
Charles Ferreira Gonçalves

SECURITY IN VIRTUALIZED SYSTEMS:
CONTRIBUTIONS ON ANOMALY DETECTION

AND INTRUSION INJECTION

May, 2025

PhD Thesis in Informatics Engineering, Architectures, Networks and
Cybersecurity, advised by Professor Marco Vieira and by Professor Nuno Antunes
presented to the Department of Informatics Engineering of the Faculty of Sciences

and Technology of the University of Coimbra

Charles Ferreira Gonçalves

SECURITY IN VIRTUALIZED SYSTEMS:
CONTRIBUTIONS ON ANOMALY DETECTION

AND INTRUSION INJECTION

May, 2025

PhD Thesis submitted to the University of Coimbra
Advised by Professor Marco Vieira

and Professor Nuno Antunes.

Charles Ferreira Gonçalves

SEGURANÇA EM SISTEMAS
VIRTUALIZADOS: CONTRIBUIÇÕES EM

DETECÇÃO DE ANOMALIAS E INJEÇÃO DE
INTRUSÃO

Maio, 2025

Tese de Doutoramento submetida à Universidade de Coimbra
Orientada pelo Professor Marco Vieira

e pelo Professor Nuno Antunes.

Projects and Funding

The work presented in this thesis was carried out within the Software and Sys-
tems Engineering (SSE) group of the Centre for Informatics and Systems of the
University of Coimbra (CISUC) in the context of the following projects:

• AIDA: Adaptive, Intelligent and Distributed Assurance Platform; the
project aims at improving a platform used by Mobileum for integral risk
management in companies. This platform ensures revenue, corporate con-
ditions and fraud control for companies. Thanks to the newest version of
the platform, developed by AIDA, companies will be able to collect and
monitor data in an extremely flexible way, with real-time guarantees, secu-
rity and reliability. AIDA is co-financed by the European Regional Develop-
ment Fund (ERDF) through the Operational Program for Competitiveness
and Internationalization – COMPETE 2020 (POCI-01-0247-FEDER-045907)
and by the Portuguese Foundation for Science and Technology under CMU
Portugal Program.

• NEXUS Pacto de Inovação Transição Verde e Digital para Transportes,
Logística e Mobilidade: the project aims at providing an innovation plan
for logistics and transport and encompasses a work package related to
cybersecurity and cyber-resilience services. The project will result in an
ecosystem with 28 products and services. NEXUS has reference num-
ber 7113, supported by the Recovery and Resilience Plan (PRR) and the
European Funds Next Generation EU, following Notice No. 02/C05-
i01/2022.PC645112083-00000059 (project 53), Component 5 - Capitalization
and Business Innovation - Mobilizing Agendas for Business Innovation.

This work has been partially supported by the following grants:

• Ph.D. grant: Foundation for Science and Technology (FCT)
Grant number: SFRH/BD/144839/2019

• Research grant: DenseNet: Comunicação Eficiente em Redes Densas -
PTDC/EEI-SCR/6453/201:
Grant number: DPA-18-690 / DPA-19-235 / DPA/19-392
Period: 22/10/2018 - 31/12/2019.

vii

“Antifragility is beyond resilience or robustness.
The resilient resists shocks and stays the same;

the antifragile gets better..”

— Nassim Nicholas Taleb

Acknowledgements

After finishing my Master’s, I swore to myself that I would never do a PhD. Yet,
somehow, here I am. They say a PhD isn’t a sprint, it’s a marathon, but I have
never expected to be an ultramarathon, uphill, in the rain.

Jokes aside, this journey definitely wasn’t easy. It came with plenty of challenges,
both external and internal. But now, standing at the finish line (barely upright,
but still standing), it’s time to thank everyone who helped me cross it.

First and foremost, if this thesis reached its conclusion, it was surely because of
God’s will (and let’s be honest, in the PhD universe, God usually looks suspi-
ciously like your advisor).

Marco, I honestly don’t have the words to express my gratitude for everything
you’ve done for me. Your patience alone deserves its own doctorate. I’m sure
you questioned your life choices every time I got distracted, but at least we both
survived! Sorry for all the times I lost focus and prioritized other things over
the PhD (and we both know it wasn’t just once or twice). When I grow up, I
hope to be as dedicated and inspiring as you are (minus the unfortunate choice
of supporting Benfica).

A special thank you also goes out to Nuno Antunes for his dedication, patience,
and support. This thesis would never have come to life without your help either.

This journey lasted so long I genuinely attempted to list everyone who deserved
my thanks and promptly got lost. I just can’t risk leaving anyone out, because
each one of you was important in your own special way. To all the friends who
made this ride unforgettable: thank you. The beautiful moments we shared (
endless conversations, passionate debates, unforgettable jokes, shared meals, and
memorable hikes) will always be with me. I’m certain I’ll miss every single one
of those moments.

Yet, there are some people I just can’t leave unnamed. Ninho and Zé: your friend-
ship has been indispensable throughout this journey. Thank you for always hav-
ing my back.

To everyone else who walked even a small part of this marathon alongside me:
thank you from the bottom of my heart.

To my family: there’s no need to state the obvious, if it weren’t for you, I wouldn’t
have made it here in the first place. Especially you, Mom. Only you, and no one
else, know how hard it was to reach this point.

I suppose it’s now time for another oath. :)

xi

Abstract

Virtualization technologies have become foundational in modern computing,
providing an essential infrastructure for cloud and virtualized services. How-
ever, the benefits of virtualization come with a complex and large attack surface,
particularly affecting the hypervisor, the core component responsible for manag-
ing and isolating virtual resources. As virtualization extends beyond traditional
cloud environments into critical systems, ensuring their security is increasingly
important. While considerable progress has been made in evaluating dependabil-
ity and performance, comprehensive security assessments remain a significant
challenge. Understanding the system behavior under compromise, including po-
tential attacker capabilities after the system deviates from its intended semantics,
is particularly complex. This thesis addresses these challenges by making four
contributions to the security landscape of virtualized environments.

The first contribution focuses on anomaly detection in virtualized environ-
ments. We propose a methodology that uses a three-phase approach, integrating
system profiling, performance modeling, and real-time sequential anomaly de-
tection specifically designed for complex, multi-tenant virtualized systems. Un-
like traditional Intrusion Detection Systems, the proposed approach leverages
performance-based signatures, using the sequential detection Bucket Algorithm,
to identify anomalies with minimal system intrusion. The methodology enables
tuning of false-positive rates and detection latency by modeling system behav-
ior under typical workloads and calibrating the algorithm through statistical
profiling. We conducted the validation in a cloud-representative environment
that models some critical challenges of cloud workloads, such as transient per-
formance variations and mixes services with different profiles. Results showed
low false-positive detection of potential security threats in multi-tenant environ-
ments, providing insights into residual performance impacts due to anomalies.

The second contribution is a study of the robustness and security of the Xen
Hypervisor, combining mutation-based testing of the hypercall interface with a
systematic vulnerability analysis. We evaluated 26 hypercalls (66.6% of the API)
across 28,000 test cases under a database-centric workload, revealing that tradi-
tional mutation-based testing falls short due to the runtime-dependent behavior
of hypercalls, highlighting the need to understand hypercall semantics. Given
the layered trust relationships involved, we also found that the CRASH failure
model is inadequate for virtualized systems. To complement this, we analyzed
hypervisor vulnerabilities using metadata (e.g., CVEs, patches) and empirical
models such as Vulnerability Discovery Models and Vulnerability Density, intro-
ducing trustworthiness evidence (artifacts that indirectly signal system security).
A taxonomy links root causes to abusive functionalities and their security con-
sequences, with memory-related flaws emerging as the most prevalent. While
offering key insights into systemic weaknesses, this analysis also underscores the
limitations of static approaches and the need to explore system behavior under
active intrusion scenarios.

The core contribution of this thesis is the concept, design, and implementation
of intrusion injection for virtualized systems. Intrusion injection introduces a

xiii

novel security evaluation paradigm focused on systematically inducing erroneous
states, defined as states with security implications triggered by malicious activ-
ities, rather than exploiting specific vulnerabilities directly. This methodology
leverages the abstraction provided by Intrusion Models (IMs), which encapsulate
abusive functionalities and their associated security consequences. These mod-
els enable the controlled and repeatable emulation of post-intrusion conditions,
facilitating comprehensive security assessments even in systems that have been
patched or are undergoing active development, without relying on known ex-
ploits. Experimental validation of the proposed approach demonstrates its feasi-
bility by accurately replicating erroneous states and security violations observed
in real-world exploit scenarios.

Finally, we present a structured methodology for the definition and instantia-
tion of Intrusion Models (IMs). Leveraging concepts from weird machines the-
ory and system modeling principles, we formalize IMs as tuples comprising the
source, interface, target, abstraction, violated security property, abusive function-
ality, and erroneous state. We demonstrate the methodology’s practicality by ap-
plying it to the memory management subsystem of the Xen hypervisor, resulting
in the definition of over 50 distinct IMs derived from real-world Xen Security
Advisories (XSAs). Furthermore, we developed an extended injector prototype
to illustrate how to reuse test cases across different intrusion models. Validation
was performed across multiple versions of Xen, highlighting version-dependent
behavioral differences.

In conclusion, this thesis contributes to multiple security aspects of virtualized
systems and lays the ground for improving security assessment. The work pre-
sented here offers methods and insights for identifying, simulating, and under-
standing potential system failures due to security threats. A promising direction
for future work is the development of benchmark methodologies for intrusion
tolerance, which will assess the security and resilience of virtualization infras-
tructures. Intrusion Injection, in particular, provides a generalizable framework
for evaluating system behavior under compromise, enabling hypervisor testing
and future applications in distributed systems, Network Function Virtualization
(NFV), and Internet of Things (IoT) platforms. This work opens new avenues for
proactive, systematic, and repeatable security testing by abstracting away from
specific vulnerabilities and focusing on the consequences of exploits.

Keywords

Virtualization, hypervisor, security evaluation, intrusion injection, intrusion
models, erroneous state, robustness testing, anomaly detection, weird machines.

xiv

Resumo

As tecnologias de virtualização tornaram-se fundamentais na computação mod-
erna, fornecendo uma infraestrutura essencial para serviços em nuvem e ambi-
entes virtualizados. No entanto, os benefícios da virtualização vêm acompan-
hados de uma superfície de ataque complexa e extensa, afetando especialmente
o hipervisor, o componente central responsável por gerenciar e isolar recursos
virtuais.

À medida que a virtualização se expande para sistemas críticos, garantir sua se-
gurança torna-se cada vez mais importante. Apesar dos avanços consideráveis
na avaliação de desempenho e confiabilidade, as avaliações abrangentes de segu-
rança ainda são um grande desafio. Compreender o comportamento do sistema
sob comprometimento, incluindo as possíveis capacidades de um atacante após a
ataque, é particularmente complexo. Esta tese aborda esses desafios ao apresen-
tar quatro contribuições para o campo da segurança em ambientes virtualizados.

A primeira, concentra-se na detecção de anomalias em ambientes virtualizados.
Propomos uma metodologia baseada em três fases, integrando profiling do sis-
tema, modelagem de desempenho e detecção sequencial de anomalias em tempo
real, especificamente projetada para sistemas virtualizados complexos e multi-
inquilino. Diferentemente dos Sistemas Tradicionais de Detecção de Intrusões,
a abordagem proposta baseia-se em assinaturas de desempenho, utilizando o
Bucket Algorithm para identificar anomalias com intrusão mínima no sistema. A
metodologia permite ajustar a taxa de falsos positivos e a latência de detecção
por meio da modelagem do comportamento do sistema sob cargas típicas e cali-
bração estatística do algoritmo. A validação foi realizada em um ambiente repre-
sentativo de nuvem que simula desafios críticos, como variações transitórias de
desempenho e mistura de serviços com diferentes perfis. Os resultados demon-
straram uma baixa taxa de falsos positivos na detecção de ameaças em ambientes
multi-inquilino, além de fornecerem insights sobre os impactos residuais de de-
sempenho causados por anomalias.

A segunda contribuição consiste em um estudo sobre a robustez e segurança do
Hipervisor Xen, combinando testes baseados em mutação na interface de hyper-
calls com uma análise sistemática de vulnerabilidades. Avaliamos 26 hypercalls
(66,6% da API) com mais de 28.000 casos de teste sob uma carga de trabalho
orientada a banco de dados, revelando que os testes tradicionais por mutação
são limitados devido ao comportamento dependente do ambiente de execução, o
que destaca a importância de compreender estes ambientes. Considerando as re-
lações de dependencia em camadas de um hipervisor, também verificamos que o
modelo de falha CRASH é inadequado para sistemas virtualizados. Como com-
plemento, realizamos uma análise de vulnerabilidades com base em metadados
(por exemplo, CVEs, patches) e modelos empíricos como Modelos de Descoberta
de Vulnerabilidades e Densidade de Vulnerabilidades, introduzindo o conceito
de “Trustworthiness Evidence" (artefatos que sinalizam indiretamente a segurança
do sistema). Uma taxonomia associa causas raiz a funcionalidades abusivas e
suas consequências de segurança, destacando as falhas relacionadas à memória
como as mais recorrentes. Essa análise também evidencia as limitações das abor-

xv

dagens estáticas e a necessidade de explorar o comportamento do sistema sob
cenários de intrusão ativa.

Por fim, apresentamos uma metodologia estruturada para a definição e instan-
ciação de Modelos de Intrusão (IMs). Baseando-se em conceitos da teoria das
máquinas estranhas (weird machines) e em princípios de modelagem de sistemas,
formalizamos os IMs como tuplas que incluem: origem, interface, alvo, abstração,
propriedade de segurança violada, funcionalidade abusiva e estado errôneo.
Demonstramos a aplicabilidade prática da metodologia aplicando-a ao subsis-
tema de gerenciamento de memória do Hipervisor Xen, resultando na definição
de mais de 50 IMs distintos extraídos de vulnerabilidades reais. Desenvolvemos
ainda um protótipo estendido de injetor para ilustrar como reutilizar casos de
teste entre diferentes modelos de intrusão. A validação foi conduzida em múlti-
plas versões do Xen, revelando diferenças comportamentais dependentes da ver-
são.

Em conclusão, esta tese contribui para diversos aspectos da segurança de sis-
temas virtualizados e estabelece bases para melhorias nas metodologias de avali-
ação de segurança. O trabalho apresentado oferece métodos e insights para iden-
tificar, simular e compreender falhas potenciais causadas por ameaças de segu-
rança. Uma direção promissora para trabalhos futuros é o desenvolvimento de
metodologias de benchmarking para tolerância a intrusões, com o objetivo de
avaliar a segurança e a resiliência de infraestruturas de virtualização. A Injeção
de Intrusões, em particular, fornece um arcabouço generalizável para avaliar o
comportamento do sistema sob comprometimento, possibilitando testes de hiper-
visores e aplicações futuras em sistemas distribuídos, Virtualização de Funções
de Rede (NFV) e plataformas de Internet das Coisas (IoT). Este trabalho abre
novos caminhos para testes de segurança sistemáticos e reprodutíveis ao abstrair
vulnerabilidades e focar nas consequências das explorações.

Palavras-chave

Virtualização, hipervisor, avaliação de segurança, injeção de intrusões, modelos
de intrusão, estado errôneo, teste de robustez, detecção de anomalias.

xvi

The contributions of this thesis resulted in the following publications :

• C. F. Gonçalves and M. Vieira, “Assessment: Methodology and case study on Xen,”
submitted to Proc. IEEE Int. Symp. Softw. Rel. Eng. (ISSRE), 2025. [under review]

• C. F. Gonçalves, N. Antunes, and M. Vieira, “Intrusion injection for virtual-
ized systems: Concepts and approach,” in Proc. 53rd Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Porto, Portugal, 2023, pp. 417–430, doi:
10.1109/DSN58367.2023.00047.

• C. F. Gonçalves, D. S. Menasché, A. Avritzer, N. Antunes, and M. Vieira, “Detecting
anomalies through sequential performance analysis in virtualized environments,”
IEEE Access, vol. 11, pp. 70716–70740, 2023, doi: 10.1109/ACCESS.2023.3293643.

• C. F. Gonçalves and N. Antunes, “Vulnerability analysis as trustworthiness evi-
dence in security benchmarking: A case study on Xen,” in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops (ISSREW), Coimbra, Portugal, 2020, pp. 231–236, doi:
10.1109/ISSREW51248.2020.00078.

• C. F. Gonçalves, D. S. Menasché, A. Avritzer, N. Antunes, and M. Vieira, “A model-
based approach to anomaly detection trading detection time and false alarm rate,”
in Proc. Mediterranean Commun. Comput. Netw. Conf. (MedComNet), Arona, Italy,
2020, pp. 1–8, doi: 10.1109/MedComNet49392.2020.9191549.

• C. F. Gonçalves, N. Antunes, and M. Vieira, “Evaluating the applicability of ro-
bustness testing in virtualized environments,” in Proc. 8th Latin-American Symp.
Dependable Comput. (LADC), Foz do Iguaçu, Brazil, 2018, pp. 161–166, doi:
10.1109/LADC.2018.00027.

• C. F. Gonçalves, “Benchmarking the security of virtualization infrastructures: Mo-
tivation and approach,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISS-
REW), Toulouse, France, 2017, pp. 100–103, doi: 10.1109/ISSREW.2017.70.

The following papers are also related to this thesis, but were not included:

• M. Torquato, C. Gonçalves, M. Nogueira, D. Rosário, and E. Cerqueira, “Mi-
gração automatizada de VMs na defesa de brokers MQTT contra memory de-
nial of service,” in Anais do XLIII Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuídos (SBRC), Natal, RN, Brazil, 2025, pp. 168–181, doi: https:
//doi.org/10.5753/sbrc.2025.5872.

• L. Beierlieb, L. Iffländer, A. Milenkoski, C. F. Gonçalves, N. Antunes, and S.
Kounev, “Towards testing the software aging behavior of hypervisor hypercall in-
terfaces,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW), Berlin,
Germany, 2019, pp. 218–224, doi: 10.1109/ISSREW.2019.00075.

