusive elimination of outliers

Outliers eliminated without understanding whether they were special causes of variation or

not, for example, discarding relevant information to the execution of the project.

P15. Not all projects are measurable

4.5 Procedures 75

Different projects cycles require tools adaptation and in some cases specific metrics, to be

measurable.

P16. Effort estimates

Not having different support baselines/tools for different effort estimation methods. For ex-

ample, having expert judgement without the support of previous knowledge of work-product size

and task duration, simply because there are only PPB adequate for code development projects.

P.17 People behaviour

Failing to show people the value of practices that should be applied on their projects or work,

and consequently having people not using them or considering they are not applicable to their

projects. Also resulting in careless data gathering, compromising their accuracy.

P18. Tools setup and P20. Tools requirements

Tools require time to be stable, new defects can be found only when they are already in use

and changes to the original requirements may be revealed by usage in work context.

P19. Overhead

When data collection is not fully automated, manual collection may introduce overhead, be-

sides increasing error caused by human mistakes.

The demands of levels 2 and 3 should prepare organisations to adequately use measurement at

higher levels, by monitoring appropriate metrics. Nonetheless, some of the problems here identi-

fied reflect poor implementation of the MA PA, affecting the organisation results. Such problems

become evident when implementing ML 4 because the correlation between variables and prob-

lems in the collected data, affect PPM and PPB. Besides, SCAMPI cannot appraise the entire

organisation and does not analyse performance measures – if it did, it would become even more

expensive. Hence, CMMI rating per se is not a guarantee of achieving expected performance

results and organisations need to be aware that there are different methods that can be used on

its implementation. Nevertheless, if some recommendations such as the ones we propose in this

section are followed, CMMI implementation can be easier, and the problems discussed before can

be avoided. Most of these recommendations are solutions used by the studied organisations to

overcome their problems.

Entry Conditions

When planning a move towards HML respect time to: have mature levels and institution-

alised practices; understand and analyse the needs for HML; find correlations between variables;

reach stable metrics, processes, tools and work habits; select meaningful performance indicators

76 The EQualPI Framework

and gather enough stable data points to have statistically meaningful historical data. Organisa-

tions need to carefully plan business and process improvement objectives, temporal horizon and

resources (time, internal and external human resources, tools, training, etc.). (R1)
HML only work with a stable base, hence, introducing their practices can only occur after ML

2 and 3 are mature and institutionalised (Leeson 2009) (R2).
HML require understanding statistics and modelling. Guarantee the involvement of an expert

in quantitative methods (e.g., statistician), preferably with experience in software and if possible

also in CMMI, who can help better understanding processes behaviour and correlations between

variables, along with providing adequate statistical tools to different contexts (R3). Introducing a

Six Sigma initiative in the organisation eases the introduction of the statistical knowledge neces-

sary to the organisation workers (R4).
There must be a top down and bottom up revision of the organisation’s processes, improve-

ments/innovations, goals and quantitative goals (R5).

Process Definition and Implementation
The implementation of the model should reflect the culture of the organisation, and not be

a copy imposed on personnel. Processes definition should identify current processes (as is) and

improvements (to be) so they reflect organisation’s culture and people good practices (Leeson,

2009) (R6). When defining processes it is important to involve the experts, including those who

use the process to do their work: project, technical and quality managers; developers; testers, etc.

(R7).
In multicultural organisations and when acquiring new companies imposing processes can

result in a loss of knowledge and resistance to change. Different business units should share

practices used and lessons learnt. Each business unit would then gradually and naturally adopt the

other’s practices if they better fulfilled needs. This approach allows creating processes without

losing good practices, benefiting from cultural differences. (R8)
There should be goals specific for different business units, departments and projects, which

must be related to the organisation business goals (R9). Such setting allows having goals moni-

tored at all levels, avoiding loss of visibility by middle management in each level (R10).
Commitment from the entire organisation is essential, including top management, middle man-

agement and the people who are actually doing the work (Leeson, 2009) (R11). Training needs

to be adequate for each role and to include not only the what to do, how to do and hands on

components but also the why shall we do it, what will we achieve and how do we see it (R12).
Top management needs to set goals, plan gradual institutionalisation, monitor and reward (R14).
However, when organisations are large they should consider even more gradual dissemination,

spreading practices in a small group of projects and gradually involving new ones, which can be

done also profiting from team members’ mobility. For that it is essential that they understand the

processes. To have people commitment it is crucial that they understand the new practices, which

can be achieved by coaching projects and people (Humphrey, 2006), guiding and accompanying

them (R13).

4.5 Procedures 77

Metrics and processes definitions mature when used in practice because it is when problems

arise that it becomes more evident how procedures can actually be done. It is necessary to give

some time to let processes and metrics mature before producing their final versions. (R15)

Metrics Definition
To establish business objectives and identify the indicators of the processes performance, or-

ganisations can use methods such as the goal-driven measurement (Park et al., 1996) (R16).
Understanding metrics is a process that is completed when projects are using them as the final

processes define. It is utterly necessary to train the entire organisation without undervaluing the

effort in such tasks (R18).
Measures need to be defined with a set of repeatable rules for collecting and unambiguously

understanding data and what they represent (Florac et al., 2000), if different people use them

differently, then their definition is inadequate. The level of detail of metrics needs to be completely

defined, understood (R17) and to consider the different types of projects’ context, including the

technology used (R19). For example, in some technologies there are more KLOC, the time to

execute unit tests is negligible, etc. Another example is project type: outsourced, maintenance

and development projects, for instance, will have different measurement and control needs. Those

factors affect the metrics definition.

Define basic software processes about which data should be collected, then concatenate and

decompose data in different ways to provide adequate information at project and organisation

levels (Kitchenham et al., 2006). If necessary, data should be normalised to make them visible to

top management. (R20, R24). It is preferable to begin with a sub-process executed often and with

a small number of variables so results come faster (R21). When the process is stable, then extend

to other processes and more complex ones (Florac et al., 2000).

Metrics databases take time to become stable and allow the construction of relevant PPM and

PPB. The data need to be categorised (R23). (Florac et al., 2000) refer to this process as “sepa-

rating or stratifying data that belong to the same cause system”. Nonetheless, to have adequate

categorisation it is necessary that the different projects fully cycle to completion. Either the organ-

isation has a significant number of concurrent projects with small lifecycles or it begins to work

with first limited baselines that evolve with time. (R22)
Pilot projects are useful for stabilising processes, procedures and tools. The way people use

tools may change the way metrics should be collected. Only after those projects are over and the

practices are clearly defined, will the organisation be ready for training, the processes/procedures

and tools be fully and correctly documented and people be able to learn and apply the practices.

Changes may then be deployed so that processes become institutionalised.

Metrics Usage
Certain outliers can be removed from databases but it is necessary to pay attention to those

not immediately understood. They can indicate that a process is having a new behaviour (better or

worse performance), be a common situation or indicate the existence of a different process, with

78 The EQualPI Framework

a different behaviour and therefore originate new sub-processes (Florac et al., 2000). One way

of avoiding the error of abusively eliminating such outliers is to monitor the process without the

outlier in parallel to the process with the outlier, then decide the most adequate action:

• perform CAR;

• eliminate the outlier;

• establish a new baseline because process performance improved;

• create new sub-processes, in case of having sub-processes.

Florac et al. (2000) give an example of how to do it. (R25, R26).
Regarding effort estimation, expert judgment is more adequate in certain circumstances, in par-

ticular when there is absolutely no previous knowledge of the project (Grimstad and Jorgensen,

2006) (R28). Effort estimation does not necessarily need to be based on KLOC to be based on

historical data; it can be based on other size metrics, phase duration or the time spent on task (R27,
R29). When no data are available at all do iterative planning, so that when data from a previous

cycle are available they can be used to plan the following (R30). To have useful, reliable data, the

personal data shall not be used for evaluation purposes (R31).

Tools Setup
Manual data collection is time-consuming and error prone (Hamon and Pinette, 2010), so it

should be automated. To avoid overhead in the collection process, the information system needs

to have limited human intervention, e.g., reporting effort and measuring code. Effort spent on

different software applications for doing the tasks may be measured and part of the effort automat-

ically labelled; the person only verifies and corrects eventual errors by the end of a block of tasks.

This avoids forgetting to report effort or constantly interrupting tasks to manually report. The

information system should be composed by automatic storage tools connected to the development

environment (Johnson et al., 2005). (R35) It is imperative that data collection is precise, if it was

not so previously, people need to change their mentality and display discipline (R36).
It is important to understand that tools need time to be set up, especially when evolving exis-

tent ones (R32). The data collected when correcting those tools defects, which have impact on the

definition of the metrics and of the process should not be used to build PPB, because the process is

not stable. For the same reason, PPM may also need to be recalibrated, for example. (R33, R34)

We compile all problems and recommendations in a checklist (see table in figure 4.19) to

be used by organisations when implementing CMMI. The checklist provides guidance in the se-

quence of what shall be done to implement CMMI, gives organisations focus in the model as a

whole, and not only a single target level to be achieved, and includes the problems that organisa-

tions should be aware of in order to avoid them.

4.5 Procedures 79

Figure 4.19: CMMI Implementation Checklist: list of activities to follow in order to avoid com-
mon problems.

80 The EQualPI Framework

When using EQualPI to support the implementation of CMMI, the organisation can load their

processes and methods following the setup steps(4.4 Manage Configurations). After setting up

the framework, the organisation will have the methods aligned with practices and performance

indicators. The next step is to load the data. The processes may be unstable but the results shown

by the framework will reflect the processes and data in place in the organisation at a given time.

Therefore, as processes are changed so is the framework. The organisation will be able to see the

evolution of their CMMI implementation throughout time.

4.5.3 MA Recommendations for High Maturity

We did an analysis of the reports on two SEI surveys (discussed in 3.2 Survey on MA Performance

in HML Organisations) and their data (detailed in 5.2.1 Further analysis of the HML Survey Data)

to find recommendations for process performance that were related with organisations achieving

high maturity.

MA plays an important role on HML, including in the definition and use of PPM and PPB. We

complemented the statistical analysis done by Goldenson et al. (2008); McCurley and Goldenson

(2010), who analysed the relations between factors that contribute to see value in the PPM imple-

mented, and focused on the factors that related with organisations achieving the desired CMMI

goal. The recommendations are compiled in table 4.1.

Table 4.1: MA recommendations for HML (based on (Goldenson et al., 2008; McCurley and
Goldenson, 2010; Lopes Margarido et al., 2013))

Purpose Recommendation
Building Valuable Put emphasis on "healthy ingredients"

Models With purposes consistent with "healthy ingredients"

Diversity of models to predict product quality

Diversity of models to predict process performance

Use statistical methods: regression analysis for prediction, analaysis of

variance, SPC control charts, designs of experiments

Data quality and integrity checks

Use simulation or optimization methods: Monte Carlo simulation, dis-

crete event simulation, Markov or Petri-Net models, probabilistic mod-

els, neural networks, optimization

Factors related
with HML CMMI

Have good documentation relative to process performance and quality

measurement results

goal achievement Use simulation/optimisation techniques

Have diverse methods of simulation/optimisation

Have models with emphasis on "healthy ingredients"

Have models for purposes consistent with "healthy ingredients"

Continued on next page

4.5 Procedures 81

Table 4.1 – Continued from previous page

Purpose Recommendation
Substantially use statistical techniques

Regularly use PPM in status and milestones reviews

Managers must understand well PPM and PPB, which is related with

the following two

PPM and PPB creators must understand the PPM and PPB definition

given by CMMI

PPM and PPB creators must understand when PPM and PPB are useful

Have experts available to work in PPM

Distinguish missing data from zeros

Check data precision and accuracy

4.5.4 Process Improvements

Doing a process improvement involves steps that are common regardless what the organisation

intends to change but also have particularities. There are several methodologies that can be used

(e.g. DMAIC, PDCA) and it is not our intention to provide a new one. As well, explaining how

process improvements shall be carried is out of the scope of this thesis. Therefore, we stick to steps

we followed in a process improvement experiment we did1, and highlight important elements to

consider while doing the process improvement. Our improvement was piloted with undergradu-

ates and graduated students, and was later implemented in an HML organisation that is currently

using it.

Step 1 - Identify a need and characterise the current process
The first step of process improvements is the identification of a need, for example: an organisa-

tion may want to achieve a business goal that cannot be attained in the current organisation setting,

or the organisation may be facing a problem that needs to be solved as it is affecting business. - In

our experiment the need was to reduce the number of defects from the requirements phase, only

detected in posterior phases of the software development cycle.

When the need exists it is necessary to find why the need cannot be fulfilled in the current

setting, the root cause of the problem or which processes can be changed to achieve the goal.

- Our target process area was Requirements Management more specifically the process Review
Requirements. In the case our process improvement, to detect defects more effectively in re-

quirement reviews, we gathered a defect classification taxonomy, specific for requirements.

It is important to be able to measure improvements otherwise it is not possible to determine

if they were beneficial or nefarious. It is necessary to determine the performance indicators that

1The experiment is detailed in 5.3 Requirements Process Improvement.

82 The EQualPI Framework

need to be monitored and create a baseline of those indicators. When EQualPI is used to monitor

process improvements that task is eased because it is even possible to detect the effect of the im-

provement in other processes by monitoring other indicators. The baseline provides the state of the

current process, as is, including the indicators values in that state. At this stage the improvement

is characterised in terms of what is the need and the goal to achieve.

Step 2 - Identify and define improvement
It is necessary to determine the changes to implement, what methods will be used and what

metrics can be used to monitor the changes. In any process improvement it is necessary to have

selection criteria to determine the methods to use. In case of having a problem to solve whose

origin is unknown one must select an adequate set of metrics to monitor and analyse them to de-

termine the root cause of the problem and help define a solution for it. - In the case of piloting our

improvement in an organisation, it would be necessary to understand the number of defects that

were detected in posterior development phases that were due to requirements defects. Therefore,

the metrics to monitor would be the defects per phase originated in the requirements phase.

Step 3 - Determine selection criteria and select improvement methods accordingly
This step is specific of what we did to design our improvement, and may only be applicable on

similar ones.

In our case we had to assemble a classifiers list. We reviewed the literature to find what defects

classifications were used and which ones where specific/more adequate to classify requirements

defects. Another aspect we had to find were what recommendations there were on how to correctly

define a classification list.

Freimut et al. (2005) indicated the quality properties of a good classification scheme, that we

used as a reference while assembling the classification of requirements defects.

Step 4 - Set improvement goals and how to validate them
Organisations have to ensure that improvements are not only effective but also efficient so

they must guarantee a return of investment (ROI). If our improvement was to be done in an or-

ganisation it would be necessary to analyse the costs of requirements reviews and of fixing defects

in development phase. The current costs and goals to achieve would have to be documented. A

simulator could be used to predict the ROI of the improvement, where the costs of training people

and updating tools would also be considered.

In the organisation setting, to test our process improvement, the final number of defects per

phase originated in the requirements phase would have to reduce to consider the improvement to

be successful. In our setting, we had the goal of ensuring that the classification list was useful

to classify requirements defects and classification by different people would be uniform. We

designed our experiment to ensure people understood the list, the classifiers and defects were

not confounded so different people would classify them the same way. The validation was done

measuring the level of concordance of individuals when classifying the same defect. Formalising

the hypothesis H, when reviewing requirements specifications:

4.5 Procedures 83

H0 - all subjects use the same value to classify the type of a defect.

H1 - not all subjects use the same value to classify the type of a defect.

We did a Cochran test that is binomial, so we considered that when the subjects chose the most

used classifier they answered as the majority (1) and when they used any other classifier, they

chose other (0). We used the Fleiss’ kappa to measure the level of agreement between subjects to

classify the same defect.

In any improvement that involves classification a similar experiment design can be used. In

some cases, one way of evaluating people’s adherence to process is using a survey.

Step 5 - Pilot the process improvement
To pilot improvements it is necessary to select projects for doing the improvement, include a

control group that follows the current practices and projects using the new practices. The criteria

to select pilots can vary, but here are some examples:

• Projects with effort and cost margin, to ensure the team has time to follow new practices

without compromising the project’s successful completion;

• Projects of short duration, to get results faster, in case the improvement does not require a

given project size.

The teams need to receive training in the methods that are going to be applied. In the case

of our experiment we gave the subjects instructions on how to participate in the experiment and

included a table with the definition of each defect type and an example of how to use it.

Step 6 - Analyse pilot results
Analyse the results of the pilot to verify if the improvement actually occur, the impact on the

indicators monitored and weather the improvement needs refinement and a new pilot or not. Re-

peat steps 2, 3, 4 and 5 as needed.

Step 7 - Prepare final version
When applicable

In our case would be update existing tools, include tool tips to help people remember defini-

tions, include definitions and examples on help. Test tools in pilot projects, to test them and use in

practice in order to refine as needed, train all teams.

Step 8 - Progressively deploy and control
Do the progressive deployment as indicated in 4.4 Manage Configurations, while controlling

the indicators.

84 The EQualPI Framework

Chapter 5

EQualPI Validation

In this chapter we present the validation to the EQualPI and its components. We defined and val-

idated the framework based on the literature reviews, using metamodelling and data modelling,

conducting case studies, conducting data analysis on surveys and organisations’ projects, build-

ing regression models using those data, and conducting quasi-experiements. In all our statistical

analyses we considered a confidence interval of 95%, α or significance level of 0.05.

