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Abstract 

Software is the fundamental brick of the systems that pervade our society, such as 

communications, transportation, business and health caring. In fact, software is a 

mean for building and controlling increasingly complex business processes, with an 

unlimited potential. However, complex software hides defects (i.e., software faults) 

that may lead to the occurrence of failures affecting the business. Several techniques 

allow decreasing the number of software faults (e.g., testing) or reacting to the 

occurrence of failures (e.g., fault tolerance). Nonetheless, it is well known that 

failures are ultimately unavoidable events that may cause loss of data, performance, 

or even money or human lives. 

A solution for limiting the damage caused by system failures is to predict their 

occurrence by analyzing the system and observing its state. Failure Prediction is a 

technique proposed in the past to predict failures by analyzing the system 

architecture and the development processes, or by learning from past failure data 

(e.g., the time between successive failures). Such technique evolved into Online 

Failure Prediction, which correlates past failure data with the current system state, 

increasing the quality of the prediction. In practice, the prediction of an incoming 

failure allows performing mitigation actions, such as saving data or restarting parts 

of a system, to lessen possible hazards. 

Despite its potential, Online Failure Prediction is still not widely adopted. The main 

reason is that failures are rare events and the collection of the failure data needed for 

training a predictor is a non-controllable process that takes a long time and has a 

high cost. This becomes even more evident if we consider that current software 

systems are dynamic in nature and that the failure data collected today may not 

portray the behavior of the system tomorrow. In fact, the difficulty in collecting 

failure data is the main reason why Online Failure Prediction has not been used in 

practice so far, as training, optimizing and validating failure prediction models 

becomes very hard to achieve.  

This work addresses the current limitations of Online Failure Prediction by taking 

advantage of fault injection techniques to speed up the occurrence of failures. The 
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thesis is that software fault injection is a valid solution to generate failure-related 

data in short time for a particular system, promoting the use of Online Failure 

Prediction by helping in training, optimizing and validating different prediction 

models.  

First, we study the conditions under which software fault injection can be used to 

support failure prediction and proposes an approach to generate failure-related data 

and assess their accuracy. Then, we propose a method for assessing and comparing 

different failure prediction models in the context of a particular target system, and 

present a framework for self-adapting online failure prediction systems based on the 

continuous generation of failure data on a virtualized copy of the target system, thus 

facing the dynamic features of current software systems. A preliminary method for 

selecting the best variables for predicting failures is also presented.  

To validate and demonstrate the different techniques and tools, we present a 

number of case studies. The target system used in the case studies is based on a 

Windows XP OS running several different workloads, ranging from a simple file 

compression algorithm, up to a web server. This diversity allows collecting insights 

on the impact of the workload on the failure data generation and failure prediction. 

The web server workload, made of the widely used Apache Tomcat web server, 

provides a realistic scenario, which is used for analyzing the impact of updates on 

the prediction of failures on the system. The reason that stays behind the choice of 

Windows XP is that it was a widely spread and stable operating system whose 

failures are well known, thus being a good environment for analyzing failures 

caused by injected faults. Results clearly show that fault injection can be used to 

improve the state-of-the-art on failure prediction. 
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Resumo 

A cada vez maior complexidade do software faz com que muitos sistemas sejam 

usados contendo defeitos (i.e., falhas de software) que podem levar à quebra do seu 

correto funcionamento (i.e., avarias). Várias técnicas permitem a mitigação dos 

efeitos das falhas de software, diminuindo o número de falhas (por exemplo, através 

de testes), ou reagindo à ativação das falhas existentes (por exemplo, através técnicas 

de tolerância a falhas). No entanto, as avarias são eventos inevitáveis na vida de um 

sistema complexo e podem levar à perda de dados, desempenho, dinheiro ou até 

vidas. 

Uma solução para mitigar os danos causados por falhas de software consiste em 

prever a ocorrência de avarias através da análise do sistema, em particular a 

observação do seu estado interno. Esta técnica, denominada de previsão de avarias 

(Failure Prediction), foi inicialmente baseada na análise da arquitetura e do processo 

de desenvolvimento do sistema, podendo também considerar dados históricos sobre 

o seu funcionamento (por exemplo, o tempo de intercorrência entre duas falhas 

sucessivas). Mais recentemente, evoluiu-se para a previsão de avarias em tempo de 

execução (Online Failure Prediction), em que os dados sobre o funcionamento 

passado de um sistema são correlacionados com o seu estado atual, de forma a obter 

uma melhor qualidade na previsão. Na prática, prever a ocorrência de uma avaria 

permite executar ações de mitigação e diminuir os riscos, como por exemplo gravar 

os dados ou reiniciar partes do sistema. 

Apesar do seu potencial, a previsão de avarias em tempo de execução é ainda pouco 

utilizada. A principal razão reside na dificuldade em treinar os mecanismos de 

previsão, já que tal requer a recolha de dados relacionados com avarias observadas 

no passado. Este processo requer tipicamente demasiado tempo e não é controlável, 

resultando num custo elevado. Isto torna-se ainda mais evidente se considerarmos 

que os sistemas de software atuais são dinâmicos por natureza: isto é, evoluem ao 

longo do tempo levando a que os dados recolhidos num intervalo de tempo se 

tornem rapidamente obsoletos. De facto, a dificuldade em recolher dados é a razão 

principal para que as técnicas de previsão de avarias em tempo de execução não 
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sejam ainda utilizadas na prática, uma vez que o treino, otimização e validação dos 

modelos de previsão se tornam difíceis de realizar. 

Este trabalho aborda as limitações atuais da previsão de avarias, através da 

utilização de técnicas de injeção de falhas de software para acelerar a ocorrência de 

avarias. A hipótese é que a injeção de falhas é uma solução válida para gerar dados 

de avarias em um sistema durante um curto intervalo de tempo, suportando assim o 

treino, otimização e validação de diferentes modelos de previsão. 

Em primeiro lugar, são estudadas as condições nas quais a injeção de falhas de 

software pode ser utilizada para suportar a previsão de avarias, sendo proposta uma 

abordagem para a geração de dados e para a avaliação da representatividade desses 

mesmos dados. De seguida, é proposto um método para avaliar e comparar 

diferentes modelos de previsão no contexto de um sistema específico e apresentada 

uma solução para a auto-adaptação de sistemas de previsão de avarias capaz de 

acompanhar a evolução do sistema. A solução proposta assenta na geração contínua 

de dados em uma cópia virtualizada do sistema. Para além disso, é proposto um 

método para selecionar as melhores variáveis para suportar o processo de previsão. 

Para demonstrar e validar as diferentes técnicas e soluções propostas, são 

apresentados vários casos de estudo. Os sistemas utilizados são baseados no sistema 

operativo Windows XP e incluem a execução de diferentes cargas de trabalho, desde 

um simples algoritmo de compressão de arquivos, até um servidor Web. Esta 

diversidade permite estudar o impacto da carga de trabalho na geração de dados. Os 

resultados mostram a aplicabilidade da injeção de falhas de software no contexto da 

previsão de avarias em sistemas de computadores. 

 

Palavras-chave: 

Previsão de avarias, injeção de falhas de software, testes padronizados, sistemas de software 

dinâmicos, virtualização. 
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Chapter 1 
Introduction 

Computer systems are an intrinsic element of our life. Hardware and software 

components work jointly to provide complex functions, with the logic of the system 

embodied into the software, while the hardware provides data storing, data 

management, and communication. Despite the importance that hardware had over 

many decades, the software is nowadays the flexible and powerful mean that allows 

building and controlling increasingly complex systems. In fact, several areas of our 

society strictly depend on software systems, such as transportation (e.g., trains, 

airplanes, cars, elevators, etc.), industrial production, communication, medical aid 

(e.g., devices for intensive care, radiation therapy systems, etc.), and finance (e.g., 

banks, commercial systems, stock market).  

Over the last decade, software has grown in complexity up to a point that systems 

are hardly free from defects (also known as software faults), and it is nowadays 

commonly accepted that every computer system eventually fails due to residual 

software faults, i.e., defects that escape the development and testing phases (Gray 

1986; Ko, Dosono, and Duriseti 2014). A software fault can be a design flaw or a 

defect introduced during the coding of a software component (or the use of an 

external software) that is activated under certain conditions. Although hardware 

faults used to be the main cause of system outages (e.g., a bit flip in a hardware 

component due to a quantity of gamma rays higher than expected passing through 

the component), the situation has changed due to the higher reliability of hardware 

components and to the increasing size and complexity of software (Gray 1986; Lee 

and Iyer 1995). Starting from 1980’s, studies point software faults as the major cause 

of computer failures (Kalyanakrishnam, Kalbarczyk, and Iyer 1999; Lee and Iyer 

1995), and their weight with respect to hardware faults tends to increase, given the 

continuous growth of software complexity.  

The problem is that, in complex systems, such as business- and mission-critical 

systems, software faults frequently lead to errors and failures of parts of the system 
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(or of the system as a whole) that can ultimately lead to loss of profit or even human 

lives. This scenario called the attention of the scientific community to the way 

software systems are developed and to the properties that they must have to avoid 

hazards, as well as to techniques able to contain potential damages. In particular, the 

main interest has been on increasing the trust that one can put in the computer 

system or how much a user can depend on the system. Avizienis et al. define such 

concept as system dependability (Avizienis et al. 2004).  

Several techniques were developed with the objective of avoiding or managing 

faults. A first family of techniques stands on the hypothesis that faults can be 

avoided. Fault prevention or avoidance techniques improve the software development 

process by applying, for instance, product quality controls and formal verification 

techniques. Likewise, fault removal techniques aim at finding and correcting the 

highest possible number of faults in a system after its development: examples are 

testing, verification, and validation techniques. On the other hand, it is well 

established that deploying fault-free complex systems is an unachievable goal (R. 

Chillarege 1995; Sullivan and Chillarege 1991; Ram Chillarege, Kao, and Condit 

1991). This way, failures remain unavoidable events, and computer systems do need 

to encompass techniques for proactively handling and/or recovering from their 

effects. The second family of techniques, addressing such hypothesis, comprises fault 

tolerance that mitigates existing faults (e.g., by using system replication, error 

detection, system re-initialization, etc.), and fault forecasting for modeling the future 

impact of the faults present in the system, as well as the time when the system will 

fail (e.g., by using reliability block diagrams, fault-trees, etc.). The focus of this work 

is precisely on fault forecasting techniques, in particular on Online Failure 

Prediction, making use of past and current system data for estimating or forecasting 

failures.  

Using fault forecasting techniques to predict if and when a failure would occur, allows 

applying countermeasures to avoid the occurrence of the failure itself, or at least 

preparing mechanisms in advance to recover from the failure. Such solutions can, for 

instance, reduce the time-to-repair and increase the availability of a system (F. 

Salfner and Malek 2005). In practice, estimations based on information about the 

failures faced by the system, such as Mean Time To Failure (MTTF) or Mean Time 

Between Failures (MTBF), can be used to predict the occurrence of failures in an 

interval of time. Also, reliability models (Lyu and others 1996), built using 

information about the development process, allow predicting future failures 

(assuming that the system properties are stable over time). However, the 

effectiveness of such forecasting methods is strongly limited, as the hypothesis that a 

given failure prediction model holds over time is nowadays proven invalid for most 

systems. 

Online Failure Prediction (F. Salfner, Lenk, and Malek 2010) is a promising technique 

that improves the classical failure forecasting schema by correlating past data about 

the system state with the occurrence of failures, and afterwards comparing that 
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information with the system state at runtime. The prediction information obtained at 

runtime allows rapidly and proactively taking countermeasures before the failure 

occurs, such as saving data and restart a failing system component, thus minimizing 

or even eliminating downtime and increasing availability (F. Salfner, Hoffmann, and 

Malek 2005). In practice, an online failure predictor forecasts incoming failures using 

past data from the system (used to train the predictor) and information about the 

current state of the system (obtained by monitoring system state variables), during 

the system execution (i.e., online). The information about the system state used can 

be numerical variables measuring relevant properties (memory available, page faults, 

etc.), or categorical variables, such as events from error logs (F. Salfner, Lenk, and 

Malek 2010). The output of online failure prediction can be either a decision that a 

failure is imminent, or some continuous measure that portrays how failure prone the 

current system state is. Preliminary estimates show that five minutes in advance 

failure prediction can improve system availability by an order of magnitude (G. 

Hoffmann and Malek 2006). This technique is particularly useful to address residual 

faults (i.e., faults that escaped the testing process) that cannot be tolerated by 

existing fault tolerance mechanisms (M. Vieira et al. 2009). 

Several different types of online failure prediction algorithms were proposed in the 

past (see survey in (F. Salfner, Lenk, and Malek 2010)). An example is a method 

based on the system state clustering and Hidden Semi-Markov Models to detect 

failure-prone states, proposed by Salfner et al. (F. Salfner and Malek 2007). Another 

example is the use of Support Vector Machine classifiers to predict failures in hard 

disk drives presented by (G. F. Hughes et al. 2002). Online failure prediction has 

been proposed for single-node and multi-node systems, moving to cloud systems (Y. 

Watanabe et al. 2012) in the last years. There are also some examples of companies 

announcing failure prediction features in their systems (Liang et al. 2006).  

Despite its potential contribution for improving dependability, online failure 

prediction still presents several limitations. In fact, in addition to the problem of 

choosing the optimal set of variables to use for prediction (the feature selection 

problem), online prediction models are difficult to tune and assess. Although these 

are common problems in the prediction field, in the failure prediction area they are 

exacerbated by the fact that the collection of failure data is extremely difficult and 

time-consuming, as demonstrated by several works that show that failure data 

collection can take from months up to years (Li, Vaidyanathan, and Trivedi 2002; G. 

Hoffmann and Malek 2006; Otsuka et al. 2014; Pitakrat, Van Hoorn, and Grunske 

2014). Moreover, computer systems are dynamic and evolving in nature, and 

updating online failure predictors at regular intervals in absence of updated failure 

data is a difficult task. A proposed solution to address the problem of failure data 

scarcity is the use of failure data repositories (Felix Salfner, Lenk, and Malek 2010) 

provided in the form of collaborative databases where failure data coming from 

several (types of) systems are stored. However, although being a valid solution, 

failure data repositories must keep increasingly larger amounts of data associated to 
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several particular systems, they take long to be built, and data become obsolete as 

systems change over time. Although proposals of failure prediction solutions 

adapting to such situation can be found in the literature, such approaches are limited 

to failure prediction models based on specific approaches (e.g., online failure 

prediction based on time series (Zemouri and Zerhouni 2011)). 

1.1 Problem statement 

In this work we argue that advancing the failure prediction area requires a 

systematic approach that facilitates the generation of failure data. Our proposal is 

to use realistic software fault injection to increase the probability of failures to occur, 

allowing speeding up the generation and collection of failure-related data. The thesis 

is that failure data generated by injecting residual software faults1 can be used to 

support the process of training, assessing and comparing failure prediction models, 

as well as optimizing and promoting their use.  

Fault injection consists of deliberately introducing faults in a way that emulates the 

existence of residual faults in the system (Arlat, Crouzet, and Laprie 1989), which 

may lead to errors (erroneous system state) and finally to system failures (a deviation on 

the service provided). Inoculating a system with software faults increases the number 

of faults in the system, which obviously increases the probability of the system to 

fail. In particular, injecting realistic faults means that the faults introduced represent 

defects that developers could potentially introduce during the system development. 

The ultimate idea is that injecting realistic software faults for increasing the 

probability of occurrence of failures enables the faster collection of failure-related 

data. Consequently, the availability of such data facilitates the assessment, 

comparison and improvement of existing failure prediction methods, or even the 

definition of new approaches.   

Although this idea seems rather straightforward, fault injection techniques have 

been rarely used to improve failure prediction. Some works used the injection of 

memory leaks to accelerate the occurrence of the Software Aging phenomena in the 

system under study, but they targeted only aging-related failures (Gross, Bhardwaj, 

and Bickford 2002; Andrzejak, Moser, and Silva 2007; Alonso, Torres, and Gavaldà 

2009). Furthermore, faults are mostly injected at the source code level, which is not 

practical when considering complex computer systems, and even not feasible when 

the source code is not available. Other techniques, such as executing stressful 

workloads (Vaidyanathan et al. 2001) that drive the operating system to limit 

                                                      

1 In the fault injection context, the concept of injecting “residual” faults is used to highlight 

the fact that the injected faults do emulate residual software faults, i.e., faults that escaped the 

quality assurance activities conducted in the context of the software development project 

(e.g., testing phase), thus remaining in the system after deployment. 
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conditions (e.g., increasingly opening files, using large percentages of CPU cycles, 

etc.) (Magalhaes and Silva 2012), and accelerated life tests (Matias, Trivedi, and 

Maciel 2010), were proposed and used to raise failures and validate software 

rejuvenation models. In practice, such techniques exploit the faults already present 

in the target software system to speed up the occurrence of system failures.  

In this work we hypothesize that the injection of realistic software faults is a valid 

solution for fostering the use of failure prediction, by addressing the following 

issues: 

1. Deploying online failure prediction models and evaluating their figures of 

merit on a particular system installation. Effectively deploying failure 

prediction models requires accurate training, which can only be achieved by 

collecting failure data from a particular system installation, besides assessing 

the algorithms’ performance and comparing them for selecting the most 

suitable for such system. In fact, studies on the performance of existing 

failure prediction models found in literature (a survey is in (F. Salfner, Lenk, 

and Malek 2010)) are often not comparable among each other (besides 

presenting frequently incomplete information), as they are very specific to 

the target system used in the work. Although public repositories for 

collecting failure datasets have become available in the last decade (e.g., the 

Computer Failure Data Repository (Usenix and Carnegie Mellon University 

(CMU) 2006)), the dependency between the public failure data and the 

system from which they were collected may hinder the training of predictors 

on a different system installation. 

2. Supporting the continuous adaptation of failure prediction in dynamic 

systems. The characteristics of a complex system may change over time, due 

to a system update or a change of one or more hardware components (e.g., as 

in cloud-based systems). However, updating online failure predictors at 

regular intervals in absence of updated failure data is a hard task. Although 

some works addressed the problem of adapting failure prediction models 

over time, taking advantage of adaptive prediction models (Pitakrat, Van 

Hoorn, and Grunske 2014; Zemouri and Zerhouni 2011), there is still the need 

for failure data reflecting changes in the target system (e.g., new hardware 

components, software updates, workload variation, etc.). 

3. Identifying the best variables to be used to predict failures. Online Failure 

Prediction models are based on runtime monitoring of parameters or variables 

that portray the system state. The selection of the system parameters to 

monitor is not trivial, as the number of variables can be very high and the 

ones to be used are not known a priori. Focusing on the best ones is essential 

to correctly use a predictor and to improve its performance. Moreover, as 

demonstrated by Hoffman (G.A. Hoffmann, Trivedi, and Malek 2007), 

obtaining an optimal online failure prediction model is more dependent on 
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selecting the right variables to support the prediction process, than on the 

choice of the model. The problem is that a large amount of field failure data is 

needed for identifying the variables that show the best symptoms of 

incoming failures. 

1.2 Main contributions of the work 

The objective of this work is to advance the failure prediction state of the art by 

studying the applicability of realistic fault injection for generating failure data, 

which can help training, assessing and comparing online failure prediction models 

on a concrete target system. In practice, the results achieved in this work open the 

door for the scientific community to address the actual problems in developing and 

deploying systems with failure prediction capabilities. In detail, the contributions of 

this work are: 

1. A conceptual framework for generating failure-related data making use of 

realistic software fault injection. The framework is based on an 

experimental procedure in which realistic software fault injection campaigns 

are used for accelerating the occurrence of failures and thus generating 

failure-related data. The proposed framework should be implemented on the 

target system, thus software fault injection campaigns can provide extensive 

datasets representing realistic scenarios of the system execution (I. Irrera and 

Vieira 2014).  

2. An approach to study the accuracy of failure data generated using software 

fault injection. When leading the system to fail through the injection of 

faults, one must be sure that the generated failure data are similar to the one 

likely to be collected in the operational scenario of the target system. We call 

this property accuracy of the failure data. Although the use of a realistic 

software fault injection technique contributes for achieving this property, 

such property needs to be validated, which unfortunately is not possible due 

to the already stated scarcity of failure data. This way, we propose an 

empirical approach for estimating the accuracy of generated (synthetic) 

failure data, based on the use of metrics (or estimators) that portray the 

correlation between the failure data generated by injecting faults and real 

failure data. The approach can be used for assuring a controlled and quality-

driven data generation (I. Irrera and Vieira 2014). 

3. A study on the adoption of virtualization as a sandboxing environment for 

generating failure-related data. As in most cases it is not possible to inject 

faults in a production system (especially when new failure data is 

periodically needed to accommodate system changes and evolution), we 

study the hypothesis of applying fault injection over an independent copy of 

the system. In particular, we investigate whether virtualization can be used 
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as a sandboxing solution for hosting such virtualized copy and study the 

applicability of such solution by assessing whether the data generated from 

the virtualized copy are adequate for training failure prediction mechanisms 

to be run in the original system. The correlation of failure data generated in a 

given system with data from several virtualized copies is analyzed based on 

the correlation of failure symptoms (Ivano Irrera et al. 2013). 

4. A conceptual framework for assessing and comparing alternative failure 

prediction models in the context of a particular target system. We propose a 

conceptual benchmarking framework that can be instantiated to specific 

systems for a fair and sound assessment of alternative online failure 

prediction models. The framework makes use of the proposed approach for 

generating failure data and envisages the definition of the metrics, the 

workload to be used, as well as the process to implement the benchmark. 

This includes validating the properties of the benchmark, which increases 

confidence in the assessment and comparison of the results (I. Irrera and 

Vieira 2014). 

5. A conceptual framework for the automatic and continuous self-adaptation 

of failure prediction systems. We define a generic framework (called 

Adaptive Failure Prediction – AFP – Framework) that can be instantiated to 

specific systems, whose goal is to train failure prediction models after the 

occurrence of specific events (e.g., a software update), collecting failure data 

when needed. The framework uses virtualization as a sandboxing 

environment for performing the fault injection process, taking into account 

the impact of the virtualization on the failure data generation. In practice, a 

replica executes a workload that mimics the operations executed in the 

original system to keep the failure data collected realistic. The failure 

predictors (re-)training process is automated, based on a modular event-

driven architecture to detect when retraining is needed (Ivano Irrera, Vieira, 

and Duraes 2015).  

6. A study on system variables presenting failure symptoms to be used for 

predicting failures. We study an approach to select the best variables for 

prediction purposes by identifying symptoms in a set of monitored variables, 

by generating failure data by fault injection and observing the impact of 

faults on the different variables that are being collected. The idea is that the 

activation of the injected faults may cause failure symptoms to show up in a 

limited group of variables, from which the most adequate for predicting 

failures should be selected. The impact is measured by applying a correlation 

function between each single variable and the failures observed in the 

system: the higher the correlation, the more likely the variable is to be 

suitable to predict failures (I. Irrera et al. 2010). 
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Besides the contributions stated above, another result of this work is the 

implementation of a novel online failure prediction model, which improves the 

failure prediction quality of a generic classifier-type predictor by including the time 

dimension in the prediction task (Ivano Irrera, Pereira, and Vieira 2013). Most online 

failure prediction techniques available nowadays make use of the current values of 

the monitored variables to perform the prediction, not considering the fact that the 

data used can be represented as time series (F. Salfner, Lenk, and Malek 2010). For 

instance, Hughes et al. (G. F. Hughes et al. 2002) apply SVMs (Support Vector 

Machines, (Cortes and Vapnik 1995)) to predict failures of hard disk drives, making 

use of several numerical variables (time series), but just one value at a time for each 

variable. Our idea is that the relation that the variables have with time (i.e., their 

continuous evolution) could improve the prediction quality of a model. This way, 

we propose the use of a sliding window applied to the available training data to 

improve the prediction performance of a SVM classifier (Ivano Irrera, Pereira, and 

Vieira 2013). 

1.3 Structure of the document 

This first chapter introduced the problem and the main contributions of the thesis. 

Chapter 2 introduces basic concepts on dependability and fault tolerance, presents 

background and existing surveys on failure prediction models and algorithms, and 

discusses fault injection approaches and tools. Background on feature selection, 

computer benchmarking and virtualization is also presented. 

Chapter 3 presents our approach for generating failure data by using realistic 

software fault injection. Besides describing the approach, we present a case study in 

which we use the generated data to assess the performance improvement of the 

sliding window technique applied to an SVM-based failure prediction algorithm. In 

addition, we present the method for the assessment of the accuracy of the generated 

failure data, which makes use of metrics estimating the distance between different 

failure datasets.  

Chapter 4 studies the applicability of virtualization as a sandboxing solution for 

running a copy of the target system that can be used to generate failure-related data 

when injecting faults in the target system is not possible. In a case study we analyze 

the impact of virtualization on the generation of the data, and propose an approach 

for taking such factor into account when adopting this solution.  

Chapter 5 presents the benchmarking framework for assessing and comparing 

alternative failure prediction models in the context of a particular target system. A 

case study demonstrates its applicability, efficacy and ease of installation, among 

other fundamental properties that a benchmark must have. 
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In Chapter 6 we propose a framework for supporting adaptive failure prediction, 

which is able to address the changes that occur in the system by automatically re-

training and optimizing the failure prediction model. We also present a case study in 

which we implement and validate such framework. 

Chapter 7 presents a study of a preliminary approach for selecting the best variables 

for prediction purposes. The goal is to identify the variables that show more 

symptoms of failures by correlating their values with the effectively observed 

failures. The case study presented shows the applicability of the proposed methods 

and confirms that only a subset of all the variables monitored should be used for 

failure prediction. 

Finally, Chapter 8 concludes the thesis, summarizing the lessons learned, evidencing 

the potential of the proposed solutions, and presenting the weaknesses that we 

believe should be tackled as future work. 
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Chapter 2 
Background and related work 

In this chapter we present background concepts and related work on dependable 

systems (Section 2.1) and Online Failure Prediction (Sections 2.2), the use of 

virtualization solutions in the failure prediction context (Section 2.3), fault injection 

(Section 2.4) and its use for online failure prediction (Section 2.5), and computer 

systems benchmarking (Section 2.6). In particular, the chapter also includes an 

overview on the performance evaluation of failure prediction models (Section 2.2.4) 

and the prediction optimization problem, including feature selection (Section 2.2.5). 

Section 2.6 concludes the chapter. 

2.1 Dependable computing 

Computer systems naturally tend to grow in complexity up to a point where their 

behavior is partially unpredictable, especially for what concerns its software, which 

represents a major threat to the benefits they aim to provide.  

<<Nothing can assure the absence of errors>> (E. W. Dijkstra). 

Demonstrating the absence of defects in the hardware and software components of a 

system before deployment (e.g., by using mathematical proofs) or after development 

(e.g., using testing) is a NP-complete and NP-hard problem (Cook 1971). In 

particular, a posteriori techniques can only assure the presence of faults, while 

preventive methods are used to decrease the presence of faults, hence only partially 

solving the problem. It is thus well known that complex computer systems do 

contain defects, and eventually fail (Gray 1986; Sauer 1993; Oppenheimer 2003). 

According to (Avizienis et al. 2004), a computer system generally provides a service 

or functionality that can be used by a human user or by another system. The system 

is working properly if it is able to provide the expected functionality in the correct 
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way. The service that the system provides is a sequence of states perceivable at the 

system interface (external states) (Avizienis et al. 2004).  

A deviation of the service delivered by the system from the expected service is called 

a system failure. The system is said to contain an error, or being in an erroneous 

state, when it state deviates from what is defined to be the correct one. However, 

even if the system is not in correct state, as long as it provides the expected service or 

functionality, there is no failure. Errors evolve into failures when the malfunction 

reaches the system interface, or is detected by an external user (e.g., a user cannot 

access its data, or the server cannot send to a user some requested data). Errors can 

accumulate without influencing the system service, or they may influence the system 

causing a partial failure or leading the system to run in a degraded mode. The 

adjudged or hypothesized cause of an error (and thus, a failure) is a fault, which can 

be internal (originating inside the system boundaries) or external (originating 

externally to the system, and that propagates into the system by interaction or 

interference). Faults can be of different kinds (e.g., hardware or software, transient or 

permanent). An exhaustive taxonomy can be found in (Avizienis et al. 2004). 

Figure 2.1 (a) shows the fault-error-failure chain expressing the causality 

relationship between faults, errors and failures. It is worth noting that a failure of a 

component can be a fault (in the figure an external fault, as a voltage peak or an 

incorrect input) of a connected component. Figure 2.1 (b) shows the transition of 

system states in the presence of a fault. A system working correctly may contain 

faults that remain dormant, or that may be activated causing an error. Errors may 

remain latent and let the system continue to provide a correct service during the 

observation time, or propagate to the system interface, causing a failure. 

 
(a) Fault-error-failure-fault chain 

 
(b) System states in the presence of a fault 

Figure 2.1 – The causality relationships between faults, errors and failures 
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The use of computer systems cannot be separated from the management of errors 

and failures, which can occur during its operations due to several and often 

unknown reasons, raising the need for techniques for assuring the correct system 

behavior, also in presence of unexpected events. This is especially critical for systems 

used in environments where failures may cost loss of business and human lives.  

Computer-based systems can encompass specific properties addressing undesired 

errors and failure events. For instance, a safe system is a system that assures no major 

damages when a failure occurs, while a reliable system assures the continuity of its 

service. Such properties can be grouped under the generic concept of dependability: 

a dependable system is a system one can depend on. The authors of the work entitled 

“Basic Concepts and taxonomy of Dependable and Secure Computing” (Avizienis et al. 

2004) give the following definition of dependability: 

 

The dependence of system A on system B (...) represents the extent to which system 

A’s dependability is (or would be) affected by that of System B. The concept of 

dependence leads to that of trust, which can very conveniently be defined as accepted 

dependence.  

As developed over the past three decades, dependability is an integrating concept that 

encompasses the following attributes:  

 availability: readiness for correct service. 

  reliability: continuity of correct service. 

  safety: absence of catastrophic consequences on the user(s) and the environment. 

  integrity: absence of improper system alterations. 

 maintainability: ability to undergo modifications and repairs. 

 

The intended dependability of a computer system (based on hardware and 

software) is defined by attributes in terms of the frequency and severity of the 

acceptable failures, for specified classes of faults and a given user environment 

(Avizienis et al. 2004). For example, the dependability attributes reliability and 

availability can be expressed mathematically as follows: 

 Reliability: it can be modeled as the conditional probability of delivering a 

correct service in the interval [0, t], given that the service is correct at the time 

t=0. The reliability therefore models the mission time of the system or the time 

to failure T (or TTF): 
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(2.1) 𝑅(0, 𝑡) = 𝑃(𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑖𝑛 [0, 𝑡]|𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛 0) 

The reliability function can thus be obtained considering the failure occurrence 

time. Hence, be T the failure time (or time to failure, TTF) and FT(t) the 

cumulative distribution function (CDF) of the failure occurrence (or arrival) 

times, the reliability function can be expressed as: 

(2.2) 𝑅(𝑡) = P(T > t) = 1 − P(t < T) = 1 − F𝑇(t) 

Moreover, assuming T (or TTF) as a random variable to be continuous 

positively defined, and FT(t) to be differentiable, the CDF can be written as: 

(2.3) 
𝐹(𝑡) = P(T < t) = ∫ 𝑓(𝑥)𝑑𝑥

𝑡

0

 

for t > 0 

Examples of reliability functions R(t) are obtained using exponential failure 

arrival times, Weibull distribution, Lognormal distribution, etc. 

 Availability: a system is available at time t if it is able to provide a correct 

service at that instant of time. Thus: 

(2.4) 
𝐴(𝑡) = {

1
0

  
𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑡 𝑡

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The availability can thus be modeled as the expected value E[A(t)]. In 

particular, if the time to failure is characterized by its mean, called Mean Time 

To Failure (MTTF), and the time to repair as well (Mean Time To Repair, 

MTTR), a function of the probability of finding the system in a correct state 

can be given by the rate A defined as: 

(2.5) 𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
 

 where MTBF is the Mean Time Between Failures. 

Attaining dependability attributes requires systematic approaches aimed at 

improving the system quality in terms of hardware and software development, 

tolerance to errors and failure occurrence, verification of the correct functioning, 

validation of the functionalities and the mission of the system, and so on. According 
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to (Avizienis et al. 2004), the techniques for assuring the dependability of a system 

can be divided into four categories, focusing on the concept of fault as the cause of 

errors and failures:  

1) Fault Prevention (or fault avoidance) techniques that reduce the number of 

faults present in a computer system (i.e., preventing the existence of faults). 

Some examples are the improvement of the development processes of both 

hardware (e.g., avoiding bad design rules) and software (e.g., information 

hiding, modularization, use of strongly-typed programming languages). 

Although some faults are still present at the end, the use of such techniques is 

a necessary step towards dependable systems.  

2) Fault Tolerance techniques, based on the hypothesis that faults do exist in 

the system and eventually will be activated causing errors or failures. Such 

techniques are aimed at avoiding failures (e.g., using back-up components for 

allowing the system to continue providing its service, or having redundant 

systems using diverse hardware and/or software elements), mitigating the 

effects of failures (e.g., planning the system to offer a degraded service when 

a component fails), or planning system recovery (e.g., reducing downtime 

and time to repair). Besides reacting to failures, fault tolerance techniques can 

be based on error detection and handling (e.g., roll-back or roll-forward to 

error-free states, or masking the error by using redundancy), and fault 

detection (e.g., the effect of memory leaks, resulting in software aging and 

system failing due to memory exhaustion, can be handled by rebooting the 

system from time to time). 

3) Fault Removal techniques, for removing the faults either during the system 

development (e.g., verification, validation) or during its use. In particular, the 

removal of faults during the use of the system can be implemented as 

corrective maintenance (faults show themselves and are corrected) or 

preventive maintenance (uncovering existing faults before they evolve into 

errors). 

4) Fault Forecasting techniques, which analyze the behavior of the system in a 

qualitative or quantitative way, with respect to the fault occurrence or 

activation. In practice, the aim is to evaluate the system behavior in order to 

estimate the future consequences of a fault (using system modeling or system 

testing). An example are reliability growth models (F. Salfner, Lenk, and 

Malek 2010), which are based on data about past failures (and thus activated 

faults) to model the time to failure. Worth to put on evidence are the 

dependability benchmarking approaches, whose goal is to assess measures of 

the behavior of systems in the presence of faults, whose results can be used 

by forecasting techniques (Avizienis et al. 2004). 
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In addition to the techniques and terms above, other concepts are used in the 

dependability context, including: 

 Resilience, the property of a system to deliver a justifiably trusted service in 

a persistent way, when the system faces changes (Laprie 2005; Simoncini 

2009). The definition of changes ranges from unexpected failures, attacks or 

accidents, to changes relative to the system load and configuration (Trivedi, 

Kim, and Ghosh 2009). In general, a resilient system is a system that is 

trustworthy and tolerant to changes falling outside the design envelope 

(Trivedi, Kim, and Ghosh 2009), while a dependable system deals with events 

inside the design envelope. 

 Assurance, a measure of confidence that the features, practices, procedures 

and architecture of an information system accurately mediate and enforce 

safety and security policies (partially from (Committee on National Security 

Systems 2010), (SAFECode - Software Assurance Forum for Excellence in 

Code 2008), (NASA)). High-assurance systems must provide an high 

measure of confidence in the techniques used to attain dependability and/or 

security, in a way that gives “justifiable trustworthiness in meeting established 

business and security objectives” (OMG System Assurance Task Force). The 

concept of system assurance is strongly based on evidence, which can be 

obtained by measurement or formal methods. In practice, a high-assurance 

system is required to be safe and/or secure within well-defined limits and 

with a well-defined confidence (e.g., assure safety-critical systems to be safe). 

 Antifragility, a novel concept based on the definition of fragility of a system 

(economical, financial, software, etc.) (Taleb 2012). A software system is 

fragile (Monperrus 2014) if during its development an error by omission 

(something missing, few things implemented) or commission (too many 

things to do) occurred. In particular, errors by omission mean that “there may 

exist neglected design principles and implementation”, which drive to fragility 

(Monperrus 2014). The elimination of such neglected principles may lead to 

defining antifragile principles (Monperrus 2014). Preliminary work presented 

a comparison between the concept of antifragility and existing concepts (e.g., 

fault tolerance, robustness), and showed how automated runtime bug fixing 

and fault injection during production are two means to achieve antifragility. 

2.2 Online Failure Prediction 

Online Failure Prediction is a technique that allows forecasting failures occurring in 

a near future by monitoring the system at runtime (thus the term online), and using 

past information about the system’s (normal or faulty) behavior (see Figure 2.2). A 

formalization of the Online Failure Prediction problem was proposed by Salfner et 
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al. in (F. Salfner, Lenk, and Malek 2010). The output of online failure prediction can 

be either a decision that a failure is imminent, or some continuous measure that 

portrays how failure prone the current system state is. The prediction of failures is 

thus based on different kinds of information, including the past data from the system 

(used to train the predictor), the current information about the state of the system 

(obtained by monitoring system variables, using error reports, etc.), the time horizon 

of the prediction, among others. Online Failure Prediction involves techniques like 

machine learning, statistical analysis, pattern recognition, and so on. Failure 

predictors are normally trained and tuned in advance for a given target system using 

data related to failure events for that particular system. Predicting failures in 

advance allows avoiding failures or at least mitigating their effects (e.g., by saving 

data or preventively restarting specific system modules).  

Online Failure Prediction is considered the natural evolution of Failure Prediction 

(also referred to as reliability modeling or prediction), which can be dated back to 

Nassar in 1985 (Nassar and Andrews 1985), and whose models rely only on 

historical failure data, i.e., information on failures occurred in the past. Such 

technique allows estimating reliability indicators, as MTTF (Mean Time To Failure) 

and MTBF (Mean Time Between Failures). However, the limitation of failure 

prediction stands in the fact that no information about the actual state of the system 

is taken into account, thus not achieving a precise and flexible prediction.  

Many works on Failure Prediction integrating the information on the actual state of 

the system have appeared in the last 15 years. In fact, the very first work on 

predicting failures using the actual system state can be dated back to Wolski et al. 

(Wolski, Spring, and Peterson 1997) in 1997, which developed a system for 

predicting at runtime the performance of a network, for optimal resource allocation 

and scheduling decision for meta-computer systems2. Garg et al. (Garg et al. 1998), 

on the other hand, proposed a model for the estimation of resource exhaustion on an 

Apache web server in 1998, based on the slope estimation of a set of continuous 

numerical system parameters (i.e., used swap space, file table size, etc.) monitored 

from the system. In particular, the method was able to predict performance failures, 

as well as software aging-related failures (i.e., failures due to resource exhaustion 

based on the runtime system information) (Vaidyanathan and Trivedi 2001). 

However, not only numerical sequences were used in the past to predict failures: Lin 

and Siewiorek (Lin and Siewiorek 1990) developed a prediction technique, called 

DFT (Dispersion Frame Technique), based on the analysis of discrete events, rather 

than on numerical sequences. A fundamental difference between classic Reliability 

Prediction and the new types of prediction models stands in the fact that that the 

latter are able to predict failures likely to happen in a short-term (i.e., in some 

                                                      
2 The system was called “Network Weather Service” and was based its predictions on linear 

models (like linear regression models), using data coming from sensors located in different 

elements of the network (nodes, links, etc.). 
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minutes, hours, or days, depending on the scale of the system), which make them 

more suitable to model the actual life-time of a computer system.  

In this thesis we use both Failure Prediction and Online Failure Prediction to refer to the 

techniques that predict incoming failures in a short-term based on both the past and 

the actual state information of the system under analysis. Moreover, when referring 

to Failure Prediction in the classical acceptation, we use the term Reliability 

Prediction, or similar. In the next subsections we introduce the main definitions in 

Online Failure Prediction, including its goal and employment in improving system 

dependability attributes. We also present a taxonomy of the existing Online Failure 

Prediction methods (as proposed by Salfner et al. in (F. Salfner, Lenk, and Malek 

2010)), giving some insight on the most representative works that can be found in 

the literature. 

 The Online Failure Prediction context 2.2.1

Online Failure Prediction is particularly useful to address residual faults (i.e., faults 

that escaped the testing process) that cannot be tolerated by existing fault tolerance 

mechanisms, and thus are likely to evolve into failures. In a dependability context, as 

defined by (Avizienis et al. 2004), Online Failure Prediction can be considered a fault 

forecasting technique (being an evolution of reliability growth models, as mentioned 

before), and an enabler for fault tolerant systems. In fact, predicting failures may not 

be enough to achieve perfect dependability, but the information about an incoming 

failure can be used to prevent failures from occurring on the system, or at least to 

prepare the recovery mechanisms with some time in advance, thus reducing the time 

to repair.  

The authors of (F. Salfner, Lenk, and Malek 2010) propose the use of Online Failure 

Prediction in a broader framework, called Proactive Fault Tolerance (PFT), in which 

the prediction of failures is the starting step towards their management or the 

management of their effects. In particular, the Proactive Fault Management (Figure 

2.3) is based on monitoring the system (also considering the problem of feature 

selection, which may change over time), evaluating the system state through the use 

of Online Failure Prediction (as well as the evaluation of the system for diagnosing 

 

Figure 2.2 – Online Failure Prediction: an overview 
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for existing faults), and acting accordingly (in which one can select, schedule or 

execute several types of tasks). 