• M. Torquato, C. F. Gonçalves, and M. Vieira, “An availability model for DSS
and OLTP applications in virtualized environments,” in Proc. 16th Eur. De-
pendable Comput. Conf. (EDCC), Munich, Germany, 2020, pp. 85–92, doi:
10.1109/EDCC51268.2020.00023.

xvii

https://doi.org/10.5753/sbrc.2025.5872
https://doi.org/10.5753/sbrc.2025.5872

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 4
1.3 Outline of the Thesis . 6

2 Background and Related Work 7
2.1 Background Concepts . 8

2.1.1 Dependability Concepts in System Security 13
2.1.2 Security in Virtualized Environments 19

2.2 Security Challenges in Virtualized Systems 25
2.2.1 Hypervisor Vulnerabilities 25
2.2.2 Side-Channel Attacks . 25
2.2.3 VM Isolation Failures . 26
2.2.4 VM Escape and Privilege Escalation 26
2.2.5 Resource Contention and DoS in Multi-Tenant Environments 27

2.3 Security Assessment Methodologies 28
2.3.1 Core Security Assessment Methodologies 28
2.3.2 Discussion and Comparative Analysis 32
2.3.3 Trends and Open Challenges 34

2.4 Virtualized System Security . 35
2.4.1 Anomaly Detection in Virtualized Infrastructures 35
2.4.2 Hypervisor-Level Vulnerability Analysis on Xen 37
2.4.3 Fault Injection and Robustness Testing of Hypervisors . . . 38
2.4.4 Adversarial Modeling and Exploit Reproduction Studies . . 39
2.4.5 Formalization of Malicious States in Virtualization Layers . 40

2.5 Gaps and Open Challenges . 42
2.6 Summary . 43

3 Anomaly Detection in a Multi-Tenant Environment: A Performance-
Based Approach 45
3.1 Anomaly Detection Methodology . 47

3.1.1 Exploratory Analysis Phase 48
3.1.2 Profiling Phase . 49
3.1.3 Operation Phase . 49

3.2 Anomaly Detection Mechanism and Model 51
3.2.1 Anomaly Detection Mechanism 51
3.2.2 Hypothesis Testing . 53
3.2.3 Analytical Model . 53
3.2.4 Modeling the Probability of False Alerts 56
3.2.5 Parameterization of the Anomaly Detection Mechanism . . 56

xix

3.2.6 Unified Framework for Sequential Analysis 57
3.3 Experimental Validation . 60

3.3.1 System Under Test and Experimental Setup 60
3.3.2 Fault Model . 63
3.3.3 Instantiation of the Three-Phase Approach 64
3.3.4 Model Assisted Calibration of Anomaly Detection 66
3.3.5 CUSUM comparison . 68

3.4 Results and Discussion . 69
3.4.1 Residual Effects . 70
3.4.2 Alert Delay Evaluation . 71
3.4.3 Case Study 1 . 74
3.4.4 Case Study 2 . 75
3.4.5 Variability Tests . 76

3.5 Threats to Validity . 77
3.6 Summary . 78

4 Understanding Exploitable Hypervisor Vulnerabilities 81
4.1 Robustness Testing in Virtualized Environments 82

4.1.1 Robustness Testing Approach 83
4.1.2 Experimental Setup . 89
4.1.3 Results and Discussion . 90
4.1.4 Lessons Learned and Open Challenges 93

4.2 Vulnerability Analysis as Trustworthiness Evidence 95
4.2.1 Data Collection and Preprocessing 96
4.2.2 Qualifying Trustworthiness from Vulnerability Data 99
4.2.3 Implications of Trustworthiness Evidence 103

4.3 Linking Vulnerabilities to Exploitable Consequences 104
4.3.1 Vulnerability Classification Methodology 105
4.3.2 Chain Analysis of Hypervisor Vulnerabilities 111
4.3.3 Implications of the Results . 115

4.4 Threats to Validity . 116
4.5 Summary . 117

5 Intrusion Injection in Virtualized Systems 119
5.1 Erroneous States and Intrusion Injection 121

5.1.1 From Errors to Erroneous States 122
5.1.2 The Concept of Intrusion Injection 123
5.1.3 Metaphor: Smart Vault Control System 125
5.1.4 Potential Applicability . 126

5.2 Injecting Intrusions in Virtualized Systems 127
5.2.1 The Intrusion Injection Approach 127
5.2.2 Intrusion Models for Virtualized Systems 128
5.2.3 Extracting Intrusion Models from Exploits 132

5.3 A Prototype Injector for Unauthorized Memory Accesses in the
Xen Hypervisor . 134
5.3.1 Xen Memory Management 135
5.3.2 Injector Implementation . 135

5.4 Case Studies . 137

xx

Contents

5.4.1 Reproducing Erroneous States for Known Vulnerabilities
and Attacks . 137

5.4.2 Injecting Erroneous States in Non-Vulnerable Versions . . . 142
5.4.3 Intrusion Injection for Security Assessment 143

5.5 Discussion: Strengths and Limitations 145
5.5.1 Strengths and Motivation . 145
5.5.2 Challenges in Defining Intrusion Models 145
5.5.3 Prototype and Experiments 146
5.5.4 Scope and Limits . 147

5.6 Summary . 147

6 Defining Intrusion Models for Structured Security Assessment 149
6.1 From Exploit Semantics to Structured Modeling 151

6.1.1 Abstracting the Exploitability of Computer Systems 151
6.1.2 Formalizing Intrusion Injection 156

6.2 Methodology for Defining Intrusion Models 159
6.2.1 Phase 1: Attack Vector Definition 160
6.2.2 Phase 2: System-Aware Intrusion Modeling 163

6.3 Case Study: Applying Intrusion Models to Xen Hypervisor 165
6.3.1 Attack Vector Definition . 165
6.3.2 System-Aware Intrusion Modeling 171
6.3.3 Test Case: Page Table Integrity Violation 173
6.3.4 Model Equivalence Across Attack Scenarios 175

6.4 Discussion and Threats to Validity 182
6.4.1 Discussion . 182
6.4.2 Threats to Validity . 183

6.5 Summary . 184

7 Conclusions and Future Work 185
7.1 Conclusions . 185
7.2 Future Work and Research Directions 186

References 189

Appendix A Sequential Performance Analysis Closed Forms and Deriva-
tions 209
A.1 Birth-death process subsumed by the bucket algorithm 209

A.1.1 Derivation of Un . 210
A.1.2 Derivation of VN . 211

A.2 Probability of false positive before detecting an attack 212
A.2.1 General case: varying number of buckets and bucket depth 212

A.3 Derivation of metrics of interest . 214
A.3.1 Special case: B = 2 . 214
A.3.2 Special case: B = 2 and D = 1 214
A.3.3 Numerical examples . 215
A.3.4 Sensitivity analysis . 215

Appendix B Xen Reference Subsystem 219

xxi

Acronyms

AF Abusive Functionality.

APT Advanced Persistent Threat.

BA Bucket Algorithm.

CT Compromised Tenant.

CVE Common Vulnerability and Exposures.

DoS Denial of Service.

ES Erroneous State.

FCT Foundation for Science and Technology.

FSM Finite State Machine.

IaaS Infrastructure as a Service.

IDS Intrusion Detection System.

IFSM Intended Finite State Machine.

II Intrusion Injection.

IM Intrusion Model.

LKM Loadable Kernel Module.

NVD National Vulnerability Database.

OS Operating System.

TPCx-V TPC Express Benchmark V [Tra, 2019].

VDM Vulnerability Discovery Model.

VM Virtual Machine.

xxiii

List of Figures

2.1 Comparison of Full Virtualization and Paravirtualization architec-
tures . 8

2.2 Comparison of Hosted and Bare-metal Hypervisor Architectures . 9
2.3 Direct Paging as implemented in Xen Hypervior [Wiki, 2015] 11
2.4 The Dependability and Security Tree, depicting core attributes,

threats, and means to achieve trustable service. Confidentiality is
a key attribute that contributes to system security. 13

2.5 The causal chain in dependability: a fault becomes active and
causes an error, which may propagate to result in a failure. 15

2.6 Causal chain from vulnerability to failure. Intrusion is triggered
through attack vectors, leading to observable errors and service
failures. 17

3.1 Overview of the methodology application life cycle. 47
3.2 Diagrams showing the three distinct sets of runs present on our

methodological approach: Exploratory, Profiling, and Operation. . 48
3.3 Scheme showing the differneces between Alert and Alarm in the

context of this Work. 50
3.4 Bucket Algorithm dynamics: System of buckets diagram repre-

senting the dynamics of the detection algorithm showing B buckets
of depth D each. 51

3.5 Discrete time Markov chain characterizing the behavior of the
Bucket Algorithm (BA). Each transition corresponds to the collec-
tion of a new sample. 55

3.6 TPCx-V components and transactions flow (from [Tra, 2019]). In
this work, we treat each group as a distinct subsystem. 61

3.7 Distinct phases and their alert meanings during a test run. 66
3.8 Probability of false alert from model tuned based on experiments. . 67
3.9 An instance of the CUSUM evaluation of the TPCx-V in a run with

an attack in the fourth phase. 69
3.10 Post-attack alerts distribution for bucket configuration with B=2

and D=[12,15]. We cropped the x-axis scale to simplify the presen-
tation. 70

3.11 Distribution of the residual effects by failure mode and bucket depth. 71
3.12 The overall distribution of the time to first alert in the presence of

an attack. All fault models and configurations together. 72
3.13 Time to detect attack, for D = 12 and D = 15. 73
3.14 Time to detect attack by fault mode. Total of Alerts = 1485 74

xxv

3.15 Campaign results for all fault models using two buckets. The data
are shown with the pre- and pos- phases split into two sets. 76

4.1 Experimental Approach for the Robustness Testing Evaluation . . . 83
4.2 Test Case derivation process and its life cycle 88
4.3 Testing Environment and its components relations 89
4.4 Xen support lifecycle and its relation with our analysis 97
4.5 Vulnerabilities’ life-span of studied Xen versions. 99
4.6 Vulnerabilities that affect multiple Xen versions. 100
4.7 Three-Phases of the MAM vulnerability discovery process (Image

from [Alhazmi et al., 2007]) . 102
4.8 Current momentum of Xen 4.4 and Xen 4.10 based on the MAM.

=Data was fitted using the non-linear least squares method with a confidence
level of 95% (alpha = 5%) . 103

4.9 Current momentum of Xen 4.11 and Xen 4.12 based on the MAM.
Data fitted using non-linear least squares method with a confidence level of 95%
(alpha = 5%) . 104

4.10 Overview of the vulnerability characterization process. 106
4.11 Visual hierarchy of attack severity. The diagram illustrates the in-

creasing impact of attack types, from information disclosure (OI) to
Execute Code (EC), based on potential disruption and adversarial
gain. 110

4.12 Parallel Mapping of Causes to the others dimensions. Each color repre-
sents a type of Cause and its relation with the Abusive Functionality and
the Security Violation . 112

4.13 Vulnerabilities directly related to memory exploitation mechanisms. 112
4.14 Parallel Mapping of Abusive Functionality to the others dimen-

sions. Each color represents a type of Abusive Functionality and
its relation with its Cause and the possible Security Violation 113

4.15 Parallel Mapping of Security Violation to the others dimensions.
We represent the DoS separately to ease the visualization. 114

4.16 Overall relation between cause, AFs, and consequences. Fully data
available on [Gonçalves, 2021] . 115

4.17 Central role of an Abusive Functionality in linking different secu-
rity faults with their different security violations 115

5.1 Chain of dependability threats [Algirdas Avizienis et al., 2004] with
the extended-AVI model [Neves et al., 2006]. 123

5.2 Overview of the methodology key components. 127
5.3 A Finite State Machine (FSM) represents a generic computation

providing a given service. 129
5.4 A black-box abstraction of a computational service. 129
5.5 The transitions of the FSM when an intrusion happens. The states

after the erroneous state that we want to evaluate. 130
5.6 The transitions of the FSM when an intrusion happens can be ab-

stracted in this compact representation that captures an Intrusion
Model’s core aspects. 130

5.7 Attack Strategy from XSA-212-priv 132
5.8 Attack Strategy from XSA-148-priv 133

xxvi

List of Figures

5.9 Xen Memory Layout and Direct Paging in PV. 136
5.10 Overview of the experimental validation strategy. 139

6.1 An abstract state machine that depicts a high-level design for a
hypothetical memory update hypercall operation. 152

6.2 Relation between an IFSM and its implementation: a partial state
mapping with multiple transitory states. 153

6.3 XSA-212 abstraction scenario where the system transitions into a
weird state (Step 2), then executes attacker-controlled code (Step 3)
using the weird machine’s emergent semantics. 156

6.4 Intrusion Models are derived from Attack Vectors. 160
6.5 Overview of the Methodology . 161
6.6 Attack Vector . 161
6.7 Inner Steps of the Attack Vector Definition Phase 162
6.8 Intrusion Modeling Methodology with Highlighted Attack Surface

Characterization Phase . 163
6.9 Process of generating the consolidated data of XSAs 167
6.10 Process of generating the hierarchical component categories of XSAs169
6.11 Overview of the procedure in the Case Study 176
6.12 Finite-state representations of two Intrusion Models (IM1 and IM2)

leading to equivalent erroneous states through distinct interaction
paths. IM1 models byte-level arbitrary memory writes; IM2 ab-
stracts structured manipulation via mapped page tables. 178

6.13 Injection Campaign Results Across Xen Versions 181

A.1 Bucket diagram for B = 2. 210
A.2 As the bucket depth increases, the probability of false alarm de-

creases but the time to detect attacks increases. 213
A.3 Sensitivity analysis when w = 20.646 216
A.4 Sensitivity analysis when w = 909 217

xxvii

List of Tables

2.1 Security Properties at Risk by Threat Category 27
2.2 Comparative Summary of Security Assessment Techniques 34

3.1 Comparison between Alert and Alarm in the Bucket Algorithm . . 50
3.2 Table of notation . 54
3.3 Sequential analysis algorithms: Detailed descriptions of four se-

quential algorithms used for process monitoring and fault detec-
tion. 58

3.4 Virtual Machines (VMs) name, memory, and the number of virtual
CPUs. The tpc-driver is supported on a different physical host . . . 63

3.5 False-positive alerts: total count and average (µ) by run in validation 65
3.6 False-positive alerts segmented by TPC Express Benchmark V [Tra,

2019] (TPCx-V)’s transactions . 65
3.7 Runs in Experimental Campaign . 66
3.8 Fraction of attack alerts over all alerts varying B and D. We are

accounting for all alerts, but not following the detection criterion. . 67
3.9 Mean time to first alert during the attack injection (in seconds) . . . 71
3.10 Result of Case Study 1 showing the Residual Effects counts (RE),

Precision, Recall and F-measure (F1) metrics. (Maximal value for
TP in ALL is 126, others classes is 21) 75

3.11 Result of Case Study 2, showing the Residual Effects counts (RE),
Precision, Recall, and F-measure (F1) metrics (Maximal value for
TP in ALL is 126, others classes are 21) 77

4.1 Mutation Rules applied on the API parameters. 84
4.2 Summary of Hypercall Covered . 86
4.3 Detailed Operations Hypercalls . 87
4.4 Tests Results Breakdown by State . 92
4.5 Breakdown by exit codes . 93
4.6 Xen vulnerability birth-death data. Rows indicate the versions

where the vulnerability was fixed, and columns indicate the ver-
sions where the vulnerability entered the codebase. The right
part shows the percentage of the overall vulnerabilities that are
Local, Inherited from previous versions, and after-life vulnerabil-
ities (those that affect obsolete versions) 98

4.7 Xen Versions code size, number of Vulnerabilities and its respec-
tive Known Vulnerability Density (VKD) 101

4.8 Vulnerability Causes Definitions . 108
4.9 Abusive Functionalites Definition . 109

xxix

4.10 Security Violations . 110
4.11 Frequency counts of Causes, Abusive Functionalities, and Security

Violations, highlighting their acronyms for quick reference. 111
4.12 Relation between Abusive Functionality and Causes 113
4.13 Consequences vs Abusive Functionalities 114

5.1 Intrusion Models Abusive Functionalities from the Use Cases. . . . 134
5.2 Results of the injection campaign in non-vulnerable versions. . . . 143

6.1 Overview of Xen Security Advisories (XSAs) Considered in the
Case Study . 169

6.2 Xen Vulnerabilities Breakdown by Hypervisor Subsystems and
Components . 169

6.3 Top frequent actions, modifiers, and resources derived from abu-
sive functionalities . 173

6.4 Top frequent abusive functionalities and breakdown by affected
security properties . 173

6.5 Campaign Results for IM2 Across Xen Versions 180

A.1 Table of notation: a transition occurs after every sample. At state
0, we may have self-transitions. 212

B.1 Xen Subsystem Reference used to guide the Vulnerabilities Break-
down. Rows with no vulnerabilities are just presented to mark
reference categories used. 219

xxx

Chapter 1

Introduction

The transformative impact of cloud computing on IT services, driven by scala-
bility, cost-effectiveness, and flexibility, is driving widespread migration to cloud
environments [Council, 2024; Gartner, 2024; Oracle, 2024]. Organizations across
sectors are adopting private, public, or hybrid cloud models to capitalize on these
benefits. This shift leverages diverse service models, including Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), all
relying on virtualization technology.

Virtualization is the core technology that makes cloud services possible. It en-
ables multiple operating systems and applications to run on a single physical
machine by abstracting physical hardware, allowing virtual machines to oper-
ate independently. Virtualization improves scalability and cost efficiency by ab-
stracting hardware resources. However, this abstraction introduces new secu-
rity challenges. As cloud environments increasingly adopt multi-tenancy mod-
els, where multiple users share the same physical infrastructure, security risks
become more pronounced. Hypervisors play a crucial role in isolating tenants
and managing resources securely in such setups. However, vulnerabilities at the
hypervisor level pose unique risks, as an exploited flaw could allow attackers to
compromise multiple virtual machines simultaneously.

As the core of virtualization, the hypervisor is a high-value target for attackers.
It is responsible for creating, running, and managing VMs and ensuring each
operates independently and securely. If compromised, the hypervisor may pro-
vide adversaries extensive control over virtualized resources, making hypervisor
security a foundational concern in modern cloud computing [Waldman, 2023].
Additionally, since the hypervisor ensures isolation and integrity, any attack tar-
geting those properties could be disastrous [Waldman, 2023]. Thus, securing hy-
pervisors is crucial to maintaining the safe operation of virtualized environments.

Another transformation in IT services is the adoption of multi-tenant cloud en-
vironments for critical sectors such as financial services, healthcare, and govern-
ment [Armbrust et al., 2010; Marston et al., 2011]. In this context, the hypervisor
delivers resources to multiple tenants on a shared physical infrastructure. How-
ever, while the multi-tenancy model is central to cloud efficiency and flexibility,
achieving strong isolation in such environments can be challenging, as miscon-

1

Chapter 1

figurations or vulnerabilities in the hypervisor can lead to cross-tenant attacks,
making them a potentially fertile ground for security and privacy breaches [Az-
mandian et al., 2011; Jin et al., 2012; Ristenpart et al., 2009; Zhang et al., 2012].

Let’s take the proof of concept demonstrated by Google Project Zero, where an
attacker exploits a hypervisor vulnerability within a virtual machine. This exploit
allows the attacker to gain unauthorized access to shared resources and escalate
privileges, impacting every other tenant in the virtual environment [Horn, 2017].
To mitigate such risks, many researchers have tried approaches in hypervisor-
based multi-tenant systems to enforce tenant isolation, limit access controls, in-
crease monitoring, and enforce fault tolerance [Azab et al., 2011; Zhang et al.,
2011, 2017b, 2012]. Despite many efforts, those methods often face limitations,
especially in evolving threats that exploit increasingly sophisticated attack vec-
tors. Hypervisor security in multi-tenant settings remains a critical area of re-
search, with substantial challenges in achieving robust tenant isolation, minimiz-
ing inter-tenant interference, and responding to zero-day vulnerabilities.

Software systems inherently contain defects, and security mechanisms can fail,
which is exacerbated by the increasing complexity of attacks. Despite advances in
software development practices, vulnerabilities continue to exist in software sys-
tems, posing significant security risks [Litchfield and Shahzad, 2017]. Attackers
constantly evolve their techniques, exploiting these vulnerabilities to gain unau-
thorized access, steal data, or disrupt services. The proliferation of user-friendly
attack tools has led to a paradox in cybersecurity. While the technical expertise re-
quired to execute attacks has diminished, the sophistication and impact of these
attacks have escalated [Lipson, 2002]. This trend is evident in the widespread
availability of automated scripts and toolkits that enable individuals with min-
imal technical knowledge to launch complex cyberattacks. Consequently, the
challenge has shifted from questioning the feasibility of exploiting vulnerabili-
ties to anticipating the timing of their inevitable exploitation, which underscores
the critical need for proactive security measures and continuous vigilance in the
face of evolving cyber threats.

1.1 Problem Statement

Nearly 20 years have passed since the first widely recognized online cloud ser-
vices emerged [Buyya et al., 2008], and while cloud computing has changed IT
services, it has also brought a range of security concerns. The move to cloud en-
vironments has exposed individual systems and multi-tenant infrastructures to
new threats demanding robust security guarantees. Whether a system operates
as a standalone utility or within a complex multi-tenant architecture, the rising
reliance on virtualization, particularly hypervisors, has amplified these security
challenges over the past two decades.