The model provided with EQualPI was generated through the analysis of SEI TSP data. The

recommendations gathered to implement CMMI resulted of three case studies, conducted on or-

ganisations rated at CMMI level 5, a literature review and further analysis of data of a survey

conducted by the SEI and involving organisations that were appraised at HML. The recommenda-

tions of process improvements are based on the researchers experience in the software engineering

industry, experiments conducted with students and adoption of the improvement we designed and

validated in an organisation.

5.1 Evaluation of the Estimation Process

Considering the Effort Estimation Evaluation Model (4.3.2 Effort Estimation Evaluation Model)

included on the EQualPI module Performance Indicators Models the model is not an effort

estimator. There are many models and simulators of effort or cost estimation in the literature

(3.4 Related Research on Effort Estimation), and it is not our intention to develop a new one,

but to develop a framework to evaluate the quality of the CMMI practices, demonstrated on PP

SP1.4. To determine the quality of implementation of the practice "Estimate Effort" we used

Effort Estimation Accuracy, defined by controllable and non-controllable factors. Similarly to

the effort/cost estimation models or simulators, the data of these factors is used to determine the

effort estimation accuracy. We summarise the reseach work done to build the Effort Estimation

Evaluation Model in table 5.1.

In our research we reviewed TSP to identify performance indicators that could be applied

in the characterisation of Effort Estimation Accuracy. Tamura (2009), provides the arguments to

follow this approach and gives three examples of PPMs built with TSP data. TSP teams collect all

85

86 EQualPI Validation

Table 5.1: Summary of information of the validation of the package Performance Indicators Mod-
els.

Label Description
Motivation Demonstrate the feasibility of the framework by implementing an indicator

model to measure the quality of implementation of "Estimate Effort" defining
the percentage of controllable and non-controllable factors.
Define the framework data dictionary, including specific information for the
model being implemented.

Method Do a literature review on research that analyse effort estimation models to val-
idate hypothesis, define the performance indicator to use, classify the factors
used on effort estimation into controllable and non-controllable and design the
experiment.
Apply data analysis methods to build the regression model.

Results Defined the data dictionary and respective data model.
Identified additional recommendations on building tools to collect and store
process execution data to avoid the difficulties we found.
Produced a model to evaluate the quality of implementation of "Effort Estima-
tion", and TSP models of "Actual Hours".

base measures necessary to control performance and understand the status of a project, and predict

its course to completion. With other sources of information they can be used to design process

performance models. Such measures, systematically collected by the team, give fine grained detail

of size, defects, effort and schedule. The quality and reliability of the data is fundamental to build

the PPMs needed for CMMI HML.

Jørgensen (2007), showed similar concerns to the one that leads us to evaluate the quality

of the estimation process rather than developing another effort estimation model, questioning the

"effect of issues of system dynamics on the meaningfulness of accuracy measurement, and prob-

lems related to the outcome-focus of the measurement, i.e., the fact that we are only evaluating

the outcome of an estimation process and not the estimation process itself." He also points out

problems related with the definition and interpretation of the term effort estimates. The people

giving estimates may not know how they will be interpreted and estimates from analogy-based

models may not be comparable with the ones from regression-based models. Since optimization

functions can differ some models can systematically provide higher estimates than others.

5.1.1 Data Dictionary

The definition of the EQualPi’s data dictionary was based not only in the effort estimation literature

review but also in the analysis of the TSP framework, as it includes several metrics that allow to

plan, manage and control the entire software development process.

In TSP, software development teams collect data for several metrics useful to fully charac-

terise the software development process in terms of how the product was built, how effective it is

and how efficient the development process was. Furthermore, by iterative planning development

5.1 Evaluation of the Estimation Process 87

and applying the PROBE method the information used in TSP to plan the activities necessary to

develop the product highly contributes to more accurately define which functionalities the product

will have, the activities necessary to build and verify it and the effort necessary to conduct all

activities.

In our research we analysed the several sources of TSP data in order to define the variables

that are considered and determine their source. We built a data dictionary defining all the variables

and from it the TSP Database was built, which is a repository of a considerable large amount of

data that was validated by the SEI.

The data dictionary, as it is based in TSP metrics, is useful for researchers that intend to analyse

TSP data, due to the fact that it fully covers the software development lifecycle, and to TSP teams

so they become aware of where the data are when they need to analyse them and fully benefit from

them.

We developed a data dictionary to describe all TSP variables that are recorded by TSP teams.

The data dictionary allowed the creation of the TSP Database where all TSP projects data that were

provided by TSP practitioners to the SEI are stored. The use case of the database is presented in

figure 5.1.

TSP data can be stored in the TSP workbook and PSP workbook, which are Excel documents

that can be obtained here (http://www.sei.cmu.edu/tsp/tools/tspi-form.cfm), or using the Dash-

board, which is a tool that can be obtained here (http://www.processdash.com/). Organisations

can also have their own tools to store the TSP data so for those organisations the data dictionary

columns Primary Source and Secondary Source work only as a reference to remind them of

what variables we are referring to. The data can also be stored in the TSP Launch, Team Survey,

TSP Postmortem, Quality Plan, Training Records or in Meeting 1: Management Presentation, for

example. The TSP User collects, compiles and verifies the integrity of the TSP/PSP data. The

data is analysed during the project by the team, on the progress and post-mortem meetings, and

each team member analyses its own data. The data is reused to plan subsequent project cycles and

projects.

The TSP Database includes data of projects from different organisations using TSP, who are

the Source of data. TSP Organisations can use the TSP Database data to compare their results

and/or use it as historical data for estimation, in projects where they do not have their own data.

Researchers in general can use the data not only to conduct their research but also to compare their

results.

5.1.2 Data Extraction and Characterization

We received a list of projects, already with aggregation of plan and actual variables and validation

of the individual effort records (through the Benford statistic). We also had access to the TSP

database of workbooks, from where we extracted the data required by the data dictionary, including

the one needed to analyse the estimation process. The data table that included the information we

could "reverse analyse" to understand the estimation process used was related to the tasks. We

extracted tasks with actual hours higher than 0, which had a size estimate. Even though, this

88 EQualPI Validation

TSP Database

Source

TSP User

TSP
Researcher

Software Engineering
Researcher

TSP
Organisation

Collect Data

Analyse Data

Analyse Data

Benchmarking

TSP Variable

«column»
 Level
 Type of Value
 Name
*PK Data Element Name
 Description
 Valid Values
 Limits or Data Validation
 Missing Value
 Primary Source
 Secondary Source

«PK»
+ PK_TSPVariable()

«read»

«flow»

«invokes»

«invokes»

«invokes»«invokes»

«invokes»

«write»

*1

Figure 5.1: Use case of the TSP Database.

procedure introduces the researcher bias, we cannot assure that the reason for the time to be zero

is overestimation or the workbook is incomplete. Thus, we only gathered data of completed tasks.

In our data analysis we wanted to use variables based on estimated, planned and actual values

of effort, time in task measured in hours, size and defects in the dimensions number of detected

defects and time spent fixing them. We observed that only two workbooks had planned injected

defects 1, none of them planned injected defects in documentation (in TSP the considered docu-

ments are requirements, design, detailed design) and no workbook had estimated defects removed.

Consequently, we did not consider defects estimation and respective effort in the model.

We tend to think that there are phases were defects are injected and phases where they are

removed, when the filters are used. However, the database shows injected defects in phases that

are of defects removal. This behaviour could be expected in testing phases, as it is common

that solving a problem may inject a defect when developers do not consider all dependencies,

but, interestingly enough, we also found defects injected in code inspections and reviews, where

1After cleaning duplicates there was just one project that estimated defects injected

5.1 Evaluation of the Estimation Process 89

normally we would not expect the injection of defects. We want to alert organisations to these

facts, so they consider them when planning their projects. We noticed that teams had planned the

defects injected per phase but did not plan the defects removed per phase.

5.1.3 Data Munging

The TSP Database had information of 257 workbooks, of which 234 had size estimates, while the

consolidated projects list only had 114, four of which were not present in the database version we

analysed. When checking for the data to guarantee uniqueness of projects there is no field that

allows us to group all workbooks of the same project together and the ones in the consolidated

list were classified with the ID of the workbook. We found several duplicates that we removed,

finishing with a sample of 88 projects to analyse. Of those, six do not have any part measured in

LOC, reducing the sample to 82 projects.

We removed duplicated workbooks just keeping the most recent version with more complete

information, using the following check criteria to find similar data:

• Same number of defects or consistently increasing number of defects on the same phases;

• Defects with the same descriptions;

• Same increasing schedule, i.e. sharing start week and having increasing number of weeks,

increasing actual/plan in last weeks hours, same actual/plan hours in the same completed

weeks and same Plan Schedule;

• Same team members on tasks with the same descriptions.

We also noted 352 tasks with Plan Hours equal to 0. Of those, 38 were estimated, as they

had estimated hours but the number of engineers was 0, hence, when multiplied the plan hours

resulted in 0. A total of 348 tasks with 0 planned hours were did not use the estimate, which

could mean they were not considered when the plan was consolidated. The other tasks without

estimated hours were not estimated at all. They could be considered as estimated but not executed

but being a small number and not having information to understand the reason for that to happen

we removed those data points (0,5% of the sample).

After cleaning the data we ensured that was correctly classified, in the case of nominal vari-

ables, for that we needed clear factors. That was the case of the variables Size Measure and

Phase Name, on both we found several values to describe the same factor, incorrectly increasing

the number of factors. The Size Measure factors went from 75 to 28 levels, while the 30 levels of

Phase factors were corrected and reduced to 23. In the case of the Size Measure we found several

Components (or parts) with same ID and Size, only having size measure in some of the devel-

opment phases, so we did the correction, when possible, analysing them case by case. Similarly,

we corrected when possible missing values of other Phases that corresponded to parts of the same

size.

90 EQualPI Validation

5.1.4 Process Variables Definition and Data Aggregation

We defined the Process Variables based on the TSP planning and quality plan guidelines (Humphrey,

2006). Table 5.2 indicates the recommended values of the TSP Guidelines that we considered to

define the Process Variables that are indicated on table 5.3 which also includes a brief description.

Table 5.2: TSP Planning and Quality Plan Guidelines (Humphrey, 2006) that we considered in
our model.

Variable Guideline Value
RequirementsInspection/Requirements > 0.25
HighLevelDesignInspection/HighLevelDesign > 0.5
DetailedDesignReview/DetailedDesign > 0.5
DetailedDesign/Coding > 1
CodeReview/Coding > 0.5
Detailed Design 22.1%
Detailed Design Review 11.1%
Detailed Design Inspection 8.8%
Coding 20.0%
Code Review 10.0%
Compiling 3.4%
Code Inspection 8.8%
Unit Test 15.8%
Rate per Hour for New or Large modifications 10 LOC/hour
Small Changes to Large Systems 5 LOC per hour
Code Reviewed per Hour < 200 LOC/hour

We defined the variables at task level, component level and project level. Not all variables are

interpretable at task and component level, for example at task level that is the case of ratio vari-

ables, based on two development phases, because each task has just one phase. Hence, we built

the model at the project level. The aggregation at component level was not possible by simply

stating that a component or part has a unique ID, as we did to define the project ID, that after

removing duplicates could be unequivocally identified. Therefore, we defined the component as

the parts with same ID implemented in the same project, which have same Size, use the same Size
Measure and are estimated at the same Rate per Hour. These conditions are necessary to deter-

mine the value of certain Process Variables that depend on the component total estimated, planned

and actual times. Additionally, we need to consider that at task level many of the guidelines are

defined as followed, 0, or not followed, 1, but when aggregated at component or project level they

are determined as a percentage of tasks or components where the guideline was followed.

In the case of times, ratios and rate guidelines, if a project did not follow a guideline to estimate

that may mean that they used their TSP historical data or such data did not exist for the particular

project and the guidelines were not suitable in that context. Consequently, the estimates may have

been based on an industry benchmark or expert judgement, as found to be more adequate for the

particular project/team.

5.1 Evaluation of the Estimation Process 91

Table 5.3: Process Variables used to verify process compliance or determine the value of the
planned metrics that define the process variable.

Variable Description
Size Used Percentage of tasks that used the size estimate to plan the hours spent

in a task by multiplying the size by the estimated hours and number of
engineers.

<Phase> Percent-
age

Considering all phases of the project, percentage of time spent on a
given Phase (e.g. Requirements).

<Implementation
Phase> Percent-
age

Considering only implementation phases, percentage of time planned
to be spent in that particular phase (see implementation phases in 2.5
Effort Estimation in CMMI and TSP).

<Implementation
Phase> Allocation
Percentage

Considering only implementation phases, percentage of the allocation
guideline recommended to be planned to spend in that particular phase.

<Defect Insertion
Phase> / <Defect
Removal Phase>
Value

Ratio between the time planned for a reviewing or inspection phase and
the corresponding defect insertion phase, e.g. between Code Inspections
and Coding.

<Defect Insertion
Phase> / <Defect
Removal Phase>
Followed

Percentage of tasks or components where the respective estimated defect
insertion and removal time were planned following the guideline

Implementation
Rate

Percentage of tasks or components that used the implementation rate
guidelines

Review Rate Percentage of tasks or components, with code review phases (Code In-
spection or Code Review) that followed the recommended review rates.

5.1.5 TSP Estimation Model

To better understand the the effects of the variables resulting of the estimation process we built

a model, that we called TSP Estimation Model, using them as independent variables. The first

model was done to confirm that the variable Planned Hours is more correlated with Actual Hours

than the variable Estimated Hours, because the plan already considers number of engineers, for

example. The variable plan hours has a very high correlation with actual hours, in fact the model

has an Adjusted R Square of 92,8%.

Actual = f (Plan) : ActHrs = β0 +β1PlanHours (5.1)

ActualHours : ActHrs = 24,692+1,164PlanHours (5.2)

We built the regression model of actual hours, Actual 1, as a function of the data gathered to

build the plan, showing the variables that for these data explain actual hours, i.e. variables of time,

estimated using TSP. The model has an Adjusted R Square of 88,8%, and its equation is expressed

92 EQualPI Validation

in 5.3.

ActualHours1 = f (est.param.) : ActHrs =−222,122+3,317CodeInspTime+1,048CodeTime+

+1,465DLDTime+24,496TeamSize+9,248CompileTime
(5.3)

The estimates could not be done without considering the estimated size and implementation

and review rates, or considering the time to execute similar tasks. Therefore, we include the pa-

rameters of estimated size and rate per hour used considering the TSP guidelines or using historical

data, which still results on a significant regression model (significance of 0.000), but two of the

added parameters are not significant (>= 0,05). Regardless, the Adjusted R Square of the model

in equation 5.4 is slightly higher than the one that only considers significant variables, and still

explains 89,1% of the variability with a 0,000 significance level.

ActualHours2 = f (ad.est.param.) : ActHrs = 13,075+0,01PlanSize+3,724CodeInspTime+

+0,96CodeTime+1,333DLDTime+20,565TeamSize+7,835CompileTime+

+73,384ImplementationRate−258,555ReviewRate
(5.4)

We present all the coefficients and respective significance of the Actual Hours models on 5.2.

This indicates which variables of the plan actually explain 89% of the time of the actual hours,

how accurate the plan was or if it was followed or not.

Figure 5.2: Actual models coefficients. The significant ones are signalled in bold.

The TSP model is already accurate as can be seen from the adjusted R Squares of equations 5.2,

5.3 and 5.4. However, there is still a deviation from the actual results, 11% that is not explained.

The EEA model was developed help explain the deviation and know which variables should be

considered to improve it. It can be used with two purposes:

• Evaluate the quality of estimation when planning a project by predicting the deviation from

the actual that will be expected;

5.1 Evaluation of the Estimation Process 93

• Support the decision makers whether to act on the expected deviation or not, by acting over

the model variables to reduce the EEA.

5.1.6 Effort Estimation Accuracy Model

As we were doing multivariate analysis we ensured that our continuous variables were standard-

ised. For that reason we used percentages of time in phase (in the overall project and regarding

the development phases), and the ratios between phases duration, similarly to the definitions of the

TSP guidelines themselves. We studied the effects of the independent variables individually on

the dependent variable EEA (4.3) and MER. With this we could anticipate which predictors would

be part of the model. Nonetheless, we also took into consideration that, when analysed together,

the effects of the predictors are different.

Figure 5.3 presents the histogram and the descriptive statistics of each dependent variable.

None of them follows the normal distribution. The EEA is slightly positively skewed, while MER

is much more positively skewed.

Our requirements for the model, being aware that the adjusted R Square could be low, were:

• Be a significant model (level of significance < 0.05);

• Only Have significant coefficients;

• Prevent model over-fitting by having a reasonable number of k coefficients in the model

when compared to the number n of subjects.

Regarding the last rule k should follow the equation 5.5:

Numbero fCoe f f icients : k <
n
3

or k <
n

10
(5.5)

The number of observations in our case was 82 projects, so keeping the number of regressors

lower or equal to 8 allows us to respect the rule to prevent over-fitting .