The use of failure prediction in a reactive schema can be a way to limit downtime or 

even avoid a failure, e.g., through the use of fault tolerance, fault removal, early-

recovery mechanisms, and so on. In fact, in the worst case, if a predicted failure 

cannot be avoided, one can use the information about it for anticipating recovery 

duties, allowing the reduction of the relative system downtime (see Figure 2.4). In 

case a failure is not avoidable, anticipating repairing duties implies a reduction of the 

Mean Time to Repair (MTTR), which corresponds to a growth of the system 

availability, as: 

(2.6) 𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹
 

while the reliability is not affected, as its definition only depends on the failure 

occurrence in an interval T: 

(2.7) 𝑅(𝑡) = P(T > t) = 1 −  P(T < t) = 1 − F𝑇(t) = 1 − ∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

 

On the other hand, avoiding failures by using information from Online Failure 

Prediction can improve both the reliability and the availability of the system, as the 

Mean Time To Failure (MTTF) increases both at the numerator and the denominator 

of equation (2.6), letting the availability tend to 1. 

 

Figure 2.3 – The MEA (Monitor-Evaluate-Act) Proactive Fault Tolerance schema 
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 A taxonomy and examples of online failure prediction 2.2.2
methods 

(F. Salfner, Lenk, and Malek 2010) presents a comprehensive taxonomy of the 

manifold of online failure prediction approaches for computer-based and generic 

systems. The taxonomy is based on the fault-error-failure model: the authors 

consider that the system state can evolve into a failure through four stages: fault, 

undetected error, detected error, and failure. An error remains undetected until an error 

detector identifies the incorrect state (see Figure 2.1 (b)). The authors found that a 

great part of the surveyed failure prediction systems are based on the concept of 

failure symptoms (e.g., aging trends in Software Aging detection). For this reason, 

their taxonomy is extended with the failure symptoms dimension: besides causing a 

failure, an error (detected or undetected) can cause out-of-norm behavior of system 

parameters as a side effect (F. Salfner, Lenk, and Malek 2010). Figure 2.5 shows the 

relation between the fault-error-failure model and the existing online failure 

prediction approaches. As the authors of the survey propose, each online failure 

prediction approach can be categorized based on the kind of input data used. 

The authors surveyed over 50 different approaches among the most known 

monitoring-based failure prediction approaches existing in the dependability 

prediction literature. The complete taxonomy is presented in Figure 2.6. 

The existing online failure prediction approaches can be thus distinguished in four 

categories (see Figure 2.6): failure-tracking techniques, symptoms monitoring 

techniques, detected errors reporting mechanisms, and undetected error auditing. 

Except for failure tracking (included in the survey only for coherence purposes, as it 

does not perform failure prediction “at runtime”, but uses only information from the 

past), all the remaining techniques use information about the intermediate stages of 

the fault activation to infer failure-prone situations, thus trying to act in advance. 

 

Figure 2.4 – Relations between failures and system down- and up-time 
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According to Salfner’s survey the taxonomy can be navigated as follows (F. Salfner, 

Lenk, and Malek 2010): 

1) Undetected errors auditing. Auditing can identify undetected errors, and 

includes techniques that check whether the entity under audit is in an 

incorrect state. For example, memory auditing would inspect used data 

structures by check-summing. However, failure prediction literature presents 

no works that can be contained in this dimension, which may be due to the 

fact that prediction based on auditing results may drive to low prediction 

quality. 

2) Detected errors reporting. Once an error detector identifies an incorrect state 

the detected error may become visible by reporting. Reports are written to 

some logging mechanism such as log-files or Simple Network Management 

Protocol (SNMP) messages. Techniques used for predicting failures based on 

error reports include classifiers, rule-based approaches, pattern recognition, 

 

Figure 2.5 – Relation between the fault-error-failure model and the approaches 

for Online Failure Prediction at the state of the art (F. Salfner, Lenk, and Malek 

2010) 

 

Figure 2.6 – A taxonomy of existing Failure Prediction approaches (F. Salfner, 

Lenk, and Malek 2010) 
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and statistical tests. 

3) Symptoms monitoring. Symptoms are side effects of errors that can be 

identified by monitoring system parameters such as memory usage, 

workload, sequence of function calls, etc. An undetected error can be made 

visible by identifying out-of-norm behavior of the monitored system 

variable(s). Techniques used in this direction for predicting failures include 

function approximation, classifiers, system modeling, and time series 

analysis. 

4) Failures tracking. The occurrence of failures can be made visible by tracking 

mechanisms. Tracking includes, for example, watching service response 

times or sending testing requests to the system for the purpose of monitoring. 

Techniques used for failure tracking are mainly failure co-occurrence analysis 

and probability distribution estimation. 

In the next subsection we briefly describe two of these categories through some 

example of works found in literature, thus for providing a wider and complete view 

of the failure prediction scenario. We focus on the categories Detected Error 

Reporting and Symptoms Monitoring, as they represent most of the works in the 

failure prediction area. 

2.2.2.1 Failure prediction based on detected error reporting 

An error occurs when a fault is activated, i.e., the fault brings the system in an 

unpredicted and erroneous state, and the detection event is usually reported using 

some system logging facility. The category of failure prediction approaches that use 

the information on errors deal with event-driven approaches, working on discrete 

events (i.e., the categorical data obtained) based on periodic observations.  

One of the most used approaches to understand if a failure is going to happen is to 

evaluate if a well-known set of conditions is met. If so, the situation is judged failure-

prone. As pointed out by Salfner et al. in (F. Salfner, Lenk, and Malek 2010), usually 

the rule-based failure prediction has the following simple form: 

 

IF <condition1> THEN <failure warning> 

IF <condition2> THEN <failure warning> 

… 

Hence, the goal of failure prediction algorithms in this category is to identify, in an 

automatic way, the conditions algorithmically from a set of training data. As an 

example, Hätönen et al. (Hatonen et al. 1996) described a system that identifies 

episode rules (alarms) from error logs: these rules are in the form “if errors A and B 

occur within 5 seconds, then error C occurs within 30 seconds with probability 0.8”. 

Weiss introduced a failure prediction technique called “Timeweaver”, which is based 
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on a genetic training algorithm (Weiss 1999). Other methods analyze errors that 

occur close together either in time or in space (on the hypothesis that errors spread 

in time or space before a system failure), considering their distribution similarly to 

the case of previous failures occurrence. To this group belong works like Levy and 

Chillarege (Levy and Chillarege 2003), and Lin and Siewiorek (Lin and Siewiorek 

1990). In the latter, the dispersion frame technique (DFT) can be considered 

belonging to this family of approaches as it also uses a set of heuristic rules on the 

time of occurrence of consecutive error events of each component to identify 

looming permanent failures. 

Some works used pattern recognition and statistical tests to address the problem of 

predicting failures using error reports. Also classifiers were used with this type of 

discrete information. An example is the DFT technique by Lin and Siewiorek (Lin 

and Siewiorek 1990), which focus on the time when errors are detected and uses 

pattern recognition to identify failure prone situations based on the time relations of 

the error events. Similarly, Salfner et al. (F. Salfner and Malek 2007; F. Salfner 2006) 

presented Similar Events Prediction, a technique based on a semi Markov chain 

model and Hidden Semi Markov models (HSMM), which is more flexible with 

respect to the former method. These methods are able to identify patterns that 

indicate an upcoming failure: in particular, a ranking value is assigned to an 

observed sequence of error reports expressing similarity to patterns that are known 

to lead to system failures and to patterns that are known not to lead to system 

failures. The final prediction is then accomplished by classification based on 

similarity rankings. An example of classifiers applied to discrete data (error events, 

in this case) can be found in (Domeniconi et al. 2002), which used an approach based 

on SVM and SVD (Single Value Decomposition) to classify if a situation is failure-

prone or not. As also stated by Salfner in his survey (F. Salfner, Lenk, and Malek 

2010), the main difficulty that this kind of approaches can face is that generally one 

single detected error is not sufficient to infer if a failure is going to occur or not. This 

way, the input data vector is usually obtained from several errors reported within a 

time window.  

2.2.2.2 Failure prediction based on symptoms monitoring 

Several methods were developed in the last years taking advantage of the analysis of 

contour information about the system. Failure prediction methods belonging to this 

class are able to detect symptoms of an upcoming failure based on the continuous 

analysis of monitored data. As introduced above, symptoms are side effects of errors 

that can be observed by identifying out-of-norm behavior from monitored system 

variables.  
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Works on software aging3 and rejuvenation4 found in literature belong to this class of 

online failure prediction algorithms. Besides, some of these works present a 

complete fault management schema, under the concept of Software Rejuvenation. 

The first interesting work in this field is (Vaidyanathan and Trivedi 1999), where the 

authors tried to dynamically assess the optimal time to restart of an Apache web 

server suffering from Software Aging. The idea is to approximate the amount of 

swap space used and the amount of real free memory (target functions) using a 

semi-Markov reward model for estimating the exhaustion of system resources as a 

function of the workload being executed and the execution time. Li et al. (Li, 

Vaidyanathan, and Trivedi 2002) developed a model using regression ARX models: 

7 univariate (MISO) ARX models were built for each predicted variable (e.g., 

“PhysicalMemoryFree”, “SwapSpaceUsed”, etc.), and then combined into a single 

multivariate model (MIMO ARX). 

Hoffmann (G.A. Hoffmann, Salfner, and Malek 2004; G.A. Hoffmann, Trivedi, and 

Malek 2007) proposed a prediction model called UBF (Universal Basis Functions), a 

generalization of the kernel functions of the well known Radial Basis functions (RBF) 

technique. In this work the authors also compare several prediction methods, among 

which ARX, UBF, RBF, and SVM. Other methods used neural networks, like for 

instance the one from Fu and Xu (Fu and Xu 2007), which use a neural network to 

approximate the number of failures in a given interval.  

The methods mentioned above made use of function approximation techniques, trying 

to infer the unknown functional relationship between monitored system variables 

and a target value (for instance the “used swap space” in (Vaidyanathan and Trivedi 

1999)). Other techniques found in literature are based on time series analysis (similar 

to function approximation), classifiers, system models, and so on. Another example 

is the work of Garg et al. (Garg et al. 1998) that used regression models on measured 

system variables “real memory free”, “size of file table”, “process table size”, and 

“used swap space” of UNIX machines for estimating the resource exhaustion, and 

thus a possible future failure. 

Other failure prediction algorithms evaluate the current value of system variables 

directly, instead of approximating a target function, or analyzing several successive 

samples of a system variable, and the current situation (at each time t) is classified as 

failure-prone or not. The classifier decision boundary is derived from past system 

behavior, where the system failed or not. In this case, Online Failure Prediction is 

performed at runtime for checking on which side of the decision boundary the 

current monitoring values are. The data used by the classifiers can be nominal (e.g., 

                                                      
3 Software aging is a phenomenon for which the state of the system degrades over time, 

eventually leading the system to fail. 

4 Software rejuvenation is a proactive technique that aims at reducing the probability of future 

failures due to software aging. In practice, it is a Failure Prediction technique. 
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events) or numerical. An interesting example can be found in the work of Murray et 

al. (Murray, Hughes, and Kreutz-Delgado 2003), which used SVMs to predict 

failures on hard disk drives. Some other works used Bayesian failure prediction 

approaches for solving the prediction problem, like for instance Bodik et al. (Bodik et 

al. 2005), where the hit frequencies of a big commercial website were analyzed in 

order to identify non fail-stop failures, using a naïve Bayes classifier.  

Online Failure Prediction approaches may also be based only on a model of the 

normal system behavior, i.e., failure free (in contrast with the classifier approach that 

requires training data for both the failure-prone and non failure-prone case). In this 

case, at runtime, the current measured system behavior is compared to the expected 

normal behavior, and a failure is predicted in case of deviation.  

 The Failure Prediction problem: a model and its parameters 2.2.3

An online failure predictor forecasts incoming failures at runtime, based on past data 

from the system (used to train the predictor), and information about the current state 

of the system (obtained by monitoring system variables), among others. The 

information used can be numerical, such as variables measuring properties of the 

system (free memory, page faults, etc.), or categorical, such as events from error logs. 

A model for characterizing the online failure prediction problem was proposed by 

Salfner et al. in (F. Salfner, Lenk, and Malek 2010). The failure prediction task 

consists of assessing if, at a time t, a failure is going to occur within a precise time, 

called lead-time ∆tl. The prediction can be valid in a given time window, called 

prediction window ∆tp. The variation of the parameters ∆tl and ∆tp influences the 

performance of the prediction. In practice, at time t, a model (or predictor) should 

predict if a failure is going to occur in the interval [t+∆tl, t+∆tl+∆tp]. As shown in 

Figure 2.7, a prediction performed at time t targets the Prediction Window starting at 

time t+∆tl, and lasting ∆tp.  

The prediction can be valid until t+∆tl+∆tp. As mentioned before, the predictor is 

built from a set of past data. Taking the definitions from (F. Salfner and Malek 2010), 

considering a classifier as prediction system, we can assume that these data are a set 

of observations x=<f1, f2, …, fn> of a target system. The prediction task is then to 

predict, from the observed features xnew =<f1, f2, …, fn-1, ?>, the target variable fn, which 

 

Figure 2.7 – Time relations in Online Failure Prediction 
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can be either “failure” or “no failure” or, in general, a continuous measure indicating 

how much failure prone the current system state is. Thus, given previously unseen 

observation matrix xnew with an unknown class label at time t, the prediction about the 

occurrence of a failure in the interval [t+∆tl, t+∆tl+∆tp] is given by fn=Cl(xnew), where Cl is 

the predictor. In particular, a prediction at time t is correct if the target event occurs 

at least once within the prediction period ∆tp. 

Varying the prediction parameters influences the accuracy and efficacy of the 

predictor, the computational power needed to perform the prediction task, among 

others. The prediction is based on the current system state, which is assessed by 

system monitoring within a data window of length ∆td and the prediction period ∆tp 

defines how far the prediction extends into the future, which depends on the 

problem domain (e.g., how long it takes to restart a component, how long it takes to 

initiate a failover sequence, how much complex the system is, etc.). Increasing ∆tp 

increases the probability of a failure to be predicted correctly. On the other hand, if 

∆tp is too large, the prediction is of little use since it is not clear when exactly the 

failure will occur. The lead-time Atl covers the time frame in which the prediction is 

valid, and it is necessary for a prediction to be of any use. Since failure prediction 

does not make sense if the lead-time is larger than the time the system needs to react 

in order to avoid a failure or to prepare for it, (F. Salfner, Lenk, and Malek 2010) 

introduce the minimal warning time ∆tw (see Figure 2.7). If the lead-time is shorter 

than the warning time, then there is not enough time to perform any preparatory or 

preventive actions.  

 Performance evaluation of Failure Prediction models 2.2.4

Evaluating the figures of merit of a single prediction system and comparing different 

prediction models are open problems in the online failure prediction context.  

(F. Salfner, Lenk, and Malek 2010) presents a performance evaluation schema based 

on the model for the failure prediction problem proposed by the same authors. A 

prediction performed at time t produces a single prediction value: the prediction is 

correct if the failure event occurs at least once within the prediction interval. In such 

case, a True Positive is obtained (TP). If no failure occurs, a False Positive (FP) is 

obtained. The dual cases are True Negative (TN) and False Negative (FN). All the 

possible cases are represented in Figure 2.8 in the so-called contingency table. A 

particular instantiation of a contingency table is called confusion matrix.  

A model can predict once or several times in a certain interval of time, as new data 

arrives. Based on the presented cases, the performance of failure prediction systems 

can be characterized using many different complex metrics.  
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Some examples are: 

(2.8) Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(2.9) 

Recall /  

True Positive Rate / 

Sensitivity 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 
 

(2.10) Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

𝐴𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝒄𝒂𝒔𝒆𝒔

𝐴𝑙𝑙 𝑐𝑎𝑠𝑒𝑠 
 

 

The prediction result 0/1 is obtained by applying a threshold to the output of the 

predictor, in general a numeric value: if the output is above (or below) the threshold, 

a failure (no failure) or 1 (0) is predicted. Different values lead to different behaviors 

of the model, also impacting the predictor performance (TP, FP, etc.). Adjusting the 

threshold results in different performance values, which may be a convenient way to 

tune a prediction model. For this reason, some methods were proposed to study the 

characteristic of a predictor when varying its prediction threshold.  

Receiver Operating Characteristic analysis is a widely accepted method for 

assessing the performance of binary classifiers, plotting the tradeoff between True 

Positive Rate (TP/(TP + FN), or TPR or Sensitivity) and False Positive Rate (FP/(TN + 

FP), or FPR or 1-Specificity) (see Figure 2.9), as the threshold used for defining the 

predictions is given different values. The objective of an optimal training is to 

optimize the predictor in a way that maximizes the TPR and minimizes the FPR. 

Thus, the most the curve is near to the ideal classifier curve (i.e., the nearest it is to 

the upper-left corner, with AUC tending to 1), the best the classifier is able to predict 

or classify the target event, independently from the threshold value used. In this 

direction, a relevant performance indicator related to ROC analysis is the ROC 

  Actual values  

  failure no failure  

Prediction 

Failure 
predicted TP FP 

Predicted 

Positives, P’ 

no failure 
predicted FN TN 

Predicted 

Negatives, N’ 

  
Positives 

P 

Negatives 

N 
 

 

Figure 2.8 – The failure identification problem: the contingency table 
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curve’s cut-off point, which is the point corresponding to the optimal performance 

values maximizing TPR and minimizing FPR.  

A performance indicator index based on ROC analysis is the ROC-AUC, which is 

the measured area under the ROC curve). An example is presented in Figure 2.9 (a). 

The ideal classifier would give TPR=1 and FPR=0 for each threshold value (that is the 

best performance a classifier can obtain, as FP=FN=0), and its AUC is equal to 1. A 

random guess classifier has a nominal AUC=0.5, and its curve is usually taken as 

reference in the ROC space. If a classifier curve got AUC<0.5, usually one can invert 

the classified classes (Fawcett 2006). Thus, a ROC curve is identified by a non-

continuous shape (due to the limited and discrete values of threshold used), and by 

an AUC usually greater than 0.5 (continuous shapes in Figure 2.9 are for 

presentation purposes only).  

Figure 2.9 (b) presents the comparison between two ROC curves, where Predictor A 

is averagely better than Predictor B, despite its values in the left-bottom corner. In 

general, comparing predictors using ROC curves says much about their response 

when using different threshold values. 

A similar performance assessment method is Precision-Recall curve analysis (Felix 

Salfner, Lenk, and Malek 2010; Davis and Goadrich 2006), obtained similarly to ROC 

curve, by computing the Precision and Recall of a model when varying the threshold 

used for the classification. Similarly to ROC curves, a perfect classifier would have a 

Precision-Recall curve reduced to the point (Precision=1, Recall=1), which 

corresponds to the upper-right corner of the plane. An example of Precision-Recall 

curve is shown in Figure 2.10, where the Predictor A is better than Predictor B. 

A valuable advantage of the ROC analysis is that ROC curves are independent of the 

class priors  ((Bradley 1997) (i.e., the distribution of the samples belonging to each 

class), as demonstrated in several works (e.g., (Chawla, Japkowicz, and Kotcz 2004; 

Chawla 2010; Zweig and Campbell 1993; Fawcett 2006; Wang 2008)). This makes 

ROC being a natural solution for evaluating binary classifiers in case of imbalanced 

datasets. In fact, when a dataset contains more positive than negative samples (or 

vice-versa), a classifier with fixed-threshold may present poor performance (Chawla, 

Japkowicz, and Kotcz 2004) that may improve when changing the threshold. The 

ROC analysis is independent from the decision of the threshold, thus giving a 

complete insight on the classifier performance, whatever threshold value is used. In 

practice, ROC analysis metrics have some significant characteristics, namely: 

independence from the dataset characteristics, capability for performing sensitivity 

analysis in the context of varying thresholds, easiness of interpretation of the results, 

and large usage for the assessment of information retrieval systems. 
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(a) 

 

(b) 

Figure 2.9 – A ROC curve 



Chapter 2 

 30 

 

Comparing different failure prediction systems is not trivial, even if good metrics are 

used. In fact, the assessment of the prediction performance is only possible if the 

prediction systems share the same concepts, as for instance the same model for the 

prediction problem.  

The problem of comparability of online failure prediction approaches was also 

highlighted by Salfner et al. in their survey (F. Salfner, Lenk, and Malek 2010). In 

fact, Salfner et al. (F. Salfner, Lenk, and Malek 2010) were the first to define 

comparability of failure prediction approaches as a property that “can only be 

achieved if two conditions are met: (i) a set of standard quality evaluation metrics is 

available, and (ii) publicly available reference data sets can be accessed”. However, only 

few metrics for evaluation are proposed in their work. On the other hand, although 

there are some initiatives for building repositories for failure datasets, as the 

Computer Failure Data Repository (Usenix and Carnegie Mellon University (CMU) 

2006) that publicly provides detailed failure data from several systems, such 

repositories are not enough for assessing and comparing failure prediction 

algorithms meant to be used on a particular system. In fact, to understand the 

effective performance of a failure prediction algorithm, it has to be tested in the 

system where it will be used using a rigorous experimental process.  

 

Figure 2.10 – A Precision-Recall curve 
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 Building and optimizing Online Failure Prediction models 2.2.5

The failure prediction literature includes prediction models built explicitly 

(manually) by describing its characteristics, using an informal or formal language, as 

mathematics, and implicitly by using training algorithms that associate the failure 

event – after it happened – with information about events occurred before the failure 

occurred. The automatic training procedure is based on the use of datasets built from 

the data collected during system execution (when a failure or no failure occurs, 

depending on the model to be built), correlated with the observed failures (failure 

coding) and organized in training datasets (TDSs) and testing datasets (TTDSs), the 

latter used to assess the prediction performance after training. The division in 

training and testing sets is done according to a certain percentage (e.g., half of the 

data samples are used for training, and the other half is used for testing), depending 

on the problem. The association of failure events with data can be performed 

manually, or by using failure detectors, i.e., models that can automatically detect the 

occurrence of a failure. Similarly to the failure prediction models, failure detection 

models can be built manually (e.g., by defining rules identifying a failure event) or 

using learning algorithms.  

Failure coding is the association of a failure event to a set of failure-related data, 

which is a step required when training failure prediction algorithms. Coding 

approaches depend on the user needs and on the type of prediction technique used. 

For instance, when using classifiers, the failure data must be divided in samples and 

each sample should be labeled with a 0 (i.e., no-failure) or a 1 (i.e., failure). 

Moreover, the data associated to the failure must be relative to a specific past time 

interval ending at the failure time. The failure prediction problem model proposed 

by the authors of the survey (Felix Salfner, Lenk, and Malek 2010) define such 

interval as the failure data window Δtd.  

Building failure predictors is an optimization procedure, as models are characterized 

by several parameters, whose values impact on their performance. Each predictor 

should hence be assessed using a set of values that maximizes its performance, and 

several techniques can be used in this optimization process. In this scenario, one of 

the most critical points in building a prediction model is the choice of the system 

variables (or parameters) to monitor, representing the current state of the system. A 

wrong set of variables can make the prediction of a failure useless, as pointed out by 

Hoffman et al. in (G.A. Hoffmann, Trivedi, and Malek 2007), while the choice of a 

good set of variables can be even more important than the model (linear or non-

linear (G.A. Hoffmann, Trivedi, and Malek 2007)) for obtaining an optimal 

prediction of a failure. To fully characterize a system, one often needs hundreds or 

even thousands of features. However, a huge set of features increases the complexity 

of the model that uses these features (i.e., that represents the system), being often too 

much complex to be used in reality. In this scenario, there is a need for a systematic 

approach to choose the variables for prediction. 
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Feature selection is a process that allows the systematic selection of a subset of 

features as an optimization problem (H. Liu and Yu 2005), being a crucial task for 

reducing the complexity of the models. The features represent the dimensionality of 

a domain where an object, system, and others, can be represented. It has been 

demonstrated that the problem of finding the optimal feature subset can be NP-

complete or even NP-hard problems (Blum and Rivest 1992; Guyon and Elisseeff 

2003). A typical feature selection process consists into several steps, namely: 

1) Subset generation. A search procedure that produces a set of candidates, to 

be evaluated in the next step. A search strategy is needed. 

2) Subset evaluation. Each subset is evaluated according to some evaluation 

criterion, and compared with the previous subsets. Usually, if the newest is 

better that the last one, it becomes the best candidate. 

3) Stopping criterion. The process is repeated several times, until some 

stopping criterion is reached. At this point, the search is finished and the 

remaining subset is considered the optimal (or the best one). 

4) Result validation. The subset found at the end of the search is validated 

against prior knowledge or different test sets. 

There are several methods for solving the problem of variable (or feature) selection, 

which can be divided into two main groups (John et al. 1994): the filter and the 

wrapper approaches. In the former (filtering) the feature selector filters the irrelevant 

attributes independently of any specific learning algorithm. In the latter (wrapping), 

the most important features are filtered taking into account the specificities of the 

underlying learning mechanism. In addition to these two, a hybrid approach tries to 

take the advantages of both filtering and wrapping and uses both a relevance 

measure for the chosen set of variables that is independent from the learning 

algorithm, and a mining algorithm to find the best sub-set. 

In addition to this categorization, Liu and Yu (H. Liu and Yu 2005) proposed a more 

complete categorizing framework for feature selection algorithms in 2005. The 

existing approaches are grouped according to three dimensions:  

 Evaluation criteria, thus dividing the approaches in Hybrid, Filter, and 

Wrapper; 

 Search strategies, considering a division according to the search strategy 

used, namely Complete, Sequential, and Random; 

 Data mining tasks, as the availability of class information affects the 

evaluation criteria used by the feature selection algorithm. Thus, they 

consider Classification and Clustering for distinguishing the two cases. 
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It is worth noting that the classification proposed by Liu and Yu (H. Liu and Yu 

2005) considers only the feature selection approaches used for classification and 

clustering, not including other tasks as association rules, regression, etc.  

Hoffmann et al. (Günther A. Hoffmann 2004) proposed in 2004 an approach called 

Probabilistic Wrapper Approach (PWA), initially defined by Liu and Setonio (Huan 

Liu and Setiono 1997) in 1997. PWA is a hybrid feature selection method that tries to 

conciliate the best of filtering and wrapping by playing with combination of 

variables. However, to the best of our knowledge, these are the only approaches for 

selecting features for an optimal failure prediction that can be found in literature. In 

practice, the most relevant works available in literature show that the variable 

selection is mostly done manually and the variables are typically chosen on the 

behalf of the experience of the developer coming from previous works. However, 

Hoffmann et al. in (G.A. Hoffmann, Trivedi, and Malek 2006) demonstrated that 

variable selection is necessary for having an optimal model, and also that the choice 

of the variables is much more important than the choice between using a linear or 

non-linear model.  

2.3 Virtualization and Online Failure Prediction 

In the last decade the concept of Virtual Machines became very popular due to the 

possibility to simulate (one or more) real machines on one single real hardware 

machine. Both end-users and companies were charmed by the potential of this 

technology, which would permit to run several OS on just one machine, thus 

extending the usability of some software products, reducing the costs associated to a 

single machine when deploying complex systems, and having the possibility to 

increase some characteristics as security and dependability. Virtualization also gives 

the abstraction of having a different machine from the one whose hardware is 

actually in use, by providing a software layer implementing the low-level functions 

of the hardware. The first virtualized system was the PR/SM Hypervisor from IBM 

Corp., which was used to share a single 370 Mainframe system among several users 

(one machine, many users) (Rose 2004).  

With the growt in performance of hardware systems, virtualization started to be 

used more and more in order to have a single hardware machine hosting several 

Virtual Machines. Virtual Machines are usually managed by a VMM (Virtual 

Machine Monitor), or Hypervisor, which takes care of forwarding the virtual-

hardware requests to the “real” hardware and, in case of several virtual machines in 

the same physical machine, also manages the multiplexing of the existing hardware 

to the virtual OSs. Virtualization technologies can be classified in two families 

(Figure 2.11) regarding the type of Hypervisor implemented:  
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 Type-I Hypervisors, directly interfacing with the physical machine, and 

managing the sharing of resources by directly accessing them (usually, a 

standalone server). 

 Type-II Hypervisors, hosted by an existing OS (is the case of the so called 

“desktop virtualization” systems). In this case the Hypervisor is a software 

layer between the host OS and the guest VM, and manages the machine 

hardware through the host OS’s drivers. 

While in the second case the Hypervisor is limited by the operations that the hosting 

OS provides, in the first case the management of the Virtual Machines is made easy 

by the direct access to the physical machine. Type-II Hypervisors spread in the last 

years thanks to specific advances on hardware towards virtualization and their 

performance, and nowadays are widely used especially for server consolidation 

(Khanna et al. 2006). 

Virtualization technology offers several other features, as live migration of the VMs, 

performance isolation, and security mechanisms. For this reason, the use of 

virtualization solutions in secure and dependable systems is nowadays not rare. In 

this scenario, failure prediction has been pointed out as a solution for helping in 

implementing large, virtualization-based, dependable systems. For example, Polze et 

al. (Polze, Troger, and Salfner 2011) proposed an architecture for high-availability 

and high-performance systems based on virtualization, where the use of live 

migration is triggered by online failure prediction, using indicators on the health of 

the system. Other similar work is (Nagarajan et al. 2007) that automatically migrates 

processes from “unhealthy” nodes to healthy ones in a Xen environment. Fu et al. 

(Fu 2009) proposes a reconfigurable distributed virtual machine (RDVM) 

infrastructure with failure-aware node selection to be used for high-availability 

computing. Reiser et al. (Reiser and Kapitza 2007) uses an hypervisor to initialize a 

new replica in parallel to normal system execution, focusing on minimizing the 

proactive migration time, which can interfere with system operation.  

   

(a) (b) (c) 

Figure 2.11 – No virtualization (a), Type-I Hypervisor (b), Type-II Hypervisor (c) 
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2.4 Fault Injection 

Fault injection is an experiment-based approach that deliberately introduces faults 

into a computer system in a way that emulates real faults (Arlat, Crouzet, and Laprie 

1989), with the goal of observing its behavior. The deliberate injection of faults can 

help understanding the impact that residual faults (including hardware and 

software faults) have on a system. Fault injection has been used in many works 

where the observation of systems in the presence of faults is important, such as fault 

tolerance and dependability validation (Arlat et al. 1990; J. Duraes and Madeira 

2003), estimation of fault-tolerance parameters (Arlat, Crouzet, and Laprie 1989), and 

dependability benchmarking (J. Duraes, Vieira, and Madeira 2004). 

Injecting faults means to mimic the presence of a hardware or software fault: 

hardware faults, such as bit-flip and stuck-at, occurring in hardware components, 

and software faults, representing defects that remained in a piece of software due to 

some issue during the development phase. Faults can be emulated by hardware- or 

software-based techniques (e.g., (Hsueh, Tsai, and Iyer 1997)), though software faults 

are more likely to be emulated by software techniques only. The implementation of a 

fault injection tool depends on the target system to be analyzed, on the faults to be 

injected, on the access to the injection locations, just to name a few.  

Hudak et al. (Hudak et al. 1993) is among the first works on fault injection: the 

authors compared techniques as n-version programming, recovery blocks, 

concurrent error-detection, and algorithm-based fault tolerance using both hardware 

faults (e.g., code and data corruption) and software faults (simulated design-faults 

including control flow, array boundary, computational, and post/pre 

increment/decrement software mutations). In a more general sense, fault injection 

has been used to assess dependability properties of computer systems, as for 

example in the works from Koopman and Madeira (Koopman and Madeira 1999) 

and Vieira and Madeira (M. Vieira and Madeira 2003). Following the injection of 

hardware faults that emulate the effects of physical defects and external causes, 

during the last two decades fault injection started to focus on software faults due to 

the increasing complexity of software when compared to hardware components. The 

first techniques able to emulate the effects of software-faults were developed by 

Christmansson and Chillarege (Christmansson and Chillarege 1996) in 1996, 

Koopman et al. (Koopman et al. 1997) in 1997, and Fabre et al. (Arlat, Fabre, and 

Rodriguez 2002) in 1999.  

Fault injection can be used to directly assess the impact of specific errors in the 

system, thus allowing collecting information that can be used for improvement. For 

example, Koopman et al. in (Koopman et al. 1997) injected software faults in the OS 

API for testing the robustness of five operating systems: Mach, HP-UX, QNX, 

LynxOS, and Stratus FTX. Among the existing software fault injection techniques, G-

SWFIT (J. A. Duraes and Madeira 2006) appears as a reference. In fact, the technique 

developed at the University of Coimbra is the de-facto standard in the emulation of 
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generic software faults (i.e., faults can be found in generic software systems), while 

addressing the fault representativeness problem (i.e., the property of an injected fault 

to exist in real software systems).  

 Fault injection environment and a taxonomy 2.4.1

A fault injection is usually made of basic components and organized in a fault 

injection environment (Hsueh, Tsai, and Iyer 1997), consisting of two main 

components: the fault injection tool, and the target system (i.e., the system on which 

the injection is performed). The fault injection tool injects faults into the system, at 

runtime or when the system is offline. A representation of the components that 

usually compose a fault injection environment can be found in (Hsueh, Tsai, and 

Iyer 1997), and are presented in Figure 2.12, namely: a controller (that controls the 

fault injection experiment), a fault injector (that introduces faults and must be the less 

intrusive possible), a fault library (that specifies which faults to inject, where, and 

when), and a monitoring system (for catching the effects of the fault on the system, 

usually working together with a data collector and analyzer). A workload generator is 

often needed also to exercise the system.  

There are two main types of fault injection approaches: hardware fault injection and 

software fault injection. The former can reproduce or emulate the effects of 

hardware faults (e.g., a bit-flip caused by high levels of radiations), and may be 

implemented using hardware tools (i.e., tools that include a big portion of specific 

hardware for the injection of the faults) or software mechanisms (typically named as 

SWIFI – Software Implemented Fault Injection). On the other hand, software faults 

are emulated by software approaches only, although some studies showed that some 

software faults could be emulated by injecting hardware faults (Madeira, Costa, and 

Vieira 2000). 

 

Figure 2.12 – A fault injection environment 
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 Injection of hardware faults 2.4.2

Hardware fault injection consists of an operator able to introduce faults in the target 

system through a tool, which can be a physical tool, a software tool, or both. Fault 

types that can be inserted in the target system are presented in Table 2.1, 

representing the erroneous situations in which hardware parts may incur. For 

instance, open or short circuits may occur due to environmental conditions (e.g., 

dust, liquids, humidity), bit-flips are temporary changes in the state of one or more 

flip-flops due to external causes (e.g., strong radiation or electro-magnetic field), and 

stuck-at are caused by hardware defects or aging. 

Physical hardware fault injection approaches can be divided in two main categories 

(Hsueh, Tsai, and Iyer 1997): with contact and without contact. The first category 

includes fault injection systems where the injection tool is physically in contact with 

the target system. This kind of injector is often called pin-level injector, as the injector 

has its direct contact with the pins of the circuit. The two main techniques used in 

this context are active probes (i.e., probes attached to the pins that send electric signals 

to the circuit pins) and socket insertion (a socket inserted between the target system 

and the board that allows to inject more complex logic faults). An example of pin-

level injection is the MESSALINE tool (Arlat, Crouzet, and Laprie 1989), developed at 

LAAS-CNRS, in Tolouse, France. The injector uses active probes to alter the voltage 

applied to the pins (reproducing basically stuck-at faults) and also the socket 

insertion technique. The injection system was used to validate a distributed 

communication system for transportation systems, within the Esprit Delta-4 Project. 

Messaline could inject stuck-at, open, bridging, and complex logical faults.  

The second category of hardware fault injectors (without contact) includes systems 

that emulate the presence of faults without any contact with the board of the target 

system. Such systems use, for instance, the generation of electromagnetic fields and, 

most frequently, heavy-ion radiations on the components of the system. The FIST 

(Fault Injection System for Study of Transient Fault Effect) tool, developed at the 

Chalmers University of Technology, Sweden, uses both contact and contactless 

methods (Gunneflo, Karlsson, and Torin 1989), using heavy-ion radiations that lead 

to transient faults in random locations inside the exposed chip. The EMI (Electro-

Magnetic Interference) tool (Karlsson et al. 1998), on the other hand, uses only the 

Table 2.1 - Hardware faults model 

Faults Description 

Open Always “open” line 

Bridging Short-circuit 

Bit-flip Inverting a bit (0-1 or 1-0) 

Spurious current Bit randomly left at 0 or 1 

Power surge A transient disturb in the power supplied to the hardware 

Stuck-at Bit always at the same value (0 or 1) 
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contactless method, being the electromagnetic fields generated using two charged 

plates, which cause faults in the target system placed in the middle of the two.  

The injection of hardware faults moved then to a new generation of injection tools 

that are known as SWIFI (Software-Implemented Fault Injection). The injection of 

faults by software is carried out by inserting errors in the system structures that can 

be directly accessed through software (e.g., memory, processor registers, some 

peripheral devices, etc.) or that can be accessed by software in an indirect way 

including many internal processor structures (e.g., cache, integer unit, floating point 

unit, decoding unit, etc.). SWIFI approach has become very popular due to its low 

complexity and low development effort required, when compared to fault injection 

based on hardware level. Some examples of SWIFI fault injection tools are Ferrari 

(Kanawati, Kanawati, and Abraham 1992), FTAPE (Tsai and Iyer 1995), and Xception 

(Carreira, Madeira, and Silva 1998). As an example, the Ferrari (Fault and ERRor 

Automatic Real-time Injection) tool, developed at the University of Austin (Texas) 

(Kanawati, Kanawati, and Abraham 1992), uses software traps and trap handling 

mechanism to inject CPU, memory, and bus faults. The tool includes four 

components: the initializer and activator, the user information, the fault and error 

injector, and the data collector and analyzer. A fault (e.g., a modification of the 

Program Counter value that emulates a bit-flip) is coded in a trap handling routine, 

and injected when the trap is caught and the routine is executed. The faults injected 

by can be transient or permanent, and among the ones emulated we can find address 

line errors, data line errors, and condition bit errors. On the other hand, Xception 

injects faults in registers of the processor by taking advantage of debugging and 

performance monitoring features present in modern processors. In practice, the tool 

executes small exception routines that implement the fault injection by modifying 

the interrupt handler vector. Such technique has shown to be particularly useful for 

evaluating the robustness of user applications and operating systems, requiring no 

modification of the application software and no insertion of software traps. 

 Injection of software faults 2.4.3

Software fault injection consists of emulating residual faults that remain in software 

after the testing process at different development levels. The issue of injecting faults 

that emulate software defects was addressed relatively late (the first work was 

published in 1996 (Christmansson and Chillarege 1996)), also due to the high 

complexity of software faults and of their emulation. The injection of software faults 

is often called software fault injection, although in some works the expression 

“software fault injection” is still used to name SWIFI approaches (presented above). 

In this work we focus on the injection of software faults, as these are nowadays the 

largest cause of failures in computer systems (Lee and Iyer 1995; Kalyanakrishnam, 

Kalbarczyk, and Iyer 1999).  
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The emulation of software faults raises several difficulties, such as what, where and 

when to inject. The key problem is the definition of a fault model, i.e., what types of 

faults to inject. Some works proposed approaches based on the analysis of faults 

present in several software products (e.g., (Christmansso and Rimén 1998; 

Christmansson and Chillarege 1996)). The first model for software faults is the 

Orthogonal Defect Classification (ODC) by Chillarege et al. (R. Chillarege 1995), 

which encompasses software defects and triggers. The idea was to provide insights 

about the quality of the development process of software systems, focusing on 

knowing the percentage of a certain type of faults affecting the system, their cost, the 

cost for their correction, as well as the distribution of team-force in the various 

phases of the system development. In practice, the ODC classifies software faults 

according to the way a programmer can correct them: 

 Assignment: value(s) assigned incorrectly or not assigned at all.   

 Checking: missing or incorrect validation of data or incorrect loop or 

conditional statements.   

 Interface: errors in the interaction among components, modules, device 

drivers, call statements, or parameter lists.   

 Timing/serialization: missing or incorrect serialization of shared resources.   

 Algorithm: includes efficiency or correctness problems that affect a task and 

can be fixed by (re)implementing an algorithm or data structure without the 

need of a design change.  

 Function: a defect that significantly affects capability, end-user features, API 

interface, interface with hardware architecture, or global structure. A certain 

amount of code is either implemented incorrectly or not implemented at all, 

thus needs a formal design change.   

 Build/package/merge: errors due to mistakes in library systems, 

management of changes, or versions control. 

 Documentation: errors that can affect both development documentation and 

maintenance notes.  

Madeira et al. (Madeira, Costa, and Vieira 2000) were the first to use ODC for 

defining the faults that could be injected by the Xception fault injection tool 

(Carreira, Madeira, and Silva 1998). In 2006, Durães et al. (J. A. Duraes and Madeira 

2006) pointed out the inadequacy of using the ODC in the context of software fault 

injection. Although ODC has been successfully used to improve the software 

designing process and provides an important basis for understanding and 

classifying software faults, it relates faults to the way they are corrected (which can 

be done in different ways) and not with the way they can be emulated.  
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A fault classification that extends ODC was proposed by (J. A. Duraes and Madeira 

2006) based on a field study. The main idea is that a defect is one or more 

programming language constructs (statements, expressions, function calls, etc.) that 

are either missing, wrong, or in excess. The authors analyzed the evolution of several 

open-source software applications (analyzing the bugs and how they were 

corrected), and classified each fault according to its nature, which can be one of the 

following: missing construct, wrong construct, or extraneous construct (i.e., a 

construct that is superfluous). In practice, Durães and Madeira proposed an 

orthogonal extension to the ODC classification where a fault belonging to one of the 

Assignment, Checking, Interface, Timing/Serialization, Algorithm and Function 

classes can be relative to a missing, wrong or extraneous construct. Table 2.2 

presents, for each dimension, the faults most frequently observed in the software 

applications studied, and the classification of each fault type presented according to 

ODC model. A major observation by Durães and Madeira (J. A. Duraes and Madeira 

2006) is that more than 50% of the software faults can be “realistically” emulated by 

a small set of generic fault types, which correspond to the most frequent fault types 

found in real software.  

