

i

Fault Injection for

Online Failure Prediction
Assessment

and Improvement

Ivano Irrera

Thesis submitted to the University of Coimbra

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
August 2015

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

 iii

This research has been developed as part of the requirements of the Doctoral

Program in Information Science and Technology of the Faculty of Sciences and

Technology of the University of Coimbra. This work is within the Dependable

Systems specialization domain and was carried out in the Software and Systems

Engineering Group of the Center for Informatics and Systems of the University of

Coimbra (CISUC).

Funding for this work was partially provided by the Portuguese Research Agency

Fundação para a Ciência e Tecnologia (FCT) through the scholarship

SFRH/BD/62538/2009.

This work has been supervised by Professor Marco Paulo Amorim Vieira, Assistant

Professor (Professor Auxiliar c/Agregação), Department of Informatics Engineering,

Faculty of Sciences and Technology, University of Coimbra.

 iv

 v

“Essentially, all models are wrong,

but some are useful”

George E. P. Box

“Empirical Model Building and Response Surfaces”,

Box, G. E. P., and Draper, N. R., (1987),

John Wiley & Sons, New York, NY,

p. 424

 vi

 vii

To my family,

to my friends

 viii

 ix

Abstract

Software is the fundamental brick of the systems that pervade our society, such as

communications, transportation, business and health caring. In fact, software is a

mean for building and controlling increasingly complex business processes, with an

unlimited potential. However, complex software hides defects (i.e., software faults)

that may lead to the occurrence of failures affecting the business. Several techniques

allow decreasing the number of software faults (e.g., testing) or reacting to the

occurrence of failures (e.g., fault tolerance). Nonetheless, it is well known that

failures are ultimately unavoidable events that may cause loss of data, performance,

or even money or human lives.

A solution for limiting the damage caused by system failures is to predict their

occurrence by analyzing the system and observing its state. Failure Prediction is a

technique proposed in the past to predict failures by analyzing the system

architecture and the development processes, or by learning from past failure data

(e.g., the time between successive failures). Such technique evolved into Online

Failure Prediction, which correlates past failure data with the current system state,

increasing the quality of the prediction. In practice, the prediction of an incoming

failure allows performing mitigation actions, such as saving data or restarting parts

of a system, to lessen possible hazards.

Despite its potential, Online Failure Prediction is still not widely adopted. The main

reason is that failures are rare events and the collection of the failure data needed for

training a predictor is a non-controllable process that takes a long time and has a

high cost. This becomes even more evident if we consider that current software

systems are dynamic in nature and that the failure data collected today may not

portray the behavior of the system tomorrow. In fact, the difficulty in collecting

failure data is the main reason why Online Failure Prediction has not been used in

practice so far, as training, optimizing and validating failure prediction models

becomes very hard to achieve.

This work addresses the current limitations of Online Failure Prediction by taking

advantage of fault injection techniques to speed up the occurrence of failures. The

 x

thesis is that software fault injection is a valid solution to generate failure-related

data in short time for a particular system, promoting the use of Online Failure

Prediction by helping in training, optimizing and validating different prediction

models.

First, we study the conditions under which software fault injection can be used to

support failure prediction and proposes an approach to generate failure-related data

and assess their accuracy. Then, we propose a method for assessing and comparing

different failure prediction models in the context of a particular target system, and

present a framework for self-adapting online failure prediction systems based on the

continuous generation of failure data on a virtualized copy of the target system, thus

facing the dynamic features of current software systems. A preliminary method for

selecting the best variables for predicting failures is also presented.

To validate and demonstrate the different techniques and tools, we present a

number of case studies. The target system used in the case studies is based on a

Windows XP OS running several different workloads, ranging from a simple file

compression algorithm, up to a web server. This diversity allows collecting insights

on the impact of the workload on the failure data generation and failure prediction.

The web server workload, made of the widely used Apache Tomcat web server,

provides a realistic scenario, which is used for analyzing the impact of updates on

the prediction of failures on the system. The reason that stays behind the choice of

Windows XP is that it was a widely spread and stable operating system whose

failures are well known, thus being a good environment for analyzing failures

caused by injected faults. Results clearly show that fault injection can be used to

improve the state-of-the-art on failure prediction.

Keywords

Online failure prediction, software fault injection, benchmarking, dynamic systems,

virtualization.

 xi

Resumo

A cada vez maior complexidade do software faz com que muitos sistemas sejam

usados contendo defeitos (i.e., falhas de software) que podem levar à quebra do seu

correto funcionamento (i.e., avarias). Várias técnicas permitem a mitigação dos

efeitos das falhas de software, diminuindo o número de falhas (por exemplo, através

de testes), ou reagindo à ativação das falhas existentes (por exemplo, através técnicas

de tolerância a falhas). No entanto, as avarias são eventos inevitáveis na vida de um

sistema complexo e podem levar à perda de dados, desempenho, dinheiro ou até

vidas.

Uma solução para mitigar os danos causados por falhas de software consiste em

prever a ocorrência de avarias através da análise do sistema, em particular a

observação do seu estado interno. Esta técnica, denominada de previsão de avarias

(Failure Prediction), foi inicialmente baseada na análise da arquitetura e do processo

de desenvolvimento do sistema, podendo também considerar dados históricos sobre

o seu funcionamento (por exemplo, o tempo de intercorrência entre duas falhas

sucessivas). Mais recentemente, evoluiu-se para a previsão de avarias em tempo de

execução (Online Failure Prediction), em que os dados sobre o funcionamento

passado de um sistema são correlacionados com o seu estado atual, de forma a obter

uma melhor qualidade na previsão. Na prática, prever a ocorrência de uma avaria

permite executar ações de mitigação e diminuir os riscos, como por exemplo gravar

os dados ou reiniciar partes do sistema.

Apesar do seu potencial, a previsão de avarias em tempo de execução é ainda pouco

utilizada. A principal razão reside na dificuldade em treinar os mecanismos de

previsão, já que tal requer a recolha de dados relacionados com avarias observadas

no passado. Este processo requer tipicamente demasiado tempo e não é controlável,

resultando num custo elevado. Isto torna-se ainda mais evidente se considerarmos

que os sistemas de software atuais são dinâmicos por natureza: isto é, evoluem ao

longo do tempo levando a que os dados recolhidos num intervalo de tempo se

tornem rapidamente obsoletos. De facto, a dificuldade em recolher dados é a razão

principal para que as técnicas de previsão de avarias em tempo de execução não

 xii

sejam ainda utilizadas na prática, uma vez que o treino, otimização e validação dos

modelos de previsão se tornam difíceis de realizar.

Este trabalho aborda as limitações atuais da previsão de avarias, através da

utilização de técnicas de injeção de falhas de software para acelerar a ocorrência de

avarias. A hipótese é que a injeção de falhas é uma solução válida para gerar dados

de avarias em um sistema durante um curto intervalo de tempo, suportando assim o

treino, otimização e validação de diferentes modelos de previsão.

Em primeiro lugar, são estudadas as condições nas quais a injeção de falhas de

software pode ser utilizada para suportar a previsão de avarias, sendo proposta uma

abordagem para a geração de dados e para a avaliação da representatividade desses

mesmos dados. De seguida, é proposto um método para avaliar e comparar

diferentes modelos de previsão no contexto de um sistema específico e apresentada

uma solução para a auto-adaptação de sistemas de previsão de avarias capaz de

acompanhar a evolução do sistema. A solução proposta assenta na geração contínua

de dados em uma cópia virtualizada do sistema. Para além disso, é proposto um

método para selecionar as melhores variáveis para suportar o processo de previsão.

Para demonstrar e validar as diferentes técnicas e soluções propostas, são

apresentados vários casos de estudo. Os sistemas utilizados são baseados no sistema

operativo Windows XP e incluem a execução de diferentes cargas de trabalho, desde

um simples algoritmo de compressão de arquivos, até um servidor Web. Esta

diversidade permite estudar o impacto da carga de trabalho na geração de dados. Os

resultados mostram a aplicabilidade da injeção de falhas de software no contexto da

previsão de avarias em sistemas de computadores.

Palavras-chave:

Previsão de avarias, injeção de falhas de software, testes padronizados, sistemas de software

dinâmicos, virtualização.

 xiii

Acknowledgements

To instill words with all the gratitude for the people and friends that walked at my

side during the last years is the hardest part of this work. I am sure the following

words are bound to fail, which however is good, as it gives me the possibility to

dedicate to you my past and future steps, with all my gratitude and love.

I would like to start by thanking to Professor Marco Vieira for his guidance through

the entire path that led me to this point, for his time and patience, for his support in

the difficult moments, and for the inspiration that he is for my professional life. Most

important, I thank him for his friendship.

I thank the members of the Software and System Engineering group of the Centre of

Informatics and Systems of the University of Coimbra for the excellent quality of

their work, an everyday inspiration. I would also thank my colleagues of the SIGDep

group, for their constant strive for excellence and the inspiring scientific discussions.

I thank all the anonymous reviewers that helped me to improve this work with their

comments.

I would like to thank all my friends and colleagues for simply being at my side and

for supporting me. Without them I wouldn’t have achieved my professional goals.

Most important, I would not be the person that I am.

To Nuno, to which I owe so much as a friend and a colleague, a continuous force and

inspiration, with whom I am proud to have shared this great adventure here in

Portugal, hoping to share more adventures in the future.

To Ivano (“2”), a piece of home at my side, a reference in the difficult days and a

friend with whom I shared many unforgettable moments, and to whom I owe more

than this.

To João, a gentle light in the dark, always ready for helping and supporting me as a

professional and as a friend, to whom I owe many of my achievements.

To Rafa, Pedro (“Correia”), Nito, Cristiana, Marco, for all the unforgettable

moments. Let more come in the future! I must also thank the help, the good humor

 xiv

and the distractions of my laboratory colleagues: to Rui, Diogo, Ana, Luis, Ivo, and

Sergio, for the many good moments.

To all my friends Andréa, Paulo G., Eudis, Luciana, Suhely, Amanda, Marcelo, Gabi,

Gustavo, Renata, Isabella, Karina, Tamara, for their friendship, the unforgettable

moments lived together, and their help in many hard moments. Never before I

thought to know so many brasilian in my life never before I thought that the world

could be so surprising. To Heitor, Bruno, Hudson, and the people with whom I

shared my time at home here in Coimbra. To them I am thankful for the richness that

they brought to my life.

To my friends Naaliel, David, Davi, Sven ("o alemão"), Nuno L., Paulo V., Amir,

Merk, with whom I shared my path here in Coimbra. To Naghmeh, friend since the

beginning of my Ph.D. adventure, to whom I owe this moment: without those

words, back in 2012, I would probably be in a different place at this time.

To all the people I met during these years in Coimbra and around the world, hoping

to see them again soon. I would like to thank Christian, for his advices, support and

friendship, and for the funny moments lived here in Portugal. Special greetings go to

Fumio, Andreas and Andrea C., for their worldwide good humor and friendship.

To all the guys of the DEI with which I shared many coffees, “Ph.D. dinners” and

fast encounters, full of laughs and funny moments, goes my deepest gratitude.

I would like to express my gratitude to my family, for their love. I thank my parents

Nunzio e Adele for their sacrifices and continuous hard work that gave me the

possibility to achieve this goal, and to see with me the wonders of the world we live

on. I thank for their unconditional love in the good and bad moments, and for all the

moments that we lived. I owe you my life.

To Simona and Dimitri, my sister and brother, to whom I owe more than I can

express, I thank for the always good and funny moments, full of life and joy. I cannot

imagine how my life would be without them.

To my cousins Moreno, Danilo and Francesca, for the many good moments, the

infinite support, and the love that make us more than cousins.

To all my friends back at home, for their uninterrupted love and support, I owe my

deepest part, hoping to continue sharing many moments in the future.

I thank Coimbra, for the many moments I passed here and the lessons learned

during these years. I thank Portugal for being my second home, for the kindness and

welcoming of its people, and for the moments that were and will be.

I thank everyone for procrastinating my work, with a special thanks to “Porta dos

Fundos” group: without that I cannot imagine what would be of us. I thank artists

for their constant work for keeping us human. May always distractions and

procrastination lead and save our lives.

Agora e sempre, carrega Benfica!

 xv

Ringraziamenti

Infondere queste parole di tutta la gratitudine per le persone e gli amici che hanno

camminato al mio fianco durante questi ultimi anni è la parte più difficile di questo

lavoro. Sono sicuro che le parole che seguono sono destinate a fallire, il che tuttavia è

una cosa buona, perché mi dà la possibilità di dedicarvi i miei passi, passati e futuri,

con tutta la mia gratitudine e amore.

Vorrei innanzitutto iniziare col ringraziare il professor Marco Vieira per la sua guida

e orientamento lungo l'intero percorso che mi ha portato fin qui, per la sua pazienza

e il suo sostegno nei momenti difficili, e per l’ispirazione che è per la mia vita

professionale. Cosa più importante, lo ringrazio per la sua amicizia.

Ringrazio i membri del gruppo di SSE del CISUC dell'Università di Coimbra per

l'eccellente qualità del loro lavoro, una fonte d'ispirazione quotidiana. Vorrei inoltre

ringraziare i colleghi del gruppo SIGDep, per la loro costante ricerca dell’eccellenza e

le costruttive discussioni: una costante fonte d’ispirazione. Ringrazio tutti i revisori

anonimi che con i loro commenti hanno aiutato a migliorare questo lavoro.

Vorrei ringraziare tutti i miei amici e colleghi semplicemente per essere al mio fianco

e per avermi supportato durante tutto questo tempo. Senza di loro non solo non

avrei raggiunto i miei obiettivi professionali, ma non sarei la persona che sono.

A Nuno, al quale devo tanto come un amico e come collega, per la sua forza e

ispirazione continua, con il quale sono orgoglioso di aver condiviso questa grande

avventura qui in Portogallo, nella speranza di condividere più avventure in futuro.

A Ivano ("2"), un pezzo di casa al mio fianco, un punto riferimento, sempre presente

nei tempi difficili e un grande amico con cui ho condiviso tanti momenti

indimenticabili, al quale devo molto più di queste righe.

A João, un faro nel buio, sempre pronto ad aiutarmi e sostenermi come

professionista e come amico, al quale devo molti dei miei traguardi.

Ai miei amici Rafa, Pedro ("Correia"), Nito, Cristiana, Marco, il tutto per i momenti

indimenticabili. Che tanti altri vengano in futuro! Devo anche ringraziare i miei

colleghi di laboratorio per l'aiuto, il buon umore e le distrazioni: a Rui, Diogo, Ana,

 xvi

Luis, Ivo, Sergio, per i tanti momenti insieme.

A tutti i miei amici Andréa, Paulo G., Eudis, Luciana, Suhely, Amanda, Gustavo,

Marcelo, Gabi, Isabella, Karina, Tamara, per la loro amicizia, i momenti

indimenticabili vissuti assieme e il loro aiuto in molti momenti difficili. Non avrei

mai pensato di conoscere tanti brasiliani, mai ho pensato che il mondo potesse essere

così sorprendente. A Heitor, Bruno, Hudson e le persone con cui ho condiviso il mio

tempo a casa. A loro sono grato per la ricchezza che hanno portato nella mia vita.

Ai miei amici David, Sven (“o alemão”), Nuno L., Davi, Naaliel, Paulo V., Amir,

Merk, con cui ho condiviso il mio percorso qui a Coimbra. A Naghmeh, amica fin

dall'inizio di questa avventura del dottorato, a cui devo questo momento: senza

quelle parole, nel 2012, probabilmente sarei in un luogo diverso in questo momento.

A tutti i ragazzi del DEI con cui ho condiviso molti caffè, “Ph.D. dinner” e incontri

veloci, pieni da risate e momenti divertenti, va la mia più profonda gratitudine.

A tutte le persone che ho incontrato in questi anni qui a Coimbra e in tutto il mondo,

nella speranza di rivederli presto. A Christian, per i suoi consigli, il supporto e

l'amicizia, e per tutti i momenti divertenti vissuti qui in Portogallo. A Fumio,

Andreas e Andrea C., per il loro buon umore e la loro amicizia senza confini.

Vorrei esprimere la mia gratitudine alla mia famiglia, per il loro amore. Ringrazio i

miei genitori Nunzio e Adele per i loro sacrifici e il loro continuo duro lavoro, che mi

hanno dato la possibilità di attingere a questo obiettivo e di condividere con loro le

meraviglie del mondo in cui viviamo. Li ringrazio per il loro amore incondizionato

nei momenti belli e in quelli difficili, e per tutti i momenti che abbiamo vissuto

insieme. Vi devo la mia vita.

A Simona e Dimitri, mia sorella e mio fratello, ai quali devo più di quanto possa

esprimere, ringrazio per i momenti sempre buoni e divertenti, pieni di vita e di gioia.

Non riesco a immaginare come sarebbe la mia vita senza di loro.

Ai miei cugini Moreno, Danilo e Francesca, per i tanti bei momenti, l'infinito

supporto, e l'amore che ci rendono più che cugini.

A tutti i miei amici a casa, per il loro ininterrotto amore e sostegno, devo la mia parte

più profonda, sperando di condividere tanti altri momenti in futuro.

Ringrazio Coimbra, per i tanti momenti ho passato qui e le lezioni apprese in questi

anni. Ringrazio il Portogallo per essere diventata la mia seconda casa, per la

gentilezza e accoglienza della sua gente, e per i momenti che sono stati e saranno.

Ringrazio tutto e tutti per aver procrastinato il mio lavoro, con un ringraziamento

speciale al gruppo “Porta dos fundos” e molti altri YouTubers: senza loro non riesco

a immaginare quel che sarebbe di noi. Ringrazio gli artisti per il loro lavoro costante

ci mantiene umani. Possano sempre le distrazioni e la procrastinazione guidare e

salvare le nostre vite.

Ora e sempre, carrega Benfica!

 xvii

List of Publications

This thesis relies on the published scientific research presented in the following peer

reviewed papers:

P 1. Marco Vieira, Ivano Irrera, Henrique Madeira, Miroslaw Malek, “Fault injection

for failure prediction methods validation”, 2009, Proceedings of the 5th Workshop

on Hot Topics in System Dependability (HotDep 2009) at DSN 2009, Estoril,

Lisbon, Portugal, 29 June - 2 July 2009 (DOI: 10.1109/DSN.2009.5270287).

P 2. Ivano Irrera, João Durães, Marco Vieira, Henrique Madeira, “Towards

identifying the best variables for failure prediction using injection of realistic software

faults”, 2010, Proceedings of the 16th Pacific Rim International Symposium on

Dependable Computing (PRDC’10), Tokyo, Japan, 13-15 December 2010, DOI:

(acceptance rate: 41,5%, 10.1109/PRDC.2010.51).

P 3. Ivano Irrera, João Durães, Henrique Madeira, Marco Vieira, “Assessing the

Impact of Virtualization on the Generation of Failure Prediction Data”, 2013,

Proceedings of the 6th Latin-American Symposium on Dependable Computing

(LADC’13), Rio de Janeiro, Brasil, 1-5 April 2013 (acceptance rate: 38%, DOI:

10.1109/LADC.2013.24).

P 4. Ivano Irrera, Carlos Pereira, Marco Vieira, “The Time Dimension in Predicting

Failures: A Case Study”, 2013, Proceedings of the 6th Latin-American

Symposium on Dependable Computing (LADC’13), Rio de Janeiro, Brasil,

2013, 1-5 April 2013 (acceptance rate: 38%, DOI: 10.1109/LADC.2013.25).

P 5. Ivano Irrera, João Durães, Marco Vieira, “On the Need for Training Failure

Prediction Algorithms in Evolving Software Systems”, 2014, Proceedings of the 15th

International Symposium on High-Assurance Systems Engineering (HASE’14),

2014, Miami, Florida, USA, 9-11 January 2014 (acceptance rate: 30%, DOI:

10.1109/HASE.2014.38).

 xviii

P 6. Ivano Irrera, Marco Vieira, “A Practical Approach for Generating Failure Data for

Assessing and Comparing Failure Prediction Algorithms”, 2014, Proceedings of the

IEEE 20th Pacific Rim International Symposium on Dependable Computing

(PRDC’14), Singapore, 18-21 November 2014 (acceptance rate: 37,5%, DOI:

10.1109/PRDC.2014.19).

P 7. Ivano Irrera, João Durães, Marco Vieira, “Adaptive Failure Prediction for

Computer Systems: A Framework and a Case Study”, 2015, Proceedings of the 16th

International Symposium on High-Assurance Systems Engineering (HASE’15),

2015, Daytona Beach, Florida, USA, 8-10 January 2015 (acceptance rate: ?, DOI:

10.1109/HASE.2014.38).

P 8. Ivano Irrera, Marco Vieira, “Towards assessing representativeness of fault injection-

generated Failure Data for Online Failure Prediction”, 2015, to appear in Proceeding

of the 1st Workshop on Recent Advances in the DependabIlity AssessmeNt of

Complex systEms (RADIANCE 2015) at DSN 2015, Rio de Janeiro, Brazil.

Other published works:

P 9. Valentina Bonfiglio, Leonardo Montecchi, Ivano Irrera, Francesco Rossi, Paolo

Lollini, Andrea Bondavalli, “Software Fault Emulation at model-level: towards

Automated Software FMEA”, 2015, to appear in Proceeding of the 1st Workshop

on Safety and Security of Intelligent Vehicles (SSIV 2015) at DSN 2015, Rio de

Janeiro, Brazil.

 xix

Table of Contents

Chapter 1 Introduction .. 1
1.1 Problem statement ... 4
1.2 Main contributions of the work .. 6
1.3 Structure of the document .. 8

Chapter 2 Background and related work ... 11
2.1 Dependable computing .. 11
2.2 Online Failure Prediction ... 16

 The Online Failure Prediction context .. 18 2.2.1

 A taxonomy and examples of online failure prediction methods 20 2.2.2

 The Failure Prediction problem: a model and its parameters 25 2.2.3

 Performance evaluation of Failure Prediction models 26 2.2.4

 Building and optimizing Online Failure Prediction models 31 2.2.5

2.3 Virtualization and Online Failure Prediction .. 33
2.4 Fault Injection... 35

 Fault injection environment and a taxonomy .. 36 2.4.1

 Injection of hardware faults ... 37 2.4.2

 Injection of software faults ... 38 2.4.3

 Generic Software Fault Injection Technique (G-SWFIT) 42 2.4.4

2.5 Fault Injection and Online Failure Prediction ... 46
2.6 Computer systems benchmarking .. 46
2.7 Final remarks .. 49

Chapter 3 Generating failure data by Software Fault Injection 51
3.1 Overview of the approach .. 53
3.2 Phase 1: Definitions and set-up .. 55

 Characterizing the failures ... 57 3.2.1

 Defining the faultload and the fault injection procedure 58 3.2.2

 Defining the workload .. 60 3.2.3

 xx

 Selecting the variables and the monitoring infrastructure 61 3.2.4

 Modeling the failure prediction problem ... 63 3.2.5

3.3 Phase 2: Data generation and collection .. 64
3.4 Phase 3: Dataset building ... 66
3.5 Phase 4: Failure data accuracy analysis .. 70

 Direct data accuracy estimation ... 72 3.5.1

 Indirect accuracy estimation ... 73 3.5.2

3.6 Case Study: The impact of the time dimension in failure prediction 75
 The Sliding Window technique ... 76 3.6.1

 Definitions and set-up ... 78 3.6.2

 Data generation, dataset building and failure predictor training 81 3.6.3

 Results and discussion .. 82 3.6.4

 Accuracy analysis ... 84 3.6.5

3.7 Final remarks .. 89

Chapter 4 Virtualization as a support for the generation of failure data 91
4.1 Overview of the approach .. 93
4.2 Phase 1: Failure data generation .. 96
4.3 Phase 2: Symptoms identification ... 97
4.4 Phase 3: Symptoms and failures correlation ... 100
4.5 Phase 4: Failure data similarity analysis .. 102
4.6 Case study: Impact of virtualization in the generation of failure data 102

 Data generation .. 104 4.6.1

 Symptoms similarity estimation .. 105 4.6.2

 Results and discussion .. 107 4.6.3

 Discussion on the impact of virtualization ... 108 4.6.4

4.7 Final remarks .. 109

Chapter 5 Assessing and comparing Failure Prediction models 111
5.1 Overview of the approach and properties ... 112
5.2 Dataset .. 115
5.3 Metrics .. 115

 Prediction value-based metrics .. 117 5.3.1

 Decision threshold-based metrics .. 118 5.3.2

 Prediction error-based metrics ... 119 5.3.3

 Time complexity metrics ... 119 5.3.4

5.4 Procedure ... 119
5.5 Case Study: Benchmarking different failure prediction models 122

 Benchmarking campaign .. 125 5.5.1

 Best performing Failure Prediction model ... 126 5.5.2

 Best Failure Prediction model for each couple (∆tl, ∆tp) 127 5.5.3

 Performance vs Computational cost .. 129 5.5.4

 Properties of the implemented benchmark .. 130 5.5.5

5.6 Final remarks .. 132

 xxi

Chapter 6 A framework for continuous training of Failure Predictors 135
6.1 On the need for continuous training of failure prediction models 137

 Overview of the study ... 137 6.1.1

 Collected data ... 140 6.1.2

 Results and discussion .. 141 6.1.3

6.2 AFP Framework concept and modules .. 144
6.3 AFP Framework lifecycle and phases .. 147
6.4 Case study: Adaptive Failure Prediction for a Tomcat web server 149

 AFP Framework implementation .. 149 6.4.1

 Experimental campaign .. 150 6.4.2

 Results and discussion .. 151 6.4.3

6.5 Final remarks .. 153

Chapter 7 Feature Selection based on symptoms identification: Case Study 155
7.1 Feature selection approach and study overview .. 156
7.2 Experimental campaign .. 159
7.3 Results and discussion .. 159
7.4 Final remarks .. 163

Chapter 8 Conclusions and Future Work ... 165

References ... 170

 xxii

 xxiii

List of Figures

Figure 2.1 – The causality relationships between faults, errors and failures 12
Figure 2.2 – Online Failure Prediction: an overview ... 18
Figure 2.3 – The MEA (Monitor-Evaluate-Act) Proactive Fault Tolerance schema 19
Figure 2.4 – Relations between failures and system down- and up-time 20
Figure 2.5 – Relation between the fault-error-failure model and the approaches for

Online Failure Prediction at the state of the art (F. Salfner, Lenk, and Malek 2010) .. 21
Figure 2.6 – A taxonomy of existing Failure Prediction approaches (F. Salfner, Lenk,

and Malek 2010) ... 21
Figure 2.7 – Time relations in Online Failure Prediction .. 25
Figure 2.8 – The failure identification problem: the contingency table 27
Figure 2.9 – A ROC curve ... 29
Figure 2.10 – A Precision-Recall curve .. 30
Figure 2.11 – No virtualization (a), Type-I Hypervisor (b), Type-II Hypervisor (c) ... 34
Figure 2.12 – A fault injection environment ... 36
Figure 2.13 – Software Fault Injection and system observation (J. A. Duraes and

Madeira 2006) ... 42
Figure 2.14 – The G-SWFIT injection task ... 44
Figure 3.1 – The four phases of the failure data generation ... 54
Figure 3.2 – The failure data generation environment.. 56
Figure 3.3 – Time relations in Online Failure Prediction .. 63
Figure 3.4 – Failure data generation, collection and data organization phases 65
Figure 3.5 – Datasets and scenarios (two workloads and two failure modes) 68
Figure 3.6 - Data from a single Failure Run i (a) and a complete (global) dataset (b) 69
Figure 3.7 – Example of application of a sliding window with width w=2. 77
Figure 3.8 –The temporal ordering of data in failure prediction. 77
Figure 3.9 - The impact of windowing on ROC-AUC ... 83
Figure 3.10 - The learning time increment ratio <WKL2, Hang> 84
Figure 4.1 - Data from a single Failure Run i (a) and a complete (global) dataset (b) 96
Figure 4.2 – The profile of the “Pool of Non-Paged Bytes” variable (normalized)..... 97
Figure 4.3 – A symptom identified on the “Semaphores” variable (normalized) 98

 xxiv

Figure 4.4 – The adaptive schema for threshold definition, symptoms identification

and symptoms/failures correlation .. 99
Figure 4.5 – ROC curves relative to single variables ... 101
Figure 5.1 - The benchmarking procedure using fault injection at runtime 120
Figure 5.2 – FP Benchmark components deployed. .. 123
Figure 5.3 - FPA with the highest F-Measure/ROC-AUC. .. 126
Figure 5.4 - Performance vs Computational cost ... 129
Figure 6.1 - Experimental setup parallelizing the generation of failure data. 139
Figure 6.2 - SVM performance comparison (Box-plots) .. 143
Figure 6.3 - The AFP Framework implementation. ... 146
Figure 6.4 - Update events management and re-training execution. 147
Figure 6.5 - The predictor ROC-AUC predicting hang failures, using parameters

(∆tl,∆tp)=(10s, 10s) ... 153
Figure 7.1 - Experimental setup .. 158
Figure 7.2 - F-Measure of the 387 parameters monitored in both configurations,

relative to all the failures occurred (Crash, Hang and Incorrect Results). 160

 xxv

 List of Tables

Table 2.1 - Hardware faults model .. 37
Table 2.2 - Fault coverage of fault types from (J. A. Duraes and Madeira 2006) 41
Table 2.3 - Most frequent fault types found in (J. A. Duraes and Madeira 2006)........ 43
Table 3.1 - G-SWFIT: examples of mutation and search patterns 59
Table 3.2 - Selected variables, for <WKL#1, Crash> and (∆tl, ∆tp)=(10s, 5s) (excerpt) 80
Table 3.3 - Failures generated ... 81
Table 3.4 - The parameters of the analysis .. 82
Table 3.5 - ROC-AUC and synthetization error (a, crash) .. 86
Table 3.6 - ROC-AUC and synthetization error (b, hang) .. 87
Table 4.1 - Failures generated ... 105
Table 4.2 - An example of ROC-AUC correlation values relative to two variables .. 106
Table 4.3 - Number of variables showing similar failure correlation 108
Table 5.1 - Recommended metrics for benchmarking failure prediction models. 116
Table 5.2 - Selected variables, for (WKL1, Crash) and (∆tl,∆tp)=(10s, 5s) 124
Table 5.3 - The details of the analysis .. 125
Table 5.4 - Failures generated ... 126
Table 5.5 - Predictors F-Measure relative to prediction parameters ∆tl and ∆tp 128
Table 5.6 - ROC-AUC distribution along the dataset folds (excerpt). 131
Table 5.7 - ROC-AUC and synthetization error. .. 132
Table 6.1 - Failure predictor performance comparison. .. 138
Table 6.2 - Monitored variables, an excerpt.. 140
Table 6.3 - Analysis parameters ... 141
Table 6.4 - Workload runs and failures occurred. ... 141
Table 6.5 - SVM performance comparison (sliding window w=2s). 142
Table 6.6 - Failure predictor performance comparison ... 150
Table 6.7 - Runs and failures occurred. ... 151
Table 7.1 - Overall characterization of the experiments ... 159
Table 7.2 - Top-10 parameters, according to F-Measure (in percentage) 161
Table 7.3 - Detailed results the Top-10 parameters (hangs only) 162

 xxvi

1

Chapter 1
Introduction

Computer systems are an intrinsic element of our life. Hardware and software

components work jointly to provide complex functions, with the logic of the system

embodied into the software, while the hardware provides data storing, data

management, and communication. Despite the importance that hardware had over

many decades, the software is nowadays the flexible and powerful mean that allows

building and controlling increasingly complex systems. In fact, several areas of our

society strictly depend on software systems, such as transportation (e.g., trains,

airplanes, cars, elevators, etc.), industrial production, communication, medical aid

(e.g., devices for intensive care, radiation therapy systems, etc.), and finance (e.g.,

banks, commercial systems, stock market).

Over the last decade, software has grown in complexity up to a point that systems

are hardly free from defects (also known as software faults), and it is nowadays

commonly accepted that every computer system eventually fails due to residual

software faults, i.e., defects that escape the development and testing phases (Gray

1986; Ko, Dosono, and Duriseti 2014). A software fault can be a design flaw or a

defect introduced during the coding of a software component (or the use of an

external software) that is activated under certain conditions. Although hardware

faults used to be the main cause of system outages (e.g., a bit flip in a hardware

component due to a quantity of gamma rays higher than expected passing through

the component), the situation has changed due to the higher reliability of hardware

components and to the increasing size and complexity of software (Gray 1986; Lee

and Iyer 1995). Starting from 1980’s, studies point software faults as the major cause

of computer failures (Kalyanakrishnam, Kalbarczyk, and Iyer 1999; Lee and Iyer

1995), and their weight with respect to hardware faults tends to increase, given the

continuous growth of software complexity.

The problem is that, in complex systems, such as business- and mission-critical

systems, software faults frequently lead to errors and failures of parts of the system

Chapter 1

 2

(or of the system as a whole) that can ultimately lead to loss of profit or even human

lives. This scenario called the attention of the scientific community to the way

software systems are developed and to the properties that they must have to avoid

hazards, as well as to techniques able to contain potential damages. In particular, the

main interest has been on increasing the trust that one can put in the computer

system or how much a user can depend on the system. Avizienis et al. define such

concept as system dependability (Avizienis et al. 2004).

Several techniques were developed with the objective of avoiding or managing

faults. A first family of techniques stands on the hypothesis that faults can be

avoided. Fault prevention or avoidance techniques improve the software development

process by applying, for instance, product quality controls and formal verification

techniques. Likewise, fault removal techniques aim at finding and correcting the

highest possible number of faults in a system after its development: examples are

testing, verification, and validation techniques. On the other hand, it is well

established that deploying fault-free complex systems is an unachievable goal (R.

Chillarege 1995; Sullivan and Chillarege 1991; Ram Chillarege, Kao, and Condit

1991). This way, failures remain unavoidable events, and computer systems do need

to encompass techniques for proactively handling and/or recovering from their

effects. The second family of techniques, addressing such hypothesis, comprises fault

tolerance that mitigates existing faults (e.g., by using system replication, error

detection, system re-initialization, etc.), and fault forecasting for modeling the future

impact of the faults present in the system, as well as the time when the system will

fail (e.g., by using reliability block diagrams, fault-trees, etc.). The focus of this work

is precisely on fault forecasting techniques, in particular on Online Failure

Prediction, making use of past and current system data for estimating or forecasting

failures.

Using fault forecasting techniques to predict if and when a failure would occur, allows

applying countermeasures to avoid the occurrence of the failure itself, or at least

preparing mechanisms in advance to recover from the failure. Such solutions can, for

instance, reduce the time-to-repair and increase the availability of a system (F.

Salfner and Malek 2005). In practice, estimations based on information about the

failures faced by the system, such as Mean Time To Failure (MTTF) or Mean Time

Between Failures (MTBF), can be used to predict the occurrence of failures in an

interval of time. Also, reliability models (Lyu and others 1996), built using

information about the development process, allow predicting future failures

(assuming that the system properties are stable over time). However, the

effectiveness of such forecasting methods is strongly limited, as the hypothesis that a

given failure prediction model holds over time is nowadays proven invalid for most

systems.

Online Failure Prediction (F. Salfner, Lenk, and Malek 2010) is a promising technique

that improves the classical failure forecasting schema by correlating past data about

the system state with the occurrence of failures, and afterwards comparing that

Introduction

 3

information with the system state at runtime. The prediction information obtained at

runtime allows rapidly and proactively taking countermeasures before the failure

occurs, such as saving data and restart a failing system component, thus minimizing

or even eliminating downtime and increasing availability (F. Salfner, Hoffmann, and

Malek 2005). In practice, an online failure predictor forecasts incoming failures using

past data from the system (used to train the predictor) and information about the

current state of the system (obtained by monitoring system state variables), during

the system execution (i.e., online). The information about the system state used can

be numerical variables measuring relevant properties (memory available, page faults,

etc.), or categorical variables, such as events from error logs (F. Salfner, Lenk, and

Malek 2010). The output of online failure prediction can be either a decision that a

failure is imminent, or some continuous measure that portrays how failure prone the

current system state is. Preliminary estimates show that five minutes in advance

failure prediction can improve system availability by an order of magnitude (G.

Hoffmann and Malek 2006). This technique is particularly useful to address residual

faults (i.e., faults that escaped the testing process) that cannot be tolerated by

existing fault tolerance mechanisms (M. Vieira et al. 2009).

Several different types of online failure prediction algorithms were proposed in the

past (see survey in (F. Salfner, Lenk, and Malek 2010)). An example is a method

based on the system state clustering and Hidden Semi-Markov Models to detect

failure-prone states, proposed by Salfner et al. (F. Salfner and Malek 2007). Another

example is the use of Support Vector Machine classifiers to predict failures in hard

disk drives presented by (G. F. Hughes et al. 2002). Online failure prediction has

been proposed for single-node and multi-node systems, moving to cloud systems (Y.

Watanabe et al. 2012) in the last years. There are also some examples of companies

announcing failure prediction features in their systems (Liang et al. 2006).

Despite its potential contribution for improving dependability, online failure

prediction still presents several limitations. In fact, in addition to the problem of

choosing the optimal set of variables to use for prediction (the feature selection

problem), online prediction models are difficult to tune and assess. Although these

are common problems in the prediction field, in the failure prediction area they are

exacerbated by the fact that the collection of failure data is extremely difficult and

time-consuming, as demonstrated by several works that show that failure data

collection can take from months up to years (Li, Vaidyanathan, and Trivedi 2002; G.

Hoffmann and Malek 2006; Otsuka et al. 2014; Pitakrat, Van Hoorn, and Grunske

2014). Moreover, computer systems are dynamic and evolving in nature, and

updating online failure predictors at regular intervals in absence of updated failure

data is a difficult task. A proposed solution to address the problem of failure data

scarcity is the use of failure data repositories (Felix Salfner, Lenk, and Malek 2010)

provided in the form of collaborative databases where failure data coming from

several (types of) systems are stored. However, although being a valid solution,

failure data repositories must keep increasingly larger amounts of data associated to

Chapter 1

 4

several particular systems, they take long to be built, and data become obsolete as

systems change over time. Although proposals of failure prediction solutions

adapting to such situation can be found in the literature, such approaches are limited

to failure prediction models based on specific approaches (e.g., online failure

prediction based on time series (Zemouri and Zerhouni 2011)).

1.1 Problem statement

In this work we argue that advancing the failure prediction area requires a

systematic approach that facilitates the generation of failure data. Our proposal is

to use realistic software fault injection to increase the probability of failures to occur,

allowing speeding up the generation and collection of failure-related data. The thesis

is that failure data generated by injecting residual software faults1 can be used to

support the process of training, assessing and comparing failure prediction models,

as well as optimizing and promoting their use.

Fault injection consists of deliberately introducing faults in a way that emulates the

existence of residual faults in the system (Arlat, Crouzet, and Laprie 1989), which

may lead to errors (erroneous system state) and finally to system failures (a deviation on

the service provided). Inoculating a system with software faults increases the number

of faults in the system, which obviously increases the probability of the system to

fail. In particular, injecting realistic faults means that the faults introduced represent

defects that developers could potentially introduce during the system development.

The ultimate idea is that injecting realistic software faults for increasing the

probability of occurrence of failures enables the faster collection of failure-related

data. Consequently, the availability of such data facilitates the assessment,

comparison and improvement of existing failure prediction methods, or even the

definition of new approaches.

Although this idea seems rather straightforward, fault injection techniques have

been rarely used to improve failure prediction. Some works used the injection of

memory leaks to accelerate the occurrence of the Software Aging phenomena in the

system under study, but they targeted only aging-related failures (Gross, Bhardwaj,

and Bickford 2002; Andrzejak, Moser, and Silva 2007; Alonso, Torres, and Gavaldà

2009). Furthermore, faults are mostly injected at the source code level, which is not

practical when considering complex computer systems, and even not feasible when

the source code is not available. Other techniques, such as executing stressful

workloads (Vaidyanathan et al. 2001) that drive the operating system to limit

1 In the fault injection context, the concept of injecting “residual” faults is used to highlight

the fact that the injected faults do emulate residual software faults, i.e., faults that escaped the

quality assurance activities conducted in the context of the software development project

(e.g., testing phase), thus remaining in the system after deployment.

Introduction

 5

conditions (e.g., increasingly opening files, using large percentages of CPU cycles,

etc.) (Magalhaes and Silva 2012), and accelerated life tests (Matias, Trivedi, and

Maciel 2010), were proposed and used to raise failures and validate software

rejuvenation models. In practice, such techniques exploit the faults already present

in the target software system to speed up the occurrence of system failures.

In this work we hypothesize that the injection of realistic software faults is a valid

solution for fostering the use of failure prediction, by addressing the following

issues:

1. Deploying online failure prediction models and evaluating their figures of

merit on a particular system installation. Effectively deploying failure

prediction models requires accurate training, which can only be achieved by

collecting failure data from a particular system installation, besides assessing

the algorithms’ performance and comparing them for selecting the most

suitable for such system. In fact, studies on the performance of existing

failure prediction models found in literature (a survey is in (F. Salfner, Lenk,

and Malek 2010)) are often not comparable among each other (besides

presenting frequently incomplete information), as they are very specific to

the target system used in the work. Although public repositories for

collecting failure datasets have become available in the last decade (e.g., the

Computer Failure Data Repository (Usenix and Carnegie Mellon University

(CMU) 2006)), the dependency between the public failure data and the

system from which they were collected may hinder the training of predictors

on a different system installation.

2. Supporting the continuous adaptation of failure prediction in dynamic

systems. The characteristics of a complex system may change over time, due

to a system update or a change of one or more hardware components (e.g., as

in cloud-based systems). However, updating online failure predictors at

regular intervals in absence of updated failure data is a hard task. Although

some works addressed the problem of adapting failure prediction models

over time, taking advantage of adaptive prediction models (Pitakrat, Van

Hoorn, and Grunske 2014; Zemouri and Zerhouni 2011), there is still the need

for failure data reflecting changes in the target system (e.g., new hardware

components, software updates, workload variation, etc.).

3. Identifying the best variables to be used to predict failures. Online Failure

Prediction models are based on runtime monitoring of parameters or variables

that portray the system state. The selection of the system parameters to

monitor is not trivial, as the number of variables can be very high and the

ones to be used are not known a priori. Focusing on the best ones is essential

to correctly use a predictor and to improve its performance. Moreover, as

demonstrated by Hoffman (G.A. Hoffmann, Trivedi, and Malek 2007),

obtaining an optimal online failure prediction model is more dependent on

Chapter 1

 6

selecting the right variables to support the prediction process, than on the

choice of the model. The problem is that a large amount of field failure data is

needed for identifying the variables that show the best symptoms of

incoming failures.

1.2 Main contributions of the work

The objective of this work is to advance the failure prediction state of the art by

studying the applicability of realistic fault injection for generating failure data,

which can help training, assessing and comparing online failure prediction models

on a concrete target system. In practice, the results achieved in this work open the

door for the scientific community to address the actual problems in developing and

deploying systems with failure prediction capabilities. In detail, the contributions of

this work are:

1. A conceptual framework for generating failure-related data making use of

realistic software fault injection. The framework is based on an

experimental procedure in which realistic software fault injection campaigns

are used for accelerating the occurrence of failures and thus generating

failure-related data. The proposed framework should be implemented on the

target system, thus software fault injection campaigns can provide extensive

datasets representing realistic scenarios of the system execution (I. Irrera and

Vieira 2014).

2. An approach to study the accuracy of failure data generated using software

fault injection. When leading the system to fail through the injection of

faults, one must be sure that the generated failure data are similar to the one

likely to be collected in the operational scenario of the target system. We call

this property accuracy of the failure data. Although the use of a realistic

software fault injection technique contributes for achieving this property,

such property needs to be validated, which unfortunately is not possible due

to the already stated scarcity of failure data. This way, we propose an

empirical approach for estimating the accuracy of generated (synthetic)

failure data, based on the use of metrics (or estimators) that portray the

correlation between the failure data generated by injecting faults and real

failure data. The approach can be used for assuring a controlled and quality-

driven data generation (I. Irrera and Vieira 2014).

3. A study on the adoption of virtualization as a sandboxing environment for

generating failure-related data. As in most cases it is not possible to inject

faults in a production system (especially when new failure data is

periodically needed to accommodate system changes and evolution), we

study the hypothesis of applying fault injection over an independent copy of

the system. In particular, we investigate whether virtualization can be used

Introduction

 7

as a sandboxing solution for hosting such virtualized copy and study the

applicability of such solution by assessing whether the data generated from

the virtualized copy are adequate for training failure prediction mechanisms

to be run in the original system. The correlation of failure data generated in a

given system with data from several virtualized copies is analyzed based on

the correlation of failure symptoms (Ivano Irrera et al. 2013).

4. A conceptual framework for assessing and comparing alternative failure

prediction models in the context of a particular target system. We propose a

conceptual benchmarking framework that can be instantiated to specific

systems for a fair and sound assessment of alternative online failure

prediction models. The framework makes use of the proposed approach for

generating failure data and envisages the definition of the metrics, the

workload to be used, as well as the process to implement the benchmark.

This includes validating the properties of the benchmark, which increases

confidence in the assessment and comparison of the results (I. Irrera and

Vieira 2014).

5. A conceptual framework for the automatic and continuous self-adaptation

of failure prediction systems. We define a generic framework (called

Adaptive Failure Prediction – AFP – Framework) that can be instantiated to

specific systems, whose goal is to train failure prediction models after the

occurrence of specific events (e.g., a software update), collecting failure data

when needed. The framework uses virtualization as a sandboxing

environment for performing the fault injection process, taking into account

the impact of the virtualization on the failure data generation. In practice, a

replica executes a workload that mimics the operations executed in the

original system to keep the failure data collected realistic. The failure

predictors (re-)training process is automated, based on a modular event-

driven architecture to detect when retraining is needed (Ivano Irrera, Vieira,

and Duraes 2015).

6. A study on system variables presenting failure symptoms to be used for

predicting failures. We study an approach to select the best variables for

prediction purposes by identifying symptoms in a set of monitored variables,

by generating failure data by fault injection and observing the impact of

faults on the different variables that are being collected. The idea is that the

activation of the injected faults may cause failure symptoms to show up in a

limited group of variables, from which the most adequate for predicting

failures should be selected. The impact is measured by applying a correlation

function between each single variable and the failures observed in the

system: the higher the correlation, the more likely the variable is to be

suitable to predict failures (I. Irrera et al. 2010).

Chapter 1

 8

Besides the contributions stated above, another result of this work is the

implementation of a novel online failure prediction model, which improves the

failure prediction quality of a generic classifier-type predictor by including the time

dimension in the prediction task (Ivano Irrera, Pereira, and Vieira 2013). Most online

failure prediction techniques available nowadays make use of the current values of

the monitored variables to perform the prediction, not considering the fact that the

data used can be represented as time series (F. Salfner, Lenk, and Malek 2010). For

instance, Hughes et al. (G. F. Hughes et al. 2002) apply SVMs (Support Vector

Machines, (Cortes and Vapnik 1995)) to predict failures of hard disk drives, making

use of several numerical variables (time series), but just one value at a time for each

variable. Our idea is that the relation that the variables have with time (i.e., their

continuous evolution) could improve the prediction quality of a model. This way,

we propose the use of a sliding window applied to the available training data to

improve the prediction performance of a SVM classifier (Ivano Irrera, Pereira, and

Vieira 2013).

1.3 Structure of the document

This first chapter introduced the problem and the main contributions of the thesis.

Chapter 2 introduces basic concepts on dependability and fault tolerance, presents

background and existing surveys on failure prediction models and algorithms, and

discusses fault injection approaches and tools. Background on feature selection,

computer benchmarking and virtualization is also presented.

Chapter 3 presents our approach for generating failure data by using realistic

software fault injection. Besides describing the approach, we present a case study in

which we use the generated data to assess the performance improvement of the

sliding window technique applied to an SVM-based failure prediction algorithm. In

addition, we present the method for the assessment of the accuracy of the generated

failure data, which makes use of metrics estimating the distance between different

failure datasets.

Chapter 4 studies the applicability of virtualization as a sandboxing solution for

running a copy of the target system that can be used to generate failure-related data

when injecting faults in the target system is not possible. In a case study we analyze

the impact of virtualization on the generation of the data, and propose an approach

for taking such factor into account when adopting this solution.

Chapter 5 presents the benchmarking framework for assessing and comparing

alternative failure prediction models in the context of a particular target system. A

case study demonstrates its applicability, efficacy and ease of installation, among

other fundamental properties that a benchmark must have.

Introduction

 9

In Chapter 6 we propose a framework for supporting adaptive failure prediction,

which is able to address the changes that occur in the system by automatically re-

training and optimizing the failure prediction model. We also present a case study in

which we implement and validate such framework.