We decided not to do any transformations to the variables to improve precision because the

goal of the research was to provide additional information that can be interpreted and explained

and ready to use by practitioners. Firstly we tested a model considering all the guidelines variables

using SPSS Automatic Linear Modelling using the Forward Stepwise method, using the Informa-

tion Criterion for entry/removal, to select the variables that are significant to the model and have an

effect in the dependent variable. In the automatic model generation SPSS trims outliers, replaces

missing values and transforms the variables, and therefore we just used it to guide us in the right

variables selection. Next we did a linear regression, considering only the variables considered on

the last step of the model, using the Enter regression method and Pairwise cases to handle miss-

ing values. We opted to use Enter because we wanted to check the individual contribution of the

variables that, together, improve the prediction of the dependent variable and if any of them were

not significant to the model we would removed a posterior execution. We selected the Pairwise

method instead of the Listwise since only one project had data for all the variables. Moreover,

94 EQualPI Validation

Figure 5.3: EEA and MER histograms and statistics. The upper graph and table refers to EEA and
the lower to MER.

we considered inadequate to replace missing values by means or medians as the missing cases

could either mean that the projects did not use those phases, or the workbook in the TSP database

was incomplete, e.g. corresponding to an intermediate cycle of the project. The procedure lead

to a statistically significant model with adjusted R Square of 0,295 and 4 coefficients, all of them

significant as well. This means that the model explains 29,5% of the variability of the data not by

chance.

Even though the automatic regression model identified outliers (see figure 5.4), we decided

not to remove them since we did not have context to explain those cases. If we removed them the

5.1 Evaluation of the Estimation Process 95

Adjusted R Square of the model would increase but that could also result in model overfit, given

the reduced number of projects and their diversity.

Figure 5.4: EEA and MER models outliers.

The significance level and coefficients of the variables used on each model are presented on

the table in figure 5.5. The ones marked in bold are significant.

The model for the Effort Estimation Accuracy, measured with EEA is the one on equation 5.6.

E f f ortEstimationAccuracy : EEA =β0 +β1DLDRPerc+β2CODEINSPPercDev+

+β3CRCODEVal +β4CMMI + ε

(5.6)

β0 is the intercept, CMMI could also be considered a factor model that varies from 1 to 5, even

though 4 is not represented in the sample data that we analysed. A change of 1 unit on each of the

coefficients individually represents a change of βn units in the Effort Estimation Accuracy. "The

error term ε represents all sources of unmeasured and unmodelled random variation (Leek2013)"

in the Effort Estimation Accuracy. With the data we used, βn assume the values indicated on the

regression model in equation 5.7.

EEA =0,251−0,032×DLDRPerc−0,019×CODEINSPPercDev+

+0,683×CRCODEVal +0,142×CMMI + ε

(5.7)

The model can be used by practitioners to evaluate the expected accuracy of their effort esti-

mation process, and improve it by varying the coefficients. Knowing that a variation of 1 unit in

the percentage of total project time spent reviewing the Detailed Design will cause a decrease in

the EEA of around 0,251, if the variation is on the percentage of time spent on the development

phases to do Code Inspections will cause a decrease of aorund -0,019 on EEA. The effect of vary-

ing one unit in the ratio between time spent on code reviews and time spent coding will increase

96 EQualPI Validation

the EEA in 0,683 and the level of CMMI increases the EEA in 0,142.

We did a regression model for MER as well, because from the indicators commonly used

in Software Engineering when comparing estimation models(see 3.4 Related Research on Effort

Estimation), MER measures the inaccuracy relative to the estimate (Foss et al., 2003). Both

dependent variables are modelled by the same coefficients but with different magnitude. The

Adjusted R Square of MER is slightly higher, 31,8%. The MER Model is presented on equation

5.8.

Magnitudeo f ErrorRelative : MER =β0 +β1DLDRPerc+β2CODEINSPPercDev+

+β3CRCODEVal +β4CMMI + ε

(5.8)

MER =0,386−0,031×DLDRPerc−0,020×CODEINSPPercDev+

+0,560×CRCODEVal +0,118×CMMI + ε

(5.9)

A variation of 1 unit in the percentage of total project time spent reviewing the Detailed Design

will cause a decrease in the MER of around 0,031, if the variation is on the percentage of time

spent on the development phases to do Code Inspections will cause a decrease of around -0,02 on

MER. The effect of varying one unit in the ratio between time spent on code reviews and time

spent coding will increase the MER in 0,560 and the level of CMMI increases the MER in 0,118.

On figure 5.5 we present the coefficients data of the EEA and MER models. The standard

error of the coefficients is lower on MER. All our models, have less than 8 variables, respecting

the rule to avoid overfit.

Figure 5.5: EEA and MER coefficients: Beta, Standard Error and Significance

Both models are summarised on table 5.4. The respective ANOVA can be found on table 5.5.

The MER regression model explains more variability than the EEA. We used the Durbin-Watson

to test the null hypothesis, that there is no autocorrelation between the residuals. Both models

present a value higher than the upper Durbin-Watson Statistic for models with K = 4 regressors

and n = 82 subjects (> 1,743) and the test statistic is close but still lower than 2, so the residuals

are not auto-correlated.

We had very few projects of organisations appraised at CMMI, none of them at level 4. We

noticed that the organisations with CMMI level 5 had worse EEA and MER. That fact cannot

5.1 Evaluation of the Estimation Process 97

be explained with the data we had but perhaps those organisations were just starting to use TSP,

having no TSP historical data yet.

Table 5.4: EEA and MER Models summaries.

Parameter EEA MER
R (Person’s coef.) 0,586 0,604
R Square 0,343 0,364
Adjusted R Sq. 0,295 0,318
Est. Std. Error 0,304 0,265
Durbin Watson 1,880 1,970

Table 5.5: EEA and MER ANOVA

Parameter EEA MER
Regession Sum of Squares 2,663 2,216

Degrees of Freedom 4 4

Mean Square 0,666 0,554

F Statistic 7,185 7,885

Significance 0,000 0,000

Residual Sum of Squares 5,095 3,864

Degrees of Freedom 55 55

Mean Square 0,093 0,070

Total Sum of Squares 7,758 6,079

Degrees of Freedom 59 59

5.1.7 Cross Validation of the Standard Error

Considering the already small number of projects and the fact that not all of them have values for

all variables we decided to use the entire data set to train the model and estimate its error using

cross validation of the models instead of using a training and test set, i.e. using part of the sample

to generate the regression model and the test set to verify its prediction error.

We created k-fold where k was 4, resulting in 4 samples, one of them with 22 projects and the

remainder 3 with 20. Then, we used the Standard Deviation (3.8) of the residual error to determine

the mean error of the 4 folds. The results are summarised in table.

Even though the MER model is more accurate, having lower error and explaining a higher

percentage of the data variability, we opted to display both of them because if the practitioner

wants to distinguish over and underestimation the information is available on the EEA model.

98 EQualPI Validation

Table 5.6: 4-fold cross validation of the standard error of the estimates of the models EEA and
MER.

Test Set EEA MER Nr. Projs.
Sample 1 0,2903 0,2460 22
Sample 2 0,4336 0,3965 20
Sample 3 0,3162 0,2703 20
Sample 4 0,3144 0,2535 20
Mean SD 0,3386 0,2916 Total: 82

5.1.8 Limits to Generalisation and Dataset Improvements

The models we built would be more complete if we had a sample with more projects where the dif-

ferent TSP planning procedures had been followed and all phases were included. When checking

the variables correlations we noticed that Requirements, Requirements Inspections, High Level

Design and High Level Inspections and the corresponding Process Variables would be relevant to

this research. Furthermore, even though we are aware that it is harder for people to accurately

estimate injected and removed defects (especially injected) the model could have considered such

estimates, if we had the data. However, just having a single data point does not allow us to reach

any conclusions. These variables should be considered because when executing the project the

actual defects have influence on the quality of the product and require time to be fixed, affecting

the actual hours. If the data is available, new Process Variables should be designed based on phase

yields, percentage defect free, defect density, defect injection and removal rates, as defined by

Humphrey (2006).

We introduced researcher bias when extracted only projects with plan and actual zero, however

some tasks may have not been planned and still have been added to the records and executed

and some tasks may have been planned but may have not been completed. This decision was

consciously taken as the status of the workbooks may not have been the final (end of project),

therefore we could not be certain of the reasons for them to be 0 and whether they should be kept

or not.

We found several missing values and different case/naming for the same values that could

have been avoided by providing dropdown lists, auto-complete and some automation. For project

execution purposes it may not have been a problem as engineers already knew the meaning of

the information, but the analysis of the workbooks for Quality reviews and now for research pur-

poses could benefit from ensuring mandatory information and auto-complete whenever possible.

It is important to use uniform and phase names and size measures to ensure they are not named

similarly, affecting posterior data analysis. It is also important to ensure people understand the

definition of the phase name and size measure value to avoid the creation of new ones due to lack

of understanding.

We also reviewed the workbooks to identify those that were a different version of the same

project. Currently there is no workbook versioning in the database, each version gets a new work-

5.2 CMMI HML Implementation 99

book ID. It is important to ensure the database has a versioning mechanism of workbooks, so when

an existent one is updated, instead of receiving a new ID it gets a new version, time stamped, that

allows sequencing sequencing. So researchers can choose to analyse the same project over time

or only analyse the latest version.

5.2 CMMI HML Implementation

This section refers to the validation of the CMMI implementation procedures presented on 4.5.2 -

CMMI Implementation. The purpose of this research was to identify problems and challenges that

the organisations face when implementing CMMI, in particular ML 4 and 5, find recommendations

to help implementing CMMI to avoid those problems and identify factors that are relevant to

achieve HML, in the particular helpful to define PPM and PPB. We summarize this research work

in table 5.7.

Table 5.7: Summary of information of the validation of the package CMMI Implementaion.

Label Description
Motivation Not all organisations using CMMI achieve the same gains in performance.

Some results demonstrate that organisations with other process improvement
initiatives can perform better in terms of quality.
SCAMPI already missed problems of lack of understanding of the statistical
nature of ML 4 and lack of institutionalisation of practices.

Method Do a literature review to find problems in the implementation of CMMI, met-
rics programs and process improvements.
Conduct a cases studies in organisations appraised at CMMI level 5. Conduct
an extended SCAMPI with further documents/tools analysis and interviews.
Analyse the data of SEI surveys conducted on organisations appraised at HML.

Results Identification of problems and difficulties in implementing CMMI.
Identification of weaknesses of SCAMPI that contribute to the failure in the
detection of problematic implementations.
Built recommendations that guide organisations in the implementation of
CMMI in order to avoid HML implementation problems.

We conducted three case studies in multinational organisations that develop software (CI, CII

and CIII) assessed at CMMI for Development ML 5, staged representation. Case studies on CI and

CIII were conducted immediately after the appraisal. Our purpose was to identify real problems

and difficulties in the implementation of CMMI and find recommendations to avoid them. We

mainly focused on MA and HML, but also analysed other CMMI PAs. The research questions we

intended to answer, which we considered when designing the case studies and analysing all data,

were the following:

• What was the strategy to evolve to the new ML?

• What difficulties and problems occurred in the implementation of the new practices?

100 EQualPI Validation

• What is the process definition?

• How was the process defined?

• How are people using the process?

• How are people collecting, analysing and interpreting process data?

• What is the impact of the new process on people’s work?

The results of these case studies, the literature review that we did to find the problems in

CMMI (see 3.1.3Problems in Process Improvements, Metrics Programs and CMMI), metrics pro-

grams and process improvements and the analysis of two surveys that the SEI conducted in HML

organisations allowed us to build and validate the CMMI implementation checklist (see 4.5.2

CMMI Implementation). In this section we signal the problems found in each organisation with

CI, CII, CIIG or CIII, respectively and the ones found in the analysis of the survey data with SDA.

The problems (P) and recommendations (R) are numbered.

A key problem is that measuring organisations performance is outside SCAMPI scope. The

assessment verifies if the techniques applied allow achieving CMMI goals (Masters et al., 2007).

There are only two PAs where performance improvements are explicitly analysed: CAR, where

the effect of implemented actions on process performance should be evaluated; and OPM, where

the selection and deployment of incremental and innovative improvements should be analysed

(CMU/SEI, 2008).

5.2.1 Further analysis of the HML Survey Data

We analysed the data of the 2009 survey to sustain problems and recommendations with empirical

evidence. Regarding the recognition of the efforts of people involved in MA initiatives, even if the

difference is not very significant, the graph (Figure 5.6) shows that a larger number of organisations

that achieved HML did give promotions or monetary incentives. The difference seems to be more

relevant when they were given to Project Engineers, Technical Staff and Project Managers, i.e.

people working closer to the projects.

We used the statistics described on the table in figure 5.7, to understand the relation between

achieving HML (V1) and doing a given practice. We tested the dependency of several variables

and compared the groups of organisations that achieved HML and the ones that did not. On the

table in figure 5.8 we report the tests results of dependent variables (p-value < 0.05 in the Chi-

square test) with different central tendency between groups (p-value < 0.05 in the Mann-Whitney

test).

We verified that there is a relation between the understanding that the creators of PPM have

of the CMMI intent (V4 to V7) and achieving HML. Figure 5.9 shows that a bigger percentage of

organisations that achieved HML understood very well or extremely well the intent of CMMI. In

both surveys the relation between understanding results of PPM and PPB, by Managers who use

5.2 CMMI HML Implementation 101

0

10

20

30

40

50

No one Executives, Seniors Middle Managers Project Managers Project Engineers, Staff
Incentives given to whom

P
er

ce
nt

ag
e

of
 o

rg
an

is
at

io
ns

 a
ch

ie
vi

ng
 a

nd
 n

ot
 a

ch
ie

vi
ng

 C
M

M
I H

M
L

HML Goal

Achieved

Not Achieved

Monetary or Promotion Incentives, and HML Goal Achievement

Figure 5.6: Relation between giving incentives to people who use use and improve MA, and the
achievement of the HML goal (Lopes Margarido et al., 2013).

Figure 5.7: Statistics and hypotheses that were tested.

them (V2), and the achievement of HML was quite strong (Figure 5.10). We observed a relation

between managers that understand the results better (V2) and creators that understand better the

CMMI intent (V4 to V7) (Figure 5.11). A similar behaviour was verified with the availability of

PPM experts to work (V8) (Figure 5.12).

The graphs in Figure 5.13 indicate that integrity data checks also seem to be related with the

achievement of HML. The statistical tests support that distinguishing missing data from zeros and

checking data precision and accuracy are related with achieving HML.

With the analysis that we did we found that the following variables are related with the achieve-

ment of the desired HML:

• How well managers understand PPM and PPB;

• How well PPM and PPB creators understand the CMMI intent;

• Distinguish missing data from zeros;

102 EQualPI Validation

Figure 5.8: HML 2009 survey – further data analysis. Results of the tests done with the groups
of organisations that achieved and did not achieve HML and that were shown to have the same
variance through the Levene test.

0

10

20

30

40

50

Hardly at all To some extent Moderately well Very well Extremely well
Understand PPM definition

0

10

20

30

40

50

Hardly at all To some extent Moderately well Very well Extremely well
Understand PPB definition

0

10

20

30

40

Hardly at all To some extent Moderately well Very well Extremely well
Understand when PPM are useful

0

10

20

30

40

Hardly at all To some extent Moderately well Very well Extremely well
Understand when PPB are useful

PPM and PPB Creators Understand CMMI Intent, and HML Goal Achievement

P
er

ce
nt

ag
e

of
 o

rg
an

is
at

io
ns

 a
ch

ie
vi

ng
 a

nd
 n

ot
 a

ch
ie

vi
ng

 C
M

M
I H

M
L

HML Goal

Achieved

Not Achieved

Figure 5.9: Relation between understanding the CMMI intent with PPM and PPB by their creators,
and the achievement of the HML goal.

• Check data precision and accuracy.

These relations reinforce the importance of doing proper integrity data checks to have mean-

ingful and reliable PPM and PPB supporting high maturity PAs. Furthermore, to ensure that

managers understand PPM and PPB results correctly, and consequently take appropriate actions,

PPM and PPB creators must understand their CMMI meaning and usefulness, and experts must

be available.

5.2.2 Case Studies

In CI we interviewed the CMMI programme sponsor, posing direct questions and an open-end

question to which the interviewee answered by narrating the story of the program. We had a

5.2 CMMI HML Implementation 103

0

10

20

30

40

50

Hardly at all To some extent Moderately well Very well Extremely well
Managers using PPM/PPB understand results

P
er

ce
nt

ag
e

of
 o

rg
an

is
at

io
ns

 a
ch

ie
vi

ng
 a

nd
 n

ot
 a

ch
ie

vi
ng

 C
M

M
I H

M
L

HML Goal

Achieved

Not Achieved

Managers Who Use PPM and PPB Understand the Results, and HML Goal Achievement

Figure 5.10: Relation between managers who use PPM and PPB understanding the obtained re-
sults, and the achievement of the HML goal.