As a core virtualization component, the hypervisor has introduced new attack
surfaces previously absent in traditional computing environments, like vulner-
abilities in the hypercall interface, virtual machine escape exploits, side-channel
attacks, and flaws in inter-VM communication mechanisms [CyberSRC Consul-

2

Introduction

tancy, 2025]. Initially designed to enable efficient resource sharing, the evolving
complexity of the hypervisor has led to an increased codebase, a synonym for an
expanding array of threats. As the hypervisor continues to evolve to accommo-
date new hardware capabilities and emerging cloud requirements, its growing
codebase presents numerous security vulnerabilities that can compromise the in-
tegrity of the entire virtualized environment [Barrowclough and Asif, 2018; Patil
and Modi, 2019; Sgandurra and Lupu, 2016]. Regardless of the type of system, it
is essential to address the risks associated with this increased attack surface.

The dependable computing community has proposed many methods to assess
and benchmark complex systems, including robustness testing, fault injection,
and reliability modeling [Koopman and DeVale, 1999a; Natella et al., 2013; Vieira
et al., 2007]. These methodologies are essential in evaluating system reliability
and identifying weak points that might fail under adverse conditions. For ex-
ample, fault injection intentionally introduces errors into a system to determine
how it handles failures and ensure proper fault tolerance mechanism implemen-
tation [Natella et al., 2016]. This approach helps assess system robustness, en-
suring systems can resist errors. Similarly, robustness testing ensures systems
can operate correctly even under extreme inputs or stressful conditions [Cámara
et al., 2014; Koopman and DeVale, 1999a] . Such dependability benchmarking
methods have proven valuable in traditional system settings, providing insights
into potential points of failure and ensuring systems are resilient against faults.

Assessing the security of virtualized systems, particularly those using hypervi-
sors, is an area where practical and consolidated solutions still need to be re-
searched. As virtualization technology continues to advance, security assess-
ment methods must also evolve. The challenges presented by the hypervisor,
a middleware between the physical hardware and the virtual machines, demand
specialized approaches that expand traditional security assessment techniques.
While many methods exist for the general evaluation of software systems, such
as threat modeling, static analysis, formal verification, dynamic analysis (includ-
ing fuzzing and symbolic execution), and penetration testing [D’Abruzzo Pereira
and Vieira, 2020; Mainka et al., 2012], these techniques do not fully address the
challenges of complex, virtualized environments.

Static analysis aims to evaluate software code for vulnerabilities without execut-
ing it [D’Abruzzo Pereira and Vieira, 2020; Pistoia et al., 2007]. Still, it often
struggles with the scalability of large codebases, leading to high rates of false
positives and missing context-specific issues. Dynamic analysis, such as fuzzing,
involves testing the software by providing invalid or random inputs to discover
security flaws [Felderer et al., 2016], however, the complexity and size of hypervi-
sor systems can make comprehensive coverage challenging, resulting in missed
vulnerabilities. Techniques like formal verification and symbolic execution focus
on proving a program’s correctness based on mathematical models [Cook et al.,
2020]. However, their applicability is limited by the hypervisor code’s vast and
dynamic nature, making the verification process computationally intensive and
difficult to scale effectively.

Despite numerous efforts to address various security aspects of virtualized sys-
tems, existing approaches still fall short, as no one has yet developed compre-

3

Chapter 1

hensive and practical solutions. Specifically, the community would benefit from
new methods to interpret hypervisor vulnerability-related information, expand
anomaly detection capabilities, and simulate real-world attack scenarios to mea-
sure system resilience effectively.

This thesis contributes to enhancing the security of virtualized systems by in-
vestigating a combination of techniques to address key security challenges. Our
work explores multiple dimensions, including anomaly detection through per-
formance analysis, robustness testing, and analysis of vulnerability data from a
widely used hypervisor (highlighting cause-and-effect relationships behind iden-
tified vulnerabilities). Additionally, we propose a novel security testing approach
that emulates the underlying manifestations of erroneous states resulting from
exploited vulnerabilities, enabling the modeling and replication of such states in
virtualized environments.

1.2 Contributions

This thesis advances the state-of-the-art by researching multiple approaches, in-
cluding performance-based anomaly detection, robustness testing, vulnerabil-
ity analysis, and the novel concept of intrusion injection, to improve the overall
security of virtualized systems. In summary, the contributions of this thesis are:

• A three-phase methodology employing sequential performance analysis,
specifically the bucket algorithm [Avritzer et al., 2005], to detect anomalies
that may indicate potential security threats. An initial exploratory phase
aims to identify the most effective way to monitor the system based on its
characteristics. The next phase evaluates the system’s expected regular op-
erational profile, employing an analytical method to tune the anomaly de-
tection mechanism. Finally, data and knowledge from the previous phases
are used to monitor the system and report any detected anomalies.

We conducted an experimental assessment in a multi-tenant system run-
ning the TPCx-V benchmark in a virtualized environment, testing the ap-
proach’s effectiveness on a resource exhaustion scenario in 3 different case
studies. The results indicate that our proposal is practical and has low false-
positive rates. We also discuss the unexpected residual effects when the
system is recovering from a deviation from expected behavior. This contri-
bution led to the publication: ’Detecting Anomalies Through Sequential Perfor-
mance Analysis in Virtualized Environments’ [Gonçalves et al., 2023b].

• A comprehensive evaluation of hypervisor robustness and security, com-
bining an empirical study of hypercall robustness in Xen with a vulner-
ability analysis of Xen and KVM/QEMU. We conducted over 28,000 test
cases using the TPCx-V benchmark, adapting hInjector [Milenkoski et al.,
2015a] to inject faults into hypercalls and monitor the system behavior. The
study revealed critical failure modes (e.g., silent crashes, enforced termi-
nations) and showed that 66.6% of hypercalls exhibited context-dependent
behavior, limiting the effectiveness of generic mutation strategies. These

4

Introduction

observations highlight the need for system-aware robustness testing that con-
siders hypercall semantics and runtime context. We also identified gaps
in existing failure models, particularly in capturing failures across multi-
tenant trust boundaries.

Complementing this, we analyzed 254 Xen and 343 KVM/QEMU vulner-
abilities using NVD, XSAs, and version control systems data. By applying
Vulnerability Discovery Models (VDMs), we identified security trends and
the impact of hardening efforts (e.g., a drop in inherited flaws in Xen 4.6).
A causal chain analysis showed that memory issues caused 44.6% of vul-
nerabilities, with denial of service and confidentiality breaches as frequent
consequences. This contribution led to these publications: ’Evaluating the
applicability of robustness testing in virtualized environment’ [Gonçalves et al.,
2018] and ‘Vulnerability Analysis as Trustworthiness Evidence in Security Bench-
marking: A Case Study on Xen’ [Gonçalves and Antunes, 2020].

• The most relevant contribution of this thesis is the definition and applica-
tion of Intrusion Injection, a methodology for security assessment in virtu-
alized environments, particularly hypervisors. Intrusion injection simulates
the effects of successful attacks to evaluate a system’s response to erroneous
states caused by malicious activities, providing insights into its security
strengths and weaknesses. Abstracting attack mechanisms into generalized
intrusion models allows to overcome the dependence on known vulnerabil-
ities and attacks to increase test coverage, enabling the evaluation of how
systems handle known and potentially unknown vulnerabilities.

The approach’s feasibility is demonstrated through a prototype capable of
replicating real-world exploit effects on multiple versions of the Xen hyper-
visor, revealing differences in system resilience. This work lays the foun-
dation for more comprehensive and proactive security evaluations, offering
a system-agnostic framework that may support the development of robust
defenses and security benchmarks in virtualized systems. This contribution
led to the publication: ‘Intrusion Injection for Virtualized Systems: Concepts and
Approach’ [Gonçalves et al., 2023a].

• The last contribution is a methodology for defining Intrusion Models
based on hypervisor components and their functionalities. By characteriz-
ing the existing vulnerabilities and the security properties of a given compo-
nent, it outlines a systematic way to design potentially overlooked abusive
functionalities that could anticipate problems of undisclosed vulnerabilities
and emulate their effects. We apply the methodology to the Memory Man-
agement Component (and subsystems) of the Xen Hypervisor to extend the
Intrusion Injection prototype (from the previous contribution) to cover the
newly defined abusive functionalities. We also present a qualitative evalu-
ation of the applicability of the Large Language Models (LLMs) to aid the
design of new Intrusion Models. This expanded framework helps users
define proactive testing of virtualized systems by assessing how these sys-
tems respond to theoretical vulnerabilities that have not yet emerged in the
wild. This led to the submission: ‘Intrusion Models for Security Assessment:
Methodology and Case Study on Xen’, currently under review for ISSRE 2025.

5

Chapter 1

1.3 Outline of the Thesis

This first chapter introduced the problem addressed and the main contributions
of this thesis. The remaining chapters of this thesis are structured as follows.

Chapter 2 introduces key concepts of dependability and security, followed by an
overview of virtualization technologies. It reviews established security evalua-
tion techniques, focusing on fault and vulnerability injection, and highlights chal-
lenges in hypervisor assessment. The chapter concludes by identifying method-
ological gaps and outlining open challenges addressed in later chapters.

Chapter 3 introduces the sequential-performance-based anomaly detection ap-
proach for virtualized environments. It describes the methodology’s process
for profiling system metrics, developing a model-based calibration strategy, and
demonstrating its efficacy through case studies on realistic cloud workloads.

Chapter 4 examines the security of virtualized systems from two complementary
perspectives. First, it investigates the robustness of the Xen hypercall interface
through a mutation-based testing campaign, discussing the methodology, exper-
imental setup, and failure characterization. Second, it analyzes historical vulner-
ability data for Xen, KVM, and QEMU to derive trustworthiness indicators and
construct a causal taxonomy linking root faults to exploitable consequences.

Chapter 5 introduces the concept of Intrusion Injection, explaining its relationship
to fault and error models, and proposes the use of Intrusion Models (IMs) to ab-
stract and generalize exploit effects. A prototype injector is presented and imple-
mented in the Xen hypervisor. The chapter discusses case studies demonstrating
how to reproduce erroneous states derived from vulnerabilities and use them to
assess the impact of security violations across different hypervisor versions.

Chapter 6 extends the formalization of Intrusion Models by framing the ex-
ploitability of systems as emergent computational behaviors. It introduces a
methodology to assess system interfaces, security properties, and intended func-
tionalities to identify IM and its abusive functionalities. It also applies the method-
ology to the Xen hypervisor, analyzing real-world vulnerabilities to extract recur-
ring exploitation patterns and instantiate concrete Intrusion Models.

Chapter 7 concludes this thesis, offering final remarks on the presented contribu-
tions and discussing ideas for future research topics.

Appendix A describes additional derivations and closed-form expressions sup-
porting the sequential analysis methods introduced in Chapter 3.

Appendix B provides supplementary reference material on Xen’s subsystem struc-
ture, used as a basis for the vulnerability analysis in Chapter 5.

6

Chapter 2

Background and Related Work

Virtualized environments have become foundational to modern computing in-
frastructure, offering flexibility, isolation, and scalability for cloud and multi-
tenant architectures. However, this increased abstraction and resource sharing
also broadens the system’s attack surface, making hypervisors and their compo-
nents attractive targets for adversaries. In this context, the security of virtualized
systems has become a critical concern, both in academic research and practical
deployments.

This chapter provides a comprehensive review of the state of the art in securing
virtualized systems, with a particular focus on hypervisors as the central points
of enforcement for isolation and resource mediation. It consolidates core back-
ground concepts that underpin virtualization, surveys key security challenges,
and categorizes assessment methodologies ranging from static and dynamic anal-
ysis to formal modeling and fault injection.

The review further discusses representative works in the field, including studies
on anomaly detection, vulnerability analysis, robustness testing, and recent ad-
vances in intrusion modeling. Throughout the chapter, we emphasize the evolv-
ing nature of virtualization threats and the limitations of conventional assessment
techniques, motivating the need for new approaches such as those introduced in
this thesis.

The organization of this chapter is as follows. Section 2.1 introduces essential
background concepts, including memory and I/O virtualization mechanisms.
Section 2.2 outlines the key security challenges in virtualized environments, such
as hypervisor vulnerabilities, side channels, and isolation failures. Section 2.3
presents the principal methodologies for security assessment, including static
and dynamic analysis, fuzzing, and model-driven techniques. Section 2.4 sur-
veys related work across the domains of anomaly detection, robustness testing,
vulnerability classification, and intrusion modeling. Section 2.5 identifies open
challenges and research gaps that remain unresolved. Section 2.6 concludes the
chapter with a summary of findings and a transition to the thesis’ original contri-
butions.

7

Chapter 2

2.1 Background Concepts

Virtualization is broadly defined as the simulation of the software and/or hard-
ware environment on which other software runs, creating a virtual machine (VM)
that emulates a real computer system [Stouffer et al., 2015]. In essence, virtual-
ization abstracts physical computing resources (CPU, memory, I/O devices, etc.)
into a flexible, isolated platform for guest operating systems (OS) and applica-
tions [Patil and Modi, 2019]. There are several main types of system virtualiza-
tion, distinguished by how the guest OS interacts with the underlying hardware:

Guest Kernel

Hypervisor

Hardware

Privileged Instruction

EmulateTrap EmulateTrap

Full Virtualization

Modified Guest Kernel

Hypervisor

Hardware

Hypercall

Operation

Paravirtualization

Figure 2.1: Comparison of Full Virtualization and Paravirtualization architectures

• Full Virtualization: The hypervisor emulates a complete hardware inter-
face, allowing unmodified guest OSes to run [Stouffer et al., 2015]. Sen-
sitive instructions are trapped and emulated. Early x86 implementations
(e.g., VMware Workstation) used binary translation, whereas modern sys-
tems rely on hardware extensions (Intel VT-x, AMD-V), which reduces em-
ulation overhead [Sgandurra and Lupu, 2016]. This ensures high compati-
bility, but can incur performance penalties due to the use of trapping mech-
anisms. (see Figure 2.1)

• Paravirtualization: Here, the guest OS is aware of the hypervisor and
uses specialized interfaces (e.g., hypercalls) instead of privileged instruc-
tions [Stouffer et al., 2015]. This approach avoids emulation overhead,
thereby improving performance (especially in I/O and memory), but re-
quires modified guest operating systems. Xen’s [Barham et al., 2003] early
architecture exemplifies this model through paravirtualized Linux kernels
interacting directly with the hypervisor. (see Figure 2.1)

• Hardware-Assisted Virtualization: Modern CPUs provide extensions (In-
tel VT-x, AMD-V, and EPT/NPT) that enable efficient trapping and memory
management in hardware [Stouffer et al., 2015]. This allows guest operating
systems to run unmodified, similar to full virtualization, but with reduced
overhead. The CPU automatically traps privileged operations, supporting
a hypervisor “root mode” (Ring -1) for isolation [Compastié et al., 2020].

8

Background and Related Work

Most hypervisors today (e.g., KVM, VMware, Hyper-V, Xen HVM) com-
bine hardware-assisted virtualization with paravirtualized drivers for I/O
performance.

Virtual Machine Monitors (VMMs) and Hypervisors: The software layer that
enables virtualization is commonly called the hypervisor or Virtual Machine Mon-
itor (VMM) [Barham et al., 2003]. The hypervisor has ultimate control of the host’s
hardware and arbitrates access to resources between multiple VMs. There are two
classic categories of hypervisors [Stouffer et al., 2015]:

VM1 VM2

Hypervisor

Host OS

Hardware

Hosted Hypervisor

VM1 VM2

Hypervisor

Hardware

Bare-metal Hypervisor

Figure 2.2: Comparison of Hosted and Bare-metal Hypervisor Architectures

• Type-1 (Bare Metal) Hypervisors: These hypervisors run directly on the
host hardware, acting as minimal operating systems optimized for VM
management [Stouffer et al., 2015], as shown on the right side of the Fig-
ure 2.2. Their direct hardware access enables high performance, making
them common in servers and data centers (e.g., Xen, VMware ESXi, Hyper-
V). In Xen, the Dom0 VM manages device drivers and toolstacks, handling
I/O for unprivileged guests (DomU) [Barham et al., 2003; Xen Project, 2024].
This offloads complexity while keeping the hypervisor core lean. This archi-
tectural separation enhances IO performance but increase the attack surface
within the hypervisor itself. Other Type-1 hypervisors may embed simi-
lar privileged environments. Crucially, no general-purpose host OS exists
beneath a Type-1 hypervisor (it is the OS).

• Type-2 (Hosted) Hypervisors: These run atop a conventional host OS [Scar-
fone et al., 2011], such as Windows or Linux, and operate as applications or
kernel modules (e.g., VMware Workstation, VirtualBox, KVM). While con-
venient for end-users and development, they add performance overhead
and enlarge the trusted computing base. The host OS becomes a criti-
cal dependency, as its compromise can endanger all VMs [Chisnall, 2013;
Xen Project, 2024]. Despite these risks, modern Type-2 hypervisors can ap-
proach near-native speeds by utilizing hardware extensions and optimized
I/O, thereby narrowing the performance gap. The core distinction lies in
whether the hypervisor runs on bare metal or a host OS, which affects secu-
rity, performance, and deployment use cases. This model is shown on the
left side of the Figure 2.2

9

Chapter 2

System Architecture and Components: A virtualized system typically comprises
(i) the physical host hardware, (ii) the hypervisor (and optionally a host OS or
privileged domain), and (iii) one or more guest VMs. Each VM runs a guest
OS and applications within an isolated environment enforced by the hypervi-
sor. The hypervisor mediates access to hardware resources (CPU, memory, disk,
network), ensuring each VM operates as if it had dedicated resources. From the
guest’s view, it perceives a typical hardware environment, even though resources
are virtualized. Crucially, the hypervisor encapsulates each VM’s state, enabling
strong isolation and portability. A VM can be paused, saved, and resumed on
another host, as its entire virtual hardware context is preserved. These properties
underpin the security and flexibility of virtualization.

Two key technical challenges underlying system virtualization are memory vir-
tualization and I/O virtualization. These refer to how the hypervisor virtualizes
the memory subsystem and the input/output devices, respectively, for each VM.
We outline the basic principles of each:

Memory Virtualization

Memory virtualization allows multiple VMs to share the physical memory of the
host safely. Each guest OS manages its own virtual memory and page tables, un-
aware that the “physical” addresses it sees are actually guest physical addresses
that the hypervisor will map onto the host physical memory. The hypervisor must
intercept memory management operations from the guest OS and maintain map-
pings to ensure isolation (so that one VM cannot read or write memory belonging
to another VM or the hypervisor itself). A naive approach of giving the guest di-
rect control of the real MMU (Memory Management Unit) is untenable, since a
guest could then map or modify any memory on the system. Instead, the hyper-
visor typically deploys one of two techniques:

• Shadow Page Tables (Software-Managed): In systems lacking hardware
virtualization, the hypervisor maintains a shadow page table for each VM.
While the guest OS manages its own page tables (guest virtual → guest
physical), it cannot load them into the MMU. Instead, the hypervisor in-
tercepts updates and builds a shadow page table mapping guest virtual
addresses directly to host physical memory. This ensures isolation, as the
hypervisor controls the final mapping, but incurs overhead due to the need
to synchronize with guest updates [Stouffer et al., 2015]. Faulty guest up-
dates are contained, preventing breaches of isolation.