The injection of a specific type of software fault can be performed only in specific 

parts of the system code (where), namely parts of the code that can be changed to 

emulate a fault. For instance, emulating a “missing conditions of an if statement” 

(see Table 2.2) is possible only modifying the if statements present in the code. The 

parts of the code where a fault type can be emulated are referred to as fault locations. 

The insertion of a fault in a software component (i.e., when it is injected) can be done 

offline (at compile-time by modifying the source code) or post-deployment (by injecting 

directly in the binary code), at a specific instant of time. It is worth noting that 

although offline injection is easier to implement, source code is often not available.  
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Table 2.2 - Fault coverage of fault types from (J. A. Duraes and Madeira 2006) 

Fault nature Fault specific types 
# 

Faults 

ODC types 

ASG CHK INT ALG FUN 

Missing 

if construct plus statements (MIFS) 71    ✓  

AND sub-expr in expression used as 

branch condition (MLAC) 
47  ✓    

function call (MFC) 46    ✓  

if construct around statements (MIA) 34  ✓    

OR sub-expr in expression used as 

branch condition (MLOC) 
32  ✓    

small and localized part of the 

algorithm (MLPA) 
23    ✓  

Variable assignment using an 

expression (MVAE) 
21 ✓     

functionality (MFCT) 21     ✓ 

variable assignment using a value 

(MVAV) 
20 ✓     

if construct plus statements plus else 

before statements (MIEB) 
18    ✓  

variable initialization (MVIV) 15 ✓     

Wrong 

logical expression used as branch 

condition (WLEC) 
22  ✓    

algorithm – large modification 

(WALL) 
20     ✓ 

value assigned to variable (WVAV) 16 ✓     
arithmetic expression in parameter or 

function call (WAEP) 
14   ✓   

data types or conversion used (WSUT) 12 ✓     
variable used in parameter of function 

call (WPFV) 
11   ✓   

Extraneous 
variable assignment using another 

variable (EVAV) 
9 ✓     

Total faults for these types in each ODC type 452 93 135 25 192 41 

Coverage relative to each ODC type (%) 68 65 81 51 72 100 
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A fundamental aspect in the fault injection scenario is the clear separation between 

the target component and the part of the system under observation. In fact, the 

emulation of software faults always requires the introduction of small changes in the 

target code, and any conclusions about the faulty-component may be misleading, as 

the injected component is different from the original one. In practice, the goal is 

generally to evaluate how the rest of the system copes with such faulty component 

(see Figure 2.13), considering the target component as faulty. This is quite natural for 

software faults as a component-based approach is generally used for architecting 

software.  

 Generic Software Fault Injection Technique (G-SWFIT) 2.4.4

Among the several software fault injection tools available in literature, Durães and 

Madeira propose the most complete novel approach for injecting software faults 

when the source-code is not available, thus being very relevant for software using 

OTS (Off-The-Shelf, i.e., third party) modules and OTS-based systems (J. A. Duraes 

and Madeira 2006). The approach, named Generic Software Fault Injection 

Technique (G-SWFIT), is based on the use of educated mutations at machine-code 

level that emulate software faults at high-level coding. The G-SWFIT is based on a 

fault library that includes emulation operators for each fault type, based on machine-

code level patterns (which identify the constructs that can host the specific fault) and 

the corresponding code changes (representing the translation of a single software fault 

into machine-code).  

The types of software faults in the fault library were obtained from a field study of 

the most occurring faults in software systems: the authors analyzed several open-

source software systems and classified the faults corrected along their development 

using an extension of the ODC classification (as mentioned above). This resulted in a 

set of the emulation operators relative to the most frequent faults. The ones included 

in the G-SWFIT technique are presented in Table 2.3. 

 

Figure 2.13 – Software Fault Injection and system observation (J. A. Duraes 

and Madeira 2006) 
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The injection of software faults is done only where a fault is likely to exist (thus 

being context-based), through the automatic search of the machine-code level patterns 

defined in the library for each software fault type. The authors validated the injection 

technique by comparing the translation of the software faults injected at high-level in 

the source-code of three software applications (among which GZip) with the low-

level patterns defined by the compiler. In most cases, their tool reached the 

maximum accuracy in emulating software faults. As the fault locations are identified 

before the actual injection and the set of faults is generated based on this 

information, the faults can be injected offline or online, with low intrusiveness. 

However, it is worth noticing that the injection at runtime can present 

representativeness problems, as the fault location could have already been executed 

before the fault is injected.  

Figure 2.14 shows the basic functional schema of the G-SWFI Technique. The system 

code is disassembled in order to translate the executable file into assembly code that 

can be scanned for target code patterns. Afterwards, the tool reads and generates a 

mutant with a fault injected. The mutated versions of the single slice of code are then 

assembled to generate mutated executable versions. Alternatively, during online 

injection, the mutations can be injected directly in the associated process in memory. 

It is worth noting that online injection strongly depends on the possibility to access 

Table 2.3 - Most frequent fault types found in (J. A. Duraes and Madeira 2006) 

Fault 

types 
Description 

% of total 

observed 

ODC 

classes 

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm 

MFC Missing function call 8.64 % Algorithm 

MLAC 
Missing "AND EXPR" in expression used as 

branch condition 
7.89 % Checking 

MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking 

MLPC 
Missing small and localized part of the 

algorithm 
3.19 % Algorithm 

MVAE 
Missing variable assignment using an 

expression 
3.00 % Assignment 

WLEC 
Wrong logical expression used as branch 

condition 
3.00 % Checking 

WVAV Wrong value assigned to a value 2.44 % Assignment 

MVI Missing variable initialization 2.25 % Assignment 

MVAV Missing variable assignment using a value 2.25 % Assignment 

WAEP 
Wrong arithmetic expression used in function 

call parameter 
2.25 % Interface 

WPFV 
Wrong variable used in parameter of function 

call 
1.50 % Interface 

 Total faults coverage 50.69 %  
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the process in memory or the processor’s registers. The software fault injection 

process may result in a large number of mutants that may make experiments 

infeasible in a short time.  

There are several implementations of the G-SWFI technique nowadays, as for 

instance for Java environments (the J-SWFIT tool from Sanches et al. (Sanches, Basso, 

and Moraes 2011)), and the tools by Durães for C/C++ environments (J. A. Duraes 

and Madeira 2006). The adoption of the G-SWFIT recommendations can be seen in 

Barbosa (Barbosa et al. 2007), Basso et al. (Basso et al. 2009), Fonseca et al. (Fonseca, 

Vieira, and Madeira 2007) , Moraes et al. (Moraes et al. 2007), Natella et al. (R. 

Natella and Cotroneo 2010; R. Natella et al. 2010; Cotroneo, Fucci, and Natella 2012), 

among others.  

The ultimate question that arises from the use of software fault injection, including 

the G-SWFIT technique, is to demonstrate that the injected faults are representative 

of a situation in which the system contain faults that escaped the several testing 

phases (from code inspection to functional testing), which has no trivial answer. 

2.4.4.2 The problem of representativeness in software fault injection 

A software defect permanently lies in the code of system. Besides the fact that its 

behavior is often soft (transient), some software faults elude the testing phase due to 

insufficient testing effort, but also due to the complexity of its activation, which 

makes it “hiding” from testing. The injection of software faults must aim at 

emulating such types of faults for mimicking realistic scenarios, which is obviously 

not possible because these defects are not known in advance (if we knew the bugs, 

we would fix them beforehand). Given this impossibility, the correct emulation of 

software faults by fault injection requires (J. A. Duraes and Madeira 2006):  

 The identification and characterization of the most important classes of 

software faults and estimation of the relative percentages of these classes 

in real programs. The relevant faults are those that correspond to 

 

Figure 2.14 – The G-SWFIT injection task 
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representative fault types of the real residual defects found in deployed 

software systems (J. A. Duraes and Madeira 2006). 

 Techniques to inject faults that generate errors or induce erroneous 

program behavior similar to the ones caused by specific classes of real 

software faults. In other words, what is important is to avoid the injection of 

faults that cause errors that would not be generated by a real software fault 

(J. A. Duraes and Madeira 2006).   

 Considering the elusive nature of a software fault to emulate. In fact, the 

faults that are likely to be present in the system operational phase are faults 

that escaped the testing phases. Natella and Durães (R. Natella et al. 2010) 

demonstrated that a necessary condition for the representativeness of 

emulated software faults is their elusive nature. 

Regarding the elusive nature of the faults, a first model was proposed by Jim Gray 

(Gray 1986) (Bohrbugs and Heisenbugs), and successively integrated by Grottke and 

Trivedi (Grottke and Trivedi 2005). A fault can be classified as a Bohrbug, causing a 

failure under simple and known conditions (being hard or non-elusive) or a 

Mandelbug, whose manifestation is non-deterministic, causing failures under 

complex and unknown conditions (being a soft or elusive software fault). In 

addition, to these two types, Heisenbugs are faults that stop “causing a failure or 

that manifests differently when one attempts to probe or isolate it” (Grottke and 

Trivedi 2005), in a similar way to what happens in physics with waves and particles 

(i.e., electrons), according to the Heisenberg principle. Heisenbugs are considered a 

sub-type of Mandelbug, and examples of their manifestation are when some 

debuggers initialize unused memory to default values, thus eliminating failures due to 

improper initialization, or  the influence on process scheduling when trying to 

investigate a failure. Grottke and Trivedi also define software-aging bugs as 

Mandelbugs and in some cases as Heisenbugs (Grottke and Trivedi 2005). 

Fault injection should emulate Mandelbugs, or Bohrbugs supposing that the system 

was poorly tested. Natella and Durães (R. Natella et al. 2010) analyzed the elusiveness 

of a set of faults injected using the G-SWFIT technique into a MySQL server, finding 

that almost 85% of injected faults eluded 50% of the test cases defined. The 

remaining 14.57% of non-elusive faults should be eliminated a priori (i.e., without 

knowing the system test cases). The authors proposed a way in which the 

representativeness of the injected faults is improved, by means of a set of criteria 

based on code metrics for excluding non-elusive faults from the faults to be injected.  

The concept of software fault trigger, introduced for the first time by Sullivan and 

Chillarege in (Sullivan and Chillarege 1991), also helps in modeling the activation of 

a fault that is dormant in a software system. In practice, modeling and 

understanding the nature of a software fault in terms of triggering conditions is 

useful for understanding which are the faults that mostly hide during the testing 
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phase, and that are more likely to activate when not expected. Chillarege et al. (R. 

Chillarege 1995) defined several dimensions for software faults triggers, including 

workload volume/stress, system start-up and restart, hardware and software 

configuration, and normal mode.  

2.5 Fault Injection and Online Failure Prediction 

Failures are rare events, and the collection of training data for prediction systems in 

a short time frame can take long time (G. Hoffmann and Malek 2006)(Li, 

Vaidyanathan, and Trivedi 2002). Furthermore, even if one is able to collect failure 

data, those data (collected in a specific time period) may not be representative of the 

system behavior in other periods, due to runtime systems evolution (e.g., workload 

variation, software upgrades). In this work we argue that a potential solution to this 

problem is the deliberate injection of realistic faults.  

The literature presents few works related to the failure prediction domain in which 

the authors try to accelerate the experiments injecting software faults. Gross et al. 

(Gross, Bhardwaj, and Bickford 2002) injected memory leaks to have controllable 

parasitic resource consumption rates, to speed up the experiments and fine-tuning 

the MSET (Multivariate State Estimation Technique). In (Alonso et al. 2010) and 

(Alonso, Torres, and Gavaldà 2009) the authors also used the injection of memory 

leaks to accelerate their experiments and to demonstrate the effectiveness of the M5P 

algorithm (a Decision Tree algorithm) for predicting aging-related failures occurring 

in a Tomcat web server.  

Even though some works already used the “injection” of software bugs (mainly 

memory leaks) to accelerate and validate the proposed prediction models, some 

limitations may be highlighted, taking into consideration the concept of software 

fault injection presented in the previous section. For example, in the work of (Alonso 

et al. 2010; Alonso, Torres, and Gavaldà 2009), it is not clear if the authors injected 

memory leaks at runtime and which kind of methodology they used for doing it. 

There is also no assumption on the distribution of the faults, consequently raising 

questions regarding the representativeness of the reproduced failure model (and 

modes). Moreover, most works target only aging-related failures and do not cover 

the entire spectrum of the possible failures in which a computer system can incur.  

2.6 Computer systems benchmarking 

A benchmark is an instrument that allows evaluating and comparing different 

entities (systems, components, tools, etc.) according to specific characteristics, like 

for example performance, robustness and dependability, under the same conditions 

(Gray 1993). In practice, benchmarking is a process that encompasses the execution 
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of the system under test under conditions that are constant over time and the 

measurement of specific characteristics at each execution, in a way that provides 

results that are fair and comparable across alternative systems and/or components. 

The main components of a benchmark are:  

 Metrics that characterize the objects under comparison. For instance, metrics 

for benchmarking CPUs’ throughput are Instructions Per Second (typically 

scaled to millions, MIPS, or above – GIPS, TIPS) and Floating-Point Operations 

Per Second (e.g., MFLOPS), while complex computer systems as web servers 

are analyzed with respect to their response time, availability and latency 

(“Transaction Processing Performance Council (TPC)”). The definition of 

metrics is of utmost importance for modeling the characteristics of the system 

to be measured in a proper way; 

 Workload, which is a set of operations that the systems under test must 

execute during the benchmark execution, usually including several 

components (instructions, software components, other systems) and parameters 

(defining a particular instance of the workload). Workloads are typically built 

according to the characteristics of the system under benchmarking. For 

instance, workloads for measuring the CPU throughput in terms of FLOPS 

must be made of floating-point, computation-intensive instructions, while 

measuring the response time of a web server requires a set of several remote 

nodes requesting operations that the system must execute at a given rate. 

Several techniques are available for defining a proper workload (Calzarossa, 

Italiani, and Serazzi 1986; Agrawala, Mohr, and Bryant 1976; Calzarossa and 

Serazzi 1993; D. Ferrari 1972; Eeckhout et al. 2005; Domenico Ferrari 1984), 

which nonetheless remains an open problem in many scenarios; 

 Benchmarking procedure that describes the setup required to run the 

benchmark and the set of steps and rules to be followed during its execution 

(Gray 1993). For instance, benchmarking a web server requires setting-up of 

the remote nodes submitting the workload, configuring the environment to 

automatically start the web server, starting and stopping the workload 

execution, calculating the defined metric, among others. 

In order to give confidence on the results, a proper benchmark must encompass 

several properties (M. Vieira and Madeira 2003), namely it should be easy to 

implement and use, provide repeatable results, be portable to different systems in a 

given domain, include representative components, and be non-intrusive in order to 

not interfere in the results. 

Work on performance benchmarking ranges from simple benchmarks that target a 

very specific hardware system or component to very complex benchmarks focusing 

on complex systems (e.g., databases, operating systems, web servers (M. Vieira and 

Madeira 2003)). Performance benchmarks have contributed to improve successive 
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generations of systems (Gray 1993), and the beginning of the millennium has 

boosted the research on dependability benchmarking, with several works carried out 

by different groups following different approaches (e.g., experimentation, modeling, 

fault injection) (Koopman et al. 1997; M. Vieira and Madeira 2003; Zheng 1993; 

Antunes and Vieira 2010).  

The goal of dependability benchmarking is to characterize the behavior of a system 

in the presence of faults, quantifying dependability attributes. A dependability 

benchmark thus involves the use of techniques as fault injection and robustness 

testing, adds to the main components of a benchmark a faultload (containing the 

faults in presence of which assess the system), and measures relative to dependability 

attributes.  

In the last few years, benchmarks were also developed for evaluating the security of 

systems, as for example (Mendes, Madeira, and Duraes 2014; Marco Vieira and 

Madeira 2005; Mendes, Duraes, and Madeira 2011). Such benchmarks are based on 

the idea of evaluating a system in the presence of vulnerabilities related to its 

security (i.e., software faults that have the effect to reduce the security attributes of a 

system), and consists of a benchmarking procedure, a workload, a vulnerability injector 

and a vulnerability library, and an attackload (a set of attacks execute against the 

system under test). The authors in (Neto and Vieira 2011) proposed a different 

approach to security benchmarking, by assessing the trustworthiness (i.e., the 

accumulation of evidence that something can be trusted) of web applications and 

systems. Differently from security benchmarks, the goal of a trustworthiness 

benchmark is to increase the thrust in security attributes of a system or parts of it. 

The benchmarking procedure involves the analysis of the code of a specific system 

or component by using static code analyzers (SCA), which results in a number of 

vulnerabilities reported (NVR) that is used to estimate trustworthiness.  

Benchmarking frameworks are lacking in the failure prediction scenario. In this 

direction, benchmarks for machine learning models can be adapted to the failure 

prediction problem, even if only some models can take advantage of the existing 

approaches. Benchmarking machine learning models is a well-known problem in 

the machine learning community, typically addressed by using well established 

datasets (see e.g., (Zheng 1993; Maxion and Tan 2000)), which correspond to the 

workload mentioned above. The datasets include data generally accepted by a 

community (e.g., IRIS dataset and others (Bache and Lichman 2013)) that the tool or 

algorithm must process to assess its performance (prediction accuracy, recognition 

error rate, etc.). These datasets can be used independently of any system 

configuration. However, as mentioned before, such repositories are not enough for 

assessing and comparing failure prediction algorithms on a particular system, as the 

data may reflect the behavior of the several different systems. 
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2.7 Final remarks 

This chapter presented background on dependability concepts for computer 

systems, online failure prediction and fault injection techniques, including the state-

of-the-art in such areas. 

Online failure prediction is a novel technique that allows detecting in advance the 

occurrence of failures and to mitigate their effects. The review of the literature 

highlighted the fact that the approaches proposed in the past are seldom used in 

commercial system. This is mainly due to the fact that failure models are complex to 

train and optimize, and failure data are usually not easy to collect. The solutions 

proposed in Chapter 3 and Chapter 4 are in line with this need, where fault injection 

is used to generate failure data to train and optimize failure prediction models on 

particular system installations.  

Another key aspect regarding the use of failure prediction models is the evaluation 

of the prediction performance, which requires rigorous procedures and metrics. We 

address such need with the proposal of a benchmark for failure prediction models in 

Chapter 5. The benchmark is based on the failure-data generation approach 

proposed in Chapter 3 and defines the components and procedures needed to assess 

and compare different models. 

The chapter also introduced several failure prediction models (whose management 

is mostly manual) applied to complex computer-based systems. However, although 

complex software systems tend to evolve and change, very few works focusing on 

the adaptation of failure prediction systems can be found in the literature. This 

highlights the need for a framework that allows the continuous adaptation of online 

failure prediction systems, as the one presented in Chapter 6. 

Finally, the key problem of optimizing failure prediction models has been addressed 

in few works, especially regarding what concerns the selection of the most adequate 

variables to predict failures. In fact, works in the literature are limited to a priori 

analysis of system characteristics that can help in predicting failures, and 

experimental evaluations based on few failure data. Chapter 7 presents the study of 

the application of a symptoms identification approach for facilitating the selection of 

a set of variables for an optimal failure prediction. 
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Chapter 3 
Generating failure data by 

Software Fault Injection  

 

Predicting failures in computer systems is possible by modeling the behavior of the 

system in the time instants preceding the occurrence of failures. Failure prediction 

models may be built manually (which is rare, due to the complexity of such task) or 

by using training (or learning) algorithms. The aim of training algorithms in the failure 

prediction context is to take data monitored from a target system (e.g., page faults per 

second, I/O request queue size, etc.) and relate them to observed failure events in the 

form of a model. In this scenario, failure-related data are needed to train the 

prediction model and optimize its performance, as well as to validate the accuracy of 

predictions.  

As failures are rare events, data collection usually takes a long time (e.g., (G.A. 

Hoffmann 2006; M. Vieira et al. 2009; Bao, Sun, and Trivedi 2005), which limits the 

applicability of failure prediction. Different solutions addressing such limitation 

were proposed, including the use of existing failure data, often collected and stored 

in collaborative repositories (hosting failure data from several systems), as for 

instance the repository at (Usenix and Carnegie Mellon University (CMU) 2006). 

This solution has a clear limitation, as a system may evolve over time (leading to the 

need for new failure data to be collected) or the collected failure-related data may 

come from systems with different characteristics. In fact, it is fundamental that the 

failure data represents the relation between failure events and the dynamics of the 

concrete target system (i.e., the system where failure prediction is being 

implemented), and that depends on specific properties of the individual components 

of the system and/or of the system as a whole, which may vary from one installation 

to another (e.g., a software version upgrade may impact the system behavior). 
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In this chapter we propose a practical approach for generating failure data based on 

the injection of realistic software faults in a specific target system. The reasoning is 

that injecting faults increases the probability of a system to fail, hence enabling a fast 

generation and collection of failure-related data. The ultimate goal is to facilitate the 

use of failure prediction models on specific systems by addressing the problem of 

failure data scarcity. We believe that the use of software fault injection for generating 

failure data in short time facilitates and speeds up the training of failure prediction 

mechanisms and their optimization, among other aspects. 

The proposed approach makes use of the Generic-Software Fault Injection 

Technique (G-SWFIT, (J. A. Duraes and Madeira 2006)), the de facto standard for 

emulating software faults in a representative way. In practice, G-SWFIT defines a 

model of the faults to be injected to emulate residual (realistic) software faults, based 

on an extensive field study (J. A. Duraes and Madeira 2006). The technique supports 

the injection of software faults by modifying the target system’s code at machine-

code level, instead of modifying the system’s source code, a key feature when source 

code is not available, and especially for nowadays’ widely used OTS-based systems. 

The reason that stands behind the choice of injecting realistic (or representative) 

software faults stands in the fact that software faults are nowadays the largest cause 

of computer system failures (Lee and Iyer 1995; Kalyanakrishnam, Kalbarczyk, and 

Iyer 1999) and that representativeness is a fundamental property for assuring that 

the generated failure-data can be used in practice (J. A. Duraes and Madeira 2006). 

As mentioned before, the injection of software faults was first addressed by 

Christmansson in (Christmansson and Chillarege 1996), followed by many other 

works (e.g., (Hsueh, Tsai, and Iyer 1997; Aidemark et al. 2001; J. A. Duraes and 

Madeira 2006; Carreira et al. 1998), among others), resulting on several fault injection 

techniques with different purposes and targets.  

In the failure prediction context, the injection of faults has been considered for 

assessing failure prediction and/or detection mechanisms. For instance, Gross et al. 

(Gross, Bhardwaj, and Bickford 2002) emulate memory leaks in an Apache web 

server by modifying the source code in a way that prevents objects from releasing 

memory space at the end of their lifecycle. The same solution was used by (Alonso, 

Torres, and Gavaldà 2009) to validate mechanisms for the detection of resource 

exhaustion in a Tomcat web server.  However, the aim of fault injection in those 

works was to assess systems against well-known fault types (e.g., memory leaks), 

while there is no study on the use of failure data generated by fault injection for 

training and assessing failure prediction mechanisms.  

The proposed approach includes a method for assessing the accuracy of the 

(synthetic) failure data generated with respect to failure data that would be 

collected in a real scenario. In this perspective, we consider that, although realistic 

fault injection is a necessary condition to generate realistic failure data, it may not be 

a sufficient condition and thus the quality of the generated data must be assessed. In 

particular, we study the conditions under which failure data generated with our 
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approach can be accurate, and propose a set of metrics for estimating such property. 

The analysis of this property is a mandatory aspect to enable the use of the failure 

prediction models in a real scenario with a known level of confidence.  

The chapter is organized as follows. Section 3.1 introduces the approach for 

generating failure-related data using fault injection. Section 3.2 describes the first 

phase of the approach, namely the definition of the failure data generation 

environment, which includes the specification of the failure(s) to predict and the 

faults to inject, among others. Sections 3.3 and 3.4 describe the core of the approach, 

presenting how to generate, collect and organize the failure data. Section 3.5 

introduces the solution for assessing the accuracy of the failure data generated. A 

case study is presented in Section 3.6, where we discuss the training, testing and 

assessment of a novel failure prediction model running on a Windows XP OS 

environment. Finally, Section 3.7 concludes the chapter. 

3.1 Overview of the approach 

The approach for generating failure data includes an experimental procedure, a set 

of components for controlling the fault injection process and the dataset building, 

and a method for estimating the accuracy of the generated data. Software faults are 

injected while the target system executes one or more operations (a group of these is 

called a workload), in a way that allows capturing the dynamics that lead to failures 

by monitoring several variables (numerical data, events, etc.). In practice, the 

approach includes the following components: 

 Fault injector and faultload: faults are defined and organized in a faultload. 

A fault injector emulates specific faults by modifying one or more 

components of the target system. The choice of the faultload is of utmost 

importance as it influences the data generated, ultimately impacting on the 

overall results (different faults may lead to different types of failures).  

 Workload: for collecting information about the system behavior, faults must 

be injected while the target system runs a workload, and this procedure 

should be repeated several times. The workload is the set of operations that 

the target system performs in the field (realistic workload) or, alternatively, it 

may be a set of synthetic operations (a synthetic workload) that represents 

the usual tasks of the system, built specifically for failure data generation and 

collection. A synthetic workload is useful when the system has not been 

deployed yet, or when it is not possible to inject faults in the target system 

and/or the workload cannot be replicated.  

 Monitoring and data collection infrastructure: an infrastructure is used to 

gather the data that characterizes the behavior of the target system in the 

context of the observed failure events, while running a workload and 
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injecting faults. Depending on the failure prediction mechanisms under 

study, besides failure-related data, one may need to collect also failure-free 

data. What is important is the data to include only the most relevant 

information for predicting failures. 

The components above are the fundamental parts of the experimental procedure, 

which is divided in four phases (see also Figure 3.1): 

1) Definitions and set-up: in this phase one must define the failures to predict, 

the system information to be monitored (e.g., a set of numerical variables or a 

set of events in the logs, including failure events), the workload and the 

faultload, and a set of parameters characterizing the scope of the failure 

prediction. This comprises building the concrete faultload to inject, installing 

and configuring the workload emulation tool, and installing and configuring 

the data monitoring and collection infrastructure and the fault injection tool. 

Other tasks include defining and setting up the target system, i.e., the system 

where failure prediction will be implemented), and a controller system, 

independent from the target system, for controlling the experiments and 

collecting the failure data. 

2) Data generation and collection: this is the core phase of the approach, where 

the data are collected while the target system executes the workload and 

faults are injected by a tool implementing the G-SWFIT recommendations (J. 

A. Duraes and Madeira 2006). This data may correspond to fault-free 

situations (Golden Data) and/or situations in which a failure is observed 

(Failure Data). Data collection is done during several time intervals and in 

each interval the monitoring infrastructure collects the values of the variables 

portraying the state of the target system. 

 

 

Figure 3.1 – The four phases of the failure data generation 
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3) Dataset building: the data collected are organized in datasets for being 

consumed later by the failure prediction models. This process depends on the 

failure prediction system to be trained (e.g., training anomaly detection 

systems only requires Golden Data), as well as on the types of failures being 

predicted. In particular, the monitored data are associated with the failures 

observed in Phase 2 considering the failure prediction parameters specified 

in Phase 1.  

4) Failure data accuracy estimation analysis: accuracy is the property of the 

generated failure data to be similar to data that would be obtained in a real 

scenario. Due to the scarcity of real data, we estimate the correlation between 

synthetic and real failure data by applying metrics (specific of each condition) 

to two or more, independently generated, synthetic failure datasets. We use 

the concepts of weak accuracy and/or strong accuracy, as sufficient conditions 

for the generated failure data to be considered accurate. Strong accuracy 

metrics are applied directly on the datasets, while the weak accuracy metrics 

are applied to the prediction performance of the models trained with 

independent synthetic datasets. 

3.2 Phase 1: Definitions and set-up  

The goal of the first phase is to specify the data generation environment and the 

scope of the failure prediction task (e.g., the type of failures to predict, the prediction 

advance, etc.), and to set-up the fundamental components (faultload, workload, fault 

injection tool, etc.). In practice, this includes:  

1) Defining the types of failures to predict, considering the different failures 

that may affect the target system. This can be based on historical information, 

on taxonomies of common failure modes (e.g., the C.R.A.S.H. scale 

(Koopman et al. 1997)), or on the identification of system-specific failures 

(e.g., service degradation); 

2) Defining failure detectors (models) able to detect the failure events that 

should be associate with the monitored data, which will then be identified as 

failure-related data; 

3) Selecting the software faults to inject, which represent the root cause of the 

failures observed on the target system. A generic faultload is defined in (J. A. 

Duraes and Madeira 2006), but specific faultloads may also be considered; 

4) Installing a software fault injection tool that implements the G-SWFIT 

recommendations for injecting the software faults at the machine-code level; 
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5) Defining the workload to use, which must emulate the target system’s 

operations during the fault injection process; 

6) Selecting the system variables to monitor that will be correlated with the 

observed failures. These variables may be selected using specific techniques, 

methods or algorithms, such as feature selection;  

7) Scoping the failure prediction problem, which includes defining the 

problem of predicting failures according to given models or frameworks, as 

for instance the time to failure, the prediction window, the probability of a 

failure to occur in a given time interval, and so on.  

The environment for generating failure data includes a target system (the system 

on which the failure prediction will be performed) and a controller (a machine that 

manages the fault injection, the failure data collection, etc.). This separation is not 

strictly needed, but it reduces intrusion in the target system and does not influence 

the failure data generation process. In practice, the controller is in charge of 

controlling the target system (e.g., boot, reboot, restore a fault-free state 5 ), the 

injection of the software faults, the workload (e.g., execute, stop) and the collection 

of the failure-related data (which are stored in a local database). The parameters that 

define the data generation (e.g., the number of fault injection runs to perform, the 

time horizons to consider, etc.) are also managed by the controller machine, but are 

defined in Phase 2 of the approach (see Section 3.3). On the other hand, the target 

system executes the workload, and hosts the fault injection tool and the monitoring 

tool. Figure 3.2 presents the distribution of the fundamental components on the 

target and controller systems.  

 

 

Figure 3.2 – The failure data generation environment 

                                                      
5 We here use of the term “fault-free” for indicating a status of the target system in which no 

fault was injected, and not for referring to the ideal status in which the target system is free 

from any software fault. 
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 Characterizing the failures 3.2.1

The first step towards failure prediction is to be able to correlate the monitored data 

with the failures observed during fault injection, which requires a precise definition 

of what a failure is. Different types of failures may occur during the data generation 

and collection phase, thus recognizing failure events and their occurrence time is 

required, which can be performed by means of tailored failure detectors.  

In general, a failure is an event that corresponds to the interruption of the correct 

functioning of the system or one of its components. In the direction of categorizing 

failures, we can find several works such as the classification from (Avizienis et al. 

2004), the C.R.A.S.H. scale (Koopman et al. 1997), the distributed fault model (here 

fault is intended as failure) (Tanenbaum and Van Steen 2007), and the generic failure 

model by (Bondavalli and Simoncini 1990). The failure model proposed in (Avizienis 

et al. 2004) can be considered the most general one as it is based on the other works 

listed. In this work we do not propose any particular failure mode classification, 

although we do recommend the definition of the failures to predict according to the 

classification given in (Avizienis et al. 2004). 

Failure detectors are tools based on models that recognize a failure occurrence, by 

identifying failure patterns in the target system. As the accuracy of such models may 

impact the quality of the generated data, thus affecting the study of failure 

predictors, the quality of failure detectors should be assessed and their performance 

should be optimized. Although the definition of failure detectors and their 

optimization are out of the scope of this work, we here give an insight on how they 

can be implemented. In practice, failure detectors can be built in two ways: 

1) Manually by defining a set of conditions or rules for recognizing a failure in 

the target system (e.g., if the system does not respond to a ping for more than 

a minute, this means that there is a crash or a hang). This type of modeling is 

possible when failures can be easily described by using simple rules, either 

considering common failure modes (e.g., crash, hang) or service specific 

failures (e.g., performance failure); 

2) Automatically, in the case of failures events not easy to describe, by using 

machine-learning algorithms that are applied to a set of collected data. This 

type of modeling is necessary when, for instance, the detection of a failure is 

influenced by dependencies between several variables (e.g., OS-level hangs, 

involving complex interactions between OS-level and user-level components 

(Antonio Bovenzi et al. 2011)). 

A failure detector must also identify the occurrence time of a detected failure 

(referred to as failure time TF), which may be a non-trivial task, as it depends on the 

type of failures being addressed, among many other aspects (e.g., the time when an 

Hang is detected often does not correspond to the instant in which it actually 

occurred). However precise solutions to this problem are out of the scope of the 
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present work, where we just recommend adopting a best-effort approach, 

considering the failure time as the detection time. Obviously, the better the detection 

system is, the more precise is the failure time estimation. 

 Defining the faultload and the fault injection procedure 3.2.2

The faults to be injected (what) must be carefully chosen and correctly emulated in 

order to be representative of residual software faults, i.e., software faults that are likely 

to escape the testing phase and be present in the target system (J. A. Duraes and 

Madeira 2006). The need for the software faults to be realistic stands in the fact that 

such faults are more likely to lead to failures similar to the ones that would occur if 

real faults affect the system, thus allowing generating realistic failure data.  

Choosing the types of faults to inject is a non-trivial problem. The authors of the 

G-SWFIT proposal (J. A. Duraes and Madeira 2006) identified three conditions for 

emulating realistic software faults, namely: i) choose the types of faults likely to 

exist in the target system; ii) reproduce patterns that represent software faults 

present in software systems; and iii) inject faults according to a given distribution, in 

order to mimic residual faults. (J. A. Duraes and Madeira 2006) analyzed software 

defects in several open-source software products that were corrected from a version 

to another (a procedure similarly to the one conducted for building ODC: see Section 

2.4.3), but focusing on the fact that faults can be due to missing, wrong or extraneous 

(in excess) programming language constructs (e.g., statements, expressions, function 

calls, etc.), which supports the definition of what to inject. In practice, the resulting 

dimensions (or classes) of such model also define how to emulate a given type of 

fault, classifying the faults in terms of programming language constructs (e.g., 

statements, expressions, function calls, etc.) that can be missing, wrong or extraneous. 

In this work, we adopt the fault model proposed in the context of the G-SWFIT 

technique (J. A. Duraes and Madeira 2006), already presented in Table 2.3 (Section 

2.4.4), as the fault types defined provide a fine-grain classification that can be easily 

translated into a code mutation (see Table 3.1 for some examples). Furthermore, such 

fault model includes the distribution of the occurrence (or presence rate) of the faults, 

which is of utmost importance as it allows defining a more representative 

distribution of the types of faults to be injected. For instance, MIFS faults can be 

considered representative of real scenarios if their weight in the total number of 

faults injected is about 10%. 

Regarding the injection location (where), the rules for identifying where a specific 

type of fault can be emulated are also defined in (J. A. Duraes and Madeira 2006), 

and are referred to as “patterns identifying an injection location”. In practice, an injected 

software fault is a mutation of the code in the specified location(s), achieved by 

applying a given fault operator. Table 3.1 presents three examples of fault operators 

for (a) a “missing local variable initialization (MVI)”, (b) a “missing function call (MFC)”, 
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and (c) a “Wrong value assigned to a variable (MVAV)”. The column “Patterns” presents 

the situations in which the fault can be injected and the column “Code mutation/Fault 

operator” identifies the operation needed to emulate the fault type. For example, the 

locations in which a MVI can be injected are identified by the presence of a variable 

initialization instruction (e.g., local_var = value) and the fault is emulated by 

removing the initialization instruction.  

It is worth noting that, although the fault patterns defined characterize the potential 

injection locations, there may be many eligible locations and injecting faults in each 

and every one may not be feasible and/or representative. Although the problem of 

selecting code locations is out of the scope of our thesis, we follow a simple rule of 

injecting faults in highly executed software components, which can be easily 

identified by using profiling tools (i.e., running the workload on the system and 

identifying the components that are most executed (Ball and Larus 1994)). This 

increases the fault activation probability, which potentially leads to the observation 

of a reasonable number of failures. However, the representativeness of the faults 

injected in such widely executed locations must be taken into account. In fact, as 

defined in (R. Natella et al. 2010), injected software faults are representative if their 

location is rarely executed or they are rarely activated when their code location is 

executed (otherwise, they would be easily caught during tests). Hence, low 

activation rates are a required condition for fault representatives and should be 

experimentally verified. (R. Natella et al. 2010) defines 5% (i.e., 5% of the faults 

injected lead to failures) as an acceptable activation rate for representative software 

faults. 

About the time (when), the G-SWFIT proposes the injection of software faults in the 

target system’s compiled code, both for representativeness and generality reasons. In 

fact, injecting in the compiled code means that the code mutation tries to represent a 

residual fault caused by a programmer error, which is translated by the compiler (as 

in real scenarios). The G-SWFIT technique is generic in the sense that faults can be 

Table 3.1 - G-SWFIT: examples of mutation and search patterns 

Fault type Patterns 
Code mutation/ 

Fault operator 

(a) Missing local variable initialization 

(MVI)  

pattern and mutation 

local_var = value 

remove local_var  

initialization 

local_var = 

some_other_variable 

local_var = expression 

(b) Missing function call (MFC)  

pattern and mutation 
function_name(…); remove function call  

(c) Wrong value assigned to a variable 

(WVAV)  

pattern and mutation 

local_var = value local_var = other_value 
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injected even when the system’s source code is not available, which is a usual 

requirement when dealing with third party or OTS-based systems.  

In summary, from the perspective of generating failure data, the faultload must 

consider the scope of the target types of failures, as usually the potential target code 

is too big for faults to be injected in all possible locations. For example, crash failures 

can be caused by emulating a segmentation violation by injecting a WVAV (wrong 

value assigned to a variable) in core functions of the operating system. In practice, one 

must define a proper policy for choosing the most representative faults to inject, 

with the aim of increasing the probability of failures, a potential policy is “choosing 

locations in the most executed parts of the software”. 

 Defining the workload 3.2.3

A workload can be seen as a collection of programs, data and commands used to 

exercise a system (D. Ferrari 1972; Domenico Ferrari 1984). In practice, failure-related 

data represent the failing behavior of a target system when executing a concrete 

workload that leads to the activation of injected faults by exercising the 

functionalities of the system.  

The generation of failure data during the operational phase of the target system can 

make use of the real workload that the system has to execute. However, the most 

general case is to perform the data generation before deploying the system or using a 

copy of the target system (as proposed in Chapter 4), as injecting faults during 

system operation may not be feasible, due to possible damages to the software, the 

data, the environment, etc. In such cases, it is necessary to define a specific workload 

to exercise the system. 

The choice of the most adequate workload is very dependent on the target system. In 

general, a workload must be chosen or defined in a way that reproduces the typical 

behavior of the system and the use of a particular workload strictly depends on what 

is available about it. In practice, a workload can be of three types: a real workload, a 

realistic workload, or a synthetic workload. Real workloads are made of actual 

applications used in real environments. Results using real workloads are quite 

representative, but access to them is frequently not possible. On the other hand, 

realistic workloads are artificial workloads that are based on a subset of 

representative operations performed by the system. Although artificial, realistic 

workloads reflect the real situation, and are still quite representative and easier to 

implement. Finally, a synthetic workload can be a set of random operations, and is 

easier to define, but obviously results may have a low representativeness.  

A potential way to build realistic workloads is to collect, study and classify the 

different types of operations executed by the target system, and then mimic them 

using a custom made application. Workloads from standard benchmarks (e.g., SPEC, 

TPC, etc.) typically offer realistic workloads, each one relative to a particular system 
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domain. For instance, TPC-W and TPC-App offer workloads for transactional web-

serving systems (“Transaction Processing Performance Council (TPC)”), while SPEC 

benchmarks provide workloads for assessing CPUs, Workstations, Virtualization 

systems, etc. (“Standard Performance Evaluation Corporation (SPEC)”). 

We do not propose any particular methodology for building a proper workload, as 

this is not central to the present work. However, several methodologies can be found 

in the literature (e.g., (Agrawala, Mohr, and Bryant 1976; Calzarossa, Italiani, and 

Serazzi 1986; Calzarossa and Serazzi 1993; Eeckhout et al. 2005; Moro, Mumolo, and 

Nolich 2009)), including in the fault injection field (Cotroneo, Fucci, and Natella 

2012; A. Bovenzi et al. 2011).   

 Selecting the variables and the monitoring infrastructure 3.2.4

Online failure prediction models are built from observations about the past behavior 

of a target system (or the evolution of its inner states), which can be described by 

numerical time series data or categorical data (e.g., events stored in log files). As 

online failure prediction models forecast failure events by comparing the observed 

behavior with the evolving target’s state, their efficacy and accuracy is dependent on 

the quality of the observations (i.e., the data) collected from the target system.  

A computer-based system, as well as each of its components, may be described in 

several ways, which results in a large number of variables that can be monitored. 

This problem is known as feature extraction. In practice, the features or variables that 

better characterize the behavior of a computer system are usually defined based on 

the experience of users and developers and describe a specific behavior of the whole 

system or of a part of it. This approach is different from the ones followed in other 

areas, e.g., computer vision and image segmentation, in which a subject (e.g., the 

image of a human face) may be automatically analyzed for extracting information or 

variables for achieving a given goal (e.g., recognize a subject by searching a specific 

set of characterizing features). In this work we assume that the best features are 

among the ones a computer system makes available, using de facto the Ockham’s 

razor principle (Gernert 2009; Blumer et al. 1987). The existing tools for monitoring 

computer systems provide a finite set of variables, each one representing a 

characteristic of the system (e.g., the available free memory in MBs, the number of 

page faults/sec), and thus limit the features that can be extracted.  