Chapter 7 presents a study of a preliminary approach for selecting the best variables

for prediction purposes. The goal is to identify the variables that show more

symptoms of failures by correlating their values with the effectively observed

failures. The case study presented shows the applicability of the proposed methods

and confirms that only a subset of all the variables monitored should be used for

failure prediction.

Finally, Chapter 8 concludes the thesis, summarizing the lessons learned, evidencing

the potential of the proposed solutions, and presenting the weaknesses that we

believe should be tackled as future work.

 11

Chapter 2
Background and related work

In this chapter we present background concepts and related work on dependable

systems (Section 2.1) and Online Failure Prediction (Sections 2.2), the use of

virtualization solutions in the failure prediction context (Section 2.3), fault injection

(Section 2.4) and its use for online failure prediction (Section 2.5), and computer

systems benchmarking (Section 2.6). In particular, the chapter also includes an

overview on the performance evaluation of failure prediction models (Section 2.2.4)

and the prediction optimization problem, including feature selection (Section 2.2.5).

Section 2.6 concludes the chapter.

2.1 Dependable computing

Computer systems naturally tend to grow in complexity up to a point where their

behavior is partially unpredictable, especially for what concerns its software, which

represents a major threat to the benefits they aim to provide.

<<Nothing can assure the absence of errors>> (E. W. Dijkstra).

Demonstrating the absence of defects in the hardware and software components of a

system before deployment (e.g., by using mathematical proofs) or after development

(e.g., using testing) is a NP-complete and NP-hard problem (Cook 1971). In

particular, a posteriori techniques can only assure the presence of faults, while

preventive methods are used to decrease the presence of faults, hence only partially

solving the problem. It is thus well known that complex computer systems do

contain defects, and eventually fail (Gray 1986; Sauer 1993; Oppenheimer 2003).

According to (Avizienis et al. 2004), a computer system generally provides a service

or functionality that can be used by a human user or by another system. The system

is working properly if it is able to provide the expected functionality in the correct

Chapter 2

 12

way. The service that the system provides is a sequence of states perceivable at the

system interface (external states) (Avizienis et al. 2004).

A deviation of the service delivered by the system from the expected service is called

a system failure. The system is said to contain an error, or being in an erroneous

state, when it state deviates from what is defined to be the correct one. However,

even if the system is not in correct state, as long as it provides the expected service or

functionality, there is no failure. Errors evolve into failures when the malfunction

reaches the system interface, or is detected by an external user (e.g., a user cannot

access its data, or the server cannot send to a user some requested data). Errors can

accumulate without influencing the system service, or they may influence the system

causing a partial failure or leading the system to run in a degraded mode. The

adjudged or hypothesized cause of an error (and thus, a failure) is a fault, which can

be internal (originating inside the system boundaries) or external (originating

externally to the system, and that propagates into the system by interaction or

interference). Faults can be of different kinds (e.g., hardware or software, transient or

permanent). An exhaustive taxonomy can be found in (Avizienis et al. 2004).

Figure 2.1 (a) shows the fault-error-failure chain expressing the causality

relationship between faults, errors and failures. It is worth noting that a failure of a

component can be a fault (in the figure an external fault, as a voltage peak or an

incorrect input) of a connected component. Figure 2.1 (b) shows the transition of

system states in the presence of a fault. A system working correctly may contain

faults that remain dormant, or that may be activated causing an error. Errors may

remain latent and let the system continue to provide a correct service during the

observation time, or propagate to the system interface, causing a failure.

(a) Fault-error-failure-fault chain

(b) System states in the presence of a fault

Figure 2.1 – The causality relationships between faults, errors and failures

Background and related work

13

The use of computer systems cannot be separated from the management of errors

and failures, which can occur during its operations due to several and often

unknown reasons, raising the need for techniques for assuring the correct system

behavior, also in presence of unexpected events. This is especially critical for systems

used in environments where failures may cost loss of business and human lives.

Computer-based systems can encompass specific properties addressing undesired

errors and failure events. For instance, a safe system is a system that assures no major

damages when a failure occurs, while a reliable system assures the continuity of its

service. Such properties can be grouped under the generic concept of dependability:

a dependable system is a system one can depend on. The authors of the work entitled

“Basic Concepts and taxonomy of Dependable and Secure Computing” (Avizienis et al.

2004) give the following definition of dependability:

The dependence of system A on system B (...) represents the extent to which system

A’s dependability is (or would be) affected by that of System B. The concept of

dependence leads to that of trust, which can very conveniently be defined as accepted

dependence.

As developed over the past three decades, dependability is an integrating concept that

encompasses the following attributes:

 availability: readiness for correct service.

 reliability: continuity of correct service.

 safety: absence of catastrophic consequences on the user(s) and the environment.

 integrity: absence of improper system alterations.

 maintainability: ability to undergo modifications and repairs.

The intended dependability of a computer system (based on hardware and

software) is defined by attributes in terms of the frequency and severity of the

acceptable failures, for specified classes of faults and a given user environment

(Avizienis et al. 2004). For example, the dependability attributes reliability and

availability can be expressed mathematically as follows:

 Reliability: it can be modeled as the conditional probability of delivering a

correct service in the interval [0, t], given that the service is correct at the time

t=0. The reliability therefore models the mission time of the system or the time

to failure T (or TTF):

Chapter 2

 14

(2.1) 𝑅(0, 𝑡) = 𝑃(𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑖𝑛 [0, 𝑡]|𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛 0)

The reliability function can thus be obtained considering the failure occurrence

time. Hence, be T the failure time (or time to failure, TTF) and FT(t) the

cumulative distribution function (CDF) of the failure occurrence (or arrival)

times, the reliability function can be expressed as:

(2.2) 𝑅(𝑡) = P(T > t) = 1 − P(t < T) = 1 − F𝑇(t)

Moreover, assuming T (or TTF) as a random variable to be continuous

positively defined, and FT(t) to be differentiable, the CDF can be written as:

(2.3)
𝐹(𝑡) = P(T < t) = ∫ 𝑓(𝑥)𝑑𝑥

𝑡

0

for t > 0

Examples of reliability functions R(t) are obtained using exponential failure

arrival times, Weibull distribution, Lognormal distribution, etc.

 Availability: a system is available at time t if it is able to provide a correct

service at that instant of time. Thus:

(2.4)
𝐴(𝑡) = {

1
0

𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑡 𝑡

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The availability can thus be modeled as the expected value E[A(t)]. In

particular, if the time to failure is characterized by its mean, called Mean Time

To Failure (MTTF), and the time to repair as well (Mean Time To Repair,

MTTR), a function of the probability of finding the system in a correct state

can be given by the rate A defined as:

(2.5) 𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹

 where MTBF is the Mean Time Between Failures.

Attaining dependability attributes requires systematic approaches aimed at

improving the system quality in terms of hardware and software development,

tolerance to errors and failure occurrence, verification of the correct functioning,

validation of the functionalities and the mission of the system, and so on. According

Background and related work

15

to (Avizienis et al. 2004), the techniques for assuring the dependability of a system

can be divided into four categories, focusing on the concept of fault as the cause of

errors and failures:

1) Fault Prevention (or fault avoidance) techniques that reduce the number of

faults present in a computer system (i.e., preventing the existence of faults).

Some examples are the improvement of the development processes of both

hardware (e.g., avoiding bad design rules) and software (e.g., information

hiding, modularization, use of strongly-typed programming languages).

Although some faults are still present at the end, the use of such techniques is

a necessary step towards dependable systems.

2) Fault Tolerance techniques, based on the hypothesis that faults do exist in

the system and eventually will be activated causing errors or failures. Such

techniques are aimed at avoiding failures (e.g., using back-up components for

allowing the system to continue providing its service, or having redundant

systems using diverse hardware and/or software elements), mitigating the

effects of failures (e.g., planning the system to offer a degraded service when

a component fails), or planning system recovery (e.g., reducing downtime

and time to repair). Besides reacting to failures, fault tolerance techniques can

be based on error detection and handling (e.g., roll-back or roll-forward to

error-free states, or masking the error by using redundancy), and fault

detection (e.g., the effect of memory leaks, resulting in software aging and

system failing due to memory exhaustion, can be handled by rebooting the

system from time to time).

3) Fault Removal techniques, for removing the faults either during the system

development (e.g., verification, validation) or during its use. In particular, the

removal of faults during the use of the system can be implemented as

corrective maintenance (faults show themselves and are corrected) or

preventive maintenance (uncovering existing faults before they evolve into

errors).

4) Fault Forecasting techniques, which analyze the behavior of the system in a

qualitative or quantitative way, with respect to the fault occurrence or

activation. In practice, the aim is to evaluate the system behavior in order to

estimate the future consequences of a fault (using system modeling or system

testing). An example are reliability growth models (F. Salfner, Lenk, and

Malek 2010), which are based on data about past failures (and thus activated

faults) to model the time to failure. Worth to put on evidence are the

dependability benchmarking approaches, whose goal is to assess measures of

the behavior of systems in the presence of faults, whose results can be used

by forecasting techniques (Avizienis et al. 2004).

Chapter 2

 16

In addition to the techniques and terms above, other concepts are used in the

dependability context, including:

 Resilience, the property of a system to deliver a justifiably trusted service in

a persistent way, when the system faces changes (Laprie 2005; Simoncini

2009). The definition of changes ranges from unexpected failures, attacks or

accidents, to changes relative to the system load and configuration (Trivedi,

Kim, and Ghosh 2009). In general, a resilient system is a system that is

trustworthy and tolerant to changes falling outside the design envelope

(Trivedi, Kim, and Ghosh 2009), while a dependable system deals with events

inside the design envelope.

 Assurance, a measure of confidence that the features, practices, procedures

and architecture of an information system accurately mediate and enforce

safety and security policies (partially from (Committee on National Security

Systems 2010), (SAFECode - Software Assurance Forum for Excellence in

Code 2008), (NASA)). High-assurance systems must provide an high

measure of confidence in the techniques used to attain dependability and/or

security, in a way that gives “justifiable trustworthiness in meeting established

business and security objectives” (OMG System Assurance Task Force). The

concept of system assurance is strongly based on evidence, which can be

obtained by measurement or formal methods. In practice, a high-assurance

system is required to be safe and/or secure within well-defined limits and

with a well-defined confidence (e.g., assure safety-critical systems to be safe).

 Antifragility, a novel concept based on the definition of fragility of a system

(economical, financial, software, etc.) (Taleb 2012). A software system is

fragile (Monperrus 2014) if during its development an error by omission

(something missing, few things implemented) or commission (too many

things to do) occurred. In particular, errors by omission mean that “there may

exist neglected design principles and implementation”, which drive to fragility

(Monperrus 2014). The elimination of such neglected principles may lead to

defining antifragile principles (Monperrus 2014). Preliminary work presented

a comparison between the concept of antifragility and existing concepts (e.g.,

fault tolerance, robustness), and showed how automated runtime bug fixing

and fault injection during production are two means to achieve antifragility.

2.2 Online Failure Prediction

Online Failure Prediction is a technique that allows forecasting failures occurring in

a near future by monitoring the system at runtime (thus the term online), and using

past information about the system’s (normal or faulty) behavior (see Figure 2.2). A

formalization of the Online Failure Prediction problem was proposed by Salfner et

Background and related work

17

al. in (F. Salfner, Lenk, and Malek 2010). The output of online failure prediction can

be either a decision that a failure is imminent, or some continuous measure that

portrays how failure prone the current system state is. The prediction of failures is

thus based on different kinds of information, including the past data from the system

(used to train the predictor), the current information about the state of the system

(obtained by monitoring system variables, using error reports, etc.), the time horizon

of the prediction, among others. Online Failure Prediction involves techniques like

machine learning, statistical analysis, pattern recognition, and so on. Failure

predictors are normally trained and tuned in advance for a given target system using

data related to failure events for that particular system. Predicting failures in

advance allows avoiding failures or at least mitigating their effects (e.g., by saving

data or preventively restarting specific system modules).

Online Failure Prediction is considered the natural evolution of Failure Prediction

(also referred to as reliability modeling or prediction), which can be dated back to

Nassar in 1985 (Nassar and Andrews 1985), and whose models rely only on

historical failure data, i.e., information on failures occurred in the past. Such

technique allows estimating reliability indicators, as MTTF (Mean Time To Failure)

and MTBF (Mean Time Between Failures). However, the limitation of failure

prediction stands in the fact that no information about the actual state of the system

is taken into account, thus not achieving a precise and flexible prediction.

Many works on Failure Prediction integrating the information on the actual state of

the system have appeared in the last 15 years. In fact, the very first work on

predicting failures using the actual system state can be dated back to Wolski et al.

(Wolski, Spring, and Peterson 1997) in 1997, which developed a system for

predicting at runtime the performance of a network, for optimal resource allocation

and scheduling decision for meta-computer systems2. Garg et al. (Garg et al. 1998),

on the other hand, proposed a model for the estimation of resource exhaustion on an

Apache web server in 1998, based on the slope estimation of a set of continuous

numerical system parameters (i.e., used swap space, file table size, etc.) monitored

from the system. In particular, the method was able to predict performance failures,

as well as software aging-related failures (i.e., failures due to resource exhaustion

based on the runtime system information) (Vaidyanathan and Trivedi 2001).

However, not only numerical sequences were used in the past to predict failures: Lin

and Siewiorek (Lin and Siewiorek 1990) developed a prediction technique, called

DFT (Dispersion Frame Technique), based on the analysis of discrete events, rather

than on numerical sequences. A fundamental difference between classic Reliability

Prediction and the new types of prediction models stands in the fact that that the

latter are able to predict failures likely to happen in a short-term (i.e., in some

2 The system was called “Network Weather Service” and was based its predictions on linear

models (like linear regression models), using data coming from sensors located in different

elements of the network (nodes, links, etc.).

Chapter 2

 18

minutes, hours, or days, depending on the scale of the system), which make them

more suitable to model the actual life-time of a computer system.

In this thesis we use both Failure Prediction and Online Failure Prediction to refer to the

techniques that predict incoming failures in a short-term based on both the past and

the actual state information of the system under analysis. Moreover, when referring

to Failure Prediction in the classical acceptation, we use the term Reliability

Prediction, or similar. In the next subsections we introduce the main definitions in

Online Failure Prediction, including its goal and employment in improving system

dependability attributes. We also present a taxonomy of the existing Online Failure

Prediction methods (as proposed by Salfner et al. in (F. Salfner, Lenk, and Malek

2010)), giving some insight on the most representative works that can be found in

the literature.

 The Online Failure Prediction context 2.2.1

Online Failure Prediction is particularly useful to address residual faults (i.e., faults

that escaped the testing process) that cannot be tolerated by existing fault tolerance

mechanisms, and thus are likely to evolve into failures. In a dependability context, as

defined by (Avizienis et al. 2004), Online Failure Prediction can be considered a fault

forecasting technique (being an evolution of reliability growth models, as mentioned

before), and an enabler for fault tolerant systems. In fact, predicting failures may not

be enough to achieve perfect dependability, but the information about an incoming

failure can be used to prevent failures from occurring on the system, or at least to

prepare the recovery mechanisms with some time in advance, thus reducing the time

to repair.

The authors of (F. Salfner, Lenk, and Malek 2010) propose the use of Online Failure

Prediction in a broader framework, called Proactive Fault Tolerance (PFT), in which

the prediction of failures is the starting step towards their management or the

management of their effects. In particular, the Proactive Fault Management (Figure

2.3) is based on monitoring the system (also considering the problem of feature

selection, which may change over time), evaluating the system state through the use

of Online Failure Prediction (as well as the evaluation of the system for diagnosing

Figure 2.2 – Online Failure Prediction: an overview

Background and related work

19

for existing faults), and acting accordingly (in which one can select, schedule or

execute several types of tasks).

The use of failure prediction in a reactive schema can be a way to limit downtime or

even avoid a failure, e.g., through the use of fault tolerance, fault removal, early-

recovery mechanisms, and so on. In fact, in the worst case, if a predicted failure

cannot be avoided, one can use the information about it for anticipating recovery

duties, allowing the reduction of the relative system downtime (see Figure 2.4). In

case a failure is not avoidable, anticipating repairing duties implies a reduction of the

Mean Time to Repair (MTTR), which corresponds to a growth of the system

availability, as:

(2.6) 𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹

while the reliability is not affected, as its definition only depends on the failure

occurrence in an interval T:

(2.7) 𝑅(𝑡) = P(T > t) = 1 − P(T < t) = 1 − F𝑇(t) = 1 − ∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

On the other hand, avoiding failures by using information from Online Failure

Prediction can improve both the reliability and the availability of the system, as the

Mean Time To Failure (MTTF) increases both at the numerator and the denominator

of equation (2.6), letting the availability tend to 1.

Figure 2.3 – The MEA (Monitor-Evaluate-Act) Proactive Fault Tolerance schema

Chapter 2

 20

 A taxonomy and examples of online failure prediction 2.2.2
methods

(F. Salfner, Lenk, and Malek 2010) presents a comprehensive taxonomy of the

manifold of online failure prediction approaches for computer-based and generic

systems. The taxonomy is based on the fault-error-failure model: the authors

consider that the system state can evolve into a failure through four stages: fault,

undetected error, detected error, and failure. An error remains undetected until an error

detector identifies the incorrect state (see Figure 2.1 (b)). The authors found that a

great part of the surveyed failure prediction systems are based on the concept of

failure symptoms (e.g., aging trends in Software Aging detection). For this reason,

their taxonomy is extended with the failure symptoms dimension: besides causing a

failure, an error (detected or undetected) can cause out-of-norm behavior of system

parameters as a side effect (F. Salfner, Lenk, and Malek 2010). Figure 2.5 shows the

relation between the fault-error-failure model and the existing online failure

prediction approaches. As the authors of the survey propose, each online failure

prediction approach can be categorized based on the kind of input data used.

The authors surveyed over 50 different approaches among the most known

monitoring-based failure prediction approaches existing in the dependability

prediction literature. The complete taxonomy is presented in Figure 2.6.

The existing online failure prediction approaches can be thus distinguished in four

categories (see Figure 2.6): failure-tracking techniques, symptoms monitoring

techniques, detected errors reporting mechanisms, and undetected error auditing.

Except for failure tracking (included in the survey only for coherence purposes, as it

does not perform failure prediction “at runtime”, but uses only information from the

past), all the remaining techniques use information about the intermediate stages of

the fault activation to infer failure-prone situations, thus trying to act in advance.

Figure 2.4 – Relations between failures and system down- and up-time

Background and related work

21

According to Salfner’s survey the taxonomy can be navigated as follows (F. Salfner,

Lenk, and Malek 2010):

1) Undetected errors auditing. Auditing can identify undetected errors, and

includes techniques that check whether the entity under audit is in an

incorrect state. For example, memory auditing would inspect used data

structures by check-summing. However, failure prediction literature presents

no works that can be contained in this dimension, which may be due to the

fact that prediction based on auditing results may drive to low prediction

quality.

2) Detected errors reporting. Once an error detector identifies an incorrect state

the detected error may become visible by reporting. Reports are written to

some logging mechanism such as log-files or Simple Network Management

Protocol (SNMP) messages. Techniques used for predicting failures based on

error reports include classifiers, rule-based approaches, pattern recognition,

Figure 2.5 – Relation between the fault-error-failure model and the approaches

for Online Failure Prediction at the state of the art (F. Salfner, Lenk, and Malek

2010)

Figure 2.6 – A taxonomy of existing Failure Prediction approaches (F. Salfner,

Lenk, and Malek 2010)

Chapter 2

 22

and statistical tests.

3) Symptoms monitoring. Symptoms are side effects of errors that can be

identified by monitoring system parameters such as memory usage,

workload, sequence of function calls, etc. An undetected error can be made

visible by identifying out-of-norm behavior of the monitored system

variable(s). Techniques used in this direction for predicting failures include

function approximation, classifiers, system modeling, and time series

analysis.

4) Failures tracking. The occurrence of failures can be made visible by tracking

mechanisms. Tracking includes, for example, watching service response

times or sending testing requests to the system for the purpose of monitoring.

Techniques used for failure tracking are mainly failure co-occurrence analysis

and probability distribution estimation.

In the next subsection we briefly describe two of these categories through some

example of works found in literature, thus for providing a wider and complete view

of the failure prediction scenario. We focus on the categories Detected Error

Reporting and Symptoms Monitoring, as they represent most of the works in the

failure prediction area.

2.2.2.1 Failure prediction based on detected error reporting

An error occurs when a fault is activated, i.e., the fault brings the system in an

unpredicted and erroneous state, and the detection event is usually reported using

some system logging facility. The category of failure prediction approaches that use

the information on errors deal with event-driven approaches, working on discrete

events (i.e., the categorical data obtained) based on periodic observations.

One of the most used approaches to understand if a failure is going to happen is to

evaluate if a well-known set of conditions is met. If so, the situation is judged failure-

prone. As pointed out by Salfner et al. in (F. Salfner, Lenk, and Malek 2010), usually

the rule-based failure prediction has the following simple form:

IF <condition1> THEN <failure warning>

IF <condition2> THEN <failure warning>

…

Hence, the goal of failure prediction algorithms in this category is to identify, in an

automatic way, the conditions algorithmically from a set of training data. As an

example, Hätönen et al. (Hatonen et al. 1996) described a system that identifies

episode rules (alarms) from error logs: these rules are in the form “if errors A and B

occur within 5 seconds, then error C occurs within 30 seconds with probability 0.8”.

Weiss introduced a failure prediction technique called “Timeweaver”, which is based

Background and related work

23

on a genetic training algorithm (Weiss 1999). Other methods analyze errors that

occur close together either in time or in space (on the hypothesis that errors spread

in time or space before a system failure), considering their distribution similarly to

the case of previous failures occurrence. To this group belong works like Levy and

Chillarege (Levy and Chillarege 2003), and Lin and Siewiorek (Lin and Siewiorek

1990). In the latter, the dispersion frame technique (DFT) can be considered

belonging to this family of approaches as it also uses a set of heuristic rules on the

time of occurrence of consecutive error events of each component to identify

looming permanent failures.

Some works used pattern recognition and statistical tests to address the problem of

predicting failures using error reports. Also classifiers were used with this type of

discrete information. An example is the DFT technique by Lin and Siewiorek (Lin

and Siewiorek 1990), which focus on the time when errors are detected and uses

pattern recognition to identify failure prone situations based on the time relations of

the error events. Similarly, Salfner et al. (F. Salfner and Malek 2007; F. Salfner 2006)

presented Similar Events Prediction, a technique based on a semi Markov chain

model and Hidden Semi Markov models (HSMM), which is more flexible with

respect to the former method. These methods are able to identify patterns that

indicate an upcoming failure: in particular, a ranking value is assigned to an

observed sequence of error reports expressing similarity to patterns that are known

to lead to system failures and to patterns that are known not to lead to system

failures. The final prediction is then accomplished by classification based on

similarity rankings. An example of classifiers applied to discrete data (error events,

in this case) can be found in (Domeniconi et al. 2002), which used an approach based

on SVM and SVD (Single Value Decomposition) to classify if a situation is failure-

prone or not. As also stated by Salfner in his survey (F. Salfner, Lenk, and Malek

2010), the main difficulty that this kind of approaches can face is that generally one

single detected error is not sufficient to infer if a failure is going to occur or not. This

way, the input data vector is usually obtained from several errors reported within a

time window.

2.2.2.2 Failure prediction based on symptoms monitoring

Several methods were developed in the last years taking advantage of the analysis of

contour information about the system. Failure prediction methods belonging to this

class are able to detect symptoms of an upcoming failure based on the continuous

analysis of monitored data. As introduced above, symptoms are side effects of errors

that can be observed by identifying out-of-norm behavior from monitored system

variables.

Chapter 2

 24

Works on software aging3 and rejuvenation4 found in literature belong to this class of

online failure prediction algorithms. Besides, some of these works present a

complete fault management schema, under the concept of Software Rejuvenation.

The first interesting work in this field is (Vaidyanathan and Trivedi 1999), where the

authors tried to dynamically assess the optimal time to restart of an Apache web

server suffering from Software Aging. The idea is to approximate the amount of

swap space used and the amount of real free memory (target functions) using a

semi-Markov reward model for estimating the exhaustion of system resources as a

function of the workload being executed and the execution time. Li et al. (Li,

Vaidyanathan, and Trivedi 2002) developed a model using regression ARX models:

7 univariate (MISO) ARX models were built for each predicted variable (e.g.,

“PhysicalMemoryFree”, “SwapSpaceUsed”, etc.), and then combined into a single

multivariate model (MIMO ARX).

Hoffmann (G.A. Hoffmann, Salfner, and Malek 2004; G.A. Hoffmann, Trivedi, and

Malek 2007) proposed a prediction model called UBF (Universal Basis Functions), a

generalization of the kernel functions of the well known Radial Basis functions (RBF)

technique. In this work the authors also compare several prediction methods, among

which ARX, UBF, RBF, and SVM. Other methods used neural networks, like for

instance the one from Fu and Xu (Fu and Xu 2007), which use a neural network to

approximate the number of failures in a given interval.

The methods mentioned above made use of function approximation techniques, trying

to infer the unknown functional relationship between monitored system variables

and a target value (for instance the “used swap space” in (Vaidyanathan and Trivedi

1999)). Other techniques found in literature are based on time series analysis (similar

to function approximation), classifiers, system models, and so on. Another example

is the work of Garg et al. (Garg et al. 1998) that used regression models on measured

system variables “real memory free”, “size of file table”, “process table size”, and

“used swap space” of UNIX machines for estimating the resource exhaustion, and

thus a possible future failure.

Other failure prediction algorithms evaluate the current value of system variables

directly, instead of approximating a target function, or analyzing several successive

samples of a system variable, and the current situation (at each time t) is classified as

failure-prone or not. The classifier decision boundary is derived from past system

behavior, where the system failed or not. In this case, Online Failure Prediction is

performed at runtime for checking on which side of the decision boundary the

current monitoring values are. The data used by the classifiers can be nominal (e.g.,

3 Software aging is a phenomenon for which the state of the system degrades over time,

eventually leading the system to fail.

4 Software rejuvenation is a proactive technique that aims at reducing the probability of future

failures due to software aging. In practice, it is a Failure Prediction technique.

Background and related work

25

events) or numerical. An interesting example can be found in the work of Murray et

al. (Murray, Hughes, and Kreutz-Delgado 2003), which used SVMs to predict

failures on hard disk drives. Some other works used Bayesian failure prediction

approaches for solving the prediction problem, like for instance Bodik et al. (Bodik et

al. 2005), where the hit frequencies of a big commercial website were analyzed in

order to identify non fail-stop failures, using a naïve Bayes classifier.

Online Failure Prediction approaches may also be based only on a model of the

normal system behavior, i.e., failure free (in contrast with the classifier approach that

requires training data for both the failure-prone and non failure-prone case). In this

case, at runtime, the current measured system behavior is compared to the expected

normal behavior, and a failure is predicted in case of deviation.

 The Failure Prediction problem: a model and its parameters 2.2.3

An online failure predictor forecasts incoming failures at runtime, based on past data

from the system (used to train the predictor), and information about the current state

of the system (obtained by monitoring system variables), among others. The

information used can be numerical, such as variables measuring properties of the

system (free memory, page faults, etc.), or categorical, such as events from error logs.

A model for characterizing the online failure prediction problem was proposed by

Salfner et al. in (F. Salfner, Lenk, and Malek 2010). The failure prediction task

consists of assessing if, at a time t, a failure is going to occur within a precise time,

called lead-time ∆tl. The prediction can be valid in a given time window, called

prediction window ∆tp. The variation of the parameters ∆tl and ∆tp influences the

performance of the prediction. In practice, at time t, a model (or predictor) should

predict if a failure is going to occur in the interval [t+∆tl, t+∆tl+∆tp]. As shown in

Figure 2.7, a prediction performed at time t targets the Prediction Window starting at

time t+∆tl, and lasting ∆tp.

The prediction can be valid until t+∆tl+∆tp. As mentioned before, the predictor is

built from a set of past data. Taking the definitions from (F. Salfner and Malek 2010),

considering a classifier as prediction system, we can assume that these data are a set

of observations x=<f1, f2, …, fn> of a target system. The prediction task is then to

predict, from the observed features xnew =<f1, f2, …, fn-1, ?>, the target variable fn, which

Figure 2.7 – Time relations in Online Failure Prediction

Chapter 2

 26

can be either “failure” or “no failure” or, in general, a continuous measure indicating

how much failure prone the current system state is. Thus, given previously unseen

observation matrix xnew with an unknown class label at time t, the prediction about the

occurrence of a failure in the interval [t+∆tl, t+∆tl+∆tp] is given by fn=Cl(xnew), where Cl is

the predictor. In particular, a prediction at time t is correct if the target event occurs

at least once within the prediction period ∆tp.

Varying the prediction parameters influences the accuracy and efficacy of the

predictor, the computational power needed to perform the prediction task, among

others. The prediction is based on the current system state, which is assessed by

system monitoring within a data window of length ∆td and the prediction period ∆tp

defines how far the prediction extends into the future, which depends on the

problem domain (e.g., how long it takes to restart a component, how long it takes to

initiate a failover sequence, how much complex the system is, etc.). Increasing ∆tp

increases the probability of a failure to be predicted correctly. On the other hand, if

∆tp is too large, the prediction is of little use since it is not clear when exactly the

failure will occur. The lead-time Atl covers the time frame in which the prediction is

valid, and it is necessary for a prediction to be of any use. Since failure prediction

does not make sense if the lead-time is larger than the time the system needs to react

in order to avoid a failure or to prepare for it, (F. Salfner, Lenk, and Malek 2010)

introduce the minimal warning time ∆tw (see Figure 2.7). If the lead-time is shorter

than the warning time, then there is not enough time to perform any preparatory or

preventive actions.

 Performance evaluation of Failure Prediction models 2.2.4

Evaluating the figures of merit of a single prediction system and comparing different

prediction models are open problems in the online failure prediction context.

(F. Salfner, Lenk, and Malek 2010) presents a performance evaluation schema based

on the model for the failure prediction problem proposed by the same authors. A

prediction performed at time t produces a single prediction value: the prediction is

correct if the failure event occurs at least once within the prediction interval. In such

case, a True Positive is obtained (TP). If no failure occurs, a False Positive (FP) is

obtained. The dual cases are True Negative (TN) and False Negative (FN). All the

possible cases are represented in Figure 2.8 in the so-called contingency table. A

particular instantiation of a contingency table is called confusion matrix.

A model can predict once or several times in a certain interval of time, as new data

arrives. Based on the presented cases, the performance of failure prediction systems

can be characterized using many different complex metrics.

Background and related work

27

Some examples are:

(2.8) Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

(2.9)

Recall /

True Positive Rate /

Sensitivity

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

(2.10) Accuracy
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

𝐴𝑙𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝒄𝒂𝒔𝒆𝒔

𝐴𝑙𝑙 𝑐𝑎𝑠𝑒𝑠

The prediction result 0/1 is obtained by applying a threshold to the output of the

predictor, in general a numeric value: if the output is above (or below) the threshold,

a failure (no failure) or 1 (0) is predicted. Different values lead to different behaviors

of the model, also impacting the predictor performance (TP, FP, etc.). Adjusting the

threshold results in different performance values, which may be a convenient way to

tune a prediction model. For this reason, some methods were proposed to study the

characteristic of a predictor when varying its prediction threshold.

Receiver Operating Characteristic analysis is a widely accepted method for

assessing the performance of binary classifiers, plotting the tradeoff between True

Positive Rate (TP/(TP + FN), or TPR or Sensitivity) and False Positive Rate (FP/(TN +

FP), or FPR or 1-Specificity) (see Figure 2.9), as the threshold used for defining the

predictions is given different values. The objective of an optimal training is to

optimize the predictor in a way that maximizes the TPR and minimizes the FPR.

Thus, the most the curve is near to the ideal classifier curve (i.e., the nearest it is to

the upper-left corner, with AUC tending to 1), the best the classifier is able to predict

or classify the target event, independently from the threshold value used. In this

direction, a relevant performance indicator related to ROC analysis is the ROC

 Actual values

 failure no failure

Prediction

Failure
predicted TP FP

Predicted

Positives, P’

no failure
predicted FN TN

Predicted

Negatives, N’

Positives

P

Negatives

N

Figure 2.8 – The failure identification problem: the contingency table

Chapter 2

 28

curve’s cut-off point, which is the point corresponding to the optimal performance

values maximizing TPR and minimizing FPR.

A performance indicator index based on ROC analysis is the ROC-AUC, which is

the measured area under the ROC curve). An example is presented in Figure 2.9 (a).

The ideal classifier would give TPR=1 and FPR=0 for each threshold value (that is the

best performance a classifier can obtain, as FP=FN=0), and its AUC is equal to 1. A

random guess classifier has a nominal AUC=0.5, and its curve is usually taken as

reference in the ROC space. If a classifier curve got AUC<0.5, usually one can invert

the classified classes (Fawcett 2006). Thus, a ROC curve is identified by a non-

continuous shape (due to the limited and discrete values of threshold used), and by

an AUC usually greater than 0.5 (continuous shapes in Figure 2.9 are for

presentation purposes only).

Figure 2.9 (b) presents the comparison between two ROC curves, where Predictor A

is averagely better than Predictor B, despite its values in the left-bottom corner. In

general, comparing predictors using ROC curves says much about their response

when using different threshold values.

A similar performance assessment method is Precision-Recall curve analysis (Felix

Salfner, Lenk, and Malek 2010; Davis and Goadrich 2006), obtained similarly to ROC

curve, by computing the Precision and Recall of a model when varying the threshold

used for the classification. Similarly to ROC curves, a perfect classifier would have a

Precision-Recall curve reduced to the point (Precision=1, Recall=1), which

corresponds to the upper-right corner of the plane. An example of Precision-Recall

curve is shown in Figure 2.10, where the Predictor A is better than Predictor B.

A valuable advantage of the ROC analysis is that ROC curves are independent of the

class priors ((Bradley 1997) (i.e., the distribution of the samples belonging to each

class), as demonstrated in several works (e.g., (Chawla, Japkowicz, and Kotcz 2004;

Chawla 2010; Zweig and Campbell 1993; Fawcett 2006; Wang 2008)). This makes

ROC being a natural solution for evaluating binary classifiers in case of imbalanced

datasets. In fact, when a dataset contains more positive than negative samples (or

vice-versa), a classifier with fixed-threshold may present poor performance (Chawla,

Japkowicz, and Kotcz 2004) that may improve when changing the threshold. The

ROC analysis is independent from the decision of the threshold, thus giving a

complete insight on the classifier performance, whatever threshold value is used. In

practice, ROC analysis metrics have some significant characteristics, namely:

independence from the dataset characteristics, capability for performing sensitivity

analysis in the context of varying thresholds, easiness of interpretation of the results,

and large usage for the assessment of information retrieval systems.

Background and related work

29

(a)

(b)

Figure 2.9 – A ROC curve

Chapter 2

 30

Comparing different failure prediction systems is not trivial, even if good metrics are

used. In fact, the assessment of the prediction performance is only possible if the

prediction systems share the same concepts, as for instance the same model for the

prediction problem.

The problem of comparability of online failure prediction approaches was also

highlighted by Salfner et al. in their survey (F. Salfner, Lenk, and Malek 2010). In

fact, Salfner et al. (F. Salfner, Lenk, and Malek 2010) were the first to define

comparability of failure prediction approaches as a property that “can only be

achieved if two conditions are met: (i) a set of standard quality evaluation metrics is

available, and (ii) publicly available reference data sets can be accessed”. However, only

few metrics for evaluation are proposed in their work. On the other hand, although

there are some initiatives for building repositories for failure datasets, as the

Computer Failure Data Repository (Usenix and Carnegie Mellon University (CMU)

2006) that publicly provides detailed failure data from several systems, such

repositories are not enough for assessing and comparing failure prediction

algorithms meant to be used on a particular system. In fact, to understand the

effective performance of a failure prediction algorithm, it has to be tested in the

system where it will be used using a rigorous experimental process.

Figure 2.10 – A Precision-Recall curve

Background and related work

31

 Building and optimizing Online Failure Prediction models 2.2.5

The failure prediction literature includes prediction models built explicitly

(manually) by describing its characteristics, using an informal or formal language, as

mathematics, and implicitly by using training algorithms that associate the failure

event – after it happened – with information about events occurred before the failure

occurred. The automatic training procedure is based on the use of datasets built from

the data collected during system execution (when a failure or no failure occurs,

depending on the model to be built), correlated with the observed failures (failure

coding) and organized in training datasets (TDSs) and testing datasets (TTDSs), the

latter used to assess the prediction performance after training. The division in

training and testing sets is done according to a certain percentage (e.g., half of the

data samples are used for training, and the other half is used for testing), depending

on the problem. The association of failure events with data can be performed

manually, or by using failure detectors, i.e., models that can automatically detect the

occurrence of a failure. Similarly to the failure prediction models, failure detection

models can be built manually (e.g., by defining rules identifying a failure event) or

using learning algorithms.

Failure coding is the association of a failure event to a set of failure-related data,

which is a step required when training failure prediction algorithms. Coding

approaches depend on the user needs and on the type of prediction technique used.

For instance, when using classifiers, the failure data must be divided in samples and

each sample should be labeled with a 0 (i.e., no-failure) or a 1 (i.e., failure).

Moreover, the data associated to the failure must be relative to a specific past time

interval ending at the failure time. The failure prediction problem model proposed

by the authors of the survey (Felix Salfner, Lenk, and Malek 2010) define such

interval as the failure data window Δtd.

Building failure predictors is an optimization procedure, as models are characterized

by several parameters, whose values impact on their performance. Each predictor

should hence be assessed using a set of values that maximizes its performance, and

several techniques can be used in this optimization process. In this scenario, one of

the most critical points in building a prediction model is the choice of the system

variables (or parameters) to monitor, representing the current state of the system. A

wrong set of variables can make the prediction of a failure useless, as pointed out by

Hoffman et al. in (G.A. Hoffmann, Trivedi, and Malek 2007), while the choice of a

good set of variables can be even more important than the model (linear or non-

linear (G.A. Hoffmann, Trivedi, and Malek 2007)) for obtaining an optimal

prediction of a failure. To fully characterize a system, one often needs hundreds or

even thousands of features. However, a huge set of features increases the complexity

of the model that uses these features (i.e., that represents the system), being often too

much complex to be used in reality. In this scenario, there is a need for a systematic

approach to choose the variables for prediction.

Chapter 2

 32

Feature selection is a process that allows the systematic selection of a subset of

features as an optimization problem (H. Liu and Yu 2005), being a crucial task for

reducing the complexity of the models. The features represent the dimensionality of

a domain where an object, system, and others, can be represented. It has been

demonstrated that the problem of finding the optimal feature subset can be NP-

complete or even NP-hard problems (Blum and Rivest 1992; Guyon and Elisseeff

2003). A typical feature selection process consists into several steps, namely:

1) Subset generation. A search procedure that produces a set of candidates, to

be evaluated in the next step. A search strategy is needed.

2) Subset evaluation. Each subset is evaluated according to some evaluation

criterion, and compared with the previous subsets. Usually, if the newest is

better that the last one, it becomes the best candidate.

3) Stopping criterion. The process is repeated several times, until some

stopping criterion is reached. At this point, the search is finished and the

remaining subset is considered the optimal (or the best one).

4) Result validation. The subset found at the end of the search is validated

against prior knowledge or different test sets.

There are several methods for solving the problem of variable (or feature) selection,

which can be divided into two main groups (John et al. 1994): the filter and the

wrapper approaches. In the former (filtering) the feature selector filters the irrelevant

attributes independently of any specific learning algorithm. In the latter (wrapping),

the most important features are filtered taking into account the specificities of the

underlying learning mechanism. In addition to these two, a hybrid approach tries to

take the advantages of both filtering and wrapping and uses both a relevance

measure for the chosen set of variables that is independent from the learning

algorithm, and a mining algorithm to find the best sub-set.

In addition to this categorization, Liu and Yu (H. Liu and Yu 2005) proposed a more

complete categorizing framework for feature selection algorithms in 2005. The

existing approaches are grouped according to three dimensions:

 Evaluation criteria, thus dividing the approaches in Hybrid, Filter, and

Wrapper;

 Search strategies, considering a division according to the search strategy

used, namely Complete, Sequential, and Random;

 Data mining tasks, as the availability of class information affects the

evaluation criteria used by the feature selection algorithm. Thus, they

consider Classification and Clustering for distinguishing the two cases.

Background and related work

33

It is worth noting that the classification proposed by Liu and Yu (H. Liu and Yu

2005) considers only the feature selection approaches used for classification and

clustering, not including other tasks as association rules, regression, etc.

Hoffmann et al. (Günther A. Hoffmann 2004) proposed in 2004 an approach called

Probabilistic Wrapper Approach (PWA), initially defined by Liu and Setonio (Huan

Liu and Setiono 1997) in 1997. PWA is a hybrid feature selection method that tries to

conciliate the best of filtering and wrapping by playing with combination of

variables. However, to the best of our knowledge, these are the only approaches for

selecting features for an optimal failure prediction that can be found in literature. In

practice, the most relevant works available in literature show that the variable

selection is mostly done manually and the variables are typically chosen on the

behalf of the experience of the developer coming from previous works. However,

Hoffmann et al. in (G.A. Hoffmann, Trivedi, and Malek 2006) demonstrated that

variable selection is necessary for having an optimal model, and also that the choice

of the variables is much more important than the choice between using a linear or

non-linear model.

2.3 Virtualization and Online Failure Prediction

In the last decade the concept of Virtual Machines became very popular due to the

possibility to simulate (one or more) real machines on one single real hardware

machine. Both end-users and companies were charmed by the potential of this

technology, which would permit to run several OS on just one machine, thus

extending the usability of some software products, reducing the costs associated to a

single machine when deploying complex systems, and having the possibility to

increase some characteristics as security and dependability. Virtualization also gives

the abstraction of having a different machine from the one whose hardware is

actually in use, by providing a software layer implementing the low-level functions

of the hardware. The first virtualized system was the PR/SM Hypervisor from IBM

Corp., which was used to share a single 370 Mainframe system among several users

(one machine, many users) (Rose 2004).

With the growt in performance of hardware systems, virtualization started to be

used more and more in order to have a single hardware machine hosting several

Virtual Machines. Virtual Machines are usually managed by a VMM (Virtual

Machine Monitor), or Hypervisor, which takes care of forwarding the virtual-

hardware requests to the “real” hardware and, in case of several virtual machines in

the same physical machine, also manages the multiplexing of the existing hardware

to the virtual OSs. Virtualization technologies can be classified in two families

(Figure 2.11) regarding the type of Hypervisor implemented:

Chapter 2

 34

 Type-I Hypervisors, directly interfacing with the physical machine, and

managing the sharing of resources by directly accessing them (usually, a

standalone server).

 Type-II Hypervisors, hosted by an existing OS (is the case of the so called

“desktop virtualization” systems). In this case the Hypervisor is a software

layer between the host OS and the guest VM, and manages the machine

hardware through the host OS’s drivers.

While in the second case the Hypervisor is limited by the operations that the hosting

OS provides, in the first case the management of the Virtual Machines is made easy

by the direct access to the physical machine. Type-II Hypervisors spread in the last

years thanks to specific advances on hardware towards virtualization and their

performance, and nowadays are widely used especially for server consolidation

(Khanna et al. 2006).

Virtualization technology offers several other features, as live migration of the VMs,

performance isolation, and security mechanisms. For this reason, the use of

virtualization solutions in secure and dependable systems is nowadays not rare. In

this scenario, failure prediction has been pointed out as a solution for helping in

implementing large, virtualization-based, dependable systems. For example, Polze et

al. (Polze, Troger, and Salfner 2011) proposed an architecture for high-availability

and high-performance systems based on virtualization, where the use of live

migration is triggered by online failure prediction, using indicators on the health of

the system. Other similar work is (Nagarajan et al. 2007) that automatically migrates

processes from “unhealthy” nodes to healthy ones in a Xen environment. Fu et al.

(Fu 2009) proposes a reconfigurable distributed virtual machine (RDVM)

infrastructure with failure-aware node selection to be used for high-availability

computing. Reiser et al. (Reiser and Kapitza 2007) uses an hypervisor to initialize a

new replica in parallel to normal system execution, focusing on minimizing the

proactive migration time, which can interfere with system operation.

(a) (b) (c)

Figure 2.11 – No virtualization (a), Type-I Hypervisor (b), Type-II Hypervisor (c)

Background and related work

35

2.4 Fault Injection

Fault injection is an experiment-based approach that deliberately introduces faults

into a computer system in a way that emulates real faults (Arlat, Crouzet, and Laprie

1989), with the goal of observing its behavior. The deliberate injection of faults can

help understanding the impact that residual faults (including hardware and

software faults) have on a system. Fault injection has been used in many works

where the observation of systems in the presence of faults is important, such as fault

tolerance and dependability validation (Arlat et al. 1990; J. Duraes and Madeira

2003), estimation of fault-tolerance parameters (Arlat, Crouzet, and Laprie 1989), and

dependability benchmarking (J. Duraes, Vieira, and Madeira 2004).

Injecting faults means to mimic the presence of a hardware or software fault:

hardware faults, such as bit-flip and stuck-at, occurring in hardware components,

and software faults, representing defects that remained in a piece of software due to

some issue during the development phase. Faults can be emulated by hardware- or

software-based techniques (e.g., (Hsueh, Tsai, and Iyer 1997)), though software faults

are more likely to be emulated by software techniques only. The implementation of a

fault injection tool depends on the target system to be analyzed, on the faults to be

injected, on the access to the injection locations, just to name a few.

Hudak et al. (Hudak et al. 1993) is among the first works on fault injection: the

authors compared techniques as n-version programming, recovery blocks,

concurrent error-detection, and algorithm-based fault tolerance using both hardware

faults (e.g., code and data corruption) and software faults (simulated design-faults

including control flow, array boundary, computational, and post/pre

increment/decrement software mutations). In a more general sense, fault injection

has been used to assess dependability properties of computer systems, as for

example in the works from Koopman and Madeira (Koopman and Madeira 1999)

and Vieira and Madeira (M. Vieira and Madeira 2003). Following the injection of

hardware faults that emulate the effects of physical defects and external causes,

during the last two decades fault injection started to focus on software faults due to

the increasing complexity of software when compared to hardware components. The

first techniques able to emulate the effects of software-faults were developed by

Christmansson and Chillarege (Christmansson and Chillarege 1996) in 1996,

Koopman et al. (Koopman et al. 1997) in 1997, and Fabre et al. (Arlat, Fabre, and

Rodriguez 2002) in 1999.

Fault injection can be used to directly assess the impact of specific errors in the

system, thus allowing collecting information that can be used for improvement. For

example, Koopman et al. in (Koopman et al. 1997) injected software faults in the OS

API for testing the robustness of five operating systems: Mach, HP-UX, QNX,

LynxOS, and Stratus FTX. Among the existing software fault injection techniques, G-

SWFIT (J. A. Duraes and Madeira 2006) appears as a reference. In fact, the technique

developed at the University of Coimbra is the de-facto standard in the emulation of

Chapter 2

 36

generic software faults (i.e., faults can be found in generic software systems), while

addressing the fault representativeness problem (i.e., the property of an injected fault

to exist in real software systems).

 Fault injection environment and a taxonomy 2.4.1

A fault injection is usually made of basic components and organized in a fault

injection environment (Hsueh, Tsai, and Iyer 1997), consisting of two main

components: the fault injection tool, and the target system (i.e., the system on which

the injection is performed). The fault injection tool injects faults into the system, at

runtime or when the system is offline. A representation of the components that

usually compose a fault injection environment can be found in (Hsueh, Tsai, and

Iyer 1997), and are presented in Figure 2.12, namely: a controller (that controls the

fault injection experiment), a fault injector (that introduces faults and must be the less

intrusive possible), a fault library (that specifies which faults to inject, where, and

when), and a monitoring system (for catching the effects of the fault on the system,

usually working together with a data collector and analyzer). A workload generator is

often needed also to exercise the system.

There are two main types of fault injection approaches: hardware fault injection and

software fault injection. The former can reproduce or emulate the effects of

hardware faults (e.g., a bit-flip caused by high levels of radiations), and may be

implemented using hardware tools (i.e., tools that include a big portion of specific

hardware for the injection of the faults) or software mechanisms (typically named as

SWIFI – Software Implemented Fault Injection). On the other hand, software faults

are emulated by software approaches only, although some studies showed that some

software faults could be emulated by injecting hardware faults (Madeira, Costa, and

Vieira 2000).

Figure 2.12 – A fault injection environment

Background and related work

37

 Injection of hardware faults 2.4.2

Hardware fault injection consists of an operator able to introduce faults in the target

system through a tool, which can be a physical tool, a software tool, or both. Fault

types that can be inserted in the target system are presented in Table 2.1,

representing the erroneous situations in which hardware parts may incur. For

instance, open or short circuits may occur due to environmental conditions (e.g.,

dust, liquids, humidity), bit-flips are temporary changes in the state of one or more

flip-flops due to external causes (e.g., strong radiation or electro-magnetic field), and

stuck-at are caused by hardware defects or aging.