0%

25%

50%

75%

100%

Hardly at all
 3

To some extent
 14

Moderately well
 12

Very well
 33

Extremely well
 16

Understand PPM and PPB Results and Number of respondents

C
re

at
or

s
un

de
rs

ta
nd

 P
P

M
 d

ef
in

iti
on

0%

25%

50%

75%

100%

Hardly at all
 2

To some extent
 6

Moderately well
 16

Very well
 27

Extremely well
 27

Understand PPM and PPB Results and Number of respondents

C
re

at
or

s
un

de
rs

ta
nd

 P
P

B
 D

ef
in

iti
on

0%

25%

50%

75%

100%

Hardly at all
 2

To some extent
 9

Moderately well
 21

Very well
 26

Extremely well
 20

Understand PPM and PPB Results and Number of respondents

C
re

at
or

s
un

de
rs

ta
nd

 c
irc

um
st

an
ce

s
w

he
n

P
P

M
 is

 u
se

fu
l

0%

25%

50%

75%

100%

Hardly at all
 3

To some extent
 13

Moderately well
 22

Very well
 27

Extremely well
 13

Understand PPM and PPB Results and Number of Respondents

C
re

at
or

s
un

de
rs

ta
nd

 c
irc

um
st

an
ce

s
w

he
n

P
P

B
 is

 u
se

fu
l

Managers Who use PPM/PPB Understand the Results and PPM Creators Understand CMMI Intent

Understanding

Hardly at all

To some extent

Moderately well

Very well

Extremely well

Figure 5.11: Relation between PPM and PPB creators understanding the CMMI intent and man-
agers who use them understanding their results.

similar interview with the program responsible. In both interviews we identified interviewees,

projects and other documentation to analyse. We analysed the company Quality Management

104 EQualPI Validation

0%

25%

50%

75%

100%

Hardly at all
 6

To some extent
 10

Moderately well
 26

Very well
 23

Extremely well
 5

Managers using PPM/PPB understand results and Number of respondents

P
er

ce
nt

ag
e

of
 e

xp
er

ts
 a

va
ila

bi
lit

y

Availability to Work

Almost always (>=80%)

Frequently (>=60%)

Half the Time (>40%)

Occasionally (<=40%)

Rarely if ever (<=20%)

Availability of experts to work in PPM and Managers understanding PPM and PPB

Figure 5.12: Relation between the availability of experts to work in PPM and managers who use
them understanding their results.

System (QMS), Information System and SCAMPI A repository. We also interviewed practices

and tools implementers, and project teams, including the appraised ones (whose documentation

we analysed). Analysing CI data we found that the main problem stemmed from rapidly evolving

to ML5 without giving enough time to have stable tools, processes, PPB and people behaviour.

CII is a business unit, located in several countries, that is part of CIIG, a CMMI level 5 organ-

isation. In CII we interviewed the responsible for the CMMI programme, beginning with directed

questions and finishing with descriptive questions regarding the story of the program. Afterwards

we analysed CIIG QMS and Information System. Finally, we had a meeting with the CMMI pro-

gram responsible and discussed our results and conclusions. In CII we found several problems

related to metrics; most limitations came from the fact that size was not being measured, and time

spent on tasks stopped being accurately collected. Many of the identified problems were originated

by the resistance to change and difficulty in presenting, to CIIG, metrics adequate for CII.

In CIII we interviewed a consultant involved in the appraisal of the organisation, i.e. a person

who performed an actual observation on the case. The main difficulty faced by CIII was to move to

statistical thinking. The problems found on the organisations are indicated on the next paragraphs.

P1. Underestimate time to implement HML

We found this problem in CI, CIII and in the SDA. CI re-planned the CMMI implementation

programme several times until Six Sigma was introduced, allowing them to better understand

HML demands.

In CIII implementation turned out to be more complex than anticipated and the programme

took longer than planned.

5.2 CMMI HML Implementation 105

0%

25%

50%

75%

100%

No
 10

Yes
 61

Check out of range and illegal Values

0%

25%

50%

75%

100%

No
 32

Yes
 39

Check number and distribution of missing data

0%

25%

50%

75%

100%

No
 26

Yes
 45

Distinguish missing values from zeros

0%

25%

50%

75%

100%

No
 25

Yes
 46

Use data precision and accuracy

0%

25%

50%

75%

100%

No
 40

Yes
 31

Estimate measurement error

0%

25%

50%

75%

100%

No
 19

Yes
 52

Check inconsistent interpretations of measurements definitions

0%

25%

50%

75%

100%

No
 21

Yes
 50

Check measurerement consistency/reliability

0%

25%

50%

75%

100%

No
 43

Yes
 28

Check consistency of classification

0%

25%

50%

75%

100%

No
 18

Yes
 53

Check unusual patterns

0%

25%

50%

75%

100%

No
 30

Yes
 41

Check unusual relationships

0%

25%

50%

75%

100%

No
 47

Yes
 24

Automate data checks

0%

25%

50%

75%

100%

No
 67

Yes
 4

Other checks

Data Integrity Checks and HML Goal Achievement

P
er

ce
nt

ag
e

of
 o

rg
an

is
at

io
ns

 a
ch

ie
vi

ng
 a

nd
 n

ot
 a

ch
ie

vi
ng

 C
M

M
I H

M
L

Maturity Goal

Achieved

Not Achieved

Figure 5.13: Relation between performing data integrity checks and the achievement of the CMMI
HML goal.

P2. Introduction of HML forgetting ML 2 and 3
This problem was also identified by Leeson (2009). It occurs often and CIII was no exception.

P3. Understand the statistical nature of level 4
This problem was reported in the literature by Hollenbach and Smith (2002) and Takara et al.

(2007) and found in CI, CIII and SDA.

Move to statistical thinking and quantitative management was the main challenge CI challenge

faced by CI.

106 EQualPI Validation

Changing mentality to HML was a significant shift for CIII, because preparing and using the

quantitative component takes time to mature. This problem may have been one of the causes of P1.

P4. Copied processes

We found some processes in the CIIG QMS that were copies of CMMI, not reflecting the

organisation’s culture. That may have been one of the reasons for the problem P5. Multicultural

environment.

P5. Multicultural environment and P6. Impose processes

CIIG acquired other companies and imposed its processes on them; consequently, their good

practices, certain metrics and good visibility of processes were often lost. Another problem was

that people from different cultures have different ways of working: in certain cultures orders are

taken without question, while in others people need to understand the benefits of working in a

certain way, otherwise they will resist change.

P7. Dissemination problems

This problem happened in CI and SDA.

In CI people noticed communication improvements. Nonetheless, the dissemination of in-

formation regarding processes and tools usage was not totally effective: some people still had

difficulties to apply the new practices.

P8. Lack of institutionalisation

This problem was reported in the literature by several authors: Radice (2000); Schaeffer

(2004); Charette et al. (2004) and Hamon and Pinette (2010). The problem occurred in both

CI and CII.

In CI not all project teams were applying the new practices. This problem was also related to

people behaviour and resistance to change.

In CIIG not all projects and business units performed at the same maturity level.

P9. Meaningless uncorrelated metrics

This problem was analysed by Kitchenham et al. (2006) and occurred in CI and SDA.

In CI we found a case of metrics being misinterpreted due to lack of understanding of the

context of one business area.

P10. Metrics definition (collect and analyse data)

This problem was reported by several authors: Goulão (2008); Hamon and Pinette (2010) and

Barcellos (2009). It occurred in SDA, CI and CII.

In CI people still had difficulties in collecting data in certain contexts and in their interpreta-

tion.

5.2 CMMI HML Implementation 107

CIIG imposed KLOC (thousand lines of code) as the applicable size metric, which CII did not

consider adequate to its types of projects.

P11. First data collected were uncorrelated

This problem was also identified by Hamon and Pinette (2010) (HP)

It occurred in CIII at start, which implied conducting new data collection cycles and new

searches for correlations. This may have been one of the causes of P1.

P12. Metrics categorisation

This problem was found in SDA, CI and CII.

In CI data for high maturity had been collected for a short period of time, so the baselines

were not stable enough. It was not possible to distinguish between different categories of data (for

different markets, team experience, team sizes and project sizes), therefore the data were compiled

in PPB categorised by technology only.

As CII could not use KLOC to measure size they could not use many derived measures.

P13. Baselines not applicable to all projects

This was a problem common to CI and CII.

In CI PPBs were still unstable, or inadequate for all types of projects. Time to collect data was

insufficient to gather information of different contexts and verify: 1) if new metrics were needed;

2) if there were differences in performance and in which contexts; 3) if in certain circumstances

the procedure to collect the data should be different.

CIIG had centralised PPBs not applicable to all business units’ realities and projects, e.g., the

development lifecycle phases had different durations depending on the business. Another problem

was that productivity was measured considering a business day as unit of time but in some loca-

tions it had different duration in number of hours.

P14. Abusive elimination of outliers

In CI we found one situation when it was not perceived that the outlier occurred at least once in

some projects. Some outliers are just indicators that the process improved its performance (Spirula

member, 2010 personal communication).

P15. Not all projects are measurable

This problem occured in SDA, CI and CII.

In CI tools were not yet prepared to collect data in certain projects (maintenance, with several

phases or outsourced), because their data structure was different from the standard projects (devel-

opment). Besides, measurements specific to maintenance and outsource projects were not defined.

P16. Effort estimates

108 EQualPI Validation

While in CIIG effort estimation was based on their historical data of effort and size, CII esti-

mates were based on expert judgment without using any tools or models.

P.17 People behaviour

This problem happened in CI, CII and SDA.

In CI changing mentality was a challenge; some people did not see value in new practices or

stated that they were not applicable to their projects. It is difficult to convince people to report

effort accurately: they normally report contract hours, not real effort, or do not report effort as

they are finishing tasks, leaving the reporting until later.

CII workers stopped reporting effort accurately, only reporting contractual hours of work.

P18. Tools setup and P20. Tools requirements

In CI the existing Information System evolved to support the new practices, but people were

still detecting problems and requesting improvements, in tools and processes, resultant of using

the tools in practice and in different projects contexts.

P19. Overhead

This problem happened in CI. To record time spent on tasks people manually filled a form per

task and the data collection of the new metrics was only partially automated. This was also due to

the insufficient Tools setup time, to understand all needs the usage of the tools.

The demands of levels 2 and 3 should prepare organisations to adequately use measurement

at higher levels, by monitoring appropriate metrics. Nonetheless, some of the problems here

identified reflect a poor implementation of the MA PA, affecting the organisations results. Such

problems become evident when implementing ML 4 because the correlation between variables

and problems in the collected data, affect PPM and PPB. Besides, SCAMPI cannot appraise the

entire organisation and does not analyse performance measures – if it did, it would become even

more expensive. Hence, CMMI rating per se is not a guarantee of achieving expected perfor-

mance results and organisations need to be aware that there are different methods that can be used

on its implementation. Nevertheless, if some recommendations such as the ones we proposed in

4.5.2CMMI Implementation are followed, CMMI implementation can be easier, and the problems

discussed before can be avoided. Most of these recommendations are solutions used by the studied

organisations to overcome their problems.

Entry Conditions

R1: We used SDA to show that having PPM experts available to work is related with under-

standing PPM and PPB results by managers using them. In CIII the implementation plan was long

and all activities needed to be executed on the estimated time. At first, they considered that if an

5.2 CMMI HML Implementation 109

activity had overrun the schedule, time could be recovered by shortening others. The thought was

abandoned once they realised that time could not be shortened in any task.

R2: CI analysed gaps to address problems in lower maturity levels; however, those processes

were affected by changes to implement HML and there should have been a new cycle for them

to mature. In CIII the move from ML3 to ML5 was uninterrupted, so ML3 matured and did not

erode in the meantime.

R3: SDA showed relations between PPM and PPB creators understanding CMMI and organi-

sations achieving HML.

R4: In CI, Six Sigma helped to gain insight of information needs to achieve quantitative goals,

solve problems and design PPB and PPM.

R3 - R5: were also followed by CI and CIII, as they were part of the CMMI implementation

process.

Process Definition and Implementation

R6 and R7: were followed by CI and CIII by first understanding the existent process, iden-

tifying gaps and involving internal experts and users in the definition of improvements and new

processes.

R8: CII applied R8 in a Direction with specific needs, i.e., analysed other business units

metrics in order to adopt the ones that could be applicable to their projects lifecycle.

R9 and R10: helped CI maintain the visibility of processes and projects at different organisa-

tion levels and were part of the CMMI implementation process in CIII.

R11 - R13: were used by both CI and CIII. Regarding the recommendation of training on

benefits and how can they be seen (R12) we cannot be sure it was effective on any of them.

Additionally, in CI the coach corrected people’s mistakes instead of guiding them.

R14: was used by CI and CIII, the dissemination of processes was gradual, as they were ready

to be deployed directly from pilot projects to the entire organisation. However, when organisations

are large they should consider even more gradual dissemination, spreading practices in a small

group of projects and gradually involving new ones, which can be done also profiting from team

members mobility. SDA showed that the incentives to people improving and working in MA were

more frequent in organisations that achieved HML.

R15: was used by CIII.

Metrics Definition

R16: was used by both CI and CIII so there was a clear view of which metrics were used to

monitor different levels of goals and what was their definition.

R17: was also followed by CI but definitions needed to mature to ensure unambiguous collec-

tion and interpretation. In CIII it was necessary to define new metrics for ML5 to have the desired

confidence, because the integrity of existent data from ML3 could not be assured. With time the

definition of metrics was improved to tune the process models.

110 EQualPI Validation

R21: was part of the CMMI implementation process of CIII.

Metrics Usage
R25 and R26: SDA showed a relation between achieving HML and checking data precision

and accuracy.

R29: was followed by CI.

R30: CI followed R30 in Team Software ProcessSM pilot projects.

R31: CI did not use personal data for evaluation purposes. Even following R31, CI had dif-

ficulties to convince people to accurately report effort – that is why we suspect that showing the

benefits on training may not have been effective.

Tools Setup
R32: on both CI and CIII the tools initially used were more rudimentary. As processes, met-

rics and performance models and baselines were defined more complex tools were adopted or

implemented.

R35: followed on both CI and CIII. However, it is always difficulty to totally eliminate human

intervention to report effort, especially when people have other tasks than just developing code,

for example.

R34: the experience in CIII was that initially it was necessary to collect data of all variables

they felt could be important to create models and establish baselines. In time the non-used metrics

were abandoned, leaving only the necessary ones.

In a follow up of CII we found that R18 and R27 were used when they defined their specific

metrics and implemented the estimation tool.

We compile all problems and recommendations in the checlist on table 4.19 that should be

used by organisations implementing CMMI. The checklist guides them in the sequence of what

shall be done to implement CMMI, gives them focus on the model as a whole, and not only a

single target level to be achieved, and includes the problems that organisations should be aware of

in order to avoid them.

5.2.3 Problems Analysis and Limits to Generalisation

In Table 5.14 we signal where the problems we found occurred with “Yes”. 59% of the problems

occurred either in other organisations or were mentioned in the literature (LR) or SEI Data Survey

(DS). The number of problems we detected in each organisation increased with the depth and

insight provided by a more complete design of the case study. Nevertheless, we found two groups

of problems common to two different groups of two organisations.

Several problems found in CI were also detected in CII, four of them are related with metrics

definition and usage and the other two are related with institutionalisation and people behaviour,

respectively. Another two problems found in CI also occurred in CIII, both of them related with

5.2 CMMI HML Implementation 111

Figure 5.14: Problems found in the case study organisations, the organisations surveyed by the
SEI (DS) and the literature review (LR).

assuring entry conditions. CII was just a business unit of CIIG, who was rated ML5 for a long

time, so we cannot verify if they faced similar entry conditions problems. However, we realised

that the metrics problems found could be due to CII lack of understanding of the requirements for

HML and statistical nature of ML4. We cannot even conclude that CIII did not face the metrics

problems because we did not analyse their PPM, PPB, metrics definitions and usage in person.

112 EQualPI Validation

37.5% of problems that we found in the literature were also detected in CI, CI and CIII, CI

and CII, and CIII, respectively. 53.3% of problems found in the DS organisations were common

to the ones found in our case study organisations, 16.7% of which were also found in the literature

review.

Even if there are limits to the generalisation of our results the percentage of problems shared

in more than one organisation/source indicates that they can occur when implementing HML, so

organisations should be aware of them.

Due to access limitations, the three case studies had a different design so they cannot be con-

sidered multiple-case studies (Yin, 2009). Only part of the design of CI was repeated on CII,

and in CIII we only interviewed a consultant involved in the appraisal. We can classify it has a

semi-multiple case study. In CI and CII we used multiple sources of evidence, assuring construct

validity. However in CIII we could not assure it. In all cases we had our results reviewed by key

informants. To ensure internal validity we did pattern matching by classifying information and

aggregating it under each category; built explanations and addressed rival explanations. External

validity was partially tested by replicating part of the design used in CI in CII, and analysing DS.

Nonetheless, for each case study we used theory.

We detected part of the problems found in the literature review (3.1.3 Problems in Process

Improvements, Metrics Programs and CMMI) and additional ones:

• Processes copied from the model (P4);

• Ignored multicultural environment (P5);

• Imposed processes (P6);

• Abusive elimination of outliers (P14);

• Incomplete base for effort estimate methods in use (P16);

• Difficulties in giving the tools time to become stable (tools setup) (P18);

• Overhead introduced by the data collection (P19);

• No baseline reset or model recalibration after tools’ requirements changes (P20).

Regarding limits to generalisation, we only analysed three cases but some of the problems

that we identified were also found in the literature and DS. Subsequently, we consider that these

problems can be common to other organisations implementing CMMI, measurement programs or

doing software process improvements.

5.3 Requirements Process Improvement 113

5.3 Requirements Process Improvement

This section refers to the validation of part of the steps defined in 4.5.4 Process Improvements.

The purpose this research is to compile a defect classification and define the steps to consider

when doing process improvements, we summarise this research work in table 5.8.

Table 5.8: Summary of information of the validation of the package Process Improvements.

Label Description
Motivation Requirements defects are on the tops causes of software failures and factors

impacting software maintainability. In 2011 there was no defect classification
specific of software defects.
To ensure the quality of the defect classification we did an experiment.

Method Do a literature review to define a classification of defects adequate to use in
requirements reviews.
Conduct experiments with undergraduate and graduate students.
Analyse the data of the first experiment to refine the classification of defect
types.

Results Gathered a classification for type of defect, specific for requirements, that is
now in used in at least an organisation.
Defined the steps to consider when doing process improvements.