The set of variables that is more adequate for prediction is not known a priori and 

several steps are needed to reach an optimal set. The selection or identification of the 

most adequate set of variables is also known as feature selection problem, which 

must address several aspects. For instance, models based on too few or too many 

variables may equally lead to poor performance (Baum and Haussler 1989; Geman, 

Bienenstock, and Doursat 1992; Hochreiter and Obermayer 2006; G.A. Hoffmann, 

Trivedi, and Malek 2006). In addition, considering that the variables form an n-
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dimensional space, the modeling of a specific reality identified by a set of variables (as 

the prediction of a specific event) is computationally harder as the number of 

dimensions n increases (the performance of a model degrading as the dimensionality 

increases is also known as the curse of dimensionality, or Hughes effect (G. Hughes 

1968)). Selecting an unfavorable subset of variables can lead to poor modeling 

performance as well. This way, it is of utmost importance to select the smallest set of 

variables that allows achieving the best prediction performance: (G.A. Hoffmann, 

Trivedi, and Malek 2007) analyzed the impact of variables on different models and 

demonstrated that the choice of the variable set has a strong influence on the 

prediction performance. The same authors showed that variables chosen by experts 

are likely to not form optimal sets for failure prediction and resource forecasting 

(e.g., used in the software aging detection context).  

Several techniques can be used to perform feature selection (see Chapter 2), which 

can be divided in two groups: the filter and the wrapper approach. In the former 

(filtering) the feature selector filters the irrelevant attributes and is independent from 

the specific model that will use the variables. In the latter (wrapping), the most 

important features are filtered in the context of the prediction model and taking into 

account the specificities of the underlying learning mechanism. In addition to these 

two, the hybrid approach tries to take the advantages of both filtering and wrapping.  

In this work we propose the use of feature selection techniques, although we do not 

specify any particular one. In addition, we recommend the use of numerical data 

instead of categorical data (e.g., data stored in logs), as it has been demonstrated that 

categorical data may degrade the performance of a prediction model (G.A. 

Hoffmann, Trivedi, and Malek 2007). For example, (G.A. Hoffmann, Trivedi, and 

Malek 2007) compared the performance of a model for predicting failures in a 

complex telecommunication system, first trained using numerical variables and then 

trained using numerical and categorical variables  (G. Hoffmann and Malek 2006). 

Results show that the addition of log data degraded the model’s prediction 

performance. However, categorical data that can be transformed to discrete-time 

numerical variables may be of interest. We also propose to normalize the collected 

numerical variables, as recommended by several works in the machine learning area 

(G. Hoffmann and Malek 2006).  

Several monitoring tools for collecting the values of variables over time can be 

found in computer systems. Well-known solutions are the Linux/Unix command top 

(showing information about system’s CPU usage, Memory usage, Swap memory, 

Cache size, processes, etc.), the proc/stat file (number of processes executing in user 

mode or kernel mode, jobs waiting I/O to complete, etc.), and open-source tools such 

as NMon (generic system information), Nagios (network and server-related 

information), both for Linux and Microsoft Windows computer systems, and 

Logman included in the Microsoft Windows OS.  
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Data must be collected according to a specific sampling rate that depends on the 

monitoring system used and the information being collected. Typically, operating 

systems provide standard sets of variables to monitor, representing a value in a 

given time instant (e.g., amount of free memory) or a rate (e.g., number of CPU Level 

1 cache-misses per second). The monitoring system should be able to manage such 

information, i.e., the increment of data, its storage, etc. The analysis of the optimal 

data sampling rate is out of the scope of this work, although few works in failure 

prediction field (e.g., (G.A. Hoffmann 2006)) demonstrate the influence that such 

parameter can have on the failure prediction accuracy. 

 Modeling the failure prediction problem 3.2.5

After defining the failures to predict, one must characterize the failure prediction 

approach, which will serve for the definition of the datasets to be consumed by the 

failure predictors, including the association of the failure instant to the data collected 

and their labeling. In practice, such characterization includes identifying and 

defining the key characteristics that should be taken into account when predicting a 

failure (e.g., the expected failure time, the distribution of failure probability over a 

given time interval, etc.) and allows associating a failure event to the data by labeling 

each data sample (see Section 3.4). This task is named failure prediction problem 

modeling.  

The literature on failure prediction is abundant in what concerns algorithms and 

prediction systems, although such works do not share a model for predicting 

failures, thus resulting in no common definitions. However, besides providing a 

survey on the existing online failure prediction systems, (F. Salfner, Lenk, and Malek 

2010) propose a generic model for addressing the online failure prediction problem. 

As shown in Figure 3.3 the failure prediction task consists of assessing if, at a time t, 

a failure is going to occur within a precise time, called lead-time ∆tl. The prediction 

can be valid in a time window, named prediction window ∆tp. The variation of the 

parameters ∆tl and ∆tp influences the performance of the prediction. In practice, at 

time t, a model (or predictor) should predict if a failure is going to occur in the 

interval [t+∆tl, t+∆tl+∆tp].  

Although other models can be used, in this work we adopt and include Salfner’s 

model in the experimental process, as it allows a complete representation of the 

failure prediction event, its expected arrival time, as well as the modeling of the 

 

Figure 3.3 – Time relations in Online Failure Prediction 
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minimal prediction time (or prediction convenience time) and the amount of data 

needed for performing the prediction (e.g., training failure prediction model). More 

details about this framework can be found in Section 2.2.3. 

3.3 Phase 2: Data generation and collection 

This phase consists of combining the components of the approach (faultload, 

workload, monitoring tool, etc.) to generate failure-related data for training, 

assessing and improving failure prediction models on a particular target system. In 

practice, after the definitions phase (Phase 1) in which the target system is installed 

and the environment is set up, the data generation and collection takes place by 

implementing a procedure that includes several time intervals (as shown in Figure 

3.4), referred to as runs, during which the monitoring infrastructure collects the set 

of variables selected. The number of runs, as well as their duration, depends on 

several parameters, such as the time needed to execute the workload, the specific set-

up environment and the prediction parameters (e.g., for predicting a failure one 

hour in advance, each run must last for at least one hour). Depending on such needs, 

the user must define a maximum run execution time TMAX, which obviously has to be 

greater than the workload execution time TW.  

Failure data are data obtained by injecting faults during several runs (eventually 

evolving into failures), while golden data are gathered when no faults are injected 

and no failures are observed6. The use of one or both kinds of data depends on the 

prediction model (or models) that will consume the generated data (e.g., anomaly 

detection based models just need golden data, while classifiers need both types of 

data). A run with no faults injected and no failures observed is called golden run, and 

the corresponding data are Golden Data (GD). An execution in which faults are 

injected is called Fault Injection Run. If a failure is observed during a fault injection 

run then it is a failing run, and the data monitored are Failure Data (FD). Also non-

failing runs can exist, with associated Non-Failure Data (NFD). Although this kind of 

data may also provide information about the system failing behavior, their use is out 

of the scope of this work. In each failing run, the failure event must be detected and 

latter (in Phase 3) associated to the collected Failure Data. For this, different failure 

detectors (models that recognize failure patterns when they occur, as defined in 

Section 3.2.1) may be needed.  

When more than one failure mode or more than one workload is considered, the 

runs (and thus the failure data) can be grouped into Scenarios. In this work, the 

scenarios are identified by a failure mode 𝓕 and a workload W, or alternatively by 

the tuple <Workload, Failure mode>. 

                                                      
6 In fact, no fault is injected and no failure is observed does not mean that no fault was 

activated, as there is not guarantee that no residual faults are present in the system. 
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As detailed in Figure 3.4 the data are generated as follows: 

1) Each run starts by booting the target system and waiting for it to reach a 

steady state, before the workload is executed. Having the system in a steady 

state means that it is ready for executing the workload in the best way 

possible, which is recommended, albeit not mandatory. The instant in which 

the system achieves its steady state is referred to as T0. 

2) The workload and the monitoring tools are then started. The instant in 

which the workload execution starts is referred to as TW, while TM identifies 

the time at which the monitoring system is executed. The data collection may 

start at time TM or TW, depending on the specific needs (e.g., if data from the 

beginning of the workload execution are needed, the monitoring must be 

started before the workload). In practice, data is composed of data samples 

collected from the different variables at a given instant of time, according to a 

specific sampling rate s. 

3) In a Fault Injection Run (FIR), a fault is injected at time TFI while the target 

system is executing the workload and the monitoring tool is collecting data. 

The tool implementing the G-SWFIT recommendations (J. A. Duraes and 

Madeira 2006) injects a fault that modifies a part of the target system at 

machine-level code (by modifying a file or a running process) according to 

the guidelines introduced in Section 3.2.2. In a Golden Run (GR) the system 

executes the workload, but no fault is injected. 

4) The run finishes when a failure (TF, FIR only) is detected (the failure detector 

associates the failure to the time TF), or after the workload has completed its 

execution (TW_END) or a maximum run execution time TMAX is achieved. In such 

cases, two situations are possible: 

 

Figure 3.4 – Failure data generation, collection and data organization phases 
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a) In the case of Golden Runs (GRs), if no failure is detected in the interval 

[T0; T0+TMAX], the data relative to the run are considered Golden Data 

(GDRi, Golden Data relative to the i-th run). It is worth noting that a 

failure occurring in a Golden run is caused by an actual residual fault of 

the target system (i.e., not an injected one) and the data should also be 

considered as Failure Data.  

b) For Fault Injection Runs (FIRs), if no failure is detected in the interval 

[T0+TFI; T0+TMAX], the run is considered to be failure-free, and the relative 

data to be Non-Failure Data (NFDRi, relative to the i-th run). On the other 

hand, if a failure is detected in such interval, the collected data are 

considered Failure Data (FDRi, relative to the i-th run). 

5) After completing a run (and collecting the corresponding data), the target 

system must be restored to a state in which no faults injected are present. 

This ranges from rebooting, in the cases where the fault does not permanently 

affected parts of the system (e.g., data or files), to the correction of fault 

effects (e.g., substituting files previously backed-up) or the re-installation of 

the entire target system7.  

It is worth noticing that the TW (workload execution time) parameter corresponds to 

the embedded dimension ∆td in the model for scoping the failure prediction task that 

we adopted (see Section 3.2.5), and it may vary with the prediction time horizon ∆tl, 

depending on the type of failure prediction model that will consume the data (e.g., 

reliability-growth prediction models can predict far in the future needing few data, 

although with a low prediction accuracy).  

3.4 Phase 3: Dataset building 

In this phase, the collected Golden Data and Failure Data are associated to 

information about the failures observed during Phase 2 and organized into datasets, 

for being later used for training and validating failure prediction models. Such 

association is implemented by labeling each data sample composing the collected 

data. 

Labeling data is a technique that associates a numerical label (e.g., 0, 1, etc.) to each 

data sample (i.e., a set of values of each monitored variable), depending on the 

meaning that each label has in the particular modeling or prediction scenario (e.g., a 

                                                      
7 Virtualization is a solution that allows restoring the target system (both software and – 

emulated – hardware), by using check-pointing and restoring operations. The potential use of 

virtualization for supporting the generation of failure data is addressed in Chapter 4. 
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sample is labeled 0 if the target system was working correctly at the moment of the 

sample’s collection, or conversely is labeled 1 if the system was presenting an erratic 

behavior). In our scenario, data is labeled according to the failure time TF and the 

failure prediction lead-time and prediction window (∆tl, ∆tp), defined in the failure 

prediction framework adopted (described in Section 3.2.5). The idea is to consider a 

model that predicts a failure ∆tl time in advance, with a variation of ∆tp with respect 

to the failure time TF. We must note that a successful prediction depends on the 

patterns that the data may show ∆tl time before a failure occurred, which can be 

present or not: in the worst case, the predictor will have a poor prediction 

performance, being not able to distinguish between failure-prone and non-failing 

situations. It is also worth noticing that such method for associating the information 

about the prediction of a failure to the data is not unique (e.g., regression models 

trained on specific lead and prediction times can also be used). Nevertheless, we 

adopted labeling for its generality and because it facilitates the study of the 

relationship of each data sample with the failure observed. 

The labeling of the collected data is performed as follows. Data from a given run r is 

composed of n different variables vr = <vr1, vr2, …, vrn>, where vri is the i-th variable 

collected from the target system (Figure 3.6 (a)). For each time instant k, each 

variable vri has a given value vri(k), representing a variable value collected at the time 

instant k. Hence, a data sample at time k is defined as: 

(3.1) vr(k) = <vr1(k), vr2(k), …, vrn(k)> 

A data sample vr(k) collected during a Golden Run (when no failure occurred), is 

associated a label lr(k)=0, for each time k. On the other hand, given TrF the time at 

which a failure was detected during the Failure Run r, and the prediction indexes 

(∆tl, ∆tp) (valid for all the runs), a label lr(k)=1 is associated to a data sample vr(k) if a 

failure occurred in the interval [TrF-(∆tl+∆tp), TrF-∆tl], otherwise it is 08. Hence, for 

each time instant k and each run r, a labeled sample is: 

(3.2) vr*(k) = <vr1(k), vr2(k), …, vrn(k), lr(k)> 

The collected data labeled according to the failure prediction indexes (∆tl, ∆tp) and 

the failure time TrF can be considered a dataset. More generally, several couples (∆tl, 

∆tp) can be specified, and varying the values of ∆tl and ∆tp let the labels associated to 

each data sample to change accordingly. In this case, being ∆tl=<∆tl1 , ∆tl2 , …, ∆tlL> 

and ∆tp=<∆tp1 , ∆tp2 , …, ∆tpP>, one can define a dataset with which N sets of labels are 

associated, where N =|∆tl|x|∆tp|. Of course, the Golden Data will present 0s for all 

the values of the couple (∆tl, ∆tp). Such dataset can be built once and used for 

training and testing a failure prediction model using a couple (∆tl, ∆tp) at a time.  

                                                      
8 It must be noted that the label values chosen can be any two different numerical values 

(other widely used values for labelling data are (-1, +1) – especially when using Support 

Vector Machine classifiers – (5, 10), and so on). 
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The collected and labeled Golden and Failure Data from each run are then organized 

in a global dataset. Each scenario <Workload, Failure mode> is associated to a given 

global dataset, as data reflect different failure modes and workloads (see Figure 3.5). 

An example of a dataset is presented in Figure 3.6 (a) and (b): Figure 3.6 (a) 

represents data collected from the i-th Fault Injection Run and labeled with N 

different couples of (∆tl, ∆tp) values, while Figure 3.6 (b) presents a global dataset, 

highlighting the difference between labeling Golden and Failure Data, being the first 

labeled with only 0s and the latter with 0s and 1s. 

For training and validating failure prediction models, each global dataset should be 

divided in training datasets (TDSs) and testing datasets (TTDSs), whose goal is to 

support the assessment of prediction performance. Such division is usually based on 

grouping single data samples. However, in our work we group Golden and Failure 

data in training and testing datasets by considering the runs to which they belong to, 

thus implementing a run-by-run data partition. The reason that stays behind this 

decision is that the collected data represents time series and the division in samples 

may alter the continuity and ordering among samples, which may finally impact the 

prediction performance (Dietterich 2002) (e.g., when training regression models).  

The division in training and testing sets should be done according to a certain policy 

(see e.g., (Vapnik 2000)): for instance, half of the data samples are used for training 

and the other half for testing. In practice, one must consider the fact that training a 

failure prediction model with a small percentage of data may result in a high 

variance of the prediction performance.  

 

Figure 3.5 – Datasets and scenarios (two workloads and two failure modes) 
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On the other hand, using a high percentage of data for training may also result in 

poor prediction performance. In fact, in such case the predictor is trained for 

predicting an event according to a very specific pattern without considering the 

possibility of the pattern to suffer small variations in a different scenario. Such 

problem is called overfitting, and calls for a predictor to generalize its predictions.  

A solution to the generalization problem is to conduct a validation of the model, 

which consists of computing how much the predictions of a model generalize to an 

independent dataset. Validation is widely used for different prediction models 

(Dietterich 2002) by analyzing the variation of the predictor’s performance (in 

practice, by estimating of how much the performance may vary when using a 

dataset different from the testing dataset). Several validation techniques can be used, 

including for instance a simple division of the global dataset in three parts, a training 

 
 

 
v1 v2 v3  vn Labels1 Labels2 ... LabelsN 

FIRi 

v1(1) v2(1) v3(1) … vn(1) 0 0 ... 0 

v1(2) v2(2) v3(2) … vn (2) 0 0 ... 0 

v1(3) v2(3) v3(3) … vn (3) 0 0 ... 0 

v1(4) v2(4) v3(4) … vn (4) 0 0 ... 1 

… … … … … … ... ... ... 

v1(k) v2(k) v3(k) … vn (k) 0 0 ... 1 

v1(k+1) v2(k+1) v3(k+1) … vn (k+1) 1 0 ... 1 

v1(k+2) v2(k+2) v3(k+2) … vn (k+2) 1 0 ... 1 

v1(k+3) v2(k+3) v3(k+3) … vn (k+3) 1 1 ... 1 

… … … … … … ... ... ... 

v1(TF) v2(TF) v3(TF) … vn (TF) 1 1 ... 1 
 

(a) 
 

 
v1 v2 v3  vn Labels0 

 v1(GR1) v2(GR1) v3(GR1) … vn(GR1) 0 

 v1(GR2) v2(GR2) v3(GR2) … vn(GR2) 0 

Golden v1(GR3) v2(GR3) v3(GR3) … vn(GR3) 0 

Data … … … … … … 

 v1(GRG) v2(GRG) v3(GRG) … vn(GRG) 0 

     

      Labels1 Labels2 ... LabelsN 

 v1(FIRf1) v2(FIRf1) v3(FIRf1) … vn(FIRf1) 0/1 0/1 … 0/1 

Failure v1(FIRf2) v2(FIRf2) v3(FIRf2) … vn(FIRf2) 0/1 0/1 … 0/1 

Data v1(FIRf3) v2(FIRf3) v3(FIRf3) … vn(FIRf3) 0/1 0/1 … 0/1 

 … … … … … … … … … 

 v1(FIRfF) v2(FIRfF) v3(FIRfF) … vn(FIRfF) 0/1 0/1 … 0/1 
 

(b) 

Figure 3.6 - Data from a single Failure Run i (a)  

and a complete (global) dataset (b) 
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dataset, a testing dataset, and a validation dataset (an example of its use in failure 

prediction is presented in (G.A. Hoffmann, Trivedi, and Malek 2007)). The leading 

idea is that if the variation in the prediction performance between the testing and the 

validation is small, the training set is optimal for the predictor. A more generalized 

validation approach, called cross validation, consists in the repetition of such 

process several times, each time building different training, testing and validation 

datasets. In practice, it involves: i) dividing the dataset in two parts, each one 

composed of N1 and N2 samples (with N1,N2>>1); ii) using the first dataset for 

training and the second for testing; iii) collecting the performance results; iv) 

repeating from (i) varying the way the datasets are obtained; and v) analyzing the 

performance results obtained over the iterations, by comparing them, calculating the 

average or variance, and so on. In this work, we propose the use of k-fold cross 

validation, dividing the dataset in k folds, each one containing an equal number of 

samples |N|/k. At each step, k-1 folds are used as the training dataset, while one fold 

is used as testing dataset, with the left-out fold being different each of the k times. 

The value of k can be chosen in an incremental manner, analyzing the behavior of the 

prediction model over each value. A widely used value in literature is k=10 

(Dietterich 2002), which may be taken into account at a preliminary stage of the 

analysis of the prediction results. 

3.5 Phase 4: Failure data accuracy analysis 

The final step of the approach consists of analyzing the quality of the generated 

failure data, which is given by their similarity to data that would be collected when 

real failures occur. Several metrics have been proposed so far to analyze the quality 

of data used in information management systems. In this context, we believe that the 

concept of accuracy is sufficient for analyzing the similarity between synthetic and 

real failure data. In fact, given the possibility of representing the real workload in a 

multidimensional space composed of known characteristics, accuracy can be seen as 

the measure of the distance between a different set of data (e.g., the synthetic set) 

and the target data.  

Obviously, a necessary condition for the synthetic failure data to be accurate is that 

the faults injected are realistic, as non-representative faults could lead to failures that 

would not occur in a real scenario (thus being not accurate). This is assured by the 

injection of realistic software faults using the Generic-Software Fault Injection 

Technique (G-SWFIT (J. A. Duraes and Madeira 2006)), as discussed in Section 3.2.2. 

However, injecting realistic faults is not sufficient to guarantee that the generated 

failure data are realistic, as the faults are not real, and the generation is also 

influenced by several others factors, including the workload used during the 

generation (see Section 3.3), whose impact on accuracy has to be studied.  
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Our proposal is to conduct a quantitative assessment of the accuracy of synthetic 

failure data, thus providing some degree of confidence as a sufficient condition for 

the use of the data in the context of failure prediction. The leading idea of such 

quantitative assessment is that generated (or synthetic) failure data can be 

considered accurate if there is a positive correlation between that data and real 

failure data, i.e., the failing behavior of the system due to fault injection is similar to 

a real failing scenario (for each single type of failure). In practice, we foresee two 

types of analysis that can be performed: direct (or strong) accuracy analysis, which 

directly correlates a synthetic dataset with a real dataset, and indirect (or weak) 

accuracy analysis that consists in comparing the performance of a failure prediction 

model trained with generated data and trained with real data, thus being more 

focused on the accuracy of failure data when used for the prediction task. In fact, 

while measuring the correlation between data can give interesting insights about the 

failure patterns in the real and the synthetic data, such method may suffer from the 

problem of being too much focused on data, thus not taking into account the impact 

of that data on the prediction quality of the trained models. This is why we foresee 

the need for the indirect accuracy analysis, as it is based on the prediction 

performance of the models trained with the synthetic failure data.  

The problem is that assessing accuracy with data collected during real system 

operation is mostly not possible, as real data is usually not available. Our proposal is 

thus to estimate the accuracy of the generated failure data by partitioning the 

available synthetic data and by applying several estimation metrics to the resulting 

data subsets. In practice, we propose two quantitative estimation approaches: 

1) Direct or strong accuracy estimation making use of metrics for computing 

the correlation between two sets of synthetic failure data, namely a reference 

failure dataset DSR and a validation dataset DSV, which must be obtained 

independently. Obtaining independent datasets can be achieved by injecting 

faults in different system’s modules, thus emulating the potential diverse 

fault activation that could take place in a real scenario). The direct or strong 

failure data correlation metrics are identified by the symbol �̂�, and the leading 

hypothesis is that the closer the failure data correlation �̂�(𝐷𝑆𝑅 , 𝐷𝑆𝑉) value is to 

one, the more the generated failure data are likely to be accurate. 

2) Indirect or weak accuracy estimation, indirectly validating synthetic failure 

data accuracy by using metrics that portray the performance degradation of 

prediction models when varying the dataset. In practice, the performance 

values are obtained by training and testing the predictor with a reference 

dataset DSR, and validating the prediction performance using a second and 

independent validation dataset DSV. Such metrics can be referred to as 

synthetization error, and are identified by the symbol 𝜀̂ . The closer the 

synthetization error is to zero, the more the generated failure data are likely to 

be accurate. 
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It is worth noting that the definitions presented must be applied to a single scenario, 

defined by a failure mode 𝓕 and a workload W.  

Although several metrics can be used, we propose a set of estimation metrics on the 

basis of empirical experience, with the aim of addressing the accuracy estimation 

problem. In practice, a deeper study on the definition or choice of optimal failure 

data accuracy estimation metrics is needed, but is considered as future work. 

 Direct data accuracy estimation 3.5.1

As strong accuracy estimation metric we propose the use of the Pearson’s correlation 

for time series. The reason behind such choice stands in the fact that failure datasets 

are composed by time series (both in the case of numerical variables or categorical 

information, which should be converted to numerical elements, as discussed in 

Section 3.2.4), and the Pearson’s correlation coefficient is a widely used method for 

measure the correlation between time series. The Pearson’s correlation coefficient 𝜌 

between a reference dataset DSR and a validation dataset DSV is defined as the ratio 

between the covariance 𝜎𝐷𝑆𝑅,𝐷𝑆𝑣
 and the product of their standard deviations 𝜎𝐷𝑆𝑅

 

and  𝜎𝐷𝑆𝑣
, as follows9: 

(3.3) 𝜌𝐷𝑆𝑅 ,𝐷𝑆𝑣
=

𝜎𝐷𝑆𝑅,𝐷𝑆𝑣

𝜎𝐷𝑆𝑅
 𝜎𝐷𝑆𝑣

=
𝑐𝑜𝑣(𝐷𝑆𝑅 , 𝐷𝑆𝑣)

𝜎𝐷𝑆𝑅
 𝜎𝐷𝑆𝑣

 

with -1 < 𝜌𝐷𝑆𝑅,𝐷𝑆𝑣
 < 1. The datasets are directly correlated if 𝜌𝐷𝑆𝑅 ,𝐷𝑆𝑣

> 0, and inversely 

correlated if 𝜌𝐷𝑆𝑅,𝐷𝑆𝑣
< 0, while the datasets are uncorrelated if 𝜌𝐷𝑆𝑅,𝐷𝑆𝑣

= 0. An optimal 

accuracy estimation would thus be 𝝆𝑫𝑺𝑹,𝑫𝑺𝒗
 = 1. 

Another failure data correlation metric is proposed and presented in Chapter 4 for 

assessing the impact of using virtualization as a sandboxing solution for injecting 

software faults to overcome the limitation of using fault injection in production 

systems. As we will see, the goal is to analyze the similarity of failure data generated 

using a real system and several virtualized systems, defining a correlation metric to 

be applied to the data coming from the original target system and from its 

virtualized copies, based on the concept of failure symptoms, which are particular 

behaviors showed by one or more of the monitored variables. 

                                                      
9 It must be noted that the Pearson correlation coefficient for discrete time series (as in the 

case of failure datasets) is usually identified by the letter r. However, in this section we 

present the correlation coefficient as it is used for continuous time series, i.e., 𝜌, as it is easier 

to analyze and comment. 
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 Indirect accuracy estimation 3.5.2

We propose three metrics for characterizing the synthetization error ε (weak 

accuracy estimation) measuring the performance degradation of prediction models when 

varying the dataset. Although more metrics can be defined, we here present two 

metrics widely used as estimators (the relative error and the mean squared error), 

and a third one focusing on elements ordering, which can help in gaining confidence 

in the measures obtained by the estimators, and be an estimator itself. Each measure 

can be used with a single or several predictors, and two or more datasets. The 

proposed metrics are: 

1) Relative error (one predictor, two datasets): 𝜀̂ is calculated as the relative error 

between performance measures (e.g., Prediction, Recall, ROC-AUC – see 

Chapter 2) obtained by training and testing a predictor with a reference dataset 

DSR (divided into a training dataset TDSR and a testing dataset TTDSR) and 

validating it using a second and independent dataset DSV (consisting of a 

testing dataset TTDSV only). We denote as reference performance the 

performance obtained by using the reference dataset, while the validation 

performance is obtained by using the independent dataset.  

(3.4) 𝜀̂ = |
𝒫𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝐷𝑆𝑅 − 𝒫𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐷𝑆𝑉

𝜇(𝒫)
| = |

𝒫𝑟𝑒𝑓,𝐷𝑆𝑅 − 𝒫𝑣𝑎𝑙,𝐷𝑆𝑉

𝒫𝑟𝑒𝑓,𝐷𝑆𝑅
| 

In particular, 𝒫  is the performance measure and 𝜇(𝒫)  is the mean 

performance value of the predictor, which can be considered as the 

performance Pref,DSR obtained by using the reference dataset DSR. It is worth 

noting that the relative error is measured by using the reference and 

validation datasets. 

2) Mean squared error, MSE (one predictor, two or more datasets): 𝜀̂ is calculated 

as the mean of the squared errors between the performance measures (e.g., 

Prediction, Recall, ROC-AUC) by training and testing a predictor with a 

reference dataset DSR (training data TDSR, testing TTDSR) and validating it 

using one or more independent dataset DSi (consisting of testing data TTDSi 

only). The validation performance relative to different datasets is measure as: 
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(3.5) 

𝜀̂ = 𝑀𝑆𝐸(�̂�) =
1

𝑛
∑(𝒫𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝐷𝑆𝑅

− 𝒫𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐷𝑆𝑖
)

2
=

𝑁

𝑖=1

 

=
1

𝑛
∑(�̂�𝐷𝑆𝑅

− �̂�𝐷𝑆𝑖
)

2
𝑁

𝑖=1

 

where 𝒫𝐷𝑆𝑅
 is the performance achieved by training and testing the predictor 

with DSR, while 𝒫𝐷𝑆𝑖
 is the performance obtained by training the predictor 

with DSR and testing/validating it with DSi. The advantage of computing 𝜀̂ as 

the MSE stands in the fact that it provides a better estimation, as we can use 

several validation datasets, and in the fact that MSE can be seen as a risk 

function, whose value can be interpreted as the risk of using the specific 

predictor under analysis trained with the generated dataset DSR. 

3) Kendall’s tau distance (two or more predictors, two datasets): if two or more 

failure prediction systems are installed on a single target system, testing and 

validating the predictors with different datasets may result in different 

rankings, according to a given performance metric. In such scenario, if the 

rankings do not change when varying datasets then one can have more 

confidence on the performance values of each predictor. Hence, 𝜀̂  is 

calculated as the Kendall’s tau distance by computing the pairwise 

disagreements between two ranking lists, the first consisting of the 

performance of several predictors trained and tested using a single reference 

dataset DSR, and the second obtained by validating their performance using 

one different dataset DSV. In particular, this distance is calculated as: 

(3.6) 

𝐾(𝜏1, 𝜏2) = ∑ �̅�𝑖,𝑗(
(𝑖,𝑗)𝜖𝑃

𝜏1, 𝜏2) 

𝑃 = 𝑠𝑒𝑡 𝑜𝑓 𝑢𝑛𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝜏1 𝑎𝑛𝑑 𝜏2  

𝐾𝑖,𝑗(𝜏1, 𝜏2) = 0 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝜏1 𝑎𝑛𝑑 𝜏2 

𝐾𝑖,𝑗(𝜏1, 𝜏2) = 1 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝜏1 𝑎𝑛𝑑 𝜏2 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒  𝑙𝑖𝑠𝑡𝑠 𝜏1 𝑎𝑛𝑑 𝜏2 

(min 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)0 ≤ 𝐾(𝜏1, 𝜏2) ≤
𝑛(𝑛 − 1)

2
  (max 𝑑𝑖𝑠𝑎𝑔𝑟. ) 

 

We can then define the normalized Kendall’s tau distance as: 

(3.7) �̿�(𝜏1, 𝜏2) = 2
∑ �̅�𝑖,𝑗((𝑖,𝑗)𝜖𝑃 𝜏1, 𝜏2)

𝑛(𝑛 − 1)
 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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with: 

(3.8) 

(min 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡) 0 ≤ �̿�(𝜏1, 𝜏2) ≤ 1 (max 𝑑𝑖𝑠𝑎𝑔𝑟. ) 

or 

(max 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡) 0 ≤ 1 − �̿�(𝜏1, 𝜏2) ≤ 1 (min 𝑑𝑖𝑠𝑎𝑔𝑟. ) 

The leading idea of using the Kendall’s tau distance to estimate the accuracy 

of synthetic failure data stands in the fact that the effects on several 

independent failure prediction models must be the same (minimum 

disagreement). Also, the Kendall’s tau distance can be used together with the 

other measures defined previously, when several different failure prediction 

models and several independent datasets are available. In fact, if the 

prediction models are not ordered in the same way over different datasets 

then the used datasets may be inducing some variation, which reduces the 

confidence in the accuracy of generated failure data, resulting also in a 

reduction of other weak accuracy estimations (e.g., the MSE or the relative 

error). 

3.6 Case Study: The impact of the time dimension in 
failure prediction 

To demonstrate the effectiveness of the proposed approach, in this case study we 

make use of synthetic failure data to assess the performance of a prediction model 

that implements a novel technique for improving the failure prediction task (Ivano 

Irrera, Pereira, and Vieira 2013). In practice, the proposed technique endows a 

prediction model to take into account the fact that data are made of time series, 

being thus trained considering the temporal order of the collected data samples.  

The motivation for such technique grounds in the fact that systems overlooking the 

temporal ordering of sequential data can actually suffer from poor prediction 

performance (Dietterich 2002), as existing machine learning systems using time 

series or sequences of events build prediction models based on the hypothesis that 

data samples are independent (e.g., classifiers), resulting in a loss of information10. The 

prediction model used for the analysis is a Support Vector Machine (Cortes and 

Vapnik 1995) and the technique for including the time dimension in the prediciton 

task is called Sliding Window.  

                                                      
10  Models explicitly taking into account the temporal ordering of data, as for instance 

regression-based models (see Section 2.2.2), are an exception. 
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 The Sliding Window technique 3.6.1

Taking a predictor trained with a given dataset (as defined in Section 3.4), the output 

of a predictor y(t) at time t is dependent on the input vectors (or variables) v(t) 

relative to time t. Applying a sliding window to the dataset corresponds to making 

the output of the predictor y(t) dependent on w past time instants (w≥1), namely 

(v(t), v(t-1), v(t-2), …, v(t-w-1)). Therefore, a predictor trained with windowed data 

performs predictions taking into account such ordering.  

As defined in Section 3.4, a dataset is composed of n different variables v = <v1, v2, …, 

vn>, and each sample is labeled according to the failure prediction model presented 

in Section 3.2.5. In particular, given t as the time instant, vi(t) is a real number 

corresponding to the value of variable vi at the time t, a dataset sample is a tuple: 

(3.9) <v1(t), v2(t), …, vn(t), l(t)> 

with an associated label l(t)ϵ{0,1}. Applying a sliding window of width w>1 to the 

dataset sample means that the label l(t) will depend on w>1 values of each variable 

vi, in particular the value at time t and w-1 past values:  

(3.10) 

<v1(t), v1(t-1), v1(t-2), ..., v1(t-w), 

v2(t), v2(t-1), v2(t-2), ..., v2(t-w), 

…,  

vn(t), vn(t-1), vn(t-2), ..., vn(t-w), l(t)> 

 Therefore, the sliding window transforms the data sample from a vector of n 

components into a vector with w*n components, to which a label is associated. Note 

that the labeling does not change when using a sliding window, i.e., l(t) refers to the 

most recent time instant t. In fact, the failure event to predict at time t depends on 

the more recent values of the variables (relative to time t) and past values (in this 

case, values relative to the times t-1, t-2, …, t-w).  

Considering a dataset composed as shown in equation (3.10), and the first time 

instant identified as t=1 and a window w, the first time instant relative to the 

transformed dataset is t=w. In fact, if the first data sample is t=1 then data samples 

relative to t=0, t=-1, t=-2, …, t=-w+1 are not defined. Figure 3.7 shows an example of 

applying the sliding window technique to a dataset made of three features x1, x2 and 

x3, using a window with width w=2. In particular, Figure 3.7 (b) shows that the 

technique cannot be applied to the time instant t=1, as xi(t-1)|t=1=xi(1-1)=xi(0) are not 

defined. Hence, the datasets obtained by applying the sliding window technique 

start from the time instant w (in the example, t=2).  
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Figure 3.8 helps visualizing how the temporal ordering of data samples influences 

the failure prediction task. The label relative to the time instant t, originally 

dependent on the value of the variable v (pool of non-paged bytes, in the figure) at time 

t only (Figure 3.8 (a), relative to w=1 time instant), is then related to w past variable 

values (Figure 3.8 (b), relative to w>1 time instants), which does not change the value 

of the label l(t).  

It is important to emphasize that the sliding window must be applied both to 

training datasets and to testing datasets, as the prediction task must be applied to the 

same data features.  

  

(a) (b) 

Figure 3.7 – Example of application of a sliding window with width w=2. 

 
 

(a) w=1 (b) w>1 

Figure 3.8 –The temporal ordering of data in failure prediction. 
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 Definitions and set-up 3.6.2

The first step of the data generation process includes identifying the failures to be 

predicted, building failure detectors, selecting the variables to characterize the 

behavior of the system (that will compose the datasets), and defining the workloads 

to be used and the faults to be injected. Note that, although the choices regarding the 

workload and the failure modes considered (among others aspects) in the present 

case study may not fit many real world scenarios, they do serve for demonstrating 

the effectiveness of the proposed approach. 

The case study is based on an environment that includes a Windows XP SP3 

machine (the target system), installed on a virtual machine running on top of a 

VMWare vSphere server. A controller machine is in charge of controlling the 

experiments and analyzing the failure data coming from the system. The 

configurations of the machines is as follows: 

1) Machine #1 (target): Intel i5-650@3.60GHz machine, 8GB RAM, running a 

Windows XP OS (SP3) in a VMWare vSphere server based on ESXi v5.0. 

Running the target system as a virtual machine on a VMWare vSphere server 

(Frappier 2014) gave us the possibility of saving the state of the system at the 

beginning of the fault injection campaign, and restoring that saved state at 

the end of each run. This check-pointing functionality copies the 

configuration of the virtual machine, as well as the data contained in the 

virtualized storage disk and its running state (e.g., state and data of the 

processes in execution, values contained in the CPU registries, etc.). 

2) Machine #2 (controller): Intel i5-650@3.60GHz machine, 8GB RAM, running 

a Windows XP OS (SP3), used to: (a) control the experiments (start/stop the 

experiments), (b) remotely command and control the fault injection tool, (c) 

force the reboot of the machines in case of failures (including in hanging 

situations), (d) collect the data and store them in a Microsoft SQL Server 2008, 

and (e) analyze data. 

The libSVM libraries implement the SVM predictor (Chang and Lin 2011) on top of 

which we implemented the sliding window by wrapping the libSVM libraries using 

MATLAB scripting to feed the SVM with data windowed according to the approach 

presented in the previous section.  

Regarding the failures to predict, we empirically focused on crashes and hangs, 

which are two failure modes frequently observed in the Windows XP OS (“Support - 

Windows Help” 2015). Making a correspondence to the C.R.A.S.H. scale (Koopman 

et al. 1997), a system crash corresponds to the OS becoming corrupted and the 

machine crashes or reboots, while a system hang corresponds to the OS becoming 

unresponsive and needing to be terminated by force. 
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A failure detector able to detect the occurrence of the two failure modes mentioned 

above was implemented. In practice, the detector continuously monitors the target 

system to detect failures in the following way: 

1) a crash is detected when the system does not respond to a ping for a certain 

time Tmax_ping. The failure time TF is obtained by considering the first time 

instant in which the system became unresponsive; 

2) a hang is detected if the target system responds to a ping, but it hangs on 

executing a given set of operations. Again, the failure time TF is obtained by 

considering the first time instant in which the system became unresponsive, 

identified by the time instant when the first not executed operations were 

sent to the system. 

The target system runs two workloads, namely the WinRAR application (WKL1) 

(RAR Lab), compressing a file using the RAR algorithm with the low compression 

option, and the COSBI OpenSourceMark computer benchmarking suite (WKL2) 

(“COSBI OpenSourceMark”), a more complex workload that includes computation 

and input/output intensive tests, compression algorithms, disk and memory 

accesses, etc. (we consider that these workloads include generic operations that 

computer systems perform frequently, being thus adequate for the present case 

study). The combination <Workload, Failure mode> allows defining four different 

scenarios for the analysis: <WKL1, Crash>, <WKL1, Hang>, <WKL2, Crash>, and 

<WKL2, Hang>. 

We adopted a Windows-based software fault injection tool implemented at 

University of Coimbra following the G-SWFIT recommendations (J. A. Duraes and 

Madeira 2006) for the fault injection task. Such tool is able to inject software faults at 

machine-code level both in binary files and in running processes (user-mode only). 

However, due to the fact that the Windows OS includes a protection for avoiding 

certain system files from being changed, the fault injector was limited to inject 

software faults in running processes of the operating system, but faults were injected 

before starting the collection of data, thus simulating residual faults from the 

perspective of the data collection process.  

The faultload is based on the fault types defined in (J. A. Duraes and Madeira 2006) 

and previously presented in Section 3.2.2. Based on previous experience, we focused 

the fault injection on the code of the svchost.exe process and of the linked dynamic 

library kernel32.dll (containing functions for handling the OS memory usage), 

which are key resources of the Windows XP OS (e-Testing Labs 2001; Kalakech et al. 

2015; Kalyanakrishnam, Kalbarczyk, and Iyer 1999; “Support - Windows Help” 2015) 

The fault injection tool was able to automatically generate thousands of code mutants 

by analyzing the fault locations matching a specific pattern depending on the type of 

software fault, being each fault identified by the tuple <fault type, fault location, code 

mutant>. In order to design a feasible experiment, a subset of the faults was selected 

based on the relevance of their locations (details on the number of faults injected and 
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their impact are presented in the next subsection). For this, we used a profiling tool 

(Luke Stackwalker), which helped identifying the functions and modules executed 

along several runs of the workloads considered. As previously discussed, the 

selection of the most executed modules of the target system does not invalidate the 

representativeness of the injected software faults.  

Regarding the variables to monitor, we considered at set of variables reflecting the 

state of the operating system and the usage of the hardware resources, as the 

symptoms of the failures considered may manifest at the OS and at lower levels (e.g., 

an increase in the number of context switches/s). In practice, we monitored 233 

numerical variables, at the sample rate of one value per second, using the Logman 

tool that is included in Windows OSs family, and afterwards conducted a three-step 

feature selection to reduce the number of variables.  

In the first step we eliminated from the 233 monitored variables the ones that have a 

constant or null value in all the runs. In the second step the variables were correlated 

using a classic linear correlation metric (Pearson correlation coefficient), filtering out 

variables having a correlation greater than 0.9 between each other. In the third step a 

classical wrapper approach with backward elimination was applied to the set of 

variables that resulted from the previous step (feature selection). A SVM was used to 

validate the selection, taking its ROC-AUC as reference for characterizing the quality 

of the variable set and a k-fold cross validation (k=5) for avoiding results biasing. 