Physical hardware fault injection approaches can be divided in two main categories

(Hsueh, Tsai, and Iyer 1997): with contact and without contact. The first category

includes fault injection systems where the injection tool is physically in contact with

the target system. This kind of injector is often called pin-level injector, as the injector

has its direct contact with the pins of the circuit. The two main techniques used in

this context are active probes (i.e., probes attached to the pins that send electric signals

to the circuit pins) and socket insertion (a socket inserted between the target system

and the board that allows to inject more complex logic faults). An example of pin-

level injection is the MESSALINE tool (Arlat, Crouzet, and Laprie 1989), developed at

LAAS-CNRS, in Tolouse, France. The injector uses active probes to alter the voltage

applied to the pins (reproducing basically stuck-at faults) and also the socket

insertion technique. The injection system was used to validate a distributed

communication system for transportation systems, within the Esprit Delta-4 Project.

Messaline could inject stuck-at, open, bridging, and complex logical faults.

The second category of hardware fault injectors (without contact) includes systems

that emulate the presence of faults without any contact with the board of the target

system. Such systems use, for instance, the generation of electromagnetic fields and,

most frequently, heavy-ion radiations on the components of the system. The FIST

(Fault Injection System for Study of Transient Fault Effect) tool, developed at the

Chalmers University of Technology, Sweden, uses both contact and contactless

methods (Gunneflo, Karlsson, and Torin 1989), using heavy-ion radiations that lead

to transient faults in random locations inside the exposed chip. The EMI (Electro-

Magnetic Interference) tool (Karlsson et al. 1998), on the other hand, uses only the

Table 2.1 - Hardware faults model

Faults Description

Open Always “open” line

Bridging Short-circuit

Bit-flip Inverting a bit (0-1 or 1-0)

Spurious current Bit randomly left at 0 or 1

Power surge A transient disturb in the power supplied to the hardware

Stuck-at Bit always at the same value (0 or 1)

Chapter 2

 38

contactless method, being the electromagnetic fields generated using two charged

plates, which cause faults in the target system placed in the middle of the two.

The injection of hardware faults moved then to a new generation of injection tools

that are known as SWIFI (Software-Implemented Fault Injection). The injection of

faults by software is carried out by inserting errors in the system structures that can

be directly accessed through software (e.g., memory, processor registers, some

peripheral devices, etc.) or that can be accessed by software in an indirect way

including many internal processor structures (e.g., cache, integer unit, floating point

unit, decoding unit, etc.). SWIFI approach has become very popular due to its low

complexity and low development effort required, when compared to fault injection

based on hardware level. Some examples of SWIFI fault injection tools are Ferrari

(Kanawati, Kanawati, and Abraham 1992), FTAPE (Tsai and Iyer 1995), and Xception

(Carreira, Madeira, and Silva 1998). As an example, the Ferrari (Fault and ERRor

Automatic Real-time Injection) tool, developed at the University of Austin (Texas)

(Kanawati, Kanawati, and Abraham 1992), uses software traps and trap handling

mechanism to inject CPU, memory, and bus faults. The tool includes four

components: the initializer and activator, the user information, the fault and error

injector, and the data collector and analyzer. A fault (e.g., a modification of the

Program Counter value that emulates a bit-flip) is coded in a trap handling routine,

and injected when the trap is caught and the routine is executed. The faults injected

by can be transient or permanent, and among the ones emulated we can find address

line errors, data line errors, and condition bit errors. On the other hand, Xception

injects faults in registers of the processor by taking advantage of debugging and

performance monitoring features present in modern processors. In practice, the tool

executes small exception routines that implement the fault injection by modifying

the interrupt handler vector. Such technique has shown to be particularly useful for

evaluating the robustness of user applications and operating systems, requiring no

modification of the application software and no insertion of software traps.

 Injection of software faults 2.4.3

Software fault injection consists of emulating residual faults that remain in software

after the testing process at different development levels. The issue of injecting faults

that emulate software defects was addressed relatively late (the first work was

published in 1996 (Christmansson and Chillarege 1996)), also due to the high

complexity of software faults and of their emulation. The injection of software faults

is often called software fault injection, although in some works the expression

“software fault injection” is still used to name SWIFI approaches (presented above).

In this work we focus on the injection of software faults, as these are nowadays the

largest cause of failures in computer systems (Lee and Iyer 1995; Kalyanakrishnam,

Kalbarczyk, and Iyer 1999).

Background and related work

39

The emulation of software faults raises several difficulties, such as what, where and

when to inject. The key problem is the definition of a fault model, i.e., what types of

faults to inject. Some works proposed approaches based on the analysis of faults

present in several software products (e.g., (Christmansso and Rimén 1998;

Christmansson and Chillarege 1996)). The first model for software faults is the

Orthogonal Defect Classification (ODC) by Chillarege et al. (R. Chillarege 1995),

which encompasses software defects and triggers. The idea was to provide insights

about the quality of the development process of software systems, focusing on

knowing the percentage of a certain type of faults affecting the system, their cost, the

cost for their correction, as well as the distribution of team-force in the various

phases of the system development. In practice, the ODC classifies software faults

according to the way a programmer can correct them:

 Assignment: value(s) assigned incorrectly or not assigned at all.  

 Checking: missing or incorrect validation of data or incorrect loop or

conditional statements.  

 Interface: errors in the interaction among components, modules, device

drivers, call statements, or parameter lists.  

 Timing/serialization: missing or incorrect serialization of shared resources.  

 Algorithm: includes efficiency or correctness problems that affect a task and

can be fixed by (re)implementing an algorithm or data structure without the

need of a design change.

 Function: a defect that significantly affects capability, end-user features, API

interface, interface with hardware architecture, or global structure. A certain

amount of code is either implemented incorrectly or not implemented at all,

thus needs a formal design change.  

 Build/package/merge: errors due to mistakes in library systems,

management of changes, or versions control.

 Documentation: errors that can affect both development documentation and

maintenance notes.

Madeira et al. (Madeira, Costa, and Vieira 2000) were the first to use ODC for

defining the faults that could be injected by the Xception fault injection tool

(Carreira, Madeira, and Silva 1998). In 2006, Durães et al. (J. A. Duraes and Madeira

2006) pointed out the inadequacy of using the ODC in the context of software fault

injection. Although ODC has been successfully used to improve the software

designing process and provides an important basis for understanding and

classifying software faults, it relates faults to the way they are corrected (which can

be done in different ways) and not with the way they can be emulated.

Chapter 2

 40

A fault classification that extends ODC was proposed by (J. A. Duraes and Madeira

2006) based on a field study. The main idea is that a defect is one or more

programming language constructs (statements, expressions, function calls, etc.) that

are either missing, wrong, or in excess. The authors analyzed the evolution of several

open-source software applications (analyzing the bugs and how they were

corrected), and classified each fault according to its nature, which can be one of the

following: missing construct, wrong construct, or extraneous construct (i.e., a

construct that is superfluous). In practice, Durães and Madeira proposed an

orthogonal extension to the ODC classification where a fault belonging to one of the

Assignment, Checking, Interface, Timing/Serialization, Algorithm and Function

classes can be relative to a missing, wrong or extraneous construct. Table 2.2

presents, for each dimension, the faults most frequently observed in the software

applications studied, and the classification of each fault type presented according to

ODC model. A major observation by Durães and Madeira (J. A. Duraes and Madeira

2006) is that more than 50% of the software faults can be “realistically” emulated by

a small set of generic fault types, which correspond to the most frequent fault types

found in real software.

The injection of a specific type of software fault can be performed only in specific

parts of the system code (where), namely parts of the code that can be changed to

emulate a fault. For instance, emulating a “missing conditions of an if statement”

(see Table 2.2) is possible only modifying the if statements present in the code. The

parts of the code where a fault type can be emulated are referred to as fault locations.

The insertion of a fault in a software component (i.e., when it is injected) can be done

offline (at compile-time by modifying the source code) or post-deployment (by injecting

directly in the binary code), at a specific instant of time. It is worth noting that

although offline injection is easier to implement, source code is often not available.

Background and related work

41

Table 2.2 - Fault coverage of fault types from (J. A. Duraes and Madeira 2006)

Fault nature Fault specific types

Faults

ODC types

ASG CHK INT ALG FUN

Missing

if construct plus statements (MIFS) 71 ✓

AND sub-expr in expression used as

branch condition (MLAC)
47 ✓

function call (MFC) 46 ✓

if construct around statements (MIA) 34 ✓

OR sub-expr in expression used as

branch condition (MLOC)
32 ✓

small and localized part of the

algorithm (MLPA)
23 ✓

Variable assignment using an

expression (MVAE)
21 ✓

functionality (MFCT) 21 ✓

variable assignment using a value

(MVAV)
20 ✓

if construct plus statements plus else

before statements (MIEB)
18 ✓

variable initialization (MVIV) 15 ✓

Wrong

logical expression used as branch

condition (WLEC)
22 ✓

algorithm – large modification

(WALL)
20 ✓

value assigned to variable (WVAV) 16 ✓
arithmetic expression in parameter or

function call (WAEP)
14 ✓

data types or conversion used (WSUT) 12 ✓
variable used in parameter of function

call (WPFV)
11 ✓

Extraneous
variable assignment using another

variable (EVAV)
9 ✓

Total faults for these types in each ODC type 452 93 135 25 192 41

Coverage relative to each ODC type (%) 68 65 81 51 72 100

Chapter 2

 42

A fundamental aspect in the fault injection scenario is the clear separation between

the target component and the part of the system under observation. In fact, the

emulation of software faults always requires the introduction of small changes in the

target code, and any conclusions about the faulty-component may be misleading, as

the injected component is different from the original one. In practice, the goal is

generally to evaluate how the rest of the system copes with such faulty component

(see Figure 2.13), considering the target component as faulty. This is quite natural for

software faults as a component-based approach is generally used for architecting

software.

 Generic Software Fault Injection Technique (G-SWFIT) 2.4.4

Among the several software fault injection tools available in literature, Durães and

Madeira propose the most complete novel approach for injecting software faults

when the source-code is not available, thus being very relevant for software using

OTS (Off-The-Shelf, i.e., third party) modules and OTS-based systems (J. A. Duraes

and Madeira 2006). The approach, named Generic Software Fault Injection

Technique (G-SWFIT), is based on the use of educated mutations at machine-code

level that emulate software faults at high-level coding. The G-SWFIT is based on a

fault library that includes emulation operators for each fault type, based on machine-

code level patterns (which identify the constructs that can host the specific fault) and

the corresponding code changes (representing the translation of a single software fault

into machine-code).

The types of software faults in the fault library were obtained from a field study of

the most occurring faults in software systems: the authors analyzed several open-

source software systems and classified the faults corrected along their development

using an extension of the ODC classification (as mentioned above). This resulted in a

set of the emulation operators relative to the most frequent faults. The ones included

in the G-SWFIT technique are presented in Table 2.3.

Figure 2.13 – Software Fault Injection and system observation (J. A. Duraes

and Madeira 2006)

Background and related work

43

The injection of software faults is done only where a fault is likely to exist (thus

being context-based), through the automatic search of the machine-code level patterns

defined in the library for each software fault type. The authors validated the injection

technique by comparing the translation of the software faults injected at high-level in

the source-code of three software applications (among which GZip) with the low-

level patterns defined by the compiler. In most cases, their tool reached the

maximum accuracy in emulating software faults. As the fault locations are identified

before the actual injection and the set of faults is generated based on this

information, the faults can be injected offline or online, with low intrusiveness.

However, it is worth noticing that the injection at runtime can present

representativeness problems, as the fault location could have already been executed

before the fault is injected.

Figure 2.14 shows the basic functional schema of the G-SWFI Technique. The system

code is disassembled in order to translate the executable file into assembly code that

can be scanned for target code patterns. Afterwards, the tool reads and generates a

mutant with a fault injected. The mutated versions of the single slice of code are then

assembled to generate mutated executable versions. Alternatively, during online

injection, the mutations can be injected directly in the associated process in memory.

It is worth noting that online injection strongly depends on the possibility to access

Table 2.3 - Most frequent fault types found in (J. A. Duraes and Madeira 2006)

Fault

types
Description

% of total

observed

ODC

classes

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm

MFC Missing function call 8.64 % Algorithm

MLAC
Missing "AND EXPR" in expression used as

branch condition
7.89 % Checking

MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking

MLPC
Missing small and localized part of the

algorithm
3.19 % Algorithm

MVAE
Missing variable assignment using an

expression
3.00 % Assignment

WLEC
Wrong logical expression used as branch

condition
3.00 % Checking

WVAV Wrong value assigned to a value 2.44 % Assignment

MVI Missing variable initialization 2.25 % Assignment

MVAV Missing variable assignment using a value 2.25 % Assignment

WAEP
Wrong arithmetic expression used in function

call parameter
2.25 % Interface

WPFV
Wrong variable used in parameter of function

call
1.50 % Interface

 Total faults coverage 50.69 %

Chapter 2

 44

the process in memory or the processor’s registers. The software fault injection

process may result in a large number of mutants that may make experiments

infeasible in a short time.

There are several implementations of the G-SWFI technique nowadays, as for

instance for Java environments (the J-SWFIT tool from Sanches et al. (Sanches, Basso,

and Moraes 2011)), and the tools by Durães for C/C++ environments (J. A. Duraes

and Madeira 2006). The adoption of the G-SWFIT recommendations can be seen in

Barbosa (Barbosa et al. 2007), Basso et al. (Basso et al. 2009), Fonseca et al. (Fonseca,

Vieira, and Madeira 2007) , Moraes et al. (Moraes et al. 2007), Natella et al. (R.

Natella and Cotroneo 2010; R. Natella et al. 2010; Cotroneo, Fucci, and Natella 2012),

among others.

The ultimate question that arises from the use of software fault injection, including

the G-SWFIT technique, is to demonstrate that the injected faults are representative

of a situation in which the system contain faults that escaped the several testing

phases (from code inspection to functional testing), which has no trivial answer.

2.4.4.2 The problem of representativeness in software fault injection

A software defect permanently lies in the code of system. Besides the fact that its

behavior is often soft (transient), some software faults elude the testing phase due to

insufficient testing effort, but also due to the complexity of its activation, which

makes it “hiding” from testing. The injection of software faults must aim at

emulating such types of faults for mimicking realistic scenarios, which is obviously

not possible because these defects are not known in advance (if we knew the bugs,

we would fix them beforehand). Given this impossibility, the correct emulation of

software faults by fault injection requires (J. A. Duraes and Madeira 2006):

 The identification and characterization of the most important classes of

software faults and estimation of the relative percentages of these classes

in real programs. The relevant faults are those that correspond to

Figure 2.14 – The G-SWFIT injection task

Background and related work

45

representative fault types of the real residual defects found in deployed

software systems (J. A. Duraes and Madeira 2006).

 Techniques to inject faults that generate errors or induce erroneous

program behavior similar to the ones caused by specific classes of real

software faults. In other words, what is important is to avoid the injection of

faults that cause errors that would not be generated by a real software fault

(J. A. Duraes and Madeira 2006).  

 Considering the elusive nature of a software fault to emulate. In fact, the

faults that are likely to be present in the system operational phase are faults

that escaped the testing phases. Natella and Durães (R. Natella et al. 2010)

demonstrated that a necessary condition for the representativeness of

emulated software faults is their elusive nature.

Regarding the elusive nature of the faults, a first model was proposed by Jim Gray

(Gray 1986) (Bohrbugs and Heisenbugs), and successively integrated by Grottke and

Trivedi (Grottke and Trivedi 2005). A fault can be classified as a Bohrbug, causing a

failure under simple and known conditions (being hard or non-elusive) or a

Mandelbug, whose manifestation is non-deterministic, causing failures under

complex and unknown conditions (being a soft or elusive software fault). In

addition, to these two types, Heisenbugs are faults that stop “causing a failure or

that manifests differently when one attempts to probe or isolate it” (Grottke and

Trivedi 2005), in a similar way to what happens in physics with waves and particles

(i.e., electrons), according to the Heisenberg principle. Heisenbugs are considered a

sub-type of Mandelbug, and examples of their manifestation are when some

debuggers initialize unused memory to default values, thus eliminating failures due to

improper initialization, or  the influence on process scheduling when trying to

investigate a failure. Grottke and Trivedi also define software-aging bugs as

Mandelbugs and in some cases as Heisenbugs (Grottke and Trivedi 2005).

Fault injection should emulate Mandelbugs, or Bohrbugs supposing that the system

was poorly tested. Natella and Durães (R. Natella et al. 2010) analyzed the elusiveness

of a set of faults injected using the G-SWFIT technique into a MySQL server, finding

that almost 85% of injected faults eluded 50% of the test cases defined. The

remaining 14.57% of non-elusive faults should be eliminated a priori (i.e., without

knowing the system test cases). The authors proposed a way in which the

representativeness of the injected faults is improved, by means of a set of criteria

based on code metrics for excluding non-elusive faults from the faults to be injected.

The concept of software fault trigger, introduced for the first time by Sullivan and

Chillarege in (Sullivan and Chillarege 1991), also helps in modeling the activation of

a fault that is dormant in a software system. In practice, modeling and

understanding the nature of a software fault in terms of triggering conditions is

useful for understanding which are the faults that mostly hide during the testing

Chapter 2

 46

phase, and that are more likely to activate when not expected. Chillarege et al. (R.

Chillarege 1995) defined several dimensions for software faults triggers, including

workload volume/stress, system start-up and restart, hardware and software

configuration, and normal mode.

2.5 Fault Injection and Online Failure Prediction

Failures are rare events, and the collection of training data for prediction systems in

a short time frame can take long time (G. Hoffmann and Malek 2006)(Li,

Vaidyanathan, and Trivedi 2002). Furthermore, even if one is able to collect failure

data, those data (collected in a specific time period) may not be representative of the

system behavior in other periods, due to runtime systems evolution (e.g., workload

variation, software upgrades). In this work we argue that a potential solution to this

problem is the deliberate injection of realistic faults.

The literature presents few works related to the failure prediction domain in which

the authors try to accelerate the experiments injecting software faults. Gross et al.

(Gross, Bhardwaj, and Bickford 2002) injected memory leaks to have controllable

parasitic resource consumption rates, to speed up the experiments and fine-tuning

the MSET (Multivariate State Estimation Technique). In (Alonso et al. 2010) and

(Alonso, Torres, and Gavaldà 2009) the authors also used the injection of memory

leaks to accelerate their experiments and to demonstrate the effectiveness of the M5P

algorithm (a Decision Tree algorithm) for predicting aging-related failures occurring

in a Tomcat web server.

Even though some works already used the “injection” of software bugs (mainly

memory leaks) to accelerate and validate the proposed prediction models, some

limitations may be highlighted, taking into consideration the concept of software

fault injection presented in the previous section. For example, in the work of (Alonso

et al. 2010; Alonso, Torres, and Gavaldà 2009), it is not clear if the authors injected

memory leaks at runtime and which kind of methodology they used for doing it.

There is also no assumption on the distribution of the faults, consequently raising

questions regarding the representativeness of the reproduced failure model (and

modes). Moreover, most works target only aging-related failures and do not cover

the entire spectrum of the possible failures in which a computer system can incur.

2.6 Computer systems benchmarking

A benchmark is an instrument that allows evaluating and comparing different

entities (systems, components, tools, etc.) according to specific characteristics, like

for example performance, robustness and dependability, under the same conditions

(Gray 1993). In practice, benchmarking is a process that encompasses the execution

Background and related work

47

of the system under test under conditions that are constant over time and the

measurement of specific characteristics at each execution, in a way that provides

results that are fair and comparable across alternative systems and/or components.

The main components of a benchmark are:

 Metrics that characterize the objects under comparison. For instance, metrics

for benchmarking CPUs’ throughput are Instructions Per Second (typically

scaled to millions, MIPS, or above – GIPS, TIPS) and Floating-Point Operations

Per Second (e.g., MFLOPS), while complex computer systems as web servers

are analyzed with respect to their response time, availability and latency

(“Transaction Processing Performance Council (TPC)”). The definition of

metrics is of utmost importance for modeling the characteristics of the system

to be measured in a proper way;

 Workload, which is a set of operations that the systems under test must

execute during the benchmark execution, usually including several

components (instructions, software components, other systems) and parameters

(defining a particular instance of the workload). Workloads are typically built

according to the characteristics of the system under benchmarking. For

instance, workloads for measuring the CPU throughput in terms of FLOPS

must be made of floating-point, computation-intensive instructions, while

measuring the response time of a web server requires a set of several remote

nodes requesting operations that the system must execute at a given rate.

Several techniques are available for defining a proper workload (Calzarossa,

Italiani, and Serazzi 1986; Agrawala, Mohr, and Bryant 1976; Calzarossa and

Serazzi 1993; D. Ferrari 1972; Eeckhout et al. 2005; Domenico Ferrari 1984),

which nonetheless remains an open problem in many scenarios;

 Benchmarking procedure that describes the setup required to run the

benchmark and the set of steps and rules to be followed during its execution

(Gray 1993). For instance, benchmarking a web server requires setting-up of

the remote nodes submitting the workload, configuring the environment to

automatically start the web server, starting and stopping the workload

execution, calculating the defined metric, among others.

In order to give confidence on the results, a proper benchmark must encompass

several properties (M. Vieira and Madeira 2003), namely it should be easy to

implement and use, provide repeatable results, be portable to different systems in a

given domain, include representative components, and be non-intrusive in order to

not interfere in the results.

Work on performance benchmarking ranges from simple benchmarks that target a

very specific hardware system or component to very complex benchmarks focusing

on complex systems (e.g., databases, operating systems, web servers (M. Vieira and

Madeira 2003)). Performance benchmarks have contributed to improve successive

Chapter 2

 48

generations of systems (Gray 1993), and the beginning of the millennium has

boosted the research on dependability benchmarking, with several works carried out

by different groups following different approaches (e.g., experimentation, modeling,

fault injection) (Koopman et al. 1997; M. Vieira and Madeira 2003; Zheng 1993;

Antunes and Vieira 2010).

The goal of dependability benchmarking is to characterize the behavior of a system

in the presence of faults, quantifying dependability attributes. A dependability

benchmark thus involves the use of techniques as fault injection and robustness

testing, adds to the main components of a benchmark a faultload (containing the

faults in presence of which assess the system), and measures relative to dependability

attributes.

In the last few years, benchmarks were also developed for evaluating the security of

systems, as for example (Mendes, Madeira, and Duraes 2014; Marco Vieira and

Madeira 2005; Mendes, Duraes, and Madeira 2011). Such benchmarks are based on

the idea of evaluating a system in the presence of vulnerabilities related to its

security (i.e., software faults that have the effect to reduce the security attributes of a

system), and consists of a benchmarking procedure, a workload, a vulnerability injector

and a vulnerability library, and an attackload (a set of attacks execute against the

system under test). The authors in (Neto and Vieira 2011) proposed a different

approach to security benchmarking, by assessing the trustworthiness (i.e., the

accumulation of evidence that something can be trusted) of web applications and

systems. Differently from security benchmarks, the goal of a trustworthiness

benchmark is to increase the thrust in security attributes of a system or parts of it.

The benchmarking procedure involves the analysis of the code of a specific system

or component by using static code analyzers (SCA), which results in a number of

vulnerabilities reported (NVR) that is used to estimate trustworthiness.

Benchmarking frameworks are lacking in the failure prediction scenario. In this

direction, benchmarks for machine learning models can be adapted to the failure

prediction problem, even if only some models can take advantage of the existing

approaches. Benchmarking machine learning models is a well-known problem in

the machine learning community, typically addressed by using well established

datasets (see e.g., (Zheng 1993; Maxion and Tan 2000)), which correspond to the

workload mentioned above. The datasets include data generally accepted by a

community (e.g., IRIS dataset and others (Bache and Lichman 2013)) that the tool or

algorithm must process to assess its performance (prediction accuracy, recognition

error rate, etc.). These datasets can be used independently of any system

configuration. However, as mentioned before, such repositories are not enough for

assessing and comparing failure prediction algorithms on a particular system, as the

data may reflect the behavior of the several different systems.

Background and related work

49

2.7 Final remarks

This chapter presented background on dependability concepts for computer

systems, online failure prediction and fault injection techniques, including the state-

of-the-art in such areas.

Online failure prediction is a novel technique that allows detecting in advance the

occurrence of failures and to mitigate their effects. The review of the literature

highlighted the fact that the approaches proposed in the past are seldom used in

commercial system. This is mainly due to the fact that failure models are complex to

train and optimize, and failure data are usually not easy to collect. The solutions

proposed in Chapter 3 and Chapter 4 are in line with this need, where fault injection

is used to generate failure data to train and optimize failure prediction models on

particular system installations.

Another key aspect regarding the use of failure prediction models is the evaluation

of the prediction performance, which requires rigorous procedures and metrics. We

address such need with the proposal of a benchmark for failure prediction models in

Chapter 5. The benchmark is based on the failure-data generation approach

proposed in Chapter 3 and defines the components and procedures needed to assess

and compare different models.

The chapter also introduced several failure prediction models (whose management

is mostly manual) applied to complex computer-based systems. However, although

complex software systems tend to evolve and change, very few works focusing on

the adaptation of failure prediction systems can be found in the literature. This

highlights the need for a framework that allows the continuous adaptation of online

failure prediction systems, as the one presented in Chapter 6.

Finally, the key problem of optimizing failure prediction models has been addressed

in few works, especially regarding what concerns the selection of the most adequate

variables to predict failures. In fact, works in the literature are limited to a priori

analysis of system characteristics that can help in predicting failures, and

experimental evaluations based on few failure data. Chapter 7 presents the study of

the application of a symptoms identification approach for facilitating the selection of

a set of variables for an optimal failure prediction.

 51

Chapter 3
Generating failure data by

Software Fault Injection

Predicting failures in computer systems is possible by modeling the behavior of the

system in the time instants preceding the occurrence of failures. Failure prediction

models may be built manually (which is rare, due to the complexity of such task) or

by using training (or learning) algorithms. The aim of training algorithms in the failure

prediction context is to take data monitored from a target system (e.g., page faults per

second, I/O request queue size, etc.) and relate them to observed failure events in the

form of a model. In this scenario, failure-related data are needed to train the

prediction model and optimize its performance, as well as to validate the accuracy of

predictions.

As failures are rare events, data collection usually takes a long time (e.g., (G.A.

Hoffmann 2006; M. Vieira et al. 2009; Bao, Sun, and Trivedi 2005), which limits the

applicability of failure prediction. Different solutions addressing such limitation

were proposed, including the use of existing failure data, often collected and stored

in collaborative repositories (hosting failure data from several systems), as for

instance the repository at (Usenix and Carnegie Mellon University (CMU) 2006).

This solution has a clear limitation, as a system may evolve over time (leading to the

need for new failure data to be collected) or the collected failure-related data may

come from systems with different characteristics. In fact, it is fundamental that the

failure data represents the relation between failure events and the dynamics of the

concrete target system (i.e., the system where failure prediction is being

implemented), and that depends on specific properties of the individual components

of the system and/or of the system as a whole, which may vary from one installation

to another (e.g., a software version upgrade may impact the system behavior).

Chapter 3

 52

In this chapter we propose a practical approach for generating failure data based on

the injection of realistic software faults in a specific target system. The reasoning is

that injecting faults increases the probability of a system to fail, hence enabling a fast

generation and collection of failure-related data. The ultimate goal is to facilitate the

use of failure prediction models on specific systems by addressing the problem of

failure data scarcity. We believe that the use of software fault injection for generating

failure data in short time facilitates and speeds up the training of failure prediction

mechanisms and their optimization, among other aspects.

The proposed approach makes use of the Generic-Software Fault Injection

Technique (G-SWFIT, (J. A. Duraes and Madeira 2006)), the de facto standard for

emulating software faults in a representative way. In practice, G-SWFIT defines a

model of the faults to be injected to emulate residual (realistic) software faults, based

on an extensive field study (J. A. Duraes and Madeira 2006). The technique supports

the injection of software faults by modifying the target system’s code at machine-

code level, instead of modifying the system’s source code, a key feature when source

code is not available, and especially for nowadays’ widely used OTS-based systems.

The reason that stands behind the choice of injecting realistic (or representative)

software faults stands in the fact that software faults are nowadays the largest cause

of computer system failures (Lee and Iyer 1995; Kalyanakrishnam, Kalbarczyk, and

Iyer 1999) and that representativeness is a fundamental property for assuring that

the generated failure-data can be used in practice (J. A. Duraes and Madeira 2006).

As mentioned before, the injection of software faults was first addressed by

Christmansson in (Christmansson and Chillarege 1996), followed by many other

works (e.g., (Hsueh, Tsai, and Iyer 1997; Aidemark et al. 2001; J. A. Duraes and

Madeira 2006; Carreira et al. 1998), among others), resulting on several fault injection

techniques with different purposes and targets.

In the failure prediction context, the injection of faults has been considered for

assessing failure prediction and/or detection mechanisms. For instance, Gross et al.

(Gross, Bhardwaj, and Bickford 2002) emulate memory leaks in an Apache web

server by modifying the source code in a way that prevents objects from releasing

memory space at the end of their lifecycle. The same solution was used by (Alonso,

Torres, and Gavaldà 2009) to validate mechanisms for the detection of resource

exhaustion in a Tomcat web server. However, the aim of fault injection in those

works was to assess systems against well-known fault types (e.g., memory leaks),

while there is no study on the use of failure data generated by fault injection for

training and assessing failure prediction mechanisms.

The proposed approach includes a method for assessing the accuracy of the

(synthetic) failure data generated with respect to failure data that would be

collected in a real scenario. In this perspective, we consider that, although realistic

fault injection is a necessary condition to generate realistic failure data, it may not be

a sufficient condition and thus the quality of the generated data must be assessed. In

particular, we study the conditions under which failure data generated with our

Generating failure data by Software Fault Injection

53

approach can be accurate, and propose a set of metrics for estimating such property.

The analysis of this property is a mandatory aspect to enable the use of the failure

prediction models in a real scenario with a known level of confidence.

The chapter is organized as follows. Section 3.1 introduces the approach for

generating failure-related data using fault injection. Section 3.2 describes the first

phase of the approach, namely the definition of the failure data generation

environment, which includes the specification of the failure(s) to predict and the

faults to inject, among others. Sections 3.3 and 3.4 describe the core of the approach,

presenting how to generate, collect and organize the failure data. Section 3.5

introduces the solution for assessing the accuracy of the failure data generated. A

case study is presented in Section 3.6, where we discuss the training, testing and

assessment of a novel failure prediction model running on a Windows XP OS

environment. Finally, Section 3.7 concludes the chapter.

3.1 Overview of the approach

The approach for generating failure data includes an experimental procedure, a set

of components for controlling the fault injection process and the dataset building,

and a method for estimating the accuracy of the generated data. Software faults are

injected while the target system executes one or more operations (a group of these is

called a workload), in a way that allows capturing the dynamics that lead to failures

by monitoring several variables (numerical data, events, etc.). In practice, the

approach includes the following components:

 Fault injector and faultload: faults are defined and organized in a faultload.

A fault injector emulates specific faults by modifying one or more

components of the target system. The choice of the faultload is of utmost

importance as it influences the data generated, ultimately impacting on the

overall results (different faults may lead to different types of failures).

 Workload: for collecting information about the system behavior, faults must

be injected while the target system runs a workload, and this procedure

should be repeated several times. The workload is the set of operations that

the target system performs in the field (realistic workload) or, alternatively, it

may be a set of synthetic operations (a synthetic workload) that represents

the usual tasks of the system, built specifically for failure data generation and

collection. A synthetic workload is useful when the system has not been

deployed yet, or when it is not possible to inject faults in the target system

and/or the workload cannot be replicated.

 Monitoring and data collection infrastructure: an infrastructure is used to

gather the data that characterizes the behavior of the target system in the

context of the observed failure events, while running a workload and

Chapter 3

 54

injecting faults. Depending on the failure prediction mechanisms under

study, besides failure-related data, one may need to collect also failure-free

data. What is important is the data to include only the most relevant

information for predicting failures.

The components above are the fundamental parts of the experimental procedure,

which is divided in four phases (see also Figure 3.1):

1) Definitions and set-up: in this phase one must define the failures to predict,

the system information to be monitored (e.g., a set of numerical variables or a

set of events in the logs, including failure events), the workload and the

faultload, and a set of parameters characterizing the scope of the failure

prediction. This comprises building the concrete faultload to inject, installing

and configuring the workload emulation tool, and installing and configuring

the data monitoring and collection infrastructure and the fault injection tool.

Other tasks include defining and setting up the target system, i.e., the system

where failure prediction will be implemented), and a controller system,

independent from the target system, for controlling the experiments and

collecting the failure data.

2) Data generation and collection: this is the core phase of the approach, where

the data are collected while the target system executes the workload and

faults are injected by a tool implementing the G-SWFIT recommendations (J.

A. Duraes and Madeira 2006). This data may correspond to fault-free

situations (Golden Data) and/or situations in which a failure is observed

(Failure Data). Data collection is done during several time intervals and in

each interval the monitoring infrastructure collects the values of the variables

portraying the state of the target system.

Figure 3.1 – The four phases of the failure data generation

Generating failure data by Software Fault Injection

55

3) Dataset building: the data collected are organized in datasets for being

consumed later by the failure prediction models. This process depends on the

failure prediction system to be trained (e.g., training anomaly detection

systems only requires Golden Data), as well as on the types of failures being

predicted. In particular, the monitored data are associated with the failures

observed in Phase 2 considering the failure prediction parameters specified

in Phase 1.

4) Failure data accuracy estimation analysis: accuracy is the property of the

generated failure data to be similar to data that would be obtained in a real

scenario. Due to the scarcity of real data, we estimate the correlation between

synthetic and real failure data by applying metrics (specific of each condition)

to two or more, independently generated, synthetic failure datasets. We use

the concepts of weak accuracy and/or strong accuracy, as sufficient conditions

for the generated failure data to be considered accurate. Strong accuracy

metrics are applied directly on the datasets, while the weak accuracy metrics

are applied to the prediction performance of the models trained with

independent synthetic datasets.

3.2 Phase 1: Definitions and set-up

The goal of the first phase is to specify the data generation environment and the

scope of the failure prediction task (e.g., the type of failures to predict, the prediction

advance, etc.), and to set-up the fundamental components (faultload, workload, fault

injection tool, etc.). In practice, this includes:

1) Defining the types of failures to predict, considering the different failures

that may affect the target system. This can be based on historical information,

on taxonomies of common failure modes (e.g., the C.R.A.S.H. scale

(Koopman et al. 1997)), or on the identification of system-specific failures

(e.g., service degradation);

2) Defining failure detectors (models) able to detect the failure events that

should be associate with the monitored data, which will then be identified as

failure-related data;

3) Selecting the software faults to inject, which represent the root cause of the

failures observed on the target system. A generic faultload is defined in (J. A.

Duraes and Madeira 2006), but specific faultloads may also be considered;

4) Installing a software fault injection tool that implements the G-SWFIT

recommendations for injecting the software faults at the machine-code level;

Chapter 3

 56

5) Defining the workload to use, which must emulate the target system’s

operations during the fault injection process;

6) Selecting the system variables to monitor that will be correlated with the

observed failures. These variables may be selected using specific techniques,

methods or algorithms, such as feature selection;

7) Scoping the failure prediction problem, which includes defining the

problem of predicting failures according to given models or frameworks, as

for instance the time to failure, the prediction window, the probability of a

failure to occur in a given time interval, and so on.

The environment for generating failure data includes a target system (the system

on which the failure prediction will be performed) and a controller (a machine that

manages the fault injection, the failure data collection, etc.). This separation is not

strictly needed, but it reduces intrusion in the target system and does not influence

the failure data generation process. In practice, the controller is in charge of

controlling the target system (e.g., boot, reboot, restore a fault-free state 5), the

injection of the software faults, the workload (e.g., execute, stop) and the collection

of the failure-related data (which are stored in a local database). The parameters that

define the data generation (e.g., the number of fault injection runs to perform, the

time horizons to consider, etc.) are also managed by the controller machine, but are

defined in Phase 2 of the approach (see Section 3.3). On the other hand, the target

system executes the workload, and hosts the fault injection tool and the monitoring

tool. Figure 3.2 presents the distribution of the fundamental components on the

target and controller systems.

Figure 3.2 – The failure data generation environment

5 We here use of the term “fault-free” for indicating a status of the target system in which no

fault was injected, and not for referring to the ideal status in which the target system is free

from any software fault.

Generating failure data by Software Fault Injection

57

 Characterizing the failures 3.2.1

The first step towards failure prediction is to be able to correlate the monitored data

with the failures observed during fault injection, which requires a precise definition

of what a failure is. Different types of failures may occur during the data generation

and collection phase, thus recognizing failure events and their occurrence time is

required, which can be performed by means of tailored failure detectors.

In general, a failure is an event that corresponds to the interruption of the correct

functioning of the system or one of its components. In the direction of categorizing

failures, we can find several works such as the classification from (Avizienis et al.

2004), the C.R.A.S.H. scale (Koopman et al. 1997), the distributed fault model (here

fault is intended as failure) (Tanenbaum and Van Steen 2007), and the generic failure

model by (Bondavalli and Simoncini 1990). The failure model proposed in (Avizienis

et al. 2004) can be considered the most general one as it is based on the other works

listed. In this work we do not propose any particular failure mode classification,

although we do recommend the definition of the failures to predict according to the

classification given in (Avizienis et al. 2004).

Failure detectors are tools based on models that recognize a failure occurrence, by

identifying failure patterns in the target system. As the accuracy of such models may

impact the quality of the generated data, thus affecting the study of failure

predictors, the quality of failure detectors should be assessed and their performance

should be optimized. Although the definition of failure detectors and their

optimization are out of the scope of this work, we here give an insight on how they

can be implemented. In practice, failure detectors can be built in two ways:

1) Manually by defining a set of conditions or rules for recognizing a failure in

the target system (e.g., if the system does not respond to a ping for more than

a minute, this means that there is a crash or a hang). This type of modeling is

possible when failures can be easily described by using simple rules, either

considering common failure modes (e.g., crash, hang) or service specific

failures (e.g., performance failure);

2) Automatically, in the case of failures events not easy to describe, by using

machine-learning algorithms that are applied to a set of collected data. This

type of modeling is necessary when, for instance, the detection of a failure is

influenced by dependencies between several variables (e.g., OS-level hangs,

involving complex interactions between OS-level and user-level components

(Antonio Bovenzi et al. 2011)).

A failure detector must also identify the occurrence time of a detected failure

(referred to as failure time TF), which may be a non-trivial task, as it depends on the

type of failures being addressed, among many other aspects (e.g., the time when an

Hang is detected often does not correspond to the instant in which it actually

occurred). However precise solutions to this problem are out of the scope of the

Chapter 3

 58

present work, where we just recommend adopting a best-effort approach,

considering the failure time as the detection time. Obviously, the better the detection

system is, the more precise is the failure time estimation.

 Defining the faultload and the fault injection procedure 3.2.2

The faults to be injected (what) must be carefully chosen and correctly emulated in

order to be representative of residual software faults, i.e., software faults that are likely

to escape the testing phase and be present in the target system (J. A. Duraes and

Madeira 2006). The need for the software faults to be realistic stands in the fact that

such faults are more likely to lead to failures similar to the ones that would occur if

real faults affect the system, thus allowing generating realistic failure data.

Choosing the types of faults to inject is a non-trivial problem. The authors of the

G-SWFIT proposal (J. A. Duraes and Madeira 2006) identified three conditions for

emulating realistic software faults, namely: i) choose the types of faults likely to

exist in the target system; ii) reproduce patterns that represent software faults

present in software systems; and iii) inject faults according to a given distribution, in

order to mimic residual faults. (J. A. Duraes and Madeira 2006) analyzed software

defects in several open-source software products that were corrected from a version

to another (a procedure similarly to the one conducted for building ODC: see Section

2.4.3), but focusing on the fact that faults can be due to missing, wrong or extraneous

(in excess) programming language constructs (e.g., statements, expressions, function

calls, etc.), which supports the definition of what to inject. In practice, the resulting

dimensions (or classes) of such model also define how to emulate a given type of

fault, classifying the faults in terms of programming language constructs (e.g.,

statements, expressions, function calls, etc.) that can be missing, wrong or extraneous.

In this work, we adopt the fault model proposed in the context of the G-SWFIT

technique (J. A. Duraes and Madeira 2006), already presented in Table 2.3 (Section

2.4.4), as the fault types defined provide a fine-grain classification that can be easily

translated into a code mutation (see Table 3.1 for some examples). Furthermore, such

fault model includes the distribution of the occurrence (or presence rate) of the faults,

which is of utmost importance as it allows defining a more representative

distribution of the types of faults to be injected. For instance, MIFS faults can be

considered representative of real scenarios if their weight in the total number of

faults injected is about 10%.

Regarding the injection location (where), the rules for identifying where a specific

type of fault can be emulated are also defined in (J. A. Duraes and Madeira 2006),

and are referred to as “patterns identifying an injection location”. In practice, an injected

software fault is a mutation of the code in the specified location(s), achieved by

applying a given fault operator. Table 3.1 presents three examples of fault operators

for (a) a “missing local variable initialization (MVI)”, (b) a “missing function call (MFC)”,

Generating failure data by Software Fault Injection

59

and (c) a “Wrong value assigned to a variable (MVAV)”. The column “Patterns” presents

the situations in which the fault can be injected and the column “Code mutation/Fault

operator” identifies the operation needed to emulate the fault type. For example, the

locations in which a MVI can be injected are identified by the presence of a variable

initialization instruction (e.g., local_var = value) and the fault is emulated by

removing the initialization instruction.

It is worth noting that, although the fault patterns defined characterize the potential

injection locations, there may be many eligible locations and injecting faults in each

and every one may not be feasible and/or representative. Although the problem of

selecting code locations is out of the scope of our thesis, we follow a simple rule of

injecting faults in highly executed software components, which can be easily

identified by using profiling tools (i.e., running the workload on the system and

identifying the components that are most executed (Ball and Larus 1994)). This

increases the fault activation probability, which potentially leads to the observation

of a reasonable number of failures. However, the representativeness of the faults

injected in such widely executed locations must be taken into account. In fact, as

defined in (R. Natella et al. 2010), injected software faults are representative if their

location is rarely executed or they are rarely activated when their code location is

executed (otherwise, they would be easily caught during tests). Hence, low

activation rates are a required condition for fault representatives and should be

experimentally verified. (R. Natella et al. 2010) defines 5% (i.e., 5% of the faults

injected lead to failures) as an acceptable activation rate for representative software

faults.

About the time (when), the G-SWFIT proposes the injection of software faults in the

target system’s compiled code, both for representativeness and generality reasons. In

fact, injecting in the compiled code means that the code mutation tries to represent a

residual fault caused by a programmer error, which is translated by the compiler (as

in real scenarios). The G-SWFIT technique is generic in the sense that faults can be

Table 3.1 - G-SWFIT: examples of mutation and search patterns

Fault type Patterns
Code mutation/

Fault operator

(a) Missing local variable initialization

(MVI)

pattern and mutation

local_var = value

remove local_var

initialization

local_var =

some_other_variable

local_var = expression

(b) Missing function call (MFC)

pattern and mutation
function_name(…); remove function call

(c) Wrong value assigned to a variable

(WVAV)

pattern and mutation

local_var = value local_var = other_value

Chapter 3

 60

injected even when the system’s source code is not available, which is a usual

requirement when dealing with third party or OTS-based systems.

In summary, from the perspective of generating failure data, the faultload must

consider the scope of the target types of failures, as usually the potential target code

is too big for faults to be injected in all possible locations. For example, crash failures

can be caused by emulating a segmentation violation by injecting a WVAV (wrong

value assigned to a variable) in core functions of the operating system. In practice, one

must define a proper policy for choosing the most representative faults to inject,

with the aim of increasing the probability of failures, a potential policy is “choosing

locations in the most executed parts of the software”.

 Defining the workload 3.2.3

A workload can be seen as a collection of programs, data and commands used to

exercise a system (D. Ferrari 1972; Domenico Ferrari 1984). In practice, failure-related

data represent the failing behavior of a target system when executing a concrete

workload that leads to the activation of injected faults by exercising the

functionalities of the system.

The generation of failure data during the operational phase of the target system can

make use of the real workload that the system has to execute. However, the most

general case is to perform the data generation before deploying the system or using a

copy of the target system (as proposed in Chapter 4), as injecting faults during

system operation may not be feasible, due to possible damages to the software, the

data, the environment, etc. In such cases, it is necessary to define a specific workload

to exercise the system.

The choice of the most adequate workload is very dependent on the target system. In

general, a workload must be chosen or defined in a way that reproduces the typical

behavior of the system and the use of a particular workload strictly depends on what

is available about it. In practice, a workload can be of three types: a real workload, a

realistic workload, or a synthetic workload. Real workloads are made of actual

applications used in real environments. Results using real workloads are quite

representative, but access to them is frequently not possible. On the other hand,

realistic workloads are artificial workloads that are based on a subset of

representative operations performed by the system. Although artificial, realistic

workloads reflect the real situation, and are still quite representative and easier to

implement. Finally, a synthetic workload can be a set of random operations, and is

easier to define, but obviously results may have a low representativeness.

A potential way to build realistic workloads is to collect, study and classify the

different types of operations executed by the target system, and then mimic them

using a custom made application. Workloads from standard benchmarks (e.g., SPEC,

TPC, etc.) typically offer realistic workloads, each one relative to a particular system

Generating failure data by Software Fault Injection

61

domain. For instance, TPC-W and TPC-App offer workloads for transactional web-

serving systems (“Transaction Processing Performance Council (TPC)”), while SPEC

benchmarks provide workloads for assessing CPUs, Workstations, Virtualization

systems, etc. (“Standard Performance Evaluation Corporation (SPEC)”).

We do not propose any particular methodology for building a proper workload, as

this is not central to the present work. However, several methodologies can be found

in the literature (e.g., (Agrawala, Mohr, and Bryant 1976; Calzarossa, Italiani, and

Serazzi 1986; Calzarossa and Serazzi 1993; Eeckhout et al. 2005; Moro, Mumolo, and

Nolich 2009)), including in the fault injection field (Cotroneo, Fucci, and Natella

2012; A. Bovenzi et al. 2011).

 Selecting the variables and the monitoring infrastructure 3.2.4

Online failure prediction models are built from observations about the past behavior

of a target system (or the evolution of its inner states), which can be described by

numerical time series data or categorical data (e.g., events stored in log files). As

online failure prediction models forecast failure events by comparing the observed

behavior with the evolving target’s state, their efficacy and accuracy is dependent on

the quality of the observations (i.e., the data) collected from the target system.

A computer-based system, as well as each of its components, may be described in

several ways, which results in a large number of variables that can be monitored.

This problem is known as feature extraction. In practice, the features or variables that

better characterize the behavior of a computer system are usually defined based on

the experience of users and developers and describe a specific behavior of the whole

system or of a part of it. This approach is different from the ones followed in other

areas, e.g., computer vision and image segmentation, in which a subject (e.g., the

image of a human face) may be automatically analyzed for extracting information or

variables for achieving a given goal (e.g., recognize a subject by searching a specific

set of characterizing features). In this work we assume that the best features are

among the ones a computer system makes available, using de facto the Ockham’s

razor principle (Gernert 2009; Blumer et al. 1987). The existing tools for monitoring

computer systems provide a finite set of variables, each one representing a

characteristic of the system (e.g., the available free memory in MBs, the number of

page faults/sec), and thus limit the features that can be extracted.

The set of variables that is more adequate for prediction is not known a priori and

several steps are needed to reach an optimal set. The selection or identification of the

most adequate set of variables is also known as feature selection problem, which

must address several aspects. For instance, models based on too few or too many

variables may equally lead to poor performance (Baum and Haussler 1989; Geman,

Bienenstock, and Doursat 1992; Hochreiter and Obermayer 2006; G.A. Hoffmann,

Trivedi, and Malek 2006). In addition, considering that the variables form an n-

Chapter 3

 62

dimensional space, the modeling of a specific reality identified by a set of variables (as

the prediction of a specific event) is computationally harder as the number of

dimensions n increases (the performance of a model degrading as the dimensionality

increases is also known as the curse of dimensionality, or Hughes effect (G. Hughes

1968)). Selecting an unfavorable subset of variables can lead to poor modeling

performance as well. This way, it is of utmost importance to select the smallest set of

variables that allows achieving the best prediction performance: (G.A. Hoffmann,

Trivedi, and Malek 2007) analyzed the impact of variables on different models and

demonstrated that the choice of the variable set has a strong influence on the

prediction performance. The same authors showed that variables chosen by experts

are likely to not form optimal sets for failure prediction and resource forecasting

(e.g., used in the software aging detection context).