• Direct Paging in Xen (Paravirtualized Memory Management): In Xen’s
paravirtualized environment, guest operating systems are aware of the vir-
tualization layer and participate in memory management. Figure 2.3 ex-
plains this approach in detail. Rather than abstracting memory through
hardware MMU remapping or shadow tables, Xen exposes machine mem-
ory directly to the guest via a pseudo-physical address space. The guest OS
builds and manages its own page tables using machine addresses instead
of guest physical ones. To ensure correctness and isolation, Xen enforces

10

Background and Related Work

Guest OS

APP APP APP

VMM

Hardware

VA

Guest Page Table

GFN

Nested Page Table

MFN

READ ONLY!

Page Table
Update w/
Hypercall

Figure 2.3: Direct Paging as implemented in Xen Hypervior [Wiki, 2015]

invariants on page table entries and requires that updates to them occur via
hypercalls, allowing the hypervisor to validate modifications. This model
minimizes overhead and offers efficient paging without requiring nested
translation hardware [Wiki, 2015]. Guest virtual addresses (VAs) are first
translated to guest frame numbers (GFNs) by the guest page table. These
are then translated to host physical addresses (hPA) via a nested page ta-
ble maintained by the VMM. Page tables in the guest are marked read-only,
and any updates must be validated via hypercalls to the hypervisor. This
architecture ensures memory isolation and integrity in hardware-assisted
virtualization.

• Hardware-Assisted Paging (Second-Level Address Translation): Modern
CPUs support nested page tables (Intel EPT, AMD NPT), enabling two-
level address translation in hardware. The guest handles its virtual → guest
physical mappings, while the hypervisor maps guest physical-to-host phys-
ical addresses. The MMU walks both tables, allowing direct translation
without trapping to the hypervisor. This reduces overhead, enhances per-
formance, and simplifies the design of hypervisors. It also enables addi-
tional protections, such as marking memory as non-executable. In practice,
memory virtualization combines hardware support with hypervisor control
to maintain strong isolation, falling back to shadow paging if necessary.

Another aspect of memory virtualization is managing address spaces for isolation.
Each VM typically runs in a distinct address space from the hypervisor and other
VMs. On architectures like x86 with rings/privilege levels, the hypervisor oper-
ates at a higher privilege than kernel code inside the VM. For example, in VT-x,
guest OS kernel code runs at guest ring 0, but the hypervisor itself runs at a spe-
cial ring (often called ring -1) that the guest cannot directly access. This ensures
that if a guest tries to access a physical memory address not belonging to it, the
hardware traps to the hypervisor, which can then disallow the access. Memory
isolation is further strengthened by use of an IOMMU (I/O Memory Manage-
ment Unit) for direct memory access by devices. The IOMMU can remap DMA
requests from devices (which might be initiated by a guest) to the appropriate

11

Chapter 2

physical addresses, preventing a compromised VM from instructing a device to
DMA into memory of another VM or the hypervisor. In summary, through a
combination of shadow or nested page tables and IOMMUs, a hypervisor en-
forces that each VM’s memory is a sandbox. This is fundamental to virtualization
security once a breach of the memory virtualization mechanism could lead to
one of the most devastating failures, allowing cross-VM data leakage or arbitrary
code execution in the host. Hence, hypervisor developers treat the MMU virtu-
alization code as part of the critical trusted computing base to be heavily audited
and often leverage hardware features to narrow the attack surface. [Stouffer et al.,
2015]

I/O Virtualization

Input/Output virtualization refers to how VMs perform operations on disks, net-
work cards, GPUs, USB devices, and other peripherals, given that such hardware
is usually shared among VMs. The hypervisor must provide virtual devices to each
VM and handle multiplexing of the real hardware. There are three common ap-
proaches to device virtualization in systems like Xen, KVM, or VMware [Stouffer
et al., 2015]:

• Full Device Emulation (Software Emulation): The hypervisor emulates
hardware devices entirely in software, presenting standard interfaces (e.g.,
e1000 NIC, IDE controller) to guest OSs [Stouffer et al., 2015]. I/O instruc-
tions from the guest trap into the hypervisor, which relays them to real de-
vices or host services. This ensures compatibility with unmodified operat-
ing systems, but incurs performance overhead due to the frequency of traps.
Emulation is flexible but mainly reserved for less performance-critical de-
vices or legacy support.

• Para-virtualized Drivers (Hypervisor-Aware I/O): Para-virtualization ex-
poses simplified virtual devices accessed via specialized front-end drivers
in the guest, which communicate with back-end drivers in the hypervisor or
a privileged domain (e.g., Dom0 in Xen) [Community, 2015; Stouffer et al.,
2015]. Communication often utilizes shared memory and ring buffers, en-
abling high-throughput, low-latency I/O without frequent virtual machine
(VM) exits. This method significantly reduces CPU overhead but requires
guest OS support for para-virtualized drivers, which is now common in
modern systems (e.g., VirtIO, Xen PV).

• Pass-through and Self-Virtualizing Devices: For near-native performance,
VMs can be granted direct access to physical devices via pass-through, con-
trolled by the IOMMU to enforce isolation. Devices supporting SR-IOV ex-
pose multiple virtual functions (VFs) that can be assigned to different vir-
tual machines (VMs), enabling efficient and secure sharing [Stouffer et al.,
2015]. While offering high performance, pass-through reduces flexibility
(e.g., complicates live migration) and should be used selectively, particu-
larly for dedicated devices such as GPUs or storage controllers.

12

Background and Related Work

From a security perspective, I/O virtualization adds an additional attack sur-
face in the hypervisor (the emulation code, the front/back driver mechanisms,
etc.). Still, it also upholds isolation: the hypervisor must ensure that I/O from one
virtual machine (VM) cannot interfere with another. This includes virtual net-
working (e.g., preventing VMs from sniffing each other’s traffic unless explicitly
connected via a virtual network) and storage (isolating each VM’s virtual disks).
Many hypervisors implement virtual switches and virtual disk controllers with
security features analogous to physical network switches and storage controllers,
including VLANs, access control lists, and encryption options for virtual disk
images. At the foundational level, however, the key point is that virtualization
introduces controlled indirection for all I/O: every device interaction by a guest is
either intercepted, mediated, or explicitly allowed by the hypervisor. Whether
via software traps, hypercalls, or hardware isolation (IOMMU/SR-IOV), the hy-
pervisor remains in ultimate control of what I/O a VM can perform. This control
is essential to enforce virtual machine isolation, one of the core properties we expect
from a secure virtualized system.

2.1.1 Dependability Concepts in System Security

Computing systems are often described in terms of their dependability, which
is an umbrella concept capturing the system’s trustworthiness and resilience. A
seminal definition by Avizienis et al. states: dependability is a global concept that
subsumes attributes such as reliability, availability, safety, integrity, maintainability,
etc. [Algirdas Avizienis et al., 2004]. In other words, dependability is the collec-
tive term for the qualities that allow a system to deliver service that can justifiably
be trusted. When considering security in critical systems (such as virtualized in-
frastructures), it is essential to recall the core dependability attributes and how
malicious faults (security attacks) interplay with them. Below, we outline the
key attributes and models from dependability theory, and then discuss how they
relate to virtualized systems and security.

DependabilityThreats

Faults

Errors

Failures

Attributes

Availability Reliability Safety Integrity Maintainability Confidentiality
(for Security)

Means

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2.4: The Dependability and Security Tree, depicting core attributes,
threats, and means to achieve trustable service. Confidentiality is a key attribute
that contributes to system security.

13

Chapter 2

Core Dependability Attributes

Classically, the primary attributes of dependability include Reliability, Avail-
ability, Safety, Integrity, and Maintainability (often abbreviated RASIM), among
others [Algirdas Avizienis et al., 2004]. We define each of these in the context of
computing systems:

Figure 2.4 illustrates the foundational structure of the dependability concept and
its relationship with security. This representation, often referred to as the De-
pendability and Security Tree, organizes the core elements of the field into three
branches: Threats, Attributes, and Means. At its root lies Dependability, defined
as the ability of a system to deliver service that can justifiably be trusted [Algirdas
Avizienis et al., 2004].

The left branch identifies the primary threats to dependability: faults, errors, and
failures. These elements are causally related through the classical fault-error-
failure chain: a fault is a hypothesized cause of an error; when active, it intro-
duces an error, which, if propagated to the system’s external state, results in a
failure. This hierarchy is essential for understanding how internal deviations may
ultimately manifest as observable service disruptions.

The bottom branch delineates the attributes of dependability, those properties
that determine a system’s trustworthiness. In addition to the classic RASIM prop-
erties (Availability, Reliability, Safety, Integrity, and Maintainability) the figure ex-
plicitly includes Confidentiality to highlight the convergence with system security.
This inclusion reflects a broader understanding wherein security is seen as the
extension of dependability with a focus on protection against malicious threats,
encompassing confidentiality, integrity, and availability under authorized usage as-
sumptions.

The right branch outlines the means by which dependability can be achieved.
These are preventive and corrective strategies grouped into four categories: Fault
Prevention (avoiding the occurrence or introduction of faults), Fault Tolerance (en-
suring correct service in the presence of faults), Fault Removal (identifying and
correcting faults before or during operation), and Fault Forecasting (predicting the
presence, activation, and consequences of faults). These mechanisms support
both the provision and justification of trustworthy services by either enhancing
the system’s resilience or informing its design.

Together, these branches provide a structured framework that enables system de-
signers, evaluators, and operators to reason about the interplay between vulner-
abilities, system behavior, and protection mechanisms. The inclusion of threats,
attributes, and means in a unified diagram serves to underscore the integrative
nature of dependability theory and its applicability to both accidental and mali-
cious disruptions in modern computing environments.

• Reliability – the system’s ability to deliver correct service without failure
over time. A reliable hypervisor runs VMs continuously with minimal
crashes or interruptions.

• Availability – the system’s readiness for service, factoring in both failure

14

Background and Related Work

frequency and recovery time. High availability can be achieved through
techniques like failover or live migration, and is often expressed as uptime
percentage (e.g., 99.999%).

• Safety – the system’s ability to avoid catastrophic consequences. In virtu-
alization, safety can involve sandboxing risky code within VMs, ensuring
that failures remain contained and do not propagate harmful effects.

• Integrity – the assurance of uncorrupted and authorized system state. This
includes preventing accidental or malicious data alteration and maintaining
consistency across VM and hypervisor memory or storage.

• Maintainability – the ease with which a system can be repaired or updated.
In virtualized systems, features like snapshots and live migration enhance
maintainability by enabling quick recovery and seamless updates with min-
imal downtime.

Other attributes sometimes included under the dependability/security umbrella
are confidentiality (in the security domain) and accountability or auditability,
but the five listed above are the core dependability attributes as per classical tax-
onomy [Algirdas Avizienis et al., 2004]. Notably, there is an overlap between
security and dependability: for example, integrity and availability are crucial to
both. In fact, security is often defined as the triad of confidentiality, integrity,
and availability (CIA), and two of those (I and A) are shared with dependabil-
ity [Algirdas Avizienis et al., 2004]. Avizienis et al. point out that when consid-
ering security in addition to dependability, confidentiality comes into play as an
additional concern beyond the traditional dependability attributes. In a secure,
dependable system, we care not only that it is reliable, available, and safe, but
also that it preserves the confidentiality of data against unauthorized disclosure.

The Fault-Error-Failure Model (Laprie’s Model)

Jean-Claude Laprie and colleagues developed an influential model for under-
standing how adverse conditions lead to system failures [Algirdas Avizienis et al.,
2004]. This model distinguishes between faults, errors, and failures and describes
their causal relationship. We can see its representation on Figure 2.5:

Fault Error Failure
activation propagation

Figure 2.5: The causal chain in dependability: a fault becomes active and causes
an error, which may propagate to result in a failure.

• A fault is the cause of a potential error. It is a defect or anomaly in the
system. This defect could be a design bug, a manufacturing flaw, a config-
uration mistake, or even an external disturbance. Faults can be classified in
various ways (internal vs. external, malicious vs. non-malicious, permanent
vs. transient, etc.), but fundamentally a fault is something that could lead to

15

Chapter 2

a problem. In security terms, a fault might be a software vulnerability or a
hardware glitch. A fault on its own may not immediately lead to failure; it
could lie dormant in the system until triggered. For example, a buffer over-
flow bug in the hypervisor code is a fault that might remain latent until an
attacker or a particular input activates it.

• An error is the part of the system state that may lead to a failure [Natella et al.,
2013]. When a fault becomes active, it produces an error, essentially the
manifestation of the fault within the system. An error means the system
state has deviated from correctness (at least internally). If not corrected, an
error can propagate through the system. To illustrate, consider a fault (bug)
in a VM’s network driver that causes memory corruption. When the bug is
triggered, memory gets corrupted and that corrupted state is an error. The
error might stay confined (for instance, corrupting only that VM’s memory),
or it might propagate (if, say, it overwrote shared memory, it could corrupt
the hypervisor state, thus affecting other VMs). In security, we often use
compromise to mean an error state induced by a malicious fault (attack), e.g.,
a malware infection is an error in the system state.

• A failure is when the system’s external behavior deviates from its specifica-
tion. Essentially the system stops delivering correct service [Avizienis, 2012;
Natella et al., 2013]. A failure is observed at the system boundary as a ser-
vice outage or an incorrect service result. Following the earlier example,
if the memory corruption error causes the VM to crash or produce wrong
outputs, that is a failure of that VM (it is no longer delivering its expected
service). In a virtualized infrastructure, a failure could be one VM going
down unexpectedly, or it could be the hypervisor failing and taking down
all VMs on that host (a much larger failure). Laprie’s model emphasizes
that failures occur when errors propagate to the service interface: “When an
error reaches the service interface, it causes a service failure: a transition from cor-
rect to incorrect service.” [Avizienis, 2012]. In other words, errors may exist
hidden inside a system, but only when they escape containment and affect
delivered service do we call it a failure.

The chain is often summarized as depicted in Figure 2.5. A fault by itself is just
a dormant flaw; when activated, it produces an error state; when that error is
not handled and impacts service, a failure occurs [Avizienis, 2012; Natella et al.,
2013]. This model also implies strategies for dependability: we can work to pre-
vent faults (through good design and testing), remove faults (debugging, patching),
tolerate faults (design the system so it can withstand some faults without failing,
via redundancy for example), and forecast faults (predict and proactively address
weaknesses). These are known as the four means of dependability: fault preven-
tion, fault removal, fault tolerance, and fault forecasting [Algirdas Avizienis et al.,
2004].

An essential refinement to the traditional fault-error-failure chain in security-
aware dependability analysis is the adoption of the composite fault model [Neves
et al., 2006], often structured as an Attack–Vulnerability–Intrusion (AVI) sequence.
This model captures the interplay between external threats and internal weak-
nesses in a system, making it especially useful for security-critical environments.

16

Background and Related Work

As shown in Figure 2.6, the AVI model separates the external action of an attack
from the internal system vulnerability it exploits, with the resulting intrusion cor-
responding to a state transition that may lead to an error or failure. This tripartite
representation enables more precise mapping between malicious behavior and its
impact on dependability attributes. It also clarifies how security violations can be
conceptualized as fault activations in the dependability domain, thus aligning at-
tack analysis with traditional fault tolerance frameworks and supporting more
integrated evaluation strategies.

TARGET SYSTEM

vulnerability

intrusion error failure

Figure 2.6: Causal chain from vulnerability to failure. Intrusion is triggered
through attack vectors, leading to observable errors and service failures.

In the context of system security, a critical insight from the Laprie model is that at-
tacks can be viewed as malicious faults. Traditional dependability often assumes
non-malicious (random) faults such as hardware bit flips or software bugs that
occur by accident. Security extends this by considering intelligent, adversarially
caused faults (exploits, malware injections, etc.). The fault-error-failure chain still
applies, but now the fault might be an intentional action by an attacker (for in-
stance, sending a malformed packet to exploit a hypervisor bug), which creates
an error (e.g., corrupted memory, altered control flow in the hypervisor), poten-
tially leading to a failure (the hypervisor crashes or the attacker gains control,
which is a service failure from the perspective of security). Avizienis et al. explicitly
integrate security into dependability, noting that dependability needs to encom-
pass malicious faults, and that security needs to address integrity and availability,
not just confidentiality [Algirdas Avizienis et al., 2004]. In fact, the dependabil-
ity community has converged with security by recognizing that: (a) restricting
to non-malicious faults is insufficient (since attackers can induce faults), and (b)
security must consider integrity and availability in addition to confidentiality [Al-
girdas Avizienis et al., 2004]. This convergence means that many dependability
techniques (like redundancy, fault containment, robust recovery) are also appli-
cable to improving security (for example, isolating VMs can be seen as fault con-
tainment, limiting the spread of an “error” caused by a compromised VM).

Failure Modes and Fault Tolerance in Virtualized Infrastructures

Failure Modes and Fault Tolerance in Virtualization: Virtualization alters tradi-
tional failure modes and enables new fault tolerance mechanisms, but introduces
additional risks.

17

Chapter 2

Isolation as Fault Containment: Hypervisors enforce VM isolation [Stouffer
et al., 2015], allowing faults in one VM (e.g., a crash or attack) to be contained [Liq-
uid Web, 2021]. This improves fault isolation compared to monolithic systems.
However, the hypervisor becomes a single point of failure: if it fails, all hosted
VMs are affected [Bigelow, 2024]. Virtualization thus shifts failure modes from
isolated hardware to common-mode failure scenarios.

Hardware Failures and High Availability: To mitigate hypervisor or hardware
failures, virtualized environments use clustering and failover mechanisms. Plat-
forms like VMware HA or Kubernetes restart VMs on other hosts after a fail-
ure [Bigelow, 2024]. Though recovery is quick, brief outages remain. More ad-
vanced solutions, such as VMware FT, run VMs in lockstep for zero downtime,
albeit at a high resource cost. Live migration supports graceful avoidance of pre-
dicted faults and enables maintenance without service interruption.

Virtualization-Specific Failure Modes: New challenges include VM sprawl (un-
patched or unmonitored VMs increasing attack surface), misconfiguration of vir-
tual networks or storage, and resource contention (e.g., CPU/memory overcom-
mitment causing performance degradation). Such issues stem primarily from
management-plane complexity and can lead to security or dependability failures.

Fault Recovery and Operational Flexibility: Virtualization enhances recovery
via snapshots, cloning, and rollback, which reduce MTTR and aid in mainte-
nance, testing, and failure diagnosis. This contributes to improved maintainabil-
ity and resilience against software faults.

In summary, virtualization demands fault tolerance at the host level and aware-
ness of common-mode failures. Effective strategies include clustering, redun-
dant infrastructure [Bigelow, 2024], VM data replication, health monitoring, and
anti-affinity rules to maintain failure independence among critical services.

Intersections of Dependability Frameworks and Security

Dependability and security are closely intertwined, especially in a virtualized
context. Many dependability goals overlap with security goals, and some can
conflict if not managed properly. Here are a few key intersections:

• Integrity & Confidentiality: Integrity ensures systems remain unaltered by
faults or unauthorized modifications, while confidentiality protects against
unauthorized disclosure. In virtualization, maintaining isolation is key to
both properties. Faults or attacks affecting the hypervisor or VM bound-
aries threaten system integrity. Mechanisms such as ECC memory, secure
boot, and digital signatures address these risks. Hardware flaws, such as
Meltdown and Spectre [Proxmox Forum, 2018], highlight how design errors
can compromise confidentiality across virtual machines (VMs), underlining
the need for robust isolation mechanisms.

• Reliability & Availability vs. Security Measures: Security can sometimes
reduce performance or availability (e.g., logging overhead or encryption-

18

Background and Related Work

induced delays). Conversely, poorly balanced security functions may inter-
fere with VM reliability. Virtualized systems must allocate resources care-
fully to maintain both security and performance, particularly when adding
monitoring tools such as memory introspection agents.