Chen and Huang (2009) analysed the impact of software development defects on software

maintainability, and concluded that several documentation and requirements problems are amongst

the top 10 higher-severity problems (see 3.4). The authors demonstrated the impact of the software

requirements defects in the maintenance phase of a software project, when the defects affect the

client, in case of failure. In the same year, Hamill and Katerina showed that requirements defects

are among the most common types of defects in software development and that the major sources

of failures are defects in requirements (32.65%) and code (32.58%). Therefore it is crucial to

prevent the propagation of requirements defects to posterior phases.

Card (1998) stated that "Classifying or grouping problems helps to identify clusters in which

systematic errors are likely to be found." Hence, it is important to have an adequate taxonomy to

classify requirements defects, that support the following goals:

1. Identify types of defects that are more frequent or have a higher cost impact;

2. Analyse the root cause of requirements defects;

3. Prepare requirements reviews checklists;

4. Reduce risks associated with common problems in the requirements management process,

such as bad communication, incomplete requirements, and final acceptance difficulties.

The Orthogonal Defect Classification (ODC) is frequently used by practitioners, but it is more

adequate to classify code defects than defects in the requirements specifications (Henningsson and

114 EQualPI Validation

Figure 5.15: Major software sources of software failures.

Wohlin, 2004; Freimut et al., 2005). There are several classifications identified in the literature,

but none of them is indicated as being the most adequate for the classification of requirements

defects, and, to the best of our knowledge, their quality properties were not validated. In our

research we did a literature review and proposed values for the attribute type of defect in the case

of requirements using the recommendations of Freimut et al. (2005). We conducted an experiment

to validate the quality properties of the proposal and test the following hypotheses, indicated in

4.5.4 Process Improvements, when reviewing requirements specifications.

In the context of this process improvement a defect is a fault, as defined by IEEE (1990),

extended to include all the software development artefacts (code, documentation, requirements,

etc.). A defect is a problem that occurs in an artefact and may lead to a failure. We consider the

requirements review as an inspection method.

Freimut et al. (2005), indicate the quality properties of a good classification scheme:

1. Clearly and meaningfully define the attributes of the classification scheme;

2. Clearly define the values of the attributes;

3. Ensure it is complete (every defect is classifiable by using the scheme);

4. Guarantee that it contains a small number of attribute values - the authors recommend 5 to 9

attributes, since this is the number of items that human short-memory can retain (Chillarege

et al., 1992);

5. Aggregate attribute values, to reduce ambiguity (Bell and Thayer, 1976), whenever they are

less significant, that is, when they rarely occur, and detailed categories may be aggregated

into a single one. For the attribute "type of defect" we consider that it is important that the

values are unambiguous, that is, only one value is applicable to one defect.

We did the literature review (3.3 Defect Classification Taxonomies) and assembled a list of

classifiers that we wanted to reduce to a useful one. We removed classifiers following the criteria:

• Not applicable to requirements phase;

5.3 Requirements Process Improvement 115

• Inadequate to review a document;

• Vague an generic;

• Over-detailed;

• Duplicated, classifiers with the same meaning.

The following classifiers were excluded for the indicated reasons: Considered important only

for change management: Not in current baseline, New and Changed Requirement and Not Trace-

able; Too vague (given the intention of having a complete and clearly defined list of values):

General, Other and Inadequate; Subsumed by another (Inconsistent): Incompatible; Too generic

(given the existence of separate, more specific, classifiers): Incorrect or Extra Functionality; Over-

detailed (given the existence of the more generic classifiers Missing/Omission, Incorrect and In-

consistent, and the intention of keeping a small number of attribute values): classifiers 19 to 33

and 35 in Table III detailing what is missing, incorrect or inconsistent (the details can be given in

the defect description).

The following classifiers with overlapping meanings (and small frequencies in some cases)

were aggregated into a single one, to avoid ambiguity: Missing/Omission and Incomplete Missing

or Incomplete; Over-specification, Out of scope, Intentional Deviation and Extraneous Informa-

tion Not Relevant or Extraneous; Unclear and Ambiguity Ambiguous or Unclear; Infeasible, Un-

achievable, Non Verifiable and Unstestable/Non Verifiable Infeasible or Non-verifiable. Finally,

some classifiers were slightly renamed.

The resulting 9 values for the type of defect attribute, with definitions and examples, are listed

in Table II. We tried to give a clear and meaningful definition for each value.

5.3.1 Experiments with Students

We conducted two experiments with different groups of people and similar classifiers. The final list

(table 5.9) used in the 2nd group had more detail in the values, definitions and examples. The 1st

group was composed of master graduate students that had learnt how to develop a SRS document,

and were familiar with inspections and defect classifications. The 2nd group was composed of

third year undergraduate students that were familiar with SRS documents, inspections and defect

classifications. We provided to each group the same SRS and the list of its defects. The subjects

should register the type of defect in a form that included: the defects to classify, and distinct fields

for the classifier, doubts between classifiers or to a new classifier and corresponding definition.

The classification of the defects would indicate if the classifiers were ambiguous (one defect with

different classifiers),meaningless (incorrectly classified) or incomplete (new classifier suggested).

Table 5.9: Classification of type of defect for requirements (final version) (Lopes Margarido et al., 2011a).

Classifier Definition Example
Missing or
Incomplete

The requirement is not present in the requirements document. In-
formation relevant to the requirement is missing, so the require-
ment is incomplete. If a word is missing without affecting the
meaning of the requirement the defect shall be classified as a typo.

"The system will allow authentication of authorised users." The way to access
the system is not detailed. Is it by using a login and corresponding password?
Using a card? And what happens when a non-authorised user tries to access it?
If the requirement includes the expression To be Defined (TBD) is incomplete.

Incorrect
Informa-
tion

The information contained in the requirement is incorrect or false,
excluding typographical/grammatical errors or missing words.
The requirement is in conflict with preceding documents.

Stating that "The Value Added Tax is 23%" when the correct value is 12%.

Inconsistent The requirement or the information contained in the requirement
is inconsistent with the overall document or in conflict with an-
other requirement that is correctly specified.

One requirement states that "all lights shall be green" while another states "all
lights shall be blue" (IEEE, 1998); one of the requirements is inconsistent with
the other.

Ambiguous
or Unclear

The requirement contains information or vocabulary that can have
more than one interpretation. The information in the requirement
is subjective. The requirement specification is difficult to read and
understand. The meaning of a statement is not clear.

The requirement "An operator shall not have to wait for the transaction to com-
plete." is ambiguous, depends on each person’s interpretation. To be correctly
specified it should be, e.g., "95% of the transactions shall be processed in less
than 1 s." (IEEE, 1998).

Misplaced The requirement is misplaced either in the section of the require-
ments specification document or in the functionalities, packages
or system it is referring to.

Include a requirement about the server application in the section that refers to
the web-client application.

Infeasible
or Non-
verifiable

The requirement is not implementable, e.g., due to technology
limitations. The requirement implementation can not be verified
in a code inspection, testing or using other verification method. If
the requirement is non-verifiable due to ambiguity, incorrectness
or missing information, use the corresponding classifier instead.

“The service users will be admitted in the room by a teleportation system.” The
teleportation technology has not sufficiently evolved to allow the implementa-
tion of such requirement.
“The message sent to the space for potential extraterrestrial beings should be
readable for at least 1000 years.”

Redundant
or Dupli-
cate

The requirement is a duplicate of another or part of the informa-
tion it contains is already present in the document, becoming re-
dundant.

The same requirement appears more than once in the requirements specifica-
tion document, or the same information is repeated.

Typo or
Formatting

Orthographic, semantic, grammatical error or missing word. Mis-
spelled words due to hurry. Formatting problems can be classified
in this category.

“The system reacts to the user sensibility, i.e. if the user is screaming the sys-
tem stops.” The word sensibility is different from sensitivity. When a picture
is out of the print area.

Not rel-
evant or
Extrane-
ous

The requirement or part of its specification is out of the scope of
the project, does not concern the project or refers to information
of the detailed design. The requirement has unnecessary informa-
tion.

If the customer is expecting a truck then the requirement stating “The vehicle
is cabriolet.” is out of the scope of the project. A requirement that should have
been removed is still in the document.

5.3 Requirements Process Improvement 117

The results of the experiments are summarised in the pictogram on figure 5.16, that show the

proximity of the subjects’ answers (dark/red circles) to the classifier that we expected them to use

(bright/yellow circles) in each defect. The size of the circle gives the number of the students that

used a certain classifier. There were 29 defects to classify (x axis). The classifiers, doubt between

classifiers or new classifier are represented in the y axis. We noticed that in the 1st experiment no

defect was unanimously classified and in the 2nd several ones were. In both experiments certain

defects were classified differently but with similar percentages. These observations induce us to

conclude that certain defects will be differently classified, for their own characteristics. The full

report of our work includes all experiments’ results and analysis (Lopes Margarido, 2010).

Figure 5.16: Results of the 1st experiment are represented the upper pictogram and of the 2nd are
in the bottom.

The two experiments we did are not totally comparable: the experience of the individuals on

defects classification and the size of the group and the treatment (values of the type of defect

118 EQualPI Validation

attribute) were different. Despite that, the degree of agreement of the subjects, given by the Fleiss’

kappa measure, was moderate in both experiments (0.46 in the 1st experiment and 0.44 in the 2nd)

(Landis and Koch, 1977). We also did a Cochran test to verify our hypotheses. Since the test is

binomial, we considered that when the subjects chose the most used classifier they answered as the

majority (1) and when they used any other classifier, they chose other (0). The significance value

indicates that the subjects answered the same way (0.60 in the 1st group and 0.63 in the 2nd, i.e.

p-value > 0.05 which indicates that we cannot reject H0). Using the same transformation of data

we did the McNemar test to verify if the results of the experiments were similar. The percentages

of subjects classifying as the majority or using other classifier were similar on both experiments

(see figure 5.17).

Figure 5.17: Results of the McNemar test. The experiments have approximate results.

In our opinion, the following facts may have contributed to the subjects moderate degree of

agreement:

• The subjects were not the ones identifying the defects which may increase the error of

misinterpretation (and consequent misclassification) of the defects;

• The subjects were not involved in the development and did not have access to the developers

of the SRS document. This is similar to the problem reported in an experiment of Walia

and Carver (2007);

• Certain words in the description of defects induced the selection of the classifier named with

a similar word;

• The defects are expressed in natural language, which introduces ambiguity in the classifica-

tion process.

Based on the experiments conducted, we suggest some recommendations for organizations

that want to use requirements defects’ classifications in an effective and consensual way:

• People should be trained in the usage of the defects classification focusing in the distinction

of the classifiers, the clarification of their definitions, practical examples and exercises;

• To avoid that people apply a classifier based on its name only (often insufficient), without

considering its definition, have the definition easily available, e.g., as a tool tip in a tool.

5.3 Requirements Process Improvement 119

5.3.2 Adoption by an Organisation

The requirements defect classification we created was introduced in an organisation in 2013 part

of an improvement initiative. The classification results were used to do a Pareto chart to evaluate

which requirements defect types contributed to 70% of the requirements defects: Ambiguous or

Unclear (25%), Typo or Formatting (17%), Incorrect Information (16%) and Missing or Incom-

plete(12%) (Figure 5.18). However, the classification was extended to have a Not Applicable and

two types related with the document itself, respectively Not Requirements - Content and Not
Requirements - Typos or Formatting.

Figure 5.18: Percentage of defects found in requirements reviews by type.

The organisation considered that the use of the new requirements taxonomy successfully char-

acterised defect types, so adopted it. The analysis results were inputs to an CAR project and

used to define solutions to address the problems in the origin of these types of defects and pre-

vent them in future reviews. The metric we recommended that should be monitored to improve

the requirements review process was the number of requirements defects only found on posterior

phases of the development cycle, although the organisation was interested in measuring other as-

pects of requirements reviews and did several other improvements that cannot isolate their effect

from the one of using the taxonomy. Nonetheless, the number of defects found in requirements

was considerably higher than before introducing the taxonomy and related improvements.

We agree with Card when he states that a defect taxonomy should be created in such a way

that it supports the specific analysis interests of the organisation that is going to use it, namely

in the implementation of defect causal analysis (Kalinowski et al., 2008). In our work based on

a literature review we assembled a classification for defect types in requirements specifications,

following the recommendations in (Freimut et al., 2005). Such classification is important to sup-

port the analysis of root causes of defects and their resolution, to create checklists that improve

requirements reviews and to prevent risks resulting from requirements defects. When choosing a

120 EQualPI Validation

classification for requirements’ defects, organisations need to be aware of the problems of using

them. People may interpret the classifiers differently and doing retrospective analysis of defects

simply based on the type of defects might be misleading. Experiments similar to the one here

presented may be conducted to determine the degree of consensus among their personnel.

In the case of our experiment we realised that in order to prevent the propagation of require-

ments defects to other software development phases it was important to improve requirements

reviews. Besides using reviews checklists the use of an adequate classification to characterise

defects found in requirements would:

• Make reviewers aware of the reason why the defect happened;

• Make requirements analysts more concious of what mistakes to avoid when eliciting re-

quirements;

• Support the requirements analyst in the correction of the detected defects, through the addi-

tional understanding provided by the specific classification for requirements defect types;

• Support defects analysis;

• Allow to build a requirements checklist based on those defects.

Chapter 6

Conclusions

Concerning CMMI problems, the DoD expressed the necessity to "Develop meaningful measures

of process capability based not on a maturity level, e.g. Level 3, but on process performance"

(Schaeffer, 2004). CMMI V1.3 is more focused on the performance of organisations but SCAMPI

is becoming more efficient (Phillips, 2010), as it reduced the number of necessary evidence –

eventually increasing the probability of leaving problems undetected. In this research we develop

a framework to evaluate the quality of implementation of the CMMI practices, EQualPI. The

evaluation is based on the quality of outcomes, and to demonstrate the framework we build a

performance indicator model to evaluate CMMI PP SP1.4 "Estimate Effort and Cost".

6.1 Research Achievements

The difficulties in implementing CMMI, in particular HML, are common to the problems found

on metrics programmes and software process improvements in general. In particular, Software

Engineering metrics can be ambiguous (Goulão, 2008; Breuker et al., 2009), preventing an im-

plementation common to all organisations. With the objective of understanding CMMI problems

better, we conducted a literature review, three case studies and further analysed the data of a survey

conducted by the SEI. We compiled a list of problems and recommendations to help organisations

implementing CMMI, and additional recommendations to support them on the choices to make

regarding the implementation of MA when aiming for HML. Interestingly enough, part of the

identified problems is rooted in the CMMI lower maturity levels (2 and 3) as they must be stable

before moving to high maturity. The evidence we analysed show that the problems were common

to the different sources of information. In the case of the ones we found in the case studies, we

verified that they also occurred in other organisations. Furthermore, there are also several prob-

lems in the Measurement and Analysis process area that become more evident when implementing

CMMI maturity level 4, as they affect process performance models and baselines.

With the conducted case studies we added problems to the ones in 3.1.3 Problems in Pro-

cess Improvements, Metrics Programs and CMMI and 3.2 Survey on MA Performance in HML

Organisations: copied processes, multicultural environments, imposed processes, baselines not

121

122 Conclusions

applicable to all projects, abusive elimination of outliers, effort estimates, tools setup, overhead

and tools requirements. We consider that with a more complete analysis of CII and CIII we could

have found more problems.

There is a wide variety of methods to implement CMMI practices. As the model is just a guide

telling what to do, but not how to do it, room is left for various implementations that may not al-

ways lead to the desired performance results. Moreover, SCAMPI’s objectives do not include

appraising performance. Consequently, problems and difficulties can occur when implementing

CMMI, some of which can persist after appraisal. EQualPI is a framework for self-assessing the

quality of implementation of CMMI practices and effects of improvements, based on compliance,

efficiency and effectiveness (Lopes Margarido, 2012). The framework helps preventing imple-

mentation problems and allows better control of organisations performance. We defined EQualPI’s

architecture architecture up to level 2, defining all its layers, their included packages and corre-

sponding modules. The framework includes the metamodel to shape all its layers. The metamodel

establishes the alignment between the EQualPI repository and the CMMI Goal or Practice. While

the methods in the repository support the implementation of the Goal/Practice, the Performance

Indicators quantitatively evaluate its achievement. The evaluation is done by aggregation depend-

ing on the source (project, department or organisation) or target (PI, Method or Goal/Practice).

The repository includes the data dictionary, domain model and a performance indicator model

to evaluate the quality of the practice "Estimate Effort". The data model is already complete

enough to include the effort estimation and the development processes. The EEA model allows

organisations to anticipate the accuracy of the effort estimates achieved when estimating their

projects and to act on certain factors to improve that accuracy. The model explains approximately

30% of the variability of EEA meaning that the remainder is related to non-controllable factors,

related with project execution. We did a regression model of the actual hours estimated using TSP

and the accuracy is already high. The 30% of EEA we explain are also used to shed light on the

percentage of the actual hours that the used methods did not explain.

EQualPI includes a module to manage configurations already to consider continuous improve-

ment of the organisation processes and allow piloting and progressive deployment of process im-

provement initiatives, also evaluating their impact. Once the framework is completely populated

with the organisations processes, methods and performance indicators and a change is piloted, the

effect of that change on other practices can be measured.