Several techniques can be used to perform feature selection (see Chapter 2), which

can be divided in two groups: the filter and the wrapper approach. In the former

(filtering) the feature selector filters the irrelevant attributes and is independent from

the specific model that will use the variables. In the latter (wrapping), the most

important features are filtered in the context of the prediction model and taking into

account the specificities of the underlying learning mechanism. In addition to these

two, the hybrid approach tries to take the advantages of both filtering and wrapping.

In this work we propose the use of feature selection techniques, although we do not

specify any particular one. In addition, we recommend the use of numerical data

instead of categorical data (e.g., data stored in logs), as it has been demonstrated that

categorical data may degrade the performance of a prediction model (G.A.

Hoffmann, Trivedi, and Malek 2007). For example, (G.A. Hoffmann, Trivedi, and

Malek 2007) compared the performance of a model for predicting failures in a

complex telecommunication system, first trained using numerical variables and then

trained using numerical and categorical variables (G. Hoffmann and Malek 2006).

Results show that the addition of log data degraded the model’s prediction

performance. However, categorical data that can be transformed to discrete-time

numerical variables may be of interest. We also propose to normalize the collected

numerical variables, as recommended by several works in the machine learning area

(G. Hoffmann and Malek 2006).

Several monitoring tools for collecting the values of variables over time can be

found in computer systems. Well-known solutions are the Linux/Unix command top

(showing information about system’s CPU usage, Memory usage, Swap memory,

Cache size, processes, etc.), the proc/stat file (number of processes executing in user

mode or kernel mode, jobs waiting I/O to complete, etc.), and open-source tools such

as NMon (generic system information), Nagios (network and server-related

information), both for Linux and Microsoft Windows computer systems, and

Logman included in the Microsoft Windows OS.

Generating failure data by Software Fault Injection

63

Data must be collected according to a specific sampling rate that depends on the

monitoring system used and the information being collected. Typically, operating

systems provide standard sets of variables to monitor, representing a value in a

given time instant (e.g., amount of free memory) or a rate (e.g., number of CPU Level

1 cache-misses per second). The monitoring system should be able to manage such

information, i.e., the increment of data, its storage, etc. The analysis of the optimal

data sampling rate is out of the scope of this work, although few works in failure

prediction field (e.g., (G.A. Hoffmann 2006)) demonstrate the influence that such

parameter can have on the failure prediction accuracy.

 Modeling the failure prediction problem 3.2.5

After defining the failures to predict, one must characterize the failure prediction

approach, which will serve for the definition of the datasets to be consumed by the

failure predictors, including the association of the failure instant to the data collected

and their labeling. In practice, such characterization includes identifying and

defining the key characteristics that should be taken into account when predicting a

failure (e.g., the expected failure time, the distribution of failure probability over a

given time interval, etc.) and allows associating a failure event to the data by labeling

each data sample (see Section 3.4). This task is named failure prediction problem

modeling.

The literature on failure prediction is abundant in what concerns algorithms and

prediction systems, although such works do not share a model for predicting

failures, thus resulting in no common definitions. However, besides providing a

survey on the existing online failure prediction systems, (F. Salfner, Lenk, and Malek

2010) propose a generic model for addressing the online failure prediction problem.

As shown in Figure 3.3 the failure prediction task consists of assessing if, at a time t,

a failure is going to occur within a precise time, called lead-time ∆tl. The prediction

can be valid in a time window, named prediction window ∆tp. The variation of the

parameters ∆tl and ∆tp influences the performance of the prediction. In practice, at

time t, a model (or predictor) should predict if a failure is going to occur in the

interval [t+∆tl, t+∆tl+∆tp].

Although other models can be used, in this work we adopt and include Salfner’s

model in the experimental process, as it allows a complete representation of the

failure prediction event, its expected arrival time, as well as the modeling of the

Figure 3.3 – Time relations in Online Failure Prediction

Chapter 3

 64

minimal prediction time (or prediction convenience time) and the amount of data

needed for performing the prediction (e.g., training failure prediction model). More

details about this framework can be found in Section 2.2.3.

3.3 Phase 2: Data generation and collection

This phase consists of combining the components of the approach (faultload,

workload, monitoring tool, etc.) to generate failure-related data for training,

assessing and improving failure prediction models on a particular target system. In

practice, after the definitions phase (Phase 1) in which the target system is installed

and the environment is set up, the data generation and collection takes place by

implementing a procedure that includes several time intervals (as shown in Figure

3.4), referred to as runs, during which the monitoring infrastructure collects the set

of variables selected. The number of runs, as well as their duration, depends on

several parameters, such as the time needed to execute the workload, the specific set-

up environment and the prediction parameters (e.g., for predicting a failure one

hour in advance, each run must last for at least one hour). Depending on such needs,

the user must define a maximum run execution time TMAX, which obviously has to be

greater than the workload execution time TW.

Failure data are data obtained by injecting faults during several runs (eventually

evolving into failures), while golden data are gathered when no faults are injected

and no failures are observed6. The use of one or both kinds of data depends on the

prediction model (or models) that will consume the generated data (e.g., anomaly

detection based models just need golden data, while classifiers need both types of

data). A run with no faults injected and no failures observed is called golden run, and

the corresponding data are Golden Data (GD). An execution in which faults are

injected is called Fault Injection Run. If a failure is observed during a fault injection

run then it is a failing run, and the data monitored are Failure Data (FD). Also non-

failing runs can exist, with associated Non-Failure Data (NFD). Although this kind of

data may also provide information about the system failing behavior, their use is out

of the scope of this work. In each failing run, the failure event must be detected and

latter (in Phase 3) associated to the collected Failure Data. For this, different failure

detectors (models that recognize failure patterns when they occur, as defined in

Section 3.2.1) may be needed.

When more than one failure mode or more than one workload is considered, the

runs (and thus the failure data) can be grouped into Scenarios. In this work, the

scenarios are identified by a failure mode 𝓕 and a workload W, or alternatively by

the tuple <Workload, Failure mode>.

6 In fact, no fault is injected and no failure is observed does not mean that no fault was

activated, as there is not guarantee that no residual faults are present in the system.

Generating failure data by Software Fault Injection

65

As detailed in Figure 3.4 the data are generated as follows:

1) Each run starts by booting the target system and waiting for it to reach a

steady state, before the workload is executed. Having the system in a steady

state means that it is ready for executing the workload in the best way

possible, which is recommended, albeit not mandatory. The instant in which

the system achieves its steady state is referred to as T0.

2) The workload and the monitoring tools are then started. The instant in

which the workload execution starts is referred to as TW, while TM identifies

the time at which the monitoring system is executed. The data collection may

start at time TM or TW, depending on the specific needs (e.g., if data from the

beginning of the workload execution are needed, the monitoring must be

started before the workload). In practice, data is composed of data samples

collected from the different variables at a given instant of time, according to a

specific sampling rate s.

3) In a Fault Injection Run (FIR), a fault is injected at time TFI while the target

system is executing the workload and the monitoring tool is collecting data.

The tool implementing the G-SWFIT recommendations (J. A. Duraes and

Madeira 2006) injects a fault that modifies a part of the target system at

machine-level code (by modifying a file or a running process) according to

the guidelines introduced in Section 3.2.2. In a Golden Run (GR) the system

executes the workload, but no fault is injected.

4) The run finishes when a failure (TF, FIR only) is detected (the failure detector

associates the failure to the time TF), or after the workload has completed its

execution (TW_END) or a maximum run execution time TMAX is achieved. In such

cases, two situations are possible:

Figure 3.4 – Failure data generation, collection and data organization phases

Chapter 3

 66

a) In the case of Golden Runs (GRs), if no failure is detected in the interval

[T0; T0+TMAX], the data relative to the run are considered Golden Data

(GDRi, Golden Data relative to the i-th run). It is worth noting that a

failure occurring in a Golden run is caused by an actual residual fault of

the target system (i.e., not an injected one) and the data should also be

considered as Failure Data.

b) For Fault Injection Runs (FIRs), if no failure is detected in the interval

[T0+TFI; T0+TMAX], the run is considered to be failure-free, and the relative

data to be Non-Failure Data (NFDRi, relative to the i-th run). On the other

hand, if a failure is detected in such interval, the collected data are

considered Failure Data (FDRi, relative to the i-th run).

5) After completing a run (and collecting the corresponding data), the target

system must be restored to a state in which no faults injected are present.

This ranges from rebooting, in the cases where the fault does not permanently

affected parts of the system (e.g., data or files), to the correction of fault

effects (e.g., substituting files previously backed-up) or the re-installation of

the entire target system7.

It is worth noticing that the TW (workload execution time) parameter corresponds to

the embedded dimension ∆td in the model for scoping the failure prediction task that

we adopted (see Section 3.2.5), and it may vary with the prediction time horizon ∆tl,

depending on the type of failure prediction model that will consume the data (e.g.,

reliability-growth prediction models can predict far in the future needing few data,

although with a low prediction accuracy).

3.4 Phase 3: Dataset building

In this phase, the collected Golden Data and Failure Data are associated to

information about the failures observed during Phase 2 and organized into datasets,

for being later used for training and validating failure prediction models. Such

association is implemented by labeling each data sample composing the collected

data.

Labeling data is a technique that associates a numerical label (e.g., 0, 1, etc.) to each

data sample (i.e., a set of values of each monitored variable), depending on the

meaning that each label has in the particular modeling or prediction scenario (e.g., a

7 Virtualization is a solution that allows restoring the target system (both software and –

emulated – hardware), by using check-pointing and restoring operations. The potential use of

virtualization for supporting the generation of failure data is addressed in Chapter 4.

Generating failure data by Software Fault Injection

67

sample is labeled 0 if the target system was working correctly at the moment of the

sample’s collection, or conversely is labeled 1 if the system was presenting an erratic

behavior). In our scenario, data is labeled according to the failure time TF and the

failure prediction lead-time and prediction window (∆tl, ∆tp), defined in the failure

prediction framework adopted (described in Section 3.2.5). The idea is to consider a

model that predicts a failure ∆tl time in advance, with a variation of ∆tp with respect

to the failure time TF. We must note that a successful prediction depends on the

patterns that the data may show ∆tl time before a failure occurred, which can be

present or not: in the worst case, the predictor will have a poor prediction

performance, being not able to distinguish between failure-prone and non-failing

situations. It is also worth noticing that such method for associating the information

about the prediction of a failure to the data is not unique (e.g., regression models

trained on specific lead and prediction times can also be used). Nevertheless, we

adopted labeling for its generality and because it facilitates the study of the

relationship of each data sample with the failure observed.

The labeling of the collected data is performed as follows. Data from a given run r is

composed of n different variables vr = <vr1, vr2, …, vrn>, where vri is the i-th variable

collected from the target system (Figure 3.6 (a)). For each time instant k, each

variable vri has a given value vri(k), representing a variable value collected at the time

instant k. Hence, a data sample at time k is defined as:

(3.1) vr(k) = <vr1(k), vr2(k), …, vrn(k)>

A data sample vr(k) collected during a Golden Run (when no failure occurred), is

associated a label lr(k)=0, for each time k. On the other hand, given TrF the time at

which a failure was detected during the Failure Run r, and the prediction indexes

(∆tl, ∆tp) (valid for all the runs), a label lr(k)=1 is associated to a data sample vr(k) if a

failure occurred in the interval [TrF-(∆tl+∆tp), TrF-∆tl], otherwise it is 08. Hence, for

each time instant k and each run r, a labeled sample is:

(3.2) vr*(k) = <vr1(k), vr2(k), …, vrn(k), lr(k)>

The collected data labeled according to the failure prediction indexes (∆tl, ∆tp) and

the failure time TrF can be considered a dataset. More generally, several couples (∆tl,

∆tp) can be specified, and varying the values of ∆tl and ∆tp let the labels associated to

each data sample to change accordingly. In this case, being ∆tl=<∆tl1 , ∆tl2 , …, ∆tlL>

and ∆tp=<∆tp1 , ∆tp2 , …, ∆tpP>, one can define a dataset with which N sets of labels are

associated, where N =|∆tl|x|∆tp|. Of course, the Golden Data will present 0s for all

the values of the couple (∆tl, ∆tp). Such dataset can be built once and used for

training and testing a failure prediction model using a couple (∆tl, ∆tp) at a time.

8 It must be noted that the label values chosen can be any two different numerical values

(other widely used values for labelling data are (-1, +1) – especially when using Support

Vector Machine classifiers – (5, 10), and so on).

Chapter 3

 68

The collected and labeled Golden and Failure Data from each run are then organized

in a global dataset. Each scenario <Workload, Failure mode> is associated to a given

global dataset, as data reflect different failure modes and workloads (see Figure 3.5).

An example of a dataset is presented in Figure 3.6 (a) and (b): Figure 3.6 (a)

represents data collected from the i-th Fault Injection Run and labeled with N

different couples of (∆tl, ∆tp) values, while Figure 3.6 (b) presents a global dataset,

highlighting the difference between labeling Golden and Failure Data, being the first

labeled with only 0s and the latter with 0s and 1s.

For training and validating failure prediction models, each global dataset should be

divided in training datasets (TDSs) and testing datasets (TTDSs), whose goal is to

support the assessment of prediction performance. Such division is usually based on

grouping single data samples. However, in our work we group Golden and Failure

data in training and testing datasets by considering the runs to which they belong to,

thus implementing a run-by-run data partition. The reason that stays behind this

decision is that the collected data represents time series and the division in samples

may alter the continuity and ordering among samples, which may finally impact the

prediction performance (Dietterich 2002) (e.g., when training regression models).

The division in training and testing sets should be done according to a certain policy

(see e.g., (Vapnik 2000)): for instance, half of the data samples are used for training

and the other half for testing. In practice, one must consider the fact that training a

failure prediction model with a small percentage of data may result in a high

variance of the prediction performance.

Figure 3.5 – Datasets and scenarios (two workloads and two failure modes)

Generating failure data by Software Fault Injection

69

On the other hand, using a high percentage of data for training may also result in

poor prediction performance. In fact, in such case the predictor is trained for

predicting an event according to a very specific pattern without considering the

possibility of the pattern to suffer small variations in a different scenario. Such

problem is called overfitting, and calls for a predictor to generalize its predictions.

A solution to the generalization problem is to conduct a validation of the model,

which consists of computing how much the predictions of a model generalize to an

independent dataset. Validation is widely used for different prediction models

(Dietterich 2002) by analyzing the variation of the predictor’s performance (in

practice, by estimating of how much the performance may vary when using a

dataset different from the testing dataset). Several validation techniques can be used,

including for instance a simple division of the global dataset in three parts, a training

v1 v2 v3 vn Labels1 Labels2 ... LabelsN

FIRi

v1(1) v2(1) v3(1) … vn(1) 0 0 ... 0

v1(2) v2(2) v3(2) … vn (2) 0 0 ... 0

v1(3) v2(3) v3(3) … vn (3) 0 0 ... 0

v1(4) v2(4) v3(4) … vn (4) 0 0 ... 1

… … … … … …

v1(k) v2(k) v3(k) … vn (k) 0 0 ... 1

v1(k+1) v2(k+1) v3(k+1) … vn (k+1) 1 0 ... 1

v1(k+2) v2(k+2) v3(k+2) … vn (k+2) 1 0 ... 1

v1(k+3) v2(k+3) v3(k+3) … vn (k+3) 1 1 ... 1

… … … … … …

v1(TF) v2(TF) v3(TF) … vn (TF) 1 1 ... 1

(a)

v1 v2 v3 vn Labels0

 v1(GR1) v2(GR1) v3(GR1) … vn(GR1) 0

 v1(GR2) v2(GR2) v3(GR2) … vn(GR2) 0

Golden v1(GR3) v2(GR3) v3(GR3) … vn(GR3) 0

Data … … … … … …

 v1(GRG) v2(GRG) v3(GRG) … vn(GRG) 0

 Labels1 Labels2 ... LabelsN

 v1(FIRf1) v2(FIRf1) v3(FIRf1) … vn(FIRf1) 0/1 0/1 … 0/1

Failure v1(FIRf2) v2(FIRf2) v3(FIRf2) … vn(FIRf2) 0/1 0/1 … 0/1

Data v1(FIRf3) v2(FIRf3) v3(FIRf3) … vn(FIRf3) 0/1 0/1 … 0/1

 … … … … … … … … …

 v1(FIRfF) v2(FIRfF) v3(FIRfF) … vn(FIRfF) 0/1 0/1 … 0/1

(b)

Figure 3.6 - Data from a single Failure Run i (a)

and a complete (global) dataset (b)

Chapter 3

 70

dataset, a testing dataset, and a validation dataset (an example of its use in failure

prediction is presented in (G.A. Hoffmann, Trivedi, and Malek 2007)). The leading

idea is that if the variation in the prediction performance between the testing and the

validation is small, the training set is optimal for the predictor. A more generalized

validation approach, called cross validation, consists in the repetition of such

process several times, each time building different training, testing and validation

datasets. In practice, it involves: i) dividing the dataset in two parts, each one

composed of N1 and N2 samples (with N1,N2>>1); ii) using the first dataset for

training and the second for testing; iii) collecting the performance results; iv)

repeating from (i) varying the way the datasets are obtained; and v) analyzing the

performance results obtained over the iterations, by comparing them, calculating the

average or variance, and so on. In this work, we propose the use of k-fold cross

validation, dividing the dataset in k folds, each one containing an equal number of

samples |N|/k. At each step, k-1 folds are used as the training dataset, while one fold

is used as testing dataset, with the left-out fold being different each of the k times.

The value of k can be chosen in an incremental manner, analyzing the behavior of the

prediction model over each value. A widely used value in literature is k=10

(Dietterich 2002), which may be taken into account at a preliminary stage of the

analysis of the prediction results.

3.5 Phase 4: Failure data accuracy analysis

The final step of the approach consists of analyzing the quality of the generated

failure data, which is given by their similarity to data that would be collected when

real failures occur. Several metrics have been proposed so far to analyze the quality

of data used in information management systems. In this context, we believe that the

concept of accuracy is sufficient for analyzing the similarity between synthetic and

real failure data. In fact, given the possibility of representing the real workload in a

multidimensional space composed of known characteristics, accuracy can be seen as

the measure of the distance between a different set of data (e.g., the synthetic set)

and the target data.

Obviously, a necessary condition for the synthetic failure data to be accurate is that

the faults injected are realistic, as non-representative faults could lead to failures that

would not occur in a real scenario (thus being not accurate). This is assured by the

injection of realistic software faults using the Generic-Software Fault Injection

Technique (G-SWFIT (J. A. Duraes and Madeira 2006)), as discussed in Section 3.2.2.

However, injecting realistic faults is not sufficient to guarantee that the generated

failure data are realistic, as the faults are not real, and the generation is also

influenced by several others factors, including the workload used during the

generation (see Section 3.3), whose impact on accuracy has to be studied.

Generating failure data by Software Fault Injection

71

Our proposal is to conduct a quantitative assessment of the accuracy of synthetic

failure data, thus providing some degree of confidence as a sufficient condition for

the use of the data in the context of failure prediction. The leading idea of such

quantitative assessment is that generated (or synthetic) failure data can be

considered accurate if there is a positive correlation between that data and real

failure data, i.e., the failing behavior of the system due to fault injection is similar to

a real failing scenario (for each single type of failure). In practice, we foresee two

types of analysis that can be performed: direct (or strong) accuracy analysis, which

directly correlates a synthetic dataset with a real dataset, and indirect (or weak)

accuracy analysis that consists in comparing the performance of a failure prediction

model trained with generated data and trained with real data, thus being more

focused on the accuracy of failure data when used for the prediction task. In fact,

while measuring the correlation between data can give interesting insights about the

failure patterns in the real and the synthetic data, such method may suffer from the

problem of being too much focused on data, thus not taking into account the impact

of that data on the prediction quality of the trained models. This is why we foresee

the need for the indirect accuracy analysis, as it is based on the prediction

performance of the models trained with the synthetic failure data.

The problem is that assessing accuracy with data collected during real system

operation is mostly not possible, as real data is usually not available. Our proposal is

thus to estimate the accuracy of the generated failure data by partitioning the

available synthetic data and by applying several estimation metrics to the resulting

data subsets. In practice, we propose two quantitative estimation approaches:

1) Direct or strong accuracy estimation making use of metrics for computing

the correlation between two sets of synthetic failure data, namely a reference

failure dataset DSR and a validation dataset DSV, which must be obtained

independently. Obtaining independent datasets can be achieved by injecting

faults in different system’s modules, thus emulating the potential diverse

fault activation that could take place in a real scenario). The direct or strong

failure data correlation metrics are identified by the symbol �̂�, and the leading

hypothesis is that the closer the failure data correlation �̂�(𝐷𝑆𝑅 , 𝐷𝑆𝑉) value is to

one, the more the generated failure data are likely to be accurate.

2) Indirect or weak accuracy estimation, indirectly validating synthetic failure

data accuracy by using metrics that portray the performance degradation of

prediction models when varying the dataset. In practice, the performance

values are obtained by training and testing the predictor with a reference

dataset DSR, and validating the prediction performance using a second and

independent validation dataset DSV. Such metrics can be referred to as

synthetization error, and are identified by the symbol 𝜀̂ . The closer the

synthetization error is to zero, the more the generated failure data are likely to

be accurate.

Chapter 3

 72

It is worth noting that the definitions presented must be applied to a single scenario,

defined by a failure mode 𝓕 and a workload W.

Although several metrics can be used, we propose a set of estimation metrics on the

basis of empirical experience, with the aim of addressing the accuracy estimation

problem. In practice, a deeper study on the definition or choice of optimal failure

data accuracy estimation metrics is needed, but is considered as future work.

 Direct data accuracy estimation 3.5.1

As strong accuracy estimation metric we propose the use of the Pearson’s correlation

for time series. The reason behind such choice stands in the fact that failure datasets

are composed by time series (both in the case of numerical variables or categorical

information, which should be converted to numerical elements, as discussed in

Section 3.2.4), and the Pearson’s correlation coefficient is a widely used method for

measure the correlation between time series. The Pearson’s correlation coefficient 𝜌

between a reference dataset DSR and a validation dataset DSV is defined as the ratio

between the covariance 𝜎𝐷𝑆𝑅,𝐷𝑆𝑣
 and the product of their standard deviations 𝜎𝐷𝑆𝑅

and 𝜎𝐷𝑆𝑣
, as follows9:

(3.3) 𝜌𝐷𝑆𝑅 ,𝐷𝑆𝑣
=

𝜎𝐷𝑆𝑅,𝐷𝑆𝑣

𝜎𝐷𝑆𝑅
 𝜎𝐷𝑆𝑣

=
𝑐𝑜𝑣(𝐷𝑆𝑅 , 𝐷𝑆𝑣)

𝜎𝐷𝑆𝑅
 𝜎𝐷𝑆𝑣

with -1 < 𝜌𝐷𝑆𝑅,𝐷𝑆𝑣
 < 1. The datasets are directly correlated if 𝜌𝐷𝑆𝑅 ,𝐷𝑆𝑣

> 0, and inversely

correlated if 𝜌𝐷𝑆𝑅,𝐷𝑆𝑣
< 0, while the datasets are uncorrelated if 𝜌𝐷𝑆𝑅,𝐷𝑆𝑣

= 0. An optimal

accuracy estimation would thus be 𝝆𝑫𝑺𝑹,𝑫𝑺𝒗
 = 1.

Another failure data correlation metric is proposed and presented in Chapter 4 for

assessing the impact of using virtualization as a sandboxing solution for injecting

software faults to overcome the limitation of using fault injection in production

systems. As we will see, the goal is to analyze the similarity of failure data generated

using a real system and several virtualized systems, defining a correlation metric to

be applied to the data coming from the original target system and from its

virtualized copies, based on the concept of failure symptoms, which are particular

behaviors showed by one or more of the monitored variables.

9 It must be noted that the Pearson correlation coefficient for discrete time series (as in the

case of failure datasets) is usually identified by the letter r. However, in this section we

present the correlation coefficient as it is used for continuous time series, i.e., 𝜌, as it is easier

to analyze and comment.

Generating failure data by Software Fault Injection

73

 Indirect accuracy estimation 3.5.2

We propose three metrics for characterizing the synthetization error ε (weak

accuracy estimation) measuring the performance degradation of prediction models when

varying the dataset. Although more metrics can be defined, we here present two

metrics widely used as estimators (the relative error and the mean squared error),

and a third one focusing on elements ordering, which can help in gaining confidence

in the measures obtained by the estimators, and be an estimator itself. Each measure

can be used with a single or several predictors, and two or more datasets. The

proposed metrics are:

1) Relative error (one predictor, two datasets): 𝜀̂ is calculated as the relative error

between performance measures (e.g., Prediction, Recall, ROC-AUC – see

Chapter 2) obtained by training and testing a predictor with a reference dataset

DSR (divided into a training dataset TDSR and a testing dataset TTDSR) and

validating it using a second and independent dataset DSV (consisting of a

testing dataset TTDSV only). We denote as reference performance the

performance obtained by using the reference dataset, while the validation

performance is obtained by using the independent dataset.

(3.4) 𝜀̂ = |
𝒫𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝐷𝑆𝑅 − 𝒫𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐷𝑆𝑉

𝜇(𝒫)
| = |

𝒫𝑟𝑒𝑓,𝐷𝑆𝑅 − 𝒫𝑣𝑎𝑙,𝐷𝑆𝑉

𝒫𝑟𝑒𝑓,𝐷𝑆𝑅
|

In particular, 𝒫 is the performance measure and 𝜇(𝒫) is the mean

performance value of the predictor, which can be considered as the

performance Pref,DSR obtained by using the reference dataset DSR. It is worth

noting that the relative error is measured by using the reference and

validation datasets.

2) Mean squared error, MSE (one predictor, two or more datasets): 𝜀̂ is calculated

as the mean of the squared errors between the performance measures (e.g.,

Prediction, Recall, ROC-AUC) by training and testing a predictor with a

reference dataset DSR (training data TDSR, testing TTDSR) and validating it

using one or more independent dataset DSi (consisting of testing data TTDSi

only). The validation performance relative to different datasets is measure as:

Chapter 3

 74

(3.5)

𝜀̂ = 𝑀𝑆𝐸(�̂�) =
1

𝑛
∑(𝒫𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝐷𝑆𝑅

− 𝒫𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛,𝐷𝑆𝑖
)

2
=

𝑁

𝑖=1

=
1

𝑛
∑(�̂�𝐷𝑆𝑅

− �̂�𝐷𝑆𝑖
)

2
𝑁

𝑖=1

where 𝒫𝐷𝑆𝑅
 is the performance achieved by training and testing the predictor

with DSR, while 𝒫𝐷𝑆𝑖
 is the performance obtained by training the predictor

with DSR and testing/validating it with DSi. The advantage of computing 𝜀̂ as

the MSE stands in the fact that it provides a better estimation, as we can use

several validation datasets, and in the fact that MSE can be seen as a risk

function, whose value can be interpreted as the risk of using the specific

predictor under analysis trained with the generated dataset DSR.

3) Kendall’s tau distance (two or more predictors, two datasets): if two or more

failure prediction systems are installed on a single target system, testing and

validating the predictors with different datasets may result in different

rankings, according to a given performance metric. In such scenario, if the

rankings do not change when varying datasets then one can have more

confidence on the performance values of each predictor. Hence, 𝜀̂ is

calculated as the Kendall’s tau distance by computing the pairwise

disagreements between two ranking lists, the first consisting of the

performance of several predictors trained and tested using a single reference

dataset DSR, and the second obtained by validating their performance using

one different dataset DSV. In particular, this distance is calculated as:

(3.6)

𝐾(𝜏1, 𝜏2) = ∑ �̅�𝑖,𝑗(
(𝑖,𝑗)𝜖𝑃

𝜏1, 𝜏2)

𝑃 = 𝑠𝑒𝑡 𝑜𝑓 𝑢𝑛𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝜏1 𝑎𝑛𝑑 𝜏2

𝐾𝑖,𝑗(𝜏1, 𝜏2) = 0 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝜏1 𝑎𝑛𝑑 𝜏2

𝐾𝑖,𝑗(𝜏1, 𝜏2) = 1 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑛 𝜏1 𝑎𝑛𝑑 𝜏2

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡𝑠 𝜏1 𝑎𝑛𝑑 𝜏2

(min 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)0 ≤ 𝐾(𝜏1, 𝜏2) ≤
𝑛(𝑛 − 1)

2
 (max 𝑑𝑖𝑠𝑎𝑔𝑟.)

We can then define the normalized Kendall’s tau distance as:

(3.7) �̿�(𝜏1, 𝜏2) = 2
∑ �̅�𝑖,𝑗((𝑖,𝑗)𝜖𝑃 𝜏1, 𝜏2)

𝑛(𝑛 − 1)
 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Generating failure data by Software Fault Injection

75

with:

(3.8)

(min 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡) 0 ≤ �̿�(𝜏1, 𝜏2) ≤ 1 (max 𝑑𝑖𝑠𝑎𝑔𝑟.)

or

(max 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡) 0 ≤ 1 − �̿�(𝜏1, 𝜏2) ≤ 1 (min 𝑑𝑖𝑠𝑎𝑔𝑟.)

The leading idea of using the Kendall’s tau distance to estimate the accuracy

of synthetic failure data stands in the fact that the effects on several

independent failure prediction models must be the same (minimum

disagreement). Also, the Kendall’s tau distance can be used together with the

other measures defined previously, when several different failure prediction

models and several independent datasets are available. In fact, if the

prediction models are not ordered in the same way over different datasets

then the used datasets may be inducing some variation, which reduces the

confidence in the accuracy of generated failure data, resulting also in a

reduction of other weak accuracy estimations (e.g., the MSE or the relative

error).

3.6 Case Study: The impact of the time dimension in
failure prediction

To demonstrate the effectiveness of the proposed approach, in this case study we

make use of synthetic failure data to assess the performance of a prediction model

that implements a novel technique for improving the failure prediction task (Ivano

Irrera, Pereira, and Vieira 2013). In practice, the proposed technique endows a

prediction model to take into account the fact that data are made of time series,

being thus trained considering the temporal order of the collected data samples.

The motivation for such technique grounds in the fact that systems overlooking the

temporal ordering of sequential data can actually suffer from poor prediction

performance (Dietterich 2002), as existing machine learning systems using time

series or sequences of events build prediction models based on the hypothesis that

data samples are independent (e.g., classifiers), resulting in a loss of information10. The

prediction model used for the analysis is a Support Vector Machine (Cortes and

Vapnik 1995) and the technique for including the time dimension in the prediciton

task is called Sliding Window.

10 Models explicitly taking into account the temporal ordering of data, as for instance

regression-based models (see Section 2.2.2), are an exception.

Chapter 3

 76

 The Sliding Window technique 3.6.1

Taking a predictor trained with a given dataset (as defined in Section 3.4), the output

of a predictor y(t) at time t is dependent on the input vectors (or variables) v(t)

relative to time t. Applying a sliding window to the dataset corresponds to making

the output of the predictor y(t) dependent on w past time instants (w≥1), namely

(v(t), v(t-1), v(t-2), …, v(t-w-1)). Therefore, a predictor trained with windowed data

performs predictions taking into account such ordering.

As defined in Section 3.4, a dataset is composed of n different variables v = <v1, v2, …,

vn>, and each sample is labeled according to the failure prediction model presented

in Section 3.2.5. In particular, given t as the time instant, vi(t) is a real number

corresponding to the value of variable vi at the time t, a dataset sample is a tuple:

(3.9) <v1(t), v2(t), …, vn(t), l(t)>

with an associated label l(t)ϵ{0,1}. Applying a sliding window of width w>1 to the

dataset sample means that the label l(t) will depend on w>1 values of each variable

vi, in particular the value at time t and w-1 past values:

(3.10)

<v1(t), v1(t-1), v1(t-2), ..., v1(t-w),

v2(t), v2(t-1), v2(t-2), ..., v2(t-w),

…,

vn(t), vn(t-1), vn(t-2), ..., vn(t-w), l(t)>

 Therefore, the sliding window transforms the data sample from a vector of n

components into a vector with w*n components, to which a label is associated. Note

that the labeling does not change when using a sliding window, i.e., l(t) refers to the

most recent time instant t. In fact, the failure event to predict at time t depends on

the more recent values of the variables (relative to time t) and past values (in this

case, values relative to the times t-1, t-2, …, t-w).

Considering a dataset composed as shown in equation (3.10), and the first time

instant identified as t=1 and a window w, the first time instant relative to the

transformed dataset is t=w. In fact, if the first data sample is t=1 then data samples

relative to t=0, t=-1, t=-2, …, t=-w+1 are not defined. Figure 3.7 shows an example of

applying the sliding window technique to a dataset made of three features x1, x2 and

x3, using a window with width w=2. In particular, Figure 3.7 (b) shows that the

technique cannot be applied to the time instant t=1, as xi(t-1)|t=1=xi(1-1)=xi(0) are not

defined. Hence, the datasets obtained by applying the sliding window technique

start from the time instant w (in the example, t=2).

Generating failure data by Software Fault Injection

77

Figure 3.8 helps visualizing how the temporal ordering of data samples influences

the failure prediction task. The label relative to the time instant t, originally

dependent on the value of the variable v (pool of non-paged bytes, in the figure) at time

t only (Figure 3.8 (a), relative to w=1 time instant), is then related to w past variable

values (Figure 3.8 (b), relative to w>1 time instants), which does not change the value

of the label l(t).

It is important to emphasize that the sliding window must be applied both to

training datasets and to testing datasets, as the prediction task must be applied to the

same data features.

(a) (b)

Figure 3.7 – Example of application of a sliding window with width w=2.

(a) w=1 (b) w>1

Figure 3.8 –The temporal ordering of data in failure prediction.

Chapter 3

 78

 Definitions and set-up 3.6.2

The first step of the data generation process includes identifying the failures to be

predicted, building failure detectors, selecting the variables to characterize the

behavior of the system (that will compose the datasets), and defining the workloads

to be used and the faults to be injected. Note that, although the choices regarding the

workload and the failure modes considered (among others aspects) in the present

case study may not fit many real world scenarios, they do serve for demonstrating

the effectiveness of the proposed approach.

The case study is based on an environment that includes a Windows XP SP3

machine (the target system), installed on a virtual machine running on top of a

VMWare vSphere server. A controller machine is in charge of controlling the

experiments and analyzing the failure data coming from the system. The

configurations of the machines is as follows:

1) Machine #1 (target): Intel i5-650@3.60GHz machine, 8GB RAM, running a

Windows XP OS (SP3) in a VMWare vSphere server based on ESXi v5.0.

Running the target system as a virtual machine on a VMWare vSphere server

(Frappier 2014) gave us the possibility of saving the state of the system at the

beginning of the fault injection campaign, and restoring that saved state at

the end of each run. This check-pointing functionality copies the

configuration of the virtual machine, as well as the data contained in the

virtualized storage disk and its running state (e.g., state and data of the

processes in execution, values contained in the CPU registries, etc.).

2) Machine #2 (controller): Intel i5-650@3.60GHz machine, 8GB RAM, running

a Windows XP OS (SP3), used to: (a) control the experiments (start/stop the

experiments), (b) remotely command and control the fault injection tool, (c)

force the reboot of the machines in case of failures (including in hanging

situations), (d) collect the data and store them in a Microsoft SQL Server 2008,

and (e) analyze data.

The libSVM libraries implement the SVM predictor (Chang and Lin 2011) on top of

which we implemented the sliding window by wrapping the libSVM libraries using

MATLAB scripting to feed the SVM with data windowed according to the approach

presented in the previous section.

Regarding the failures to predict, we empirically focused on crashes and hangs,

which are two failure modes frequently observed in the Windows XP OS (“Support -

Windows Help” 2015). Making a correspondence to the C.R.A.S.H. scale (Koopman

et al. 1997), a system crash corresponds to the OS becoming corrupted and the

machine crashes or reboots, while a system hang corresponds to the OS becoming

unresponsive and needing to be terminated by force.

Generating failure data by Software Fault Injection

79

A failure detector able to detect the occurrence of the two failure modes mentioned

above was implemented. In practice, the detector continuously monitors the target

system to detect failures in the following way:

1) a crash is detected when the system does not respond to a ping for a certain

time Tmax_ping. The failure time TF is obtained by considering the first time

instant in which the system became unresponsive;

2) a hang is detected if the target system responds to a ping, but it hangs on

executing a given set of operations. Again, the failure time TF is obtained by

considering the first time instant in which the system became unresponsive,

identified by the time instant when the first not executed operations were

sent to the system.

The target system runs two workloads, namely the WinRAR application (WKL1)

(RAR Lab), compressing a file using the RAR algorithm with the low compression

option, and the COSBI OpenSourceMark computer benchmarking suite (WKL2)

(“COSBI OpenSourceMark”), a more complex workload that includes computation

and input/output intensive tests, compression algorithms, disk and memory

accesses, etc. (we consider that these workloads include generic operations that

computer systems perform frequently, being thus adequate for the present case

study). The combination <Workload, Failure mode> allows defining four different

scenarios for the analysis: <WKL1, Crash>, <WKL1, Hang>, <WKL2, Crash>, and

<WKL2, Hang>.

We adopted a Windows-based software fault injection tool implemented at

University of Coimbra following the G-SWFIT recommendations (J. A. Duraes and

Madeira 2006) for the fault injection task. Such tool is able to inject software faults at

machine-code level both in binary files and in running processes (user-mode only).

However, due to the fact that the Windows OS includes a protection for avoiding

certain system files from being changed, the fault injector was limited to inject

software faults in running processes of the operating system, but faults were injected

before starting the collection of data, thus simulating residual faults from the

perspective of the data collection process.

The faultload is based on the fault types defined in (J. A. Duraes and Madeira 2006)

and previously presented in Section 3.2.2. Based on previous experience, we focused

the fault injection on the code of the svchost.exe process and of the linked dynamic

library kernel32.dll (containing functions for handling the OS memory usage),

which are key resources of the Windows XP OS (e-Testing Labs 2001; Kalakech et al.

2015; Kalyanakrishnam, Kalbarczyk, and Iyer 1999; “Support - Windows Help” 2015)

The fault injection tool was able to automatically generate thousands of code mutants

by analyzing the fault locations matching a specific pattern depending on the type of

software fault, being each fault identified by the tuple <fault type, fault location, code

mutant>. In order to design a feasible experiment, a subset of the faults was selected

based on the relevance of their locations (details on the number of faults injected and

Chapter 3

 80

their impact are presented in the next subsection). For this, we used a profiling tool

(Luke Stackwalker), which helped identifying the functions and modules executed

along several runs of the workloads considered. As previously discussed, the

selection of the most executed modules of the target system does not invalidate the

representativeness of the injected software faults.

Regarding the variables to monitor, we considered at set of variables reflecting the

state of the operating system and the usage of the hardware resources, as the

symptoms of the failures considered may manifest at the OS and at lower levels (e.g.,

an increase in the number of context switches/s). In practice, we monitored 233

numerical variables, at the sample rate of one value per second, using the Logman

tool that is included in Windows OSs family, and afterwards conducted a three-step

feature selection to reduce the number of variables.

In the first step we eliminated from the 233 monitored variables the ones that have a

constant or null value in all the runs. In the second step the variables were correlated

using a classic linear correlation metric (Pearson correlation coefficient), filtering out

variables having a correlation greater than 0.9 between each other. In the third step a

classical wrapper approach with backward elimination was applied to the set of

variables that resulted from the previous step (feature selection). A SVM was used to

validate the selection, taking its ROC-AUC as reference for characterizing the quality

of the variable set and a k-fold cross validation (k=5) for avoiding results biasing.

The resulting set consists of 25 variables (out of the initial 233) for each scenario

<WKL, Failure> and for each couple of values (∆tl, ∆tp) considered in our analysis.

An excerpt of 10 out of the 25 variables for <WKL1, Crash> and (∆tl, ∆tp)=(10s, 5s) is

shown in Table 3.2.

Table 3.2 - Selected variables, for <WKL#1, Crash>

and (∆tl, ∆tp)=(10s, 5s) (excerpt)

Variable

ID
Variable name

Monitored

component

123 Pool Nonpaged Allocs Memory

117 Page Faults/sec Memory

201 C2 Transitions/sec Processor

209 Exception Dispatches/sec System

220 System Calls/sec System

156 Current Disk Queue Length PhysicalDisk

94 Avg. Disk sec/Transfer LogicalDisk

139 Semaphores Objects

182 Pool Nonpaged Bytes Process

39 Sync Data Maps/sec Cache

Generating failure data by Software Fault Injection

81

 Data generation, dataset building and failure predictor 3.6.3
training

Each workload was executed 3500 times (500 GR + 3000 FIR), with a maximum

execution time of TMAX=180s each. Table 3.3 summarizes the OS failures observed

during the fault injection campaign. The failure data was collected in less than one

month, with a total of 195 failures (121 when running WKL1 and 74 when running

WKL2), being OS hang the most frequent type of failure.

In each fault injection run, a single fault was injected approximately 70 seconds after

starting the execution of the workload (this value was defined based on the analysis

of the ramp up time of the tested configurations). If a failure occurs within the time

TMAX (with a 10% time tolerance to consider potential delays due to the system

scheduling), the run is labeled as a Failure Run, otherwise the run is labeled as a Non-

Failure Run (both are Fault Injection Runs).

As shown in Table 3.3, failures were observed in a small subset of the fault injection

runs. This is expectable, as there is no guarantee that the locations chosen for the

injection are actually executed (J. A. Duraes and Madeira 2006). We must highlight

the fact that the failure occurrence is in average 2%, which is similar to the activation

rate obtained by other authors that used the G-SWFIT technique to inject faults in

different systems (e.g., (Roberto Natella et al. 2013)). This gives us some confidence

on the representativeness of the types of faults injected.

The failure prediction parameters used in this case study were ∆tl=[20s, 50s] and

∆tp=[5s, 25s], chosen according to the workload execution time. In this context we

used several values for ∆tl and ∆tp, while fixed ∆te=5000 samples, a value that keeps

low the time for training a prediction model (found experimentally). The warning

interval ∆tw, that can be identified based on the performance of the failure

predictors, is not considered in our case study for the sake of simplicity.

The failure data generated was used to train the SVM prediction model, using

several values for the sliding window, namely w={2, 3, 4, 7, 10} seconds. The training

of the SVM failure prediction model comprised the optimization of a set of

parameters, among which the most important are γ (kernel function parameter) and

C (cost of allowing training errors) (Cortes and Vapnik 1995). The parameters

optimization was performed in two steps, making use of the ROC-AUC prediction

Table 3.3 - Failures generated

Workload
Golden

Runs

Fault

Injection Runs

Failures detected

Total %
System

Crash %

System

Hang %

WKL1 500 3000 121 (4.03%) 46 (1.53%) 75 (2.5%)

WKL2 500 3000 74 (2.47%) 6 (0.2%) 68 (2.27%)

Chapter 3

 82

performance metric (see Section 2.2.3), and applying the k-fold cross validation with

k=5 for validating the generalization of the prediction results. In the first step, we

performed a grid search on intervals of values that we experimentally defined for

each SVM hyper-parameter. Then the optimal (γ, C) values found were used as a

starting value for a fine-search (second step), which consisted in solving a non-linear

minimization problem through the use of a gradient descend method. Table 3.4

summarizes the parameters of the prediction analysis, as discussed before.

 Results and discussion 3.6.4

The performance of the predictor is measured in terms of ROC-AUC, F-Measure,

Precision and Recall (see Section 2.2.3). The relative cost of using windowing in

terms of the predictor training time (excluding the feature selection and parameters

optimization time) is analyzed too. Please note that the optimal threshold of the

SVM, relative to its ROC cut-off point, is used to compute the F-Measure, Precision

and Recall measures (for details about prediction thresholds, see Section 2.2.3). The

optimal threshold depends on the scenario, the values (∆tl, ∆tp), the features selected,

and the parameter w.

Figure 3.9 shows the performance of the SVM classifier for each scenario <WKL,

Failure>, without the application of the sliding window (w=1) and also using

windows of 2, 3, 4, 7, and 10 seconds. Each subplot in the figure represents the

results for each couple (∆tl, ∆tp), using box-and-whiskers diagrams, representing the

minimum, lower quartile, median, upper quartile and maximum performance

values obtained over the different folds.

The use of the time dimension improves the prediction in scenario <WKL1, Crash>

(Figure 3.9 (a)), both in terms of the ROC-AUC and the F-Measure, for any couple of

values (∆tl, ∆tp). In addition, the windowing also seems to reduce the variation of the

ROC-AUC (revealed by the cross validation). In scenario <WKL2, Hang> (Figure 3.9

Table 3.4 - The parameters of the analysis

Parameter Values

Failure Modes Crashes, Hangs

Workloads WKL1, WKL2

Predictor SVM (Gaussian kernel)

Variable selection Backward elimination + wrapper approach

Predictor Optimization Grid search (gross) + Deepest descend (fine)

(γ, C) (Grid search) γ= [2-10,1], C=[2-1, 27]

∆tl (Failure prediction) 20, 30, 40, 50 s

∆tp (Failure prediction) 5, 10, 15, 20, 25 s

Window size (w) 2,3,4,7,10 s

Results validation 5-folds cross validation

Generating failure data by Software Fault Injection

83

(b)) the performance also improves, but only for a sliding window larger than 4

seconds. This may be due to the fact that t-4 brings more information to the

prediction than the time instants t-1, t-2 and t-3, or to the need to tuning the

prediction parameters (∆tl, ∆tp). In the remaining scenarios <WKL2, Crash> and

<WKL1, Hang> windowing does not improve the performance along w. This is an

acceptable behavior, as it gets harder for the SVM to find the optimal hyper-plane to

correctly classify the data. In fact, the dimension of the features grows from 25 to

w*25 (up to 250 features, in our case). Nonetheless, in all the scenarios it can be

observed that the performance when using the sliding window tends to increase, as

the window size w gets larger. This is due to additional information given to the

classifier, but more scenarios need to be explored in order to confirm such trend.

(a) Scenario <WKL1, Crash> (b) Scenario <WKL1, Hang>

(c) Scenario <WKL2, Crash> (d) Scenario <WKL2, Hang>

Figure 3.9 - The impact of windowing on ROC-AUC

Chapter 3

 84

Taking as example the results in Figure 3.9 (b) and (d) (thus fixing on workload

WKL2), we can see that the sliding window improves the predictor performance in

case of Hangs (d), while generally degrading the prediction when trying to predict

Crashes (b). Moreover, comparing the cases (a) with (b) and (c) with (d) in Figure 3.9,

we can note that the prediction performance is generally higher when predicting

Crash failures. This last analysis highlights the fact that the performance of a

predictor depends on many factors, including the nature of the failures to be

predicted and the workload.

Figure 3.10 shows an insight on the growth of the computational cost, i.e., the time

needed for training the SVM, with respect to the case without windowing. The

growth is logarithmic with the number of features, and the training time can reach

an increase of 6 times. The logarithmic growth seems consistent with the SMO

(Sequential Minimization Optimization Method) method used in libSVM (Chang

and Lin 2011). Nevertheless, the use of a sliding window seems a viable approach to

improve the prediction of software failures.

 Accuracy analysis 3.6.5

In this case study we estimated the accuracy of the synthetic failure data using the

weak accuracy estimation analysis, as we are interested on understanding the

impact that the generated data has on the performance of the failure prediction (such

estimation metrics can give some confidence on the use of failure data to train failure

predictors for working in a real operational scenario).

Figure 3.10 - The learning time increment ratio <WKL2, Hang>

Generating failure data by Software Fault Injection

85

For sake of simplicity, we considered only the following configurations of the

prediction model:

 FPA1, SVM classifier with no sliding window (w=1s)

 FPA2, SVM classifier with w=2s

 FPA3, SVM classifier with w=3s

 FPA4, SVM classifier with w=4s

For performing the analysis, we used the dataset from the previous section as the

reference dataset (here referred to as DS1), and generated a second dataset

(validation dataset DS2) by injecting faults in a different system module used by the

svchost.exe process, namely ntdll.dll that contains the OS kernel functions. The

settings for the dataset generation are similar to the ones used for DS1, in particular

in what concerns the faultload that included the same fault types and the same

number of faults for each type. We computed and analyzed the ROC-AUC

performance measure of the prediction model for the four scenarios <WKL, Failure

Mode>, considering a fixed (∆tl, ∆tp)=(30s, 15s), and conducted a 5-fold cross

validation.

Table 3.5 shows the performance results (ROC-AUC) for the scenarios <WKL1,

Crash> and <WKL2, Crash>, while Table 3.6 shows the results for <WKL1, Hang> and

<WKL2, Hang>. Based on such results, we estimated the mean squared error MSE*

and the relative performance error ε* of each predictor. In practice, we computed

such estimation measures based on the mean of the performance measure µ (thus εμ*

and MSEμ*) and their median value M (thus εM* and MSEM*) applied to the results

obtained from the 5-fold cross validation. The gray tones in the tables are related to

the predictor’s ROC-AUC performance, with higher performances associated to

darker gray tones11.