• Fault Tolerance vs. Security: Redundancy and replication improve avail-
ability but may increase the attack surface. Features like live migration
must be secured to avoid data interception. Security controls must extend
to all components (hypervisors, management interfaces, VM images, and
networks) as increased complexity can introduce new vulnerabilities [Ross,
2014; Stouffer et al., 2015].

• Malicious Faults in Dependability Modeling: Modern dependability
frameworks treat attacks as faults to isolate or contain. For example, if a
virtual machine (VM) is compromised, mechanisms such as microsegmen-
tation or anomaly detection can limit its impact. This parallels classical fault
tolerance, where faulty components are detected and neutralized to protect
system function.

• Trust and Assurance: Trust in virtualization depends on both dependabil-
ity (resilience to faults) and security (resistance to attacks). Assurance tech-
niques, such as formal verification (e.g., the seL4 microkernel) and rigorous
testing, aim to ensure that hypervisors are trustworthy and reliable. Al-
though most commercial hypervisors aren’t formally verified, they undergo
extensive hardening to protect against both accidental and malicious faults.

In conclusion, a dependability-oriented view provides a structured way to think
about system security in virtualized environments. Attributes like reliability,
availability, and safety, focus attention on continuous service delivery and fail-
ure avoidance, while security brings in robustness against intelligent adversaries
(ensuring integrity, availability under attack, and confidentiality). Virtualization
technology must be evaluated through both lenses: for example, does running
a specific security monitoring tool in each virtual machine (VM) reduce overall
reliability due to added complexity or performance overhead? Or conversely,
does a pursuit of high performance (maximizing consolidation) risk the depend-
ability and security (by creating a single points of failure or noisy-neighbor is-
sues)? By leveraging dependability concepts such as fault containment (VM iso-
lation), redundancy (clustering and backups), and rigorous fault management
(patching vulnerabilities by removing faults), we can build virtualized systems
that not only meet performance and functional requirements but also maintain
a high level of trustworthiness expected by an interdisciplinary PhD committee
and industry standards alike.

2.1.2 Security in Virtualized Environments

Virtualized environments bring unique security considerations. In many ways,
virtualization can improve security by providing isolation and sandboxing; how-
ever, it also introduces a new layer (the hypervisor) that itself can be a target.

19

Chapter 2

In this section, we outline typical threat models for virtualized systems, discuss
the core security properties that must be upheld (such as isolation and controlled
privilege), and enumerate the specific attack surfaces that virtualization admin-
istrators and researchers must be aware of.

Typical Threat Models in Virtualized Systems

A threat model in this context identifies the potential adversaries and their goals
in attacking a virtualized infrastructure. Key threat scenarios include:

• Malicious Guest VM: A prevalent threat in virtualization arises when a
guest VM is compromised, potentially through vulnerabilities in the guest
OS or applications. Such a VM may launch lateral attacks against peer VMs
(e.g., via network, shared storage, or side channels) or vertical attacks aimed
at "escaping" its sandbox to compromise the hypervisor or host. In a cloud
multi-tenant environment, an attacker may intentionally deploy a malicious
guest VM to exploit the platform from within. The ultimate objective is a
VM escape (breaking isolation to gain control over resources beyond the
original VM). A successful hypervisor-level escape is particularly severe, as
it grants the attacker control over the host and all VMs on it [TechTarget Edi-
torial, 2024]. Although such escapes are rare, numerous vulnerabilities have
been identified that enable a malicious guest to execute arbitrary code in the
hypervisor or host OS, ranging from early VMware bugs circa 2008 to more
recent flaws in QEMU’s device emulation. Threat model: The guest OS is
untrusted or potentially hostile, necessitating a robust hypervisor capable
of handling any inputs or requests from that guest.

• Software could access customer VMs without robust safeguards (e.g., VM
data encryption at rest and in memory), an evolving area with technolo-
gies like AMD SEV. Typically, the hypervisor is part of the trusted comput-
ing base (TCB), but a threat model should address potential damage from
trust violations (due to misconfiguration or insider threats). In on-premises
setups, a rogue administrator could reconfigure virtual machines or snap-
shot data without authorization. Techniques such as strict role-based access
control, auditing actions, and hardware-enforced isolation (TPM, secure en-
claves) can help mitigate risks. However, classic virtualization security of-
ten assumes the hypervisor and management stack are trusted, focusing on
external or guest-originating threats. A malicious hypervisor (or one with a
hidden backdoor) poses a greater risk in hardware supply chains or when
using third-party modified hypervisors.

• Compromise of the Host or Management Layer: In a Type-2 hypervisor
scenario, the host OS is a significant target. An attacker exploiting a vulner-
ability in the host OS can gain control over all VMs, as the hypervisor runs
on it. NIST notes that in hosted virtualization, “the security of every guest
OS relies on the security of the host OS”, meaning a breach can allow manip-
ulation of VMs or hypervisor settings [Stouffer et al., 2015]. Even in Type-1
environments, a management interface (e.g., vCenter for VMware, libvirt

20

Background and Related Work

for KVM, Xen’s toolstack) typically runs on a separate server. If compro-
mised, an attacker can issue commands to the hypervisor (create VMs, alter
configurations, etc.). Thus, another threat model involves external attack-
ers targeting the management plane, such as exploiting cloud management
platform APIs or stealing administrator credentials.

• Network-Based Attacks and Inter-VM Attacks: Virtual machines commu-
nicate over virtual networks and may share physical network interfaces. At-
tackers can perform classic network attacks (scanning, man-in-the-middle,
denial of service) within the virtual network. Weak virtual switches or net-
work configurations (e.g., lack of isolation between tenants’ VLANs) may
allow a VM to eavesdrop on or interfere with another’s traffic. A compro-
mised VM could launch a denial-of-service attack by saturating shared net-
work links or sending malicious traffic. Thus, virtual networks need the
same security controls as physical ones (firewalls, IDS, segmentation). Ad-
ditionally, if VMs share resources like disk storage, one VM may read raw
disk blocks of another without proper access controls. Threat model: An
attacker on the same physical host (in a different VM) may exploit shared
components to breach isolation.

• Side-Channel and Covert Channel Attacks: These threats involve an at-
tacker in one VM gleaning information about another by observing shared
hardware behavior (cache usage, timing differences, power consumption,
etc.). CPUs typically share caches, branch predictors, and other microar-
chitectural components among virtual machines (VMs), especially on the
same core or socket, which can lead to side-channel attacks, such as cache
timing attacks. A notable example is the L1 cache side-channel exploited
by some Spectre/Meltdown variants and the Foreshadow (L1TF) vulnera-
bility, which demonstrated speculative execution issues that allowed leak-
age across virtual machine (VM) boundaries. While these attacks do not
"break" hypervisor software isolation, they bypass it by exploiting shared
hardware. They are complex but plausible, thus part of the threat land-
scape for high-assurance systems. Mitigations include avoiding co-location
of high-security VMs with untrusted VMs (partitioning) or enabling hard-
ware fixes and hypervisor scheduling techniques (e.g., flushing caches on
VM switches, which incurs a performance cost). Covert channels (where
colluding VMs signal information through shared resources) are also pos-
sible but are more relevant in confidentiality-focused threat models (e.g., a
high-security VM should not communicate secrets to a low-security VM,
even if both are compromised).

Overall, the threat model for a virtualized system must encompass the guest
level, the hypervisor level, and the infrastructure level. Commonly cited threats
include VM escape, VM-to-VM attacks, host/management takeover, denial of service
via shared resource exhaustion, and insertion of malicious VM or hypervisor code (e.g.,
a fake hypervisor or trojaned hypervisor update). Standards like NIST SP 800-
125 outline many of these threats, emphasizing that all components (hypervisor,
VMs, storage, network) require security hardening [Ross, 2014; Stouffer et al.,
2015]. In practice, security architects assume an attacker could run code in a guest

21

Chapter 2

VM (since one can rent a VM in the cloud) and therefore ensure that compromis-
ing that VM does not easily yield further access.

It is worth noting that virtualization complicates digital forensics and monitoring,
which should be considered in threat modeling, as it affects the speed and effec-
tiveness of incident response. For example, if an attacker compromises a VM,
can they hide from hypervisor-level detection? Conversely, can the hypervisor
or administrator easily inspect the VM state to investigate? Solutions exist, such
as virtual machine introspection tools, but they introduce an additional layer of
complexity.

Core Security Properties: Isolation, Privilege Boundaries, and Enforcement

Isolation is foundational to virtualization security: each VM must operate as if
on a separate physical machine, with isolated memory, CPU, storage, and net-
work [Stouffer et al., 2015]. Isolation ensures confidentiality, integrity, and avail-
ability. The hypervisor enforces resource partitioning, preventing VMs from af-
fecting one another [Liquid Web, 2021].

This is achieved through clear privilege boundaries, where the hypervisor runs
at a higher privilege level than guest OSs. Guest operations that could compro-
mise isolation (e.g., modifying page tables or device configurations) are inter-
cepted and handled by the hypervisor, which has complete control of hardware
resources.

Enforcement mechanisms include:

• Memory Protection: MMUs or EPT/NPT restrict VMs to their assigned
memory. Unauthorized access attempts to penetrate the hypervisor. Per-
missions (e.g., non-executable, read-only) can be enforced at the hardware
level.

• CPU Execution Control: Privileged CPU instructions are intercepted. The
hypervisor schedules CPU time fairly, preventing monopolization.

• Device Access Control: I/O operations are mediated by the hypervisor.
VMs access virtual devices, with real hardware access tightly controlled.
IOMMUs restrict DMA to VM-assigned memory [Chandramouli, 2020].

• Hypercall Interface Control: Paravirtualized hypercalls must be carefully
validated. Improper validation can expose hypervisor memory or cause
denial-of-service [Chandramouli, 2020].

• Privilege Separation & Minimal TCB: Minimizing the Trusted Computing
Base (TCB) reduces attack surface. Designs like Xen’s split between hyper-
visor and Dom0 or KVM’s lean core aim to confine high-privilege opera-
tions to the smallest possible codebase.

The essential security principles are: (1) Isolation, (2) Controlled Sharing, (3)
Complete Mediation, (4) Least Privilege, and (5) Auditability. These collec-

22

Background and Related Work

tively ensure that VMs operate securely, with all sensitive actions mediated by
the hypervisor and traceable when necessary.

Hypervisor-Specific Attack Surfaces

Despite virtualization’s promise of isolation, real-world hypervisors expose sev-
eral critical attack surfaces that adversaries may target:

• Hypercall and VM Interface Attacks: Hypercalls serve as the API between
the guest and the hypervisor. Improper input validation in hypercall han-
dlers can lead to privilege escalation or denial-of-service [Chandramouli,
2020]. Vulnerabilities in Xen’s memory management hypercalls have en-
abled guests to crash the host or corrupt critical structures. Hypervisors
must robustly handle malformed or out-of-order calls.

• Virtual Device Emulation: Emulated devices (e.g., via QEMU) replicate
complex hardware behavior and often run with elevated privileges. Bugs
in emulation logic (e.g., CVE-2015-3456 VENOM) have allowed full guest-
to-host escapes. Minimizing exposed devices and sandboxing emulation
processes are key mitigations [Chandramouli, 2020].

• Para-virtualized Drivers: Shared-memory and hypercall-based communi-
cation (e.g., VirtIO, Xen PV) between guest and host introduces risks if back-
ends mishandle untrusted pointers or ring buffers. Vulnerabilities in grant
table handling have enabled memory corruption and privilege elevation.

• Device Passthrough Risks: Assigning physical devices directly to VMs can
expose host memory if the IOMMU is misconfigured. Malicious VMs may
exploit network interface controllers (NICs) or graphics processing units
(GPUs) to perform DMA-based attacks. Passthrough should be limited to
trusted VMs using SR-IOV and proper isolation.

• Shared Resource Side-Channels: Microarchitectural features (e.g., caches,
SMT, deduplication) can leak information between VMs. Attacks like
Flush+Reload extract sensitive data without violating logical isolation. Mit-
igations include core pinning, cache flushing, disabling SMT, and deactivat-
ing transparent page sharing by default.

• Management Interface and API Attacks: Administrative interfaces (web
consoles, OpenStack, cloud APIs) are highly privileged and must be iso-
lated. Compromise here grants attackers full control over the virtualization
stack [Chandramouli, 2020]. Best practices include multi-factor authentica-
tion (MFA), access segregation, role-based access control, and audit logging.

Hypervisor security must account not only for functional correctness but for ev-
ery interface exposed to potentially malicious guests. Each of these components
(hypercalls, device emulation, para-virtual drivers, passthrough mechanisms,
shared hardware, and management APIs) forms part of a broader attack surface

23

Chapter 2

that must be minimized and continuously assessed. To summarize this attack
surface discussion, we enumerate the key areas with examples:

• Hypercall Interface & VM Exits: This is the “syscall” interface of the hy-
pervisor. Example: A malicious VM calls a hypercall with out-of-range pa-
rameters that exploit a bug, gaining code execution in the hypervisor.

• Virtual Device Emulation: Every emulated disk, NIC, VGA, USB, etc.
Example: CVE-2017-5715 (part of Spectre/Meltdown) allowed crafted se-
quences to read memory; more directly, CVE-2015-3456 (VENOM) let a VM
escape via floppy disk emulator.

• Para-virtual Drivers & Backends: Shared memory rings, grant tables, etc.
Example: Xen hypervisor XSA-148 (2015): a bug in Xen’s handling of guests
provided a grant table reference that could be double freed, allowing guests
to elevate privilege.

• Hardware Shared Resources: Caches, branch predictors, memory dedupli-
cation, etc. Example: Flush+Reload cache timing attack to extract an RSA
key from a co-located VM (as demonstrated in research).

• Management and Configuration Interfaces: Web consoles, libvirt/QEMU
monitor, cloud APIs. Example: An attacker uses an API key to automate VM
snapshot downloads containing sensitive data; or exploits an unpatched
bug in an open-source cloud management panel to create an admin account.

• Human Factors & Configuration Mistakes: Not to be ignored, the com-
plexity of virtualization can lead to misconfigurations that attackers exploit
(like attaching a sensitive VM’s virtual NIC to the wrong vswitch, or not
disabling insecure default settings). Good security hygiene and compliance
checks are needed here.

Mitigating virtualization threats requires a defense-in-depth strategy. Hypervi-
sors are hardened through secure coding and audits, benefiting from their smaller
codebases relative to general-purpose operating systems, and require timely
patching and firmware updates [Chandramouli, 2020]. Guest VMs must apply
standard OS hardening, as they remain viable targets [Chandramouli, 2020]. Net-
work protections such as virtual firewalls and VLAN segmentation help contain
lateral movement. In cloud settings, hypervisor-level monitoring (e.g., tracking
hypercall usage or VM exit patterns) can support early detection of malicious
activity, aligning with this thesis’s focus on anomaly detection.

In summary, virtualization security rests on enforcing strong isolation across both
technical layers (hypervisors, hardware) and operational practices (management,
configuration). This thesis builds on that foundation through three main con-
tributions: (1) anomaly detection to identify deviations from expected behavior,
(2) vulnerability analysis to uncover hypervisor-level weaknesses, and (3) intru-
sion injection to empirically evaluate resilience under realistic attack scenarios.
As virtualization underpins modern infrastructure, ongoing efforts (from NIST
guidelines [Chandramouli, 2020] to formally verified hypervisors) aim to ensure
it remains a secure and dependable platform for critical workloads.

24

Background and Related Work

2.2 Security Challenges in Virtualized Systems

Virtualization underpins modern cloud and critical infrastructures, enabling mul-
tiple VMs to share physical resources efficiently. However, this flexibility intro-
duces distinct security risks. The hypervisor, responsible for mediating hardware
access, becomes a central point of trust and a prime target. Failures in its isola-
tion mechanisms can lead to severe security breaches. This section categorizes
key threats into five areas: hypervisor vulnerabilities, side-channel attacks, VM
isolation failures, VM escape and privilege escalation, and resource contention/-
DoS. Each category is analyzed with respect to affected security properties (confi-
dentiality, integrity, availability) and supported by recent research and real-world
cases [Barrowclough and Asif, 2018; Perez-Botero et al., 2013].

2.2.1 Hypervisor Vulnerabilities

As a privileged software layer, the hypervisor presents a broad attack surface.
Vulnerabilities in its code can compromise all co-resident VMs, affecting integrity,
confidentiality, and availability. An attacker exploiting such flaws may obtain
host-level privileges, bypassing isolation.

Empirical analyses of Xen and KVM reveal common weaknesses in memory han-
dling, device emulation, and validation of guest input [Perez-Botero et al., 2013].
Device emulation, often executed in a privileged context, is a frequent source
of critical bugs. A notable case is VENOM (CVE-2015-3456), a buffer overflow
in QEMU’s virtual floppy driver allowing code execution in the host from a
guest [Kandek, 2015]. Such attacks breach integrity and confidentiality. Even
non-arbitrary code execution bugs can impact availability; for instance, a mali-
cious hypercall triggering a hypervisor crash halts all hosted VMs.

Cloud providers mitigate these risks through hypervisor hardening, fuzzing,
code audits, and timely patching. Nonetheless, the complexity and privileged
nature of hypervisors continue to make them attractive targets.

2.2.2 Side-Channel Attacks

Side-channel attacks exploit shared hardware to bypass logical isolation and ex-
tract sensitive information, undermining confidentiality. These channels arise
from contention on CPU caches, branch predictors, and other shared components,
allowing malicious VMs to infer the behavior of co-resident VMs through timing
or resource access patterns.

Ristenpart et al. [Ristenpart et al., 2009] first demonstrated that attackers could co-
locate virtual machines (VMs) on EC2 and exploit cache-based side channels to
extract information. Zhang et al. [Zhang et al., 2012] further demonstrated a cross-
VM attack recovering RSA keys by monitoring cache access patterns, overcoming
noise and scheduling challenges. These techniques extract secrets without violat-
ing access control, highlighting limitations in isolation guarantees.

25

Chapter 2

Transient execution vulnerabilities like Meltdown [Lipp et al., 2018] broadened
these threats. Meltdown leverages speculative execution to read privileged mem-
ory and leak data via cache timing, allowing virtual machines (VMs) to read the
memory of the host or other VMs. These hardware-level flaws completely com-
promise confidentiality and have sparked widespread patches and mitigations.
Despite industry efforts, defending against such attacks remains difficult due to
performance trade-offs and reliance on low-level hardware mechanisms.

2.2.3 VM Isolation Failures

VM isolation aims to sandbox each guest, preventing influence or observation of
others. Yet, flaws in virtualization mechanisms can violate confidentiality and
integrity more directly than side-channel attacks.

A key issue arises from memory-sharing optimizations, such as page deduplica-
tion. Razavi et al.’s Flip Feng Shui attack [Razavi et al., 2016] combines dedu-
plication with the Rowhammer vulnerability to corrupt shared memory. By ma-
nipulating identical pages loaded in both the attacker and victim VMs, bit flips
are induced, altering sensitive victim data (e.g., RSA keys), thereby breaching in-
tegrity and potentially compromising confidentiality. In response, many cloud
providers disable memory deduplication in multi-tenant setups.

Isolation failures also stem from improper resource reuse. For example, if physi-
cal memory or storage is reassigned without sanitization, residual data may leak
to new tenants. Similarly, insufficiently enforced IOMMU protections can allow
DMA attacks from a virtual machine (VM) with direct device access, thereby vi-
olating integrity and confidentiality. While public cloud incidents are rare, these
risks underscore that strong virtual machine (VM) isolation depends not only on
secure code but also on careful resource design and reuse policies.

2.2.4 VM Escape and Privilege Escalation

VM escapes occur when guest code breaches its sandbox to execute on the host or
hypervisor, resulting in a complete system compromise. These attacks undermine
all three security properties and are especially severe in multi-tenant clouds.