The package procedures includes how to setup the framework, select the methods and perform

an evaluation of practices. A checklist of recommendations is included to avoid problems in the

implementation of th CMMI practices. Those resulted of the semi-multiple case study we did on

CMMI HML organisations, and analysis of a survey to organisations implementing MA aiming at

achieving CMMI HML. Based on the survey technical reports and applying statistical methods to

that survey data, we gathered a set of recommendations to have high maturity measurement and

analysis, which can be used on any measurement program. We also provide steps to consider when

doing process improvements. Part of those steps were needed to do a process improvement in the

requirements review process. From that improvement we assembled a defect type classification

6.2 Answering Research Questions 123

list specific for requirement defects, that is now used by an HML organisation. Practitioners can

use the model to improve the Effort Estimation Model by acting on the variables of the model, that

is reviewing the planned values estimated, before moving to the development phase of the project.

We defined a regression model useful to analyse the quality of the effort estimation process.

It was firstly thought for the CMMI PP SP 1.4, based on data collected from TSP projects but

ultimately it can be applied to any effort estimation process, being just a matter of changing the

rules used to estimate and the recommended values used for estimation.

The use of TSP data relies on the use of size which is fit to the guidelines of PP SP1.4.

In particular, several TSP rules are designed for LOC based projects, namely rates per hour and

review rates per hour. This shall not be a reason for organisations that do not use such size measure

to consider this research work not applicable to them; on the contrary, there are several adaptations

that can be done and also several recommendations that are still applicable:

• Size can measured in any unit that fulfil their needs, as long as it is consistently measured

in all projects. Since the goal of any process is to use the organisation’s historical data, after

a cycle of development there will be a dataset to begin understanding what are their own

development rates and, with time, recommended values;

• Percentage of time spent per phase is independent of the size measure, any means used to

determine the effort needed for coding will allow determine the time per phase;

• Review rates can also be adjusted in time by defining what optimal time should be spent re-

viewing a given work item to gather a relevant number of defects (which can give confidence

that yield will be reduced).

Another reason for choosing TSP data is the fact that it is consistently collected by different

organisations. Many TSP metrics are common to other methods and are defined to plan and follow

the development of software. The amount of factors that we can monitor with TSP metrics makes

us believe that we can build a more complete model.

6.2 Answering Research Questions

In the following paragraphs we revisit the research questions addressed in this PhD work:

• Why some organisations do not achieve the expected benefits when implementing CMMI?

Depending on the methods that the organisation selected to implement the practices, their

results may not be the expected. The problems found on organisations implementing CMMI

show that if they are not detected and overcome the implementation can be flawed and they

will not perform at the level they aimed for. Part of the problems found are rooted on a poor

implementation of MA, a level 2 practice. We discussed those problems on 3.1.3 Problems

in Process Improvements, Metrics Programs and CMMI, 3.2 Survey on MA Performance in

HML Organisations and 5.2.3 Problems Analysis and Limits to Generalisation.

124 Conclusions

• Why SCAMPI does not detect implementation problems, or does not address performance

evaluation in all maturity levels?

SCAMPI has still limitations on its sampling and coverage rules and its purpose is not to

evaluate performance, as discussed in 3.1.4 SCAMPI Limitations.

• What additional recommendations can we provide to organisations to help them avoid prob-

lems when implementing CMMI?

We present recommendations (4.5.2 CMMI Implementation) to help organisations imple-

ment CMMI, avoiding the problems found when implementing it. They are compiled on a

checklist (table in figure 4.19). As part of the implementation problems is rooted on MA

and the most challenging levels to implement are the high maturity ones, we include 4.5.3

MA Recommendations for High Maturity.

• How can we evaluate the quality of implementation of the CMMI practices ensuring that

organisations fully get their benefits and perform as expected?

We propose that the quality of implementation is measured using performance indicators

that measure the results of the practice and its efficiency, effectiveness, and compliance. The

EQualPI evaluation procedures exemplify how it is done (4.5.1 EQualPI Setup, Tailoring

and Evaluation).

• Is it possible to define metrics to evaluate the quality of implementation of CMMI practices

focused on their effectiveness?

To demonstrate that it is possible to evaluate the quality of implementation of a practice

focusing on its effectiveness we built the Effort Estimation Accuracy model to evaluate PP

SP1.4. The objective of the practice is to provide estimates to plan project execution. We

evaluated the effectiveness of the practice through the deviation of the actual effort relative

to the estimate, showing how reliable the estimate was. The execution of the project also

influences this result, but knowing the percentage it represents on the indicator, as part of

the non-controllable factors, we determined how effective the estimate was. The answer to

this question is yes, and we built the model to evaluate PP SP1.4 on 5.1 Evaluation of the

Estimation Process.

• Can we determine the effects, expressed in a percentage, of non-controllable factors in an

evaluation metric?

In the EEA model, useful to anticipate the quality of the estimates and act on the model

coefficients to improve the estimates, the percentage of controllable factors is given by the

model Adjusted R Square, as it represents the percentage of the dependent variable that is

explained. For the used data the controllable factors represent 30% of the variation. The

non-controllable factors are represented on the remainder 70%.

We showed the relationship between the quality of implementation of a CMMI practice and

the quality of the outcome of the application of that practice, exemplified on PP SP1.4. Therefore,

"it is possible to objectively measure the quality of implementation of the CMMI practices by

6.3 Challenges and Limits to Generalisation 125

applying statistical methods, in the analysis of organisations’ data, in order to evaluate process

improvement initiatives and predict their impact on organisational performance".

6.3 Challenges and Limits to Generalisation

EQualPI was designed aligned with CMMI, includes a regression model for one of its practices

and its procedures are targeting CMMI. Considering that its based on the problems of metrics

programs and other process improvements, it can be used to evaluate other practices of other

standards and models. Any set of methods can be mapped with the processes defined to comply

with a different model and the measures are defined based on the goal to achieve, rather than the

ones in CMMI.

The data model is applicable to iterative and non-iterative development cycles, considering

that when there are no cycles the project only executes one cycle. Even though, the design of

the model was based on the TSP data, the variables are common in software development. The

adaptation to projects following Scrum would be more challenging even though some in some

cases would just require relabelling the variable.

EQualPI is defined and validated but it still needs to be extended to other practices and be

fully populated with the corresponding methods, performance indicators and goals. Additionally,

it was not instantiated in an organisation, which may be challenging for its complexity. Besides,

to provide the data is still necessary that the organisation collects it.

We identified several factors that impact the generalisation of the research results, such aware-

ness allowed us to keep them controlled to isolate their interference in the results the best we can.

We kept a record of context and those factors that are not object of our research, to allow repeata-

bility.

Human Factors
The experience of a project team influences the results of projects. Also the quality of individ-

uals’ work can positively or negatively influence the project’s results. The quality of the data used

to build the models depends on the people’s rigour recording it. The Benford statistic helped us

ensure that the effort data in the TSP repository was reliable.

Aggregation Factors
When aggregating results of individuals and different teams, inaccurate data points’ noise can

be cancelled by other. In other situations, the outputs of the team influences the following phase.

Such noise can change the aggregated information. Once we detected inaccurate data, e.g. the sev-

eral projects with same defects descriptions we isolated them, not considering them in the model.

Complexity Factors
The complexity of projects depends on different factors such as size, duration, complexity of

the product, newness of the technology, etc. We also recorded other context factors such as team

126 Conclusions

size and distribution. Those factors were documented but not included in the model (are part of

the error).

Biasing Factors
Other factors that limit the generalisation of the research results are the bias of the researcher

and the analysed organisations. In general, to avoid researcher’s bias the work was submitted to

other researchers’ reviews, conferences and journals. Organisations themselves can bias the re-

sults by keeping certain information or altering the data shared. For this reason the data analysis

when possible we analysed data of several organisations. We also did sanity checks on the received

organisations’ data.

Measurement Selection Bias
Grimstad and Jorgensen (2006) highlight three measurement selection factors that are partic-

ularly important:

1. Exclusion of cancelled projects, leading to a too positive view of estimation;

2. Exclusion of estimated projects that never started, leading to a negative view of estimation

(according to the authors optimistic plans would be more likely to win bidding, for exam-

ple);

3. Inclusion of projects to "confirm the desired output of the analysis" leaving others, named

"confirmation" bias.

We did not consider cancelled projects before start, as they would not be present in the

database; we also did not find cases of projects that were estimated but did not have any records

of data resultant from their execution. These two biasing factors were out of the scope of the re-

search. Even though we did not find cases of cancellation before even starting we only considered

completed parts in the design of the model, ignoring the parts that were planned but not executed.

The decision was based on the fact that we had no absolute confirmation of whether the workbook

was of a completed project or referring to an intermediate development cycle.

Regarding the third factor we did not select projects by convenience but we also did not get

the degree of variability we desired as if we were able to get the same data from other repositories,

as we just evaluated the effects of using methods that are common to TSP.

6.4 Future Research Work

As future research work, it is necessary to extend the framework to other practices and methods,

also including more performance models, and to instantiate it in an organisation. With data of

different maturity levels, it will be possible to evolve the map of maturity profiles to other methods

and performance indicators. In the future, EQualPI can be used for benchmarking, supporting

multiple clients that eventually will be able to compare their performance with the anonymous data

6.4 Future Research Work 127

of others that allow selected data to be used by others. The data dictionary is already prepared to

support multiple organisations, but the architecture of the framework needs an additional package

in the business layer to perform data consistency checks.

With a more complete dataset other Process Variables can be included in the EEA model. Also,

having accurate data of different cycles can help determine the influences of partial estimates or

effects of re-estimation. Having other sources of data, a similar approach to the one we followed

when building the EEA model, can be followed to define EEA models for other estimation methods

such as the one used in scrum, for example.

128 Conclusions

References

Fernando Manuel Pereira da Costa Brito e Abreu. Engenharia de software orientado a objectos :
uma aproximação quantitativa. Doctoral thesis, 2001.

A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software inspections: An effective
verification process. IEEE Software, 6(3):31–36, 1989.

Larry Apfelbaum and John Doyle. Model based testing, 1997.

James Armstrong, Richard Barbour, Richard Hefner, and David H. Kitson. Standard cmmism
appraisal method for process improvement (scampism): Improvements and integration. Systems
Engineering, 5(1):19–26, 2002.

Monalessa Perini Barcellos. Uma Estratégia para Medição de Software e Avaliação de Bases de
Medidas para Controlo Estatístico de Processos de Software em Organizações de Alta Maturi-
dade. Doctoral, 2009.

Victor R. Basili and David M. Weiss. Evaluation of a software requirements document by analysis
of change data, 1981.

T. E. Bell and T. A. Thayer. Software requirements: Are they really a problem?, 1976.

Terry Bollinger and Clement McGowan. A critical look at software capability evaluations: An
update. IEEE Software, 26(5):80–83, 2009.

Petrônio L. Braga, Adriano L. I. Oliveira, and Silvio R. L. Meira. A ga-based feature selection
and parameters optimization for support vector regression applied to software effort estimation,
2008.

Dennis Breuker, Jacob Brunekreef, Jan Derriks, and Ahmed Nait Aicha. Reliability of software
metrics tools, 2009.

Paul D. Byrnes. What’s all the fuss. . . what’s really different about scampi v1.3, June 2011.

Rachel Callison and Marlene MacDonald. A bibliography of the personal software process (psp)
and the team software process (tsp). Technical Report CMU/SEI-2009-SR-025, CMU/SEI,
October 2009 2009.

Michael Campo. Why cmmi maturity level 5? CROSSTALK The Journal of Defense Software
Engineering, (January/February):15–18, 2012.

G. Canfora, Félix García, M. Piattini, F. Ruiz, and C. Visaggio. Applying a framework for the
improvement of software process maturity. Software Practice and Experience, 36(3):283–304,
2006.

129

130 REFERENCES

David N. Card. Learning from our mistakes with defect causal analysis. IEEE Softw., 15(1):56–63,
1998.

Robert Charette, Laura M. Dwinnell, and John McGarry. Understanding the roots of process
performance failure. CROSSTALK The Journal of Defense Software Engineering, 17(8):18–22,
2004.

Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software devel-
opment problem factors on software maintainability. Journal of Systems and Software, 82(6):
981–992, 2009.

Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Diane S. Moebus,
Bonnie K. Ray, and Man-Yuen Wong. Orthogonal defect classification - a concept for in-process
measurements. IEEE Transactions on Software Engineering, 18(11):943–956, 1992.

Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI for Development R©: Guidelines for
Process Integration and Product Improvement. SEI Series in Software Engineering. Addison-
Wesley, Massachusetts, 3 edition, 2011.

CISQ. Automated function points (afp), 2014.

CISQ. Cisq code quality standards, 2016.

CMU/SEI. Criteria for audits of high maturity appraisals, 2008.

CMU/SEI. Standard cmmi R© appraisal method for process improvement (scampism) a, version
1.3: Method definition document. Technical Report CMU/SEI-2011-HB-001, CMU/SEI, 2011.
SCAMPI Upgrade Team.

A. Colombo, E. Damiani, F. Frati, S. Oltolina, K. Reed, and G. Ruffatti. The use of a meta-model
to support multi-project process measurement. In Software Engineering Conference, 2008.
APSEC ’08. 15th Asia-Pacific, pages 503–510, 2008.

Bill Curtis. Software quality measurement. In Software Assurance Forum. CMU/SEI, 2010.

Noopur Davis and Jim McHale. Relating the team software processsm (tspsm) to the capability
maturity model R© for software (sw-cmm R©). Technical Report CMU/SEI-2002-TR-008, ESC-
TR-2002-008, CMU/SEI, March 2003.

Noopur Davis and Julia Mullaney. The team software processsm (tspsm) in practice: A summary
of recent results. Technical Report CMU/SEI-2003-TR-014, ESC-TR-2003-014, CMU/SEI,
2003.

Tore Dybå. Experiences in Process Modelling and Enactment: an Investigation of the Importance
of Organisational Issues. Doctoral dissertation, 2001.

Pascoal Faria. A path for performance improvement: the personal software process (psp) and the
team software process (tsp), 6-11-2009 2009.

Bob Ferguson. Leading indicators of program management, 2010.

Robert Ferguson, Dennis Goldenson, James McCurley, Robert Stoddard, David Zubrow, and De-
bra Anderson. Quantifying uncertainty in early lifecycle cost estimation (quelce). Technical
Report CMU/SEI-2011-TR-02, 2011.

REFERENCES 131

William A. Florac, Anita D. Carleton, and Julie R. Barnard. Statistical process control: Analyzing
a space shuttle onboard software process. IEEE Softw., 17(4):97–106, 2000.

T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model evaluation
criterion mmre. Software Engineering, IEEE Transactions on, 29(11):985–995, 2003.

Bernd Freimut, Christian Denger, and Markus Ketterer. An industrial case study of implementing
and validating defect classification for process improvement and quality management, 2005.

Alfonso Fuggetta. Software process: a roadmap, 2000.

F. García, M. Bertoa, C. Calero, A. Vallecillo, and F. Ruiz. Towards a consistent terminology for
software measurement. Information and Software Technology, 48(8):631–644, 2006.

F. García, M. Serrano, J. Cruz-Lemus, F. Ruiz, and M. Piattini. Managing software process mea-
surement: A metamodel-based approach. Information Sciences, 177(12):2570–2586, 2007.

Félix García, Francisco Ruiz, José Cruz, and Mario Piattini. Integrated measurement for the
evaluation and improvement of software processes. volume 2786 of Lecture Notes in Computer
Science, pages 94–111. Springer Berlin / Heidelberg, 2003.

Dennis R. Goldenson, Diane L. Gibson, and Robert W. Ferguson. Why make the switch? evidence
about the benefits of cmmi, 2004.

Dennis R. Goldenson, James McCurley, and Robert W. Stoddard II. Use and organizational effects
of measurement and analysis in high maturity organizations: Results from the 2008 sei state of
measurement and analysis practice surveys. Technical report, CMU/SEI, 2008.

Miguel Carlos Pacheco Afonso Goulão. Component-Based Software Engineering: a Quantitative
Approach. Doctoral, 2008.

Robert B. Grady. Practical software metrics for project management and process improvement.
Prentice-Hall, Inc., 1992.

Stein Grimstad and Magne Jorgensen. A framework for the analysis of software cost estimation
accuracy, 2006.

Anonimous Research Group. Search nach measures in cmmi v1.2, April 2007.

Maggie Hamill and Goseva-Popstojanova Katerina. Common trends in software fault and failure
data. IEEE Trans. Softw. Eng., 35(4):484–496, 2009.

Patrick Hamon and Olivier Pinette. Les indicateurs mesure & analyse. Technical report, Spirula,
22-06-2010 2010. Mauvaises pratiques.

CH. V. M. K. Hari and P. V. G. D. Prasad Reddy. A fine parameter tuning for cocomo 81 software
effort estimation using particle swarm optimization. Journal of Software Engineering, 5(1):
38–48, 2011.

J. Huffman Hayes. Building a requirement fault taxonomy: Experiences from a nasa verification
and validation research project, November 2003 2003.

Jane Huffman Hayes, Inies Raphael, David M. Pruett, and Elizabeth Ashlee Holbrook. Case
history of international space station requirement faults, 2006.

132 REFERENCES

Kennet Henningsson and Claes Wohlin. Assuring fault classification agreement - an empirical
evaluation, 2004.

Craig Hollenbach and Doug Smith. A portrait of a cmmism level 4 effort. Systems Engineering, 5
(1):52–61, 2002.

Nien-Lin Hsueh, Wen-Hsiang Shen, Zhi-Wei Yang, and Don-Lin Yang. Applying uml and soft-
ware simulation for process definition, verification, and validation. Inf. Softw. Technol., 50
(9-10):897–911, 2008.

Watts S. Humphrey. The software engineering process: Definition and scope, 1988.