11 Note that results in the tables show that the predictors that achieved the highest

performance were FPA2 and FPA4, again confirming that the use of the sliding window can

improve the quality of failure prediction.

Chapter 3

 86

Table 3.5 - ROC-AUC and synthetization error (a, crash)

 (a) Crash

 WKL1 WKL2

 FPA1 FPA2 FPA3 FPA4 FPA1 FPA2 FPA3 FPA4

Performance

DS1

0,6852 0,8137 0,6713 0,9024 0,9391 0,9977 0,9461 0,9878

0,9427 0,9719 0,9560 0,9909 0,9778 0,9998 0,9859 0,8919

0,7374 0,9909 0,7283 0,8975 0,9331 0,9756 0,9430 0,7958

0,9518 0,9708 0,9652 0,9965 0,9356 0,9996 0,9576 0,9893

0,7425 0,9898 0,7375 0,9897 0,7985 0,9979 0,8691 0,8854

μ(Perf.) 0,8119 0,9474 0,8117 0,9554 0,9168 0,9941 0,9403 0,9100

M(Perf.) 0,7425 0,9719 0,7375 0,9897 0,9356 0,9979 0,9461 0,8919

Performance

DS2

0,9223 0,9841 0,9073 0,9719 0,9341 0,9867 0,9432 0,9878

0,9662 0,9137 0,9847 0,9953 0,9778 0,9978 0,8691 0,9919

0,5665 0,9262 0,5284 0,9971 0,8433 0,9756 0,9461 0,9358

0,8501 0,9797 0,8482 0,9953 0,9354 0,8979 0,9076 0,9893

0,3649 0,9876 0,6675 0,9884 0,7885 0,9981 0,9891 0,9854

μ(Perf.) 0,7340 0,9583 0,7872 0,9896 0,8958 0,9712 0,9280 0,9780

M(Perf.) 0,8501 0,9797 0,8482 0,9953 0,9341 0,9867 0,9432 0,9878

 Weak accuracy estimation

𝟏 − �̿�𝝁 0,833 (1 - 1/6) 0,5 (1 - 3/6)

MSEμ* 0,039 0,005 0,012 0,017 0,011 0,012 0,006 0,034

εμ* 0,106 0,011 0,031 0,035 0,023 0,024 0,013 0,070

𝟏 − �̿�𝑴 1 (1 - 0) 0,333 (1 - 4/6)

MSEM* 0,054 0,004 0,055 0,003 0,001 0,006 0,002 0,048

εM* 0,127 0,008 0,131 0,006 0,002 0,011 0,003 0,097

Generating failure data by Software Fault Injection

87

Table 3.6 - ROC-AUC and synthetization error (b, hang)

 (b) Hang

 WKL1 WKL2

 FPA1 FPA2 FPA3 FPA4 FPA1 FPA2 FPA3 FPA4

Performance

DS1

0,7226 0,9881 0,8060 0,9147 0,8541 0,9943 0,8914 0,9768

0,6999 0,8557 0,6529 0,7987 0,6826 0,9953 0,6925 0,9533

0,9369 0,9967 0,9400 0,9972 0,6573 0,9889 0,6902 0,9502

0,8926 0,9886 0,9329 0,9590 0,6356 0,8598 0,6203 0,8255

0,8823 0,9959 0,8703 0,9639 0,7069 0,9943 0,7178 0,8794

μ(Perf.) 0,8269 0,9650 0,8404 0,9267 0,7073 0,9665 0,7224 0,9170

M(Perf.) 0,8823 0,9886 0,8703 0,9590 0,6826 0,9943 0,6925 0,9502

Performance

DS2

0,7934 0,5158 0,8389 0,7993 0,9391 0,8414 0,8066 0,8923

0,5829 0,9629 0,6454 0,8659 0,9778 0,9787 0,7318 0,8753

0,7740 0,9645 0,7750 0,8926 0,9331 0,9211 0,8303 0,8988

0,9282 0,9967 0,9403 0,9879 0,9356 0,9875 0,7538 0,8976

0,6901 0,6773 0,6875 0,7594 0,7985 0,9385 0,7455 0,7571

μ(Perf.) 0,7537 0,8234 0,7774 0,8610 0,9168 0,9334 0,7736 0,8642

M(Perf.) 0,7740 0,9629 0,7750 0,8659 0,9356 0,9385 0,7538 0,8923

 Weak accuracy estimation

𝟏 − �̿�𝝁 0,833 (1 - 1/6) 0,666 (1 - 2/6)

MSEμ* 0,037 0,071 0,032 0,033 0,105 0,017 0,026 0,026

εμ* 0,097 0,172 0,081 0,076 0,229 0,035 0,066 0,061

𝟏 − �̿�𝑴 0,833 (1 - 1/6) 0,666 (1 - 2/6)

MSEM* 0,054 0,013 0,048 0,047 0,127 0,028 0,031 0,029

εM* 0,140 0,027 0,123 0,108 0,271 0,060 0,081 0,065

Chapter 3

 88

Considering the four scenarios, we can see that the mean squared error MSEµ* is

between 0.5% and 3%, with outliers 7% and 10%, for the cases (FPA2, WKL1, Hang)

and (FPA1, WKL2, Hang) (corresponding to the use of an SVM without sliding

window, or with a very small window with, also confirming the results from the

previous section). The values of MSEM* (thus relative to the median ROC-AUC) are

very similar to the ones calculated on the mean, varying between 0.4% and 4%.

However, we observed that the outlier MSEµ*=10% corresponds to MSEM*=12%, as

one of the ROC-AUC values in that case (FPA2, WKL1, Hang) is 0.5158. Although it

may seem better to use the MSEM* and the median of the values, this choice may

hide situations in which a failure prediction performs very poorly. On the other

hand, the estimation of the relative performance error εμ* and εM* showed values

between 1% and 10% in terms of ROC-AUC, with two outliers of about 17%

(corresponding to MSEµ*=10% by (FPA2, WKL1, Hang)) and 22% (corresponding to

MSEµ*=10% by (FPA1, WKL2, Hang)).

A closer look to the results shows that the proposed metrics recognize a similarity

between the ROC-AUC performance using DS1 and DS2, which may reflect a

similarity of the datasets DS1 and DS2. Moreover, the behavior of both MSE and ε is

similar in all the analyzed scenarios.

By analyzing the normalized Kendall’s tau distance K̿μ (relative to εμ* values) and K̿M

(relative to εM* values) we can observe that both the average and median

performance values lead to a variation in the order of the ranking of the FPAs of at

most one inversion in the WKL1 scenario (e.g., in the Crash case (a), from <FPA2,

FPA3, FPA1, FPA4> to <FPA4, FPA2, FPA3, FPA1>, according to the average of the

performance values µ only), while between two and four inversions in the WKL2

scenario (e.g., in the Crash case (a), from <FPA2, FPA3, FPA1, FPA4> to <FPA4, FPA2,

FPA3, FPA1>). This means that the data generated using WKL1 causes a lower

variation in the models’ prediction performance (between 0.5% and 4% using the

MSEµ*), suggesting a good accuracy. On the other hand, for WKL2 the Kendall’s tau

distance reflects a quite high variation of the prediction models, suggesting a low

accuracy, a result that is confirmed by the values of MSE and ε, as shown before.

The results obtained allow us to conclude that the proposed approach is able to

generate accurate failure data, however the workload used may have non-negligible

effects on the failure data accuracy. Moreover, the joint use of the proposed metrics

allows different degrees of confidence for the failure data generated in the different

scenarios. In particular, MSE* and the ε* can be considered valid metrics for

estimating the accuracy of synthetic failure prediction data, while the tau distance

provides a validation of such metrics, giving a confidence to the estimation values

proportional to 1 − 𝐾.

Generating failure data by Software Fault Injection

89

3.7 Final remarks

This chapter presented a practical approach for generating failure data for training

and testing failure prediction models on concrete system installations, based on the

use of software fault injection. The idea is that injecting faults on a particular system

increases the probability of the system to fail, thus accelerating the collection of data,

and that failure prediction models can be trained using those data. The fault injection

technique adopted is the G-SWFIT technique that allows the emulation of residual

software faults, a necessary condition for generating accurate failure data, i.e., data

similar to data that would be collected from the same system due to the activation of

an existing residual (real) fault.

The chapter presented guidelines for the implementation of the approach, which is

based on four phases. The first is the definitions phase, in which one must define the

faults to inject, the workload (real, realistic or synthetic) to be executed during the

fault injection campaign, as well as the variables to be collected from the target

system and the characteristics to take into account when predicting failures. The

second phase is the failure data collection, in which one must implement an

experimental setup to collect data. The third phase defines the rules for organizing

the collected data into datasets to be used for training and testing failure prediction

models. The fourth and last phase presents the guidelines for performing the

analysis of the accuracy of the generated failure data.

We demonstrated the effectiveness of the approach by analyzing the results obtained

in a case study in which an SVM-based failure prediction model was used to predict

failures in a Windows XP OS system, running on a virtual machine hosted by a

VMWare vSphere hypervisor. In particular, we assess the performance of a

technique for improving the prediction performance that takes into account the

temporal ordering of the data samples (using a sliding window). We were able to

cause 191 failures (crashes and hangs), running two different workloads (a simple

and a more complex one) 3500 times each. Results show that the use of a sliding

window is a viable approach to improve the prediction of software failures.

Moreover, we found that different workloads and failure modes influence the

performance results. Finally, the case study demonstrated that we were able to train,

test and study the behavior of the failure prediction model in four different scenarios

(considering two different failure modes occurring when using two different

workloads) in a short time interval.

The chapter also presented an estimation of the accuracy of the generated synthetic

failure data using weak accuracy estimation metrics based on the performance

results in four cases. Results show that the prediction performance of models trained

with data generated using the simplest workload present a low variation when

tested on independent datasets, which is an indication of good accuracy. On the other

hand, the more complex workload seems to cause a higher variation of the

prediction models, thus suggesting a low accuracy of the failure data generated in

Chapter 3

 90

that scenario. Such result shows that the proposed approach can be used to generate

accurate failure data and that the joint use of the proposed metrics allows getting

some degree of confidence on the failure data generated in different scenarios. On

the other side, results also showed a margin for the improvement of the quality of

generated failure data, which can be achieved by using the proposed measures to

study the conditions under which more accurate failure data can be generated.

It must also be observed that the simpler environment provided by the use of

virtualization in the case study allowed a much faster data collection, as the system

could be restored after the injection of software faults. However, an analysis of the

impact of virtualization technology on the generation of failure data is needed in

order to better understand the potential of use of such technology. This is precisely

the goal of Chapter 4.

 91

Chapter 4
Virtualization as a

support for the
generation of failure data

Although the solution proposed in Chapter 3 should be applied while running the

target system, injecting faults in a real system has the obvious drawback of causing

unacceptable failures during operation. A potential solution is to generate the failure

data in an environment that mimics the behavior of the target system and in which

software faults can be safely injected. However, although the use of an alternative

machine/environment can be a valid solution, it is not feasible in many situations

(e.g., due to the additional costs of buying new hardware, the difficulty of restoring

the target system’s state during the experiments, etc.).

In this chapter we propose and assess the use of virtualization as a sandboxing

solution for supporting the process of generating failure-related data by injecting

faults in a virtualized copy of the system. Virtualization technology is a solution that

provides an easily updatable and disposable environment, where faults can be safely

injected and from where failure data can be collected, while allowing running

multiple copies of a system (thus reducing the time needed for the failure data

generation). In addition to this, the virtualization solutions available nowadays (see

(Chiueh and Brook 2005)) also offer features like saving and restoring the system

state by using native check-pointing and restoring functionalities, thus facilitating

the removal of the injected faults, as already shown in the case study presented in

Chapter 3.

A great number of commercial systems are nowadays based on virtualized

environments (e.g., virtualized servers in server consolidation frameworks,

enterprise virtualization solutions providing user virtualized resources, clouds). In

Chapter 4

 92

fact, in the last decade there was a growing tendency for software systems to be run

in virtualized environments, as these permit the reduction of the cost associated with

buying new hardware, the reallocation of resources (e.g., storage, computational

power), and fault tolerance based on the distribution of nodes (e.g., (Fu 2009;

Nagarajan et al. 2007; Polze, Troger, and Salfner 2011; Boyd and Dasgupta 2002;

Machida, Kawato, and Maeno 2010)). In particular, many systems are built on top of

cloud technology, which is mainly based on virtualization (Rimal, Choi, and Lumb

2009), including secure and dependable systems (Bessani et al. 2013; Gurumurthy et

al. 2015; Jain and Singh 2014; Magalhaes and Moura Silva 2013). Moreover, several

works addressing the problem of failure prediction in cloud systems are present in

literature (Chen, Lu, and Pattabiraman 2014; Gunawi et al. 2011; Otsuka et al. 2014;

Sonoda et al. 2012; Yukihiro Watanabe and Matsumoto 2014). For these reasons, we

believe that using virtualized environments for generating failure data is a solution

that should be studied, particularly in what regards:

 The impact of the virtualization environment on the generated failure data:

failure data collected from a virtualized environment may significantly differ

from data generated on the original system, as data depend on the behavior

of the underlying software and hardware system’s layers. Besides leading to

the same types of failures, it is important that the faults injected produce

similar failure data patterns that can equivalently be consumed by failure

prediction systems;

 Solutions for replicating the target system into the virtualization

environment: several solutions may be adopted (e.g., replicating the OS in

the virtualized system, use middleware solutions). As this is a too vast

problem, it is out of the scope of this work. Thus, we assume that the original

target system can be virtualized (i.e., the system can be replicated in a

virtualized environment) or that it is a virtualized system itself. We believe

that such assumption is acceptable for this first study on the impact of using

virtualization to generate failure data by fault injection.

We propose a solution for computing the similarity of failure data generated on a

virtualized copy of a target system with failure data generated on the original

system. Such approach should be used when adopting virtualization as a

sandboxing solution for the generation of such data. The approach is based on the

identification of failure symptoms (i.e., patterns that a set of data show before a

failure occurs (Felix Salfner, Lenk, and Malek 2010)) presented by the monitored

variables, their correlation with the failures observed in both the original and

virtualized systems, and the comparison of the correlation values (of the individual

variables) gathered from the different environments by using statistical testing

methods. In practice, the approach proposed enables studying the impact of the

virtualization layer in order to understand the possibility of using virtualization for

generating synthetic failure data adequate for training and testing the failure

Virtualization as a support for the generation of failure data

93

prediction systems that will run on the original target system (i.e., is the data generated

in a virtualized copy of a system adequate for training failure prediction mechanisms to be

run in the original system?). It is worth noting that, although focused on answering

such research question, the proposed approach can be also considered a solution for

the direct estimation of failure data accuracy problem discussed in Chapter 3.

The chapter is organized as follows. Section 4.1 overviews the approach for assessing

the similarity of failure data. Sections 4.2, 4.3, 4.4 and 4.5 present the phases of the

approach. In particular, Section 4.2 describes the generation of failure data by using

the failure generation approach proposed in Chapter 3. Section 4.3 describes the

approach for identifying failure symptoms. Section 4.4 describes the correlation of

symptoms with the failures observed, and Section 4.5 describes the assessment of the

failure data similarity, based on the use of statistical tests. A case study is presented

in Section 4.6, in which we analyze the effectiveness of our approach on failure data

collected from a Windows XP OS environment running on a physical machine and

on several virtualized environments. Finally, Section 4.7 concludes the chapter.

4.1 Overview of the approach

To assess the similarity between failure data gathered from a virtualized copy of a

system and data gathered from the original target system, we propose a four-step

approach based on the concept of failure symptoms:

1) Generating failure data in the original target system and in the virtualized

system, using the approach for failure data generation based on realistic

software fault injection presented in Chapter 3. Both systems must run under

the same conditions, i.e., using the same workload, the same failure model, and

the same faultload.

2) Identifying failure symptoms by analyzing the monitored variables (from

both the original and the virtualized copy). The proposal is to use an anomaly

detection-based method for building a normal behavior profile for each variable

using data collected during Golden Runs, and then comparing the variable’s

behavior during Failure Runs and other Golden Runs against that profile. A

variable presents a symptom if its behavior during a FIR differs from its

normal behavior profile, according to a given measure. The reasoning for

such approach is that the simplest way for detecting symptoms is by

identifying deviations from the nominal behavior. Although more complex

methods are possible, their use is not central to the present work.

3) Correlating failure symptoms with the failures observed. In particular, a

variable is said correlated to a failure if its values present some symptom

when the failure occurs and do not present any symptom during Golden

Runs. We model such situations based on the contingency table (see Section

Chapter 4

 94

2.2.3), with a True Positive corresponding to a variable presenting a symptom

when a failure is observed, and a True Negative indicating that the variable

shows no symptoms during a Golden Run. On the other hand, a variable can

be uncorrelated. In practice, we quantify the correlation of each individual

variable with respect to all the failures observed on a given system. The

correlation value of each variable with the observed failures is validated

using a k-cross validation approach (for details, Section 3.4).

4) Assessing the accuracy (or similarity) of the failure data gathered from the

two different systems, by comparing the correlation values of the individual

variables by means of statistical analysis.

We must highlight the fact that the proposed approach can also be used in the case

both systems are virtualized or non-virtualized (e.g., the comparison between

virtualized systems can be useful when one must migrate from a technology to

another, or to assess the impact that an upgrade on a virtualization technology can

have on the generated failure data).

Our approach can be formalized as follows: let Mi be the i-th machine (virtual or not)

with i=1, 2, …, |M|, hosting a system S running a workload WKLk, and let frd(Mi) be

the failure related data coming from Mi, with associated failure events F (failures) and

G (no failures, events occurring during Golden Runs). Data are made of a set of

numerical variables vi(t), i=1, 2, …, |V|, where V is the group of variables monitored

from a single machine, each variable describing one particular aspect of the system

(e.g., mutexes, allocated memory, threads running). Each variable vi(t) may present a

failure symptom relative to a failure event fk (true symptom, or True Positive), no

symptom relative to no-failure event gk (true no-symptom, True Negative), or may

present a symptom when no failure actually occurred (false symptom, or False

Positive) or no symptom when a failure occurred (false no-symptom, or False

Negative). A variable vi(t) presents a (positive) correlation C with the entire set of

occurred failures F (and the set of no-failure events G), if the value of C is

proportional to the number of true symptoms observed when a failure occurred (or

no-symptoms when no failure occurred), and inversely proportional to the number

of false symptoms when a failure does not occur (false no-symptoms when a failure

does occur).

Considering the quantity C(frd(M), F, G)12 (or just C(frd(M), F)) as the measure of the

correlation of the failure data (for the collection of variables vi) coming from machine

M with the failures occurred on such machine, we say that the failure data coming

from machines Mi and Mj, with i≠j, are similar when the correlation of each failure

dataset with the failures occurred C(frd(Mi), F) and C(frd(Mj), F), have similar values.

12 It is worth to note that the quantity C(frd(Mj), F, G) is actually a vector, as the data are made

of several variables. Nonetheless, we use such form for the sake of simplicity.

Virtualization as a support for the generation of failure data

95

The correlation measure should be considered variable-wise, thus the quantities

C(frd(M), F) of each variable vi(t), Cvi(frd(Mi), F), must have similar values on

different machines (variable-wise similarity). Hence, we say that sets of failure data

coming from different machines are similar (general similarity) if:

(4.1)

𝑆 = ∑ 𝑆𝑣(𝐶𝑣(𝑓𝑟𝑑(𝑀𝑖, 𝐹)), 𝐶𝑣(𝑓𝑟𝑑(𝑀𝑗, 𝐹)))

𝑣𝑁

𝑣=𝑣1

> 𝜆

𝑆𝑣 = {0,1}
𝑆𝜖ℝ

where S is a measure of the general similarity, Sv is a measure of the variable-wise

similarity, and λ is an acceptance value for the different sets of failure data to be

considered similar (ideally equal to the number of variables |V|).

The correlation measures (thus also the similarity measures) are validated making

use of the k-fold cross validation technique (Box, Hunter, and Hunter 2005) to ensure

that there is no dependence on a particular dataset. In practice, k different folds from

each frd(Mi) are built according to the approach presented in Section 3.4. Thus, the

similarity measures and the correlation values of each variable monitored from the

machine Mi are vectors of k components Cvi(frd(Mi)) (Box, Hunter, and Hunter 2005).

For verifying the hypothesis that failure related data coming from machines Mi and

Mj (with i≠j) are similar, the variable-wise correlation vectors Cvi(frd(Mi)) and

Cvi(frd(Mj)) must also have similar values. This condition can be verified by statistical

testing, aiming at rejecting the hypothesis that Cvi(frd(Mi)) is similar to Cvi(frd(Mj)). In

practice, equation (4.1) becomes:

(4.2)

𝑆 = ∑ 𝑆𝑣 (
𝐶𝑣

1(𝑓𝑟𝑑(𝑀𝑖)), 𝐶𝑣
2(𝑓𝑟𝑑(𝑀𝑖)), … , 𝐶𝑣

𝑘(𝑓𝑟𝑑(𝑀𝑖))

𝐶𝑣
1 (𝑓𝑟𝑑(𝑀𝑗)) , 𝐶𝑣

2 (𝑓𝑟𝑑(𝑀𝑗)) , … , 𝐶𝑣
𝑘 (𝑓𝑟𝑑(𝑀𝑗))

)

𝑣𝑁

𝑣=𝑣1

> 𝜆

𝐶𝑣
𝑘 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦𝑖𝑛𝑔 𝑡ℎ𝑒 𝐶𝑣 𝑣𝑎𝑙𝑢𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑓𝑜𝑙𝑑 𝑘

𝑆𝑣 = {0,1}
𝑆𝜖ℝ

where, for each variable v (or vi), the correlation values relative to each fold k,

Ckvi(frd(Mi)), are compared between two machines Mi and Mj. In practice, we can

state that virtualization has low impact on the data generation process if the

datasets from Mi and Mj are similar (according to equation (4.2)).

Chapter 4

 96

4.2 Phase 1: Failure data generation

The first phase is the generation of failure data by applying the approach proposed

before. We thus refer to Chapter 3 for details on such approach, presenting here only

the formalization of the generated data.

The organization here used for the datasets differs from the one in Chapter 3 in what

concerns the labeling, as presented in Figure 4.1. In particular, each variable vi from a

Fault Injection Run FIRk is associated to a Failure or a No-Failure event instead of

being associated to a set of labels. Therefore, the Golden Data is made of variables

collected when no failure occurred, thus associated to No-Failure events, while

Failure Data is made of variables collected when failures where observed.

v1 v2 v3 vn

Failure/

No failure

event

FIRk

v1(1) v2(1) v3(1) … vn(1)

Failure/

No failure

v1(2) v2(2) v3(2) … vn (2)

v1(3) v2(3) v3(3) … vn (3)

v1(4) v2(4) v3(4) … vn (4)

… … … … …

v1(k) v2(k) v3(k) … vn (k)

v1(k+1) v2(k+1) v3(k+1) … vn (k+1)

v1(k+2) v2(k+2) v3(k+2) … vn (k+2)

v1(k+3) v2(k+3) v3(k+3) … vn (k+3)

… … … … …

v1(TF) v2(TF) v3(TF) … vn (TF)

(a)

v1 v2 v3 vn

Failure/

No failure

event

 v1(GR1) v2(GR1) v3(GR1) … vn(GR1) No failure

 v1(GR2) v2(GR2) v3(GR2) … vn(GR2) No failure

Golden v1(GR3) v2(GR3) v3(GR3) … vn(GR3) No failure

Data … … … … … …

 v1(GRG) v2(GRG) v3(GRG) … vn(GRG) No failure

 F/NF

 v1(FIRf1) v2(FIRf1) v3(FIRf1) … vn(FIRf1) Failure

Failure v1(FIRf2) v2(FIRf2) v3(FIRf2) … vn(FIRf2) Failure

Data v1(FIRf3) v2(FIRf3) v3(FIRf3) … vn(FIRf3) Failure

 … … … … … …

 v1(FIRfF) v2(FIRfF) v3(FIRfF) … vn(FIRfF) Failure

(b)

Figure 4.1 - Data from a single Failure Run i (a)

and a complete (global) dataset (b)

Virtualization as a support for the generation of failure data

97

The global dataset, including all the Golden and Failure Data, is here divided in

Training or Profiling Dataset, made of a given percentage of Golden Data and used

for creating the normal behavior profile for each variable, and Testing or Analysis

Dataset, which includes the remaining Golden Data and Failure Data. In practice, a

part of the golden runs is used for building the profile, and the remaining for later

validating the correlation of the variable with the observed failures (i.e., the variable

should present no symptom in a golden run). We propose a proportion of 25% for

the Profiling Dataset and 75% for the Analysis Dataset, aiming at using more data

for the failure symptoms identification, though such percentages can be easily tuned.

Note that our approach includes the use of k-fold cross validation with a run-by-run

(or run-wise) partitioning of Golden and Failure Data, as in Chapter 3, which

permits to have k distinct Profiling and Analysis datasets.

4.3 Phase 2: Symptoms identification

To compute the correlation C for each vi over the set F in the Analysis Dataset (set of

occurred failures, caused by fault injection), we first need to identify symptoms. In

this section we propose a symptom recognition approach based on an anomaly

detection method, which should be applied to the individual variables selected for

failure prediction. In particular, we propose to build a profile p(vi) for each variable

using Golden Data from the Profiling Dataset, modeling its normal normal behavior.

The key idea is the following: if during a Failure Run the values of the variable vi fall

out-of-profile, a symptom is identified.

The profile p(vi) is created by computing the maximum and the minimum values

obtained in the runs where no faults are injected (and no failures are observed), thus

p(vi)=p(vi(t),gj), j=h1,h2,…,hr, considering only part of the golden runs. An example of

a profile is shown in Figure 4.2. The profile or model is represented by two curves,

namely the upper and lower bounds of the values of the variable seen along the

golden runs (including a tolerance value for each bound, which can be set

empirically and should take into account the variations that the values of a variable

Figure 4.2 – The profile of the “Pool of Non-Paged Bytes” variable (normalized)

Chapter 4

 98

can present along runs). The central curve represents the median values of the

variable (just for presentation purposes).

A variable vi, monitored during a given failure run r, presents a symptom if,

compared to the profile p(vi), the area between the bounds and the deviating values is

greater than a threshold Tvi (relative to each variable vi). In the example in Figure 4.3,

a software fault is injected at t=68 seconds after starting the workload execution (t=0),

and the variable values overrun the bounds at t=135 seconds, showing a reduction in

the number of semaphores the operating system is managing, probably caused by a

part of the operating system that stopped working.

Let [x,y] be the group of points in which the parameter shows overrunning values,

p(vi) be the profile of the variable vi, and Tvi a threshold value for deciding if the

parameter vi presents a symptom. We state that a variable vi presents a symptom

𝑆𝑦𝑚𝑝𝑡𝑜𝑚(𝑣𝑖 , 𝐹𝐼𝑅𝑖) in the i-th Fault Injection Run if the area between the variable

values from the i-th FIR vi(t, FIRi) and the maximum and the minimum bounds

expected (defined by p(vi)) is greater than Tvi:

(4.3) 𝑆𝑦𝑚𝑝𝑡𝑜𝑚(𝑣𝑖 , 𝐹𝐼𝑅𝑖) = 1 ⇔ ∫ |𝑣𝑖(𝑡, 𝐹𝐼𝑅𝑖) − 𝑝(𝑣𝑖(𝑡))|
𝑦

𝑥

𝑑𝑡 ≥ 𝑇𝑣𝑖

(4.4)
[x,y]= Bu Bl

𝐵𝑢 = {𝑡: 𝑣𝑖(𝑡) ≥ 𝑀𝐴𝑋(𝑝(𝑣𝑖(𝑡)))}
𝐵𝑙 = {𝑡: 𝑣𝑖(𝑡) ≤ min(𝑝(𝑣𝑖(𝑡)))}

The threshold Tvi is a real value that must be obtained, for each variable, in a way

that allows recognizing the maximum number of symptoms and minimizing the

possible false negatives, using any kind of performance function. In this work, we

propose an adaptive approach for the definition of the threshold Tvi for a variable

vi, making use of feedback information about the correlation that a variable would

have when using a given threshold value. In practice, the threshold Tvi is defined as:

Figure 4.3 – A symptom identified on the “Semaphores” variable (normalized)

Virtualization as a support for the generation of failure data

99

(4.5)

𝑇𝑣𝑖𝜖ℝ arg 𝑚𝑎𝑥
𝑇𝑣𝑖>0

⁄ (𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝑴𝒆𝒕𝒓𝒊𝒄(𝑣𝑖, 𝓕, 𝑮))

𝓕 = {𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝐹𝑘 , 𝑤𝑖𝑡ℎ 𝑘 𝜖]1, |𝐹𝐼𝑅|]}

𝑮 = {𝑛𝑜 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝐺ℎ , 𝑤𝑖𝑡ℎ ℎ 𝜖]1, |𝐺𝑅|]}

As mentioned before, the correlation metric must be proportional to the number of

true symptoms and inversely proportional to the number of false symptoms. As an

example, equation (4.6) shows two metrics addressing the condition above, namely

F-Measure and Prediction (for details, see Section 2.2.3).

(4.6)

E.g.,

1) 𝑇𝑣𝑖𝜖ℝ arg 𝑚𝑎𝑥
𝑇𝑣𝑖>0

⁄ (𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑣𝑖 , 𝓕, 𝑮))

2) 𝑇𝑣𝑖𝜖ℝ arg 𝑚𝑎𝑥
𝑇𝑣𝑖>0

⁄ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑣𝑖 , 𝓕, 𝑮))

In practice, starting from a threshold value T0vi, the symptoms identification depends

on the threshold value T*vi maximizing the correlation value C between the

symptoms that the variable vi shows and the failures observed in the system. The

approach proposed is depicted in Figure 4.4. In particular the symptom

identification phase and the correlation phase are organized in a feedback loop,

which is solved by applying a maximization algorithm. We do not specify any

particular optimization algorithm, but a simple approach is to adopt a time-limited

grid search (i.e., a heuristic searching the best value in a defined interval), with a

maximum time as the termination criterion for the search algorithm. Finally, the

correlation value obtained using such schema is the maximum correlation value that

Figure 4.4 – The adaptive schema for threshold definition, symptoms

identification and symptoms/failures correlation

Chapter 4

 100

can be obtained varying the threshold. The correlation value associated to each

variable vi is the value corresponding to the optimal threshold, thus Cmax(vi).

Obviously, the threshold may influence metrics like the number of false positives

(i.e., number of times the surface metric exceeds the threshold during fault injection

runs in which failures where not observed) and the coverage (i.e., number of times

the surface metric exceeds the threshold during fault injection runs in which failures

where observed) of each variable. This is why an adaptive threshold is needed, as it

allows mitigating the cases where small noisy deviations lead the values of variables

to go slightly out of the typical bounds (or go out of the bounds for a very short time

frame).

4.4 Phase 3: Symptoms and failures correlation

In order to assess the similarity between different failure data, we define a function C

for each variable vi, measuring the correlation between the symptoms presented by

the variable when failure (and no-failure) events occurred on a specific system. The

correlation values must be in the range [0,1] (1 means that the variable values are

highly correlated with the failure occurrence), and the correlation metric chosen

should be proportional to the number of true symptoms and inversely proportional

to the number of false symptoms. In this work we propose to correlate the variables’

symptoms with the observed failure/no-failure events using the ROC-AUC measure,

i.e., the Area under the Receiver Operating Characteristic curve (see Section 2.2.3)

The reason that stands behind this choice is the fact that ROC analysis represents a

solution for the adaptive approach presented in the previous section, where the

optimal value Cmax(vi) associated to each variable vi is the ROC-AUC, and the optimal

threshold T*vi is the ROC’s cut-off point (i.e., the point corresponding to the optimal

correlation value), considering each variable as a prediction model (see Figure 4.5).

In practice, a ROC curve is composed of points corresponding to the measures true

positives rate (or Sensitivity) and false positives rate (1-Specificity), obtained

according to the contingency table, while varying a decision threshold. The

threshold used by the ROC analysis corresponds to the threshold Tvi, hence, varying

such threshold and computing tpr (true positive rate) and fpr (false positive rate) allows

obtaining a ROC curve. The true positives rate and false positives rate are defined as

follows:

(4.7)

True Positives Rate /

Sensitivity/

Recall

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒔

(4.8)
False Positives Rate /

1-Specificity

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
=

𝑭𝒂𝒍𝒔𝒆 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝒏𝒐 − 𝒇𝒂𝒊𝒍𝒖𝒓𝒆 𝑐𝑎𝑠𝑒𝑠

Virtualization as a support for the generation of failure data

101

The more the true positives rate is near to 1 and the false positive rate is near to 0,

the higher is the correlation between the variable’s symptoms and the failures (such

situation corresponds to an ideal correlation a ROC-AUC=1). An example of a ROC

curve is presented in Figure 4.5. The black convex curve is the ROC curve relative to

a correlated variable, with a 0.5 < ROC-AUC < 1 (as ROC-AUC=0.5 corresponds to an

uncorrelated curve, for which the variation of the threshold does not cause any

change in the couple (Sensitivity, 1-Specificity)). The ROC of a perfectly correlated

variable is a single point corresponding to (Sensitivity, 1-Specificity)=(1,1) and has a

ROC-AUC=1 (also here the variation of the threshold does not influence the

correlation metrics). Moreover, an inversely correlated variable corresponds to a

concave ROC curve. Finally, the cut-off point (defined only for convex curves) is the

point corresponding to the optimal correlation measures, i.e., the higher true

positives rate with the lower false positives rate.

The correlation values C(vi, {F, G}) calculated for each variable vi are finally validated

using k-fold cross validation. This consists of partitioning the dataset coming from Mj

into kMj folds, dividing the data “run by run”, taking advantage of the fact that the

dataset is already partitioned (in golden or failure runs). We take into account this

existing division of data, without invalidating the results. In fact, the statistical

properties coming from the use of k-fold cross validation are not altered, as such

super-partition of the data is still a partition. Each fold is obtained by combining

golden data and failure data, considering the runs of the associated events gl and fl,

obtaining groups like foldr = {GD(gr1, gr2, … grr), FD(fr1, fr2, …, frr)}. The folding is done

in such a way that each fold ends containing at least data related to one failure.

Figure 4.5 – ROC curves relative to single variables

Chapter 4

 102

As the number of failures observed in each machine may vary, the number of folds

may also vary from one machine to another. This way, it may happen to have few

folds on some machines, but it does not happen to have the same failures in different

folds, neither to have folds with no failures. Finally, we compute the correlation

values for each fold relative to the failures occurred on Mj: for each variable vi we

compute the correlation C(vi) of length kMj, that is C(vi)Mj=(Cp1(vi), Cp2(vi), …, CkMj

(vi))Mj.

4.5 Phase 4: Failure data similarity analysis

The last phase of the approach consists of testing the hypothesis that the samples

C(vi)M1 from M1, C(vi)M2 from M2, etc., are similar. More specifically, we are interested

in not rejecting the null hypothesis, being:

H0: “the variable vi(t) presents similar failures correlation values on

the two machines Mi and Mj”,

also corresponding to:

H0': “the samples C(vi)Mj, with j=1, 2, …, |M|, come from the same

distribution”,

which we assume to be true. If the test finds no evidence for rejecting the null

hypothesis, we can continue considering that (at least in this case) virtualization has

no influence on the generated failure data. On the other hand, if the test rejects the

null hypothesis, then the data are not similar.

We compute the similarity of the correlation statistic (or vector) of each variable vi

monitored from the virtualized system and the original target system (or any kind of

different machines, as mentioned previously) using the Kruskal-Wallis statistical test

(Box, Hunter, and Hunter 2005) that is used for analyzing the variance of N

distributions, as we verified that the correlation distributions are non-parametrical

(or generic, as nothing can be said on the type of distributions to analyze).

4.6 Case study: Impact of virtualization in the generation
of failure data

The case study presented in this section, aiming at assessing the impact of using

virtualization environments for generating failure data, is based on the analysis of

the data gathered from a set of five machines, one hosting the original target system

(M1) and the other four (M2, M3, M4 and M5) hosting virtualized copies of that

system. The virtualization environments under study include both Type I (or Full

Virtualization as a support for the generation of failure data

103

Virtualization) and Type II (or Hardware layer virtualization) hypervisors, thus

considering a representative set of virtualization solutions (see Section 2.3).

The five monitored machines and the controller machine that compose the

experimental setup have the following configurations:

 Machine #1: Intel i5-650@3.60GHz; 8GB RAM; Windows XP OS (SP3); no

virtualization (hosts the original system).

 Machines #2 and #3: virtual machines hosted on Intel i5-650@3.60GHz

systems with 8GB RAM, and running Windows XP OS (SP3). Machine#2 runs

on a Citrix XEN server v5.6.10, and Machine#3 runs on a VMWare vSphere

server based on ESXi v5.0. These provide two virtual versions hosted on top

of Type II Hypervisors, with an hardware configuration made of one out of

the two cores of the hosting system’s CPU (Intel i5-650@3.60GHz) and 1 GB

RAM.

 Machines #4 and #5: virtual machines hosted on Intel P4 HT@3.00GHz

systems with 2GB RAM, and running Windows XP OS (SP3). Machine#4 runs

on a Oracle’s VirtualBox, and Machine#5 runs on a VMWare Player, both on

top of Windows XP OSs. These provide two virtual versions hosted on top of

Type I Hypervisors, with an hardware configuration made of the hosting

system’s CPU (Intel P4 HT@3.00GHz) and 1 GB RAM.

 Machine #6 (Controller): Intel i5-650@3.60GHz; used to: a) control the

experiments, b) remotely command and control the fault injection tool, c)

force the reboot of the machines in case of failures, d) collect the data and

store them in a Microsoft SQL Server 2008, and e) analyze the data using

MATLAB.

As a real and a virtualized environment can have different hardware configurations

(mainly in terms of CPU and RAM), in this case study the configurations of the

defined virtual machines (Machines #2, #3, #4, #5) are different from the one of the

real machine (Machine #1). On the other hand, all the virtual machines share similar

configurations. With such setup, we can infer the impact of both the virtualization

environment and the hardware configuration on the failure data. In particular:

 if the real and all the virtual machines share the same set of variables, it is likely

that both the virtualization and the hardware do not impact on the generated

failure data;

 if the real and one virtual machine share the same set of variables, it is likely

that both the virtualization and/or the hardware do impact on the generated

failure data;

 if the failure data from the real machine is different from the data collected

from the virtualized environments, but the latter share among them similar

Chapter 4

 104

data, then it can be said that the virtualization is impacting on the generation

of failure data;

 if the failure data from the real machine is different from the data collected

from the virtualized environments, and the similarity depends on the

virtualized machine (the sets of variables are different on the different

hypervisors), then both the virtualization environment and the hardware do

impact the generated failure data.

 Data generation 4.6.1

We monitored 233 numerical variables representing the state of the operating system

(OS) resources, at the sample rate of one value per second, using the Logman tool

that is included in Windows OSs family.

The failure data are obtained by monitoring the systems while running two different

workloads (one based on the WinRAR application (RAR Lab) and the other on the

COSBI OpenSourceMark benchmark suite (“COSBI OpenSourceMark”)) and

targeting two distinct failure types: system Crash (OS becomes corrupted and the

machine crashes or reboots) and system Hang (application or OS becomes

unresponsive and must be terminated by force). The G-SWFIT tool was installed on

each monitored machine (original and virtualized copies) and injected software

faults in the OS to maximize the impact of faults on the system operations. The

faultload (specifying which faults, where and when to inject) is exactly the same for

all the machines, and was defined similarly to the case study presented in Section

3.6. We recall that to ensure a higher fault activation ratio, specific portions of the OS

were previously selected as prime candidates for fault injection, resulting in the

selection of the kernel32.dll and ntdll.dll system modules used by the system process

svchost.exe (Generic Host Process for Win32 Services).

Table 4.1 presents the overall characterization of the experiments. A single fault was

injected in each FIR approximately 70 seconds after starting the execution of the

workload (defined based on the analysis of the ramp up time of the systems).

Failures were observed in a small subset of the fault injection runs. This is due to the

large number of possible fault locations, which reduces the probability of injecting a

fault in a code location executed in a given experiment (J. A. Duraes and Madeira

2006). It is important to note that the failure occurrence rates have similar values on

all the machines, ranging from 2% and 4% (considering both failure modes), which

suggests that the fault activation is not strictly dependent on a particular system,

although the differences among systems result in occurrence rate variations. Also,

the faults injected caused more hang failures than crashes in all machines, which is

in line with the fault injection results presented in the case study in Chapter 3. From

a high-level observation, we can say that the Windows XP OS reacts in the same way

Virtualization as a support for the generation of failure data

105

to software faults despite of the hardware used, which may anticipate the fact that

data collected from different machines may share some similarities.

 Symptoms similarity estimation 4.6.2

The comparison of the ROC-AUC correlation distributions for estimating the data

similarity was performed using the Kruskal-Wallis test applied to each of the 233

variables, a generalization of the ANOVA test for non-parametric distributions (as

we cannot make any assumptions about the distribution of the data). The

significance level considered is α=0.05 and the sample values C(vi)Mj were obtained

from each machine Mj using 20 folds.

Table 4.2 presents examples of the failure correlation distribution of the same variable

collected on different machines, for guiding the reader in understanding the results

obtained using the Kruskal-Wallis test. The table presents the ROC-AUC correlation

values for the variables Transition Faults/s (columns (a) and (b)) for the <WKL1,

Crash> scenario, and Pool of Nonpaged Bytes (column (c)) for the <WKL2, Hang>

scenario (the complete result set can be found in (I. Irrera 2013)). Each row is a

sample C(vi)mj, and each column identifies the data fold in which the correlation

value was obtained. The first row (in gray) is the pivot correlation distribution for

the comparison. The correlation values equal to 1 are due to a numerical rounding of

the representation (being in fact inferior to 1), or due to the very small number of

failure events present in the fold. However, such inaccuracy allows a more clear

analysis of the presented example. The values “-” mean that, for a given machine Mj,,

the number of folds created was less than 20 (as in the case of machine M4 in Table

4.2 (b)). This is related to the limited number of failures observed.

Table 4.1 - Failures generated

machines wkl # GR # FIR
Failures detected

Total % Crash % Hang %

Real (M1)
#1 1000 3000 2.84% (80) 0.37% (11) 2.3% (69)

#2 1000 3000 2.2% (66) 0 2.2% (66)

Citrix

XEN server (M2)

#1 1000 3000 4.3% (129) 0.8% (24) 3.5% (105)

#2 1000 3000 2.2% (66) 0 2.2% (66)

VMWare

vSphere server (M3)

#1 1000 3000 4% (120) 1.5% (45) 2.5% (75)

#2 1000 3000 2.9% (87) 0.2% (6) 2.7% (81)

VMWare

Player (M4)

#1 1000 3000 1.83% (55) 0.13% (4) 1.7% (51)

#2 1000 3000 2.4% (72) 0.5% (15) 1.9% (57)

Oracle

VirtualBox (M5)

#1 1000 3000 1.47% (44) 0.07% (2) 1.4% (42)

#2 1000 3000 2.3% (69) 0.3% (9) 2% (60)

Chapter 4

 106

Table 4.2 - An example of ROC-AUC correlation values relative to two variables

 (a) KW test passed
(b) excluded from the

test
(c) KW test passed

variable

(scenario)

Transition faults/s

(WKL1, CRASH)

Transition faults/s

(WKL1, CRASH)

Pool Nonpaged bytes

(WKL2 , HANG)

machine real (M1) XEN (M2) real (M1)

VMWare

Player

(M4)

real (M1)

VirtualBox

(M5)

ROC-AUC

(foldi)

1 0.994 1 0.98 0.86 0.835

1 0.991 1 0.99 0.84 0.887

0.92 0.969 0.92 - 0.85 0.85

0.80 0.997 0.80 - 0.84 0.85

1 0.98 1 - 0.84 0.86

1 1 1 - 0.81 0.80

1 0.981 1 - 0.87 0.87

0.80 0.997 0.80 - 0.80 0.864

1 0.988 1 - 0.88 0.85

0.96 0.978 0.96 - 0.86 0.87

1 0.966 1 - 0.89 0.86

0.80 0.988 0.80 - 0.86 0.88

0.96 0.988 0.96 - 0.86 0.84

1 0.978 1 - 0.85 0.82

0.88 0.97 0.88 - 0.86 0.87

1 0.997 1 - 0.86 0.80

1 0.98 1 - 0.88 0.85

1 0.94 1 - 0.82 0.88

0.80 0.981 0.80 - 0.87 0.90

1 0.935 1 - 0.83 0.84

Virtualization as a support for the generation of failure data

107

In the first case (Table 4.2 (a)), the symptoms correlation with failures of the variable

Transition Faults/s coming from the real machine M1 and the virtual machine M2

(scenario <WKL1, Crash>) is quite high and seem similar. In particular, the Kruskal-

Wallis test could not reject the hypothesis of such symptoms to be similar, thus there

is no evidence for considering the behavior of such variable not similar on both

machines. On the other side, the set of correlation values relative to the same

variable and in the same scenario collected from the machine M4 (virtualized in a

VMWare Player) is very small (only two values, Table 4.2 (b)). In this case, we decide

to express no judgment on the similarity of the symptoms, also excluding the

similarity hypothesis from being tested in such case.

Finally, the correlation values relative to the variable Pool of Nonpaged Bytes (Table

4.2 (c)), collected from the real machine and the virtual machine running on a

VirtualBox environment, are also similar. Again, the Kruskal-Wallis test was not able

to reject the hypothesis of the behavior of such variable being similar on both the

systems.

 Results and discussion 4.6.3

Table 4.3 presents the number of variables showing similar correlation between the

original system and its virtualized copies, i.e., for which the Kruskal-Wallis test was

not able to reject the null hypothesis. As we can see, the original machine M1 shares

with all its copies a subset of variables that have the same correlation with the

failures observed (both for WKL1 and WKL2). Although the number of variables

presented may seem small, it should be noted that the number of relevant variables

for failure prediction is indeed quite small (G. Hoffmann and Malek 2006; Li,

Vaidyanathan, and Trivedi 2002; Vaidyanathan and Trivedi 1999), which is a fact

standing at the basis of feature selection. The results obtained for each couple of

machines are quite similar, except for machines M4 and M5 in the case <WKL1,

Crash>. The very low number of crash failures observed in these two machines

during the FIR limits the number of folds, and consequently the number of available

correlation values, as exemplified in Table 4.2 (b). In this case, the Kruskal-Wallis test

was not able to reject the null hypothesis, but the available correlation values are

insufficient to have good confidence in the result. Thus we do not consider such

results, assuming the null hypothesis being rejected. It is worth noting that we do

not present results for the case <WKL2, Crash>, as in this case we did not observe any

Crash failures on the real machine.

Chapter 4

 108

An important aspect is that the set of variables that show similar correlation with

failures partially varies when comparing the real system with the several virtualized

versions. This means that the different characteristics of the hypervisors and the

hardware have some impact on the original failure data. In fact, sets of variables from

the virtualized environments only partially share variables, confirming the influence

of the virtualization environments. Another important aspect is that the set of

variables showing correlation with Crash failures is different from the set for the

Hang case, and these two sets also differ when considering diverse workloads. The

difference in the results for the two workloads is an evidence of the fact that the

workload influences the failure prediction process (the OS is exercised in different

ways making the fault activation pattern different), as also observed in the case

study in Chapter 3.

 Discussion on the impact of virtualization 4.6.4

There are two key aspects that should be emphasized based on the analysis in the

previous section:

1) The fact that the sets of variables sharing the same failure correlation values

on the original and each of the different virtualization technologies can be

different, showing that virtualization technology does influence the

correlation of variables with failures.

2) The existence of groups of variables sharing similar correlation values

between the original system and its virtualized copies shows that

virtualization can be used to generate failure data, and in particular that a

subset of the failure data generated in a virtual environment is similar to

failure date generated in the original target system and can be used in an

equivalent manner. In practice, as variables with a high correlation with

Table 4.3 - Number of variables showing similar failure correlation

Machine Workload
Failure Modes

Crash Hang

M1, M2
WKL1 47 16

WKL2 - 12

M1, M3
WKL1 47 5

WKL2 - 6

M1, M4
WKL1 0 (95) 27

WKL2 - 32

M1, M5
WKL1 0 (96) 14

WKL2 - 12

Virtualization as a support for the generation of failure data

109

failures in the original system may not be as good in all virtualized systems, a

previous analysis of the best virtualization technology for generating good

datasets is needed.

Such results suggest that data may be generated from virtual copies of a system, but

that a preliminary study for identifying the variables in common is needed.

Moreover, given a set of variables to be used for failure prediction identified on the

original system, a detailed analysis is needed for selecting the virtualization solution

that shares such set of variables (or most of them) to be used to generate failure data.