Such escapes typically exploit hypervisor vulnerabilities. For instance, Xen’s 2015
XSA-148 [Xen Project Security Team, 2015] allowed a PV guest to craft malicious
page tables, gaining write access to arbitrary host memory. This enabled com-
plete control over the hypervisor. The VENOM vulnerability [Kandek, 2015] sim-
ilarly allowed guest-to-host execution via flawed device emulation. These cases
demonstrate that even longstanding hypervisor codebases may harbor latent es-
cape vectors.

Other demonstrations, including from Pwn2Own, show escapes in VMware, Vir-
tualBox, and similar platforms, often via device emulation or backend services.
Attackers may chain such exploits with initial VM compromises to pivot into the
host, targeting co-resident VMs.

26

Background and Related Work

Defenses include minimizing hypervisor code (e.g., micro-hypervisors [Perez-
Botero et al., 2013]), sandboxing I/O services, and leveraging hardware protec-
tions (e.g., EPT, virtualization extensions). Some cloud providers use live migra-
tion and rapid patching to preempt known exploits. Despite mitigation efforts,
the hypervisor remains critical (and vulnerable), necessitating rigorous monitor-
ing and defense-in-depth.

2.2.5 Resource Contention and DoS in Multi-Tenant Environ-
ments

In shared cloud settings, virtual machines (VMs) compete for CPU, memory, I/O,
and network bandwidth. A malicious tenant can deliberately monopolize these
resources, thereby degrading the performance of co-resident virtual machines
(VMs). While benign forms are known as “noisy neighbor” problems, deliber-
ate abuse constitutes a denial-of-service (DoS) attack targeting availability.

Zhang et al. [Zhang et al., 2017a] showed that a single VM can severely affect
others by inducing memory bus contention, increasing the latency of web ap-
plications, and slowing down distributed jobs. Similar techniques include disk
I/O flooding or saturating network links to disrupt services or inflate costs via
autoscaling.

Addressing this is challenging, as malicious use may mimic heavy but legitimate
workloads. Hypervisors employ quotas and schedulers (e.g., Xen’s credit sched-
uler, KVM’s cgroups), but attackers can exploit shared low-level resources, such
as caches or memory buses. Zhang et al. also propose performance counter-based
detection and selective throttling to identify and mitigate memory DoS attacks.

Attackers may also deceive schedulers by underutilizing resources during place-
ment, then overloading once co-located with a target. Virtual network attacks can
flood shared components, blurring into DDoS scenarios. Providers increasingly
offer isolation via premium instance types or QoS guarantees, but these reduce
flexibility.

Ultimately, securing availability in virtualized environments requires not just net-
work defenses but hardware-aware scheduling, behavioral monitoring, and ar-
chitectural partitioning to ensure performance isolation between tenants.

Table 2.1: Security Properties at Risk by Threat Category

Threat Category C I A

Hypervisor Vulnerabilities ✓ ✓ ✓
Side-Channel Attacks ✓
VM Isolation Failures ✓ ✓
VM Escape & Escalation ✓ ✓ ✓
Resource Contention / DoS ✓

27

Chapter 2

2.3 Security Assessment Methodologies

Security assessment involves systematically evaluating systems to detect and an-
alyze vulnerabilities, playing a vital role in software assurance [Scarfone et al.,
2008]. Given the rapid emergence of new threats, developers must adopt both
formal (e.g., mathematical proofs) and empirical (e.g., dynamic testing) methods
to assess security proactively. While formal methods offer provable guarantees,
empirical approaches reveal practical flaws that proofs may overlook. No sin-
gle technique is sufficient, and only multiple complementary approaches ensure
defense-in-depth. The following sections examine key assessment methodolo-
gies, comparing their scalability, coverage, automation, and adoption.

2.3.1 Core Security Assessment Methodologies

Static Analysis

Static analysis inspects source code or binaries without execution, identifying vul-
nerabilities by analyzing code structure, control flow, and data dependencies [Ya-
maguchi et al., 2014]. Static Application Security Testing (SAST) tools can detect
common flaws, such as buffer overflows or SQL injections, and trace untrusted
data paths to sensitive operations.

Techniques range from pattern matching to advanced dataflow and abstract in-
terpretation. Yamaguchi et al. introduced code property graphs, which combine
syntax, control, and data-flow graphs into a searchable representation that reveals
unknown vulnerabilities in large codebases, such as the Linux kernel [Yamaguchi
et al., 2014].

Static analysis offers broad coverage but suffers from false positives due to over-
approximation and lacks context about runtime configurations [Yamaguchi et al.,
2014]. Nonetheless, it remains foundational to secure development. Commer-
cial tools like Coverity and SonarQube enforce standards and detect critical bugs
early. As noted by Chess and McGraw, static tools efficiently uncover patterns
with minimal effort [Sheng et al., 2025].

Dynamic Analysis

Dynamic analysis executes software in instrumented environments to monitor
real-time behavior. Techniques like dynamic taint analysis track untrusted input
propagation; TaintCheck flagged buffer overflows and format string exploits with
no false positives [Li and Xue, 2015].

Other methods include sanitizers (e.g., AddressSanitizer) that insert checks for
memory errors at runtime [Fanlin and collaborators, 2021], and symbolic execu-
tion, which explores multiple paths by solving constraints on symbolic inputs.
Tools such as KLEE, SAGE, and Mayhem have demonstrated the power of com-
bining symbolic execution with fuzzing to maximize code coverage and discover

28

Background and Related Work

deep bugs across different input domains [Checkoway et al., 2012].

Formal Verification

Formal verification employs mathematical techniques to demonstrate that a sys-
tem satisfies specified properties, whereas testing only reveals flaws in specific
executions. It provides strong guarantees across all behaviors by either interac-
tively constructing proofs (theorem proving) or exhaustively checking model states
(model checking). When successful, formal verification ensures that properties
such as memory safety or protocol correctness hold for all inputs.

A landmark example is the seL4 microkernel, fully verified for functional correct-
ness [Klein et al., 2009]. Its C implementation was shown to match a high-level
specification, ensuring memory isolation and authority confinement. However,
verifying 20,000 lines of code required 11 person-years, highlighting the scala-
bility challenge. Verification demands expertise in formal languages and only
covers explicitly specified properties.

Despite complexity, formal methods are becoming practical in specific domains.
Lightweight approaches (like SMT solvers and symbolic model checking) are
widely used to verify components or detect flaws (e.g., protocol bugs, overflow
risks). Tools like Microsoft’s SLAM and Amazon’s TLA+ support real-world ap-
plications. Current research focuses on abstraction, modular proofs, and even
AI-assisted reasoning [Kulik et al., 2022]. While best suited for high-assurance
components, formal verification complements testing by proving the absence of
targeted bug classes.

Runtime Monitoring

Runtime monitoring observes system behavior during execution to detect secu-
rity violations in real time. It plays a key role in both operational security (e.g.,
IDPS, RASP) and assessment phases by using hooks and sensors to detect anoma-
lies or attacks.

Host-based intrusion detection systems (HIDS), for example, monitor system
calls for deviations from expected patterns. At the same time, RASP tools can
detect in-app exploitation attempts (e.g., SQL injections) and react immediately.
Developers may also use runtime monitors during testing to assess detection ca-
pabilities during simulated attacks.

In DevSecOps, continuous monitoring tracks deployed systems for emerging
threats [Dempsey et al., 2011]. Tools like Dynatrace [Dynatrace Docs] detect vul-
nerable library use in running applications. Monitoring is crucial when prior
testing misses subtle or runtime-only issues, as it can help contextualize alerts
and reduce false positives.

However, runtime monitoring cannot eliminate vulnerabilities: it only detects
exploitation attempts. It can also incur overhead and be evaded by advanced
attackers. Despite this, monitoring provides a critical safety net, especially when

29

Chapter 2

coupled with intelligent alerting and scalable instrumentation.

Penetration Testing

Penetration testing simulates real-world attacks to identify vulnerabilities through
human-led exploration. Unlike automated scanning, it employs creative tactics to
uncover deep-seated flaws, such as logic bugs, chained exploits, or misconfigura-
tions. Pentests may target networks, applications, or internal systems, producing
detailed reports with findings and remediation advice.

Operating from an adversarial perspective, testers follow a cycle of reconnais-
sance, exploitation, and privilege escalation. Techniques include scanning, in-
jecting payloads, exploiting known CVEs, and social engineering. The approach
reveals both software and procedural weaknesses, providing clear evidence of
risk when successful breaches occur.

Pentesting’s strengths lie in identifying complex, real-world issues missed by au-
tomation and validating exploitability. However, it’s manual, time-bound, and
may not uncover all flaws. Results depend heavily on tester skill, and poor exe-
cution can cause disruptions. NIST emphasizes pentesting as a complement (not
a replacement) to systematic analysis [Scarfone et al., 2008].

In practice, organizations combine automated scanning for breadth with pentest-
ing for depth [Bishop, 2007]. Trends favor more frequent assessments, includ-
ing bug bounty programs and automated red teaming, to keep pace with system
changes.

Vulnerability and Attack Injection

Vulnerability injection involves deliberately inserting known flaws into a system
to evaluate the effectiveness of security tools or teams. By planting synthetic bugs
(e.g., SQL injection, XSS), researchers and trainers can assess detection accuracy
and false negatives in controlled scenarios [Fonseca et al., 2009]. Attack injection
complements this by simulating exploits or injecting malicious traffic to test sys-
tem defenses and response mechanisms. Combining both allows for end-to-end
assessment of security monitoring and incident handling [Fonseca et al., 2014;
Neves et al., 2006].

LAVA [Dolan-Gavitt et al., 2016] is a prominent example that seeds realistic buffer
overflow vulnerabilities into programs, enabling objective benchmarking of tools.
These synthetic flaws provide known ground truth, addressing the challenge of
unknown bug counts in real-world code.

The method helps uncover blind spots and validate tool performance over time.
However, injections must be carefully managed to avoid introducing real risk,
and synthetic bugs may not fully represent real-world diversity. Still, when done
rigorously, injection techniques serve as practical meta-assessment tools to im-
prove confidence in security evaluations.

30

Background and Related Work

Fault Injection

Fault injection deliberately introduces errors into systems to test their robustness
and error-handling capabilities. While rooted in dependability testing, it also
supports security by simulating faults that could cause crashes, unsafe states, or
security violations (e.g., skipping an authentication check). Techniques include
memory corruption, register tampering, or altering return values to observe sys-
tem reactions [Natella et al., 2016].

Security-focused fault injection can reveal issues like unchecked buffer lengths
or privilege escalations under fault conditions. Hardware-oriented attacks (e.g.,
voltage glitching) are often emulated in software to test resilience to low-level
perturbations.

Though sometimes overlapping with fuzzing or dynamic analysis, fault injec-
tion uniquely tests system behavior under rare or low-probability events. It an-
swers whether systems fail securely and maintain integrity when faults occur.
While brute-force approaches may yield noise, targeted fault models (especially
in hardware-software systems) can expose subtle, high-impact vulnerabilities.

AI/ML-based Security Assessment

AI and ML techniques are increasingly used to automate vulnerability discovery
and attack detection by learning patterns from large datasets of code or threat
behavior. Deep learning models have demonstrated success in vulnerability pre-
diction by analyzing code syntax and semantics without relying on predefined
rules.

For example, VulDeePecker [Zou et al., 2021] uses bi-directional LSTMs to detect
buffer overflows, while Devign [Chu et al., 2024; Nguyen et al., 2025] applies
graph neural networks to capture control and data flow patterns in vulnerable
code. These models generalize beyond handcrafted rules and can identify subtle
coding flaws.

Studies show ML-based tools often outperform static analyzers in specific do-
mains, particularly for complex or obfuscated vulnerabilities [Chu et al., 2024].
Challenges remain around explainability, dataset quality, and generalization.
Nevertheless, ML complements traditional techniques by enabling scalable,
adaptive, and automated security assessments.

Vulnerability Prediction and Detection: Machine learning, particularly deep
learning, has been applied to identify vulnerable code snippets. Models such as
deep neural networks and graph neural networks (GNNs) learn code representa-
tions that capture insecure patterns. For example, VulDeePecker by Li et al. used
a bi-directional LSTM on tokenized code gadgets to detect buffer overflows in C
code [Zou et al., 2021]. Zhou et al.’s Devign employed GNNs to distinguish vul-
nerable code by analyzing dataflow and control-flow graph features [Chu et al.,
2024; Nguyen et al., 2025].

These models generalize from data rather than relying on fixed rules (e.g., detect-

31

Chapter 2

ing unchecked uses of strcpy) and identify subtle indicators of insecurity across
varied codebases. Surveys from 2017 to 2024 confirm that deep learning-based
detectors often outperform traditional static analysis on specific bug classes [Chu
et al., 2024].

Fuzzing and Input Generation: AI techniques have significantly enhanced
fuzzing. Evolutionary fuzzing uses genetic algorithms to evolve inputs for
deeper program coverage. Reinforcement learning (RL) treats the fuzzer as an
agent that learns input strategies yielding new code paths or crashes. Neural
models also infer input formats to generate well-structured inputs that pass vali-
dation and reach deeper logic. Additionally, ML helps prioritize testing efforts by
identifying code that is likely to harbor bugs based on its complexity or historical
defect data.

Malware and Anomaly Detection: AI/ML is widely applied in operational secu-
rity for malware and intrusion detection. Techniques include supervised and un-
supervised models for classifying binaries, monitoring system calls, and flagging
behavioral anomalies. Though not strictly vulnerability analysis, such detection
intersects with runtime threat identification.

Intelligent Penetration Testing and Autonomous Agents: AI is emerging in au-
tomated pentesting, with RL agents navigating networks to exploit vulnerabili-
ties. Inspired by DARPA’s Cyber Grand Challenge, the 2024 AIxCC initiative pro-
motes AI-driven systems that can autonomously discover and patch flaws [Sheng
et al., 2025]. These tools combine expert systems with learning to address real-
world system complexity.

AI/ML methods offer scalability and adaptability as models can rapidly analyze
large codebases and continually improve over time by retraining with new vul-
nerability data. They may also uncover subtle patterns missed by rule-based
tools. However, challenges remain: they require labeled datasets (often noisy
or scarce), can act as opaque black boxes, and are vulnerable to adversarial ma-
nipulation. Explainability and robustness are active areas of research. In practice,
ML tools augment (not replace) traditional methods, for example, by prioritizing
static analysis findings [Kulenovic and Donko, 2023].

AI/ML is a promising, fast-evolving domain in security assessment. Initial re-
sults show higher bug-detection accuracy and recall in some contexts [Chu et al.,
2024], and integration into development workflows is accelerating.

2.3.2 Discussion and Comparative Analysis

Security assessment methodologies differ in strengths and limitations. This sec-
tion compares them across key dimensions:

Coverage vs. Depth: Static analysis provides broad theoretical code coverage but
may flag infeasible paths. Dynamic analysis and fuzzing explore fewer paths but
yield concrete and in-depth findings. Formal verification provides complete cov-
erage within a formal specification but overlooks issues outside its scope. Pen-
etration testing is depth-focused but manually guided, leaving gaps that can be

32

Background and Related Work

exploited. Runtime monitoring detects symptoms rather than root causes.

Scalability: Static analysis scales well with large codebases and is widely in-
tegrated into continuous integration (CI) pipelines. Dynamic techniques scale
with parallelization, but the setup overhead can be high. Fuzzing benefits from
cloud-based parallel execution (e.g., OSS-Fuzz). Formal methods scale poorly
and are primarily applied to critical modules, although compositional techniques
can help. Penetration testing remains human-limited. ML tools offer high scala-
bility once trained, supporting rapid analysis of massive codebases.

Automation and Expertise: Static, dynamic, and fuzzing tools are highly auto-
mated but require human triage. Formal verification ranges from semi- to fully
automated, depending on tooling. Penetration testing is semi-automated and re-
lies heavily on expert intuition. AI/ML tools aim for high automation but require
expertise for model training and tuning.

Accuracy: Formal methods offer near-perfect accuracy for proven properties.
Static analysis has higher false positives due to over-approximatio,n but can be
tuned. Dynamic and fuzzing techniques yield few false positives but may miss
untested paths. Penetration testing yields real results, but with incomplete cov-
erage. ML accuracy depends on the quality of training: false positives and nega-
tives can arise, so ML tools are often used for prioritization, rather than making
final decisions.

Adoption and Maturity: Static and dynamic analysis are highly mature and
widely integrated into industry secure development lifecycles, with most com-
panies employing both SAST and DAST tools. Fuzzing has seen widespread
adoption, especially in open-source and large tech firms, due to its effectiveness
in uncovering memory corruption bugs. Formal verification is used selectively in
domains such as avionics, automotive, and protocol analysis, but remains a niche
approach in general software development due to expertise and cost barriers.

Penetration testing is a standard practice for critical systems and is often man-
dated by compliance standards; red team exercises are a best practice to be con-
ducted before deployment. Vulnerability injection is primarily used in research,
training, or tool evaluation (e.g., Capture the Flag, CTFs), rather than in produc-
tion environments. Fault injection is commonly used in safety-critical systems,
but it is rarely employed for security purposes, except in specialized hardware
testing (e.g., smart card certification).

AI/ML-based methods are emerging. While some tools (e.g., Microsoft’s ML-
assisted review or GitHub’s ML-based scanning) are in early use, broader adop-
tion remains limited, with ongoing research driving innovation in this space.

In Table 2.2, we summarize how these methodologies compare across several of
these dimensions. Each method is valuable in its own right; importantly, they
are complementary. For example, static analysis can rapidly flag many issues
which are then confirmed or weeded out by dynamic testing. Fuzzing can dis-
cover bugs that static analysis missed (especially if the bug doesn’t have a clear
signature but is triggered by an unexpected input combination). Formal methods
can guarantee the absence of certain bug classes, thereby reducing the load on

33

Chapter 2

other testing methods. Penetration testers can then focus on high-level logic at-
tacks that none of the automated tools handle. AI/ML tools can prioritize or filter
the enormous stream of results from static and dynamic tools to help human ex-
perts focus on likely real-world problems. A defense-in-depth security program
will employ multiple of these techniques in tandem to achieve both breadth and
depth of coverage, and to mitigate the weaknesses of any single approach.

Table 2.2: Comparative Summary of Security Assessment Techniques

Technique Automation Scalability CIA Focus

Static Analysis Code-level tools Scales to large bases C, I, A
Dynamic Analysis Instrumented execution Per-test overhead I, A
Fuzz Testing Input generators Parallelizable I, A
Formal Verification Proof-based methods Poor scalability Varies
Runtime Monitoring Continuous agents Low overhead I, A
Penetration Testing Manual campaigns Scenario-bound C, I
Vuln/Attack Injection Scenario-based tools Limited by design scope Varies
Fault Injection Simulated fault triggers Multi-fault injection A
AI/ML-Based Analysis Learned models Fast after training C, I, A

2.3.3 Trends and Open Challenges

The field of software security assessment continues to evolve, with several emerg-
ing trends and persistent challenges.

Hybrid Approaches: A significant trend is combining methods to harness their
respective strengths. Hybrid fuzzing, for example, integrates fuzz testing with
symbolic or concolic execution, enabling greater path coverage by solving con-
straints for deep program logic [Checkoway et al., 2012]. Microsoft’s SAGE ex-
emplifies this, identifying complex Windows vulnerabilities. Similarly, “analysis
hybridization” blends static and dynamic analysis, using static results to guide
dynamic testing or runtime data to filter static false positives [Nunes et al., 2022].
Continuous integration pipelines increasingly incorporate tools like linters, static
analyzers, and fuzzers (DevSecOps), facilitating early, continuous feedback.