Watts S. Humphrey. Introduction to software process improvement. Technical Report CMU/SEI-
92-TR-7, CMU/SEI, June 1992 (Revised June 1993) 1992.

Watts S. Humphrey. PSPSM A Self-Improvement Process for Software Engineers. The SEI Series
in Software Engineering. Addison-Wesley, 2005.

Watts S. Humphrey. TSPSM: Coaching Development Teams. The SEI Series in Software Engi-
neering. Addison-Wesley, 2006.

IEEE. Ieee standard glossary of software engineering terminology, 1990.

IEEE. Ieee recommended practice for software requirements specifications, 1998.

Investopedia, 2007.

ISO. Fdis 9126-1 software engineering - product quality - part 1: Quality model., 2001.

R. Jeffery and M. Berry. A framework for evaluation and prediction of metrics program success.
In Software Metrics Symposium, 1993. Proceedings., First International, pages 28–39, 1993.

Philip M. Johnson, Hongbing Kou, Michael Paulding, Qin Zhang, Aaron Kagawa, and Takuya
Yamashita. Improving software development management through software project telemetry.
IEEE Softw., 22(4):76–85, 2005.

Capers Jones. Applied Software Management: Assuring Productivity and Quality. Software En-
gineering Series. McGraw-Hill, Inc., New York, 1991.

Capers Jones. Software Engineering Best Practices - Lessons from Successful Projects in the Top
Companies. McGraw Hill, 2010.

M. Jørgensen and M. Shepperd. A systematic review of software development cost estimation
studies. Software Engineering, IEEE Transactions on, 33(1):33–53, 2007.

Magne Jørgensen. Regression models of software development effort estimation accuracy and
bias. Empirical Software Engineering, 9(4):297–314, 2004.

Magne Jørgensen. A critique of how we measure and interpret the accuracy of software develop-
ment effort estimation, 2007.

Eung Sup Jun and Jae Kyu Lee. Quasi-optimal case-selective neural network model for software
effort estimation. Expert Systems with Applications, 21(1):1–14, 2001.

Marcos Kalinowski, Guilherme H. Travassos, and David N. Card. Guidance for efficiently imple-
menting defect causal analysis, June 2008.

REFERENCES 133

Marcos Kalinowski, Emilia Mendes, David Card, and Guilherme Travassos. Applying dppi: A
defect causal analysis approach using bayesian networks. In M. Ali Babar, Matias Vierimaa,
and Markku Oivo, editors, Product-Focused Software Process Improvement, volume 6156 of
Lecture Notes in Computer Science, pages 92–106. Springer Berlin / Heidelberg, 2010.

Mark Kasunic. Performance benchmarking consortium, 11-17 November 2006.

Barbara Kitchenham, Shari Lawrence Pfleeger, and Norman Fenton. Towards a framework for
software measurement validation. IEEE Trans. Softw. Eng., 21(12):929–944, 1995.

Barbara Kitchenham, Cat Kutay, Ross Jeffrey, and Colin Connaughton. Lessons learnt from the
analysis of large-scale corporate databases, 2006.

Peter Kueng. Process performance measurement system: a tool to support process-based organi-
zations. Total Quality Management, 11(1):67 – 85, 2000.

J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data. Bio-
metrics, 33(1):159–174, 1977.

Peter Leeson. Why the cmmi R© does not work, 9-12 June 2009.

Isabel Lopes Margarido. Requirements defects classification list. Technical Report PRODEI-
0903-TR-001, Faculty of Engineering, University of Porto, 2010-08-06 2010.

Isabel Lopes Margarido. Summary of literature review on effort estimation. Technical Report
PRODEI-0903-TR-003, Faculty of Engineering, University of Porto, 2012.

Isabel Lopes Margarido, João Pascoal Faria, Marco Vieira, and Raul Moreira Vidal. Classification
of defect types in requirements specifications: Literature review, proposal and assessment, 15-
18 June 2011 2011a.

Isabel Lopes Margarido, João Pascoal Faria, Marco Vieira, and Raul Moreira Vidal. Cmmi prac-
tices: Evaluating the quality of the implementation, 2011b.

Isabel Lopes Margarido, João Pascoal Faria, Raul Moreira Vidal, and Marco Vieira. Challenges in
implementing cmmi R© high maturity: Lessons learned and recommendations. Software Quality
Professional, 16(1), 2013.

Cuauhtemoc Lopez-Martin. A fuzzy logic model for predicting the development effort of short
scale programs based upon two independent variables. Appl. Soft Comput., 11(1):724–732,
2011.

Robyn R. Lutz and Carmen Mikulski. Requirements discovery during the testing of safety-critical
software, 2003.

JoséM Álvarez, Andy Evans, and Paul Sammut. Mapping between levels in the metamodel ar-
chitecture. In Martin Gogolla and Cris Kobryn, editors, UML 2001 — The Unified Modeling
Language. Modeling Languages, Concepts, and Tools, volume 2185 of Lecture Notes in Com-
puter Science, pages 34–46. Springer Berlin Heidelberg, 2001.

Steve Masters, PhD Sandi Behrens, Judah Mogilensky, and Charlie Ryan. Scampi lead apprais-
ersm body of knowledge (sla bok). Technical Report CMU/SEI-2007-TR-019, ESC-TR-2007-
019, CMU/SEI, 2007.

134 REFERENCES

Lawrence McCarthy. Piloting results-based appraisals, 2009.

James McCurley and Dennis R. Goldenson. Performance effects of measurement and analy-
sis: Perspectives from cmmi high maturity organizations and appraisers. Technical report,
CMU/SEI, 2010.

John McGarry, David Card, Cheryl Jones, Beth Layman, Elizabeth Clark, Joseph Dean, and Fred
Hall. Practical Software Measurement: Objective Information for Decision Makers. Addison-
Wesley, 2002.

James McHale, Timothy A. Chick, and Eugene Miluk. Implementation guidance for the acceler-
ated improvement method (aim). Technical Report CMU/SEI-2010-SR-032, CMU/SEI, 2010.

S. Mishra and B. H. Schlingloff. Compliance of cmmi process area with specification based
development. In Software Engineering Research, Management and Applications, 2008. SERA
’08. Sixth International Conference on, pages 77–84, 2008.

Gary Mogyorodi. Requirements-based testing: an overview, 2001.

Kjetil Moløkken and Magne Jørgensen. A review of surveys on software effort estimation. Journal
of Systems and Software, 70(1-2):37–60, 2004.

O. Monkevich. Sdl-based specification and testing strategy for communication network protocols,
1999.

Paula Monteiro, Ricardo Machado, Rick Kazman, and Cristina Henriques. Dependency analysis
between cmmi process areas product-focused software process improvement. volume 6156 of
Lecture Notes in Computer Science, pages 263–275. Springer Berlin / Heidelberg, 2010.

Bob Moore and Will Hayes. Building a credible scampi appraisal representative sample, 2005.

Bob Moore and Will Hayes. Practical advice on picking the right projects for an appraisal, 11-17
November 2006.

Ofer Morgenshtern, Tzvi Raz, and Dov Dvir. Factors affecting duration and effort estimation
errors in software development projects. Inf. Softw. Technol., 49(8):827–837, 2007.

Mahmood Niazi, David Wilson, and Didar Zowghi. A maturity model for the implementation of
software process improvement: an empirical study. J. Syst. Softw., 74(2):155–172, 2005.

William R. Nichols, Mark Kasunic, and Timothy A. Chick. Tsp performance and capability eval-
uation (pace): Customer guide. Technical report, 2013.

OMG. Software & systems process engineering meta-model specification, 2008.

E. Palza, C. Fuhrman, and A. Abran. Establishing a generic and multidimensional measurement
repository in cmmi context. In Software Engineering Workshop, 2003. Proceedings. 28th An-
nual NASA Goddard, pages 12–20, 2003.

Robert E. Park, Wolfhart B. Goethert, and William A. Florac. Goal-driven software measurement
- a guidebook. Technical report, CMU/SEI, August 1996 1996.

Shari Lawrence Pfleeger, Ross Jeffery, Bill Curtis, and Barbara Kitchenham. Status report on
software measurement. IEEE Softw., 14(2):33–43, 1997.

REFERENCES 135

Mike Phillips. Cmmi v1.3 planned improvements, 28 June - 1 July 2010.

Mike Phillips and Sandy Shrum. Process improvement for all: What to expect from cmmi version
1.3. CROSSTALK The Journal of Defense Software Engineering, 23(1):10–14, 2010.

Adam A. Porter, Jr. Votta, Lawrence G., and Victor R. Basili. Comparing detection methods for
software requirements inspections: A replicated experiment. IEEE Transactions on Software
Engineering, 21(6):563–575, 1995.

Simona Pricope and Lichter Horst. Towards a systematic metric based approach to evaluate scampi
appraisals, June 15-17 2009.

Arthur Pyster. What beyond cmmi is needed to help assure program and project success? unifying
the software process spectrum. volume 3840 of Lecture Notes in Computer Science, pages
75–82. Springer Berlin / Heidelberg, 2006.

Ron Radice. Statistical process control in level 4 and level 5 software organizations worldwide,
May 4 2000.

Ron Radice. Scampism with sw-cmm R©, 2003.

Bryce Ragland. Measure, metric, or indicator: What’s the difference? CROSSTALK The Journal
of Defense Software Engineering, 1995.

Hans Sassenburg. Standard investigation method for benchmarking it organisations (simbio),
2009.

Hans Sassenburg and L. Voinea. Does process improvement really pay off?, 28 June - 1 July 2010.

Mark Schaeffer. Dod systems engineering and cmmi, November 17, 2004 2004.

G. Michael Schneider, Johnny Martin, and W. T. Tsai. An experimental study of fault detection in
user requirements documents. ACM Trans. Softw. Eng. Methodol., 1(2):188–204, 1992.

David Schreb. Accelerated improvement method (aim). Technical report, CMU/SEI, May 2010
2010.

Ken Schwaber and Jeff Sutherland. The Scrum Guide. Scrum.org, 2013.

SEI. Sema, 2016.

CMU SEI. Accelerated improvement method (aim). Technical report, May 2010 2010.

R. K. Smith, J. E. Hale, and A. S. Parrish. An empirical study using task assignment patterns to
improve the accuracy of software effort estimation. Software Engineering, IEEE Transactions
on, 27(3):264–271, 2001.

Thanwadee Sunetnanta, Ni-On Nobprapai, and Olly Gotel. Quantitative cmmi assessment for
offshoring through the analysis of project management repositories, July 2-3 2009.

Adriano Takara, Aletéia Xavier Bettin, and Carlos Miguel Tobar Toledo. Problems and pitfalls in
a cmmi level 3 to level 4 migration process, 12-14th of September 2007 2007.

Shurei Tamura. Integrating cmmi and tsp/psp: Using tsp data to create process performance
models. Technical Report CMU/SEI-2009-TN-033, CMU/SEI, November 2009 2009.

136 REFERENCES

Hans van Vliet. Software Engineering: Principles and Practice. Willey, New York, 2007.

Gursimran S. Walia and Jeffrey C. Carver. Development of requirement error taxonomy as a
quality improvement approach: A systematic literature review. Technical Report MSU-070404,
Department of Computer Science and Engineering, 2007.

David R. Webb, Dr. Gene Miluk, and Jim Van Buren. Cmmi level 5 and the team software process.
CROSSTALK The Journal of Defense Software Engineering, pages 16–21, 2007.

David N. Wilson, Tracy Hall, and Nathan Baddoo. A framework for evaluation and prediction of
software process improvement success. J. Syst. Softw., 59(2):135–142, 2001.

Robert K. Yin. Case Study Research Design and Methods. Applied Social Research Methods
Series. SAGE, fourth edition, 2009.

Horst Zuse. A Framework of Software Measurement. Walter de Gruyter & Co., 1997.

Appendix A

Effort Estimation Methods

A.1 Effort Estimation Methods

Effort estimation methods classification from our literature review on effort estimation (3.4):

Table A.1: Effort Estimation methods.

Name Classification Ref. Comments
COCOMO I and II model based [4]

statistical model

[7]

[2, 4,

7, 8]

[9-11]

needs recalibration [2] [12], validity of

some factors in our days is questionable

[12]

Boehm, 1984, 1988 [7]

FPA Metrics model based [4] [4, 10,

13]

FPA [8,

14]

"based on metric using user specifications,

such as number of inputs, master files,

number of logical files, number of inter-

faces and number of outputs to estimate

software size.[14]"

MK II FPA [8]

Capacity Related

and Price-to-Win

not “pure” [4]

Delphi [10]

Price-S [15]

SEER-SEM [15]

Putnam’s SLIM

model

statistical model [7, 10,

15]

Boehm, 1984; Putnam, 1978

Putnum [13]

Continued on next page

137

138 Effort Estimation Methods

Table A.1 – Continued from previous page

Name Classification Ref. Comments
Doty model statistical model [7, 9-

11]

Boehm, 1984; Herd, 1977

Bailey + Basili

Meta model

statistical model [7, 9,

10]

Bailey&Basili, 1981; Boehm, 1984

TRW model statistical model [7] Boehm, 1984; Wolverton, 1974 [7]

Halsted Equation [9-11]

Walston-Felix [9][11]

Anish Mittal [10]

Swarup [10]

Least Squares Re-

gression (LSR)

[2, 16,

17]

"generates regression model based on

statistic minimizes the sum of squared er-

rors to determine the best estimates for co-

efficients[9].[16]"

Expert Judgement [4, 5] "there is no evidence that formal estima-

tion models are more accurate [4]"

Top-down and

Bottom-up

[4] "can be used in combination with other

methods [4]"

Use Case Based model based [4]

Use Case Points

(UCP)

[8] "The Use Case Points (UCP) estimation

method introduced in 1993 by Karner esti-

mates effort in person-hours based on use

cases that mainly specify functional re-

quirements of a system [11] [12]. Use

cases are assumed to be developed from

scratch, be sufficiently detailed and typ-

ically have less than 10-12 transactions."

The method "is an extension of the Func-

tion Points Analysis and MK II Function

Points Analysis [21]. [8]"

Artificial neural

networks

machine learning [2]

Fuzzy Logic (FL) machine learning [5, 9] GP, COCOMO and PSO have almost sim-

ilar properties. FL has the lowest MMRE.

Continued on next page

A.1 Effort Estimation Methods 139

Table A.1 – Continued from previous page

Name Classification Ref. Comments
Neural Networks machine learning [5,

16]

"The neural network with hidden layers al-

lows the non-linear mapping function be-

tween the causing input factors and output

results. (Jun and Lee, 2001)"

Radial Basis Func-

tion (RBF) neural

networks

machine learning [18]

MLP neural net-

works machine

learning

[18] "Multi-layer perceptron – applied in clas-

sification, regression and time series fore-

casting. [18]"

Wavelet neural net-

works

machine learning [18]

Genetic Program-

ming (GP)

machine learning [5, 9,

18]

Genetic Algorithm machine learning [18]

Regression Trees machine learning [5]

Multiple additive

regression trees

machine learning [18] "Model Trees – machine learning method

for classification and regression. The

leaves perform linear regression functions.

Produce more understandable results than

MLP."

Case-based Rea-

soning

machine learning [5] "attempts to seek a solution of the most

similar past case(s), and modifies the solu-

tion considering the differences from the

new target case (Jun and Lee, 2001)."

Analogy with past projects (Morgenshtern

et al., 2007)

Bagging predictors machine learning [18]

Support vector re-

gression (SVM)

machine learning [18] "based on statistical learning theory. Out-

performns radial basis functions neural

networks (RBFN) for software effort esti-

mation in NASA projects’ data. [18]"

Hierarchical

Bayesian inference

[19]

Bayesian Network [16]

Continued on next page

140 Effort Estimation Methods

Table A.1 – Continued from previous page

Name Classification Ref. Comments
Particle Swarm

Optimisation

(PSO)

[9,

11]

Features Selection

Feature Subset Se-

lection (FSS)

[15] feature subset selection (FSS) and extrap-

olation, the selection and effort estimation

is based on software parts

Effort Unit Matrix [13] Effort estimation for php forms, databases

and documents

GA for feature se-

lection

[18] Reduces number of input features.

Analogy-based Tools

ESTOR [11] Size

ANGEL [11] Size

ACE [11] Size

COCONUT [11] Search a and b parameters in COCOMO I

A.2 Factors Related with the Process

The following table presents the factors that can be considered on the effort estimation process.

Table A.2: Factors considered on effort estimation.

Name Definition Ref. Comments
Expert judgment

skills

“ability to estimate

the development

effort of a software

project applying

judgement-based

estimation meth-

ods”

[22] Estimation ability factor

Continued on next page

A.2 Factors Related with the Process 141

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Flexibility in prod-

uct and process ex-

ecution

“If the project has

a flexible scope,

a simplification

of the product

can compensate

for initially poor

estimates and thus

reduce estimation

complexity and

risk.”

[22] Estimation Complexity factor Incurring in

the risk of being criticised for our decision,

we will consider flexibility in product and

process execution as a controllable factor,

in particular flexibility in product. This is

the context of agile development, products

that can change as they evolve. So we con-

sider that this is a controllable factor.

Inconsistent use of

terminology

“When there is

a lack of clear

definitions of terms

and there exist

differences in

interpretations of

important estima-

tion terminology,

variance in estima-

tion error cannot

automatically be

attributed to vari-

ance in estimation

ability or estima-

tion complexity.”

[22] We will try as much as possible to iden-

tify if the estimate includes a buffer and

quantify it; is a weighted average of opti-

mist, pessimist and most probable or sim-

ply represents ‘most likely effort’.