4.7 Final remarks

In this chapter we addressed the challenge of using failure data generated in a

virtualization environment hosting a copy of the system in which failure prediction

is supposed to work. The proposed approach allows computing the similarity of

failure data generated on a virtualized copy of a target system with respect to failure

data generated on the original system, making use of the approach for generating

failure data based on the injection of software faults proposed in Chapter 3. The

approach can be used to validate if a given virtualization environment is adequate

for generating failure data and also to guide the choice of a specific virtualization

environment, when several alternatives are available.

The approach is based on the identification of the failure symptoms presented by the

monitored variables, their correlation with the failures (and non-failure events,

coming from Golden runs) observed in both the original and virtualized systems,

and the comparison of the correlation values (of the individual variables) gathered

from the different environments by using the Kruskal-Wallis statistical testing

method. In practice, the approach includes three phases, starting from the generation

of failure data using the solution proposed in Chapter 3, followed by the

identification of failure symptoms and the correlation of such symptoms with the

failures observed. The last phase is the assessment of the failure data similarity,

based on the use of statistical tests.

In a case study, we demonstrated the applicability of the proposed approach and

studied the similarity of failure data generated in a Windows-based system and four

virtualized versions of it using diverse virtualization technology. Results shown that

some sets of variables share similar symptoms across the original system and its

virtualized copies and that the sets of variables in common between the original

system and its virtualized versions are different. Hence, the virtualized environment

influences the behavior of the collected variables when failures occur.

The next chapter presents a benchmarking approach for assessing and comparing

alternative failure prediction models on a given target system. As choosing a failure

Chapter 4

 110

prediction model is not trivial and requires large amounts of data, virtualization

represents a key element for making the experiments possible and speeding-up the

collection of failure data.

 111

Chapter 5
Assessing and comparing
Failure Prediction models

Effectively implementing failure prediction involves extremely accurate tuning, but

also an adequate selection of the most suitable model (or models) for a particular

system installation. Selecting a failure prediction model requires a rigorous

assessment of alternative solutions using appropriate metrics, and their comparison

using common datasets. However, this is a difficult task as the information about the

performance of failure predictions models present in literature is not sufficient to

choose a predictor for a particular target system. In fact, existing studies consider

different systems, but the results are not comparable, and nothing can be said on

how a given predictor will perform on a particular system installation. Also, many

works in the literature provide incomplete and not comparable information, as so far

there is no agreement on the best metrics to be used to assess the predictors, which

vary from a study to another (Felix Salfner, Lenk, and Malek 2010).

Although several initiatives aiming at building failure data repositories have been

taken (e.g., the Computer Failure Data Repository (Usenix and Carnegie Mellon

University (CMU) 2006)), using such datasets is not sufficient for conducting a fair

and sound comparison, as the assessment of failure prediction models with failure

data collected from several systems does not allow taking into account the behavior

of the system on which the predictors will run. This way, we argue that it is essential

to collect failure data from the particular target system.

Advancing the state-of-the-art in failure prediction requires a systematic and

rigorous approach for assessing and comparing alternative models, and such process

must be supported by the generation of failure data. In this chapter we propose a

framework for benchmarking alternative failure prediction models, making use of

the failure data generation approach proposed in Chapter 3 and defining a

procedure that assures a fair and sound assessment and comparison. In practice, we

Chapter 5

 112

provide guidelines for implementing a procedure for benchmarking failure

prediction models on a particular system (referred to as Failure Prediction

Benchmark, or FP Benchmark), including choosing the adequate metrics for the

assessment, the comparison of alternative models, and the validation of such results.

Running the benchmark on the specific target system assures the results to be valid

in the context of that system, as it takes into account its relevant characteristics (e.g.,

hardware, software, workload), thus minimizing the probability of harmful effects

due to wrong estimated performance that may lead, for example, to wrong selection

decisions. Obviously, the benchmark must ensure some key properties (M. Vieira

and Madeira 2003; Gray 1993), namely the ease of use, ease of implementation,

promptness, repeatability, portability, representativeness, and non-intrusiveness.

To demonstrate the proposed approach we also present a case study where the

benchmark is used to assess and compare four models for predicting Crash and Hang

failures in a machine running Windows XP (SP3). The case study demonstrates how

the benchmark can be implemented and how the predictors can be assessed and

compared in practice, based on their performance.

The chapter is organized as follows. Section 5.1 overviews the proposed

benchmarking framework and discusses the properties that must be ensured.

Sections 5.2, 5.3 and 5.4 describe the components of the benchmark, describe how to

implement them, and outline the benchmarking procedure. Section 5.5 presents the

case study, including the benchmarking results and a discussion on the benchmark

properties. Finally, Section 5.6 summarizes the main lesson learned.

5.1 Overview of the approach and properties

Benchmarking is an experimental procedure that aims at providing a practical way

to measure and compare properties of computer systems or components, ranging

from performance (Gray 1993) to dependability and security aspects (Durães, Vieira,

and Madeira 2004; M. Vieira and Madeira 2003). In practice, a benchmark

reproduces the observations and measurements either deterministically or on

statistical basis (giving confidence in the results obtained), and allows generalizing

results to a limited extent (becoming useful beyond the particular case analyzed),

attained by addressing the representativeness of the benchmarking process and

components (Durães, Vieira, and Madeira 2004). According to (M. Vieira and

Madeira 2003; Gray 1993), the concept of benchmarking can be summarized in three

words:

1) Representativeness: a benchmark must include components (e.g., a dataset)

that are representative of a given domain (in our case the failure prediction

domain), thus reducing the distance between the benchmarked and the real

environment (when present);

Assessing and comparing Failure Prediction models

113

2) Usefulness: a benchmark must provide a useful representation of the entities

under analysis, capturing the essential elements of the domain and

characterizing their features, thus allowing one to use the results for choosing

the best alternative or to guide improvement;

3) Agreement: a benchmark must specify a standard procedure to assess relevant

measures related to an entity or a product on which users can agree, allowing

measurement results to be accepted.

In this work we propose a framework for assessing and comparing failure prediction

models, which we named FP Benchmark. The reasoning for proposing a framework,

instead of directly refer to it as a benchmark, stands in the fact that a benchmark for

prediction models (or machine learning algorithms in general) typically includes a

workload (or dataset) (e.g., (Bache and Lichman 2013; Zheng 1993)). This workload

is the data against which one or more systems are benchmarked. However, in the

failure prediction domain, the dataset should include failure data that are specific to

a particular system (i.e., the system were failure prediction should be done), and

thus must be generated during the benchmarking process. In practice, we propose a

benchmark that includes the generation of the dataset to assess and compare

alternative predictors on a particular target system, but reference to it as a

benchmark framework in order not to go against the terminology used in the field.

The proposed FP Benchmark includes three main components:

 Dataset: data needed to train and test the failure prediction algorithms. These

data should mimic the behavior of the target system, taking into account the

existing hardware and software components, the expected workload, the

relevant failures, etc.

 Metrics: allow characterizing the effectiveness of the algorithms under

benchmarking. The metrics must be easy to understand, allow the

comparison among alternative algorithms from different points of view, and

be generally accepted.

 Benchmarking procedure: rules that must be followed, including the set of

phases that must be conducted, towards the calculation of the metrics.

For the generation of the dataset, the FP Benchmark adopts the approach proposed

in Chapter 3, which includes a workload and a faultload for exercising the target

system in a way that allows collecting failure data. Given the terminology used in

existing performance (Zheng 1993; Gray 1993; M. Vieira and Madeira 2003) and

dependability benchmarks (M. Vieira and Madeira 2003; J. Duraes, Vieira, and

Madeira 2004), the term dataset is here intended as the workload to exercise the

failure prediction models, while the term workload corresponds to the set of

operations that the target system must execute for generating failure data. Thus, the

Chapter 5

 114

datasets are composed of failure data coming from the target system, and it is the

workload, in the classic machine-learning benchmarking nomenclature. The failure

predictors are benchmarked using the datasets, and metrics are applied to their

outputs (i.e., predictions) and behavior (e.g., time to train or predicting).

A benchmark for failure prediction models must address specific properties for the

results to be sound, and to minimize inaccuracies due to the measurement procedure

and the environment. For this reason, we adopted the recommendations from (Gray

1993; Durães, Vieira, and Madeira 2004; M. Vieira and Madeira 2003) about the

properties a benchmark should envisage, namely:

1) Ease of installation and use: the benchmark should be composed of a simple

program ready to be used or a document specifying how to implement the

benchmark, where to find the tools needed (e.g., the fault injection tool, the

monitoring tool, the workload), etc. In fact, a user must be able to analyze

failure prediction models with the minimum effort possible.

2) Promptness: the benchmark execution should take the shortest time possible

(preferably no more than a few hours per entity). Promptness increases the

usability of the benchmark and of the failure prediction model, and

potentially reduces the cost that one has to allocate for the failure predictor’s

benchmarking task.

3) Non-intrusiveness: the benchmark must require minimal or no changes in

the entities under analysis, which in this context are the failure prediction

models. Moreover, the target system cannot be influenced nor modified, as

this may influence the generated datasets and thus invalidate the results and

conclusions. If an alteration is not avoidable, this has to be controlled and

reproduced for every failure prediction model under analysis, and taken into

account when estimating the representativeness of the results.

4) Portability: the benchmark must allow comparing alternative failure

prediction models in different domains and considering different types of

target systems.

5) Repeatability: different executions of the benchmark in the same system

must lead to the same results on a deterministic basis or in statistical terms.

The results should not depend on a single execution of the benchmark: on the

contrary, the benchmark must provide means for assessing a possible error in

the performance results of the assessed tools.

6) Representativeness: the results coming from the benchmark must be

representative of real world scenarios, i.e., the failure prediction models must

behave similarly (in relative terms) when working on the target system in a

real situation.

Assessing and comparing Failure Prediction models

115

5.2 Dataset

To generate, collect and organize the datasets, the benchmark makes use of the

failure data generation approach proposed in Chapter 3. In practice, it makes use of

a labeled dataset, and a k-fold cross validation technique with a run-by-run (or run-

wise) partition of Golden and Failure Data.

5.3 Metrics

Metrics are a fundamental part of the benchmarking process, as they serve for

characterizing the characteristics of the predictor and for the user to fairly compare

alternative models. According to (Gray 1993), benchmarking metrics must have the

following properties: i) they should portray the relevant and key characteristics of

the entity under benchmarking, ii) they must be easy to understand and use, and iii)

they should be generally accepted. In addition, the measures must be easy to obtain

without impacting the system behavior (the failure prediction models, in our case).

In this work we take a comprehensive approach and propose a large and extensible

set of metrics, leaving to the benchmark user the selection of the relevant ones and

the definition of new metrics (if needed), while guiding the choices done. In fact, in

the same way we argue that the benchmark should be run in the system where

failure prediction is being implemented (to take into account the system

characteristics), we also defend that the outcome of the benchmarking process

should fulfill the user needs. Thus, it is up to the user to select the metrics, although

the benchmark framework provides guidelines and the support to calculate all the

metrics presented below.

We propose metrics widely used to characterize the effectiveness of systems,

particularly in the information retrieval and control systems area (see Table 5.1). For

each family we discuss some guidelines for adopting the most adequate metrics for a

fair comparison of failure prediction algorithms, based on practical experience and

on the findings from (F. Salfner, Lenk, and Malek 2010). The proposed metrics are

divided in four families, which allow analyzing the behavior of the failure prediction

algorithms from different points-of-view:

1. Metrics based on the contingency table (or confusion matrix) (e.g., precision,

recall, etc. (F. Salfner, Lenk, and Malek 2010));

2. Metrics based on decision threshold analysis (e.g., ROC, ROC-AUC, etc. (F.

Salfner, Lenk, and Malek 2010));

3. Metrics on the prediction error (SSE, MSE, etc.);

4. Metrics related to complexity (training and testing time, etc.).

Chapter 5

 116

Table 5.1 - Recommended metrics for benchmarking failure prediction

models.

Metric Formula/Description

C
on

ti
n

ge
n

cy
 t

ab
le

m
et

ri
cs

Precision
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Recall /

True Positive Rate /

Sensitivity

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

False Positive Rate
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

𝐹𝑎𝑙𝑠𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 − 𝑓𝑟𝑒𝑒 𝑟𝑢𝑛𝑠

F-Measure
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= Mean𝐻(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙)

D
ec

is
io

n

th
re

sh
ol

d

an
al

ys
is

m
et

ri
cs

ROC and ROC-AUC

Plot of the True positive rate over False positive rate for

various thresholds (trade-off tpr/fpr respect to the decision

threshold)

P
re

di
ct

io
n

er
ro

r

m
et

ri
cs

Mean Square Error

(MSE)

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1

, 𝑌 ∈ ℛ𝑛

𝑌 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

�̂� = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑝𝑟𝑒𝑐𝑖𝑡𝑖𝑜𝑛𝑠

C
om

pl
ex

it
y

m
et

ri
cs

Set-up time
The time needed to set up the model (e.g., training time for

classifier models). The unit is “seconds per sample”

Execution time
The time to perform the prediction over the sample taken

at time t. The unit is “seconds per sample”

Assessing and comparing Failure Prediction models

117

 Prediction value-based metrics 5.3.1

These metrics are based on the contingency table (F. Salfner, Lenk, and Malek 2010) or

confusion matrix (see Section 2.2.4), borrowed from the information retrieval field. In

practice, we assume that any prediction falls into one of the following four cases:

1. True Positive (TP): a failure is predicted, and a failure occurs in the expected

time;

2. True Negative (TN): no failure is predicted, and no failure occurs;

3. False Positive (FP): a failure is predicted, but there is no actual failure in the

expected time;

4. False Negative (FN): the predictor does not predict any failure, but a failure

actually occurs.

More complex metrics can be defined by combining the four cases above in a

different manner (Van Rijsbergen 1979), including:

 Precision: the ratio of correctly predicted failures with respect to the number

of all predicted failures. In our context it can be represented as follows:

(5.1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 Recall: a ratio of correctly predicted failures with respect to the number of

true failures. In our context it can be represented as follows:

(5.2) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝐴𝑙𝑙 𝑡ℎ𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

 F-Measure: the weighted harmonic mean (used to average rates) between

Precision and Recall, assuming equal weights:

(5.3) 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= Mean𝐻(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙)

It is important to emphasize that the benchmark user should take into account the

following aspects when adopting metrics based on the confusion matrix:

1. Predicting a failure is more important than predicting the absence of a

failure, thus TP must be maximized;

Chapter 5

 118

2. False negatives must be avoided, as failures can have dramatic consequences,

thus FN must be minimized;

3. FP must be minimized, as being continuously signaling failures that do not

occur is not really predicting.

 Decision threshold-based metrics 5.3.2

These metrics are based on the analysis of the predictor behavior when changing a

threshold (i.e., the decision threshold). As in most prediction systems, the failure/no-

failure prediction is done by applying a threshold to the (numeric) output of the

predictor: if the output is above (or below) the threshold, a failure (or no failure) is

predicted. Usually, this threshold is adjustable and different values lead to different

behaviors of the prediction model, impacting also the values of TP, FP, FN, and TN,

from which several other metrics can be defined. For example, plotting the values of

the True Positive Rate (TP/(TP + FN), or Sensitivity) against the False Positive Rate

(FP/(TN + FP), or 1-Specificity) while varying the threshold allows obtaining the

Receiver Operating Characteristic curve, or ROC (Fawcett 2006), and its area (ROC-

AUC), which is a widely used metric (see Section 2.2.3). Other examples are the

F-Measure (Hand 2012) and Precision-Recall curves (Felix Salfner, Lenk, and Malek

2010).

Threshold analysis is a widely accepted method for assessing the performance of

binary classifiers (Fawcett 2006). It is also considered as an effective way to

overcome the problem of evaluating classifiers when using imbalanced datasets

(e.g., (Chawla, Japkowicz, and Kotcz 2004; Chawla 2010)), as is the case in the failure

prediction scenario, where no-failure labels outnumber the labels relative to failures

(see data labeling in Section 3.4). In fact, when a dataset contains more positive than

negative samples (or vice-versa), a classifier with a fixed-threshold may present a

poor performance (Chawla, Japkowicz, and Kotcz 2004), which can be improved by

changing the threshold. Several works demonstrate that threshold-based

performance analysis is independent of the class priors (i.e., the distribution of the

samples belonging to each class) (e.g., (Chawla, Japkowicz, and Kotcz 2004; Chawla

2010; Zweig and Campbell 1993; Fawcett 2006; Wang 2008)).

Among all the decision threshold-based metrics presented, for the failure prediction

context we propose the use of ROC analysis due to some significant characteristics,

namely: independence from the dataset, capability for performing sensitivity

analysis in the context of varying thresholds, easiness of interpretation of the results,

and large usage for the assessment of information retrieval systems.

Assessing and comparing Failure Prediction models

119

 Prediction error-based metrics 5.3.3

The metrics in the third family focus on the prediction error and are widely used in

the systems control field to compare the effectiveness of different models. In the

context of benchmarking failure predictors, they can be used to characterize models

whose output is a class or element (e.g., binary classifiers) or models with a

numerical real output (e.g., regression models) (F. Salfner, Lenk, and Malek 2010)

before their output is compared to a threshold for producing such class (e.g., a 1 is

obtained by checking if the output is above a given threshold, else it is 0). In this

case, these metrics can complement TP, FP, etc., as they include information on the

prediction error of each predictor.

One of the metrics that can be considered is the Mean Square Error (MSE), as it is

useful to assess the quality of a predictor as an estimator of the occurrence of a

failure (in terms of probability, time-to-failure, etc.). The definition of the MSE in this

context is as follows:

(5.4)

𝑀𝑆𝐸(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2
,

𝑛

𝑖=1

𝑌 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑡𝑟𝑢𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

�̂� = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

 Time complexity metrics 5.3.4

The metrics belonging to the fourth family are related to the time the models take to

be trained and optimized (Set-up time) and to perform the prediction (Execution

time). This is of utmost importance in some scenarios, as there is often a trade-off

between the performance of an algorithm and the time and resources needed to run

it. Obviously, the time measured strongly depends on the machine that hosts the

algorithm (which may not be the target system).

5.4 Procedure

Benchmarking requires a rigorous procedure, driving the user from the predictors’

assessment to the comparison of the results. Obviously, the failure prediction models

under benchmarking must share the same training and testing sets, as only in this

way the final results can be comparable. The proposed benchmark procedure is

depicted in Figure 5.1, and includes six phases:

Chapter 5

 120

1) Preparation: this phase consists of identifying the set of parameters for

benchmarking the failure prediction models (e.g., the metrics to consider, the

failure modes to predict, the intervals relative to the failure prediction task),

and selecting and installing the failure prediction models under benchmarking.

2) Data generation and dataset building: the dataset is built from the data

collected, organizing the data and associating the information about

failure/no-failure, according to the approach proposed in Chapter 3. Datasets

are divided in training data (to train the algorithms), testing data (to test their

prediction ability), and validation data (for evaluating the prediction

generalization). Each dataset is relative to a specific scenario, identified by the

benchmark parameters such as the workload, the failure mode, or the

prediction time, which influence the system dynamics (reflected in the

datasets) and may call for a different prediction model.

3) Execution of the prediction algorithms: each algorithm must be trained

using a training dataset, while the testing and validation datasets should be

used for evaluation. In this phase, the output of each predictor is collected for

later processing (to calculate the relevant benchmark metrics). This phase can

be divided in three parts: i) training, where the failure prediction algorithm

is trained using labeled data (training dataset) for discriminating failing from

non-failing situations; ii) prediction, where each failure predictor tries to label

a set of unlabeled data (testing dataset); and iii) output collection, where the

outputs of each failure predictor (i.e., the labels suggested) are collected. In

order to obtain a sound assessment and comparison, additional tasks may be

needed such as feature selection, failure prediction optimization, and

validation. The following tasks are vertical to the training and prediction

tasks, and are usually performed when training a prediction model:

a. Features selection: the dataset includes several variables (features).

However, features do not have the same importance (H. Liu and Yu

Figure 5.1 - The benchmarking procedure using fault injection at runtime

Assessing and comparing Failure Prediction models

121

2005), and reducing their number frequently increases the prediction

quality. Well-known methods for feature selection are forward selection

(starting from a subset, add features until the predictor performance

starts decreasing), and backward elimination (starting from the entire

set, exclude features).

b. Parameters optimization: predictors are trained by fixing several

parameters, which impact on their performance. Each predictor

should be assessed using the set of values that maximizes its

performance. Several techniques for finding the optimal working

parameters (e.g., number of neurons for a neural network) can be

found in literature (e.g., (Bishop and others 2006; Kennedy 2010;

Schölkopf and Smola 2002)).

4) Performance metrics calculation: the predictions performed by each model

under benchmarking are processed to obtain a value for the chosen metrics.

For instance, to compute the Precision of a predictor, the labels produced (i.e.,

the predictions) and the expected labels (testing data labels) are compared, a

confusion matrix is created (TP, TN, FP, and FN are computed), and the

Precision is finally obtained. Each predictor should also be evaluated using

the validation datasets, as one must assure that the performance achieved

does not depend on a particular dataset (i.e., results are not biased). This

property (i.e., to which extent the results will hold in the operational scenario,

or when using a different dataset) is closely related to the confidence one

may have in the benchmarking results. Validation techniques should be used

to assess the confidence on the results: an example is k-fold cross validation, as

showed in the previous chapters.

5) Assessment and comparison: the user analyzes the benchmark results and

selects the failure prediction algorithm that best fits its requirements.

Although not mandatory, the user can use techniques for non-subjective

analysis of benchmark results, as the one proposed in (Martinez et al. 2014).

6) Benchmark properties validation: this last step consists of assessing the

fundamental properties of the benchmark, thus validating the assessment

and comparison results. The properties to validate are the ones presented in

Section 5.1. In particular:

a. Ease of installation and use, promptness, non-intrusiveness and portability

can be validated through the analysis of the installation and usage

process during the benchmarking campaign;

b. Repeatability can be automatically validated through the use of a

validation technique, as the k-cross fold validation;

Chapter 5

 122

c. Representativeness can be validated by analyzing the accuracy of

generated failure data and of the benchmark results, by making use of

the indirect (or weak) accuracy estimation proposed in Section 3.5.2. In

fact, accurate benchmark results are a sufficient condition for the

benchmark to be representative.

5.5 Case Study: Benchmarking different failure prediction
models

In this section we present a case study to demonstrate the process of building a FP

Benchmark, to analyze its applicability in benchmarking alternative predictors to be

used on a particular system, and to validate its properties. It is important to

emphasize that the case study serves only to demonstrate the approach proposed.

This means that, although realistic, the choices about the workload, the failure

modes, the failure prediction algorithms, etc., might not be not the most adequate

ones for real world scenarios.

The case study aims at assessing and comparing the performance of failure

prediction systems based on a SVM classifier (Support Vector Machine, (Cortes and

Vapnik 1995)), predicting failures in a computer system running Windows XP SP3

OS (i.e., the target system). Four different flavors of a Support Vector Machine are

benchmarked, including predictors implementing the sliding window technique

proposed in Section 3.6:

 FPA1 - SVM classifier (Gaussian kernel);

 FPA2 - SVM classifier (Gaussian kernel) + sliding window;

 FPA3 - SVM classifier (Linear kernel);

 FPA4 - SVM classifier (Linear kernel) + sliding window.

A representation of the FP Benchmark is shown in Figure 5.2. The target system is a

virtualized Windows OS running on top of a VMWare vSphere server (Frappier

2014), executing two workloads (WinRAR (RAR Lab) and COSBI OpenSourceMark

(“COSBI OpenSourceMark”)). The benchmark is implemented on an

analysis/controller system, in charge of controlling the experiments and analyzing

the failure data coming from the system, while fault injection and data collection is

performed on the target system. The fact that the target system is a virtualized

machine allows simplifying the management of the experiments, permitting easily

starting/stopping/rebooting the target system, as well as restoring its internal state

after each fault injection run, following the recommendations in Section 3.3. It is

worth noting that in this case study we do not focus on examining the accuracy of

Assessing and comparing Failure Prediction models

123

the failure data generated using a virtualized environment, as the original target

system is also a virtualized system, hence the failure prediction models will work

directly on information coming from a virtualized environment.

The failure prediction models were run on the analysis machine, to isolate them

from the target system environment. In practice, the configurations of the machines

are the following:

 Machine #1 (target system): Intel i5-650@3.60GHz machine, 8GB RAM,

running a Windows XP OS (SP3) in a VMWare vSphere server based on ESXi

v5.0.

 Machine #2 (analysis/controller system): Intel i5-650@3.60GHz machine, 8GB

RAM, running a Windows XP OS (SP3).

For implementing the benchmarking procedure we used the PowerShell scripting

language for Windows OS environments (Siddaway 2012). This scripting language

permitted, in particular, a fast prototyping and easy implementation of

functionalities, with the native and easy use of network communication. The

analysis of the benchmarking results is conducted in the analysis machine by using

the MATLAB environment, which supports the manipulation of data related to the

failure prediction, such as the datasets, the prediction results, and so on.

The failure prediction models (based on SVM) are based on the ones implemented

by the libSVM C/C++ libraries (Chang and Lin 2011), which provides interfaces for

Windows- and Linux-based operating systems, as well as utility programs for the

analysis of the prediction results for MATLAB and similar environments.

About the data generation and collection, we selected the failure modes (Crash and

Hang) and tools used in the case study in Chapter 3. Recalling, we monitored 233

Figure 5.2 – FP Benchmark components deployed.

Chapter 5

 124

numerical variables representing the state of the OS resources, at the sample rate of

one value per second, using the Logman tool that is included in Windows OSs

family. A three-step feature selection was used to select the set of variables that

maximizes the performance of the prediction system. The resulting set consists of 25

variables out of the initial 233 (see Table 5.2), for each scenario <WKL, Failure>, and

for each couple of values (∆tl, ∆tp) considered in the analysis. Again, we adopted the

G-SWFIT software fault injection tool and injected faults in the code of the dynamic

libraries (the kernel32.dll and ntdll.dll system library modules) used by the system

process svchost.exe (a more detailed description is in Section 3.3). The injection in

kernel32.dll and ntdll.dll modules leads to different datasets.

The number of experiments (i.e., fault injection runs) needed to benchmark the

failure prediction models was calculated in order to have enough failures to train,

test and validate the models. In practice, we analyzed the activation rate (i.e., a fault

eventually causing a failure) in the experiments presented in the previous chapters,

during which we observed an average activation rate of 2%. Thus, for causing one

Table 5.2 - Selected variables, for (WKL1, Crash) and (∆tl,∆tp)=(10s, 5s)

Variable ID Variable name Monitored component

106 % Committed Bytes In Use Memory

115 Demand Zero Faults/sec Memory

123 Pool Nonpaged Allocs Memory

109 Available Mbytes Memory

117 Page Faults/sec Memory

125 Pool Paged Allocs Memory

128 System Cache Resident Bytes Memory

127 Pool Paged Resident Bytes Memory

201 C2 Transitions/sec Processor

192 % C2 Time Processor

209 Exception Dispatches/sec System

220 System Calls/sec System

210 File Control Bytes/sec System

154 Avg. Disk sec/Write PhysicalDisk

156 Current Disk Queue Length PhysicalDisk

152 Avg. Disk sec/Read PhysicalDisk

155 Avg. Disk Write Queue Length PhysicalDisk

94 Avg. Disk sec/Transfer LogicalDisk

139 Semaphores Objects

182 Pool Nonpaged Bytes Process

173 IO Other Bytes/sec Process

39 Sync Data Maps/sec Cache

26 Data Map Pins/sec Cache

16 Async Copy Reads/sec Cache

224 % User Time Thread

Assessing and comparing Failure Prediction models

125

hundred failures, we decided to execute each workload at least 3000 times. The

datasets are organized as proposed in Chapter 3: each dataset is divided in training

(to train the model) and testing data (to test its prediction ability), using a 50% ratio.

The data are labeled based on different (∆tl, ∆tp) parameters.

The metrics chosen for assessing the failure prediction algorithms are the ROC-AUC,

the F-Measure (F. Salfner, Lenk, and Malek 2010) (considering the optimal threshold

point found with the ROC method), the Set-up time (i.e., the time needed for a

predictor to be trained), and the AUC/Set-up time ratio.

 Benchmarking campaign 5.5.1

Table 5.3 summarizes the benchmarking parameters, including the failure prediction

models, the failure modes, the variable selection method, and so on. A tuple of

parameters <Dataset length, Workload, Failure Mode, ∆tl, ∆tp> is associated to each

benchmark run, resulting in a total of 100 runs, in which the predictors are

benchmarked. The combination <Workload, Failure mode> allows defining four

different scenarios for the analysis: <WKL1, Crash>, <WKL1, Hang>, <WKL2, Crash>,

and <WKL2, Hang>. The failure prediction parameters we considered include

predictions lead-time ∆tl from 10s up to 50s in advance, with a maximum prediction

interval ∆tp of 25s. The windowing value for the FPA2 and FPA4 is between 2s and

10s.

Details about the failures generated are presented in Table 5.4. We should highlight

the fact that the failure occurrence is, as expected, 2% in average, the same activation

rate obtained in our case studies presented before. The entire benchmarking

campaign took about one month. In the next sections we present and discuss the

benchmarking results from multiple perspectives.

Table 5.3 - The details of the analysis

Parameter Values

Failure Modes Crashes, Hangs

Workloads WKL1 (WinRAR), WKL2 (COSBI OpenSourceMark)

Predictor SVM (Gaussian kernel)

Variable selection Backward elimination + wrapper approach

Predictor Optimization Grid search (gross) + Deepest descend (fine)

(γ, C) (Grid search) γ= [2-10,1], C=[2-1, 27]

∆tl (Failure prediction) 10, 20, 30, 40, 50 s

∆tp (Failure prediction) 5, 10, 15, 20, 25 s

Window size (w) 2,3,4,7,10 s

Results validation 5-folds cross validation

Chapter 5

 126

 Best performing Failure Prediction model 5.5.2

The first analysis is focused on the absolute performance of the predictors, i.e., not

considering the performance relative to a specific (∆tl, ∆tp). The results are shown in

Figure 5.3. The first bar of each couple represents the F-Measure of a single

predictor, and the second its ROC-AUC. Each of the four plots is relative to one of

the four operational scenarios. In the first scenario <WKL1, Crash>, the predictor

with the highest F-Measure (and ROC-AUC) is FPA2, i.e., the SVM classifier with a

sliding window and a Gaussian kernel. In the second scenario <WKL1, Hang>, the

best performance was obtained by FPA1 (SVM classifier with a Gaussian kernel) both

in terms of ROC-AUC and F-Measure. This same algorithm has the best performance

in the third scenario <WKL2, Crash> scenario. Finally FPA3 (SVM classifier with a

linear kernel) performs better than the others in the last scenario <WKL2, Hang>.

Table 5.4 - Failures generated

Workload
Golden

Runs

Fault

Injection Runs

Failures detected

Total %
System

Crash %

System

Hang %

WKL1 500 3000 121 (4.03%) 46 (1.53%) 75 (2.5%)

WKL2 500 3000 74 (2.47%) 6 (0.2%) 68 (2.27%)

(a) WKL1, Crash

(b) WKL1, Hang

(c) WKL2 , Crash (d) WKL2 , Hang

Figure 5.3 - FPA with the highest F-Measure/ROC-AUC.

Assessing and comparing Failure Prediction models

127

It is worth noting that the performance (F-Measure and ROC-AUC) is an average of

the performance of each predictor on each of the partial datasets coming from the k-

fold cross validation, and that similar conclusions can be obtained considering either

the F-Measure or the ROC-AUC. Moreover, each performance value is the maximum

observed among the parameters (∆tl, ∆tp), i.e., the performance is the best achievable.

This makes sense, as a failure prediction algorithm should be used for a specific

couple of values (∆tl, ∆tp). In this case, the predictor performance is maximized by

the parameters (∆tl*, ∆tp*). In the same way, FPA2 and FPA4 performance is the

maximum value for the couple (∆tl, ∆tp) and the windows width w.

The fact that there are different best predictors for different scenarios suggests an

influence of the workload in failure prediction. Recalling the observations about the

use of the sliding window in Chapter 3, we can confirm that such technique still

outperforms classifiers that do not include the time dimension in several cases.

 Best Failure Prediction model for each couple (∆tl, ∆tp) 5.5.3

The objective of the second assessment is to select the best predictor given a

prediction horizon (∆tl, ∆tp). This scenario may emerge when one needs a failure

predictor with specific characteristics in terms of prediction lead-time, for instance

due to the target system characteristics. Table 5.5 shows the best failure prediction

algorithm for each couple (∆tl, ∆tp) and the relative average performance in terms of

the F-Measure. The results relative to ROC-AUC are omitted as they lead to similar

conclusions. Again, the best performing failure prediction algorithm varies for each

scenario and for each prediction horizon (∆tl, ∆tp). The most interesting scenario is

<WKL2, Hang>, where a different predictor (among FPA1, FPA2 and FPA3) is

proposed for each couple (∆tl, ∆tp), which is coherent with the results in the previous

section.

The results in Table 5.5 may help in the design phase of a failure prediction system,

to better select the prediction horizon (∆tl, ∆tp). Moreover, at runtime a meta-

predictor can be used for selecting one among the results provided by the predictor

for each (∆tl, ∆tp) horizon, thus achieving the highest prediction performance. It is

also worth noting that failure prediction can generally follow two approaches. In a

first one, the values of ∆tl and ∆tp are defined by the needs of the system (e.g., a web

server would need a prediction at least 1 minutes in advance, to have time to save its

internal state) or by contract (e.g., on a Service Level Agreement). The second

approach consists of having several values, resulting in a “best-effort” approach

(e.g., train several predictors considering the multiple combinations of ∆tl and ∆tp

and choose the one that performs better) (Ivano Irrera, Pereira, and Vieira 2013).

Chapter 5

 128

Table 5.5 - Predictors F-Measure relative to prediction parameters ∆tl and ∆tp

∆tp

∆tl

 10s 20s 30s 40s 50s

5s FPA2, 0.549 FPA2, 0.611 FPA2, 0.696 FPA2, 0.747 FPA2, 0.854

10s FPA2, 0.696 FPA2, 0.747 FPA2, 0.854 FPA2, 0.879 FPA2, 0.894

15s FPA2, 0.854 FPA2, 0.879 FPA2, 0.894 FPA2, 0.917 FPA2, 0.936

20s FPA2, 0.894 FPA2, 0.917 FPA2, 0.936 FPA2, 0.944 FPA2, 0.906

25s FPA2, 0.936 FPA2, 0.944 FPA2, 0.906 FPA2, 0.897 FPA2, 0.894

(a) WKL1, Crash

∆tp

∆tl

 10s 20s 30s 40s 50s

5s FPA1, 0.877 FPA1, 0.921 FPA1, 0.930 FPA1, 0.936 FPA1, 0.934

10s FPA1, 0.930 FPA1, 0.936 FPA1, 0.934 FPA2, 0.947 FPA1, 0.969

15s FPA1, 0.934 FPA2, 0.947 FPA1, 0.969 FPA2, 0.963 FPA2, 0.965

20s FPA1, 0.969 FPA2, 0.963 FPA2, 0.965 FPA2, 0.963 FPA2, 0.970

25s FPA2, 0.965 FPA2, 0.963 FPA2, 0.970 FPA1, 0.973 FPA1, 0.990

(b) WKL1, Hang

∆tp

∆tl

 10s 20s 30s 40s 50s

5s FPA1, 0.877 FPA1, 0.921 FPA1, 0.930 FPA1, 0.936 FPA1, 0.934

10s FPA1, 0.930 FPA1, 0.936 FPA1, 0.934 FPA2, 0.947 FPA1, 0.969

15s FPA1, 0.934 FPA2, 0.947 FPA1, 0.969 FPA2, 0.963 FPA2, 0.965

20s FPA1, 0.969 FPA2, 0.963 FPA2, 0.965 FPA2, 0.963 FPA2, 0.970

25s FPA2, 0.965 FPA2, 0.963 FPA2, 0.970 FPA1, 0.973 FPA1, 0.990

(c) WKL2, Crash

∆tp

∆tl

 10s 20s 30s 40s 50s

5s FPA3, 0.907 FPA2, 0.896 FPA2, 0.901 FPA2, 0.907 FPA2, 0.897

10s FPA2, 0.901 FPA2, 0.907 FPA2, 0.897 FPA2, 0.875 FPA2, 0.870

15s FPA2, 0.897 FPA2, 0.875 FPA2, 0.870 FPA2, 0.855 FPA3, 0.853

20s FPA2, 0.871 FPA2, 0.855 FPA3, 0.853 FPA3, 0.851 FPA2, 0.845

25s FPA3, 0.853 FPA3, 0.851 FPA2, 0.845 FPA2, 0.836 FPA3, 0.836

(d) WKL2, Hang

Assessing and comparing Failure Prediction models

129

 Performance vs Computational cost 5.5.4

The benchmark also allows other interesting analysis, as on the computational cost

of the best performing failure prediction algorithm. In Figure 5.4 we compare the

failure prediction algorithms on the basis of the ROC-AUC, the Set-up time, and the

ratio AUC/Set-up time. The Set-up time actually represents the computational cost of

the algorithm and is shown in the plot as a relative value, i.e., divided by the

maximum average Set-up time obtained during the benchmarking campaign (this is

just a rescaling operation that does not influence the observations).

In scenarios <WKL1, Crash> and <WKL1, Hang>, the failure predictor that showed

the best AUC/Set-up time ratio is FPA1 followed by FPA2. This was expectable, as

FPA1 and FPA2 are the best performing predictors in these scenarios, and training an

SVM with a linear kernel takes much less time than training a SVM with a Gaussian

or other kinds of non-linear kernels. In scenario <WKL2, Crash> the best ratio was

obtained by FPA3, and FPA1 performed best in the case of hang failures. The results

in terms of AUC/Set-up time ratio make evident the fact that, in general, the gain

obtained in terms of performance is not justified by the computational cost that

comes with it. If the cost in terms of Set-up time has to be taken into account, the

performance/computational cost ratio should be considered as an input of the

selection decision.

WKL1, Crash WKL1, Hang

WKL2 , Crash WKL2 , Hang

Figure 5.4 - Performance vs Computational cost

Chapter 5

 130

 Properties of the implemented benchmark 5.5.5

In this section we discuss the concrete properties of the FP Benchmark, analyzing its

implementation and usage. In some cases it was necessary to experimentally validate

the benchmark properties (e.g., repeatability) and in the other cases the validation is

based on reasoning (e.g., easy to implement and use).

A benchmark that is not easy to implement and use is clearly unacceptable. Our

benchmark is implemented using PowerShell scripting, C++ libraries and the

MATLAB environment, largely adopted and easy to use solutions. Our benchmark is

completely automatic, fast and based on simple procedures. In particular, although

complex, the fault injection is facilitated by existing tools of easy use, as the G-

SWIFIT tool (J. A. Duraes and Madeira 2006).

About the promptness in obtaining the benchmarking results, using fault injection

we were able to cause 195 failures in less than 800 hours. We tried to compare such

statistics against Windows XP OS failures data available online, which are rather

rare and incomplete. Nevertheless, a study on Microsoft products mentions that

Windows XP OS has a 600 hours MTTF, although this value considers both OS and

application failures (“Tech Insider - Various Studies”). In this perspective, even

considering both OS and application failures, using fault injection reduces the

collection of failure data by two orders of magnitude.

For addressing the property of the benchmark to be not intrusive, the predictors’

control, execution, results collection and analysis are processed by a separate system

(controller or analysis system), which assures non-intrusiveness on both the prediction

models behavior and the target system behavior. Furthermore, the benchmark does

not require any kind of modification on the failure prediction models, as they simply

use the dataset generated from the target system for training and testing purposes.

On the other hand, the fault injection tool is intrusive, but this is something we

cannot avoid considering the proposed technique for generating failure data.

A benchmark must allow comparing different tools in different domains and for

different types of systems, thus being portable. In our case, this is a property that

applies to the benchmarking framework and not to a concrete implementation (the

implemented benchmark can only be used in the target system for which the tools

were developed). In practice, the more general the benchmarking components are

(i.e., their capability of being implemented on every kind of architecture, or whose

implementation is hardware-independent), the more the benchmarking process is

portable. In our case, every component of the benchmark is portable, and the

benchmark can be used to assess and compare any kind of failure prediction model.

In particular, the workload can be implemented on any software system and the

faultload and fault injection tool can be defined for different types of systems

following the recommendations in (J. A. Duraes and Madeira 2006).

Assessing and comparing Failure Prediction models

131

When run more than once over the same failure prediction model, the benchmark

must report the same results (at least in statistical terms). Repeatability is a

fundamental property, as each execution of the benchmark should give confidence

about the results obtained. A necessary condition that the benchmark addresses is

keeping the faultload and the workload parameters constant, as well as restoring the

target system state at the beginning of each fault injection run. The results from

applying the k-fold cross validation to the dataset also gives to us some insights on

how the results vary. Table 5.6 presents the ROC-AUC measurements relative to two

of the failure prediction algorithms benchmarked considering different dataset folds.

The results are relative to the best ROC-AUC values in the case <WKL1, Crash> and

we can observe that the distribution of the values does not vary considerably in the

case of the FPA1, while the FPA2 there are some variations, which are most likely due

to the prediction values chosen (Table 5.5 (a) confirms that FPA2 had poor

performance using (∆tl, ∆tp)=(10s, 5s))). Such results suggest that the benchmark is

repeatable.

Finally, the results the benchmark should be representative of real world scenarios,

as only in this case they may be considered relevant. In this particular scenario,

representativeness also depends on the accuracy of the failure data. Necessary

conditions for generating accurate data are the injection of realistic software faults,

i.e., software faults that are likely to be found in real systems (J. A. Duraes and

Madeira 2006), and the representativeness of the workload used for generating

failure data, as presented in Chapter 3. On the other hand, a sufficient condition for

the benchmark results to be representative is their accuracy with respect to results

obtained in a real scenario. We here validate the benchmark representativeness by

using the weak accuracy estimation analysis, as it involves the analysis of performance

of the predictors. Thus, we used the approach already introduced in Chapter 3,

building two datasets based on the injection of faults in two different modules:

kernel32.dll (Dataset#1) and ntdll.dll (Dataset#2). Here we use the relative

performance estimation metric εµ* applied to the mean values of the predictors,

which is calculated as the relative error between the performance obtained using two

different datasets as defined by equation (3.4).

Table 5.7 shows the results relative to the best performing failure prediction

algorithm for each scenario and each (∆tl, ∆tp), together with the relative

performance error εµ*. The synthetization error estimates εµ* show a value between

about 0,2% and 5%, in terms of ROC-AUC, which suggests an error of at most 5% in

terms of ROC-AUC in predicting in a real (or at least different) operational scenario.

Table 5.6 - ROC-AUC distribution along the dataset folds (excerpt).

Failure prediction

algorithm
 (∆tl, ∆tp) ROC-AUC values (folds)

FPA1 (30s, 5s) 0,96 0,93 0,96 0,86 0,96

FPA2 (10s, 5s) 0,96 0,78 0,94 0,79 0,95

Chapter 5

 132

Such results imply that the benchmarking representativeness can be improved,

aiming at reducing the error estimate εµ* to zero by improving the several

components and parameters used. Benchmarking results with a given εµ* can still be

used, however the user must consider that the measured performance value of a

given failure predictor FPAi has an associated risk value corresponding to ε*FPAi. The

results also show that the algorithms ranking keeps in the validation, except in

scenario <WKL1, Hang>, where FPA2 performs better than the expected best-

performing FPA1. However, this has been assessed as a side effect due to the reduced

number of failures available to validate the results.

5.6 Final remarks

In this chapter we proposed a benchmarking framework for a sound assessment and

comparison of alternative failure prediction models on a particular target system.

The framework is based on the failure data generation approach proposed in

Chapter 3, making use of realistic software fault injection, and allows an easy and

prompt analysis of the prediction models. We provided guidelines for the

implementation of the benchmark and discussed the relevant properties, such as

being simple to implement and to use, being fast in its execution, being portable and

non-intrusive, and providing results that are repeatable and representative.

The proposed benchmarking framework includes three key components, namely the

dataset (build using the approach in Chapter 3), the benchmarking metrics and the

analysis procedure. In particular, we proposed four families of metrics for taking

into account the properties of a failure prediction model to be fairly assessed, which

enables the benchmarking results to be generally accepted.

The proposed benchmark was used in a concrete case study based on the Windows

XP OS. Two different workloads and two failure modes were considered, and four

failure predictors were assessed and compared under different scenarios. The results

showed that the procedure could be used for training and testing failure predictors

Table 5.7 - ROC-AUC and synthetization error.

 WKL1 Crash WKL2

 FPA1 FPA2 FPA3 FPA4 FPA1 FPA2 FPA3 FPA4

Dataset#1 0,963 0,976 0,960 0,825

0,998 0,986 0,996 0,978

Dataset#2 0,975 0,995 0,938 0,784 0,997 0,980 0,995 0,979

εµ* (%) 1,2 1,9 2,3 5,0 0,1 0,6 0,1 0,05

 WKL1 Hang WKL2

Dataset#1 0,973 0,946 0,850 0,876

0,994 0,970 0,929 0,907

Dataset#2 0,885 0,927 0,852 0,834 0,968 0,923 0,925 0,869

εµ* (%) 8,8 2,0 0,2 4,8 2,6 4,8 0,4 4,2

Assessing and comparing Failure Prediction models

133

in a cost-effective and easy way. The properties that a benchmark must ensure were

discussed and validated. In particular, we assessed the representativeness of the

results by estimating the accuracy of the generated failure data by using the weak

synthetization metrics.

The next chapter presents a framework for addressing the problem of using failure

prediction models in evolving systems, in which there may be a need for re-training

a failure predictor after a change affects the target system or its environment. In

particular, we propose an automatic framework for assessing and re-training failure

prediction models on need-only basis, as manually re-training a predictor is a

complex and high cost activity.

 135

Chapter 6
A framework for continuous
training of Failure Predictors

In the previous chapters we addressed the problem of training and assessing failure

prediction models under the scarcity of failure data. We demonstrated that realistic

software fault injection could be used for generating failure data in short time and

proposed a framework for a sound assessment and comparison of alternative failure

prediction models on a particular system installation. However, the scenario

considered in such works is static, i.e., we assume that the target system does not

change over time, which is a questionable assumption in some cases. Computer

systems are nowadays expected to evolve, repeatedly and in several different ways.

For instance, some hardware or software component may be changed during the

target system lifecycle or the system itself may be subject to updates (e.g., a software

patch), upgrades, or changes in its behavior (e.g., changing policies in memory

management, installation of new protocols).

In scenarios where changes in the target system occur, the performance of failure

prediction models may degrade (this is particularly evident in the case of long-

running servers). Although one can develop adaptive failure prediction algorithms to

cope with expected changes by adapting the prediction model to the environment,

there is no guarantee that the expected changes are the only ones occurring (i.e.,

unexpected changes may also happen, degrading the prediction performance).

Adapting the failure prediction model over time is thus a necessary step that

requires additional effort, as training and optimizing predictors are still essentially

manual procedures (e.g., (I. Irrera, Duraes, and Vieira 2014; I. Irrera et al. 2010; G.A.

Hoffmann 2006; G. F. Hughes et al. 2002)), and failure data scarcity has an even

greater impact (compared with a static scenario).

In this chapter we propose a preliminary framework for the automatic adaptation

of failure prediction models (Adaptive Failure Prediction Framework, AFP Framework),

Chapter 6

 136

which allows automatically re-training and deploying a failure prediction model

when particular events occur, thus reducing the cost of the re-training process. The

idea consists of having an integrated environment driven by configurable events that

trigger the models’ adaptation process. This is based on the use of the approach for

generating realistic failure data proposed in Chapter 3 and virtualization to reduce

the cost and impact on the target system. In practice, the framework has the

following key characteristics:

 The framework supports automated self-adaptation to accommodate

evolving systems. The failure predictors (re-)training process is automated,

based on a modular event-driven architecture to detect when re-training is

needed. An event corresponds to some occurrence in the system that may

affect the prediction performance. The framework is configurable to meet the

requirements and target system specificities, allowing the user to define

events.

 The framework uses the approach proposed in Chapter 3 for generating

failure data based on software fault injection, which reduces the time

needed to (re-)train a predictor. This allows automating the failure prediction

training, testing and validation, reducing time and human intervention,

which is limited to the set-up of the framework.

 The framework uses a virtualization environment to sandbox the fault

injection process, avoiding injecting faults in the target system (i.e., the fault

injection takes place in a sand-boxed copy of the target system). In fact, as

discussed in Chapter 4, injecting faults during operation would cause

unacceptable side effects.

The AFP Framework is provided as a conceptual structure, including the architecture,

the basic procedures involved (e.g., training, testing, fault injection and failure data

collection, etc.), and guidelines for its implementation. Although being a preliminary

work, the framework can already be implemented in a concrete target system by

following the guidelines provided and by adapting the parts that are dependent on

the specificities of that system (e.g., the workload to be executed on the target replica

and the faults to inject). To demonstrate the effectiveness of the propose framework,

this chapter includes a case study in which the framework is implemented in the

context of a web server, showing that the solution is able to keep the predictor

performance above a given threshold with small human intervention, under

changing conditions.