The resulting set consists of 25 variables (out of the initial 233) for each scenario 

<WKL, Failure> and for each couple of values (∆tl, ∆tp) considered in our analysis.  

An excerpt of 10 out of the 25 variables for <WKL1, Crash> and (∆tl, ∆tp)=(10s, 5s) is 

shown in Table 3.2. 

 

Table 3.2 - Selected variables, for <WKL#1, Crash>  

and (∆tl, ∆tp)=(10s, 5s) (excerpt) 

Variable 

ID 
Variable name 

Monitored 

component 

123 Pool Nonpaged Allocs Memory 

117 Page Faults/sec Memory 

201 C2 Transitions/sec Processor 

209 Exception Dispatches/sec System 

220 System Calls/sec System 

156 Current Disk Queue Length PhysicalDisk 

94 Avg. Disk sec/Transfer LogicalDisk 

139 Semaphores Objects 

182 Pool Nonpaged Bytes Process 

39 Sync Data Maps/sec Cache 
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 Data generation, dataset building and failure predictor 3.6.3
training 

Each workload was executed 3500 times (500 GR + 3000 FIR), with a maximum 

execution time of TMAX=180s each. Table 3.3 summarizes the OS failures observed 

during the fault injection campaign. The failure data was collected in less than one 

month, with a total of 195 failures (121 when running WKL1 and 74 when running 

WKL2), being OS hang the most frequent type of failure. 

In each fault injection run, a single fault was injected approximately 70 seconds after 

starting the execution of the workload (this value was defined based on the analysis 

of the ramp up time of the tested configurations).  If a failure occurs within the time 

TMAX (with a 10% time tolerance to consider potential delays due to the system 

scheduling), the run is labeled as a Failure Run, otherwise the run is labeled as a Non-

Failure Run (both are Fault Injection Runs).  

As shown in Table 3.3, failures were observed in a small subset of the fault injection 

runs. This is expectable, as there is no guarantee that the locations chosen for the 

injection are actually executed (J. A. Duraes and Madeira 2006). We must highlight 

the fact that the failure occurrence is in average 2%, which is similar to the activation 

rate obtained by other authors that used the G-SWFIT technique to inject faults in 

different systems (e.g., (Roberto Natella et al. 2013)). This gives us some confidence 

on the representativeness of the types of faults injected. 

The failure prediction parameters used in this case study were ∆tl=[20s, 50s] and 

∆tp=[5s, 25s], chosen according to the workload execution time. In this context we 

used several values for ∆tl and ∆tp, while fixed ∆te=5000 samples, a value that keeps 

low the time for training a prediction model (found experimentally). The warning 

interval ∆tw, that can be identified based on the performance of the failure 

predictors, is not considered in our case study for the sake of simplicity. 

The failure data generated was used to train the SVM prediction model, using 

several values for the sliding window, namely w={2, 3, 4, 7, 10} seconds. The training 

of the SVM failure prediction model comprised the optimization of a set of 

parameters, among which the most important are γ (kernel function parameter) and 

C (cost of allowing training errors) (Cortes and Vapnik 1995). The parameters 

optimization was performed in two steps, making use of the ROC-AUC prediction 

Table 3.3 - Failures generated 

Workload 
# Golden 

Runs 

# Fault 

Injection Runs 

Failures detected 

Total % 
System 

Crash % 

System  

Hang % 

WKL1 500 3000 121 (4.03%) 46 (1.53%) 75 (2.5%) 

WKL2 500 3000 74 (2.47%) 6 (0.2%) 68 (2.27%) 
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performance metric (see Section 2.2.3), and applying the k-fold cross validation with 

k=5 for validating the generalization of the prediction results. In the first step, we 

performed a grid search on intervals of values that we experimentally defined for 

each SVM hyper-parameter. Then the optimal (γ, C) values found were used as a 

starting value for a fine-search (second step), which consisted in solving a non-linear 

minimization problem through the use of a gradient descend method. Table 3.4 

summarizes the parameters of the prediction analysis, as discussed before. 

 Results and discussion 3.6.4

The performance of the predictor is measured in terms of ROC-AUC, F-Measure, 

Precision and Recall (see Section 2.2.3). The relative cost of using windowing in 

terms of the predictor training time (excluding the feature selection and parameters 

optimization time) is analyzed too. Please note that the optimal threshold of the 

SVM, relative to its ROC cut-off point, is used to compute the F-Measure, Precision 

and Recall measures (for details about prediction thresholds, see Section 2.2.3). The 

optimal threshold depends on the scenario, the values (∆tl, ∆tp), the features selected, 

and the parameter w. 

Figure 3.9 shows the performance of the SVM classifier for each scenario <WKL, 

Failure>, without the application of the sliding window (w=1) and also using 

windows of 2, 3, 4, 7, and 10 seconds. Each subplot in the figure represents the 

results for each couple (∆tl, ∆tp), using box-and-whiskers diagrams, representing the 

minimum, lower quartile, median, upper quartile and maximum performance 

values obtained over the different folds. 

The use of the time dimension improves the prediction in scenario <WKL1, Crash> 

(Figure 3.9 (a)), both in terms of the ROC-AUC and the F-Measure, for any couple of 

values (∆tl, ∆tp). In addition, the windowing also seems to reduce the variation of the 

ROC-AUC (revealed by the cross validation). In scenario <WKL2, Hang> (Figure 3.9 

Table 3.4 - The parameters of the analysis 

Parameter Values 

Failure Modes Crashes, Hangs 

Workloads WKL1, WKL2  

Predictor SVM (Gaussian kernel) 

Variable selection Backward elimination + wrapper approach 

Predictor Optimization Grid search (gross) + Deepest descend (fine) 

(γ, C) (Grid search) γ= [2-10,1], C=[2-1, 27] 

∆tl (Failure prediction) 20, 30, 40, 50 s 

∆tp (Failure prediction) 5, 10, 15, 20, 25 s 

Window size (w) 2,3,4,7,10 s 

Results validation 5-folds cross validation 
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(b)) the performance also improves, but only for a sliding window larger than 4 

seconds. This may be due to the fact that t-4 brings more information to the 

prediction than the time instants t-1, t-2 and t-3, or to the need to tuning the 

prediction parameters (∆tl, ∆tp). In the remaining scenarios <WKL2, Crash> and 

<WKL1, Hang> windowing does not improve the performance along w. This is an 

acceptable behavior, as it gets harder for the SVM to find the optimal hyper-plane to 

correctly classify the data. In fact, the dimension of the features grows from 25 to 

w*25 (up to 250 features, in our case). Nonetheless, in all the scenarios it can be 

observed that the performance when using the sliding window tends to increase, as 

the window size w gets larger. This is due to additional information given to the 

classifier, but more scenarios need to be explored in order to confirm such trend.  

 

 

 
 

(a) Scenario <WKL1, Crash> (b) Scenario <WKL1, Hang> 

 

 

 

 

(c) Scenario <WKL2, Crash> (d) Scenario <WKL2, Hang> 

Figure 3.9 - The impact of windowing on ROC-AUC 



Chapter 3 

 84 

Taking as example the results in Figure 3.9 (b) and (d) (thus fixing on workload 

WKL2), we can see that the sliding window improves the predictor performance in 

case of Hangs (d), while generally degrading the prediction when trying to predict 

Crashes (b). Moreover, comparing the cases (a) with (b) and (c) with (d) in Figure 3.9, 

we can note that the prediction performance is generally higher when predicting 

Crash failures. This last analysis highlights the fact that the performance of a 

predictor depends on many factors, including the nature of the failures to be 

predicted and the workload.  

Figure 3.10 shows an insight on the growth of the computational cost, i.e., the time 

needed for training the SVM, with respect to the case without windowing. The 

growth is logarithmic with the number of features, and the training time can reach 

an increase of 6 times. The logarithmic growth seems consistent with the SMO 

(Sequential Minimization Optimization Method) method used in libSVM (Chang 

and Lin 2011). Nevertheless, the use of a sliding window seems a viable approach to 

improve the prediction of software failures. 

 Accuracy analysis 3.6.5

In this case study we estimated the accuracy of the synthetic failure data using the 

weak accuracy estimation analysis, as we are interested on understanding the 

impact that the generated data has on the performance of the failure prediction (such 

estimation metrics can give some confidence on the use of failure data to train failure 

predictors for working in a real operational scenario).  

 

Figure 3.10 - The learning time increment ratio <WKL2, Hang> 
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For sake of simplicity, we considered only the following configurations of the 

prediction model: 

 FPA1, SVM classifier with no sliding window (w=1s) 

 FPA2, SVM classifier with w=2s 

 FPA3, SVM classifier with w=3s 

 FPA4, SVM classifier with w=4s 

For performing the analysis, we used the dataset from the previous section as the 

reference dataset (here referred to as DS1), and generated a second dataset 

(validation dataset DS2) by injecting faults in a different system module used by the 

svchost.exe process, namely ntdll.dll that contains the OS kernel functions. The 

settings for the dataset generation are similar to the ones used for DS1, in particular 

in what concerns the faultload that included the same fault types and the same 

number of faults for each type. We computed and analyzed the ROC-AUC 

performance measure of the prediction model for the four scenarios <WKL, Failure 

Mode>, considering a fixed (∆tl, ∆tp)=(30s, 15s), and conducted a 5-fold cross 

validation. 

Table 3.5 shows the performance results (ROC-AUC) for the scenarios <WKL1, 

Crash> and <WKL2, Crash>, while Table 3.6 shows the results for <WKL1, Hang> and 

<WKL2, Hang>. Based on such results, we estimated the mean squared error MSE* 

and the relative performance error ε* of each predictor. In practice, we computed 

such estimation measures based on the mean of the performance measure µ (thus εμ* 

and MSEμ*) and their median value M (thus εM* and MSEM*) applied to the results 

obtained from the 5-fold cross validation. The gray tones in the tables are related to 

the predictor’s ROC-AUC performance, with higher performances associated to 

darker gray tones11.  

                                                      
11  Note that results in the tables show that the predictors that achieved the highest 

performance were FPA2 and FPA4, again confirming that the use of the sliding window can 

improve the quality of failure prediction.  
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Table 3.5 - ROC-AUC and synthetization error (a, crash) 

 (a) Crash 

 WKL1 WKL2  

 FPA1 FPA2 FPA3 FPA4 FPA1 FPA2 FPA3 FPA4 

Performance 

DS1 

0,6852 0,8137 0,6713 0,9024 0,9391 0,9977 0,9461 0,9878 

0,9427 0,9719 0,9560 0,9909 0,9778 0,9998 0,9859 0,8919 

0,7374 0,9909 0,7283 0,8975 0,9331 0,9756 0,9430 0,7958 

0,9518 0,9708 0,9652 0,9965 0,9356 0,9996 0,9576 0,9893 

0,7425 0,9898 0,7375 0,9897 0,7985 0,9979 0,8691 0,8854 

μ(Perf.) 0,8119 0,9474 0,8117 0,9554 0,9168 0,9941 0,9403 0,9100 

M(Perf.) 0,7425 0,9719 0,7375 0,9897 0,9356 0,9979 0,9461 0,8919 

Performance 

DS2 

0,9223 0,9841 0,9073 0,9719 0,9341 0,9867 0,9432 0,9878 

0,9662 0,9137 0,9847 0,9953 0,9778 0,9978 0,8691 0,9919 

0,5665 0,9262 0,5284 0,9971 0,8433 0,9756 0,9461 0,9358 

0,8501 0,9797 0,8482 0,9953 0,9354 0,8979 0,9076 0,9893 

0,3649 0,9876 0,6675 0,9884 0,7885 0,9981 0,9891 0,9854 

μ(Perf.) 0,7340 0,9583 0,7872 0,9896 0,8958 0,9712 0,9280 0,9780 

M(Perf.) 0,8501 0,9797 0,8482 0,9953 0,9341 0,9867 0,9432 0,9878 

 Weak accuracy estimation 

𝟏 − �̿�𝝁 0,833 (1 - 1/6) 0,5 (1 - 3/6) 

MSEμ* 0,039 0,005 0,012 0,017 0,011 0,012 0,006 0,034 

εμ* 0,106 0,011 0,031 0,035 0,023 0,024 0,013 0,070 

𝟏 − �̿�𝑴 1 (1 - 0) 0,333 (1 - 4/6) 

MSEM* 0,054 0,004 0,055 0,003 0,001 0,006 0,002 0,048 

εM* 0,127  0,008  0,131 0,006  0,002  0,011  0,003  0,097 
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Table 3.6 - ROC-AUC and synthetization error (b, hang) 

 (b) Hang 

 WKL1 WKL2  

 FPA1 FPA2 FPA3 FPA4 FPA1 FPA2 FPA3 FPA4 

Performance 

DS1 

0,7226 0,9881 0,8060 0,9147 0,8541 0,9943 0,8914 0,9768 

0,6999 0,8557 0,6529 0,7987 0,6826 0,9953 0,6925 0,9533 

0,9369 0,9967 0,9400 0,9972 0,6573 0,9889 0,6902 0,9502 

0,8926 0,9886 0,9329 0,9590 0,6356 0,8598 0,6203 0,8255 

0,8823 0,9959 0,8703 0,9639 0,7069 0,9943 0,7178 0,8794 

μ(Perf.) 0,8269 0,9650 0,8404 0,9267 0,7073 0,9665 0,7224 0,9170 

M(Perf.) 0,8823 0,9886 0,8703 0,9590 0,6826 0,9943 0,6925 0,9502 

Performance 

DS2 

0,7934 0,5158 0,8389 0,7993 0,9391 0,8414 0,8066 0,8923 

0,5829 0,9629 0,6454 0,8659 0,9778 0,9787 0,7318 0,8753 

0,7740 0,9645 0,7750 0,8926 0,9331 0,9211 0,8303 0,8988 

0,9282 0,9967 0,9403 0,9879 0,9356 0,9875 0,7538 0,8976 

0,6901 0,6773 0,6875 0,7594 0,7985 0,9385 0,7455 0,7571 

μ(Perf.) 0,7537 0,8234 0,7774 0,8610 0,9168 0,9334 0,7736 0,8642 

M(Perf.) 0,7740 0,9629 0,7750 0,8659 0,9356 0,9385 0,7538 0,8923 

 Weak accuracy estimation 

𝟏 − �̿�𝝁 0,833 (1 - 1/6) 0,666 (1 - 2/6) 

MSEμ* 0,037 0,071 0,032 0,033 0,105 0,017 0,026 0,026 

εμ* 0,097 0,172 0,081 0,076 0,229 0,035 0,066 0,061 

𝟏 − �̿�𝑴 0,833 (1 - 1/6) 0,666 (1 - 2/6) 

MSEM* 0,054 0,013 0,048 0,047 0,127 0,028 0,031 0,029 

εM* 0,140  0,027  0,123  0,108  0,271  0,060  0,081  0,065  
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Considering the four scenarios, we can see that the mean squared error MSEµ* is 

between 0.5% and 3%, with outliers 7% and 10%, for the cases (FPA2, WKL1, Hang) 

and (FPA1, WKL2, Hang) (corresponding to the use of an SVM without sliding 

window, or with a very small window with, also confirming the results from the 

previous section). The values of MSEM* (thus relative to the median ROC-AUC) are 

very similar to the ones calculated on the mean, varying between 0.4% and 4%. 

However, we observed that the outlier MSEµ*=10% corresponds to MSEM*=12%, as 

one of the ROC-AUC values in that case (FPA2, WKL1, Hang) is 0.5158. Although it 

may seem better to use the MSEM* and the median of the values, this choice may 

hide situations in which a failure prediction performs very poorly. On the other 

hand, the estimation of the relative performance error εμ* and εM* showed values 

between 1% and 10% in terms of ROC-AUC, with two outliers of about 17% 

(corresponding to MSEµ*=10% by (FPA2, WKL1, Hang)) and 22% (corresponding to 

MSEµ*=10% by (FPA1, WKL2, Hang)).  

A closer look to the results shows that the proposed metrics recognize a similarity 

between the ROC-AUC performance using DS1 and DS2, which may reflect a 

similarity of the datasets DS1 and DS2. Moreover, the behavior of both MSE and ε is 

similar in all the analyzed scenarios.  

By analyzing the normalized Kendall’s tau distance K̿μ (relative to εμ* values) and K̿M 

(relative to εM* values) we can observe that both the average and median 

performance values lead to a variation in the order of the ranking of the FPAs of at 

most one inversion in the WKL1 scenario (e.g., in the Crash case (a), from <FPA2, 

FPA3, FPA1, FPA4> to <FPA4, FPA2, FPA3, FPA1>, according to the average of the 

performance values µ only), while between two and four inversions in the WKL2 

scenario (e.g., in the Crash case (a), from <FPA2, FPA3, FPA1, FPA4> to <FPA4, FPA2, 

FPA3, FPA1>). This means that the data generated using WKL1 causes a lower 

variation in the models’ prediction performance (between 0.5% and 4% using the 

MSEµ*), suggesting a good accuracy. On the other hand, for WKL2 the Kendall’s tau 

distance reflects a quite high variation of the prediction models, suggesting a low 

accuracy, a result that is confirmed by the values of MSE and ε, as shown before.  

The results obtained allow us to conclude that the proposed approach is able to 

generate accurate failure data, however the workload used may have non-negligible 

effects on the failure data accuracy. Moreover, the joint use of the proposed metrics 

allows different degrees of confidence for the failure data generated in the different 

scenarios. In particular, MSE* and the ε* can be considered valid metrics for 

estimating the accuracy of synthetic failure prediction data, while the tau distance 

provides a validation of such metrics, giving a confidence to the estimation values 

proportional to 1 − 𝐾.   
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3.7 Final remarks 

This chapter presented a practical approach for generating failure data for training 

and testing failure prediction models on concrete system installations, based on the 

use of software fault injection. The idea is that injecting faults on a particular system 

increases the probability of the system to fail, thus accelerating the collection of data, 

and that failure prediction models can be trained using those data. The fault injection 

technique adopted is the G-SWFIT technique that allows the emulation of residual 

software faults, a necessary condition for generating accurate failure data, i.e., data 

similar to data that would be collected from the same system due to the activation of 

an existing residual (real) fault. 

The chapter presented guidelines for the implementation of the approach, which is 

based on four phases. The first is the definitions phase, in which one must define the 

faults to inject, the workload (real, realistic or synthetic) to be executed during the 

fault injection campaign, as well as the variables to be collected from the target 

system and the characteristics to take into account when predicting failures. The 

second phase is the failure data collection, in which one must implement an 

experimental setup to collect data. The third phase defines the rules for organizing 

the collected data into datasets to be used for training and testing failure prediction 

models. The fourth and last phase presents the guidelines for performing the 

analysis of the accuracy of the generated failure data.  

We demonstrated the effectiveness of the approach by analyzing the results obtained 

in a case study in which an SVM-based failure prediction model was used to predict 

failures in a Windows XP OS system, running on a virtual machine hosted by a 

VMWare vSphere hypervisor. In particular, we assess the performance of a 

technique for improving the prediction performance that takes into account the 

temporal ordering of the data samples (using a sliding window). We were able to 

cause 191 failures (crashes and hangs), running two different workloads (a simple 

and a more complex one) 3500 times each. Results show that the use of a sliding 

window is a viable approach to improve the prediction of software failures. 

Moreover, we found that different workloads and failure modes influence the 

performance results. Finally, the case study demonstrated that we were able to train, 

test and study the behavior of the failure prediction model in four different scenarios 

(considering two different failure modes occurring when using two different 

workloads) in a short time interval.  

The chapter also presented an estimation of the accuracy of the generated synthetic 

failure data using weak accuracy estimation metrics based on the performance 

results in four cases. Results show that the prediction performance of models trained 

with data generated using the simplest workload present a low variation when 

tested on independent datasets, which is an indication of good accuracy. On the other 

hand, the more complex workload seems to cause a higher variation of the 

prediction models, thus suggesting a low accuracy of the failure data generated in 
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that scenario. Such result shows that the proposed approach can be used to generate 

accurate failure data and that the joint use of the proposed metrics allows getting 

some degree of confidence on the failure data generated in different scenarios. On 

the other side, results also showed a margin for the improvement of the quality of 

generated failure data, which can be achieved by using the proposed measures to 

study the conditions under which more accurate failure data can be generated. 

It must also be observed that the simpler environment provided by the use of 

virtualization in the case study allowed a much faster data collection, as the system 

could be restored after the injection of software faults. However, an analysis of the 

impact of virtualization technology on the generation of failure data is needed in 

order to better understand the potential of use of such technology. This is precisely 

the goal of Chapter 4. 
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Chapter 4 
Virtualization as a 

support for the 
generation of failure data 

Although the solution proposed in Chapter 3 should be applied while running the 

target system, injecting faults in a real system has the obvious drawback of causing 

unacceptable failures during operation. A potential solution is to generate the failure 

data in an environment that mimics the behavior of the target system and in which 

software faults can be safely injected. However, although the use of an alternative 

machine/environment can be a valid solution, it is not feasible in many situations 

(e.g., due to the additional costs of buying new hardware, the difficulty of restoring 

the target system’s state during the experiments, etc.).  

In this chapter we propose and assess the use of virtualization as a sandboxing 

solution for supporting the process of generating failure-related data by injecting 

faults in a virtualized copy of the system. Virtualization technology is a solution that 

provides an easily updatable and disposable environment, where faults can be safely 

injected and from where failure data can be collected, while allowing running 

multiple copies of a system (thus reducing the time needed for the failure data 

generation). In addition to this, the virtualization solutions available nowadays (see 

(Chiueh and Brook 2005)) also offer features like saving and restoring the system 

state by using native check-pointing and restoring functionalities, thus facilitating 

the removal of the injected faults, as already shown in the case study presented in 

Chapter 3. 

A great number of commercial systems are nowadays based on virtualized 

environments (e.g., virtualized servers in server consolidation frameworks, 

enterprise virtualization solutions providing user virtualized resources, clouds). In 
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fact, in the last decade there was a growing tendency for software systems to be run 

in virtualized environments, as these permit the reduction of the cost associated with 

buying new hardware, the reallocation of resources (e.g., storage, computational 

power), and fault tolerance based on the distribution of nodes (e.g., (Fu 2009; 

Nagarajan et al. 2007; Polze, Troger, and Salfner 2011; Boyd and Dasgupta 2002; 

Machida, Kawato, and Maeno 2010)). In particular, many systems are built on top of 

cloud technology, which is mainly based on virtualization (Rimal, Choi, and Lumb 

2009), including secure and dependable systems (Bessani et al. 2013; Gurumurthy et 

al. 2015; Jain and Singh 2014; Magalhaes and Moura Silva 2013). Moreover, several 

works addressing the problem of failure prediction in cloud systems are present in 

literature (Chen, Lu, and Pattabiraman 2014; Gunawi et al. 2011; Otsuka et al. 2014; 

Sonoda et al. 2012; Yukihiro Watanabe and Matsumoto 2014). For these reasons, we 

believe that using virtualized environments for generating failure data is a solution 

that should be studied, particularly in what regards:  

 The impact of the virtualization environment on the generated failure data: 

failure data collected from a virtualized environment may significantly differ 

from data generated on the original system, as data depend on the behavior 

of the underlying software and hardware system’s layers. Besides leading to 

the same types of failures, it is important that the faults injected produce 

similar failure data patterns that can equivalently be consumed by failure 

prediction systems; 

 Solutions for replicating the target system into the virtualization 

environment: several solutions may be adopted (e.g., replicating the OS in 

the virtualized system, use middleware solutions). As this is a too vast 

problem, it is out of the scope of this work. Thus, we assume that the original 

target system can be virtualized (i.e., the system can be replicated in a 

virtualized environment) or that it is a virtualized system itself. We believe 

that such assumption is acceptable for this first study on the impact of using 

virtualization to generate failure data by fault injection.  

We propose a solution for computing the similarity of failure data generated on a 

virtualized copy of a target system with failure data generated on the original 

system. Such approach should be used when adopting virtualization as a 

sandboxing solution for the generation of such data. The approach is based on the 

identification of failure symptoms (i.e., patterns that a set of data show before a 

failure occurs (Felix Salfner, Lenk, and Malek 2010)) presented by the monitored 

variables, their correlation with the failures observed in both the original and 

virtualized systems, and the comparison of the correlation values (of the individual 

variables) gathered from the different environments by using statistical testing 

methods. In practice, the approach proposed enables studying the impact of the 

virtualization layer in order to understand the possibility of using virtualization for 

generating synthetic failure data adequate for training and testing the failure 
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prediction systems that will run on the original target system (i.e., is the data generated 

in a virtualized copy of a system adequate for training failure prediction mechanisms to be 

run in the original system?). It is worth noting that, although focused on answering 

such research question, the proposed approach can be also considered a solution for 

the direct estimation of failure data accuracy problem discussed in Chapter 3. 

The chapter is organized as follows. Section 4.1 overviews the approach for assessing 

the similarity of failure data. Sections 4.2, 4.3, 4.4 and 4.5 present the phases of the 

approach. In particular, Section 4.2 describes the generation of failure data by using 

the failure generation approach proposed in Chapter 3. Section 4.3 describes the 

approach for identifying failure symptoms. Section 4.4 describes the correlation of 

symptoms with the failures observed, and Section 4.5 describes the assessment of the 

failure data similarity, based on the use of statistical tests. A case study is presented 

in Section 4.6, in which we analyze the effectiveness of our approach on failure data 

collected from a Windows XP OS environment running on a physical machine and 

on several virtualized environments. Finally, Section 4.7 concludes the chapter. 

4.1 Overview of the approach 

To assess the similarity between failure data gathered from a virtualized copy of a 

system and data gathered from the original target system, we propose a four-step 

approach based on the concept of failure symptoms:  

1) Generating failure data in the original target system and in the virtualized 

system, using the approach for failure data generation based on realistic 

software fault injection presented in Chapter 3. Both systems must run under 

the same conditions, i.e., using the same workload, the same failure model, and 

the same faultload.  

2) Identifying failure symptoms by analyzing the monitored variables (from 

both the original and the virtualized copy). The proposal is to use an anomaly 

detection-based method for building a normal behavior profile for each variable 

using data collected during Golden Runs, and then comparing the variable’s 

behavior during Failure Runs and other Golden Runs against that profile. A 

variable presents a symptom if its behavior during a FIR differs from its 

normal behavior profile, according to a given measure. The reasoning for 

such approach is that the simplest way for detecting symptoms is by 

identifying deviations from the nominal behavior. Although more complex 

methods are possible, their use is not central to the present work. 

3) Correlating failure symptoms with the failures observed. In particular, a 

variable is said correlated to a failure if its values present some symptom 

when the failure occurs and do not present any symptom during Golden 

Runs. We model such situations based on the contingency table (see Section 
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2.2.3), with a True Positive corresponding to a variable presenting a symptom 

when a failure is observed, and a True Negative indicating that the variable 

shows no symptoms during a Golden Run. On the other hand, a variable can 

be uncorrelated. In practice, we quantify the correlation of each individual 

variable with respect to all the failures observed on a given system. The 

correlation value of each variable with the observed failures is validated 

using a k-cross validation approach (for details, Section 3.4). 

4) Assessing the accuracy (or similarity) of the failure data gathered from the 

two different systems, by comparing the correlation values of the individual 

variables by means of statistical analysis.  

We must highlight the fact that the proposed approach can also be used in the case 

both systems are virtualized or non-virtualized (e.g., the comparison between 

virtualized systems can be useful when one must migrate from a technology to 

another, or to assess the impact that an upgrade on a virtualization technology can 

have on the generated failure data). 

Our approach can be formalized as follows: let Mi be the i-th machine (virtual or not) 

with i=1, 2, …, |M|, hosting a system S running a workload WKLk, and let frd(Mi) be 

the failure related data coming from Mi, with associated failure events F (failures) and 

G (no failures, events occurring during Golden Runs). Data are made of a set of 

numerical variables vi(t), i=1, 2, …, |V|, where V is the group of variables monitored 

from a single machine, each variable describing one particular aspect of the system 

(e.g., mutexes, allocated memory, threads running). Each variable vi(t) may present a 

failure symptom relative to a failure event fk (true symptom, or True Positive), no 

symptom relative to no-failure event gk (true no-symptom, True Negative), or may 

present a symptom when no failure actually occurred (false symptom, or False 

Positive) or no symptom when a failure occurred (false no-symptom, or False 

Negative). A variable vi(t) presents a (positive) correlation C with the entire set of 

occurred failures F (and the set of no-failure events G), if the value of C is 

proportional to the number of true symptoms observed when a failure occurred (or 

no-symptoms when no failure occurred), and inversely proportional to the number 

of false symptoms when a failure does not occur (false no-symptoms when a failure 

does occur). 

Considering the quantity C(frd(M), F, G)12 (or just C(frd(M), F)) as the measure of the 

correlation of the failure data (for the collection of variables vi) coming from machine 

M with the failures occurred on such machine, we say that the failure data coming 

from machines Mi and Mj, with i≠j, are similar when the correlation of each failure 

dataset with the failures occurred C(frd(Mi), F) and C(frd(Mj), F), have similar values. 

                                                      
12 It is worth to note that the quantity C(frd(Mj), F, G) is actually a vector, as the data are made 

of several variables. Nonetheless, we use such form for the sake of simplicity. 
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The correlation measure should be considered variable-wise, thus the quantities 

C(frd(M), F) of each variable vi(t), Cvi(frd(Mi), F), must have similar values on 

different machines (variable-wise similarity). Hence, we say that sets of failure data 

coming from different machines are similar (general similarity) if: 

(4.1) 

𝑆 = ∑ 𝑆𝑣(𝐶𝑣(𝑓𝑟𝑑(𝑀𝑖, 𝐹)),  𝐶𝑣(𝑓𝑟𝑑(𝑀𝑗, 𝐹)))

𝑣𝑁

𝑣=𝑣1

>  𝜆 

𝑆𝑣 = {0,1}  
𝑆𝜖ℝ 

where S is a measure of the general similarity, Sv is a measure of the variable-wise 

similarity, and λ is an acceptance value for the different sets of failure data to be 

considered similar (ideally equal to the number of variables |V|). 

The correlation measures (thus also the similarity measures) are validated making 

use of the k-fold cross validation technique (Box, Hunter, and Hunter 2005) to ensure 

that there is no dependence on a particular dataset. In practice, k different folds from 

each frd(Mi) are built according to the approach presented in Section 3.4. Thus, the 

similarity measures and the correlation values of each variable monitored from the 

machine Mi are vectors of k components Cvi(frd(Mi)) (Box, Hunter, and Hunter 2005). 

For verifying the hypothesis that failure related data coming from machines Mi and 

Mj (with i≠j) are similar, the variable-wise correlation vectors Cvi(frd(Mi)) and 

Cvi(frd(Mj)) must also have similar values. This condition can be verified by statistical 

testing, aiming at rejecting the hypothesis that Cvi(frd(Mi)) is similar to Cvi(frd(Mj)). In 

practice, equation (4.1) becomes: 

 

(4.2) 

𝑆 = ∑ 𝑆𝑣 (
𝐶𝑣

1(𝑓𝑟𝑑(𝑀𝑖)), 𝐶𝑣
2(𝑓𝑟𝑑(𝑀𝑖)), … , 𝐶𝑣

𝑘(𝑓𝑟𝑑(𝑀𝑖))

𝐶𝑣
1 (𝑓𝑟𝑑(𝑀𝑗)) ,  𝐶𝑣

2 (𝑓𝑟𝑑(𝑀𝑗)) , … ,  𝐶𝑣
𝑘 (𝑓𝑟𝑑(𝑀𝑗))

)

𝑣𝑁

𝑣=𝑣1

>  𝜆 

𝐶𝑣
𝑘  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝐶𝑣  𝑣𝑎𝑙𝑢𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑓𝑜𝑙𝑑 𝑘 

𝑆𝑣 = {0,1}  
𝑆𝜖ℝ 

where, for each variable v (or vi), the correlation values relative to each fold k, 

Ckvi(frd(Mi)), are compared between two machines Mi and Mj. In practice, we can 

state that virtualization has low impact on the data generation process if the 

datasets from Mi and Mj are similar (according to equation (4.2)). 
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4.2 Phase 1: Failure data generation 

The first phase is the generation of failure data by applying the approach proposed 

before. We thus refer to Chapter 3 for details on such approach, presenting here only 

the formalization of the generated data.  

The organization here used for the datasets differs from the one in Chapter 3 in what 

concerns the labeling, as presented in Figure 4.1. In particular, each variable vi from a 

Fault Injection Run FIRk is associated to a Failure or a No-Failure event instead of 

being associated to a set of labels. Therefore, the Golden Data is made of variables 

collected when no failure occurred, thus associated to No-Failure events, while 

Failure Data is made of variables collected when failures where observed. 

 

 

 
v1 v2 v3  vn 

Failure/ 

No failure 

event 

FIRk 

v1(1) v2(1) v3(1) … vn(1) 

Failure/ 

No failure 

v1(2) v2(2) v3(2) … vn (2) 

v1(3) v2(3) v3(3) … vn (3) 

v1(4) v2(4) v3(4) … vn (4) 

… … … … … 

v1(k) v2(k) v3(k) … vn (k) 

v1(k+1) v2(k+1) v3(k+1) … vn (k+1) 

v1(k+2) v2(k+2) v3(k+2) … vn (k+2) 

v1(k+3) v2(k+3) v3(k+3) … vn (k+3) 

… … … … … 

v1(TF) v2(TF) v3(TF) … vn (TF) 
 

(a) 

 

 
v1 v2 v3  vn 

Failure/ 

No failure 

event 

 v1(GR1) v2(GR1) v3(GR1) … vn(GR1) No failure 

 v1(GR2) v2(GR2) v3(GR2) … vn(GR2) No failure 

Golden v1(GR3) v2(GR3) v3(GR3) … vn(GR3) No failure 

Data … … … … … … 

 v1(GRG) v2(GRG) v3(GRG) … vn(GRG) No failure 

  

      F/NF 

 v1(FIRf1) v2(FIRf1) v3(FIRf1) … vn(FIRf1) Failure 

Failure v1(FIRf2) v2(FIRf2) v3(FIRf2) … vn(FIRf2) Failure 

Data v1(FIRf3) v2(FIRf3) v3(FIRf3) … vn(FIRf3) Failure 

 … … … … … … 

 v1(FIRfF) v2(FIRfF) v3(FIRfF) … vn(FIRfF) Failure 

 

(b) 

Figure 4.1 - Data from a single Failure Run i (a)  

and a complete (global) dataset (b) 
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The global dataset, including all the Golden and Failure Data, is here divided in 

Training or Profiling Dataset, made of a given percentage of Golden Data and used 

for creating the normal behavior profile for each variable, and Testing or Analysis 

Dataset, which includes the remaining Golden Data and Failure Data. In practice, a 

part of the golden runs is used for building the profile, and the remaining for later 

validating the correlation of the variable with the observed failures (i.e., the variable 

should present no symptom in a golden run). We propose a proportion of 25% for 

the Profiling Dataset and 75% for the Analysis Dataset, aiming at using more data 

for the failure symptoms identification, though such percentages can be easily tuned. 

Note that our approach includes the use of k-fold cross validation with a run-by-run 

(or run-wise) partitioning of Golden and Failure Data, as in Chapter 3, which 

permits to have k distinct Profiling and Analysis datasets. 

4.3 Phase 2: Symptoms identification 

To compute the correlation C for each vi over the set F in the Analysis Dataset (set of 

occurred failures, caused by fault injection), we first need to identify symptoms. In 

this section we propose a symptom recognition approach based on an anomaly 

detection method, which should be applied to the individual variables selected for 

failure prediction. In particular, we propose to build a profile p(vi) for each variable 

using Golden Data from the Profiling Dataset, modeling its normal normal behavior. 

The key idea is the following: if during a Failure Run the values of the variable vi fall 

out-of-profile, a symptom is identified. 

The profile p(vi) is created by computing the maximum and the minimum values 

obtained in the runs where no faults are injected (and no failures are observed), thus 

p(vi)=p(vi(t),gj), j=h1,h2,…,hr, considering only part of the golden runs. An example of 

a profile is shown in Figure 4.2. The profile or model is represented by two curves, 

namely the upper and lower bounds of the values of the variable seen along the 

golden runs (including a tolerance value for each bound, which can be set 

empirically and should take into account the variations that the values of a variable 

 

Figure 4.2 – The profile of the “Pool of Non-Paged Bytes” variable (normalized) 
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can present along runs). The central curve represents the median values of the 

variable (just for presentation purposes).  

A variable vi, monitored during a given failure run r, presents a symptom if, 

compared to the profile p(vi), the area between the bounds and the deviating values is 

greater than a threshold Tvi (relative to each variable vi). In the example in Figure 4.3, 

a software fault is injected at t=68 seconds after starting the workload execution (t=0), 

and the variable values overrun the bounds at t=135 seconds, showing a reduction in 

the number of semaphores the operating system is managing, probably caused by a 

part of the operating system that stopped working. 

Let [x,y] be the group of points in which the parameter shows overrunning values, 

p(vi) be the profile of the variable vi, and Tvi a threshold value for deciding if the 

parameter vi presents a symptom. We state that a variable vi presents a symptom 

𝑆𝑦𝑚𝑝𝑡𝑜𝑚(𝑣𝑖 , 𝐹𝐼𝑅𝑖) in the i-th Fault Injection Run if the area between the variable 

values from the i-th FIR vi(t, FIRi) and the maximum and the minimum bounds 

expected (defined by p(vi)) is greater than Tvi: 

(4.3) 𝑆𝑦𝑚𝑝𝑡𝑜𝑚(𝑣𝑖 , 𝐹𝐼𝑅𝑖) = 1 ⇔ ∫ |𝑣𝑖(𝑡, 𝐹𝐼𝑅𝑖) − 𝑝(𝑣𝑖(𝑡))|
𝑦

𝑥

𝑑𝑡 ≥ 𝑇𝑣𝑖 

(4.4) 
[x,y]= Bu  Bl 

𝐵𝑢 = {𝑡: 𝑣𝑖(𝑡) ≥ 𝑀𝐴𝑋(𝑝(𝑣𝑖(𝑡)))} 
𝐵𝑙  = {𝑡: 𝑣𝑖(𝑡) ≤ min(𝑝(𝑣𝑖(𝑡)))} 

The threshold Tvi is a real value that must be obtained, for each variable, in a way 

that allows recognizing the maximum number of symptoms and minimizing the 

possible false negatives, using any kind of performance function. In this work, we 

propose an adaptive approach for the definition of the threshold Tvi for a variable 

vi, making use of feedback information about the correlation that a variable would 

have when using a given threshold value. In practice, the threshold Tvi is defined as: 

 

Figure 4.3 – A symptom identified on the “Semaphores” variable (normalized) 
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(4.5) 

𝑇𝑣𝑖𝜖ℝ  arg 𝑚𝑎𝑥
𝑇𝑣𝑖>0

⁄ (𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝑴𝒆𝒕𝒓𝒊𝒄(𝑣𝑖, 𝓕, 𝑮)) 

𝓕 = {𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝐹𝑘 , 𝑤𝑖𝑡ℎ 𝑘 𝜖 ]1, |𝐹𝐼𝑅|]} 

𝑮 = {𝑛𝑜 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝐺ℎ , 𝑤𝑖𝑡ℎ ℎ 𝜖 ]1, |𝐺𝑅|]} 

As mentioned before, the correlation metric must be proportional to the number of 

true symptoms and inversely proportional to the number of false symptoms. As an 

example, equation (4.6) shows two metrics addressing the condition above, namely 

F-Measure and Prediction (for details, see Section 2.2.3). 

(4.6) 

E.g.,  

1) 𝑇𝑣𝑖𝜖ℝ  arg 𝑚𝑎𝑥
𝑇𝑣𝑖>0

⁄ (𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑣𝑖 , 𝓕, 𝑮)) 

2) 𝑇𝑣𝑖𝜖ℝ  arg 𝑚𝑎𝑥
𝑇𝑣𝑖>0

⁄ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑣𝑖 , 𝓕, 𝑮)) 

In practice, starting from a threshold value T0vi, the symptoms identification depends 

on the threshold value T*vi maximizing the correlation value C between the 

symptoms that the variable vi shows and the failures observed in the system. The 

approach proposed is depicted in Figure 4.4. In particular the symptom 

identification phase and the correlation phase are organized in a feedback loop, 

which is solved by applying a maximization algorithm. We do not specify any 

particular optimization algorithm, but a simple approach is to adopt a time-limited 

grid search (i.e., a heuristic searching the best value in a defined interval), with a 

maximum time as the termination criterion for the search algorithm. Finally, the 

correlation value obtained using such schema is the maximum correlation value that 

 

Figure 4.4 – The adaptive schema for threshold definition, symptoms 

identification and symptoms/failures correlation 
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can be obtained varying the threshold. The correlation value associated to each 

variable vi is the value corresponding to the optimal threshold, thus Cmax(vi). 

Obviously, the threshold may influence metrics like the number of false positives 

(i.e., number of times the surface metric exceeds the threshold during fault injection 

runs in which failures where not observed) and the coverage (i.e., number of times 

the surface metric exceeds the threshold during fault injection runs in which failures 

where observed) of each variable. This is why an adaptive threshold is needed, as it 

allows mitigating the cases where small noisy deviations lead the values of variables 

to go slightly out of the typical bounds (or go out of the bounds for a very short time 

frame). 