AI and Automation: The 2024 DARPA AI Cyber Challenge highlights growing
interest in autonomous vulnerability detection and repair [Sheng et al., 2025]. AI
is already assisting with triage, ranking alerts, clustering fuzzing crashes, and
suggesting fixes. Large Language Models (LLMs) are being explored for code
review, summarizing risks in pull requests, and assisting non-experts. While still
maturing, these tools help scale expert capabilities.

Scalability and Coverage: As systems grow in complexity (e.g., microservices,
third-party dependencies), achieving comprehensive assessment remains diffi-
cult. While fuzzing covers core logic well, new directions, such as architectural
fuzzing and security chaos engineering, aim to assess system-level behavior. Efforts
also target broader vulnerability types, extending detection beyond memory er-
rors to include semantic flaws, such as broken authentication or crypto misuse.

False Positives and Negatives: Tool accuracy remains a challenge. False pos-

34

Background and Related Work

itives waste effort; false negatives allow vulnerabilities to persist. Approaches
include ML-based ranking, heuristics, and runtime context to reduce noise. De-
tecting logic flaws (e.g., confused deputy, TOCTOU bugs) requires deeper se-
mantic understanding, an area of active research, including specification-driven
or invariant-learning tools.

Emerging Domains: New technologies introduce domain-specific needs. Smart
contracts, for instance, leverage formal verification and symbolic analysis for cor-
rectness [Baets et al., 2024]. IoT and CPS systems present challenges in terms of
scale, heterogeneity, and physical interaction. Assessing AI models themselves
for adversarial robustness represents a new frontier that blurs traditional secu-
rity boundaries.

Human-in-the-Loop Assessment: Tools are increasingly designed to support
(not replace) human experts. Interactive systems enable feedback loops (e.g.,
active learning in static analysis) and provide visualizations to help developers
identify and resolve issues. Bridging the usability gap between security tools and
development teams remains key to broader adoption.

Measurement and Benchmarking: There is still no consensus on evaluating tool
effectiveness. While benchmarks like those from Cyber Grand Challenges are
helpful, they do not accurately reflect the real-world diversity of software. Re-
search is ongoing into robust corpora, metrics that correlate with actual risk, and
models that link vulnerability detection to threat reduction.

The future of security assessment lies in integrated, intelligent, and automated
methodologies, combined with formal rigor and human insight. As deployment
cycles accelerate and threats evolve (including AI-assisted attacks), assessment
tools must match pace. Challenges like scaling formal methods, reducing false
alarms, and uncovering logic bugs are central to current research. A layered
strategy leveraging diverse tools will be essential to secure increasingly complex
systems.

2.4 Virtualized System Security

This section surveys the existing literature on security mechanisms for virtual-
ized environments, focusing on key research areas such as anomaly detection,
hypervisor vulnerabilities, and fault injection-based evaluation.

2.4.1 Anomaly Detection in Virtualized Infrastructures

Early intrusion detection efforts in cloud and virtualized environments explored
the use of monitoring systems performance signatures to identify anomalous be-
havior. Avritzer et al. proposed an architecture integrating traditional IDS sen-
sors with continuous tracking of VM-level metrics (CPU, memory, I/O) to de-
tect attack-induced deviations [Avritzer et al., 2010]. Their work showed that
attacks such as buffer overflows, DoS, and SQL injections exhibit distinctive per-

35

Chapter 2

formance patterns, like abrupt spikes in CPU or memory usage, which can serve
as anomaly indicators [Avritzer et al., 2010]. This profiling-based strategy oper-
ates externally to the guest, relying on a statistical baseline of normal performance
to raise alerts on significant deviations [Avritzer et al., 2010]. Its key strength lies
in detecting zero-day attacks via anomalous resource footprints [Avritzer et al.,
2010]. However, its effectiveness depends on accurately characterizing "normal"
behavior across heterogeneous workloads. Static thresholds or manually defined
baselines may lead to false positives if not continuously updated [Gabel et al.,
2012]. To address this, later approaches incorporated adaptive models, such as
regression or self-learning techniques, to refine performance profiles and detect
outliers in an unsupervised fashion [Avritzer et al., 2010]. Techniques such as
clustering and one-class models have also been explored to accommodate evolv-
ing cloud workloads, although they require careful calibration to balance sensi-
tivity and false positive rates.

Recent work has increasingly applied machine learning to detect performance
anomalies in virtualized infrastructures. Methods such as decision trees, neu-
ral networks, and statistical [Huang et al., 2025] change detection have been
employed to analyze high-dimensional monitoring data, including CPU coun-
ters, network activity, and disk throughput. For instance, Pelleg et al. (2008)
used decision trees to identify failure-prone VM states from hypervisor-level met-
rics [Pelleg et al., 2008]. In modern cloud environments, such techniques are of-
ten enhanced with ensemble learning and online training to handle behavioral
drift. A prominent research direction focuses on detecting micro-architectural
attacks using performance counters. Zhang et al.’s CloudRadar exemplifies this
trend, leveraging hardware event data (e.g., cache misses) to identify cross-VM
side-channel attacks in real time. By analyzing fine-grained CPU event patterns,
CloudRadar detects cache-based covert channels and Flush+Reload attacks as
anomalies within the HPC feature space. While these ML-based systems achieve
high accuracy for targeted attacks, they often require extensive training data and
remain vulnerable to adversarial evasion techniques that mimic benign profiles.

In contrast, our thesis introduces a novel approach to anomaly detection based
on a bucket algorithm for analyzing performance profiles. Rather than relying
on static thresholds or opaque machine learning models, this method discretizes
and aggregates performance metrics over sliding windows (buckets), capturing
meaningful deviations while filtering out transient noise. It enables the detection
of subtle anomalies spanning multiple metric,s and time interval metric detectors
may overlook. The algorithm is largely unsupervised and continuously updates
its baseline from recent history, making it well-suited to dynamic cloud environ-
ments. Unlike specialized systems like CloudRadar that target specific attack
classes (e.g., cache side-channels), our method is general-purpose, designed to
flag any performance deviation potentially linked to malware or resource faults.
This generality necessitates careful tuning to maintain low false positive rates
across varied workloads. A notable limitation, compared to some ML-based de-
tectors, is its inability to classify the root cause of anomalies automatically. In-
stead, it flags suspicious behavior that requires further analysis or follow-up, as
outlined in the second contribution of this thesis. Unlike supervised learning sys-
tems that attempt direct anomaly classification (often limited by training cover-

36

Background and Related Work

age) our method prioritizes robust unsupervised detection to identify previously
unseen attacks through their performance impact, rather than relying on known
patterns.

2.4.2 Hypervisor-Level Vulnerability Analysis on Xen

Virtual Machine Monitors (hypervisors) have been a primary focus of security
analysis, with Xen being a prominent target due to its widespread adoption in
cloud environments. Several studies have systematized Xen’s attack surface and
historical vulnerabilities, providing a foundation for understanding low-level
threats. Milenkoski et. al. conducted an exhaustive analysis of publicly disclosed
Xen hypervisor bugs, particularly in the hypercall interface. Their study, as cited
in [Milenkoski et al., 2014a], categorizes the root causes of hypercall handler vul-
nerabilities, such as missing input validation, integer overflows, and race condi-
tions. It demonstrates how malicious guest requests via hypercalls or VM exits
can trigger severe outcomes, including host crashes or arbitrary code execution.
The work highlights that seemingly benign operations exposed by the hypervisor
(memory allocation hypercalls, update VA mapping, etc.) constituted a rich at-
tack vector for guest-to-host escalation. For instance, they detail CVE-2012-3496,
where a crafted memory hypercall with a “populate-on-demand” flag from a par-
avirtualized guest could crash the Xen host (due to an unchecked assertion in the
handler). By classifying dozens of such flaws, Milenkoski et al. identified com-
mon patterns and recommended hardening measures (e.g., stricter validation,
reducing hypercall privileges) to mitigate entire classes of vulnerabilities.

Building on vulnerability-specific systematization, Shi et al.proposed a principled
decomposition of the Xen hypervisor informed by an analysis of 191 Xen Security
Advisories (XSAs). In their Deconstructing Xen paper [Shi et al., 2017], they re-
port that the majority (144 out of 191) of Xen’s documented vulnerabilities resided
in the core hypervisor rather than in unprivileged components. Notably, many
issues originated from the monolithic design, where a single bug in hypercall
handling or memory virtualization could compromise the entire host. To ad-
dress this, Shi et al.introduce Nexen, a re-architected Xen variant that splits Xen
into a small security monitor and multiple isolated service domains. By sand-
boxing hypercall processing and device emulation into least-privilege compart-
ments, Nexen confines the impact of a compromised VM to that VM’s slice of the
hypervisor. Their evaluation showed that Nexen could preemptively block or
mitigate $74%$ of known Xen vulnerabilities (those falling into compartments)
while incurring minimal performance overhead. This work emphasizes a form
of attack surface reduction: since hypercalls and VMexit handlers are a prime
attack vector, partitioning them and shrinking the trusted core significantly im-
proves security.

In addition to empirical vulnerability studies, there have been efforts to model or
verify hypervisor security properties formally. For example, Freitas and McDer-
mott applied formal methods to the Xen (codename “Xenon”) hypervisor [Freitas
and McDermott, 2011], using model checking to verify certain isolation proper-
ties. Their work, while not widely cited, was an early attempt to prove the ab-

37

Chapter 2

sence of specific failure states (e.g., guest memory escaping its sandbox) [Sgan-
durra and Lupu, 2016] in a virtualization setting. Broadly, however, full formal
verification of commodity hypervisors remained elusive for years due to their
size and complexity. It was not until the mid-2010s that significant progress was
made (see Section 2.4.5 below on formal malicious state modeling).

The above vulnerability analyses directly inform the threat model for our thesis.
In developing our intrusion injection framework, we leverage the classifications
by Milenkoski et al.and the XSA study by Shi et. al.to choose representative hy-
percall abuse scenarios and faulty states to emulate. Our work does not aim to
discover new Xen bugs, but instead uses the known universe of vulnerabilities
as input to create realistic attack effects. Unlike Deconstructing Xen, which pro-
vides a re-engineered hypervisor for vulnerability prevention, our thesis assesses
the actual architecture of its hypervisors (standard Xen) to evaluate detection and
resilience. In that sense, our contributions are complementary: whereas Nexen
stops attacks by design, our intrusion injector assumes a vulnerable hypervisor
and focuses on eliminating attacks in situ. Compared to Nexen, our approach
does not eliminate vulnerabilities; instead, we accept their existence and prepare
to catch exploitation at runtime. On the other hand, our evaluation can be seen as
a way to assess designs like Nexen: by injecting known attacks, one could verify
how effectively a partitioned hypervisor confines them. Thus, our work benefits
from prior analyses in choosing realistic attack vectors, and in turn, our results
can inform hypervisor hardening strategies.

2.4.3 Fault Injection and Robustness Testing of Hypervisors

To proactively assess hypervisor dependability, researchers have adapted classic
fault injection techniques to the virtualization layer. Whereas traditional software
fault injection flips bits [Cerveira et al., 2022] or modifies API calls in an operating
system, hypervisor-focused injections target the interfaces between the guest and
host (hypercalls, I/O operations, or simulated hardware events). Milenkoski et.
al.pioneered the concept of injecting malicious faults into hypervisors to evaluate
security controls. They developed hInjector, a tool for orchestrating hypercall-
based attack injection in a running Xen environment [Milenkoski et al., 2015a].
The idea is to craft hypercall invocations that mimic known attacks (e.g., pass-
ing invalid buffer pointers or extreme parameter values) and feed them from a
guest virtual machine (VM) to the hypervisor during regular operation. By ob-
serving whether the hypervisor withstands or crashes, and whether an intrusion
detection system (IDS) in the VMM can catch the attack, one can quantify the sys-
tem’s robustness. The authors used hInjector to simulate attacks for evaluating
virtualization-aware IDS solutions and access control mechanisms. One finding
was that frequent value validation in hypercall handlers (to block attacks) can
degrade performance, highlighting a trade-off between security hardening and
overhead.

Beyond targeted hypercall attacks, other works have approached hypervisor ro-
bustness testing more broadly. Beierlieb et. al.proposed a framework for hyper-
call interface robustness [Beierlieb et al., 2019]. They note that hypervisors, as

38

Background and Related Work

long-running system software, suffer from software aging and subtle fault ac-
cumulation, especially in the hypercall interface, which is invoked intensively
by guests. Their framework design supports fault injection campaigns against
hypercall handlers to observe failure modes and performance degradation over
time. The goal is to uncover not only security vulnerabilities but also reliability
issues (memory leaks, hangs) triggered by malformed hypercall sequences. Key
components of the framework include a model of the hypercall API (to generate
invalid or extreme inputs systematically) and automated execution of guest-level
scripts to issue those calls in bulk. While primarily aimed at robustness (aging)
testing, such campaigns inevitably exercise the hypervisor’s security checks as
well. Contemporary research also explores fuzz-testing of hypervisors: for in-
stance, Hyper-PILL (Bulekov et. al.) [Bulekov et al., 2024] uses coverage-guided
fuzzing to generate random sequences of VM exits and device inputs, success-
fully discovering new bugs across different hypervisors. These fuzzers treat the
VMM like an OS kernel, subjecting it to billions of random events to find corner-
case vulnerabilities. However, pure fuzzing often produces many crashes that
may not be exploitable or relevant to real attacks. In contrast, targeted fault injec-
tion (as in hInjector) focuses on known bad behaviors to emulate actual exploits.

In comparison to these efforts, our thesis’s Intrusion Injection approach can be
seen as a security-focused evolution of hypervisor fault injection. We specifi-
cally drive the system into erroneous states that mirror real intrusions, rather than
generic bit flips or random faults. In other words, we combine the realism of
attack-specific injection (akin to hInjector’s philosophy) to produce repeatable
malicious conditions for testing detection and response mechanisms. Whereas
Beierlieb et. al.’s framework targets robustness (finding any hypercall input that
crashes or slows the hypervisor), our intrusion injection is scoped to malicious
fault scenarios, e.g., forcing the hypervisor into a compromised control flow or
corrupted memory state that an attacker would achieve via an exploit. This fo-
cus allows us to evaluate security monitors (like our anomaly detector or a VMI-
based IDS) under realistic attack conditions. A limitation of our approach relative
to broad fuzzing is that we do not explore entirely unknown vulnerability spaces.
In summary, intrusion injection extends prior fault injection tools by adding a se-
curity semantics: rather than “How can the hypervisor break?” in general, we ask
“What capability might an attacker gain from this system? If they exploit it, will
our tools detect it?"

2.4.4 Adversarial Modeling and Exploit Reproduction Studies

Security research has also focused on systematically modeling multi-stage attacks
in virtualized environments and reproducing them for empirical analysis. Tra-
ditional intrusion modeling approaches often terminate at the operating system
boundary. However, in cloud environments, the presence of hypervisors and co-
resident virtual machines (VMs) introduces additional layers and novel attack
vectors. To capture this complexity, several works have characterized compound
attack sequences, where an adversary initially compromises a guest virtual ma-
chine (VM), then exploits a hypervisor vulnerability (e.g., guest-to-host escape),
and subsequently pivots to other VMs. In [Milenkoski et al., 2014b] discuss

39

Chapter 2

such multi-phase scenarios and emphasize their importance for IDS benchmark-
ing. They distinguish between elementary attacks and multi-step attacks, defined
as ordered sequences that progressively advance an intruder’s objective. Their
analysis highlights that the layered nature of virtualization necessitates model-
ing both guest-level and virtualization-layer attacks, particularly when an intru-
sion crosses abstraction boundaries (e.g., a guest kernel exploit followed by a
hypercall-based attack on Xen). While this line of work is mainly conceptual, it
outlines the essential requirements for comprehensive attack modeling in cloud
infrastructures.

From a practical perspective, exploit reproduction in controlled environments has
been employed to analyze the behavior and consequences of low-level attacks.
Researchers have built honeyfarms and testbeds where real-world hypervisor ex-
ploits are executed under instrumentation. A prominent example is the LO-PHI
framework [Spensky et al., 2016], which, although primarily designed for stealthy
malware analysis, enables physical-level instrumentation of host systems (e.g.,
memory and disk) to capture system state throughout an attack’s execution. LO-
PHI’s low observability ensures that intrusions do not evade detection during
analysis. Such frameworks enable replaying attacks to generate “ground truth”
data on the footprint of intrusions in virtualized settings, capturing artifacts such
as memory corruption, CPU usage anomalies, and system logs. These insights
are valuable for IDS evaluation and forensic investigations. Though relatively
scarce, these studies aim to answer critical questions: What erroneous system states
result from advanced attacks, and can such states be reliably detected or reconstructed
post-mortem?

Our Intrusion Injection approach addresses the need to recreate malicious sys-
tem states in a controlled manner when no vulnerability is available, extending
the capability of security testers. This is achieved by directly manipulating sys-
tem state via controlled means, such as debug hypercalls or VM pauses, but these
are grounded in vulnerability assessment or threat modeling. This method sup-
ports systematic exploration of intrusion scenarios and avoids the instability of
complete exploit execution that could prevent observation. Unlike prior efforts
focused on single exploit traces, our approach generalizes intrusion modeling
by targeting the resulting system state. Intrusion injection thus bridges the gap
between theoretical attack modeling and practical experimentation for IDS and
security tool evaluation.

2.4.5 Formalization of Malicious States in Virtualization Layers

An orthogonal thread of research has aimed to formally define and verify the ab-
sence (or presence) of malicious states in hypervisors. In the ideal case, one would
use formal methods to prove that a hypervisor cannot reach an erroneous state
(such as a guest escaping isolation) except via well-specified transitions. The
seL4 microkernel exemplifies early foundational work in this direction [Klein
et al., 2009], which was fully formally verified to ensure kernel integrity and isola-
tion. Although seL4 is not a hypervisor per se, it established that rigorous formal
verification is possible for a small systems kernel, providing strong guarantees

40

Background and Related Work

that certain “bad states” (e.g., memory safety violations, unauthorized access)
are unreachable. Building on that, [Gu et al., 2016] introduced CertiKOS, a cer-
tified single-core hypervisor kernel. CertiKOS employed a layered verification
approach: the hypervisor/OS is structured into over 30 abstraction layers, each
of which is proven correct and secure concerning the layer below. This compo-
sitional method allowed reasoning about concurrency and low-level manipula-
tion in a stepwise manner. The result was a machine-checked proof of functional
correctness and safety for a simple concurrent hypervisor/OS, a milestone that
demonstrated key properties, such as memory separation and control-flow in-
tegrity, could be guaranteed by construction. However, CertiKOS and similar
efforts (e.g., Proving Hypervisor Base Verifier, Komodo [Ferraiuolo et al., 2017])
were limited to either uniprocessor or simplified hardware models. They did not
fully address real-world multiprocessor execution and device interactions.

More recently, [Li et al., 2021] achieved a breakthrough with SeKVM, presenting
the first formally verified commodity hypervisor on multiprocessor hardware
(Linux/KVM). They refactored KVM into a tiny trusted core and an untrusted
remainder (in spirit somewhat like Nexen’s design), then applied formal veri-
fication to that core. Crucially, their verification considered realistic hardware
features, such as multi-level page tables, caches, and TLBs, which earlier verified
systems had omitted. The SeKVM verification proved that the trusted hypervi-
sor core is functionally correct and maintains VM isolation and memory protec-
tion even if the untrusted part is compromised. In other words, any malicious
or undefined state in the untrusted layer cannot violate the key security guar-
antees. This work provides strong assurance that certain classes of hypervisor
vulnerabilities are eliminated: the verified core had no memory safety bugs or
logic flaws under the checked model. The cost was a very substantial effort in
formal modeling and proof (dozens of person-years) and modest runtime over-
head (1̃–2%). Beyond SeKVM, academia and industry continue to explore the
application of formal specifications to virtualization – for instance, specifying hy-
percall semantics in a formal language to automatically detect potential errors in
implementations, or using model checking to examine the state machines of vir-
tual device emulators. These formalization attempts contribute a high-assurance
perspective: they seek to precisely define what constitutes a “bad state” (such
as a violation of an invariant, like “guest pages may never be writable by other
guests”) and then prove or disprove the reachability of such states.