Before describing the proposed framework, we also present a study that confirms

the need for adaptive failure prediction systems. In particular, we study the

performance of a failure predictor when used to forecast failures in an Apache

Tomcat web-serving system under successive software updates.

A framework for continuous training of Failure Predictors

137

The remainder of the chapter is organized as follows. Section 6.1 analyzes the

performance of a failure prediction model in a changing system. Sections 6.2 and 6.3

present the proposed framework for implementing an Adaptive Failure Prediction

environment. Section 6.4 presents the case study that demonstrates the applicability

of the framework. Finally, section 6.5 concludes the chapter.

6.1 On the need for continuous training of failure
prediction models

In this section we study the following hypothesis:

“a change in a system (e.g., a system upgrade) degrades the failure prediction performance,

thus requiring a retraining of the prediction model”.

We believe that this study is fundamental for motivating the framework proposed in

this chapter, as training is a costly and complex operation (even considering the use

of fault injection) and it should be done on a need-only basis. This way,

understanding if changes effectively affect the failure prediction performance in

order to avoid running a failure prediction system with degraded, possibly

worthless, performance, and also to prevent unnecessary retraining efforts is a key

aspect.

 Overview of the study 6.1.1

The idea is to study the prediction performance looking for any degradation as the

target system is updated. If some degradation is observed, then the predictor is

updated (i.e., trained to predict failures in the updated environment) and re-assessed

in order to understand if there is some performance recover. The assessment is based

on the benchmarking approach presented in Chapter 5 applied to a virtualized target

system (as before, virtualization provides a fast evaluation environment that isolates

the target system for hosting fault injection).

Considering B and C as successive versions of an initial version A, and PA,B, the

performance (e.g., Precision, Recall, ROC-AUC, …) of the failure predictor trained

with failure data from system version A, but being used in the system version B

(updated system), we aim at confirming that:

(6.1) {

𝑃𝐵,𝐵 > 𝑃𝐴,𝐵

𝑃𝐶,𝐶 > 𝑃𝐴,𝐶

𝑃𝐶,𝐶 > 𝑃𝐵,𝐶

The failure prediction model used is the Support Vector Machine (SVM) classifier

with a sliding window and the purpose is to predict failures in a Windows OS server

running the Java-based application server Apache, which is subjected to two

Chapter 6

 138

updates. In practice, three versions of the Tomcat server (namely versions 6.0.36 (A),

7.0.19 (B), and 7.0.40 (C)) were used and the performance cases assessed are referred

to as PA,A, PA,B, PA,C, PB,B, PB,C, PC,C (see Table 6.1). The remaining cases were not

analyzed, as we are interested only in the cases in which a predictor is trained with

data coming from a previous version of the target system (and not the reverse).

To reduce the time needed for the experiments we installed the target system in

three different virtual machines, thus parallelizing the collection of data and

prediction results by a factor of three. The complete set-up is presented in Figure 6.1.

The base version of Tomcat (6.0.36) was installed in the three virtualized systems,

and in two of the virtual machines we updated Tomcat to version 7.0.19 and version

7.0.40, respectively, to implement the system upgrade/evolution aspect of our case

study. The systems are installed on separated Citrix XEN servers (hypervisors)

(Citrix) in order to avoid error propagation from one machine to another and

potential influence in the variables monitored (it has not been proven yet that faults

can or cannot propagate from a virtual machine to another). The controller systems

are in charge of managing the experiments, analyzing the failure data coming from

the target system, and hosting the failure predictor.

The characteristics of the different system are the following:

 Sandbox system: Intel i5-650@3.60GHz (quad-core) machine, 8GB RAM, 500

GB HDD, running XEN hypervisor server version 6.2.

 Target systems: 4 VCPUs, 4GB RAM, 50GB HDD, running Tomcat on the top

of a Windows XP OS (SP3).

 Controller systems: Intel i5-650@3.60GHz machine, 8GB RAM, running a

Windows XP OS (SP3).

Data coming from a target system Sx are organized in a dataset DSx, containing

Failure Data and Golden Data. As defined in Chapter 3, each dataset is divided in a

Train dataset (TDSx) and a Test dataset (TTDSx), and the performance of the failure

predictor when upgrading a system from version A to version B (PA,B) is obtained by

training the predictor using the training set TDSA and then testing it using TTDSB. As

we must assure that the predictor performance does not depend on a particular

dataset, the predictor is evaluated several times using k-fold cross validation.

Table 6.1 - Failure predictor performance comparison.

 Testing on Tomcat version…

Training on

Tomcat version…

 #A (6.0.36) #B (7.0.19) #C (7.0.40)

#A (6.0.36) PA,A PA,B PA,C

#B (7.0.19) - PB,B PB,C

#C (7.0.40) - - PC,C

A framework for continuous training of Failure Predictors

139

The dataset DSX is partitioned in k parts, obtaining k groups (folds) by taking

different partitions as training and testing datasets each time, leading to different

datasets DSXk. The predictor is then assessed using k different datasets (TDSXk,

TTDSXk), obtaining a distribution of the predictor performance <PX,Y1, PX,Y2, …, PX,Yk>.

We characterize the performance of the predictor in terms of the ROC-AUC.

The target systems are restored after each fault injection run, using the snapshotting

and system restore functionalities provided by the XEN hypervisor. The approach

proposed in Chapter 3 is used for generating the data, and the fault model, faultload,

failure modes (Crash and Hang) and tools (including the SVM predictor with a sliding

window) considered are the same used in the case study presented in Section 3.6. The

difference is the workload, which consists in the set of operations defined by the

TPC-W benchmark (Smith 2000), which is representative of real world-application

scenarios (thus being a realistic workload).

TPC-W is a standard specification for benchmarking transactional web-serving

systems, and the workload emulates typical operations executed by web servers in

the form of an online bookstore. It includes an application implement as Java servlets

to be deployed on the web server, and clients requiring the server to perform

different types of operations. Hence, the TPC-W workload simulates an online

bookstore serving client requests, where the clients are emulated by the controller

system, and submit browsing and purchasing operations to the web server. In this

Figure 6.1 - Experimental setup parallelizing the generation of failure data.

Chapter 6

 140

work we not consider workload variations, i.e., the workload parameters such as the

client average request rate, the number of clients and the workload execution time,

among others, are kept constant over time.

We monitored 233 numerical variables in each target machine whose values

characterize the state of the OS resources, sampled at the rate of one value per

second using the Logman tool that is included in Windows OSs family. As was done

before, a three-step feature selection was used, reducing the set of variables to 25 (see

more about this process in Section 3.6.2). The variable selection was performed for

each tuple of values (∆tl, ∆tp) on the system hosting the base version of Tomcat, for

making the performance results comparable along the updates. An excerpt of 10 out

of 25 variables is shown in Table 6.2.

 Collected data 6.1.2

Details about the analysis parameters are shown in Table 6.3. The width of the sliding

window is of 2 and 3 seconds, and the lead-time of the prediction ∆tl was between 10

and 40 seconds, with a prediction window ∆tp from 5 to 15 seconds. These values

were chosen to simulate a realistic web-serving scenario. We believe that knowing if

a failure is occurring 20 seconds in advance is sufficient for a system running Tomcat

to save its status; obviously a larger prediction gives more time to react, but then the

prediction performance may be poorer.

We executed about 2000 fault injection runs, each lasting about 240 seconds. One

fault was injected in each run, leading approximately to 75 failures per target system

(data about the failures observed in each Tomcat version are presented in Table 6.4).

In practice, the workload was executed 2025 times (25 GR + 2000 FIR). The somewhat

low number of failures was expectable, as there is no guarantee that the fault

Table 6.2 - Monitored variables, an excerpt.

Variable name Monitored component

Pool Paged Allocs Memory

Pool Nonpaged Bytes Memory

C2 Transitions/sec Processor (core 0)

Page Faults/sec Process java.exe

IO Read Bytes/sec Process svchost.exe

Avg. Disk sec/Transfer LogicalDisk

System Calls/sec System

Semaphores Objects

Context Switches/sec Thread

Lazy Write Pages/sec Cache

A framework for continuous training of Failure Predictors

141

locations of the injected faults are within code actually executed (J. A. Duraes and

Madeira 2006).

 Results and discussion 6.1.3

Table 6.5 presents the average of the predictor performance in terms of ROC-AUC

after a 5-fold cross validation (only w=2 is presented, as the results obtained with

w=3 are not noticeably different), optimized according to the parameters (∆tl, ∆tp),

thus being the best performance results obtainable varying the couple (∆tl, ∆tp).

Starting from the results in Table 6.5, we can notice that the average value of PA,B is

smaller than the average of PB,B, confirming the thesis that updating the system from

version A to version B and not retraining the predictor may cause degradation in the

predictor performance. When updating to version C, re-training the predictor is also

the best choice (PC,C=0.9889) if it was trained using version B (PB,C=0.7689). However

PA,C has the same value of PC,C, possibly meaning that a re-train is not necessary.

Nonetheless, such result may depend on several factors: for instance, version A and

C of Tomcat may have similar behavior, even if a more likely reason is the fact that

Table 6.3 - Analysis parameters

Parameter Values

Failure Modes Crash, Hang

Workload TPC-W

Run duration 240 s

Total runs 25 GRs + 2500 FIRs

Predictor SVM (Gaussian kernel) + time windowing w= [2,3]

Variables (number) 170

Variable selection Backward elimination + wrapper approach

Predictor Optimization Grid search (gross) + Deepest descend (fine)

(γ, C) (Grid search) γ= [2-10,1], C=[2-1, 27]

∆tl (Failure prediction) 10, 20, 30, 40 s

∆tp (Failure prediction) 5, 10, 15 s

Results validation 5-folds cross validation

Table 6.4 - Workload runs and failures occurred.

Tomcat

ver.

Golden

Runs

Fault Injection

Runs

Failures

detected

System

Hangs (%)

6.0.36 (A) 25 2500 73 (2.92 %)

7.0.19 (B) 25 2500 82 (3.28 %)

7.0.40 (C) 25 2500 79 (3.16%)

Chapter 6

 142

such values are the average of the performance results coming from each fold, which

may mask an existing difference between the two results.

A more detailed analysis of the predictor performance is presented in Figure 6.2,

making use of Box-plots charts: each vertical bar represents the minimum, the

maximum, the second and fourth quartile, and the median value of the ROC-AUC

values obtained using the k-fold cross validation. We present the results using

different windowing sizes (w=2 and w=3) to confirm that the results do not depend

on w. When using obsolete training data, the performance PA,B, PA,C, PB,C drops for all

values of w. However, in the case of PA,C the average performance seems not to get

worse (seemingly, re-training is not needed) but the dispersion around the median

value increases. This means that we have less assurance of obtaining a performance

near a given value.

The PA,C case can be thus read as a loss of quality (performance) in the predictor

behavior. It is worth mentioning that the performance PA,C is better than PA,A. This

result may be due to several reasons: most likely the Tomcat version 6.0.36 has some

unpredictable behavior that version 7.0.x does not have, which makes the prediction

harder. For instance, the Tomcat developers introduced in version 7 a “Web

application memory leak detection and prevention” module (Vukotic and Goodwill 2011;

“Tomcat Version 7 - Changelog”), which may be the cause for the data collected

from version 7.0.x to contain less interference (due to better memory management).

Based on the results above, we can confirm the hypothesis that upgrading a system

from a version to a newer one may lead the prediction performance to degrade,

thus requiring retraining with data collected from the updated target system. Results

also confirm that re-training can improve and recover the performance of the

predictor.

Table 6.5 - SVM performance comparison (sliding window w=2s).

 Testing on Tomcat version…

Training on

Tomcat version…

 #A (6.0.36) #B (7.0.19) #C (7.0.40)

#A (6.0.36) 0.9494 0.8543 0.9889

#B (7.0.19) - 0.9948 0.7689

#C (7.0.40) - - 0.9889

A framework for continuous training of Failure Predictors

143

Tomcat web server versions X (older), Y (newer)

A (6.0.36), B (7.0.19) A (6.0.36), C (7.0.40) B (7.0.19), C (7.0.40)

w=2 w=2 w=2

w=3 w=3 w=3

Figure 6.2 - SVM performance comparison (Box-plots)

Chapter 6

 144

6.2 AFP Framework concept and modules

The AFP Framework (Adaptive Failure Prediction Framework) aims at supporting the

automatic and event-triggered assessment, re-training and deployment of failure

prediction systems. The framework allows detecting when the performance of one or

more failure predictors is below a given threshold and automatically retrains the

predictors in such occasions. The ultimate goal of the framework is to provide the

support to maintain an optimal performance of failure predictors over time, thus

enabling the failure prediction to self-adapt to a dynamic (changing) target. The

following are key characteristics of the AFP Framework:

 Automation: to reduce the need for user intervention to a minimum, the

framework automatizes: i) the generation of failure data; ii) the assessment of

failure predictor’s performance using the collected data; iii) the training,

testing and updating of the failure predictor model(s); and iv) the detection of

update events. In particular, the framework implements the benchmarking

approach proposed in Chapter 5 for the assessment of the failure predictors.

 Configurable event-oriented architecture: the framework is driven by an

event-oriented logic. Events trigger the parts of the framework responsible

for deciding if a retraining is necessary (and if so, to perform it). This logic

avoids blind retraining, thus saving system resources and reducing costs. The

events that are used by the AFP Framework can be configured by the user,

which can also define specific reactions.

 Sand-boxed, fault injection-assisted failure data collection: the AFP

Framework makes use of realistic software fault injection to cause realistic

failures, by implementing the approach for generating failure data proposed

in Chapter 3. A virtualized copy of the target system is used for generating

failure data, thus preventing failures from impacting the target system, as

discussed in Chapter 4. The original target system can be a virtualized or not-

virtualized computer system, although the second case increases the usability

of the proposed framework.

The AFP Framework is composed by several modules, each one with specific

concerns. This facilitates the orchestration of the several operations needed and

allows implementing each concern in an independent way. The framework core,

presented in the next section, manages and organizes the use of the modules that

compose the framework along several phases. In short, the modules of the AFP

Framework are:

 Sandboxing: the AFP Framework makes use of virtualization as sandboxing

solution for generating failure data. The sandbox manager is responsible for

creating the target system replica and hosting it in a sandbox environment,

besides being in charge of the target replica start, shutdown, reboot, and

A framework for continuous training of Failure Predictors

145

disposal operations. Recall that such operations are offered by several

virtualization solutions, as for instance XEN and VMWare hypervisors

(Citrix; Frappier 2014).

 Failure data generation: this module is responsible for the automatic

generation of failure data by injecting faults in the target system replica as

defined in Chapter 3, using realistic software fault injection and a realistic

workload to exercise the copy of the target system. The collected failure data

is organized as defined in Section 3.4. This module is also responsible for the

detection of failures based on detectors provided by the framework user.

Obviously, new detectors can be added after the framework deployment.

 Failure prediction: the main role of this module is to manage the failure

prediction systems running on the target system, including conducting the

predictors training and execution (runtime prediction). The module also

makes use of the failure detectors (used for the failure data generation) for

detecting failures in the target system. In practice, the failure prediction

module makes use of data collected from the target system and from its

replica. The data collected from the replica (Failure and Golden data) are

used for training, while the data read from the target system during its

execution is used at runtime to predict failures (the user has to define a buffer

of data to perform the prediction (e.g., 10 seconds of data)).

 Performance evaluation: this module is responsible for the assessment of the

failure predictor performance by implementing the benchmarking process

presented in Chapter 5. In brief, the outputs of each failure predictor are

collected and used to calculate a set of metrics chosen based on a given

property (the AFP Framework adopts the recommendations for the choice of

the metrics defined in Section 5.3). Evaluations are needed in several

occasions (e.g., to train the failure prediction, to verify the need for a

retraining).

 Events manager: this module is responsible for detecting events, triggering

the re-training of the failure predictors, and checking if the predictor update

is actually necessary. This module is customizable, as the events are

implemented in a plug-and play manner, which permits the creation of new

events (e.g., a timeout, the system being updated, the system configuration

being changed, etc.) and new specific reactions, both at the framework set-up

and after deployment. In practice, the manager detects the events that occur,

starts the reaction relative to that event, and eventually re-trains the

predictor. Afterwards, the module checks the eligibility of the requested

update of the predictors by comparing the performance of the newly trained

versions with the previous ones, updating the improved predictors only if

there are potential performance gains.

Chapter 6

 146

The different modules of the framework are placed on the target and on the

controller systems, as showed in Figure 6.3. The user is responsible of setting-up the

AFP Framework, by conducting the following tasks:

 Analyze the impact of alternative virtualization solutions on the failure

data generation and select the most adequate one, following the

recommendations in Chapter 4.

 Configure the process of cloning the target system into the sandbox

environment. If the target system is a virtualized one, then the user may take

advantage of the native functionalities offered by the virtualization

environment. On the other hand, if the target system is not virtualized, then

the user must: i) create a virtual machine taking into consideration the

hardware characteristics of the target system, in terms of CPU, memory, disk

and networking, and ii) install the same software packages (including OS and

services running on it) and applications (using the same versions running on

the target system). Afterwards, user should create a backup of the virtualized

target replica and configure the sandboxing module to restore such backup

after each fault injection run. It is worth noting that, if the hardware or the

software of the original system are updated, then that should be replicated in

the replica, either by means of an automatic process or manually by the user.

 Configure the failure data generation process based on the approach

presented in Chapter 3. This includes the definition of the workload to

exercise the copy of the target system and the implementation of failure

Figure 6.3 - The AFP Framework implementation.

A framework for continuous training of Failure Predictors

147

detectors, which are fundamental pieces for the automation of the entire data

generation process.

 Configure the failure prediction models following to the recommendations

presented in Chapter 3 and implement and configure the assessment

environment for the failure predictors. The proposal is to adapt the

benchmarking framework proposed Chapter 5.

 Define the events and the related reactions, considering the specificities of

the scenario in which the framework is implemented (e.g., the expected

events representing evolution of the system). Both the event and its reaction

must be implemented in a way that is compatible with the event manager

module. In particular, the reaction must include information about the failure

predictor re-training (e.g., train until a minimum false positive rate is

reached) and about the failure data generation campaign (e.g., the number of

golden and fault injection runs).

6.3 AFP Framework lifecycle and phases

The AFP Framework evolves along three phases: the preparation phase (in which a

user must choose the failure prediction systems, the variables to monitor, etc.), the

execution phase (failure prediction and event checking), and the training phase,

performed several times during the framework execution. In each phase, the

presented modules are orchestrated by the framework core, implementing the

execution and training phases, with the goal of reacting and training the failure

prediction systems when a specific event occurs. A schema is presented in Figure 6.4.

The preparation phase consists of a set of operations that the framework user must do

in order to prepare the framework for execution, as presented in the previous

section.

The execution phase consists of the effective prediction of failures and the

continuous monitoring of the target system, checking for the occurrence of events for

re-training the failure predictors, when necessary. In particular:

Figure 6.4 - Update events management and re-training execution.

Chapter 6

 148

 Failure prediction: the AFP Framework continuously collects data from the

target system using a monitoring tool. Data are used by the failure

predictor(s) to perform the prediction task.

 Event checking: the framework continuously checks if any new event occurs

considered the ones defined. In the case an event is detected, the AFP

Framework launches an update by calling a default procedure or a custom

procedure associated to that event.

 Failure predictor(s) (re-)training and update: the re-training operation (or

simply training, at the framework start-up) is executed on the occurrence of

an event. The framework stops the execution of the events manager module,

and starts the training phase, while the predictors continue in execution in

the target system. Once the predictor is re-trained, its performance is

compared with the one of the predictor still working in the target, which is

then updated if the recently trained predictor performs better.

The training phase consists of training (or re-training) one or more failure

predictors. The steps executed in this phase are:

1) Target system replication: the target system is cloned to a virtual machine, as

configured by the framework user in the preparation phase. This step is

repeated for each re-training, as the system replica must reflect the updated

state of the target system.

2) Data generation and collection: executed in the context of the virtualized

copy of the system, this is done several times to collect data from the replica

system. Failure Data (FD) and Golden Data (GD) are collected, and datasets

are built.

3) Predictors training: the failure prediction systems are trained using the

dataset generated. The output of each predictor is collected for later analysis.

This phase can be divided in three steps: i) training, where the failure

prediction algorithms are trained using labeled data (training data) for

discriminating failing from non-failing situations; ii) testing, where each

failure predictor tries to label a set of unlabeled data (testing data); and iii)

output collection, where the labels produced are collected.

4) Metrics calculation and performance analysis: the predictions from each

algorithm are used to calculate a set of metrics, chosen based on the

performance property that each predictor must address (e.g., high TP and

low FP).

A framework for continuous training of Failure Predictors

149

6.4 Case study: Adaptive Failure Prediction for a Tomcat
web server

A case study was developed to demonstrate the process of implementing the AFP

Framework and to analyze its efficacy in keeping the performance of the failure

predictors above a certain threshold. The case study is inspired on the one presented

in Section 6.1. The AFP Framework is implemented for continuously adapting a

SVM classifier with the sliding window enhancement, predicting failures on a

Windows XP OS machine running a Tomcat web server (the target system).

 AFP Framework implementation 6.4.1

As shown in Figure 6.3, the modules of the framework are installed on a controller

machine and remotely communicate with tools running on the target system and on its

replica. Failure data and performance analysis results are stored in a database,

managed by the controller system.

Citrix XEN hypervisors provide the sandboxing solution and host both the target

replica and the original target system, thus simplifying the case study by allowing

the target system’s replication via a single machine migration operation, natively

provided by the adopted hypervisor. The sandbox manager is implemented in the

controller system and manages the hypervisors’ operations. In our case, the sandbox

manager is the client application for VMs management provided with the XEN

servers.

Part of the failure data generation module runs in the controller system, namely a

fault injection manager, a workload manager, and a module for communicating with

the database that stores the failure data and the faultload. The Logman monitoring

tool is installed both on the target system and on its replica for collecting failure and

golden data, while the target system replica hosts the G-SWFIT fault injection tool.

The failure prediction module is implemented in the controller systems: it manages

one or more failure prediction algorithms, using failure data stored in the database,

and assesses their performance, when needed. The event manager is implemented

on the controller system, which monitors the target system state for the defined

events.

The AFP Framework core runs in the controller system. The framework modules are

implemented using PowerShell and the Microsoft Windows Management

Instrumentation (WMI) (both based on .NET Framework) (Siddaway 2012). The

database used is a Microsoft SQL Server 2010.

The characteristics of the machines in which the AFP Framework was deployed are

as follows:

Chapter 6

 150

 Sandbox systems: Intel i5-650@3.60GHz (quad-core), 8GB RAM, 500 GB

HDD, running XEN server version 6.2.

 Target system (and its replica): 4 VCPUs, 4GB RAM, 50GB HDD, running

Tomcat on a Windows XP (SP3).

 Controller system: Intel i5-650@3.60GHz machine, 8GB RAM, running a

Windows 7 OS (SP1).

 Experimental campaign 6.4.2

For accelerating the experiments we installed two separated testbeds consisting of

the same physical and software characteristics (i.e., each testbed made up by a

separate controller, target and sandbox). In each testbed, the target system runs a

Tomcat application server, which executes the workload of the TPC-W benchmark.

The Apache Tomcat web server versions used are 5.5.36 (#A) and 6.0.2 (#B), and the

intended performance analysis is summarized in Table 6.6. In practice, the

framework should retrain the predictor as soon as the web server is updated from

version #A to version #B, adapting it to the new target system configuration. Again,

ROC-AUC is used for characterizing the failure prediction systems, whose goal is to

maximize the recall and minimize the false positives.

The target system starts with a base version of Tomcat installed and then an update

is performed. The events “Tomcat update from version A to version B” (U) and “low

prediction performance” (LP) were defined. The first is triggered when Tomcat is

updated, while the second is triggered when the ROC-AUC of the predictor falls

below a certain threshold. The failure prediction module at the occurrence of each

failure performs the verification of the ROC-AUC value against the threshold. In this

way, we study the behavior of the predictors during golden runs and failure runs.

Together with the events, we implemented the corresponding reaction, in which the

framework re-trains the predictor, while the actual configuration one is left working.

In our experimental evaluation, we validate the trained failure predictors in the

target system, where we inject faults to cause new failures. Of course, this is only

done for experimental evaluation and validation purposes.

Table 6.6 - Failure predictor performance comparison

 Testing on Tomcat version…

Training on

Tomcat version…

 #A (5.5.36) #B (6.0.2)

#A (5.5.36) PA,A PA,B

#B (6.0.2) - PB,B

A framework for continuous training of Failure Predictors

151

The SVM failure predictor implementing the sliding window technique uses a

window of 3 seconds. The choice of such value is based on the analysis of the results

of the previous case studies: a SVM using a sliding window of width between 2 and

4 showed good performance improvements with a fair impact on the training cost.

The choices regarding failure modes to predict, failure detectors, faults to inject,

workload, and variables to monitor are the same as in Section 6.1. The failure

prediction lead-time ∆tl was between 10 and 40 seconds, with a prediction ∆tp of 5 or

15 seconds. These values were chosen to simulate a realistic web-serving scenario.

For the sake of simplicity, the TPC-W workload is executed on the target system and

on its replica (when needed), hence the replica system uses a realistic workload for

generating failure data (for details on such problem see Section 3.2.3). Both the

replica system (for training) and the target system run the workload during a time

period T of about 4 minutes.

 Results and discussion 6.4.3

Table 6.7 presents an overview of all the scenarios considered in terms of the number

of runs and o the observed failures. The target system executed the TPC-W workload

between 500 and 800 times for each Tomcat version, resulting in a total of about 1600

runs for Testbed #1, and 1200 for Testbed #2. We observed a total of about 30 Hang

failures in both targets, while Crash failures were observed only in the target

running in Testbed #1 (7 crashes). We must highlight the fact that in this

experimental campaign, Hang failures occurred also during Golden Runs, most

Table 6.7 - Runs and failures occurred.

 Testbeds

Tomcat version Predictor status

#1 #2

Runs Failures Runs Failures

 Crash Hang Crash Hang

Ver. A (5.5.36)

Before training
263 GR - 2 250 GR - -

285 FIR 2 1 250 FIR - 1

After training
165 GR - - 102 GR - -

127 FIR - 5 67 FIR - 8

TOT
428 GR

412 FIR
2 8

352 GR

327 FIR
- 9

Ver. B (6.0.2)

 Crash Hang Crash Hang

Before training
258 GR - 2 100 GR - 1

300 FIR 5 8 250 FIR - 16

After training
117 GR - - 50 GR - -

100 FIR - 6 96 FIR - 9

TOT
375 GR

400 FIR
5 16

150 GR

346 FIR
- 26

Chapter 6

 152

likely due to residual faults, or to the workload we run. Despite not expected, we

decided to use such events for training failure predictors together with the hang

failures obtained from fault injection campaigns, as failure events may naturally

occur also during golden runs.

Figure 6.5 presents the performance of the SVM predictor running on the original

target system in terms of ROC-AUC, only for to the failure mode Hang, as the

number of Crash failure events did not allow an extensive analysis of the predictor

behavior. The x-axis represents the events observed on the target system, including

failures. In particular, for each observed failure, the predictor labeled each data

sample according to the parameters (∆tl, ∆tp), and then the predictions were

compared to the real failure occurrence time. The y-axis is the ROC-AUC value. For

the sake of simplicity, we analyze the predictor performance fixing the parameters

(∆tl, ∆tp) to the values (10s, 10s). Such scenario represents the average behavior of the

SVM predictor’s performance observed in the present case study.

As mentioned before, the events considered in these experiments campaign were

“low prediction performance” (LP) and “Tomcat update from version A to version B” (U).

As shown in Figure 6.5 (a), the framework automatically reacted to the events LP

and U, replicating the original system to the sandbox hypervisor, and retraining the

predictor (R1 and R2) with data collected from the replica system. Retraining allowed

the recovery of the prediction performance on both the testbeds. Each retrain was

completely automatized and took about 3 days, mostly for collecting failure data,

while training, testing and updating the failure predictors took few minutes. Such

results confirm our expectations, as the average time we experienced in re-training

failure predictors in the case studies presented in the previous chapters took much

longer (about 10 days, in average), where most of the time was spent to organize the

system replication, the data organization and performance results analysis.

Figure 6.5 (b) shows similar results: starting from the LP event, the retraining R1

permitted the SVM predictor to achieve a performance greater than the threshold

value of ROC-AUC=0.8. The update of the Tomcat web server from version A to

version B caused a degradation of the performance, which only after two failures

resulted in a “low prediction performance” LP event. The retraining event R2 enabled

the predictor to restore its prediction performance above the defined threshold. The

re-training R2 after the update event U took about 6 days on Testbed #2 took. This

was due to the SVM optimization algorithms, probably caused by the fact that data

coming from Testbed #2 were noisier than data collected from Testbed #1 (this may

be due to varying environment conditions, as for example the dynamic workload

here used, or differences between the Testbed #1 and Testbed #2 system replicas).

However, still in this case, automatizing the re-training process is convenient.

A framework for continuous training of Failure Predictors

153

Results confirm that, once configured, the AFP Framework was able to react to

defined events and bring the predictor performance to an optimal working value,

generating failure data in short time (between 3 and 6 days) without human

intervention. This suggests that the framework can be used for continuously

retraining failure predictors.

6.5 Final remarks

In this chapter we addressed the problem of self-adapting failure prediction models

in the context of dynamic computer systems, by proposing a preliminary event-

driven, user-configurable and modular framework, called AFP Framework. Such

framework uses virtualization as a sandboxing solution for generating failure data

(when needed) by injecting software faults into a replica of the target system using

the approach proposed in Chapter 3. The need for implementing a framework for

automatically re-training failure prediction models was studied in a case study.

(a
)

 T
es

tb
ed

 #
1

(b
)

 T
es

tb
ed

 #
2

Figure 6.5 - The predictor ROC-AUC predicting hang failures,

using parameters (∆tl,∆tp)=(10s, 10s)

Chapter 6

 154

The proposed framework includes several modules that a user can easily implement

in a specific environment, including the sandboxing module, the failure data

generation module, the failure prediction and performance evaluation modules, and

the events management module. We presented an implementation of the AFP

Framework in a specific case study: an SVM-based failure predictor protecting an

Apache Tomcat web server running on a virtualized Windows XP. The results

obtained in the case study demonstrate that the framework implementation was able

to keep the predictor performance above a threshold across updates in the target

system, in a small amount of time and with reduced human intervention.

 155

Chapter 7
Feature Selection based on

symptoms identification: Case
Study

Choosing a set of variables (or features) for modeling a particular process or event is

a key problem, as such set must characterize the process or event in a complete way

and without redundancy. A given set of variables is optimal if the obtained model

can optimally predict the process or event, i.e., the model performance is maximized.

In particular, including uninformative or weakly informative variables in the model

may result in a worthless increase of the complexity, also resulting in an increase of

the time needed for model building (training time). On the other hand, the use of

wrongly informative variables affects the prediction performance of the model (H. Liu

and Yu 2005).

Several works have been proposed so far for addressing the feature selection

problem, divided into two approaches: filter and wrapper (see Section 2.2.5).

However, in the particular context of failure prediction, the existing approaches do

not take advantage of information regarding the failure occurrence events, which

can obviously result in limitations in the quality of the failure prediction models. On

one hand filter approaches only analyze the correlation between variables, excluding

the dependent ones. On the other hand, wrapper approaches perform a much more

complete variables analysis, including selecting a set of variables, building a model

with such set and repeating the procedure until an optimal model is obtained.

However, albeit representing an optimal approach, it requires a huge use of

computational resources and a long optimization time, making a complete selection

process unfeasible.

Chapter 7

 156

In the particular context of failure prediction, the type of information that constitutes

failure data, together with the coding of those data (e.g., using integer instead of real

values, normalize the numerical values), influences the prediction quality of a model

(G.A. Hoffmann, Trivedi, and Malek 2007). As shown by (G.A. Hoffmann, Trivedi,

and Malek 2007), the variables chosen by experts are likely not to be the optimal set

for prediction, and a proper feature selection procedure is needed. Feature selection

techniques can be applied to the failure prediction problem and an improvement of

the classical filter/wrapper feature selection schema was proposed by (G.A.

Hoffmann, Trivedi, and Malek 2007) in the form of a probabilistic wrapper approach

that makes use of information about the correlation of a set of variables with the

target (i.e., the performance of a generic prediction model) in a probabilistic manner.

The problem is that such approach makes use of a generic prediction model that was

implemented by the same authors (the Universal Basis Function, UBF (G.A.

Hoffmann, Trivedi, and Malek 2007)), which narrows the results to that particular

predictor.

In this chapter we present a case study where we analyze the effectiveness of the

failure symptoms identification method proposed in Chapter 4 in addressing the

feature selection problem. The idea is to use that approach for correlating the

symptoms presented by each variable with the occurred failures, and rank the

variables according to their correlation, using the technique proposed in Chapter 3

for generating the failure data. We believe that the information about the symptoms

of failures that each monitored variable shows can indicate the most adequate

variables for being used for failure prediction.

It is important to emphasize that the case study allows a preliminary analysis of the

applicability of a symptoms-based feature selection technique for the failure

prediction scenario. We believe that such feature selection approach can help in the

selection of variables independently from the failure prediction model being used,

and that it can also be applied as a complementary technique to improve the blind

selection of the filter approaches and/or to decrease the complexity of wrapper

approaches.

The outline of the chapter is as follows. Section 7.1 recalls the feature selection

approach and overviews the case study and Section 7.2 presents the experimental

campaign. Results are presented and discussed in Section 7.3. Finally, Section 7.4

concludes the chapter.

7.1 Feature selection approach and study overview

The failure symptoms identification approach proposed in Chapter 4 is here adapted

for selecting the best variables for predicting failures. Specifically, it is divided in

three phases:

Feature Selection based on symptoms identification: Case Study

157

1) Generating Golden Data and Failure data from the target system using the

approach for failure data generation based on realistic software fault injection

presented in Chapter 3.

2) Identifying failure symptoms and their correlation with the observed

failures, in the following way:

a) The failure symptoms are identified using the anomaly detection-based

method proposed in Chapter 4. In practice, a normal behavior profile is

built for each variable using Golden Data. The behavior of that variable is

compared with the profile during Failure Runs and other Golden Runs.

The variable presents a symptom if its behavior differs from its nominal

profile, according to specific rules.

b) The symptoms shown by a single variable are correlated with the

failures (and no-failure events) observed on the target system according

to a specific metric. A variable is correlated to a failure if it presented a

symptom when the failure occurred and did not present any symptom

during Golden Runs. Correlation can be based in different metrics, as for

instance metrics based on the contingency table (see Section 2.2.3). In this

case study we adopt the F-Measure.

3) Rank the monitored variables according to their correlation values. The

variables are ranked based on the correlation between the symptoms

identified and the observed failures. Different ranks can be obtained in

different scenarios, as different environmental parameters (e.g., workloads)

do influence failure data. The variables that show the highest rate of valid

symptoms have the highest likelihood to enable an optimal failure

prediction.

As in Chapter 4, the setup for the experiments includes a monitored target system

(system for which we want to identify the best failure prediction variables) and a

controller system (in charge of controlling the execution of the experiments),

installed in different machines (to isolate the effects of the experimental control from

the monitored system) connected using a dedicated network (to avoid interference

from external network traffic).

We conducted a variable selection campaign for a Windows XP OS-based target

machine. The experimental setup consisted of two key elements (see Figure 7.1): the

monitored system, on which the faults were injected, and a driver system (or

controller) for controlling the experiments and collect, archive, and analyze

monitored data. Both the monitored system and the driver system consisted of a

machine with a Pentium IV HT 3GHz processor, 2GB of RAM, and a 200GB SATA

Chapter 7

 158

hard disk, running Windows XP (SP3) Operating System. The two machines were

connected via a Fast Ethernet network.

Two workloads have been used in the experiments to assess if different operational

profiles may lead to different failure prediction symptoms, as these two workloads

stress the system in different ways. The workloads are the same used in the previous

chapters: a light workload based on the 7-Zip application (WKL1) and a heavier

workload based on the COSBI OpenSourceMark benchmark suite (WKL2) (see

details in Section 4.6).

As before, the LogMan tool was used for monitoring data at the maximum sample

rate of 1 value per second. The starting set included 387 variables selected manually,

describing the state of the operating system resources, the state of the processes

running, the availability and usage of network related resources, and information on

terminal and disk I/O activity. Note that we did put some care on the selection step

and tried not to exclude potentially good parameters (in case of doubt, we

considered the parameter for monitoring).

The choices taken about the failure modes and faults to inject are the same as in

Chapter 4. The difference is that, besides Crash and Hang failures, in the present case

study we also consider the failure mode Incorrect Results. In the case of WKL1 such

failure is detected by checking a checksum, while for WKL2 a failure is detected

when the benchmarking results are out of a nominal range computed during the

Golden Runs. For Crash and Hang, the failure detectors are the ones already used

before. The G-SWFIT tool was used for injecting software faults in the dynamic

library kernel32.dll following the recommendations by (J. A. Duraes and Madeira

2006).

For the symptoms identification, we computed the F-Measure, addressing the

maximization of the true positives (a symptom corresponds to a failure) and

minimizing the false positives (a symptom is identified but no failure occurred) and

the false negatives (the variable showed no symptom, but a failure occurred). The

higher the predictive power of the variable, the higher is the F-Measure (which

obviously ranges from 0 to 1). Obviously, different ranks can also be obtained using

the individual Precision and Recall measures, as well as many other metrics. The

Figure 7.1 - Experimental setup

Feature Selection based on symptoms identification: Case Study

159

tolerance for the bounds of the model representing the typical behavior of each

parameter was of 10% (tuned based on the analysis of the experimental results).

7.2 Experimental campaign

Table 7.1 presents the overall characterization of the experiments. A total of 1100

golden runs and 1143 fault injection runs were conducted. The duration of each run

was of 600 seconds, leading to an experimental campaign of 16 days (around

1,345,000 data points). In each fault injection run, software faults were injected

approximately 70 seconds after starting the execution of the workload (value defined

based on the analysis of the ramp up time of the tested configurations). The number

of injected faults for each run ranged from 1 to 5. Differently from the case studies in

the previous chapters, here we injected more faults to increase the failure rate

occurrence, as we are not particularly concerned with the accuracy of the generated

data, but with the analysis of the correlation of variables with the failures. Failures

were observed in a subset of the fault injection runs (111 for the configuration using

WKL1 and 98 for configuration using WKL2).

The most predominant failure mode observed was the system Hang and the least

frequent was the generation of Incorrect Results. This shows that in most failure

situations the faults injected leaded the OS to block and that the propagation of

errors to the application level was minimal. It is also worth noting that, differently

from the percentage of Hang faults observed in the experimental campaigns

presented in the previous chapters (in 2% of the runs, in average), the percentage of

Hang failures is now of 15%. This is due to the fact that in the present campaign we

injected a higher number of faults per run (between 1 and 5, as mentioned before).

7.3 Results and discussion

Figure 7.2 shows the F-Measure for the 387 parameters monitored in both

configurations, computed considering all the failures observed. Only a small number

of parameters present an F-Measure greater than zero (77 and 109 for the

configurations running WKL1 and WKL2, respectively), which suggests that most of

the monitored parameters are not useful for supporting failure prediction. A small

Table 7.1 - Overall characterization of the experiments

Workload
Golden

Runs

Fault

Injection

Runs

Failures detected

Total %
Incorrect

Results %

System

Crash %
System Hang %

WKL1 500 500 22,20% (111) 0 4% (20) 18,20% (91)

WKL2 600 643 15,24% (98) 1,87% (12) 3,58% (23) 10,58% (63)

Chapter 7

 160

subset of the monitored variables shows a positive correlation with the occurred

failures, presenting an F-Measure higher than 50% (17 in WKL1 and 12 in WKL2).

Table 7.2 presents the Top-10 parameters ranked with respect to Hang failures for

both workloads. The results for the Crash and Incorrect Results are omitted due to the

low number of such failures observed (that would make the analysis not precise).

The top-variables vary depending on the system configuration, which is expectable.

However, there are five parameters that show up in both cases, with quite similar F-

Measure (rows in gray). Although this confirms that the predictive value of the

parameters might be influenced by the operational profile of the system, it also

suggests that there may be a small set of parameters whose predictive power is quite

independent of the configuration.

(a)

(b)

Figure 7.2 - F-Measure of the 387 parameters monitored in both configurations,

relative to all the failures occurred (Crash, Hang and Incorrect Results).

Feature Selection based on symptoms identification: Case Study

161

Table 7.3 shows the detailed results for the Top-10 variables presented in Table 7.2,

thus relative to the <WKL1, Hang> and <WKL2, Hang> scenarios. As shown, precision

is quite high for WKL1 (always above 90%), but significantly lower for WKL2 (less

than 90% in six cases). On the other hand, recall is quite low in both configurations,

suggesting that there were a large number of cases in which variables were not able

to, individually, show any symptoms.

Another result that is worth highlighting is the number of false positives and false

negatives of the top-10 variables. In the <WKL1, Hang> scenario (Table 7.3 (a)) the

variables show a high precision of the symptoms to address the occurred failures

(almost only true positives, with very few false positives). On the other side, the

same variables miss some of the occurred failures (false negatives), having thus a

low Recall. In the <WKL2, Hang> scenario (Table 7.3 (b)), on the other hand, only six

out of ten variables had the same behavior presented by the variables in Table 7.3 (a),

while the tendency is to present more false positives, resulting in variables with a

lower Precision but with the same Recall values. This may be due to the fact that

WKL2 is more complex than WKL1, introducing dynamics in the data that the

threshold model proposed in Chapter 4 may be not able to recognize. The results

Table 7.2 - Top-10 parameters, according to F-Measure (in percentage)

Workload #1, Hang

Parameter Parameter Name F-Measure

250 Pool Nonpaged Bytes 70.42

203 Events 68.57

237 Handle Count 68.12

251 Pool Paged Bytes 68.09

255 Virtual Bytes 67.67

256 Virtual Bytes Peak 67.63

204 Mutexes 66.18

208 Threads (Objects) 65.69

254 Thread Count 65.69

361 Threads (System) 65.69

Workload #2, Hang

Parameter Parameter Name F-Measure

203 Events 73.79

237 Handle Count 72.55

204 Mutexes 67.37

250 Pool Non-paged bytes 60.87

205 Processes 54.55

149 Memory Avail. Bytes 51.09

150 Memory Available KB 51.09

151 Memory Available MB 50

254 Thread Count 49.54

207 Semaphores 46.62

Chapter 7

 162

also highlight the fact that the variables 203 (Events), 237 (Handle count) and 204

(Mutexes) presented the same behavior (low false positives and negatives) in both

the scenarios, thus emphasizing the existence of a set of variables that can be used

independently from the workload. It is also worth noticing that, given a couple of

variables, they may recognize different failure events, thus a combination of such

variables may provide an optimal set for predicting failures.

The analysis above confirms that the symptoms identification-based approach can be

used as a feature selection technique. The approach allowed analyzing the

symptoms shown by single variables in different scenarios in about two weeks (16

days), being effective in helping restricting the set of variables that could be further

analyzed by filter or wrapper feature selection approaches. In practice, it enables one

to have insights on variables and their likelihood in predicting failures. Moreover,

our approach presents the advantages of both filter and a wrapper approaches, as

the analysis of the failure-related data is done without the use of any failure

predictor (as filter approaches), while the symptoms correlation is based on failure

prediction performance metrics (similarly to a wrapper approach, in which the

performance value of a predictor is used in the selection).

Table 7.3 - Detailed results the Top-10 parameters (hangs only)

Parameter 250 203 237 251 255 256 204 208 254 361

TP 50 48 47 48 46 47 45 45 45 45

FP 1 1 0 2 1 1 0 1 1 1

FN 41 43 44 43 45 44 46 46 46 46

TN 388 388 389 387 388 388 389 388 388 388

Precision (%) 98.04 97.96 100 96 97.87 97.92 100 97.83 97.83 97.83

Recall (%) 54.95 52.75 51.65 52.75 50.55 51.65 49.45 49.45 49.45 49.45

F-Measure (%) 70.42 68.57 68.12 68.09 66.67 67.63 66.18 65.69 65.69 65.69

(a) Workload #1, Total number of hang failures = 91

Parameter 203 237 204 250 205 149 150 151 254 207

TP 38 37 32 35 24 35 35 23 27 31

FP 2 2 0 17 1 39 39 6 19 39

FN 25 26 31 28 39 28 28 40 36 32

TN 543 543 545 528 544 506 506 539 526 506

Precision (%) 95 94.87 100 67.31 96.00 47.30 47.30 79.31 58.70 44.29

Recall (%) 60.32 58.73 50.79 55.56 38.10 55.56 55.56 36.51 42.86 49.21

F-Measure (%) 73.79 72.55 67.37 60.87 54.55 51.09 51.09 50 49.54 46.62

(b) Workload #2 Total number of hang failures = 63

Feature Selection based on symptoms identification: Case Study

163

7.4 Final remarks

In this chapter we presented a case study on the effectiveness of the failure

symptoms identification method proposed in Chapter 4 in addressing the feature

selection problem. The approach followed allows ranking a set of variables

according to the symptoms each variable shows at the occurrence of a failure. The

symptoms are correlated with the failures using the F-Measure.

The symptoms identification-based approach is adapted in three phases, including a

failure data generation phase, symptoms identification and correlation phase, and a

variables ranking phase, intended to identify the features that are mostly correlated

with failure events.

We studied the effectiveness of the approach by running a campaign for analyzing

variables on a Windows-based system, running two different workloads. We

collected 387 variables, representing the properties and status of the operating

system and target system’s hardware, along a 16-days fault injection campaign, and

injected a total of 1143 faults, collecting 209 failures divided into crash, hang and

incorrect results. Results show that the proposed approach is quite effective and easy

to use for identifying the parameters that show a good correlation with failures,

allowing narrowing the focus on small sets of variables that present a positive

correlation with the occurred failures.

 165

Chapter 8
Conclusions and Future Work

This thesis proposed methodologies to advance the state-of-the-art on failure

prediction by making use of injection of realistic software faults to support the

generation of failure data that can be used for training, assessing and comparing

failure prediction models on a particular system installation.

The thesis started by proposing a framework for generating failure-related data to

be used for training and testing failure prediction models in a short time, based

on the injection of realistic software faults, which accelerate the occurrence of

failures. The framework should be implemented on specific target systems, for

collecting extensive and realistic datasets that take into account the characteristics of

the environment, and encompasses all the steps necessary for the generation of the

failure data, including the definition of the types of faults to inject, the identification

of the workload to be executed by the target system, the selection of variables

representing the behavior of the system, the detection of failure events, and the data

generation, collection and the dataset building process. The data generation

framework also includes an approach for assessing the accuracy of the generated

failure-related data, allowing increasing the confidence in using such data and

enabling a controlled and quality-driven generation process.

A case study was devised to demonstrate and validate the proposed approach in

assessing the performance of a novel online failure prediction model that improves

the failure prediction quality of a generic classifier-type predictor by including the

time dimension in the prediction task. The case study uses a Windows-based

software fault injection tool implemented at University of Coimbra following the G-

SWFIT recommendations. The proposed method allowed the analysis of an SVM-

based implementation of the failure prediction model running in a Windows XP OS

environment in four different scenarios, considering two different failure modes and

two different workloads. Results showed the effectiveness of the proposed

Chapter 8

 166

prediction model and confirmed that failure data could be generated by software

fault injection.

A solution to the problem of generating failure data on computer systems after

deployment was proposed. Such solution is based on the use of virtualization as a

sandboxing environment for generating failure-related data, hosting a copy of the

target system. A virtualized copy of a system is easily manageable and easily

recoverable, which eases the data generation process in what concerns the removal

of the injected faults and of possible damages caused by their activation. We

presented a solution for studying the applicability of such solution based on the

concept of failure symptoms identification and correlation with failures. The

approach was used to study the correlation of failure data generated from a system

with data collected from several virtualized copies. In practice, we analyzed the

impact of the virtualization layer of four different commercial hypervisors in four

scenarios (two different workloads and two different failure types) running a

Windows XP OS environment, showing that small sets of variables show similar

symptoms in the original system and in its virtualized copies, although other

variables differ across different scenarios and across the different hypervisors. Such

results allowed confirming that virtualization can be used as a solution for

generating failure data, although an assessment of the variables in common between

the target system and its virtualized copy is needed.