4.4 Phase 3: Symptoms and failures correlation 

In order to assess the similarity between different failure data, we define a function C 

for each variable vi, measuring the correlation between the symptoms presented by 

the variable when failure (and no-failure) events occurred on a specific system. The 

correlation values must be in the range [0,1] (1 means that the variable values are 

highly correlated with the failure occurrence), and the correlation metric chosen 

should be proportional to the number of true symptoms and inversely proportional 

to the number of false symptoms. In this work we propose to correlate the variables’ 

symptoms with the observed failure/no-failure events using the ROC-AUC measure, 

i.e., the Area under the Receiver Operating Characteristic curve (see Section 2.2.3) 

The reason that stands behind this choice is the fact that ROC analysis represents a 

solution for the adaptive approach presented in the previous section, where the 

optimal value Cmax(vi) associated to each variable vi is the ROC-AUC, and the optimal 

threshold T*vi is the ROC’s cut-off point (i.e., the point corresponding to the optimal 

correlation value), considering each variable as a prediction model (see Figure 4.5).  

In practice, a ROC curve is composed of points corresponding to the measures true 

positives rate (or Sensitivity) and false positives rate (1-Specificity), obtained 

according to the contingency table, while varying a decision threshold. The 

threshold used by the ROC analysis corresponds to the threshold Tvi, hence, varying 

such threshold and computing tpr (true positive rate) and fpr (false positive rate) allows 

obtaining a ROC curve. The true positives rate and false positives rate are defined as 

follows: 

(4.7) 

True Positives Rate / 

Sensitivity/  

Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔 
 

(4.8) 
False Positives Rate / 

1-Specificity 

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
=

𝑭𝒂𝒍𝒔𝒆 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝒏𝒐 − 𝒇𝒂𝒊𝒍𝒖𝒓𝒆 𝑐𝑎𝑠𝑒𝑠 
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The more the true positives rate is near to 1 and the false positive rate is near to 0, 

the higher is the correlation between the variable’s symptoms and the failures (such 

situation corresponds to an ideal correlation a ROC-AUC=1). An example of a ROC 

curve is presented in Figure 4.5. The black convex curve is the ROC curve relative to 

a correlated variable, with a 0.5 < ROC-AUC < 1 (as ROC-AUC=0.5 corresponds to an 

uncorrelated curve, for which the variation of the threshold does not cause any 

change in the couple (Sensitivity, 1-Specificity)). The ROC of a perfectly correlated 

variable is a single point corresponding to (Sensitivity, 1-Specificity)=(1,1) and has a 

ROC-AUC=1 (also here the variation of the threshold does not influence the 

correlation metrics). Moreover, an inversely correlated variable corresponds to a 

concave ROC curve. Finally, the cut-off point (defined only for convex curves) is the 

point corresponding to the optimal correlation measures, i.e., the higher true 

positives rate with the lower false positives rate.  

The correlation values C(vi, {F, G}) calculated for each variable vi are finally validated 

using k-fold cross validation. This consists of partitioning the dataset coming from Mj 

into kMj folds, dividing the data “run by run”, taking advantage of the fact that the 

dataset is already partitioned (in golden or failure runs). We take into account this 

existing division of data, without invalidating the results. In fact, the statistical 

properties coming from the use of k-fold cross validation are not altered, as such 

super-partition of the data is still a partition. Each fold is obtained by combining 

golden data and failure data, considering the runs of the associated events gl and fl, 

obtaining groups like foldr = {GD(gr1, gr2, … grr), FD(fr1, fr2, …, frr)}. The folding is done 

in such a way that each fold ends containing at least data related to one failure.  

 

Figure 4.5 – ROC curves relative to single variables 
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As the number of failures observed in each machine may vary, the number of folds 

may also vary from one machine to another. This way, it may happen to have few 

folds on some machines, but it does not happen to have the same failures in different 

folds, neither to have folds with no failures. Finally, we compute the correlation 

values for each fold relative to the failures occurred on Mj: for each variable vi we 

compute the correlation C(vi) of length kMj, that is C(vi)Mj=(Cp1(vi),  Cp2(vi), …, CkMj 

(vi))Mj.  

4.5 Phase 4: Failure data similarity analysis 

The last phase of the approach consists of testing the hypothesis that the samples 

C(vi)M1 from M1, C(vi)M2 from M2, etc., are similar. More specifically, we are interested 

in not rejecting the null hypothesis, being:  

H0: “the variable vi(t) presents similar failures correlation values on 

the two machines Mi and Mj”,  

also corresponding to: 

H0': “the samples C(vi)Mj, with j=1, 2, …, |M|, come from the same 

distribution”,  

which we assume to be true. If the test finds no evidence for rejecting the null 

hypothesis, we can continue considering that (at least in this case) virtualization has 

no influence on the generated failure data. On the other hand, if the test rejects the 

null hypothesis, then the data are not similar.  

We compute the similarity of the correlation statistic (or vector) of each variable vi 

monitored from the virtualized system and the original target system (or any kind of 

different machines, as mentioned previously) using the Kruskal-Wallis statistical test 

(Box, Hunter, and Hunter 2005) that is used for analyzing the variance of N 

distributions, as we verified that the correlation distributions are non-parametrical 

(or generic, as nothing can be said on the type of distributions to analyze). 

4.6 Case study: Impact of virtualization in the generation 
of failure data 

The case study presented in this section, aiming at assessing the impact of using 

virtualization environments for generating failure data, is based on the analysis of 

the data gathered from a set of five machines, one hosting the original target system 

(M1) and the other four (M2, M3, M4 and M5) hosting virtualized copies of that 

system. The virtualization environments under study include both Type I (or Full 
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Virtualization) and Type II (or Hardware layer virtualization) hypervisors, thus 

considering a representative set of virtualization solutions (see Section 2.3).  

The five monitored machines and the controller machine that compose the 

experimental setup have the following configurations: 

 Machine #1: Intel i5-650@3.60GHz; 8GB RAM; Windows XP OS (SP3); no 

virtualization (hosts the original system). 

 Machines #2 and #3: virtual machines hosted on Intel i5-650@3.60GHz 

systems with 8GB RAM, and running Windows XP OS (SP3). Machine#2 runs 

on a Citrix XEN server v5.6.10, and Machine#3 runs on a VMWare vSphere 

server based on ESXi v5.0. These provide two virtual versions hosted on top 

of Type II Hypervisors, with an hardware configuration made of one out of 

the two cores of the hosting system’s CPU (Intel i5-650@3.60GHz) and 1 GB 

RAM. 

 Machines #4 and #5: virtual machines hosted on Intel P4 HT@3.00GHz 

systems with 2GB RAM, and running Windows XP OS (SP3). Machine#4 runs 

on a Oracle’s VirtualBox, and Machine#5 runs on a VMWare Player, both on 

top of Windows XP OSs. These provide two virtual versions hosted on top of 

Type I Hypervisors, with an hardware configuration made of the hosting 

system’s CPU (Intel P4 HT@3.00GHz) and 1 GB RAM. 

 Machine #6 (Controller): Intel i5-650@3.60GHz; used to: a) control the 

experiments, b) remotely command and control the fault injection tool, c) 

force the reboot of the machines in case of failures, d) collect the data and 

store them in a Microsoft SQL Server 2008, and e) analyze the data using 

MATLAB.  

As a real and a virtualized environment can have different hardware configurations 

(mainly in terms of CPU and RAM), in this case study the configurations of the 

defined virtual machines (Machines #2, #3, #4, #5) are different from the one of the 

real machine (Machine #1). On the other hand, all the virtual machines share similar 

configurations. With such setup, we can infer the impact of both the virtualization 

environment and the hardware configuration on the failure data. In particular:  

 if the real and all the virtual machines share the same set of variables, it is likely 

that both the virtualization and the hardware do not impact on the generated 

failure data; 

 if the real and one virtual machine share the same set of variables, it is likely 

that both the virtualization and/or the hardware do impact on the generated 

failure data; 

 if the failure data from the real machine is different from the data collected 

from the virtualized environments, but the latter share among them similar 
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data, then it can be said that the virtualization is impacting on the generation 

of failure data; 

 if the failure data from the real machine is different from the data collected 

from the virtualized environments, and the similarity depends on the 

virtualized machine (the sets of variables are different on the different 

hypervisors), then both the virtualization environment and the hardware do 

impact the generated failure data. 

 Data generation 4.6.1

We monitored 233 numerical variables representing the state of the operating system 

(OS) resources, at the sample rate of one value per second, using the Logman tool 

that is included in Windows OSs family. 

The failure data are obtained by monitoring the systems while running two different 

workloads (one based on the WinRAR application (RAR Lab) and the other on the 

COSBI OpenSourceMark benchmark suite (“COSBI OpenSourceMark”)) and 

targeting two distinct failure types: system Crash (OS becomes corrupted and the 

machine crashes or reboots) and system Hang (application or OS becomes 

unresponsive and must be terminated by force). The G-SWFIT tool was installed on 

each monitored machine (original and virtualized copies) and injected software 

faults in the OS to maximize the impact of faults on the system operations. The 

faultload (specifying which faults, where and when to inject) is exactly the same for 

all the machines, and was defined similarly to the case study presented in Section 

3.6. We recall that to ensure a higher fault activation ratio, specific portions of the OS 

were previously selected as prime candidates for fault injection, resulting in the 

selection of the kernel32.dll and ntdll.dll system modules used by the system process 

svchost.exe (Generic Host Process for Win32 Services).  

Table 4.1 presents the overall characterization of the experiments. A single fault was 

injected in each FIR approximately 70 seconds after starting the execution of the 

workload (defined based on the analysis of the ramp up time of the systems). 

Failures were observed in a small subset of the fault injection runs. This is due to the 

large number of possible fault locations, which reduces the probability of injecting a 

fault in a code location executed in a given experiment (J. A. Duraes and Madeira 

2006). It is important to note that the failure occurrence rates have similar values on 

all the machines, ranging from 2% and 4% (considering both failure modes), which 

suggests that the fault activation is not strictly dependent on a particular system, 

although the differences among systems result in occurrence rate variations. Also, 

the faults injected caused more hang failures than crashes in all machines, which is 

in line with the fault injection results presented in the case study in Chapter 3. From 

a high-level observation, we can say that the Windows XP OS reacts in the same way 
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to software faults despite of the hardware used, which may anticipate the fact that 

data collected from different machines may share some similarities. 

 Symptoms similarity estimation 4.6.2

The comparison of the ROC-AUC correlation distributions for estimating the data 

similarity was performed using the Kruskal-Wallis test applied to each of the 233 

variables, a generalization of the ANOVA test for non-parametric distributions (as 

we cannot make any assumptions about the distribution of the data). The 

significance level considered is α=0.05 and the sample values C(vi)Mj were obtained 

from each machine Mj using 20 folds. 

Table 4.2 presents examples of the failure correlation distribution of the same variable 

collected on different machines, for guiding the reader in understanding the results 

obtained using the Kruskal-Wallis test. The table presents the ROC-AUC correlation 

values for the variables Transition Faults/s (columns (a) and (b)) for the <WKL1, 

Crash> scenario, and Pool of Nonpaged Bytes (column (c)) for the <WKL2, Hang> 

scenario (the complete result set can be found in (I. Irrera 2013)). Each row is a 

sample C(vi)mj, and each column identifies the data fold in which the correlation 

value was obtained. The first row (in gray) is the pivot correlation distribution for 

the comparison. The correlation values equal to 1 are due to a numerical rounding of 

the representation (being in fact inferior to 1), or due to the very small number of 

failure events present in the fold. However, such inaccuracy allows a more clear 

analysis of the presented example. The values “-” mean that, for a given machine Mj,, 

the number of folds created was less than 20 (as in the case of machine M4 in Table 

4.2 (b)). This is related to the limited number of failures observed.  

Table 4.1 - Failures generated 

machines wkl # GR # FIR 
Failures detected 

Total % Crash % Hang % 

Real (M1) 
#1 1000 3000 2.84% (80) 0.37% (11) 2.3% (69) 

#2 1000 3000 2.2% (66) 0 2.2% (66) 

Citrix  

XEN server (M2) 

#1 1000 3000 4.3% (129) 0.8% (24) 3.5% (105) 

#2 1000 3000 2.2% (66) 0 2.2% (66) 

VMWare  

vSphere server  (M3) 

#1 1000 3000 4% (120) 1.5% (45) 2.5% (75) 

#2 1000 3000 2.9% (87) 0.2% (6) 2.7% (81) 

VMWare  

Player (M4) 

#1 1000 3000 1.83% (55) 0.13% (4) 1.7% (51) 

#2 1000 3000 2.4% (72) 0.5% (15) 1.9% (57) 

Oracle  

VirtualBox (M5) 

#1 1000 3000 1.47% (44) 0.07% (2) 1.4% (42) 

#2 1000 3000 2.3% (69) 0.3% (9) 2% (60) 



Chapter 4 

 106 

 

Table 4.2 - An example of ROC-AUC correlation values relative to two variables 

 (a) KW test passed 
(b) excluded from the 

test 
(c) KW test passed 

variable 

(scenario) 

Transition faults/s 

(WKL1, CRASH) 

Transition faults/s 

(WKL1, CRASH) 

Pool Nonpaged bytes 

(WKL2 , HANG) 

machine real (M1) XEN (M2) real (M1) 

VMWare 

Player 

(M4) 

real (M1) 

VirtualBox 

(M5) 

ROC-AUC 

(foldi) 

1 0.994 1 0.98 0.86 0.835 

1 0.991 1 0.99 0.84 0.887 

0.92 0.969 0.92 - 0.85 0.85 

0.80 0.997 0.80 - 0.84 0.85 

1 0.98 1 - 0.84 0.86 

1 1 1 - 0.81 0.80 

1 0.981 1 - 0.87 0.87 

0.80 0.997 0.80 - 0.80 0.864 

1 0.988 1 - 0.88 0.85 

0.96 0.978 0.96 - 0.86 0.87 

1 0.966 1 - 0.89 0.86 

0.80 0.988 0.80 - 0.86 0.88 

0.96 0.988 0.96 - 0.86 0.84 

1 0.978 1 - 0.85 0.82 

0.88 0.97 0.88 - 0.86 0.87 

1 0.997 1 - 0.86 0.80 

1 0.98 1 - 0.88 0.85 

1 0.94 1 - 0.82 0.88 

0.80 0.981 0.80 - 0.87 0.90 

1 0.935 1 - 0.83 0.84 
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In the first case (Table 4.2 (a)), the symptoms correlation with failures of the variable 

Transition Faults/s coming from the real machine M1 and the virtual machine M2 

(scenario <WKL1, Crash>) is quite high and seem similar. In particular, the Kruskal-

Wallis test could not reject the hypothesis of such symptoms to be similar, thus there 

is no evidence for considering the behavior of such variable not similar on both 

machines. On the other side, the set of correlation values relative to the same 

variable and in the same scenario collected from the machine M4 (virtualized in a 

VMWare Player) is very small (only two values, Table 4.2 (b)). In this case, we decide 

to express no judgment on the similarity of the symptoms, also excluding the 

similarity hypothesis from being tested in such case.  

Finally, the correlation values relative to the variable Pool of Nonpaged Bytes (Table 

4.2 (c)), collected from the real machine and the virtual machine running on a 

VirtualBox environment, are also similar. Again, the Kruskal-Wallis test was not able 

to reject the hypothesis of the behavior of such variable being similar on both the 

systems. 

 Results and discussion 4.6.3

Table 4.3 presents the number of variables showing similar correlation between the 

original system and its virtualized copies, i.e., for which the Kruskal-Wallis test was 

not able to reject the null hypothesis. As we can see, the original machine M1 shares 

with all its copies a subset of variables that have the same correlation with the 

failures observed (both for WKL1 and WKL2). Although the number of variables 

presented may seem small, it should be noted that the number of relevant variables 

for failure prediction is indeed quite small (G. Hoffmann and Malek 2006; Li, 

Vaidyanathan, and Trivedi 2002; Vaidyanathan and Trivedi 1999), which is a fact 

standing at the basis of feature selection. The results obtained for each couple of 

machines are quite similar, except for machines M4 and M5 in the case <WKL1, 

Crash>. The very low number of crash failures observed in these two machines 

during the FIR limits the number of folds, and consequently the number of available 

correlation values, as exemplified in Table 4.2 (b). In this case, the Kruskal-Wallis test 

was not able to reject the null hypothesis, but the available correlation values are 

insufficient to have good confidence in the result. Thus we do not consider such 

results, assuming the null hypothesis being rejected. It is worth noting that we do 

not present results for the case <WKL2, Crash>, as in this case we did not observe any 

Crash failures on the real machine.  
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An important aspect is that the set of variables that show similar correlation with 

failures partially varies when comparing the real system with the several virtualized 

versions. This means that the different characteristics of the hypervisors and the 

hardware have some impact on the original failure data. In fact, sets of variables from 

the virtualized environments only partially share variables, confirming the influence 

of the virtualization environments. Another important aspect is that the set of 

variables showing correlation with Crash failures is different from the set for the 

Hang case, and these two sets also differ when considering diverse workloads. The 

difference in the results for the two workloads is an evidence of the fact that the 

workload influences the failure prediction process (the OS is exercised in different 

ways making the fault activation pattern different), as also observed in the case 

study in Chapter 3.  

 Discussion on the impact of virtualization 4.6.4

There are two key aspects that should be emphasized based on the analysis in the 

previous section: 

1) The fact that the sets of variables sharing the same failure correlation values 

on the original and each of the different virtualization technologies can be 

different, showing that virtualization technology does influence the 

correlation of variables with failures.  

2) The existence of groups of variables sharing similar correlation values 

between the original system and its virtualized copies shows that 

virtualization can be used to generate failure data, and in particular that a 

subset of the failure data generated in a virtual environment is similar to 

failure date generated in the original target system and can be used in an 

equivalent manner. In practice, as variables with a high correlation with 

Table 4.3 - Number of variables showing similar failure correlation 

Machine Workload 
Failure Modes 

Crash Hang 

M1, M2 
WKL1 47 16 

WKL2  - 12 

M1, M3 
WKL1 47 5 

WKL2  - 6 

M1, M4 
WKL1 0 (95) 27 

WKL2  - 32 

M1, M5 
WKL1 0 (96) 14 

WKL2  - 12 
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failures in the original system may not be as good in all virtualized systems, a 

previous analysis of the best virtualization technology for generating good 

datasets is needed. 

Such results suggest that data may be generated from virtual copies of a system, but 

that a preliminary study for identifying the variables in common is needed. 

Moreover, given a set of variables to be used for failure prediction identified on the 

original system, a detailed analysis is needed for selecting the virtualization solution 

that shares such set of variables (or most of them) to be used to generate failure data. 

4.7 Final remarks 

In this chapter we addressed the challenge of using failure data generated in a 

virtualization environment hosting a copy of the system in which failure prediction 

is supposed to work. The proposed approach allows computing the similarity of 

failure data generated on a virtualized copy of a target system with respect to failure 

data generated on the original system, making use of the approach for generating 

failure data based on the injection of software faults proposed in Chapter 3. The 

approach can be used to validate if a given virtualization environment is adequate 

for generating failure data and also to guide the choice of a specific virtualization 

environment, when several alternatives are available. 

The approach is based on the identification of the failure symptoms presented by the 

monitored variables, their correlation with the failures (and non-failure events, 

coming from Golden runs) observed in both the original and virtualized systems, 

and the comparison of the correlation values (of the individual variables) gathered 

from the different environments by using the Kruskal-Wallis statistical testing 

method. In practice, the approach includes three phases, starting from the generation 

of failure data using the solution proposed in Chapter 3, followed by the 

identification of failure symptoms and the correlation of such symptoms with the 

failures observed. The last phase is the assessment of the failure data similarity, 

based on the use of statistical tests. 

In a case study, we demonstrated the applicability of the proposed approach and 

studied the similarity of failure data generated in a Windows-based system and four 

virtualized versions of it using diverse virtualization technology. Results shown that 

some sets of variables share similar symptoms across the original system and its 

virtualized copies and that the sets of variables in common between the original 

system and its virtualized versions are different. Hence, the virtualized environment 

influences the behavior of the collected variables when failures occur. 

The next chapter presents a benchmarking approach for assessing and comparing 

alternative failure prediction models on a given target system. As choosing a failure 
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prediction model is not trivial and requires large amounts of data, virtualization 

represents a key element for making the experiments possible and speeding-up the 

collection of failure data. 
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Chapter 5 
Assessing and comparing 
Failure Prediction models 

Effectively implementing failure prediction involves extremely accurate tuning, but 

also an adequate selection of the most suitable model (or models) for a particular 

system installation. Selecting a failure prediction model requires a rigorous 

assessment of alternative solutions using appropriate metrics, and their comparison 

using common datasets. However, this is a difficult task as the information about the 

performance of failure predictions models present in literature is not sufficient to 

choose a predictor for a particular target system. In fact, existing studies consider 

different systems, but the results are not comparable, and nothing can be said on 

how a given predictor will perform on a particular system installation. Also, many 

works in the literature provide incomplete and not comparable information, as so far 

there is no agreement on the best metrics to be used to assess the predictors, which 

vary from a study to another (Felix Salfner, Lenk, and Malek 2010).  

Although several initiatives aiming at building failure data repositories have been 

taken (e.g., the Computer Failure Data Repository (Usenix and Carnegie Mellon 

University (CMU) 2006)), using such datasets is not sufficient for conducting a fair 

and sound comparison, as the assessment of failure prediction models with failure 

data collected from several systems does not allow taking into account the behavior 

of the system on which the predictors will run. This way, we argue that it is essential 

to collect failure data from the particular target system. 

Advancing the state-of-the-art in failure prediction requires a systematic and 

rigorous approach for assessing and comparing alternative models, and such process 

must be supported by the generation of failure data. In this chapter we propose a 

framework for benchmarking alternative failure prediction models, making use of 

the failure data generation approach proposed in Chapter 3 and defining a 

procedure that assures a fair and sound assessment and comparison. In practice, we 
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provide guidelines for implementing a procedure for benchmarking failure 

prediction models on a particular system (referred to as Failure Prediction 

Benchmark, or FP Benchmark), including choosing the adequate metrics for the 

assessment, the comparison of alternative models, and the validation of such results. 

Running the benchmark on the specific target system assures the results to be valid 

in the context of that system, as it takes into account its relevant characteristics (e.g., 

hardware, software, workload), thus minimizing the probability of harmful effects 

due to wrong estimated performance that may lead, for example, to wrong selection 

decisions. Obviously, the benchmark must ensure some key properties (M. Vieira 

and Madeira 2003; Gray 1993), namely the ease of use, ease of implementation, 

promptness, repeatability, portability, representativeness, and non-intrusiveness.  

To demonstrate the proposed approach we also present a case study where the 

benchmark is used to assess and compare four models for predicting Crash and Hang 

failures in a machine running Windows XP (SP3). The case study demonstrates how 

the benchmark can be implemented and how the predictors can be assessed and 

compared in practice, based on their performance.  

The chapter is organized as follows. Section 5.1 overviews the proposed 

benchmarking framework and discusses the properties that must be ensured. 

Sections 5.2, 5.3 and 5.4 describe the components of the benchmark, describe how to 

implement them, and outline the benchmarking procedure. Section 5.5 presents the 

case study, including the benchmarking results and a discussion on the benchmark 

properties. Finally, Section 5.6 summarizes the main lesson learned. 

5.1 Overview of the approach and properties 

Benchmarking is an experimental procedure that aims at providing a practical way 

to measure and compare properties of computer systems or components, ranging 

from performance (Gray 1993) to dependability and security aspects (Durães, Vieira, 

and Madeira 2004; M. Vieira and Madeira 2003). In practice, a benchmark 

reproduces the observations and measurements either deterministically or on 

statistical basis (giving confidence in the results obtained), and allows generalizing 

results to a limited extent (becoming useful beyond the particular case analyzed), 

attained by addressing the representativeness of the benchmarking process and 

components (Durães, Vieira, and Madeira 2004). According to (M. Vieira and 

Madeira 2003; Gray 1993), the concept of benchmarking can be summarized in three 

words:  

1) Representativeness: a benchmark must include components (e.g., a dataset) 

that are representative of a given domain (in our case the failure prediction 

domain), thus reducing the distance between the benchmarked and the real 

environment (when present); 
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2) Usefulness: a benchmark must provide a useful representation of the entities 

under analysis, capturing the essential elements of the domain and 

characterizing their features, thus allowing one to use the results for choosing 

the best alternative or to guide improvement; 

3) Agreement: a benchmark must specify a standard procedure to assess relevant 

measures related to an entity or a product on which users can agree, allowing 

measurement results to be accepted.  

In this work we propose a framework for assessing and comparing failure prediction 

models, which we named FP Benchmark. The reasoning for proposing a framework, 

instead of directly refer to it as a benchmark, stands in the fact that a benchmark for 

prediction models (or machine learning algorithms in general) typically includes a 

workload (or dataset) (e.g., (Bache and Lichman 2013; Zheng 1993)). This workload 

is the data against which one or more systems are benchmarked. However, in the 

failure prediction domain, the dataset should include failure data that are specific to 

a particular system (i.e., the system were failure prediction should be done), and 

thus must be generated during the benchmarking process. In practice, we propose a 

benchmark that includes the generation of the dataset to assess and compare 

alternative predictors on a particular target system, but reference to it as a 

benchmark framework in order not to go against the terminology used in the field.  

The proposed FP Benchmark includes three main components: 

 Dataset: data needed to train and test the failure prediction algorithms. These 

data should mimic the behavior of the target system, taking into account the 

existing hardware and software components, the expected workload, the 

relevant failures, etc. 

 Metrics: allow characterizing the effectiveness of the algorithms under 

benchmarking. The metrics must be easy to understand, allow the 

comparison among alternative algorithms from different points of view, and 

be generally accepted. 

 Benchmarking procedure: rules that must be followed, including the set of 

phases that must be conducted, towards the calculation of the metrics. 

For the generation of the dataset, the FP Benchmark adopts the approach proposed 

in Chapter 3, which includes a workload and a faultload for exercising the target 

system in a way that allows collecting failure data. Given the terminology used in 

existing performance (Zheng 1993; Gray 1993; M. Vieira and Madeira 2003) and 

dependability benchmarks  (M. Vieira and Madeira 2003; J. Duraes, Vieira, and 

Madeira 2004), the term dataset is here intended as the workload to exercise the 

failure prediction models, while the term workload corresponds to the set of 

operations that the target system must execute for generating failure data. Thus, the 
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datasets are composed of failure data coming from the target system, and it is the 

workload, in the classic machine-learning benchmarking nomenclature. The failure 

predictors are benchmarked using the datasets, and metrics are applied to their 

outputs (i.e., predictions) and behavior (e.g., time to train or predicting).  

A benchmark for failure prediction models must address specific properties for the 

results to be sound, and to minimize inaccuracies due to the measurement procedure 

and the environment. For this reason, we adopted the recommendations from (Gray 

1993; Durães, Vieira, and Madeira 2004; M. Vieira and Madeira 2003) about the 

properties a benchmark should envisage, namely:  

1) Ease of installation and use: the benchmark should be composed of a simple 

program ready to be used or a document specifying how to implement the 

benchmark, where to find the tools needed (e.g., the fault injection tool, the 

monitoring tool, the workload), etc. In fact, a user must be able to analyze 

failure prediction models with the minimum effort possible. 

2) Promptness: the benchmark execution should take the shortest time possible 

(preferably no more than a few hours per entity). Promptness increases the 

usability of the benchmark and of the failure prediction model, and 

potentially reduces the cost that one has to allocate for the failure predictor’s 

benchmarking task. 

3) Non-intrusiveness: the benchmark must require minimal or no changes in 

the entities under analysis, which in this context are the failure prediction 

models. Moreover, the target system cannot be influenced nor modified, as 

this may influence the generated datasets and thus invalidate the results and 

conclusions. If an alteration is not avoidable, this has to be controlled and 

reproduced for every failure prediction model under analysis, and taken into 

account when estimating the representativeness of the results. 

4) Portability: the benchmark must allow comparing alternative failure 

prediction models in different domains and considering different types of 

target systems. 

5) Repeatability: different executions of the benchmark in the same system 

must lead to the same results on a deterministic basis or in statistical terms. 

The results should not depend on a single execution of the benchmark: on the 

contrary, the benchmark must provide means for assessing a possible error in 

the performance results of the assessed tools. 

6) Representativeness: the results coming from the benchmark must be 

representative of real world scenarios, i.e., the failure prediction models must 

behave similarly (in relative terms) when working on the target system in a 

real situation. 
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5.2 Dataset  

To generate, collect and organize the datasets, the benchmark makes use of the 

failure data generation approach proposed in Chapter 3. In practice, it makes use of 

a labeled dataset, and a k-fold cross validation technique with a run-by-run (or run-

wise) partition of Golden and Failure Data.  

5.3 Metrics  

Metrics are a fundamental part of the benchmarking process, as they serve for 

characterizing the characteristics of the predictor and for the user to fairly compare 

alternative models. According to (Gray 1993), benchmarking metrics must have the 

following properties: i) they should portray the relevant and key characteristics of 

the entity under benchmarking, ii) they must be easy to understand and use, and iii) 

they should be generally accepted. In addition, the measures must be easy to obtain 

without impacting the system behavior (the failure prediction models, in our case).  

In this work we take a comprehensive approach and propose a large and extensible 

set of metrics, leaving to the benchmark user the selection of the relevant ones and 

the definition of new metrics (if needed), while guiding the choices done. In fact, in 

the same way we argue that the benchmark should be run in the system where 

failure prediction is being implemented (to take into account the system 

characteristics), we also defend that the outcome of the benchmarking process 

should fulfill the user needs. Thus, it is up to the user to select the metrics, although 

the benchmark framework provides guidelines and the support to calculate all the 

metrics presented below. 

We propose metrics widely used to characterize the effectiveness of systems, 

particularly in the information retrieval and control systems area (see Table 5.1). For 

each family we discuss some guidelines for adopting the most adequate metrics for a 

fair comparison of failure prediction algorithms, based on practical experience and 

on the findings from (F. Salfner, Lenk, and Malek 2010). The proposed metrics are 

divided in four families, which allow analyzing the behavior of the failure prediction 

algorithms from different points-of-view: 

1. Metrics based on the contingency table (or confusion matrix) (e.g., precision, 

recall, etc. (F. Salfner, Lenk, and Malek 2010)); 

2. Metrics based on decision threshold analysis (e.g., ROC, ROC-AUC, etc. (F. 

Salfner, Lenk, and Malek 2010)); 

3. Metrics on the prediction error (SSE, MSE, etc.); 

4. Metrics related to complexity (training and testing time, etc.). 
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Table 5.1 - Recommended metrics for benchmarking failure prediction 

models. 

 

Metric Formula/Description 
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Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Recall /  

True Positive Rate / 

Sensitivity 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 
 

False Positive Rate 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

𝐹𝑎𝑙𝑠𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 − 𝑓𝑟𝑒𝑒 𝑟𝑢𝑛𝑠 
 

F-Measure 
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= Mean𝐻(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙) 

D
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n
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d
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ROC and ROC-AUC 

Plot of the True positive rate over False positive rate for 

various thresholds (trade-off tpr/fpr respect to the decision 

threshold) 

P
re

di
ct
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er
ro

r 
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Mean Square Error 

(MSE) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

, 𝑌 ∈ ℛ𝑛
 

𝑌 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

�̂� = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑝𝑟𝑒𝑐𝑖𝑡𝑖𝑜𝑛𝑠 

C
om

pl
ex
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y

 

m
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cs

 

Set-up time 
The time needed to set up the model (e.g., training time for 

classifier models). The unit is “seconds per sample” 

Execution time 
The time to perform the prediction over the sample taken 

at time t. The unit is “seconds per sample” 
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 Prediction value-based metrics 5.3.1

These metrics are based on the contingency table (F. Salfner, Lenk, and Malek 2010) or 

confusion matrix (see Section 2.2.4), borrowed from the information retrieval field. In 

practice, we assume that any prediction falls into one of the following four cases: 

1. True Positive (TP): a failure is predicted, and a failure occurs in the expected 

time; 

2. True Negative (TN): no failure is predicted, and no failure occurs; 

3. False Positive (FP): a failure is predicted, but there is no actual failure in the 

expected time; 

4. False Negative (FN): the predictor does not predict any failure, but a failure 

actually occurs. 

More complex metrics can be defined by combining the four cases above in a 

different manner (Van Rijsbergen 1979), including: 

 Precision: the ratio of correctly predicted failures with respect to the number 

of all predicted failures. In our context it can be represented as follows: 

(5.1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 Recall: a ratio of correctly predicted failures with respect to the number of 

true failures. In our context it can be represented as follows: 

(5.2) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 
 

 

 F-Measure: the weighted harmonic mean (used to average rates) between 

Precision and Recall, assuming equal weights: 

(5.3) 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= Mean𝐻(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙) 

 

It is important to emphasize that the benchmark user should take into account the 

following aspects when adopting metrics based on the confusion matrix: 

1. Predicting a failure is more important than predicting the absence of a 

failure, thus TP must be maximized; 
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2. False negatives must be avoided, as failures can have dramatic consequences, 

thus FN must be minimized; 

3. FP must be minimized, as being continuously signaling failures that do not 

occur is not really predicting. 

 Decision threshold-based metrics 5.3.2

These metrics are based on the analysis of the predictor behavior when changing a 

threshold (i.e., the decision threshold). As in most prediction systems, the failure/no-

failure prediction is done by applying a threshold to the (numeric) output of the 

predictor: if the output is above (or below) the threshold, a failure (or no failure) is 

predicted. Usually, this threshold is adjustable and different values lead to different 

behaviors of the prediction model, impacting also the values of TP, FP, FN, and TN, 

from which several other metrics can be defined. For example, plotting the values of 

the True Positive Rate (TP/(TP + FN), or Sensitivity) against the False Positive Rate 

(FP/(TN + FP), or 1-Specificity) while varying the threshold allows obtaining the 

Receiver Operating Characteristic curve, or ROC (Fawcett 2006), and its area (ROC-

AUC), which is a widely used metric (see Section 2.2.3). Other examples are the 

F-Measure (Hand 2012) and Precision-Recall curves (Felix Salfner, Lenk, and Malek 

2010).  

Threshold analysis is a widely accepted method for assessing the performance of 

binary classifiers (Fawcett 2006). It is also considered as an effective way to 

overcome the problem of evaluating classifiers when using imbalanced datasets 

(e.g., (Chawla, Japkowicz, and Kotcz 2004; Chawla 2010)), as is the case in the failure 

prediction scenario, where no-failure labels outnumber the labels relative to failures 

(see data labeling in Section 3.4). In fact, when a dataset contains more positive than 

negative samples (or vice-versa), a classifier with a fixed-threshold may present a 

poor performance (Chawla, Japkowicz, and Kotcz 2004), which can be improved by 

changing the threshold. Several works demonstrate that threshold-based 

performance analysis is independent of the class priors (i.e., the distribution of the 

samples belonging to each class) (e.g., (Chawla, Japkowicz, and Kotcz 2004; Chawla 

2010; Zweig and Campbell 1993; Fawcett 2006; Wang 2008)).  

Among all the decision threshold-based metrics presented, for the failure prediction 

context we propose the use of ROC analysis due to some significant characteristics, 

namely: independence from the dataset, capability for performing sensitivity 

analysis in the context of varying thresholds, easiness of interpretation of the results, 

and large usage for the assessment of information retrieval systems. 
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 Prediction error-based metrics 5.3.3

The metrics in the third family focus on the prediction error and are widely used in 

the systems control field to compare the effectiveness of different models. In the 

context of benchmarking failure predictors, they can be used to characterize models 

whose output is a class or element (e.g., binary classifiers) or models with a 

numerical real output (e.g., regression models) (F. Salfner, Lenk, and Malek 2010) 

before their output is compared to a threshold for producing such class (e.g., a 1 is 

obtained by checking if the output is above a given threshold, else it is 0). In this 

case, these metrics can complement TP, FP, etc., as they include information on the 

prediction error of each predictor. 

One of the metrics that can be considered is the Mean Square Error (MSE), as it is 

useful to assess the quality of a predictor as an estimator of the occurrence of a 

failure (in terms of probability, time-to-failure, etc.). The definition of the MSE in this 

context is as follows: 

(5.4) 

𝑀𝑆𝐸(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
,

𝑛

𝑖=1

 

𝑌 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑡𝑟𝑢𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

�̂� = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

 

 Time complexity metrics 5.3.4

The metrics belonging to the fourth family are related to the time the models take to 

be trained and optimized (Set-up time) and to perform the prediction (Execution 

time). This is of utmost importance in some scenarios, as there is often a trade-off 

between the performance of an algorithm and the time and resources needed to run 

it. Obviously, the time measured strongly depends on the machine that hosts the 

algorithm (which may not be the target system). 

5.4 Procedure 

Benchmarking requires a rigorous procedure, driving the user from the predictors’ 

assessment to the comparison of the results. Obviously, the failure prediction models 

under benchmarking must share the same training and testing sets, as only in this 

way the final results can be comparable. The proposed benchmark procedure is 

depicted in Figure 5.1, and includes six phases: 
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1) Preparation: this phase consists of identifying the set of parameters for 

benchmarking the failure prediction models (e.g., the metrics to consider, the 

failure modes to predict, the intervals relative to the failure prediction task), 

and selecting and installing the failure prediction models under benchmarking.  

2) Data generation and dataset building: the dataset is built from the data 

collected, organizing the data and associating the information about 

failure/no-failure, according to the approach proposed in Chapter 3. Datasets 

are divided in training data (to train the algorithms), testing data (to test their 

prediction ability), and validation data (for evaluating the prediction 

generalization). Each dataset is relative to a specific scenario, identified by the 

benchmark parameters such as the workload, the failure mode, or the 

prediction time, which influence the system dynamics (reflected in the 

datasets) and may call for a different prediction model. 

3) Execution of the prediction algorithms: each algorithm must be trained 

using a training dataset, while the testing and validation datasets should be 

used for evaluation. In this phase, the output of each predictor is collected for 

later processing (to calculate the relevant benchmark metrics). This phase can 

be divided in three parts: i) training, where the failure prediction algorithm 

is trained using labeled data (training dataset) for discriminating failing from 

non-failing situations; ii) prediction, where each failure predictor tries to label 

a set of unlabeled data (testing dataset); and iii) output collection, where the 

outputs of each failure predictor (i.e., the labels suggested) are collected. In 

order to obtain a sound assessment and comparison, additional tasks may be 

needed such as feature selection, failure prediction optimization, and 

validation. The following tasks are vertical to the training and prediction 

tasks, and are usually performed when training a prediction model: 

a. Features selection: the dataset includes several variables (features). 

However, features do not have the same importance (H. Liu and Yu 

 

Figure 5.1 - The benchmarking procedure using fault injection at runtime 
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2005), and reducing their number frequently increases the prediction 

quality. Well-known methods for feature selection are forward selection 

(starting from a subset, add features until the predictor performance 

starts decreasing), and backward elimination (starting from the entire 

set, exclude features).  

b. Parameters optimization: predictors are trained by fixing several 

parameters, which impact on their performance. Each predictor 

should be assessed using the set of values that maximizes its 

performance. Several techniques for finding the optimal working 

parameters (e.g., number of neurons for a neural network) can be 

found in literature (e.g., (Bishop and others 2006; Kennedy 2010; 

Schölkopf and Smola 2002)). 

4) Performance metrics calculation: the predictions performed by each model 

under benchmarking are processed to obtain a value for the chosen metrics. 

For instance, to compute the Precision of a predictor, the labels produced (i.e., 

the predictions) and the expected labels (testing data labels) are compared, a 

confusion matrix is created (TP, TN, FP, and FN are computed), and the 

Precision is finally obtained. Each predictor should also be evaluated using 

the validation datasets, as one must assure that the performance achieved 

does not depend on a particular dataset (i.e., results are not biased). This 

property (i.e., to which extent the results will hold in the operational scenario, 

or when using a different dataset) is closely related to the confidence one 

may have in the benchmarking results. Validation techniques should be used 

to assess the confidence on the results: an example is k-fold cross validation, as 

showed in the previous chapters. 

5) Assessment and comparison: the user analyzes the benchmark results and 

selects the failure prediction algorithm that best fits its requirements. 

Although not mandatory, the user can use techniques for non-subjective 

analysis of benchmark results, as the one proposed in (Martinez et al. 2014). 

6) Benchmark properties validation: this last step consists of assessing the 

fundamental properties of the benchmark, thus validating the assessment 

and comparison results. The properties to validate are the ones presented in 

Section 5.1. In particular:  

a. Ease of installation and use, promptness, non-intrusiveness and portability 

can be validated through the analysis of the installation and usage 

process during the benchmarking campaign; 

b. Repeatability can be automatically validated through the use of a 

validation technique, as the k-cross fold validation; 
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c. Representativeness can be validated by analyzing the accuracy of 

generated failure data and of the benchmark results, by making use of 

the indirect (or weak) accuracy estimation proposed in Section 3.5.2. In 

fact, accurate benchmark results are a sufficient condition for the 

benchmark to be representative. 

5.5 Case Study: Benchmarking different failure prediction 
models 

In this section we present a case study to demonstrate the process of building a FP 

Benchmark, to analyze its applicability in benchmarking alternative predictors to be 

used on a particular system, and to validate its properties. It is important to 

emphasize that the case study serves only to demonstrate the approach proposed. 

This means that, although realistic, the choices about the workload, the failure 

modes, the failure prediction algorithms, etc., might not be not the most adequate 

ones for real world scenarios.  

The case study aims at assessing and comparing the performance of failure 

prediction systems based on a SVM classifier (Support Vector Machine, (Cortes and 

Vapnik 1995)), predicting failures in a computer system running Windows XP SP3 

OS (i.e., the target system). Four different flavors of a Support Vector Machine are 

benchmarked, including predictors implementing the sliding window technique 

proposed in Section 3.6: 

 FPA1 - SVM classifier (Gaussian kernel);  

 FPA2 - SVM classifier (Gaussian kernel) + sliding window;  

 FPA3 - SVM classifier (Linear kernel);  

 FPA4 - SVM classifier (Linear kernel) + sliding window.  