Analysts ca-

pability:

acap(COCOMO(C)

I, II) Estimator ex-

perience from

similar projects

Staff skill level

[7] Estimator

experience [6]

[6, 7,

12,

22]

[26-

29]

Increase this to decrease effort [12] Lower

duration estimation error when considered

the experience in the specific application

area in number of projects [6]

Programmer capa-

bility: pcap (CI,II)

Programmer quali-

fications

Staff skill level [7]

Cumulative experi-

ence [30]

[7, 12,

26,

27]

[28-

31]

Increase this to decrease effort [12]

Continued on next page

142 Effort Estimation Methods

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Application experi-

ence: aexp (CI, II)

Programmer expe-

rience with appli-

cation Team expe-

rience Staff

skill level [7]

Cumulative expe-

rience [30] Project

uncertainty [6]

[6, 7,

12,

26]

[27-

29]

[30-

32]

Increase this to decrease effort [12]

Modern program-

ming practices:

modp (CI)

Project require-

ment [7]

[7, 12,

26,

28]

[29,

32-

34]

Increase this to decrease effort [12] Pro-

ductivity increases with “with the high

use of top-down design, modular de-

sign, design reviews, code inspections,

and quality-assurance programs [33]” In-

creases productivity [34]

Use of software

tools: tool (CI, II)

Project require-

ment [7]

[7, 12,

26,

27]

[28,

29,

31,

34]

Increase this to decrease effort [12] In-

creases productivity [34]

Virtual machine

experience: vexp

(CI)

Staff skill level [7] [7, 12,

26,

32]

[28,

29]

Increase this to decrease effort [12]

Language expe-

rience: lexp (CI)

Language and

tool experience

(CII) Programming

language experi-

ence Programmer

experience with

language

Staff skill level [7]

Cumulative experi-

ence [30]

[7, 12,

26,

27]

[28-

30]

[31,

32]

Increase this to decrease effort [12]

Continued on next page

A.2 Factors Related with the Process 143

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Schedule con-

straint: sced (CI)

Required devel-

opment schedule

(CII)

Timing Project re-

quirement [7] Re-

source Constraints

[33]

[7, 12,

27,

28]

[29,

31,

33,

35]

Main memory con-

straint: stor (CI, II)

Memory utilisation

Main storage con-

straint

Computing plat-

form [7] Resource

Constraints [33]

[7, 12,

26,

28]

[29,

31,

32]

[33,

34]

Decrease this to decrease effort [12]

Database size: data

(CI, II) Database

complexity

Characteristics of

products [7] Cumu-

lative complexity

[30]

[12,

26,

27]

[28-

30]

[31,

36]

Decrease this to decrease effort [12]

Time constraint for

CPU: time (CI) Ex-

ecution time con-

straints (CII)

CPU occupancy

Computing plat-

form [7] Resource

Constraints [33]

[7, 12,

26,

27]

[28,

29,

31]

[32,

33]

Decrease this to decrease effort [12]

Turnaround time:

turn (CI) Computer

turnaround time

Computing plat-

form [7]

[7, 12,

26,

27]

[28]

Decrease this to decrease effort [12]

Continued on next page

144 Effort Estimation Methods

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Machine volatility:

virt (CI) Virtual

machine volatility

Computing plat-

form [7]

[12,

26,

28,

29]

Decrease this to decrease effort [12]

Process com-

plexity: cplx (CI)

Product complexity

(CII) Application

process complexity

Implementation

complexity

Characteristics of

products [7] Cumu-

lative complexity

[30] Program com-

plexity [33] Project

uncertainty [6]

[6, 7,

12,

26]

[27-

30]

[31-

33,

35]

Decrease this to decrease effort [12] Pro-

ductivity decreases with higher percentage

of complex code. Product related (non-

controllable by project management) [33].

Required software

reliability: rely (CI,

II)

Characteristics of

products [7]

[12,

26-

28]

[29,

31]

Decrease this to decrease effort [12]

Development for

reusability: ruse

(CII)

[31]

Platform volatility:

pvol (CII)

[31]

Platform experi-

ence: plex (CII)

[31]

Personnel continu-

ity: pcon (CII)

Staff skill level [7] [7, 29,

31,

32]

Multisite develop-

ment: site (CII)

[31]

Documentation

needs: docu (CII)

[31]

Reuse Project require-

ment [7]

[7, 26,

28,

29]

[32]

Type of project Project require-

ment [7]

[7,

28]

We included this factor in the data dictio-

nary

Continued on next page

A.2 Factors Related with the Process 145

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Programming lan-

guage used

Project require-

ment [7]

[7, 27,

28,

35]

We included this factor in the data classifi-

cation table

Software develop-

ment mode

Project require-

ment [7]

[7, 26,

28]

Number of source

codes

Project require-

ment [7]

[26,

28,

29,

32]

[35]

Project size (func-

tions or modules)

Project require-

ment [7]

[7, 35,

36]

Use of chief pro-

grammer team

Project require-

ment [7] Total

methodology [33]

[32][33]

Team size Project require-

ment [7] Work

assignment factor

[24]

[7, 24,

27,

34]

[35]

Lowers productivity [34] From previous

work it should increase development effort

but it did not happen in the analysed data

[24].

Design volatility Characteristics of

products [7]

[26,

27,

29]

Complexity of de-

livered codes

Characteristics of

products [7]

[7, 26,

27,

29]

[35]

Complexity of

application pro-

cessing

Characteristics of

products [7]

[7, 27,

29,

36]

Complexity of pro-

gram flow

Characteristics of

products [7] Cumu-

lative complexity

[30]

[7, 27,

29,

30]

[36]

Processing type Characteristics of

products [7]

[7, 27,

29,

36]

Continued on next page

146 Effort Estimation Methods

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Used algorithm Characteristics of

products [7]

[7, 27,

29,

36]

Number of pages of

documents

Characteristics of

products [7]

Number of displays

and queries

Characteristics of

products [7]

[32,

36]

Number of person-

nel

Staff skill level [7] [7,

26]

Experience in simi-

lar project

Staff skill level [7] [7,

32]

Train and educa-

tion staff Formal

training

Staff skill level [7]

Total methodology

[33]

[7,

26][33]

Type of computer

used

Computing plat-

form [7]

[26,

28,

32]

Network type Computing plat-

form [7]

[7,

27]

Requirement

volatility Amount

of requirements

rewritten

User attributes [7]

Requirements [33]

[27,

32,

33,

35]

[37]

Productivity increases with accurate and

stable requirements specification. Project

related factors (under project management

control) [33]

Interface complex-

ity

User attributes [7] [27,

32,

36]

User participation

in specification

Client vs ITT

specification

User attributes

[7] Requirements

specification [33]

[27,

32,

33]

Productivity increases with accurate and

stable requirements. Project related (con-

trollable) [33].

User originated de-

sign changes Cus-

tomer initiated de-

sign changes

User attributes

[7] Cumulative

complexity [30]

[27,

30,

32]

Continued on next page

A.2 Factors Related with the Process 147

Table A.2 – Continued from previous page

Name Definition Ref. Comments
User experience in

application Client

Experience

User attributes [7]

Client Interface

[33]

[27,

33]

Productivity increases with experience.

Product related (non-controllable) [33].

Management com-

mitment

User attributes [7] [27]

Customer interface

complexity

Cumulative com-

plexity [30]

[30]

Internal communi-

cation complexity

Cumulative com-

plexity [30]

[30]

External communi-

cation complexity

Cumulative com-

plexity [30]

[30]

Programmer ex-

perience with

machine

Cumulative experi-

ence [30]

[30]

Team previously

worked together

Cumulative experi-

ence [30]

[30]

Tree charts Total methodology

[30]

[30]

Top down design Total methodology

[30]

[30]

hline Design for-

malism

Total methodology

[30]

[30]

Formal documenta-

tion

Total methodology

[30]

[30]

Code reading Total methodology

[30]

[30]

Formal test plans Total methodology

[30]

[30]

Unit development

folders

Total methodology

[30]

[30]

Number of re-

source constraints

Resource con-

straints [33]

[33] Productivity decreases with the presence

of two or more resource constraints. Prod-

uct related (non-controllable) [33]

Size [33,

34]

Productivity decreases as the number of

development statements increases. Prod-

uct related (non-controllable) [33]

Continued on next page

148 Effort Estimation Methods

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Client participation Client Interface

[33]

[33] Productivity increases with participation.

Product related (non-controllable) [33]

HW concurrent

with SW develop-

ment

[33] Productivity decreases with concurrent

hardware development. Project related

factor (controllable) [33]

Development com-

puter size

[33] Productivity increases as computer size in-

creases. Project related factor (control-

lable) [33]

Personnel experi-

ence

[33] Productivity increases with more experi-

enced programming personnel. Project re-

lated factor (controllable) [33]

Project duration [34] Lowers productivity [34]

Execution time

constraints

[34] Lower time constraints increase productiv-

ity [34]

Moving window Historical data [38] [38] Considering the chronology of projects

when using historical data [38]

Level of detail [6] Planning at a more detailed level (shorter

activities, smaller tasks) results in better

data for estimation and reduces statistical

errors [6]

Defects [37] To estimate rework

Rework [37]

Unclear project

definition

Project uncertainty

[6]

[6]

Low project impor-

tance

Project uncertainty

[6]

[6]

Technology uncer-

tainty

Project uncertainty

[6]

[6]

Estimation goals Estimation devel-

opment [6]

[6]

Team focused pro-

cesses

Estimation devel-

opment [6]

[6]

Participation of

other groups

Estimation devel-

opment [6]

[6]

Continued on next page

A.2 Factors Related with the Process 149

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Concurrency Work assignment

factor [24]

[24] “the degree to which those team members

work together or separately“ “increased

concurrency (reflecting a higher degree of

team collaboration) resulted in greater de-

velopment effort”. However, working to-

gether increases effectiveness. Allowing

team members to focus on a smaller num-

ber of tasks improves effort. [24]

Intensity Work assignment

factor [24]

[24] Degree of schedule compression, i.e. “to

which a module’s development schedule is

expedited. A module with a high intensity

level was worked on with sharp focus and

few or no hiatuses, while a low intensity

level would be associated with a module

that may have sat untouched for long peri-

ods of time.” More compression of the de-

velopment schedule of modules improves

effort. “development effort was found to

decrease as intensity increased.” When in-

tensity is too high then it may have the op-

posite effect [24]

Fragmentation Work assignment

factor [24]

[24] “degree to which team members’ time is

fragmented over multiple modules” “de-

velopment effort is found to increase with

fragmentation.” Breaking down work to

tasks that can be accomplished individu-

ally improves development effort. [24]

Actors classifica-

tion

UPC estimation

factor [8]

[8]

Use cases classifi-

cation

UPC estimation

factor [8]

[8] Based on average of transactions[24]

Number of new or

modified actors

UPC additional

factors [8]

[8]

Transaction UPC additional

factors [8]

[8] Each counted as one use case

Alternative flow UPC additional

factors [8]

[8] Each counted as one use case

Continued on next page

150 Effort Estimation Methods

Table A.2 – Continued from previous page

Name Definition Ref. Comments
Special rules for

exceptional flows,

parameters and

events

UPC additional

factors [8]

[8]

Number of points

for modification

use cases

UPC additional

factors [8]

[8]

Scale Factors (five)

Predecentedness :

prec (CII)

[31] Previous experience of the organisation

Development flexi-

bility: flex (CII)

[31] Degree of flexibility in the development

process

Risk resolution:

resl (CII)

[31] Extent of risk analysis carried out

Team cohesion:

team (CII)

[31] How well they know each other and work

together

Process maturity:

pmat (CII)

[31] Process maturity of the organisation

A.3 Factors Related with the Project Execution

The next table presents the factors that can cause effort estimation deviations.

Table A.3: Factors causing effort estimation deviations.

Name Definition Ref. Comments
Accuracy of an es-

timation model

[22] Estimation ability factor

Project manage-

ment (cost control)

ability

to manage the

project to the

budget [22]

[22] Estimation complexity factor

Project member

skill

[22] Estimation complexity factor

Continued on next page

A.3 Factors Related with the Project Execution 151

Table A.3 – Continued from previous page

Name Definition Ref. Comments
Completeness and

certainty of infor-

mation

“measurement

error of input

variable [22]”

[22] Estimation complexity factor

Inherent project ex-

ecution complexity

“Innovative

projects, e.g.,

utilizing “leading

edge” technology,

and projects de-

veloping complex

functionality, are

inherently more

difficult to estimate

than repeating or

simple projects.

Another example

of inherent project

complexity is size

(large projects are

more difficult to

estimate). [22]”

[22] Estimation complexity factor

Project priorities “Projects with a

strong focus on

time-to-market, for

example, typically

have less accurate

estimates than

those with a focus

on cost control.

[22]”

[22] Estimation complexity factor

Continued on next page

152 Effort Estimation Methods

Table A.3 – Continued from previous page

Name Definition Ref. Comments
Logging problems “Lack of proper

logging routines

for the actual use of

effort may result in

there being differ-

ences in activities

included in the

measured actual ef-

fort, or may affect

whether overtime

is recorded or not.

[22]”

[22] Measurement process factor We will have

to exclude from our analysis projects were

those problems occur. This is a threat

to the execution of the case study itself,

the organisation may not have sufficient

projects were time is accurately logged

and choosing only the only the ones that

do it can bias the study, because those may

be the single projects that use certain effort

estimation methods that require more dis-

cipline.

Difference between

planned and actual

output/process

“Software projects

may experience

increases or

reductions in func-

tionality. Similarly,

the project may not

conduct all planned

quality assurance

activities or deliver

the planned quality.

Differences in

estimation error

may be caused by

these differences

between planned

and actual out-

put/process and

not, for example,

estimation ability.

[22]”

[22] Measurement process factor We will ver-

ify differences between planned function-

alities and actual functionalities (compare

proposal, requirements and delivery, ask

confirmation to project members), quality

activities (verify verification activities and

ask confirmation to testers).

Design tool [39] Good design tools increase productivity

(generation of code).

New project mem-

bers in the middle

of project

[39] Generally slows down projects due to the

learning curve

Continued on next page

A.3 Factors Related with the Project Execution 153

Table A.3 – Continued from previous page

Name Definition Ref. Comments
Availability of re-

sources

Project uncertainty

[6]

[6]

Instability Project

uncertainty [6]

[6]

Client prepared-

ness

Project uncertainty

[6]

[6]

Customer control Estimation man-

agement [6]

[6]

IT unit control Estimation man-

agement [6]

[6]

Reporting fre-

quency

Estimation man-

agement [6]

[6]

Team performance

assessment

Estimation man-

agement [6]

[6]

Risk assessment Estimation man-

agement [6]

[6]

Functionalities [22] Planned and actually delivered

Defects Source of un-

planned work[37]

[37]

Realistic expecta-

tions

Client [40]

Frequency of plan

update

[40]

Frequency of

progress control

[40]

154 Effort Estimation Methods

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Conducted Research
	1.1.1 Problem Definition
	1.1.2 Research Questions and Hypothesis
	1.1.3 Beneficiaries

	1.2 Thesis Organisation

	2 Fundamental Concepts
	2.1 Measurement
	2.2 Process Performance Measurement and Improvement
	2.3 CMMI Architecture and Appraisal Method
	2.4 TSP Architecture and Certification
	2.5 Effort Estimation in CMMI and TSP

	3 State of the Art
	3.1 Related Work on Process Improvement
	3.1.1 Historical Perspective on CMMI and Metrics Programs
	3.1.2 CMMI and TSP
	3.1.3 Problems in Process Improvements, Metrics Programs and CMMI
	3.1.4 SCAMPI Limitations
	3.1.5 CMMI V1.3 Changes
	3.1.6 Methods and Models for Process Measurement and Evaluation

	3.2 Survey on MA Performance in HML Organisations
	3.3 Defect Classification Taxonomies
	3.4 Related Research on Effort Estimation

	4 The EQualPI Framework
	4.1 Framework Overview
	4.2 EQualPI Architecture
	4.3 Repository
	4.3.1 Data Model
	4.3.2 Effort Estimation Evaluation Model

	4.4 Manage Configurations
	4.5 Procedures
	4.5.1 EQualPI Setup, Tailoring and Evaluation
	4.5.2 CMMI Implementation
	4.5.3 MA Recommendations for High Maturity
	4.5.4 Process Improvements

	5 EQualPI Validation
	5.1 Evaluation of the Estimation Process
	5.1.1 Data Dictionary
	5.1.2 Data Extraction and Characterization
	5.1.3 Data Munging
	5.1.4 Process Variables Definition and Data Aggregation
	5.1.5 TSP Estimation Model
	5.1.6 Effort Estimation Accuracy Model
	5.1.7 Cross Validation of the Standard Error
	5.1.8 Limits to Generalisation and Dataset Improvements

	5.2 CMMI HML Implementation
	5.2.1 Further analysis of the HML Survey Data
	5.2.2 Case Studies
	5.2.3 Problems Analysis and Limits to Generalisation

	5.3 Requirements Process Improvement
	5.3.1 Experiments with Students
	5.3.2 Adoption by an Organisation

	6 Conclusions
	6.1 Research Achievements
	6.2 Answering Research Questions
	6.3 Challenges and Limits to Generalisation
	6.4 Future Research Work

	References
	A Effort Estimation Methods
	A.1 Effort Estimation Methods
	A.2 Factors Related with the Process
	A.3 Factors Related with the Project Execution