Given the need for a fair and sound assessment of alternative failure prediction

models in the context of a specific target system, we proposed a conceptual

framework for implementing benchmarks for failure prediction models (Failure

Prediction Benchmark or FP Benchmark). The framework envisages the necessary

steps to implement the benchmarking process, including the definition of the faults

to be injected for generating the failure data, the metrics that must be used for

assessing and comparing the different solutions, the characteristics of the workload,

among others. We practically demonstrated the effectiveness and applicability of a

concrete Failure Prediction Benchmark in assessing and comparing alternative SVM-

based failure prediction algorithms in a Windows XP OS environment. Two different

workloads and two failure modes were considered, and four failure predictors were

assessed and compared in four different scenarios. Results showed that the

procedure could be used for training, testing, and comparing failure predictors in a

cost-effective and easy way. The study of the failure prediction results and the

validation of the benchmark properties suggest that the proposed benchmark can be

used in the field.

A conceptual framework for the automatic and continuous self-adaptation of

failure prediction systems (Adaptive Failure Prediction Framework, or AFP

Framework) was also proposed. The goal is to train failure prediction models at

runtime on the occurrence of specific events (e.g., a software update), collecting

failure data when needed by using our approach for generating failure data, and

using virtualization as a sandboxing environment for performing the fault injection

Conclusions and Future Work

167

process, taking into account the impact of the virtualization on the data generation.

The training process is automated and based on a modular event-driven architecture

to detect when re-training of predictors is needed. A concrete implementation of the

AFP Framework was applied in a specific case study including an SVM-based failure

predictor applied to an Apache Tomcat web server running on a virtualized

Windows XP. Although preliminary, the framework was able to automatically

perform training and testing activities for the predictor to be at a nominal

performance, despite updates in the Apache Tomcat software, within a small

amount of time and human intervention.

Finally, we studied the use of the symptoms identification approach (proposed for

analyzing the impact of virtualization environment) as a method for selecting the

best system variables to be used for predicting failures, including ranking a set of

variables according to the correlation between the symptoms showed and the failure

events. A case study envisaging a campaign for selecting variables for a Windows

XP OS-based system, running two different workloads, was developed. The

approach effectively allows the selection and ranking of a set of variables positively

correlated with the observed failures. Results also showed that different rankings are

obtained in different scenarios, thus confirming the influence of the workload on

failure data as found in the previous case studies, but also highlighting some

variables in the top of the rankings that can be considered independently from the

workload.

The work presented in this thesis contributes towards moving forward the state-of-

the-art in the following ways:

 The injection of realistic software faults to generate failure-related data

allows overcoming the limitations of using existing failure data repositories

(hosting failure data from several kinds of systems). In fact, such solutions

clearly limit the optimal modeling of the predictor, as a target system may

evolve over time (leading to the need for new failure data to be collected),

and the failure data may come from different systems, or even different

configurations of the same type of system. In particular, our results show that

even the use of a different workload may impact on the optimal performance

of a failure predictor. Moreover, the failure data accuracy analysis is a novel

approach in the failure prediction context.

 The proposal of using virtualization environments as sandbox solutions for

generating failure data is novel in the field of failure prediction, as well as the

approach proposed for assessing the impact of virtualization layer on the

failure data.

 The framework for benchmarking failure prediction models is the first one in

this direction. Although the availability of failure data repositories can

provide datasets for the assessment and comparison of failure prediction

models, using such datasets is not sufficient for conducting a fair and sound

Chapter 8

 168

comparison: the assessment of failure prediction models with failure data

collected from several systems does not allow taking into account the

behavior of the target system on which the predictors will run. A concrete

benchmark implemented on the system that will host the failure predictor

supports such fair and sound analysis.

 The framework for adaptive failure prediction is the first work addressing

automatic and event-based automation of failure prediction models

adaptation over time. Few works, often resulting in manual approaches, have

addressed the problem of adapting failure prediction models along the

evolution of a target system.

 The adaptation of the symptoms identification-based approach to the feature

selection problem permits an a priori analysis of the variables based on the

failure symptoms they show and the correlation of such symptoms with

effectively occurred failures. Such information gives the user the possibility

to drastically reduce the number of variables to select for failure prediction,

with the possibility to be integrated with complementary feature selection

steps, based either on filtering or wrapping.

Future work

The work presented in this thesis has contributed to gain a broad experience on the

challenges to be addressed when using fault injection to improve failure prediction.

The light shed by our research helped identifying the following research directions

to pursue:

1. Validate synthetic data against real-world failure data and improve the

data generation process. As presented in Chapter 3, the generation of failure

data is influenced by several factors, and validation is needed for assuring

the training and testing of failure predictors to be accurate. Analyzing real

failure data is needed for improving the generation process, including the

selection of the most suitable set of metrics for estimating the accuracy of

synthetic data with respect to real data, and the definition of the workload

and the faultload used, among others.

2. Implement Adaptive Failure Prediction Frameworks for specific classes of

systems. The AFP Framework proposed in Chapter 6 must be further

specified to address the specificities of different computing environments.

The challenges to address include the identification of classes of systems that

can host an AFP framework, the replication of the target system and its

workload, and the automation of such activities.

3. Study alternative sandboxing solutions to the use of virtualization for

generating failure data by injecting faults in a target system. The works in

Conclusions and Future Work

169

Chapter 4, Chapter 5 and Chapter 6 allowed us to identify the limitations in

using virtualized environment, in particular their impact on the generated

failure data and the difficulty in using that solution in complex systems.

4. Propose a feature selection algorithm based on the symptoms

identification approach, proposed in Chapter 7. In particular, one should

study the impact of using combinations of variables for predicting failures.

5. Implement fault-injection-enhanced failure prediction to mission- and

safety-critical systems. We believe that this is the very next step to be

pursued, namely investigating the properties that an enhanced failure

prediction environment must encompass in order to address the

requirements of such type of systems.

Several research topics are currently scheduled as a continuation of the work

presented in this thesis, in particular:

1. Implement fault-injection enhanced failure prediction OTS platform for

predicting failures of software systems. The aim is to provide an off-the-

shelf platform hosting several failure prediction algorithms, integrated with

fault injection tools, to serve as a component in complex failure prediction

environments.

2. Validate the impact of the workload on the failure data and failure

prediction performance by using more complex workloads. A first idea is to

set up an experiment in which an SVM-based failure predictor is used on an

Apache Tomcat web server running several configurations of the TPC-W

workload. The goal is to mine relations between workload profiles in terms

of <CPU, memory, I/O> dimensions and the effects on the failure prediction

models.

3. Study the predictability property of different failure types based on the

concept of warning time ∆tw in Salfner’s failure prediction model. The

reasoning is that some failure events may not be predictable at runtime and

that fault injection may be useful for investigating the classes of failures that

are predictable in a minimum time ∆tw. This may help in the definition of

optimal failure prediction environments.

 170

References

Agrawala, A.K., J.M. Mohr, and R.M. Bryant. 1976. “An Approach to the Workload

Characterization Problem.” Computer 9 (6): 18–32. doi:10.1109/C-

M.1976.218610.

Aidemark, J., J. Vinter, P. Folkesson, and J. Karlsson. 2001. “Goofi: Generic Object-

Oriented Fault Injection Tool.” In \iProceedings of the International

Conference on Dependable Systems and Networks, 0083.

Alonso, J., J. Torres, J.L. Berral, and R. Gavalda. 2010. “Adaptive on-Line Software

Aging Prediction Based on Machine Learning.” In Proceedings of the IEEE/IFIP

International Conference on Dependable Systems and Networks, 507–16.

Alonso, J., J. Torres, and R. Gavaldà. 2009. “Predicting Web Server Crashes: A Case

Study in Comparing Prediction Algorithms.” In Proceedings of the 5th

International Conference on Autonomic and Autonomous Systems, 264–69.

Andrzejak, A., M.M. Moser, and L. Silva. 2007. “Managing Performance of Aging

Applications via Synchronized Replica Rejuvenation.” In Proceedings of the

Distributed Systems: Operations and Management 18th IFIP/IEEE International

Conference on Managing Virtualization of Networks and Services, 98–109.

Antunes, Nuno, and Marco Vieira. 2010. “Benchmarking Vulnerability Detection

Tools for Web Services.” In Proceedings of the IEEE International Conference on

Web Services, 203–10. IEEE. doi:10.1109/ICWS.2010.76.

Arlat, J., M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie, E. Martins, and D.

Powell. 1990. “Fault Injection for Dependability Validation: A Methodology

and Some Applications.” IEEE Transactions on Software Engineering 16 (2):

166–82.

Arlat, J., Y. Crouzet, and J.C. Laprie. 1989. “Fault Injection for Dependability

Validation of Fault-Tolerant Computing Systems.” In Proceedings of 19th

International Symposium on Fault-Tolerant Computing, 348–55.

References

171

Arlat, J., J.-C. Fabre, and M. Rodriguez. 2002. “Dependability of COTS Microkernel-

Based Systems.” IEEE Transactions on Computers 51 (2): 138–63.

doi:10.1109/12.980005.

Avizienis, A., J.-C. Laprie, B. Randell, and C. Landwehr. 2004. “Basic Concepts and

Taxonomy of Dependable and Secure Computing.” IEEE Transactions on

Dependable and Secure Computing 1 (1): 11–33. doi:10.1109/TDSC.2004.2.

Bache, K., and M. Lichman. 2013. UCI Machine Learning Repository. University of

California, Irvine, School of Information and Computer Sciences.

http://archive.ics.uci.edu/ml.

Ball, Thomas, and James R. Larus. 1994. “Optimally Profiling and Tracing

Programs.” ACM Transactions in Programming Languages and Systems 16 (4):

1319–60. doi:10.1145/183432.183527.

Bao, Y., X. Sun, and K.S. Trivedi. 2005. “A Workload-Based Analysis of Software

Aging, and Rejuvenation.” IEEE Transactions on Reliability 54 (3): 541–48.

Barbosa, R., N. Silva, J. Duraes, and H. Madeira. 2007. “Verification and Validation

of (real Time) COTS Products Using Fault Injection Techniques.” In

Proceedings of the Sixth International IEEE Conference on Commercial-off-the-Shelf

(COTS)-Based Software Systems.

Basso, T., R. Moraes, B.P. Sanches, and M. Jino. 2009. “An Investigation of Java

Faults Operators Derived from a Field Data Study on Java Software Faults.”

In Workshop de Testes E Tolerância a Falhas, 1–13.

Baum, Eric B., and David Haussler. 1989. “What Size Net Gives Valid

Generalization?” Neural Computation 1 (1): 151–60.

Bessani, Alysson, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo

Sousa. 2013. “DepSky: Dependable and Secure Storage in a Cloud-of-

Clouds.” IEEE Transactions on Storage Systems 9 (4): 12:1–12:33.

doi:10.1145/2535929.

Bishop, Christopher M., and others. 2006. Pattern Recognition and Machine Learning.

Vol. 4. 4. Springer New York.

Blum, Avrim L., and Ronald L. Rivest. 1992. “Training a 3-Node Neural Network Is

NP-Complete.” Neural Networks 5 (1): 117–27.

Blumer, Anselm, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

1987. “Occam’s Razor.” Information Processing Letters 24 (6): 377–80.

Bodik, P., G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel, G. Tolle, et al.

2005. “Combining Visualization and Statistical Analysis to Improve Operator

Confidence and Efficiency for Failure Detection and Localization.” In

Proceedings of the Second International Conference on Autonomic Computing, 89–

100.

References

 172

Bondavalli, A., and L. Simoncini. 1990. “Failure Classification with Respect to

Detection.” In Proceedings of the Second IEEE Workshop on Future Trends of

Distributed Computing Systems, 47–53. IEEE Comput. Soc. Press.

doi:10.1109/FTDCS.1990.138293.

Bovenzi, A., D. Cotroneo, R. Pietrantuono, and S. Russo. 2011. “Workload

Characterization for Software Aging Analysis.” In Proceedings of the IEEE

22nd International Symposium on Software Reliability Engineering, 240–49.

doi:10.1109/ISSRE.2011.18.

Bovenzi, Antonio, Marcello Cinque, Domenico Cotroneo, Roberto Natella, and

Gabriella Carrozza. 2011. “OS-Level Hang Detection in Complex Software

Systems.” International Journal of Critical Computer-Based Systems 2 (3/4): 352–

77.

Box, George E. P, J. Stuart Hunter, and William Gordon Hunter. 2005. Statistics for

Experimenters : Design, Innovation, and Discovery. Hoboken, N.J.: Wiley-

Interscience.

Boyd, T., and P. Dasgupta. 2002. “Process Migration: A Generalized Approach Using

a Virtualizing Operating System.” In 22nd International Conference on

Distributed Computing Systems, 2002. Proceedings, 385–92.

doi:10.1109/ICDCS.2002.1022276.

Bradley, Andrew P. 1997. “The Use of the Area under the ROC Curve in the

Evaluation of Machine Learning Algorithms.” Pattern Recognition 30: 1145–59.

Calzarossa, M., M. Italiani, and G. Serazzi. 1986. “A Workload Model Representative

of Static and Dynamic Characteristics.” Acta Informatica 23 (3): 255–66.

doi:10.1007/BF00289113.

Calzarossa, M., and G. Serazzi. 1993. “Workload Characterization: A Survey.”

Proceedings of the IEEE 81 (8): 1136–50. doi:10.1109/5.236191.

Carreira, J., H. Madeira, and J.G. Silva. 1998. “Xception: A Technique for the

Experimental Evaluation of Dependability in Modern Computers.” IEEE

Transactions on Software Engineering 24 (2): 125–36. doi:10.1109/32.666826.

Carreira, J., H. Madeira, J.G. Silva, and others. 1998. “Xception: Software Fault

Injection and Monitoring in Processor Functional Units.” Dependable

Computing and Fault Tolerant Systems 10: 245–66.

Chang, Chih-Chung, and Chih-Jen Lin. 2011. “LIBSVM: A Library for Support

Vector Machines.” ACM Trans. Intell. Syst. Technol. 2 (3): 27:1–27:27.

doi:10.1145/1961189.1961199.

References

173

Chawla, Nitesh V. 2010. “Data Mining for Imbalanced Datasets: An Overview.” In

Data Mining and Knowledge Discovery Handbook, edited by Oded Maimon and

Lior Rokach, 875–86. Springer US.

http://www.springerlink.com/content/v52614081328325x/abstract/.

Chawla, Nitesh V., Nathalie Japkowicz, and Aleksander Kotcz. 2004. “Editorial:

Special Issue on Learning from Imbalanced Data Sets.” ACM SIGKDD

Explorations Newsletter 6 (1): 1. doi:10.1145/1007730.1007733.

Chen, Xin, Charng-Da Lu, and Karthik Pattabiraman. 2014. “Failure Prediction of

Jobs in Compute Clouds: A Google Cluster Case Study.” Accessed October

22. http://blogs.ubc.ca/karthik/files/2014/09/rsda14.pdf.

Chillarege, R. 1995. “Orthogonal Defect Classification.” Handbook of Software

Reliability Engineering.

Chillarege, Ram, Wei-Lun Kao, and Richard G. Condit. 1991. “Defect Type and Its

Impact on the Growth Curve.” In Proceedings of the 13th International

Conference on Software Engineering, 246–55. ICSE ’91. Los Alamitos, CA, USA:

IEEE Computer Society Press.

http://dl.acm.org/citation.cfm?id=256664.256773.

Chiueh, Susanta Nanda Tzi-cker, and Stony Brook. 2005. “A Survey on

Virtualization Technologies.” RPE Report, 1–42.

Christmansso, M.H.J., and M. Rimén. 1998. “An Experimental Comparison of Fault

and Error Injection.” In Issre, 369.

Christmansson, J., and R. Chillarege. 1996. “Generation of an Error Set That

Emulates Software Faults Based on Field Data.” In Annual Symposium on Fault

Tolerant Computing, 304–13.

Citrix. “Citrix XenServer - Efficient Server Virtualization Software.” Citrix.com.

http://www.citrix.com/.

Committee on National Security Systems. 2010. “National Information Assurance

Glossary.” http://www.ncsc.gov/publications/policy/docs/CNSSI_4009.pdf.

Cook, Stephen A. 1971. “The Complexity of Theorem-Proving Procedures.” In

Proceedings of the Third Annual ACM Symposium on Theory of Computing, 151–

58. ACM. http://dl.acm.org/citation.cfm?id=805047.

Cortes, Corinna, and Vladimir Vapnik. 1995. “Support-Vector Networks.” Machine

Learning 20 (3): 273–97. doi:10.1007/BF00994018.

“COSBI OpenSourceMark.” http://sourceforge.net/projects/opensourcemark/.

References

 174

Cotroneo, Domenico, Francesco Fucci, and Roberto Natella. 2012. “Towards a State

Driven Workload Generation Framework for Dependability Assessment.” In

, 25–30.

http://www.thinkmind.org/index.php?view=article&articleid=depend_2012_

2_10_60023.

Davis, Jesse, and Mark Goadrich. 2006. “The Relationship between Precision-Recall

and ROC Curves.” In Proceedings of the 23rd International Conference on

Machine Learning, 233–40. ICML ’06. New York, NY, USA: ACM.

doi:http://doi.acm.org/10.1145/1143844.1143874.

Dietterich, Thomas. 2002. “Machine Learning for Sequential Data: A Review.” In

Structural, Syntactic, and Statistical Pattern Recognition, edited by Terry Caelli,

Adnan Amin, Robert Duin, Dick de Ridder, and Mohamed Kamel, 2396:227–

46. Lecture Notes in Computer Science. Springer Berlin / Heidelberg.

http://www.springerlink.com/content/av8l8hjl6yc2ya3m/abstract/.

Domeniconi, Carlotta, Chang-Shing Perng, Ricardo Vilalta, and Sheng Ma. 2002. “A

Classification Approach for Prediction of Target Events in Temporal

Sequences.” In Principles of Data Mining and Knowledge Discovery, 125–37.

Springer. http://link.springer.com/chapter/10.1007/3-540-45681-3_11.

Duraes, J.A., and H.S. Madeira. 2006. “Emulation of Software Faults: A Field Data

Study and a Practical Approach.” IEEE Transactions on Software Engineering,

849–67.

Duraes, J., and H. Madeira. 2003. “Multidimensional Characterization of the Impact

of Faulty Drivers on the Operating Systems Behavior.” IEICE Transactions on

Information and Systems 86 (12): 2563–70.

Durães, João, Marco Vieira, and Henrique Madeira. 2004. “Dependability

Benchmarking of Web-Servers.” In Computer Safety, Reliability, and Security,

edited by Maritta Heisel, Peter Liggesmeyer, and Stefan Wittmann, 297–310.

Lecture Notes in Computer Science 3219. Springer Berlin Heidelberg.

http://link.springer.com/chapter/10.1007/978-3-540-30138-7_25.

Duraes, J., M. Vieira, and H. Madeira. 2004. “Dependability Benchmarking of Web-

Servers.” Computer Safety, Reliability, and Security, 297–310.

Eeckhout, Lieven, Rashmi Sundareswara, Joshua J. Yi, David J. Lilja, and Paul

Schrater. 2005. “Accurate Statistical Approaches for Generating

Representative Workload Compositions.” In In Proceedings of the 2005 IEEE

International Symposium on Workload Characterization, 55–66.

e-Testing Labs. 2001. Microsoft: Windows XP Reliability Study. http://tech-

insider.org/windows/research/acrobat/0110.pdf.

Fawcett, Tom. 2006. “An Introduction to ROC Analysis.” Pattern Recognition Letters

27 (8): 861–74. doi:10.1016/j.patrec.2005.10.010.

References

175

Ferrari, D. 1972. “Workload Charaterization and Selection in Computer Performance

Measurement.” Computer 5 (4): 18–24. doi:10.1109/C-M.1972.216939.

Ferrari, Domenico. 1984. “On the Foundations of Artificial Workload Design.” In

Proceedings of the 1984 ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, 8–14. SIGMETRICS ’84. New York, NY, USA:

ACM. doi:10.1145/800264.809309.

Fonseca, J., M. Vieira, and H. Madeira. 2007. “Testing and Comparing Web

Vulnerability Scanning Tools for SQL Injection and XSS Attacks.” In 13th

Pacific Rim International Symposium on Dependable Computing, 2007. PRDC

2007, 365–72. doi:10.1109/PRDC.2007.55.

Frappier, Jonathan. 2014. VMware vSphere Resource Management Essentials. Packt

Publishing Ltd. https://books.google.it/books?hl=pt-

PT&lr=&id=lOHhAgAAQBAJ&oi=fnd&pg=PT8&dq=vmware+vsphere&ots=y

50ZJ3CAJE&sig=O-84g8as4EfSM2tTC5X4_SBA_q0.

Fu, Song. 2009. “Failure-Aware Construction and Reconfiguration of Distributed

Virtual Machines for High Availability Computing.” In , 372–79. IEEE.

doi:10.1109/CCGRID.2009.21.

Fu, Song, and Cheng-Zhong Xu. 2007. “Quantifying Temporal and Spatial Fault

Event Correlation for Proactive Failure Management.” In IEEE Proceedings of

Symposium on Reliable and Distributed Systems (SRDS 07).

Garg, S., A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi. 1998. “A Methodology

for Detection and Estimation of Software Aging.” In ISSRE ’98: Proceedings of

the The Ninth International Symposium on Software Reliability Engineering, 283.

Washington, DC, USA: IEEE Computer Society.

Geman, Stuart, Elie Bienenstock, and René Doursat. 1992. “Neural Networks and the

Bias/variance Dilemma.” Neural Comput. 4 (1): 1–58.

doi:10.1162/neco.1992.4.1.1.

Gernert, Dieter. 2009. “Ockham’s Razor and Its Improper Use.” Cognitive Systems 7

(2): 133–38.

Gray, Jim. 1986. “Why Do Computers Stop and What Can Be Done about It?” In

Symposium on Reliability in Distributed Software and Database Systems, 3–12. Los

Angeles, CA, USA. http://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf.

Gray, Jim. 1993. The Benchmark Handbook : For Database and Transaction Processing

Systems. San Mateo, Calif.: M. Kaufmann Publishers.

Gross, Kenny C., Vatsal Bhardwaj, and Randy Bickford. 2002. “Proactive Detection

of Software Aging Mechanisms in Performance Critical Computers.” Software

Engineering Workshop, Annual IEEE/NASA Goddard, 17.

doi:http://doi.ieeecomputersociety.org/10.1109/SEW.2002.1199445.

References

 176

Grottke, Michael, and Kishor S. Trivedi. 2005. “A Classification of Software Faults.”

Journal of Reliability Engineering Association of Japan 27 (7): 425–38.

Gunawi, Haryadi S., Thanh Do, Joseph M. Hellerstein, Ion Stoica, Dhruba Borthakur,

and Jesse Robbins. 2011. “Failure as a Service (faas): A Cloud Service for

Large-Scale, Online Failure Drills.” University of California, Berkeley, Berkeley 3.

http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2011-87.pdf.

Gunneflo, U., J. Karlsson, and J. Torin. 1989. “Evaluation of Error Detection Schemes

Using Fault Injection by Heavy-Ion Radiation.” In Fault-Tolerant Computing,

1989. FTCS-19. Digest of Papers., Nineteenth International Symposium on, 340–47.

Gurumurthy, Kaushik, Guruswamy Namasivayam, Sunil Kutty, Michael G. Tricker,

and Angel Sarmento Calvo. 2015. “Cloud Deployment Infrastructure

Validation Engine.” http://www.freepatentsonline.com/y2015/0052402.html.

Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to Variable and Feature

Selection.” The Journal of Machine Learning Research 3: 1157–82.

Hand, David J. 2012. “Assessing the Performance of Classification Methods.”

International Statistical Review, no – no. doi:10.1111/j.1751-5823.2012.00183.x.

Hatonen, Kimmo, Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, and Hannu

Toivonen. 1996. “TASA: Telecommunication Alarm Sequence Analyzer or

How to Enjoy Faults in Your Network.” In Network Operations and

Management Symposium, 1996., IEEE, 2:520–29. IEEE.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=539622.

Hochreiter, Sepp, and Klaus Obermayer. 2006. “Nonlinear Feature Selection with the

Potential Support Vector Machine.” In Feature Extraction, edited by Isabelle

Guyon, Masoud Nikravesh, Steve Gunn, and Lotfi Zadeh, 207:419–38.

Studies in Fuzziness and Soft Computing. Springer Berlin / Heidelberg.

http://www.springerlink.com/content/h8375v6464111507/abstract/.

Hoffmann, G.A. 2006. “Failure Prediction in Complex Computer Systems: A

Probabilistic Approach.” Shaker.

Hoffmann, GA, and M. Malek. 2006. “Call Availability Prediction in a

Telecommunication System: A Data Driven Empirical Approach.” In 25th

Symposium on Reliable Distributed Systems.

Hoffmann, G.A., F. Salfner, and M. Malek. 2004. Advanced Failure Prediction in

Complex Software Systems. Citeseer.

Hoffmann, G.A., K.S. Trivedi, and M. Malek. 2006. “A Best Practice Guide to

Resource Forecasting for the Apache Webserver.” In IEEE Proceedings of the

12th International Symposium Pacific Rim Dependable Computing (PRDC’06).

University of California, Riverside, USA.

References

177

Hoffmann, G.A., K.S. Trivedi, and M. Malek. 2007. “A Best Practice Guide to

Resource Forecasting for Computing Systems.” Reliability, IEEE Transactions

on 56 (4): 615–28. doi:10.1109/TR.2007.909764.

Hoffmann, Günther A. 2004. “Adaptive Transfer Functions in Radial Basis Function

(RBF) Networks.” In Computational Science - ICCS 2004, edited by Marian

Bubak, Geert Dick Albada, Peter M. A. Sloot, and Jack Dongarra, 3037:682–

86. Berlin, Heidelberg: Springer Berlin Heidelberg.

http://www.springerlink.com/index/10.1007/978-3-540-24687-9_102.

Hsueh, M.C., T.K. Tsai, and R.K. Iyer. 1997. “Fault Injection Techniques and Tools.”

Computer 30 (4): 75–82.

Hudak, JJ, B.H. Suh, DP Siewiorek, and Z. Segall. 1993. “Evaluation and Comparison

of Fault-Tolerant Software Techniques.” Reliability, IEEE Transactions on 42

(2): 190–204.

Hughes, G. 1968. “On the Mean Accuracy of Statistical Pattern Recognizers.” IEEE

Transactions on Information Theory 14 (1): 55–63. doi:10.1109/TIT.1968.1054102.

Hughes, G.F., J.F. Murray, K. Kreutz-Delgado, and C. Elkan. 2002. “Improved Disk-

Drive Failure Warnings.” Reliability, IEEE Transactions on 51 (3): 350–57.

doi:10.1109/TR.2002.802886.

Irrera, I. 2013. “Virtualization Impact Assessment: Complete Set of Results.”

http://eden.dei.uc.pt/~ivano.

Irrera, I., J. Duraes, and M. Vieira. 2014. “On the Need for Training Failure Prediction

Algorithms in Evolving Software Systems.” In To Appear in 15th IEEE

International Symposium on High Assurance Systems Engineering (HASE’14).

Miami, Florida, USA.

Irrera, I., J. Durães, M. Vieira, and H. Madeira. 2010. “Towards Identifying the Best

Variables for Failure Prediction Using Injection of Realistic Software Faults.”

In Pacific Rim International Symposium on Dependable Computing (PRDC 2010),

3–10.

Irrera, Ivano, Joao Duraes, Henrique Madeira, and Marco Vieira. 2013. “Assessing

the Impact of Virtualization on the Generation of Failure Prediction Data.” In

Latin-American Symposium on Dependable Computing, 0:92–97. Los Alamitos,

CA, USA: IEEE Computer Society. doi:10.1109/LADC.2013.24.

Irrera, Ivano, Carlos Pereira, and Marco Vieira. 2013. “The Time Dimension in

Predicting Failures: A Case Study.” In Latin-American Symposium on

Dependable Computing, 0:86–91. Los Alamitos, CA, USA: IEEE Computer

Society. doi:10.1109/LADC.2013.25.

References

 178

Irrera, Ivano, Marco Vieira, and Joao Duraes. 2015. “Adaptive Failure Prediction for

Computer Systems: A Framework and a Case Study.” In IEEE 16th

International Symposium on High-Assurance Systems Engineering, 142–49.

doi:10.1109/HASE.2015.29.

Irrera, I., and M. Vieira. 2014. “A Practical Approach for Generating Failure Data for

Assessing and Comparing Failure Prediction Algorithms.” In To Appear in

PRDC’14 Proceedings. Singapore.

Jain, Jeenia, and Ramandeep Singh. 2014. “Improving Service Reliability in Cloud

Computing Environment.” Accessed October 22.

http://www.ijser.org/researchpaper%5CImproving-Service-Reliability-in-

Cloud-Computing-Environment.pdf.

Jeni, László, Jeffrey F. Cohn, Fernando De La Torre, and others. 2013. “Facing

Imbalanced Data–Recommendations for the Use of Performance Metrics.” In

Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association

Conference on, 245–51. IEEE.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6681438.

John, George H., Ron Kohavi, Karl Pfleger, and others. 1994. “Irrelevant Features

and the Subset Selection Problem.” In Machine Learning: Proceedings of the

Eleventh International Conference, 121–29.

https://www.google.com/books?hl=it&lr=&id=cEqjBQAAQBAJ&oi=fnd&pg=

PA121&dq=Irrelevant+features+and+the+subset+selection+problem&ots=E1o

unfz4CN&sig=XiZ1_OYGyrmRHOjiLJt6zJ40P3g.

Kalakech, Ali, Karama Kanoun, Yves Crouzet, and Jean Arlat. 2015. “Benchmarking

The Dependability of Windows NT4, 2000 and XP.” Accessed May 27.

https://homepages.laas.fr/~arlat/documents/03501/03501.pdf.

Kalyanakrishnam, M., Z. Kalbarczyk, and R. Iyer. 1999. “Failure Data Analysis of a

LAN of Windows NT Based Computers.” In 18th Symposium on Reliable

Distributed Systems, 178–87. doi:10.1109/RELDIS.1999.805094.

Kanawati, G.A., N.A. Kanawati, and J.A. Abraham. 1992. “FERRARI: A Tool for the

Validation of System Dependability Properties.” In Fault-Tolerant Computing,

1992. FTCS-22. Digest of Papers., Twenty-Second International Symposium on,

336–44.

Karlsson, J., P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J. Reisinger. 1998.

“Application of Three Physical Fault Injection Techniques to the

Experimental Assessment of the MARS Architecture.” DEPENDABLE

COMPUTING AND FAULT TOLERANT SYSTEMS 10: 267–88.

Kennedy, James. 2010. “Particle Swarm Optimization.” In Encyclopedia of Machine

Learning, 760–66. Springer. http://link.springer.com/10.1007/978-0-387-30164-

8_630.

References

179

Khanna, G., K. Beaty, G. Kar, and A. Kochut. 2006. “Application Performance

Management in Virtualized Server Environments.” In , 373–81. IEEE.

doi:10.1109/NOMS.2006.1687567.

Ko, Andrew J., Bryan Dosono, and Neeraja Duriseti. 2014. “Thirty Years of Software

Problems in the News.” In Proceedings of the 7th International Workshop on

Cooperative and Human Aspects of Software Engineering, 32–39. ACM.

http://dl.acm.org/citation.cfm?id=2593719.

Koopman, P., and H. Madeira. 1999. “Dependability Benchmarking & Prediction: A

Grand Challenge Technology Problem.” Real-Time Mission-Critical Systems:

Grand Challenge Problems, Phoenix, Arizona USA, November.

Koopman, P., J. Sung, C. Dingman, D. Siewiorek, and T. Marz. 1997. “Comparing

Operating Systems Using Robustness Benchmarks.” In SRDS, 72.

Laprie, Jean-Claude. 2005. “Resilience for the Scalability of Dependability.” In

Network Computing and Applications, Fourth IEEE International Symposium on,

5–6. IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1565929.

Lee, I., and R.K. Iyer. 1995. “Software Dependability in the Tandem GUARDIAN

System.” IEEE Transactions on Software Engineering 21 (5): 455–67.

Levy, D., and R. Chillarege. 2003. “Early Warning of Failures through Alarm

Analysis a Case Study in Telecom Voice Mail Systems.” In Software Reliability

Engineering, 2003. ISSRE 2003. 14th International Symposium on, 271–80.

Liang, Y., Y. Zhang, M. Jette, Anand Sivasubramaniam, and R. Sahoo. 2006.

“BlueGene/L Failure Analysis and Prediction Models.” In Dependable Systems

and Networks, 2006. DSN 2006. International Conference on, 425–34.

doi:10.1109/DSN.2006.18.

Li, Lei, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi. 2002. “An Approach for

Estimation of Software Aging in a Web Server.” In ISESE, 91–102.

http://doi.ieeecomputersociety.org/10.1109/ISESE.2002.1166929.

Lin, T.T.Y., and D.P. Siewiorek. 1990. “Error Log Analysis: Statistical Modeling and

Heuristic Trend Analysis.” Reliability, IEEE Transactions on 39 (4): 419–32.

Liu, Huan, and Rudy Setiono. 1997. “Feature Selection and Classification-a

Probabilistic Wrapper Approach.” In Proceedings of 9th International Conference

on Industrial and Engineering Applications of AI and ES, 419–24.

https://www.google.com/books?hl=it&lr=&id=0xdubWCSbv0C&oi=fnd&pg=

PA419&dq=Feature+Selection+And+Classification+A+Probabilistic+Wrapper+

Approach&ots=nzsPEJYRqh&sig=BgBpB5cQTeE_7WNdCBriu6cxwWc.

Liu, H., and L. Yu. 2005. “Toward Integrating Feature Selection Algorithms for

Classification and Clustering.” Knowledge and Data Engineering, IEEE

Transactions on 17 (4): 491–502.

References

 180

Luke Stackwalker. http://lukestackwalker.sourceforge.net/.

Lyu, Michael R., and others. 1996. Handbook of Software Reliability Engineering. Vol.

222. IEEE computer society press CA.

http://trustworthy.googlecode.com/svn/trunk/doc/Handbook_of_Software_R

eliability_Engineering.pdf.

Machida, F., M. Kawato, and Y. Maeno. 2010. “Redundant Virtual Machine

Placement for Fault-Tolerant Consolidated Server Clusters.” In 2010 IEEE

Network Operations and Management Symposium (NOMS), 32–39.

doi:10.1109/NOMS.2010.5488431.

Madeira, H., D. Costa, and M. Vieira. 2000. “On the Emulation of Software Faults by

Software Fault Injection.” In Dependable Systems and Networks, 2000. DSN

2000. Proceedings International Conference on, 417–26.

Magalhaes, J.P., and L. Moura Silva. 2013. “A Framework for Self-Healing and Self-

Adaptation of Cloud-Hosted Web-Based Applications.” In 2013 IEEE 5th

International Conference on Cloud Computing Technology and Science (CloudCom),

1:555–64. doi:10.1109/CloudCom.2013.80.

Magalhaes, J.P., and L.M. Silva. 2012. “Anomaly Detection Techniques for Web-

Based Applications: An Experimental Study.” In 2012 11th IEEE International

Symposium on Network Computing and Applications (NCA), 181–90.

doi:10.1109/NCA.2012.27.

Martinez, M., D. de Andres, J.-C. Ruiz, and J. Friginal. 2014. “From Measures to

Conclusions Using Analytic Hierarchy Process in Dependability

Benchmarking.” IEEE Transactions on Instrumentation and Measurement 63 (11):

2548–56. doi:10.1109/TIM.2014.2348632.

Matias, R., K.S. Trivedi, and P.R.M. Maciel. 2010. “Using Accelerated Life Tests to

Estimate Time to Software Aging Failure.” In Software Reliability Engineering

(ISSRE), 2010 IEEE 21st International Symposium on, 211–19.

Maxion, R.A., and K.M.C. Tan. 2000. “Benchmarking Anomaly-Based Detection

Systems.” In Proceedings International Conference on Dependable Systems and

Networks, 2000. DSN 2000, 623–30. doi:10.1109/ICDSN.2000.857599.

Mendes, N., J. Duraes, and H. Madeira. 2011. “Benchmarking the Security of Web

Serving Systems Based on Known Vulnerabilities.” In 2011 5th Latin-American

Symposium on Dependable Computing (LADC), 55–64.

doi:10.1109/LADC.2011.14.

Mendes, N., H. Madeira, and J. Duraes. 2014. “Security Benchmarks for Web Serving

Systems.” In 2014 IEEE 25th International Symposium on Software Reliability

Engineering (ISSRE), 1–12. doi:10.1109/ISSRE.2014.38.

References

181

Monperrus, Martin. 2014. “Principles of Antifragile Software.” arXiv:1404.3056 [cs],

April. http://arxiv.org/abs/1404.3056.

Moraes, R., J. Duraes, R. Barbosa, E. Martins, and H. Madeira. 2007. “Experimental

Risk Assessment and Comparison Using Software Fault Injection.”

Moro, A., E. Mumolo, and M. Nolich. 2009. “Ergodic Continuous Hidden Markov

Models for Workload Characterization.” In Proceedings of 6th International

Symposium on Image and Signal Processing and Analysis, 2009. ISPA 2009, 99–

104.

Murray, J.F., G.F. Hughes, and K. Kreutz-Delgado. 2003. “Hard Drive Failure

Prediction Using Non-Parametric Statistical Methods.” In Proceedings of

ICANN/ICONIP.

Nagarajan, Arun Babu, Frank Mueller, Christian Engelmann, and Stephen L. Scott.

2007. “Proactive Fault Tolerance for HPC with Xen Virtualization.” In , 23.

ACM Press. doi:10.1145/1274971.1274978.

NASA. “NASA-STD 8739.8 - Standard for Software Assurance.”

http://www.hq.nasa.gov.

Nassar, Fares A., and Dorothy M. Andrews. 1985. A Methodology for Analysis of

Failure Prediction Data. Center for Reliable Computing, Computer Systems

Laboratory, Depts. of Electrical Engineering and Computer Science, Stanford

University.

Natella, R., and D. Cotroneo. 2010. “Emulation of Transient Software Faults for

Dependability Assessment: A Case Study.” In 2010 European Dependable

Computing Conference, 23–32.

Natella, R., D. Cotroneo, J. Duraes, and H. Madeira. 2010. “Representativeness

Analysis of Injected Software Faults in Complex Software.” In IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), 437–46.

Natella, Roberto, Domenico Cotroneo, Joao A. Duraes, and Henrique S. Madeira.

2013. “On Fault Representativeness of Software Fault Injection.” IEEE

Transactions on Software Engineering 39 (1): 80–96. doi:10.1109/TSE.2011.124.

Neto, A.A., and M. Vieira. 2011. “Trustworthiness Benchmarking of Web

Applications Using Static Code Analysis.” In 2011 Sixth International

Conference on Availability, Reliability and Security (ARES), 224–29.

doi:10.1109/ARES.2011.37.

OMG System Assurance Task Force. “OMG Software Assurance (SwA) Special

Interest Group (SIG).” http://swa.omg.org.

References

 182

Oppenheimer, David. 2003. “Why Do Internet Services Fail, and What Can Be Done

about It?” In Symposium on Internet Technologies and Systems (USITS’03).

http://lambda.csail.mit.edu/~chet/papers/others/r/recovery/ms-final-

single.pdf.

Otsuka, Hiroshi, Kaustubh Joshi, Matti Hiltunen, Scott Daniels, and Yasuhide

MATSUMOTO. 2014. “Online Failure Prediction with Accurate Failure

Localization in Cloud Infrastructures.” IEICE Technical Report. SC, Services

Computing 113 (496): 7–12.

Pitakrat, T., A. Van Hoorn, and L. Grunske. 2014. “Increasing Dependability of

Component-Based Software Systems by Online Failure Prediction (Short

Paper).” In Dependable Computing Conference (EDCC), 2014 Tenth European, 66–

69. doi:10.1109/EDCC.2014.28.

Polze, A., P. Troger, and F. Salfner. 2011. “Timely Virtual Machine Migration for Pro-

Active Fault Tolerance.” In Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops (ISORCW), 2011 14th IEEE International

Symposium on, 234–43.

RAR Lab. “WinRAR Archiver.” http://www.rarlab.com/.

Reiser, Hans P., and Rudiger Kapitza. 2007. “Hypervisor-Based Efficient Proactive

Recovery.” In , 83–92. IEEE. doi:10.1109/SRDS.2007.25.

Rimal, Bhaskar Prasad, Eunmi Choi, and Ian Lumb. 2009. “A Taxonomy and Survey

of Cloud Computing Systems.” In INC, IMS and IDC, 2009. NCM’09. Fifth

International Joint Conference on, 44–51. Ieee.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5331755.

Rose, Robert. 2004. Survey of System Virtualization Techniques.

SAFECode - Software Assurance Forum for Excellence in Code. 2008. “Software

Assurance: An Overview of Current Industry Best Practices.”

http://www.safecode.org.

Sahoo, J., S. Mohapatra, and R. Lath. 2010. “Virtualization: A Survey on Concepts,

Taxonomy and Associated Security Issues.” In 2nd Int’l Conference on

Computer and Network Technology, 222–26. doi:10.1109/ICCNT.2010.49.

Salfner, F. 2006. Modeling Event-Driven Time Series with Generalized Hidden Semi-

Markov Models. Professoren des Inst. f\ür Informatik.

Salfner, Felix, Maren Lenk, and Miroslaw Malek. 2010. “A Survey of Online Failure

Prediction Methods.” ACM Comput. Surv. 42 (3): 10:1–10:42.

doi:10.1145/1670679.1670680.

Salfner, F., G. Hoffmann, and M. Malek. 2005. “Prediction-Based Software

Availability Enhancement.” Self-Star Properties in Complex Information Systems,

143–57.

References

183

Salfner, F., M. Lenk, and M. Malek. 2010. “A Survey of Online Failure Prediction

Methods.” ACM Computing Surveys (CSUR) 42 (3): 1–42.

Salfner, F., and M. Malek. 2005. “Proactive Fault Handling for System Availability

Enhancement.”

Salfner, F., and M. Malek. 2007. “Using Hidden Semi-Markov Models for Effective

Online Failure Prediction.” 26th Int’l Symposium on Reliable Distributed Systems

(SRDS 2007).

Salfner, F., and M. Malek. 2010. “Architecting Dependable Systems with Proactive

Fault Management.” Architecting Dependable Systems VII, 171–200.

Sanches, B.P., T. Basso, and R. Moraes. 2011. “J-SWFIT: A Java Software Fault

Injection Tool.” In 2011 Latin-American Symposium on Dependable Computing,

106–15.

Sauer, Chris. 1993. Why Information Systems Fail: A Case Study Approach. Oxfordshire,

UK, UK: Alfred Waller Ltd., Publishers.

Schölkopf, Bernhard, and Alexander J. Smola. 2002. Learning with Kernels: Support

Vector Machines, Regularization, Optimization, and beyond. MIT press.

https://books.google.com/books?hl=it&lr=&id=y8ORL3DWt4sC&oi=fnd&pg=

PR13&dq=optimization+machine+learning+parameters&ots=bKvScwN8Iz&si

g=08nyR6czgbQyfC2AUvLcf0F_Bkg.

Siddaway, Richard. 2012. Powershell and WMI. Manning.

http://www.manning.com.p.hostingprod.com/siddaway2/PSaWMIchapter1s

ample.pdf.

Simoncini, L. 2009. “Resilient Computing: An Engineering Discipline.” In IEEE

International Symposium on Parallel Distributed Processing, 2009. IPDPS 2009, 1–

1. doi:10.1109/IPDPS.2009.5160867.

Smith, Wayne D. 2000. TPC-W: Benchmarking an Ecommerce Solution.

Sonoda, Masataka, Shinji Kikuchi, Yukihiro Watanabe, Hiroshi Otsuka, and

Yasuhide Matsumoto. 2012. “Online Failure Prediction in Cloud Datacenters

by Real-Time Message Pattern Learning.” In Proceedings of the 2012 IEEE 4th

International Conference on Cloud Computing Technology and Science (CloudCom),

504–11. CLOUDCOM ’12. Washington, DC, USA: IEEE Computer Society.

doi:10.1109/CloudCom.2012.6427566.

“Standard Performance Evaluation Corporation (SPEC).” Www.spec.org.

Sullivan, M., and R. Chillarege. 1991. “Software Defects and Their Impact on System

Availability-a Study of Field Failures in Operating Systems.” In Fault-Tolerant

Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International

Symposium, 2–9.

References

 184

“Support - Windows Help.” 2015. Windows.microsoft.com. Accessed May 9.

http://windows.microsoft.com/en-us/windows/support.

Taleb, Nassim Nicholas. 2012. Antifragile: Things That Gain from Disorder. Random

House Incorporated.

Tanenbaum, Andrew, and Maarten Van Steen. 2007. Distributed Systems. Pearson

Prentice Hall.

http://www.cs.helsinki.fi/u/alanko/hj/K06/kalvokopiot/ch1_p6.pdf.

“Tech Insider - Various Studies.” http://tech-insider.org/windows/.

“Tomcat Version 7 - Changelog.” https://tomcat.apache.org/tomcat-7.0-

doc/changelog.html.

“Transaction Processing Performance Council (TPC).” Www.tpc.org.

Trivedi, K.S., Dong Seong Kim, and R. Ghosh. 2009. “Resilience in Computer

Systems and Networks.” In IEEE/ACM International Conference on Computer-

Aided Design - Digest of Technical Papers, 2009. ICCAD 2009, 74–77.

Tsai, Timothy K., and Ravishankar K. Iyer. 1995. “Ftape: A Fault Injection Tool to

Measure Fault Tolerance.” http://ntrs.nasa.gov/search.jsp?R=19950059069.

Usenix, and Carnegie Mellon University (CMU). 2006. “Computer Failure Data

Repository.” https://www.usenix.org/cfdr.

Vaidyanathan, K., R.E. Harper, S.W. Hunter, and K.S. Trivedi. 2001. “Analysis and

Implementation of Software Rejuvenation in Cluster Systems.” In ACM

SIGMETRICS Performance Evaluation Review, 29:62–71.

Vaidyanathan, K., and K.S. Trivedi. 1999. “A Measurement-Based Model for

Estimation of Resource Exhaustion in Operational Software Systems.” In 10th

Int’l Symposium on Software Reliability Engineering (ISSRE 1999), 84–93.

Vaidyanathan, K., and K.S. Trivedi. 2001. “Extended Classification of Software

Faults Based on Aging.” In Proceedings of the Twelfth International Symposium

on Software Reliability Engineering (ISSRE), 27–28.

Van Rijsbergen, C. 1979. Information Retrieval. 2d ed. London; Boston: Butterworths.

Vieira, Marco, and Henrique Madeira. 2005. “Towards a Security Benchmark for

Database Management Systems.” In Dependable Systems and Networks, 2005.

DSN 2005. Proceedings. International Conference on, 592–601. IEEE.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467833.

Vieira, M., and H. Madeira. 2003. “A Dependability Benchmark for OLTP

Application Environments.” In Proceedings of the 29th International Conference

on Very Large Data Bases-Volume 29, 742–53.

References

185

Vieira, M., H. Madeira, I. Irrera, and M. Malek. 2009. “Fault Injection for Failure

Prediction Methods Validation.” In 40th Int’l Conference on Dependable Systems

and Networks (5th Workshop on Hot Topics in System Dependability).

Vukotic, Aleksa, and James Goodwill. 2011. Apache Tomcat 7. 1st ed. Berkely, CA,

USA: Apress.

Wang, John, ed. 2008. Encyclopedia of Data Warehousing and Mining, Second Edition. IGI

Global. http://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-010-3.

Watanabe, Y., H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto. 2012. “Online

Failure Prediction in Cloud Datacenters by Real-Time Message Pattern

Learning.” In 2012 IEEE 4th International Conference on Cloud Computing

Technology and Science (CloudCom), 504–11.

doi:10.1109/CloudCom.2012.6427566.

Watanabe, Yukihiro, and Yasuhide Matsumoto. 2014. “Online Failure Prediction in

Cloud Datacenters.” FUJITSU Sci. Tech. J 50 (1): 66–71.

Weiss, G.M. 1999. “Timeweaver: A Genetic Algorithm for Identifying Predictive

Patterns in Sequences of Events.” In Proceedings of the Genetic and Evolutionary

Computation Conference, 718–25.

Wolski, R., N. Spring, and C. Peterson. 1997. “Implementing a Performance

Forecasting System for Metacomputing: The Network Weather Service.” In

Proceedings of the 1997 ACM/IEEE Conference on Supercomputing (CDROM), 1–

19.

Zemouri, Ryad, and Noureddine Zerhouni. 2011. “Autonomous and Adaptive

Procedure for Cumulative Failure Prediction.” Neural Computing and

Applications 21 (2): 319–31. doi:10.1007/s00521-011-0585-7.

Zheng, Zjian. 1993. A Benchmark for Classifier Learning. University of Sidney.

Zweig, M H, and G. Campbell. 1993. “Receiver-Operating Characteristic (ROC)

Plots: A Fundamental Evaluation Tool in Clinical Medicine.” Clinical

Chemistry 39 (4): 561–77.