A representation of the FP Benchmark is shown in Figure 5.2. The target system is a 

virtualized Windows OS running on top of a VMWare vSphere server (Frappier 

2014), executing two workloads (WinRAR (RAR Lab) and COSBI OpenSourceMark 

(“COSBI OpenSourceMark”)). The benchmark is implemented on an 

analysis/controller system, in charge of controlling the experiments and analyzing 

the failure data coming from the system, while fault injection and data collection is 

performed on the target system. The fact that the target system is a virtualized 

machine allows simplifying the management of the experiments, permitting easily 

starting/stopping/rebooting the target system, as well as restoring its internal state 

after each fault injection run, following the recommendations in Section 3.3. It is 

worth noting that in this case study we do not focus on examining the accuracy of 
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the failure data generated using a virtualized environment, as the original target 

system is also a virtualized system, hence the failure prediction models will work 

directly on information coming from a virtualized environment. 

The failure prediction models were run on the analysis machine, to isolate them 

from the target system environment. In practice, the configurations of the machines 

are the following: 

 Machine #1 (target system): Intel i5-650@3.60GHz machine, 8GB RAM, 

running a Windows XP OS (SP3) in a VMWare vSphere server based on ESXi 

v5.0.  

 Machine #2 (analysis/controller system): Intel i5-650@3.60GHz machine, 8GB 

RAM, running a Windows XP OS (SP3). 

For implementing the benchmarking procedure we used the PowerShell scripting 

language for Windows OS environments (Siddaway 2012). This scripting language 

permitted, in particular, a fast prototyping and easy implementation of 

functionalities, with the native and easy use of network communication. The 

analysis of the benchmarking results is conducted in the analysis machine by using 

the MATLAB environment, which supports the manipulation of data related to the 

failure prediction, such as the datasets, the prediction results, and so on.  

The failure prediction models (based on SVM) are based on the ones implemented 

by the libSVM C/C++ libraries (Chang and Lin 2011), which provides interfaces for 

Windows- and Linux-based operating systems, as well as utility programs for the 

analysis of the prediction results for MATLAB and similar environments. 

About the data generation and collection, we selected the failure modes (Crash and 

Hang) and tools used in the case study in Chapter 3. Recalling, we monitored 233 

 

Figure 5.2 – FP Benchmark components deployed. 
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numerical variables representing the state of the OS resources, at the sample rate of 

one value per second, using the Logman tool that is included in Windows OSs 

family. A three-step feature selection was used to select the set of variables that 

maximizes the performance of the prediction system. The resulting set consists of 25 

variables out of the initial 233 (see Table 5.2), for each scenario <WKL, Failure>, and 

for each couple of values (∆tl, ∆tp) considered in the analysis. Again, we adopted the 

G-SWFIT software fault injection tool and injected faults in the code of the dynamic 

libraries (the kernel32.dll and ntdll.dll system library modules) used by the system 

process svchost.exe (a more detailed description is in Section 3.3). The injection in 

kernel32.dll and ntdll.dll modules leads to different datasets.  

The number of experiments (i.e., fault injection runs) needed to benchmark the 

failure prediction models was calculated in order to have enough failures to train, 

test and validate the models. In practice, we analyzed the activation rate (i.e., a fault 

eventually causing a failure) in the experiments presented in the previous chapters, 

during which we observed an average activation rate of 2%. Thus, for causing one 

Table 5.2 - Selected variables, for (WKL1, Crash) and (∆tl,∆tp)=(10s, 5s) 

Variable ID Variable name Monitored component 

106 % Committed Bytes In Use Memory 

115 Demand Zero Faults/sec Memory 

123 Pool Nonpaged Allocs Memory 

109 Available Mbytes Memory 

117 Page Faults/sec Memory 

125 Pool Paged Allocs Memory 

128 System Cache Resident Bytes Memory 

127 Pool Paged Resident Bytes Memory 

201 C2 Transitions/sec Processor 

192 % C2 Time Processor 

209 Exception Dispatches/sec System 

220 System Calls/sec System 

210 File Control Bytes/sec System 

154 Avg. Disk sec/Write PhysicalDisk 

156 Current Disk Queue Length PhysicalDisk 

152 Avg. Disk sec/Read PhysicalDisk 

155 Avg. Disk Write Queue Length PhysicalDisk 

94 Avg. Disk sec/Transfer LogicalDisk 

139 Semaphores Objects 

182 Pool Nonpaged Bytes Process 

173 IO Other Bytes/sec Process 

39 Sync Data Maps/sec Cache 

26 Data Map Pins/sec Cache 

16 Async Copy Reads/sec Cache 

224 % User Time Thread 
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hundred failures, we decided to execute each workload at least 3000 times. The 

datasets are organized as proposed in Chapter 3: each dataset is divided in training 

(to train the model) and testing data (to test its prediction ability), using a 50% ratio. 

The data are labeled based on different (∆tl, ∆tp) parameters. 

The metrics chosen for assessing the failure prediction algorithms are the ROC-AUC, 

the F-Measure (F. Salfner, Lenk, and Malek 2010) (considering the optimal threshold 

point found with the ROC method), the Set-up time (i.e., the time needed for a 

predictor to be trained), and the AUC/Set-up time ratio.  

 Benchmarking campaign 5.5.1

Table 5.3 summarizes the benchmarking parameters, including the failure prediction 

models, the failure modes, the variable selection method, and so on. A tuple of 

parameters <Dataset length, Workload, Failure Mode, ∆tl, ∆tp> is associated to each 

benchmark run, resulting in a total of 100 runs, in which the predictors are 

benchmarked. The combination <Workload, Failure mode> allows defining four 

different scenarios for the analysis: <WKL1, Crash>, <WKL1, Hang>, <WKL2, Crash>, 

and <WKL2, Hang>. The failure prediction parameters we considered include 

predictions lead-time ∆tl from 10s up to 50s in advance, with a maximum prediction 

interval ∆tp of 25s. The windowing value for the FPA2 and FPA4 is between 2s and 

10s. 

Details about the failures generated are presented in Table 5.4. We should highlight 

the fact that the failure occurrence is, as expected, 2% in average, the same activation 

rate obtained in our case studies presented before. The entire benchmarking 

campaign took about one month. In the next sections we present and discuss the 

benchmarking results from multiple perspectives. 

Table 5.3 - The details of the analysis 

Parameter Values 

Failure Modes Crashes, Hangs 

Workloads WKL1 (WinRAR), WKL2 (COSBI OpenSourceMark) 

Predictor SVM (Gaussian kernel) 

Variable selection Backward elimination + wrapper approach 

Predictor Optimization Grid search (gross) + Deepest descend (fine) 

(γ, C) (Grid search) γ= [2-10,1], C=[2-1, 27] 

∆tl (Failure prediction) 10, 20, 30, 40, 50 s 

∆tp (Failure prediction) 5, 10, 15, 20, 25 s 

Window size (w) 2,3,4,7,10 s 

Results validation 5-folds cross validation 
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 Best performing Failure Prediction model 5.5.2

The first analysis is focused on the absolute performance of the predictors, i.e., not 

considering the performance relative to a specific (∆tl, ∆tp). The results are shown in 

Figure 5.3. The first bar of each couple represents the F-Measure of a single 

predictor, and the second its ROC-AUC. Each of the four plots is relative to one of 

the four operational scenarios. In the first scenario <WKL1, Crash>, the predictor 

with the highest F-Measure (and ROC-AUC) is FPA2, i.e., the SVM classifier with a 

sliding window and a Gaussian kernel. In the second scenario <WKL1, Hang>, the 

best performance was obtained by FPA1 (SVM classifier with a Gaussian kernel) both 

in terms of ROC-AUC and F-Measure. This same algorithm has the best performance 

in the third scenario <WKL2, Crash> scenario. Finally FPA3 (SVM classifier with a 

linear kernel) performs better than the others in the last scenario <WKL2, Hang>.  

Table 5.4 - Failures generated 

Workload 
# Golden 

Runs 

# Fault 

Injection Runs 

Failures detected 

Total % 
System 

Crash % 

System  

Hang % 

WKL1 500 3000 121 (4.03%) 46 (1.53%) 75 (2.5%) 

WKL2  500 3000 74 (2.47%) 6 (0.2%) 68 (2.27%) 

   

 

 

 
(a) WKL1, Crash  

 
(b) WKL1, Hang 

 

 

 

(c) WKL2 , Crash  (d) WKL2 , Hang 

Figure 5.3 - FPA with the highest F-Measure/ROC-AUC. 
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It is worth noting that the performance (F-Measure and ROC-AUC) is an average of 

the performance of each predictor on each of the partial datasets coming from the k-

fold cross validation, and that similar conclusions can be obtained considering either 

the F-Measure or the ROC-AUC. Moreover, each performance value is the maximum 

observed among the parameters (∆tl, ∆tp), i.e., the performance is the best achievable. 

This makes sense, as a failure prediction algorithm should be used for a specific 

couple of values (∆tl, ∆tp). In this case, the predictor performance is maximized by 

the parameters (∆tl*, ∆tp*). In the same way, FPA2 and FPA4 performance is the 

maximum value for the couple (∆tl, ∆tp) and the windows width w.  

The fact that there are different best predictors for different scenarios suggests an 

influence of the workload in failure prediction. Recalling the observations about the 

use of the sliding window in Chapter 3, we can confirm that such technique still 

outperforms classifiers that do not include the time dimension in several cases. 

 Best Failure Prediction model for each couple (∆tl, ∆tp) 5.5.3

The objective of the second assessment is to select the best predictor given a 

prediction horizon (∆tl, ∆tp). This scenario may emerge when one needs a failure 

predictor with specific characteristics in terms of prediction lead-time, for instance 

due to the target system characteristics. Table 5.5 shows the best failure prediction 

algorithm for each couple (∆tl, ∆tp) and the relative average performance in terms of 

the F-Measure. The results relative to ROC-AUC are omitted as they lead to similar 

conclusions. Again, the best performing failure prediction algorithm varies for each 

scenario and for each prediction horizon (∆tl, ∆tp). The most interesting scenario is 

<WKL2, Hang>, where a different predictor (among FPA1, FPA2 and FPA3) is 

proposed for each couple (∆tl, ∆tp), which is coherent with the results in the previous 

section. 

The results in Table 5.5 may help in the design phase of a failure prediction system, 

to better select the prediction horizon (∆tl, ∆tp). Moreover, at runtime a meta-

predictor can be used for selecting one among the results provided by the predictor 

for each (∆tl, ∆tp) horizon, thus achieving the highest prediction performance. It is 

also worth noting that failure prediction can generally follow two approaches. In a 

first one, the values of ∆tl and ∆tp are defined by the needs of the system (e.g., a web 

server would need a prediction at least 1 minutes in advance, to have time to save its 

internal state) or by contract (e.g., on a Service Level Agreement). The second 

approach consists of having several values, resulting in a “best-effort” approach 

(e.g., train several predictors considering the multiple combinations of ∆tl and ∆tp 

and choose the one that performs better) (Ivano Irrera, Pereira, and Vieira 2013). 
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Table 5.5 - Predictors F-Measure relative to prediction parameters ∆tl and ∆tp 

∆tp 

∆tl 

 10s 20s 30s 40s 50s 

5s FPA2, 0.549 FPA2, 0.611 FPA2, 0.696 FPA2, 0.747 FPA2, 0.854 

10s FPA2, 0.696 FPA2, 0.747 FPA2, 0.854 FPA2, 0.879 FPA2, 0.894 

15s FPA2, 0.854 FPA2, 0.879 FPA2, 0.894 FPA2, 0.917 FPA2, 0.936 

20s FPA2, 0.894 FPA2, 0.917 FPA2, 0.936 FPA2, 0.944 FPA2, 0.906 

25s FPA2, 0.936 FPA2, 0.944 FPA2, 0.906 FPA2, 0.897 FPA2, 0.894 
 

(a) WKL1, Crash 

∆tp 

∆tl 

 10s 20s 30s 40s 50s 

5s FPA1, 0.877 FPA1, 0.921 FPA1, 0.930 FPA1, 0.936 FPA1, 0.934 

10s FPA1, 0.930 FPA1, 0.936 FPA1, 0.934 FPA2, 0.947 FPA1, 0.969 

15s FPA1, 0.934 FPA2, 0.947 FPA1, 0.969 FPA2, 0.963 FPA2, 0.965 

20s FPA1, 0.969 FPA2, 0.963 FPA2, 0.965 FPA2, 0.963 FPA2, 0.970 

25s FPA2, 0.965 FPA2, 0.963 FPA2, 0.970 FPA1, 0.973 FPA1, 0.990 
 

(b) WKL1, Hang 

∆tp 

∆tl 

 10s 20s 30s 40s 50s 

5s FPA1, 0.877 FPA1, 0.921 FPA1, 0.930 FPA1, 0.936 FPA1, 0.934 

10s FPA1, 0.930 FPA1, 0.936 FPA1, 0.934 FPA2, 0.947 FPA1, 0.969 

15s FPA1, 0.934 FPA2, 0.947 FPA1, 0.969 FPA2, 0.963 FPA2, 0.965 

20s FPA1, 0.969 FPA2, 0.963 FPA2, 0.965 FPA2, 0.963 FPA2, 0.970 

25s FPA2, 0.965 FPA2, 0.963 FPA2, 0.970 FPA1, 0.973 FPA1, 0.990 
 

(c) WKL2, Crash 

∆tp 

∆tl 

 10s 20s 30s 40s 50s 

5s FPA3, 0.907 FPA2, 0.896 FPA2, 0.901 FPA2, 0.907 FPA2, 0.897 

10s FPA2, 0.901 FPA2, 0.907 FPA2, 0.897 FPA2, 0.875 FPA2, 0.870 

15s FPA2, 0.897 FPA2, 0.875 FPA2, 0.870 FPA2, 0.855 FPA3, 0.853 

20s FPA2, 0.871 FPA2, 0.855 FPA3, 0.853 FPA3, 0.851 FPA2, 0.845 

25s FPA3, 0.853 FPA3, 0.851 FPA2, 0.845 FPA2, 0.836 FPA3, 0.836 
 

(d) WKL2, Hang 
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 Performance vs Computational cost 5.5.4

The benchmark also allows other interesting analysis, as on the computational cost 

of the best performing failure prediction algorithm. In Figure 5.4 we compare the 

failure prediction algorithms on the basis of the ROC-AUC, the Set-up time, and the 

ratio AUC/Set-up time. The Set-up time actually represents the computational cost of 

the algorithm and is shown in the plot as a relative value, i.e., divided by the 

maximum average Set-up time obtained during the benchmarking campaign (this is 

just a rescaling operation that does not influence the observations).  

In scenarios <WKL1, Crash> and <WKL1, Hang>, the failure predictor that showed 

the best AUC/Set-up time ratio is FPA1 followed by FPA2. This was expectable, as 

FPA1 and FPA2 are the best performing predictors in these scenarios, and training an 

SVM with a linear kernel takes much less time than training a SVM with a Gaussian 

or other kinds of non-linear kernels. In scenario <WKL2, Crash> the best ratio was 

obtained by FPA3, and FPA1 performed best in the case of hang failures. The results 

in terms of AUC/Set-up time ratio make evident the fact that, in general, the gain 

obtained in terms of performance is not justified by the computational cost that 

comes with it. If the cost in terms of Set-up time has to be taken into account, the 

performance/computational cost ratio should be considered as an input of the 

selection decision.  

  
WKL1, Crash WKL1, Hang 

 
 

WKL2 , Crash WKL2 , Hang 

Figure 5.4 - Performance vs Computational cost 
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 Properties of the implemented benchmark 5.5.5

In this section we discuss the concrete properties of the FP Benchmark, analyzing its 

implementation and usage. In some cases it was necessary to experimentally validate 

the benchmark properties (e.g., repeatability) and in the other cases the validation is 

based on reasoning (e.g., easy to implement and use).  

A benchmark that is not easy to implement and use is clearly unacceptable. Our 

benchmark is implemented using PowerShell scripting, C++ libraries and the 

MATLAB environment, largely adopted and easy to use solutions. Our benchmark is 

completely automatic, fast and based on simple procedures. In particular, although 

complex, the fault injection is facilitated by existing tools of easy use, as the G-

SWIFIT tool (J. A. Duraes and Madeira 2006). 

About the promptness in obtaining the benchmarking results, using fault injection 

we were able to cause 195 failures in less than 800 hours. We tried to compare such 

statistics against Windows XP OS failures data available online, which are rather 

rare and incomplete. Nevertheless, a study on Microsoft products mentions that 

Windows XP OS has a 600 hours MTTF, although this value considers both OS and 

application failures (“Tech Insider - Various Studies”). In this perspective, even 

considering both OS and application failures, using fault injection reduces the 

collection of failure data by two orders of magnitude.  

For addressing the property of the benchmark to be not intrusive, the predictors’ 

control, execution, results collection and analysis are processed by a separate system 

(controller or analysis system), which assures non-intrusiveness on both the prediction 

models behavior and the target system behavior. Furthermore, the benchmark does 

not require any kind of modification on the failure prediction models, as they simply 

use the dataset generated from the target system for training and testing purposes. 

On the other hand, the fault injection tool is intrusive, but this is something we 

cannot avoid considering the proposed technique for generating failure data. 

A benchmark must allow comparing different tools in different domains and for 

different types of systems, thus being portable. In our case, this is a property that 

applies to the benchmarking framework and not to a concrete implementation (the 

implemented benchmark can only be used in the target system for which the tools 

were developed). In practice, the more general the benchmarking components are 

(i.e., their capability of being implemented on every kind of architecture, or whose 

implementation is hardware-independent), the more the benchmarking process is 

portable. In our case, every component of the benchmark is portable, and the 

benchmark can be used to assess and compare any kind of failure prediction model. 

In particular, the workload can be implemented on any software system and the 

faultload and fault injection tool can be defined for different types of systems 

following the recommendations in (J. A. Duraes and Madeira 2006). 
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When run more than once over the same failure prediction model, the benchmark 

must report the same results (at least in statistical terms). Repeatability is a 

fundamental property, as each execution of the benchmark should give confidence 

about the results obtained. A necessary condition that the benchmark addresses is 

keeping the faultload and the workload parameters constant, as well as restoring the 

target system state at the beginning of each fault injection run. The results from 

applying the k-fold cross validation to the dataset also gives to us some insights on 

how the results vary. Table 5.6 presents the ROC-AUC measurements relative to two 

of the failure prediction algorithms benchmarked considering different dataset folds. 

The results are relative to the best ROC-AUC values in the case <WKL1, Crash> and 

we can observe that the distribution of the values does not vary considerably in the 

case of the FPA1, while the FPA2 there are some variations, which are most likely due 

to the prediction values chosen (Table 5.5 (a) confirms that FPA2 had poor 

performance using (∆tl, ∆tp)=(10s, 5s))). Such results suggest that the benchmark is 

repeatable.  

Finally, the results the benchmark should be representative of real world scenarios, 

as only in this case they may be considered relevant. In this particular scenario, 

representativeness also depends on the accuracy of the failure data. Necessary 

conditions for generating accurate data are the injection of realistic software faults, 

i.e., software faults that are likely to be found in real systems (J. A. Duraes and 

Madeira 2006), and the representativeness of the workload used for generating 

failure data, as presented in Chapter 3. On the other hand, a sufficient condition for 

the benchmark results to be representative is their accuracy with respect to results 

obtained in a real scenario. We here validate the benchmark representativeness by 

using the weak accuracy estimation analysis, as it involves the analysis of performance 

of the predictors. Thus, we used the approach already introduced in Chapter 3, 

building two datasets based on the injection of faults in two different modules: 

kernel32.dll (Dataset#1) and ntdll.dll (Dataset#2). Here we use the relative 

performance estimation metric εµ* applied to the mean values of the predictors, 

which is calculated as the relative error between the performance obtained using two 

different datasets as defined by equation (3.4). 

Table 5.7 shows the results relative to the best performing failure prediction 

algorithm for each scenario and each (∆tl, ∆tp), together with the relative 

performance error εµ*. The synthetization error estimates εµ* show a value between 

about 0,2% and 5%, in terms of ROC-AUC, which suggests an error of at most 5% in 

terms of ROC-AUC in predicting in a real (or at least different) operational scenario. 

Table 5.6 - ROC-AUC distribution along the dataset folds (excerpt). 

Failure prediction  

algorithm 
 (∆tl, ∆tp)  ROC-AUC values (folds) 

FPA1 (30s, 5s) 0,96 0,93 0,96 0,86 0,96 

FPA2 (10s, 5s) 0,96 0,78 0,94 0,79 0,95 
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Such results imply that the benchmarking representativeness can be improved, 

aiming at reducing the error estimate εµ* to zero by improving the several 

components and parameters used. Benchmarking results with a given εµ* can still be 

used, however the user must consider that the measured performance value of a 

given failure predictor FPAi has an associated risk value corresponding to ε*FPAi. The 

results also show that the algorithms ranking keeps in the validation, except in 

scenario <WKL1, Hang>, where FPA2 performs better than the expected best-

performing FPA1. However, this has been assessed as a side effect due to the reduced 

number of failures available to validate the results.  

5.6 Final remarks 

In this chapter we proposed a benchmarking framework for a sound assessment and 

comparison of alternative failure prediction models on a particular target system. 

The framework is based on the failure data generation approach proposed in 

Chapter 3, making use of realistic software fault injection, and allows an easy and 

prompt analysis of the prediction models. We provided guidelines for the 

implementation of the benchmark and discussed the relevant properties, such as 

being simple to implement and to use, being fast in its execution, being portable and 

non-intrusive, and providing results that are repeatable and representative. 

The proposed benchmarking framework includes three key components, namely the 

dataset (build using the approach in Chapter 3), the benchmarking metrics and the 

analysis procedure. In particular, we proposed four families of metrics for taking 

into account the properties of a failure prediction model to be fairly assessed, which 

enables the benchmarking results to be generally accepted. 

The proposed benchmark was used in a concrete case study based on the Windows 

XP OS. Two different workloads and two failure modes were considered, and four 

failure predictors were assessed and compared under different scenarios. The results 

showed that the procedure could be used for training and testing failure predictors 

Table 5.7 - ROC-AUC and synthetization error. 

 WKL1 Crash WKL2  

 FPA1 FPA2 FPA3 FPA4  FPA1 FPA2 FPA3 FPA4 

Dataset#1 0,963 0,976 0,960 0,825 

 

0,998 0,986 0,996 0,978 

Dataset#2 0,975 0,995 0,938 0,784 0,997 0,980 0,995 0,979 

εµ* (%) 1,2 1,9 2,3 5,0 0,1 0,6 0,1 0,05 

 WKL1 Hang WKL2  

Dataset#1 0,973 0,946 0,850 0,876 

 

0,994 0,970 0,929 0,907 

Dataset#2 0,885 0,927 0,852 0,834 0,968 0,923 0,925 0,869 

εµ* (%) 8,8 2,0 0,2 4,8 2,6 4,8 0,4 4,2 
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in a cost-effective and easy way. The properties that a benchmark must ensure were 

discussed and validated. In particular, we assessed the representativeness of the 

results by estimating the accuracy of the generated failure data by using the weak 

synthetization metrics. 

The next chapter presents a framework for addressing the problem of using failure 

prediction models in evolving systems, in which there may be a need for re-training 

a failure predictor after a change affects the target system or its environment. In 

particular, we propose an automatic framework for assessing and re-training failure 

prediction models on need-only basis, as manually re-training a predictor is a 

complex and high cost activity.  
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Chapter 6 
A framework for continuous 
training of Failure Predictors  

In the previous chapters we addressed the problem of training and assessing failure 

prediction models under the scarcity of failure data. We demonstrated that realistic 

software fault injection could be used for generating failure data in short time and 

proposed a framework for a sound assessment and comparison of alternative failure 

prediction models on a particular system installation. However, the scenario 

considered in such works is static, i.e., we assume that the target system does not 

change over time, which is a questionable assumption in some cases. Computer 

systems are nowadays expected to evolve, repeatedly and in several different ways. 

For instance, some hardware or software component may be changed during the 

target system lifecycle or the system itself may be subject to updates (e.g., a software 

patch), upgrades, or changes in its behavior (e.g., changing policies in memory 

management, installation of new protocols).  

In scenarios where changes in the target system occur, the performance of failure 

prediction models may degrade (this is particularly evident in the case of long-

running servers). Although one can develop adaptive failure prediction algorithms to 

cope with expected changes by adapting the prediction model to the environment, 

there is no guarantee that the expected changes are the only ones occurring (i.e., 

unexpected changes may also happen, degrading the prediction performance). 

Adapting the failure prediction model over time is thus a necessary step that 

requires additional effort, as training and optimizing predictors are still essentially 

manual procedures (e.g., (I. Irrera, Duraes, and Vieira 2014; I. Irrera et al. 2010; G.A. 

Hoffmann 2006; G. F. Hughes et al. 2002)), and failure data scarcity has an even 

greater impact (compared with a static scenario).  

In this chapter we propose a preliminary framework for the automatic adaptation 

of failure prediction models (Adaptive Failure Prediction Framework, AFP Framework), 
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which allows automatically re-training and deploying a failure prediction model 

when particular events occur, thus reducing the cost of the re-training process. The 

idea consists of having an integrated environment driven by configurable events that 

trigger the models’ adaptation process. This is based on the use of the approach for 

generating realistic failure data proposed in Chapter 3 and virtualization to reduce 

the cost and impact on the target system. In practice, the framework has the 

following key characteristics: 

 The framework supports automated self-adaptation to accommodate 

evolving systems. The failure predictors (re-)training process is automated, 

based on a modular event-driven architecture to detect when re-training is 

needed. An event corresponds to some occurrence in the system that may 

affect the prediction performance.  The framework is configurable to meet the 

requirements and target system specificities, allowing the user to define 

events.   

 The framework uses the approach proposed in Chapter 3 for generating 

failure data based on software fault injection, which reduces the time 

needed to (re-)train a predictor. This allows automating the failure prediction 

training, testing and validation, reducing time and human intervention, 

which is limited to the set-up of the framework. 

 The framework uses a virtualization environment to sandbox the fault 

injection process, avoiding injecting faults in the target system (i.e., the fault 

injection takes place in a sand-boxed copy of the target system). In fact, as 

discussed in Chapter 4, injecting faults during operation would cause 

unacceptable side effects.  

The AFP Framework is provided as a conceptual structure, including the architecture, 

the basic procedures involved (e.g., training, testing, fault injection and failure data 

collection, etc.), and guidelines for its implementation. Although being a preliminary 

work, the framework can already be implemented in a concrete target system by 

following the guidelines provided and by adapting the parts that are dependent on 

the specificities of that system (e.g., the workload to be executed on the target replica 

and the faults to inject). To demonstrate the effectiveness of the propose framework, 

this chapter includes a case study in which the framework is implemented in the 

context of a web server, showing that the solution is able to keep the predictor 

performance above a given threshold with small human intervention, under 

changing conditions. 

Before describing the proposed framework, we also present a study that confirms 

the need for adaptive failure prediction systems. In particular, we study the 

performance of a failure predictor when used to forecast failures in an Apache 

Tomcat web-serving system under successive software updates.  
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The remainder of the chapter is organized as follows. Section 6.1 analyzes the 

performance of a failure prediction model in a changing system. Sections 6.2 and 6.3 

present the proposed framework for implementing an Adaptive Failure Prediction 

environment. Section 6.4 presents the case study that demonstrates the applicability 

of the framework. Finally, section 6.5 concludes the chapter.  

6.1 On the need for continuous training of failure 
prediction models 

In this section we study the following hypothesis: 

“a change in a system (e.g., a system upgrade) degrades the failure prediction performance, 

thus requiring a retraining of the prediction model”. 

We believe that this study is fundamental for motivating the framework proposed in 

this chapter, as training is a costly and complex operation (even considering the use 

of fault injection) and it should be done on a need-only basis. This way, 

understanding if changes effectively affect the failure prediction performance in 

order to avoid running a failure prediction system with degraded, possibly 

worthless, performance, and also to prevent unnecessary retraining efforts is a key 

aspect.  

 Overview of the study 6.1.1

The idea is to study the prediction performance looking for any degradation as the 

target system is updated. If some degradation is observed, then the predictor is 

updated (i.e., trained to predict failures in the updated environment) and re-assessed 

in order to understand if there is some performance recover. The assessment is based 

on the benchmarking approach presented in Chapter 5 applied to a virtualized target 

system (as before, virtualization provides a fast evaluation environment that isolates 

the target system for hosting fault injection).  

Considering B and C as successive versions of an initial version A, and PA,B, the 

performance (e.g., Precision, Recall, ROC-AUC, …) of the failure predictor trained 

with failure data from system version A, but being used in the system version B 

(updated system), we aim at confirming that: 

(6.1) {

𝑃𝐵,𝐵 > 𝑃𝐴,𝐵

𝑃𝐶,𝐶 > 𝑃𝐴,𝐶

𝑃𝐶,𝐶 > 𝑃𝐵,𝐶

 

The failure prediction model used is the Support Vector Machine (SVM) classifier 

with a sliding window and the purpose is to predict failures in a Windows OS server 

running the Java-based application server Apache, which is subjected to two 
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updates. In practice, three versions of the Tomcat server (namely versions 6.0.36 (A), 

7.0.19 (B), and 7.0.40 (C)) were used and the performance cases assessed are referred 

to as PA,A, PA,B, PA,C, PB,B, PB,C, PC,C (see Table 6.1). The remaining cases were not 

analyzed, as we are interested only in the cases in which a predictor is trained with 

data coming from a previous version of the target system (and not the reverse).  

To reduce the time needed for the experiments we installed the target system in 

three different virtual machines, thus parallelizing the collection of data and 

prediction results by a factor of three. The complete set-up is presented in Figure 6.1. 

The base version of Tomcat (6.0.36) was installed in the three virtualized systems, 

and in two of the virtual machines we updated Tomcat to version 7.0.19 and version 

7.0.40, respectively, to implement the system upgrade/evolution aspect of our case 

study. The systems are installed on separated Citrix XEN servers (hypervisors) 

(Citrix) in order to avoid error propagation from one machine to another and 

potential influence in the variables monitored (it has not been proven yet that faults 

can or cannot propagate from a virtual machine to another). The controller systems 

are in charge of managing the experiments, analyzing the failure data coming from 

the target system, and hosting the failure predictor. 

The characteristics of the different system are the following: 

 Sandbox system: Intel i5-650@3.60GHz (quad-core) machine, 8GB RAM, 500 

GB HDD, running XEN hypervisor server version 6.2.  

 Target systems: 4 VCPUs, 4GB RAM, 50GB HDD, running Tomcat on the top 

of a Windows XP OS (SP3).  

 Controller systems: Intel i5-650@3.60GHz machine, 8GB RAM, running a 

Windows XP OS (SP3). 

Data coming from a target system Sx are organized in a dataset DSx, containing 

Failure Data and Golden Data. As defined in Chapter 3, each dataset is divided in a 

Train dataset (TDSx) and a Test dataset (TTDSx), and the performance of the failure 

predictor when upgrading a system from version A to version B (PA,B) is obtained by 

training the predictor using the training set TDSA and then testing it using TTDSB. As 

we must assure that the predictor performance does not depend on a particular 

dataset, the predictor is evaluated several times using k-fold cross validation.  

Table 6.1 - Failure predictor performance comparison.  

 Testing on Tomcat version… 

Training on 

Tomcat version… 

 #A (6.0.36) #B (7.0.19) #C (7.0.40) 

#A (6.0.36) PA,A PA,B PA,C 

#B (7.0.19) - PB,B PB,C 

#C (7.0.40) - - PC,C 
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The dataset DSX is partitioned in k parts, obtaining k groups (folds) by taking 

different partitions as training and testing datasets each time, leading to different 

datasets DSXk. The predictor is then assessed using k different datasets (TDSXk, 

TTDSXk), obtaining a distribution of the predictor performance <PX,Y1, PX,Y2, …, PX,Yk>. 

We characterize the performance of the predictor in terms of the ROC-AUC.  

The target systems are restored after each fault injection run, using the snapshotting 

and system restore functionalities provided by the XEN hypervisor. The approach 

proposed in Chapter 3 is used for generating the data, and the fault model, faultload, 

failure modes (Crash and Hang) and tools (including the SVM predictor with a sliding 

window) considered are the same used in the case study presented in Section 3.6. The 

difference is the workload, which consists in the set of operations defined by the 

TPC-W benchmark (Smith 2000), which is representative of real world-application 

scenarios (thus being a realistic workload).  

TPC-W is a standard specification for benchmarking transactional web-serving 

systems, and the workload emulates typical operations executed by web servers in 

the form of an online bookstore. It includes an application implement as Java servlets 

to be deployed on the web server, and clients requiring the server to perform 

different types of operations. Hence, the TPC-W workload simulates an online 

bookstore serving client requests, where the clients are emulated by the controller 

system, and submit browsing and purchasing operations to the web server. In this 

 

Figure 6.1 - Experimental setup parallelizing the generation of failure data. 
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work we not consider workload variations, i.e., the workload parameters such as the 

client average request rate, the number of clients and the workload execution time, 

among others, are kept constant over time. 

We monitored 233 numerical variables in each target machine whose values 

characterize the state of the OS resources, sampled at the rate of one value per 

second using the Logman tool that is included in Windows OSs family. As was done 

before, a three-step feature selection was used, reducing the set of variables to 25 (see 

more about this process in Section 3.6.2). The variable selection was performed for 

each tuple of values (∆tl, ∆tp) on the system hosting the base version of Tomcat, for 

making the performance results comparable along the updates. An excerpt of 10 out 

of 25 variables is shown in Table 6.2. 

 Collected data 6.1.2

Details about the analysis parameters are shown in Table 6.3. The width of the sliding 

window is of 2 and 3 seconds, and the lead-time of the prediction ∆tl was between 10 

and 40 seconds, with a prediction window ∆tp from 5 to 15 seconds. These values 

were chosen to simulate a realistic web-serving scenario. We believe that knowing if 

a failure is occurring 20 seconds in advance is sufficient for a system running Tomcat 

to save its status; obviously a larger prediction gives more time to react, but then the 

prediction performance may be poorer.  

We executed about 2000 fault injection runs, each lasting about 240 seconds. One 

fault was injected in each run, leading approximately to 75 failures per target system 

(data about the failures observed in each Tomcat version are presented in Table 6.4). 

In practice, the workload was executed 2025 times (25 GR + 2000 FIR). The somewhat 

low number of failures was expectable, as there is no guarantee that the fault 

Table 6.2 - Monitored variables, an excerpt. 

Variable name Monitored component 

Pool Paged Allocs Memory 

Pool Nonpaged Bytes Memory 

C2 Transitions/sec Processor (core 0) 

Page Faults/sec Process java.exe 

IO Read Bytes/sec Process svchost.exe 

Avg. Disk sec/Transfer LogicalDisk 

System Calls/sec System 

Semaphores Objects 

Context Switches/sec Thread 

Lazy Write Pages/sec Cache 
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locations of the injected faults are within code actually executed (J. A. Duraes and 

Madeira 2006).  

 Results and discussion 6.1.3

Table 6.5 presents the average of the predictor performance in terms of ROC-AUC 

after a 5-fold cross validation (only w=2 is presented, as the results obtained with 

w=3 are not noticeably different), optimized according to the parameters (∆tl, ∆tp), 

thus being the best performance results obtainable varying the couple (∆tl, ∆tp). 

Starting from the results in Table 6.5, we can notice that the average value of PA,B is 

smaller than the average of PB,B, confirming the thesis that updating the system from 

version A to version B and not retraining the predictor may cause degradation in the 

predictor performance. When updating to version C, re-training the predictor is also 

the best choice (PC,C=0.9889) if it was trained using version B (PB,C=0.7689). However 

PA,C has the same value of PC,C, possibly meaning that a re-train is not necessary. 

Nonetheless, such result may depend on several factors: for instance, version A and 

C of Tomcat may have similar behavior, even if a more likely reason is the fact that 

Table 6.3 - Analysis parameters 

Parameter Values 

Failure Modes Crash, Hang 

Workload TPC-W 

Run duration 240 s 

Total runs 25 GRs + 2500 FIRs 

Predictor SVM (Gaussian kernel) + time windowing w= [2,3] 

Variables (number) 170 

Variable selection Backward elimination + wrapper approach 

Predictor Optimization Grid search (gross) + Deepest descend (fine) 

(γ, C) (Grid search) γ= [2-10,1], C=[2-1, 27] 

∆tl (Failure prediction) 10, 20, 30, 40 s 

∆tp (Failure prediction) 5, 10, 15 s 

Results validation 5-folds cross validation 

Table 6.4 - Workload runs and failures occurred. 

Tomcat 

ver. 

Golden 

Runs 

Fault Injection 

Runs 

Failures 

detected 

System 

Hangs (%) 

6.0.36 (A) 25 2500 73 (2.92 %) 

7.0.19 (B) 25 2500 82 (3.28 %) 

7.0.40 (C) 25 2500 79 (3.16%) 
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such values are the average of the performance results coming from each fold, which 

may mask an existing difference between the two results.  

A more detailed analysis of the predictor performance is presented in Figure 6.2, 

making use of Box-plots charts: each vertical bar represents the minimum, the 

maximum, the second and fourth quartile, and the median value of the ROC-AUC 

values obtained using the k-fold cross validation. We present the results using 

different windowing sizes (w=2 and w=3) to confirm that the results do not depend 

on w. When using obsolete training data, the performance PA,B, PA,C, PB,C drops for all 

values of w. However, in the case of PA,C the average performance seems not to get 

worse (seemingly, re-training is not needed) but  the dispersion around the median 

value increases. This means that we have less assurance of obtaining a performance 

near a given value.  

The PA,C case can be thus read as a loss of quality (performance) in the predictor 

behavior.  It is worth mentioning that the performance PA,C is better than PA,A. This 

result may be due to several reasons: most likely the Tomcat version 6.0.36 has some 

unpredictable behavior that version 7.0.x does not have, which makes the prediction 

harder. For instance, the Tomcat developers introduced in version 7 a “Web 

application memory leak detection and prevention” module (Vukotic and Goodwill 2011; 

“Tomcat Version 7 - Changelog”), which may be the cause for the data collected 

from version 7.0.x to contain less interference (due to better memory management).  

Based on the results above, we can confirm the hypothesis that upgrading a system 

from a version to a newer one may lead the prediction performance to degrade, 

thus requiring retraining with data collected from the updated target system. Results 

also confirm that re-training can improve and recover the performance of the 

predictor.  

  

Table 6.5 - SVM performance comparison (sliding window w=2s). 

 Testing on Tomcat version… 

Training on 

Tomcat version… 

 #A (6.0.36) #B (7.0.19) #C (7.0.40) 

#A (6.0.36) 0.9494 0.8543 0.9889 

#B (7.0.19) - 0.9948 0.7689 

#C (7.0.40) - - 0.9889 
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Tomcat web server versions X (older), Y (newer) 

A (6.0.36), B (7.0.19) A (6.0.36), C (7.0.40) B (7.0.19), C (7.0.40) 

   
w=2 w=2 w=2 

   
w=3 w=3 w=3 

Figure 6.2 - SVM performance comparison (Box-plots) 
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6.2 AFP Framework concept and modules 

The AFP Framework (Adaptive Failure Prediction Framework) aims at supporting the 

automatic and event-triggered assessment, re-training and deployment of failure 

prediction systems. The framework allows detecting when the performance of one or 

more failure predictors is below a given threshold and automatically retrains the 

predictors in such occasions. The ultimate goal of the framework is to provide the 

support to maintain an optimal performance of failure predictors over time, thus 

enabling the failure prediction to self-adapt to a dynamic (changing) target. The 

following are key characteristics of the AFP Framework: 

 Automation: to reduce the need for user intervention to a minimum, the 

framework automatizes: i) the generation of failure data; ii) the assessment of 

failure predictor’s performance using the collected data; iii) the training, 

testing and updating of the failure predictor model(s); and iv) the detection of 

update events. In particular, the framework implements the benchmarking 

approach proposed in Chapter 5 for the assessment of the failure predictors. 

 Configurable event-oriented architecture: the framework is driven by an 

event-oriented logic. Events trigger the parts of the framework responsible 

for deciding if a retraining is necessary (and if so, to perform it). This logic 

avoids blind retraining, thus saving system resources and reducing costs. The 

events that are used by the AFP Framework can be configured by the user, 

which can also define specific reactions. 

 Sand-boxed, fault injection-assisted failure data collection: the AFP 

Framework makes use of realistic software fault injection to cause realistic 

failures, by implementing the approach for generating failure data proposed 

in Chapter 3. A virtualized copy of the target system is used for generating 

failure data, thus preventing failures from impacting the target system, as 

discussed in Chapter 4. The original target system can be a virtualized or not-

virtualized computer system, although the second case increases the usability 

of the proposed framework.  

The AFP Framework is composed by several modules, each one with specific 

concerns. This facilitates the orchestration of the several operations needed and 

allows implementing each concern in an independent way. The framework core, 

presented in the next section, manages and organizes the use of the modules that 

compose the framework along several phases. In short, the modules of the AFP 

Framework are: 

 Sandboxing: the AFP Framework makes use of virtualization as sandboxing 

solution for generating failure data. The sandbox manager is responsible for 

creating the target system replica and hosting it in a sandbox environment, 

besides being in charge of the target replica start, shutdown, reboot, and 
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disposal operations. Recall that such operations are offered by several 

virtualization solutions, as for instance XEN and VMWare hypervisors 

(Citrix; Frappier 2014).  

 Failure data generation: this module is responsible for the automatic 

generation of failure data by injecting faults in the target system replica as 

defined in Chapter 3, using realistic software fault injection and a realistic 

workload to exercise the copy of the target system. The collected failure data 

is organized as defined in Section 3.4. This module is also responsible for the 

detection of failures based on detectors provided by the framework user. 

Obviously, new detectors can be added after the framework deployment.  

 Failure prediction: the main role of this module is to manage the failure 

prediction systems running on the target system, including conducting the 

predictors training and execution (runtime prediction). The module also 

makes use of the failure detectors (used for the failure data generation) for 

detecting failures in the target system. In practice, the failure prediction 

module makes use of data collected from the target system and from its 

replica. The data collected from the replica (Failure and Golden data) are 

used for training, while the data read from the target system during its 

execution is used at runtime to predict failures (the user has to define a buffer 

of data to perform the prediction (e.g., 10 seconds of data)). 

 Performance evaluation: this module is responsible for the assessment of the 

failure predictor performance by implementing the benchmarking process 

presented in Chapter 5. In brief, the outputs of each failure predictor are 

collected and used to calculate a set of metrics chosen based on a given 

property (the AFP Framework adopts the recommendations for the choice of 

the metrics defined in Section 5.3). Evaluations are needed in several 

occasions (e.g., to train the failure prediction, to verify the need for a 

retraining).  

 Events manager: this module is responsible for detecting events, triggering 

the re-training of the failure predictors, and checking if the predictor update 

is actually necessary. This module is customizable, as the events are 

implemented in a plug-and play manner, which permits the creation of new 

events (e.g., a timeout, the system being updated, the system configuration 

being changed, etc.) and new specific reactions, both at the framework set-up 

and after deployment. In practice, the manager detects the events that occur, 

starts the reaction relative to that event, and eventually re-trains the 

predictor. Afterwards, the module checks the eligibility of the requested 

update of the predictors by comparing the performance of the newly trained 

versions with the previous ones, updating the improved predictors only if 

there are potential performance gains. 
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The different modules of the framework are placed on the target and on the 

controller systems, as showed in Figure 6.3. The user is responsible of setting-up the 

AFP Framework, by conducting the following tasks: 

 Analyze the impact of alternative virtualization solutions on the failure 

data generation and select the most adequate one, following the 

recommendations in Chapter 4. 

 Configure the process of cloning the target system into the sandbox 

environment. If the target system is a virtualized one, then the user may take 

advantage of the native functionalities offered by the virtualization 

environment. On the other hand, if the target system is not virtualized, then 

the user must: i) create a virtual machine taking into consideration the 

hardware characteristics of the target system, in terms of CPU, memory, disk 

and networking, and ii) install the same software packages (including OS and 

services running on it) and applications (using the same versions running on 

the target system). Afterwards, user should create a backup of the virtualized 

target replica and configure the sandboxing module to restore such backup 

after each fault injection run. It is worth noting that, if the hardware or the 

software of the original system are updated, then that should be replicated in 

the replica, either by means of an automatic process or manually by the user. 

 Configure the failure data generation process based on the approach 

presented in Chapter 3. This includes the definition of the workload to 

exercise the copy of the target system and the implementation of failure 

 

Figure 6.3 - The AFP Framework implementation. 
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detectors, which are fundamental pieces for the automation of the entire data 

generation process. 

 Configure the failure prediction models following to the recommendations 

presented in Chapter 3 and implement and configure the assessment 

environment for the failure predictors. The proposal is to adapt the 

benchmarking framework proposed Chapter 5.  

 Define the events and the related reactions, considering the specificities of 

the scenario in which the framework is implemented (e.g., the expected 

events representing evolution of the system). Both the event and its reaction 

must be implemented in a way that is compatible with the event manager 

module. In particular, the reaction must include information about the failure 

predictor re-training (e.g., train until a minimum false positive rate is 

reached) and about the failure data generation campaign (e.g., the number of 

golden and fault injection runs). 

6.3 AFP Framework lifecycle and phases 

The AFP Framework evolves along three phases: the preparation phase (in which a 

user must choose the failure prediction systems, the variables to monitor, etc.), the 

execution phase (failure prediction and event checking), and the training phase, 

performed several times during the framework execution. In each phase, the 

presented modules are orchestrated by the framework core, implementing the 

execution and training phases, with the goal of reacting and training the failure 

prediction systems when a specific event occurs. A schema is presented in Figure 6.4. 

The preparation phase consists of a set of operations that the framework user must do 

in order to prepare the framework for execution, as presented in the previous 

section.  

The execution phase consists of the effective prediction of failures and the 

continuous monitoring of the target system, checking for the occurrence of events for 

re-training the failure predictors, when necessary. In particular: 

 

Figure 6.4 - Update events management and re-training execution. 
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 Failure prediction: the AFP Framework continuously collects data from the 

target system using a monitoring tool. Data are used by the failure 

predictor(s) to perform the prediction task.  

 Event checking: the framework continuously checks if any new event occurs 

considered the ones defined. In the case an event is detected, the AFP 

Framework launches an update by calling a default procedure or a custom 

procedure associated to that event. 

 Failure predictor(s) (re-)training and update: the re-training operation (or 

simply training, at the framework start-up) is executed on the occurrence of 

an event. The framework stops the execution of the events manager module, 

and starts the training phase, while the predictors continue in execution in 

the target system. Once the predictor is re-trained, its performance is 

compared with the one of the predictor still working in the target, which is 

then updated if the recently trained predictor performs better. 

The training phase consists of training (or re-training) one or more failure 

predictors. The steps executed in this phase are: 

1) Target system replication: the target system is cloned to a virtual machine, as 

configured by the framework user in the preparation phase. This step is 

repeated for each re-training, as the system replica must reflect the updated 

state of the target system.  

2) Data generation and collection: executed in the context of the virtualized 

copy of the system, this is done several times to collect data from the replica 

system. Failure Data (FD) and Golden Data (GD) are collected, and datasets 

are built. 

3) Predictors training: the failure prediction systems are trained using the 

dataset generated. The output of each predictor is collected for later analysis. 

This phase can be divided in three steps: i) training, where the failure 

prediction algorithms are trained using labeled data (training data) for 

discriminating failing from non-failing situations; ii) testing, where each 

failure predictor tries to label a set of unlabeled data (testing data); and iii) 

output collection, where the labels produced are collected.  

4) Metrics calculation and performance analysis: the predictions from each 

algorithm are used to calculate a set of metrics, chosen based on the 

performance property that each predictor must address (e.g., high TP and 

low FP). 
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6.4 Case study: Adaptive Failure Prediction for a Tomcat 
web server 

A case study was developed to demonstrate the process of implementing the AFP 

Framework and to analyze its efficacy in keeping the performance of the failure 

predictors above a certain threshold. The case study is inspired on the one presented 

in Section 6.1. The AFP Framework is implemented for continuously adapting a 

SVM classifier with the sliding window enhancement, predicting failures on a 

Windows XP OS machine running a Tomcat web server (the target system).  

 AFP Framework implementation 6.4.1

As shown in Figure 6.3, the modules of the framework are installed on a controller 

machine and remotely communicate with tools running on the target system and on its 

replica. Failure data and performance analysis results are stored in a database, 

managed by the controller system.  

Citrix XEN hypervisors provide the sandboxing solution and host both the target 

replica and the original target system, thus simplifying the case study by allowing 

the target system’s replication via a single machine migration operation, natively 

provided by the adopted hypervisor. The sandbox manager is implemented in the 

controller system and manages the hypervisors’ operations. In our case, the sandbox 

manager is the client application for VMs management provided with the XEN 

servers.  

Part of the failure data generation module runs in the controller system, namely a 

fault injection manager, a workload manager, and a module for communicating with 

the database that stores the failure data and the faultload. The Logman monitoring 

tool is installed both on the target system and on its replica for collecting failure and 

golden data, while the target system replica hosts the G-SWFIT fault injection tool.  

The failure prediction module is implemented in the controller systems: it manages 

one or more failure prediction algorithms, using failure data stored in the database, 

and assesses their performance, when needed. The event manager is implemented 

on the controller system, which monitors the target system state for the defined 

events.  

The AFP Framework core runs in the controller system. The framework modules are 

implemented using PowerShell and the Microsoft Windows Management 

Instrumentation (WMI) (both based on .NET Framework) (Siddaway 2012). The 

database used is a Microsoft SQL Server 2010. 

The characteristics of the machines in which the AFP Framework was deployed are 

as follows: 
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 Sandbox systems: Intel i5-650@3.60GHz (quad-core), 8GB RAM, 500 GB 

HDD, running XEN server version 6.2.  

 Target system (and its replica): 4 VCPUs, 4GB RAM, 50GB HDD, running 

Tomcat on a Windows XP (SP3).  

 Controller system: Intel i5-650@3.60GHz machine, 8GB RAM, running a 

Windows 7 OS (SP1). 

 Experimental campaign 6.4.2

For accelerating the experiments we installed two separated testbeds consisting of 

the same physical and software characteristics (i.e., each testbed made up by a 

separate controller, target and sandbox). In each testbed, the target system runs a 

Tomcat application server, which executes the workload of the TPC-W benchmark. 

The Apache Tomcat web server versions used are 5.5.36 (#A) and 6.0.2 (#B), and the 

intended performance analysis is summarized in Table 6.6. In practice, the 

framework should retrain the predictor as soon as the web server is updated from 

version #A to version #B, adapting it to the new target system configuration. Again, 

ROC-AUC is used for characterizing the failure prediction systems, whose goal is to 

maximize the recall and minimize the false positives.  

The target system starts with a base version of Tomcat installed and then an update 

is performed. The events “Tomcat update from version A to version B” (U) and “low 

prediction performance” (LP) were defined. The first is triggered when Tomcat is 

updated, while the second is triggered when the ROC-AUC of the predictor falls 

below a certain threshold. The failure prediction module at the occurrence of each 

failure performs the verification of the ROC-AUC value against the threshold. In this 

way, we study the behavior of the predictors during golden runs and failure runs. 

Together with the events, we implemented the corresponding reaction, in which the 

framework re-trains the predictor, while the actual configuration one is left working.  

In our experimental evaluation, we validate the trained failure predictors in the 

target system, where we inject faults to cause new failures. Of course, this is only 

done for experimental evaluation and validation purposes.  

Table 6.6 - Failure predictor performance comparison 

 Testing on Tomcat version… 

Training on 

Tomcat version… 

 #A (5.5.36) #B (6.0.2) 

#A (5.5.36) PA,A PA,B 

#B (6.0.2) - PB,B 
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The SVM failure predictor implementing the sliding window technique uses a 

window of 3 seconds. The choice of such value is based on the analysis of the results 

of the previous case studies: a SVM using a sliding window of width between 2 and 

4 showed good performance improvements with a fair impact on the training cost. 

The choices regarding failure modes to predict, failure detectors, faults to inject, 

workload, and variables to monitor are the same as in Section 6.1. The failure 

prediction lead-time ∆tl was between 10 and 40 seconds, with a prediction ∆tp of 5 or 

15 seconds. These values were chosen to simulate a realistic web-serving scenario.  

For the sake of simplicity, the TPC-W workload is executed on the target system and 

on its replica (when needed), hence the replica system uses a realistic workload for 

generating failure data (for details on such problem see Section 3.2.3). Both the 

replica system (for training) and the target system run the workload during a time 

period T of about 4 minutes.  

 Results and discussion 6.4.3

Table 6.7 presents an overview of all the scenarios considered in terms of the number 

of runs and o the observed failures. The target system executed the TPC-W workload 

between 500 and 800 times for each Tomcat version, resulting in a total of about 1600 

runs for Testbed #1, and 1200 for Testbed #2. We observed a total of about 30 Hang 

failures in both targets, while Crash failures were observed only in the target 

running in Testbed #1 (7 crashes). We must highlight the fact that in this 

experimental campaign, Hang failures occurred also during Golden Runs, most 

Table 6.7 - Runs and failures occurred. 

 Testbeds 

Tomcat version Predictor status 

#1 #2 

Runs Failures Runs Failures 

 Crash Hang  Crash Hang 

Ver. A (5.5.36) 

Before training 
263 GR - 2 250 GR - - 

285 FIR 2 1 250 FIR - 1 

After training 
165 GR - - 102 GR - - 

127 FIR - 5 67 FIR - 8 

TOT 
428 GR 

412 FIR 
2 8 

352 GR 

327 FIR 
- 9 

Ver. B (6.0.2) 

  Crash Hang  Crash Hang 

Before training 
258 GR - 2 100 GR - 1 

300 FIR 5 8 250 FIR - 16 

After training 
117 GR - - 50 GR - - 

100 FIR - 6 96 FIR - 9 

TOT 
375 GR 

400 FIR 
5 16 

150 GR 

346 FIR 
- 26 
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likely due to residual faults, or to the workload we run. Despite not expected, we 

decided to use such events for training failure predictors together with the hang 

failures obtained from fault injection campaigns, as failure events may naturally 

occur also during golden runs.  

Figure 6.5 presents the performance of the SVM predictor running on the original 

target system in terms of ROC-AUC, only for to the failure mode Hang, as the 

number of Crash failure events did not allow an extensive analysis of the predictor 

behavior. The x-axis represents the events observed on the target system, including 

failures. In particular, for each observed failure, the predictor labeled each data 

sample according to the parameters (∆tl, ∆tp), and then the predictions were 

compared to the real failure occurrence time. The y-axis is the ROC-AUC value. For 

the sake of simplicity, we analyze the predictor performance fixing the parameters 

(∆tl, ∆tp) to the values (10s, 10s). Such scenario represents the average behavior of the 

SVM predictor’s performance observed in the present case study.  

As mentioned before, the events considered in these experiments campaign were 

“low prediction performance” (LP) and “Tomcat update from version A to version B” (U). 

As shown in Figure 6.5 (a), the framework automatically reacted to the events LP 

and U, replicating the original system to the sandbox hypervisor, and retraining the 

predictor (R1 and R2) with data collected from the replica system. Retraining allowed 

the recovery of the prediction performance on both the testbeds. Each retrain was 

completely automatized and took about 3 days, mostly for collecting failure data, 

while training, testing and updating the failure predictors took few minutes. Such 

results confirm our expectations, as the average time we experienced in re-training 

failure predictors in the case studies presented in the previous chapters took much 

longer (about 10 days, in average), where most of the time was spent to organize the 

system replication, the data organization and performance results analysis. 

Figure 6.5 (b) shows similar results: starting from the LP event, the retraining R1 

permitted the SVM predictor to achieve a performance greater than the threshold 

value of ROC-AUC=0.8. The update of the Tomcat web server from version A to 

version B caused a degradation of the performance, which only after two failures 

resulted in a “low prediction performance” LP event. The retraining event R2 enabled 

the predictor to restore its prediction performance above the defined threshold. The 

re-training R2 after the update event U took about 6 days on Testbed #2 took. This 

was due to the SVM optimization algorithms, probably caused by the fact that data 

coming from Testbed #2 were noisier than data collected from Testbed #1 (this may 

be due to varying environment conditions, as for example the dynamic workload 

here used, or differences between the Testbed #1 and Testbed #2 system replicas). 

However, still in this case, automatizing the re-training process is convenient. 
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Results confirm that, once configured, the AFP Framework was able to react to 

defined events and bring the predictor performance to an optimal working value, 

generating failure data in short time (between 3 and 6 days) without human 

intervention. This suggests that the framework can be used for continuously 

retraining failure predictors. 

6.5 Final remarks 

In this chapter we addressed the problem of self-adapting failure prediction models 

in the context of dynamic computer systems, by proposing a preliminary event-

driven, user-configurable and modular framework, called AFP Framework. Such 

framework uses virtualization as a sandboxing solution for generating failure data 

(when needed) by injecting software faults into a replica of the target system using 

the approach proposed in Chapter 3. The need for implementing a framework for 

automatically re-training failure prediction models was studied in a case study. 
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Figure 6.5 - The predictor ROC-AUC predicting hang failures, 

using parameters (∆tl,∆tp)=(10s, 10s) 
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The proposed framework includes several modules that a user can easily implement 

in a specific environment, including the sandboxing module, the failure data 

generation module, the failure prediction and performance evaluation modules, and 

the events management module. We presented an implementation of the AFP 

Framework in a specific case study: an SVM-based failure predictor protecting an 

Apache Tomcat web server running on a virtualized Windows XP. The results 

obtained in the case study demonstrate that the framework implementation was able 

to keep the predictor performance above a threshold across updates in the target 

system, in a small amount of time and with reduced human intervention. 
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Chapter 7 
Feature Selection based on 

symptoms identification: Case 
Study 

Choosing a set of variables (or features) for modeling a particular process or event is 

a key problem, as such set must characterize the process or event in a complete way 

and without redundancy. A given set of variables is optimal if the obtained model 

can optimally predict the process or event, i.e., the model performance is maximized. 

In particular, including uninformative or weakly informative variables in the model 

may result in a worthless increase of the complexity, also resulting in an increase of 

the time needed for model building (training time). On the other hand, the use of 

wrongly informative variables affects the prediction performance of the model (H. Liu 

and Yu 2005).  

Several works have been proposed so far for addressing the feature selection 

problem, divided into two approaches: filter and wrapper (see Section 2.2.5). 

However, in the particular context of failure prediction, the existing approaches do 

not take advantage of information regarding the failure occurrence events, which 

can obviously result in limitations in the quality of the failure prediction models. On 

one hand filter approaches only analyze the correlation between variables, excluding 

the dependent ones. On the other hand, wrapper approaches perform a much more 

complete variables analysis, including selecting a set of variables, building a model 

with such set and repeating the procedure until an optimal model is obtained. 

However, albeit representing an optimal approach, it requires a huge use of 

computational resources and a long optimization time, making a complete selection 

process unfeasible.  
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In the particular context of failure prediction, the type of information that constitutes 

failure data, together with the coding of those data (e.g., using integer instead of real 

values, normalize the numerical values), influences the prediction quality of a model 

(G.A. Hoffmann, Trivedi, and Malek 2007). As shown by (G.A. Hoffmann, Trivedi, 

and Malek 2007), the variables chosen by experts are likely not to be the optimal set 

for prediction, and a proper feature selection procedure is needed. Feature selection 

techniques can be applied to the failure prediction problem and an improvement of 

the classical filter/wrapper feature selection schema was proposed by (G.A. 

Hoffmann, Trivedi, and Malek 2007) in the form of a probabilistic wrapper approach 

that makes use of information about the correlation of a set of variables with the 

target (i.e., the performance of a generic prediction model) in a probabilistic manner. 

The problem is that such approach makes use of a generic prediction model that was 

implemented by the same authors (the Universal Basis Function, UBF (G.A. 

Hoffmann, Trivedi, and Malek 2007)), which narrows the results to that particular 

predictor.  

In this chapter we present a case study where we analyze the effectiveness of the 

failure symptoms identification method proposed in Chapter 4 in addressing the 

feature selection problem. The idea is to use that approach for correlating the 

symptoms presented by each variable with the occurred failures, and rank the 

variables according to their correlation, using the technique proposed in Chapter 3 

for generating the failure data. We believe that the information about the symptoms 

of failures that each monitored variable shows can indicate the most adequate 

variables for being used for failure prediction. 

It is important to emphasize that the case study allows a preliminary analysis of the 

applicability of a symptoms-based feature selection technique for the failure 

prediction scenario. We believe that such feature selection approach can help in the 

selection of variables independently from the failure prediction model being used, 

and that it can also be applied as a complementary technique to improve the blind 

selection of the filter approaches and/or to decrease the complexity of wrapper 

approaches.  

The outline of the chapter is as follows. Section 7.1 recalls the feature selection 

approach and overviews the case study and Section 7.2 presents the experimental 

campaign. Results are presented and discussed in Section 7.3. Finally, Section 7.4 

concludes the chapter. 

7.1 Feature selection approach and study overview 

The failure symptoms identification approach proposed in Chapter 4 is here adapted 

for selecting the best variables for predicting failures. Specifically, it is divided in 

three phases: 
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1) Generating Golden Data and Failure data from the target system using the 

approach for failure data generation based on realistic software fault injection 

presented in Chapter 3.  

2) Identifying failure symptoms and their correlation with the observed 

failures, in the following way: 

a) The failure symptoms are identified using the anomaly detection-based 

method proposed in Chapter 4. In practice, a normal behavior profile is 

built for each variable using Golden Data. The behavior of that variable is 

compared with the profile during Failure Runs and other Golden Runs. 

The variable presents a symptom if its behavior differs from its nominal 

profile, according to specific rules.  

b) The symptoms shown by a single variable are correlated with the 

failures (and no-failure events) observed on the target system according 

to a specific metric. A variable is correlated to a failure if it presented a 

symptom when the failure occurred and did not present any symptom 

during Golden Runs. Correlation can be based in different metrics, as for 

instance metrics based on the contingency table (see Section 2.2.3). In this 

case study we adopt the F-Measure. 

3) Rank the monitored variables according to their correlation values. The 

variables are ranked based on the correlation between the symptoms 

identified and the observed failures. Different ranks can be obtained in 

different scenarios, as different environmental parameters (e.g., workloads) 

do influence failure data. The variables that show the highest rate of valid 

symptoms have the highest likelihood to enable an optimal failure 

prediction.  

As in Chapter 4, the setup for the experiments includes a monitored target system 

(system for which we want to identify the best failure prediction variables) and a 

controller system (in charge of controlling the execution of the experiments), 

installed in different machines (to isolate the effects of the experimental control from 

the monitored system) connected using a dedicated network (to avoid interference 

from external network traffic).  

We conducted a variable selection campaign for a Windows XP OS-based target 

machine. The experimental setup consisted of two key elements (see Figure 7.1): the 

monitored system, on which the faults were injected, and a driver system (or 

controller) for controlling the experiments and collect, archive, and analyze 

monitored data. Both the monitored system and the driver system consisted of a 

machine with a Pentium IV HT 3GHz processor, 2GB of RAM, and a 200GB SATA 



Chapter 7 

 158 

hard disk, running Windows XP (SP3) Operating System. The two machines were 

connected via a Fast Ethernet network. 

Two workloads have been used in the experiments to assess if different operational 

profiles may lead to different failure prediction symptoms, as these two workloads 

stress the system in different ways. The workloads are the same used in the previous 

chapters: a light workload based on the 7-Zip application (WKL1) and a heavier 

workload based on the COSBI OpenSourceMark benchmark suite (WKL2) (see 

details in Section 4.6). 

As before, the LogMan tool was used for monitoring data at the maximum sample 

rate of 1 value per second. The starting set included 387 variables selected manually, 

describing the state of the operating system resources, the state of the processes 

running, the availability and usage of network related resources, and information on 

terminal and disk I/O activity. Note that we did put some care on the selection step 

and tried not to exclude potentially good parameters (in case of doubt, we 

considered the parameter for monitoring). 

The choices taken about the failure modes and faults to inject are the same as in 

Chapter 4. The difference is that, besides Crash and Hang failures, in the present case 

study we also consider the failure mode Incorrect Results. In the case of WKL1 such 

failure is detected by checking a checksum, while for WKL2 a failure is detected 

when the benchmarking results are out of a nominal range computed during the 

Golden Runs. For Crash and Hang, the failure detectors are the ones already used 

before. The G-SWFIT tool was used for injecting software faults in the dynamic 

library kernel32.dll following the recommendations by (J. A. Duraes and Madeira 

2006). 

For the symptoms identification, we computed the F-Measure, addressing the 

maximization of the true positives (a symptom corresponds to a failure) and 

minimizing the false positives (a symptom is identified but no failure occurred) and 

the false negatives (the variable showed no symptom, but a failure occurred). The 

higher the predictive power of the variable, the higher is the F-Measure (which 

obviously ranges from 0 to 1). Obviously, different ranks can also be obtained using 

the individual Precision and Recall measures, as well as many other metrics. The 

 

Figure 7.1 - Experimental setup 
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tolerance for the bounds of the model representing the typical behavior of each 

parameter was of 10% (tuned based on the analysis of the experimental results). 

7.2 Experimental campaign 

Table 7.1 presents the overall characterization of the experiments. A total of 1100 

golden runs and 1143 fault injection runs were conducted. The duration of each run 

was of 600 seconds, leading to an experimental campaign of 16 days (around 

1,345,000 data points). In each fault injection run, software faults were injected 

approximately 70 seconds after starting the execution of the workload (value defined 

based on the analysis of the ramp up time of the tested configurations). The number 

of injected faults for each run ranged from 1 to 5. Differently from the case studies in 

the previous chapters, here we injected more faults to increase the failure rate 

occurrence, as we are not particularly concerned with the accuracy of the generated 

data, but with the analysis of the correlation of variables with the failures. Failures 

were observed in a subset of the fault injection runs (111 for the configuration using 

WKL1 and 98 for configuration using WKL2). 

The most predominant failure mode observed was the system Hang and the least 

frequent was the generation of Incorrect Results. This shows that in most failure 

situations the faults injected leaded the OS to block and that the propagation of 

errors to the application level was minimal. It is also worth noting that, differently 

from the percentage of Hang faults observed in the experimental campaigns 

presented in the previous chapters (in 2% of the runs, in average), the percentage of 

Hang failures is now of 15%. This is due to the fact that in the present campaign we 

injected a higher number of faults per run (between 1 and 5, as mentioned before). 

7.3 Results and discussion 

Figure 7.2 shows the F-Measure for the 387 parameters monitored in both 

configurations, computed considering all the failures observed. Only a small number 

of parameters present an F-Measure greater than zero (77 and 109 for the 

configurations running WKL1 and WKL2, respectively), which suggests that most of 

the monitored parameters are not useful for supporting failure prediction. A small 

Table 7.1 - Overall characterization of the experiments 

Workload 
# Golden 

Runs 

# Fault 

Injection 

Runs 

Failures detected 

Total % 
Incorrect  

Results % 

System 

Crash % 
System Hang % 

WKL1 500 500 22,20% (111) 0 4% (20) 18,20% (91) 

WKL2  600 643 15,24% (98) 1,87% (12) 3,58% (23)  10,58% (63) 
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subset of the monitored variables shows a positive correlation with the occurred 

failures, presenting an F-Measure higher than 50% (17 in WKL1 and 12 in WKL2).  

Table 7.2 presents the Top-10 parameters ranked with respect to Hang failures for 

both workloads. The results for the Crash and Incorrect Results are omitted due to the 

low number of such failures observed (that would make the analysis not precise). 

The top-variables vary depending on the system configuration, which is expectable. 

However, there are five parameters that show up in both cases, with quite similar F-

Measure (rows in gray). Although this confirms that the predictive value of the 

parameters might be influenced by the operational profile of the system, it also 

suggests that there may be a small set of parameters whose predictive power is quite 

independent of the configuration.  

 
(a) 

 
(b) 

Figure 7.2 - F-Measure of the 387 parameters monitored in both configurations, 

relative to all the failures occurred (Crash, Hang and Incorrect Results). 
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Table 7.3 shows the detailed results for the Top-10 variables presented in Table 7.2, 

thus relative to the <WKL1, Hang> and <WKL2, Hang> scenarios. As shown, precision 

is quite high for WKL1 (always above 90%), but significantly lower for WKL2 (less 

than 90% in six cases). On the other hand, recall is quite low in both configurations, 

suggesting that there were a large number of cases in which variables were not able 

to, individually, show any symptoms.  

Another result that is worth highlighting is the number of false positives and false 

negatives of the top-10 variables. In the <WKL1, Hang> scenario (Table 7.3 (a)) the 

variables show a high precision of the symptoms to address the occurred failures 

(almost only true positives, with very few false positives). On the other side, the 

same variables miss some of the occurred failures (false negatives), having thus a 

low Recall. In the <WKL2, Hang> scenario (Table 7.3 (b)), on the other hand, only six 

out of ten variables had the same behavior presented by the variables in Table 7.3 (a), 

while the tendency is to present more false positives, resulting in variables with a 

lower Precision but with the same Recall values. This may be due to the fact that 

WKL2 is more complex than WKL1, introducing dynamics in the data that the 

threshold model proposed in Chapter 4 may be not able to recognize. The results 

Table 7.2 - Top-10 parameters, according to F-Measure (in percentage) 

Workload #1, Hang 

Parameter Parameter Name F-Measure 

250 Pool Nonpaged Bytes 70.42 

203 Events 68.57 

237 Handle Count 68.12 

251 Pool Paged Bytes 68.09 

255 Virtual Bytes 67.67 

256 Virtual Bytes Peak 67.63 

204 Mutexes 66.18 

208 Threads (Objects) 65.69 

254 Thread Count 65.69 

361 Threads (System) 65.69 

Workload #2, Hang 

Parameter Parameter Name F-Measure 

203 Events 73.79 

237 Handle Count 72.55 

204 Mutexes 67.37 

250 Pool Non-paged bytes 60.87 

205 Processes 54.55 

149 Memory Avail. Bytes 51.09 

150 Memory Available KB 51.09 

151 Memory Available MB 50 

254 Thread Count 49.54 

207 Semaphores 46.62 
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also highlight the fact that the variables 203 (Events), 237 (Handle count) and 204 

(Mutexes) presented the same behavior (low false positives and negatives) in both 

the scenarios, thus emphasizing the existence of a set of variables that can be used 

independently from the workload. It is also worth noticing that, given a couple of 

variables, they may recognize different failure events, thus a combination of such 

variables may provide an optimal set for predicting failures. 

The analysis above confirms that the symptoms identification-based approach can be 

used as a feature selection technique. The approach allowed analyzing the 

symptoms shown by single variables in different scenarios in about two weeks (16 

days), being effective in helping restricting the set of variables that could be further 

analyzed by filter or wrapper feature selection approaches. In practice, it enables one 

to have insights on variables and their likelihood in predicting failures. Moreover, 

our approach presents the advantages of both filter and a wrapper approaches, as 

the analysis of the failure-related data is done without the use of any failure 

predictor (as filter approaches), while the symptoms correlation is based on failure 

prediction performance metrics (similarly to a wrapper approach, in which the 

performance value of a predictor is used in the selection).  

Table 7.3 - Detailed results the Top-10 parameters (hangs only) 

Parameter 250 203 237 251 255 256 204 208 254 361 

TP 50 48 47 48 46 47 45 45 45 45 

FP 1 1 0 2 1 1 0 1 1 1 

FN 41 43 44 43 45 44 46 46 46 46 

TN 388 388 389 387 388 388 389 388 388 388 

Precision (%) 98.04 97.96 100 96 97.87 97.92 100 97.83 97.83 97.83 

Recall (%) 54.95 52.75 51.65 52.75 50.55 51.65 49.45 49.45 49.45 49.45 

F-Measure (%) 70.42 68.57 68.12 68.09 66.67 67.63 66.18 65.69 65.69 65.69 
 

(a) Workload #1, Total number of hang failures = 91 

Parameter 203 237 204 250 205 149 150 151 254 207 

TP 38 37 32 35 24 35 35 23 27 31 

FP 2 2 0 17 1 39 39 6 19 39 

FN 25 26 31 28 39 28 28 40 36 32 

TN 543 543 545 528 544 506 506 539 526 506 

Precision (%) 95 94.87 100 67.31 96.00 47.30 47.30 79.31 58.70 44.29 

Recall (%) 60.32 58.73 50.79 55.56 38.10 55.56 55.56 36.51 42.86 49.21 

F-Measure (%) 73.79 72.55 67.37 60.87 54.55 51.09 51.09 50 49.54 46.62 
 

(b) Workload #2 Total number of hang failures = 63 
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7.4 Final remarks 

In this chapter we presented a case study on the effectiveness of the failure 

symptoms identification method proposed in Chapter 4 in addressing the feature 

selection problem. The approach followed allows ranking a set of variables 

according to the symptoms each variable shows at the occurrence of a failure. The 

symptoms are correlated with the failures using the F-Measure.  

The symptoms identification-based approach is adapted in three phases, including a 

failure data generation phase, symptoms identification and correlation phase, and a 

variables ranking phase, intended to identify the features that are mostly correlated 

with failure events. 

We studied the effectiveness of the approach by running a campaign for analyzing 

variables on a Windows-based system, running two different workloads. We 

collected 387 variables, representing the properties and status of the operating 

system and target system’s hardware, along a 16-days fault injection campaign, and 

injected a total of 1143 faults, collecting 209 failures divided into crash, hang and 

incorrect results. Results show that the proposed approach is quite effective and easy 

to use for identifying the parameters that show a good correlation with failures, 

allowing narrowing the focus on small sets of variables that present a positive 

correlation with the occurred failures. 
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Chapter 8 
Conclusions and Future Work 

This thesis proposed methodologies to advance the state-of-the-art on failure 

prediction by making use of injection of realistic software faults to support the 

generation of failure data that can be used for training, assessing and comparing 

failure prediction models on a particular system installation. 

The thesis started by proposing a framework for generating failure-related data to 

be used for training and testing failure prediction models in a short time, based 

on the injection of realistic software faults, which accelerate the occurrence of 

failures. The framework should be implemented on specific target systems, for 

collecting extensive and realistic datasets that take into account the characteristics of 

the environment, and encompasses all the steps necessary for the generation of the 

failure data, including the definition of the types of faults to inject, the identification 

of the workload to be executed by the target system, the selection of variables 

representing the behavior of the system, the detection of failure events, and the data 

generation, collection and the dataset building process. The data generation 

framework also includes an approach for assessing the accuracy of the generated 

failure-related data, allowing increasing the confidence in using such data and 

enabling a controlled and quality-driven generation process.  

A case study was devised to demonstrate and validate the proposed approach in 

assessing the performance of a novel online failure prediction model that improves 

the failure prediction quality of a generic classifier-type predictor by including the 

time dimension in the prediction task. The case study uses a Windows-based 

software fault injection tool implemented at University of Coimbra following the G-

SWFIT recommendations. The proposed method allowed the analysis of an SVM-

based implementation of the failure prediction model running in a Windows XP OS 

environment in four different scenarios, considering two different failure modes and 

two different workloads. Results showed the effectiveness of the proposed 
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prediction model and confirmed that failure data could be generated by software 

fault injection. 

A solution to the problem of generating failure data on computer systems after 

deployment was proposed. Such solution is based on the use of virtualization as a 

sandboxing environment for generating failure-related data, hosting a copy of the 

target system. A virtualized copy of a system is easily manageable and easily 

recoverable, which eases the data generation process in what concerns the removal 

of the injected faults and of possible damages caused by their activation. We 

presented a solution for studying the applicability of such solution based on the 

concept of failure symptoms identification and correlation with failures. The 

approach was used to study the correlation of failure data generated from a system 

with data collected from several virtualized copies. In practice, we analyzed the 

impact of the virtualization layer of four different commercial hypervisors in four 

scenarios (two different workloads and two different failure types) running a 

Windows XP OS environment, showing that small sets of variables show similar 

symptoms in the original system and in its virtualized copies, although other 

variables differ across different scenarios and across the different hypervisors. Such 

results allowed confirming that virtualization can be used as a solution for 

generating failure data, although an assessment of the variables in common between 

the target system and its virtualized copy is needed.  

Given the need for a fair and sound assessment of alternative failure prediction 

models in the context of a specific target system, we proposed a conceptual 

framework for implementing benchmarks for failure prediction models (Failure 

Prediction Benchmark or FP Benchmark). The framework envisages the necessary 

steps to implement the benchmarking process, including the definition of the faults 

to be injected for generating the failure data, the metrics that must be used for 

assessing and comparing the different solutions, the characteristics of the workload, 

among others. We practically demonstrated the effectiveness and applicability of a 

concrete Failure Prediction Benchmark in assessing and comparing alternative SVM-

based failure prediction algorithms in a Windows XP OS environment. Two different 

workloads and two failure modes were considered, and four failure predictors were 

assessed and compared in four different scenarios. Results showed that the 

procedure could be used for training, testing, and comparing failure predictors in a 

cost-effective and easy way. The study of the failure prediction results and the 

validation of the benchmark properties suggest that the proposed benchmark can be 

used in the field. 

A conceptual framework for the automatic and continuous self-adaptation of 

failure prediction systems (Adaptive Failure Prediction Framework, or AFP 

Framework) was also proposed. The goal is to train failure prediction models at 

runtime on the occurrence of specific events (e.g., a software update), collecting 

failure data when needed by using our approach for generating failure data, and 

using virtualization as a sandboxing environment for performing the fault injection 
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process, taking into account the impact of the virtualization on the data generation. 

The training process is automated and based on a modular event-driven architecture 

to detect when re-training of predictors is needed. A concrete implementation of the 

AFP Framework was applied in a specific case study including an SVM-based failure 

predictor applied to an Apache Tomcat web server running on a virtualized 

Windows XP. Although preliminary, the framework was able to automatically 

perform training and testing activities for the predictor to be at a nominal 

performance, despite updates in the Apache Tomcat software, within a small 

amount of time and human intervention.  

Finally, we studied the use of the symptoms identification approach (proposed for 

analyzing the impact of virtualization environment) as a method for selecting the 

best system variables to be used for predicting failures, including ranking a set of 

variables according to the correlation between the symptoms showed and the failure 

events. A case study envisaging a campaign for selecting variables for a Windows 

XP OS-based system, running two different workloads, was developed. The 

approach effectively allows the selection and ranking of a set of variables positively 

correlated with the observed failures. Results also showed that different rankings are 

obtained in different scenarios, thus confirming the influence of the workload on 

failure data as found in the previous case studies, but also highlighting some 

variables in the top of the rankings that can be considered independently from the 

workload. 

The work presented in this thesis contributes towards moving forward the state-of-

the-art in the following ways: 

 The injection of realistic software faults to generate failure-related data 

allows overcoming the limitations of using existing failure data repositories 

(hosting failure data from several kinds of systems). In fact, such solutions 

clearly limit the optimal modeling of the predictor, as a target system may 

evolve over time (leading to the need for new failure data to be collected), 

and the failure data may come from different systems, or even different 

configurations of the same type of system. In particular, our results show that 

even the use of a different workload may impact on the optimal performance 

of a failure predictor. Moreover, the failure data accuracy analysis is a novel 

approach in the failure prediction context.  

 The proposal of using virtualization environments as sandbox solutions for 

generating failure data is novel in the field of failure prediction, as well as the 

approach proposed for assessing the impact of virtualization layer on the 

failure data. 

 The framework for benchmarking failure prediction models is the first one in 

this direction. Although the availability of failure data repositories can 

provide datasets for the assessment and comparison of failure prediction 

models, using such datasets is not sufficient for conducting a fair and sound 
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comparison: the assessment of failure prediction models with failure data 

collected from several systems does not allow taking into account the 

behavior of the target system on which the predictors will run. A concrete 

benchmark implemented on the system that will host the failure predictor 

supports such fair and sound analysis.  

 The framework for adaptive failure prediction is the first work addressing 

automatic and event-based automation of failure prediction models 

adaptation over time. Few works, often resulting in manual approaches, have 

addressed the problem of adapting failure prediction models along the 

evolution of a target system. 

 The adaptation of the symptoms identification-based approach to the feature 

selection problem permits an a priori analysis of the variables based on the 

failure symptoms they show and the correlation of such symptoms with 

effectively occurred failures. Such information gives the user the possibility 

to drastically reduce the number of variables to select for failure prediction, 

with the possibility to be integrated with complementary feature selection 

steps, based either on filtering or wrapping.  

Future work 

The work presented in this thesis has contributed to gain a broad experience on the 

challenges to be addressed when using fault injection to improve failure prediction. 

The light shed by our research helped identifying the following research directions 

to pursue: 

1. Validate synthetic data against real-world failure data and improve the 

data generation process. As presented in Chapter 3, the generation of failure 

data is influenced by several factors, and validation is needed for assuring 

the training and testing of failure predictors to be accurate. Analyzing real 

failure data is needed for improving the generation process, including the 

selection of the most suitable set of metrics for estimating the accuracy of 

synthetic data with respect to real data, and the definition of the workload 

and the faultload used, among others. 

2. Implement Adaptive Failure Prediction Frameworks for specific classes of 

systems. The AFP Framework proposed in Chapter 6 must be further 

specified to address the specificities of different computing environments. 

The challenges to address include the identification of classes of systems that 

can host an AFP framework, the replication of the target system and its 

workload, and the automation of such activities. 

3. Study alternative sandboxing solutions to the use of virtualization for 

generating failure data by injecting faults in a target system. The works in 
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Chapter 4, Chapter 5 and Chapter 6 allowed us to identify the limitations in 

using virtualized environment, in particular their impact on the generated 

failure data and the difficulty in using that solution in complex systems. 

4. Propose a feature selection algorithm based on the symptoms 

identification approach, proposed in Chapter 7. In particular, one should 

study the impact of using combinations of variables for predicting failures.  

5. Implement fault-injection-enhanced failure prediction to mission- and 

safety-critical systems. We believe that this is the very next step to be 

pursued, namely investigating the properties that an enhanced failure 

prediction environment must encompass in order to address the 

requirements of such type of systems. 

Several research topics are currently scheduled as a continuation of the work 

presented in this thesis, in particular: 

1. Implement fault-injection enhanced failure prediction OTS platform for 

predicting failures of software systems. The aim is to provide an off-the-

shelf platform hosting several failure prediction algorithms, integrated with 

fault injection tools, to serve as a component in complex failure prediction 

environments. 

2. Validate the impact of the workload on the failure data and failure 

prediction performance by using more complex workloads. A first idea is to 

set up an experiment in which an SVM-based failure predictor is used on an 

Apache Tomcat web server running several configurations of the TPC-W 

workload. The goal is to mine relations between workload profiles in terms 

of <CPU, memory, I/O> dimensions and the effects on the failure prediction 

models.  

3. Study the predictability property of different failure types based on the 

concept of warning time ∆tw in Salfner’s failure prediction model. The 

reasoning is that some failure events may not be predictable at runtime and 

that fault injection may be useful for investigating the classes of failures that 

are predictable in a minimum time ∆tw. This may help in the definition of 

optimal failure prediction environments. 
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