In contrast to these heavyweight formal methods, our thesis takes a more empir-
ical approach to handling malicious states. Rather than prove they cannot hap-
pen (which is ideal but currently infeasible for full-scale Xen), we assume that
malicious states will occur and focus on tolerating them. The Bucket Algorithm
anomaly detector and Intrusion Injection framework collectively serve as addi-
tional support to ensure formal correctness. However, insights from formal stud-
ies do influence our work. For example, the invariants identified by verified sys-
tems (such as “no writable shared pages between VMs”) inform what to monitor.
For instance, a breach of such an invariant (e.g., if our monitoring detected a page
table entry modified across VM boundaries) would be a strong signal of compro-
mise. Moreover, our injection scenarios align with the failure cases that formal
verification tries to eliminate. If a system like SeKVM is verified never to allow

41

Chapter 2

arbitrary host memory writes from a guest, then an injection that performs such a
write is essentially simulating the violation of that property in a non-verified sys-
tem. Thus, one could view our work as providing a pragmatic backstop. Until
mainstream hypervisors achieve the guarantees of CertiKOS or SeKVM, we pro-
vide tools to emulate and detect those failure modes when they occur. One limi-
tation of our approach is the reachability of the erroneous states that are injected,
which may be beneficial for formal methods. In summary, the formal model-
ing community advances the state of virtualization toward fundamentally secure
systems (where no malicious states can be detected). At the same time, our re-
search contributes to addressing insecurity in today’s systems (by identifying and
responding to malicious states). Both are necessary: our techniques can improve
security in the interim and help validate that detection mechanisms will catch
what formal proofs indicate should never happen.

2.5 Gaps and Open Challenges

Despite significant advancements in the security assessment of virtualized infras-
tructures, several critical limitations continue to undermine the effectiveness and
generalizability of current techniques. These limitations span both the model-
ing of intrusions and the simulation of their effects, particularly in the context
of complex interfaces such as hypercalls in modern hypervisors. The research
developed in this thesis is directly motivated by these challenges and aims to ad-
dress them through structured methodologies grounded in formal models and
empirical validation.

Absence of Generalized Assessment Methods

Much of the existing literature on security evaluation is closely tied to specific
vulnerabilities, exploits, or system configurations. As a result, assessment out-
comes tend to lack portability and fail to support comparative analysis across
versions or architectures. This constraint limits the ability to conduct regression
testing, simulate emerging threats, or systematically reason about a system’s se-
curity posture in a principled way.

While Chapter 4 explores robustness testing and vulnerability analysis, the find-
ings show that these techniques often operate at the syntactic level (fuzzing pa-
rameters or counting faults) without capturing the semantic consequences of suc-
cessful intrusions.

What is currently missing is a formal, technology-agnostic framework for defin-
ing and reusing abstract representations of malicious behavior. Such a framework
should allow researchers to simulate the effects of intrusions (e.g., control flow
hijack, page table corruption) without requiring the exploit chain itself. Chap-
ter 5 introduces the concept of Intrusion Injection precisely to address this gap,
and Chapter 6 builds upon it by defining Intrusion Models (IMs) (semantically
grounded abstractions of attacker-induced erroneous states).

42

Background and Related Work

Lack of Systematic Intrusion Simulation Techniques

Traditional security assessments, including fuzzing and robustness testing (as
detailed in Chapter 4), have demonstrated limited effectiveness when applied
to privileged virtualization interfaces such as Xen’s hypercalls. Mutation-based
input strategies struggle to induce semantically valid violations due to the com-
plexity and context-sensitivity of the interface logic [Alqahtani and Behzadan,
2022; Koopman and DeVale, 1999b].

These findings reveal the need for effect-centric simulation techniques that extend
beyond the generation of malformed input. Specifically, a new class of tech-
niques is needed to simulate the post-compromise conditions typically induced
by successful exploits, such as memory corruption, control register overwrites,
and unauthorized privilege escalation, without executing the exploit chain.

The Intrusion Injection methodology introduced in Chapter 5 is designed to meet
some of this requirements.

In summary, these open challenges highlight the need for a principled and
reusable approach to modeling malicious behaviors and simulation in virtualized
environments. The contributions of this thesis address these gaps by proposing a
coherent methodology that integrates formal modeling, empirical injection, and
system-level validation.

2.6 Summary

This chapter has presented a comprehensive review of the state of the art in virtu-
alization security, with a particular emphasis on the architectural characteristics,
threat landscape, and assessment methodologies that shape security analysis in
virtualized systems. Starting from foundational virtualization concepts, we ex-
amined core technologies, including memory and I/O virtualization, hypervisor
architectures, and isolation mechanisms. These technical foundations were then
used to contextualize emerging security threats and operational risks.

Subsequently, we explored a range of security assessment approaches, includ-
ing fuzzing, fault injection, static and dynamic analysis, and formal verification.
We highlighted the respective advantages and limitations of these approaches
when applied to the hypervisor layer, with a particular focus on the challenges of
achieving both coverage and semantic validity in testing.

Throughout this review, several persistent gaps were identified:

• The absence of a generalized abstraction for representing intrusions in a
reusable and system-independent manner.

• The lack of frameworks for systematically simulating post-intrusion conse-
quences without relying on the execution of full exploit chains.

43

Chapter 2

These limitations directly motivate the methodological contributions developed
in this thesis. Specifically, the work presented in the following chapters intro-
duces:

• A lightweight, calibrated mechanism for performance-based anomaly de-
tection, which captures behavioral deviations in multi-tenant environments
using sequential performance signatures.

• The Intrusion Injection methodology, which enables safe and repeatable
emulation of post-compromise states, decoupling assessment from real-
world exploit execution.

• An initial formalization of Intrusion Models (IMs), which abstracts the se-
mantics of exploit consequences into structured, reusable representations of
malicious system states.

Together, these contributions aim to establish a principled framework for proac-
tive and generalizable security evaluation in virtualized infrastructures. The
next chapter focuses on the first of these contributions, anomaly detection, and
presents a methodology based on performance signature analysis, enabling non-
intrusive detection of resource-based attacks in cloud-hosted virtual machines.

44

Chapter 3

Anomaly Detection in a Multi-Tenant
Environment: A Performance-Based
Approach

The ubiquity of cloud solutions [CloudWorkload] is a fertile ground for secu-
rity and privacy breaches [DigitalOcean, 2019; Gulenko et al., 2016; Int, 2020;
Wallschläger et al., 2017]. In a multi-tenant environment, a legally acquired vir-
tual host may initiate security attacks, where a malicious user exploiting hypervi-
sor security vulnerabilities may attack a tenant that shares the same physical re-
sources. Thus, such environments are highly susceptible to side-channel attacks,
resource exhaustion, and other malicious activities. For those reasons, detecting
and mitigating such attacks is an important step to counter the threat posed to
the existing Infrastructure as a Service (IaaS) systems and, more broadly, to virtu-
alization [Hayes, 2008].

Although some systems use virtualization capabilities to simplify the manage-
ment of standalone applications, benefiting from functionalities that come with
cloud computing, others spread across multiple servers, splitting their services into
different components. These orchestrated components, potentially located in dis-
tinct physical servers providing various services (e.g., transactional systems, in-
terface handling, long batching jobs, etc), compose a complex system and work
together to support the business models and operations. Such compound and
complex systems depend on multiple parts and may benefit from tailored ap-
proaches to assess different anomaly behaviors in their deployments. In this
work, we refer to such a configuration as complex virtual systems.

Some studies have shown that effective anomaly detection mechanisms are
needed for spotting early indicators of security breaches in virtualized infras-
tructures [Cogranne et al., 2017; Hawedi et al., 2018], calling for the design of
Intrusion Detection Systems (IDSs) to detect anomalies, such as zero-day attacks
and Advanced Persistent Threats (APTs) [Grottke et al., 2016; Zoppi et al., 2021]
in virtualized environments. However, several domain-specific challenges are
well-known. In particular, (i) it is challenging to comprehensively define nor-
mal behavior in a diverse cloud environment, (ii) malicious attackers may adapt

45

Chapter 3

their behavior to fit the domain definition of “normal behavior”, and (iii) data
on anomalies at cloud environments, which would be instrumental for training
purposes, are hard to obtain.

This chapter focuses on anomaly detection approaches based on system per-
formance signatures. These signatures can address any attack that impacts the
overall system performance, including the potential of detecting zero-day at-
tacks [Chandola et al., 2009; Milenkoski et al., 2015c], as those approaches are
based on detecting performance deviations and do not require detailed knowl-
edge of attack history [Milenkoski et al., 2015c]. In addition, we study how sim-
ple instances of the considered performance signature-based approaches can be
used to principled model-based parameterization, allowing the system adminis-
trator to trade between multiple contending performance metrics. In this context,
we pose the following research question:

RQ: Is it feasible to efficiently tune mechanisms for anomaly detection
in complex virtualized systems trading off between contending fac-
tors such as the time to detect anomalies and the rate of false-positives
under a principled model-based framework?

To answer this RQ, we propose a methodology for anomaly detection in
complex virtualized systems based on performance deviations. Initially, the
methodology profiles the system operation under normal conditions by computing
the mean and standard deviation throughput of every transaction in the target
system, establishing a baseline profile. Then, during system operation, perfor-
mance is monitored to capture deviations from the baseline profile, using the
bucket algorithm [Avritzer et al., 2006] to signal the anomalies following a tuning
strategy. The proposed tuning of the anomaly detection mechanism leverages a
calibrated analytical model used to control the rate of false positives in a princi-
pled manner [Chandola et al., 2009].

Our proposal has the advantage of being less intrusive than alternatives that
rely on deep packet inspection for monitoring and anomaly detection [Kumar
et al., 2006; Wallschläger et al., 2017]. It is only necessary to monitor the through-
put of the business transactions, making it less dependent on the supporting tech-
nology stack and, therefore, more portable. Another advantage is the anomaly
detection algorithm’s simplicity, which makes training, interpretation, and ad-
justments easier than complex learning-based methods. These factors enhance
the methodology’s overall practicality and applicability.

In summary, the main contributions of this chapter are as follows:

• A novel anomaly detection methodology that monitors business transac-
tions throughput using the bucket algorithm.

• An analytical model that parameterizes and controls the anomaly detec-
tion mechanism, enabling effective management of the trade-off between
detection time and false alert rate.

46

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

• An experimental assessment of the methodology using a representative
system and attacks, where the feasibility of detecting attacks is established
based on non-intrusive user-level performance metrics available in produc-
tion environments.

• A model-driven principled mechanism design that supports what-if as-
sessment of the anomaly detection algorithms parameterization.

The organization of this chapter is as follows. Section 3.1 presents the proposed
methodology, which includes exploratory, profiling, and operational phases us-
ing performance signatures. Section 3.2 focuses on the analytical model, high-
lighting the bucket algorithm for optimizing accuracy and minimizing false pos-
itives. Section 3.3 offers experimental validation using data from the TPCx-V
benchmark. Section 3.4 discusses findings from case studies related to alert re-
sponsiveness. Section 3.5 addresses threats to validity and Section 3.6 summarizes
the chapter.

3.1 Anomaly Detection Methodology

Any system naturally experiences transient loads, which can temporarily deviate
from its normal behavior and potentially trigger anomaly alerts. This section
applies our anomaly detection approach to establish a criterion for developing
an attack detection methodology to distinguish between normal transient load
variations and potential attacks. The attack detection methodology introduced in
this work adapts to changes in the operational profile, recognizing that monitored
systems frequently experience varying loads and demands over time.

Figure 3.1 depicts the high-level application of the methodology. As we can ob-
serve, it consists of three main phases:

(A) exploratory analysis, which allows determining the most effective way to
monitor the system based on its characteristics;

(B) profiling, which evaluates the system on its expected regular operational
profile(s) to extract information about the habitual behavior and its perfor-
mance; and

A - Exploratory

B - Profiling C2: Attack

C3: AlertsC4: Action

C1: Operation

C - Operation

System Evolution

Operational Profile
Change

Figure 3.1: Overview of the methodology application life cycle.

47

Chapter 3

System

E

 Exploratory
Runs

A - Exploratory

Monitoring
Surface
Analysis

Monitoring
Surface

Internal
Aspects

● Components
● Business Model
● Metrics

Baseline
Metrics

Optimal
Parameters

C - Operation

System

Monitoring Surface

Daily Operation

d1 d2 ... dn

Detection
AlertsPerformance Monitoring

Baseline
Metrics

System

P V

Golden Runs

Optimal
Parameters

Baseline
Validation

Workload

B - Profiling

Calibrated
Perf. Model

Performance
Model

Valid ?

Yes

No

Monitoring Surface

Alert Criterion

Figure 3.2: Diagrams showing the three distinct sets of runs present on our
methodological approach: Exploratory, Profiling, and Operation.

(C) operation, in which the system executes for its intended purpose, and we
use all data and knowledge from the previous phases to report deviations,
identifying them as anomalies or attacks.

As the throughput of a single workload can vary over time [Roy et al., 2015], our
methodology must effectively handle these transient variations. However, the
operational profile shifts when the workload changes over a coarser time scale
(e.g., during holiday or promotion seasons), requiring a new iteration to accom-
modate the updated profile. Some profiles, such as those observed during holi-
day seasons, are expected to recur periodically. Also, any changes in the system
may require an evaluation of relevant aspects to add to the monitoring surface.
The optimal integration of a change detection mechanism into the overall moni-
toring system is outside the scope of this work and is a topic for future work.

Figure 3.2 shows the phases of the proposed methodology, which are detailed in
the following sections.

3.1.1 Exploratory Analysis Phase

In the exploratory phase, we must determine the system components and metrics
that best capture the system’s operational behavior. We call those elements the
monitoring surface. To achieve that goal, we need to follow three main steps:

A.1) Analysis: evaluate the internal aspects of the system, such as the architecture,
components, operations, and resources available for monitoring to define how to
characterize the system performance.

A.2) Exploration: the tacit knowledge of the system is essential, and a set of ex-
ecutions (E on Figure 3.2) is prescribed for exploratory analysis. During those
executions, the process should monitor and analyze the relevant data to identify
metrics that effectively translate into proper measurements.

A.3) Definition: use the outputs of previous steps to determine the monitoring

48

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

surface, i.e., combine the tacit knowledge and the internal aspects to define which
components and metrics to use in the following phases.

3.1.2 Profiling Phase

This phase aims to evaluate the environment during the execution of its expected
regular operational profiles [Musa, 1993] to establish the statistical parameters
that represent those profiles. The following procedures are needed:

B.1) Golden runs definition: collect data under normal operating conditions using
the monitoring surface. These golden runs are the primary reference for system
behavior without faults or attacks. We split these runs into two independent sets:
a first one, Profile, used to compute the baseline metrics, and a second one, used
to Validate the performance parameterization.

B.2) Baseline metrics extraction over the monitoring surface: compute the baseline
metric for each subsystem, operation, resource, and profile, and extract statistical
data from the metrics defined over the monitoring surface.

B.3) Performance model calibration: We apply empirical data to determine the op-
timal values that minimize false-positive (FP) alerts. We define the algorithm’s
false-positive tolerance using experimental runs under no-attack conditions. The
performance model identifies the most suitable parameters for testing and esti-
mates the number of alerts each setting may trigger. This process allows us to
align the algorithm’s FP tolerance with user preferences. Ultimately, the perfor-
mance model guides the calibration to reduce the FP rate.

B.4) Baseline validation: check the validity of the determined parameters by apply-
ing the detection algorithm using the Golden Runs from the V group and check
if the number of alerts (FP) is in the defined criteria.

B.5) Parameterization adjustment: during the baseline validation, calibrate the
model until the alert rate meets the defined objective.

3.1.3 Operation Phase

At this point, the anomaly detection algorithm’s configuration is complete, en-
abling it to monitor the system in production and detect security attacks that
degrade performance.

Let’s clarify the distinction between the terms "alarm" and "alert" in this work (see
Figure 3.3). In the context of the bucket algorithm, an alert refers to the identification
of a deviation from expected behavior, which issues a warning regarding that devia-
tion. This warning may indicate a problem, a false positive, or an irrelevant event
within the system’s context. Conversely, when the system meets a specific condition
defined by the user, such as an alert or a series of alerts in a particular transaction,
it constitutes an event of interest. We refer to this event of interest as an alarm.
Table 3.1 summarizes the differences between Alert and Alarm in our approach.

49

Chapter 3

Figure 3.3: Scheme showing the differneces between Alert and Alarm in the con-
text of this Work.

In this phase, we use all the data and knowledge from the previous ones to search
for anomalies or attacks during system operation. We need to:

C.1) Define a criterion: determines an alarm condition in a concise manner. Since
some transactions may produce false positives, we must determine whether an
alert in a specific transaction should trigger an alarm. For instance, only alerts in
critical subsystems, or multiple alerts in certain transaction subsets, will trigger
an alert.

C.2) Monitor the operation: integrate the detection algorithm into the daily activity
by continually watching the monitoring surface using the detection algorithm

Table 3.1: Comparison between Alert and Alarm in the Bucket Algorithm

Aspect Alert Alarm

Definition Identification of a deviation from
expected behavior.

Event of interest triggered by spe-
cific system-defined conditions.

Purpose Warns of a deviation, which may or
may not be relevant to the system’s
context.

Indicates a critical event requiring
attention or action.

Context May represent a false positive, irrel-
evant event, or potential problem.

Signals a condition that meets user-
defined criteria.

Trigger Bucket Overflow. A single devia-
tion or anomaly in behavior.

A specific condition, often involv-
ing one or more alerts, that defines
the event.

50

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

with the optimal parameters.

Note that the system administrator must consider the need to monitor the change
in the operational profile, which will trigger a new iteration of the methodology.

3.2 Anomaly Detection Mechanism and Model

This section describes the anomaly detection mechanism used in the proposed
methodology and our principled analytical model.

3.2.1 Anomaly Detection Mechanism

The anomaly detection algorithm based on performance degradation works by
continuously measuring the throughput, x̂, and maintaining B buckets of depth
D, whose state depends on the history of the most recent throughput values, as
shown in Figure 3.4.

The scalar value b is a pointer to the current bucket, b = 1, . . . , B, and d is the
number of recent throughput samples that deviated from a given target, d =
0, 1, . . . , D. We refer to d as the number of tokens in the current bucket. The total
number of tokens in all buckets is a proxy for the system degradation level.

bucket 2bucket 1 bucket b

Figure 3.4: Bucket Algorithm dynamics: System of buckets diagram representing
the dynamics of the detection algorithm showing B buckets of depth D each.

Let µ be the baseline average throughput, and σ be the baseline standard devia-
tion. Controlled experiments (golden runs) provide both µ and σ. The pointer b
to the current bucket determines the current target throughput, calculated as:

x̃ = µ− (b− 1)σ. (3.1)

After each throughput sample is collected, if its value is smaller than x̃, the num-
ber of tokens in the current bucket is incremented by one.

According to Eq. (3.1), the target throughput could be negative. To prevent the
target throughput from becoming negative or negligible, situations where the
number of tokens cannot increase, we introduce a constant ϵ as a lower bound.
The target throughput is then defined as x̃ = max(µ− (b− 1)σ, ϵ). Throughout

51

Chapter 3

this work, in all the scenarios of interest, the right-hand side of (3.1) is strictly
positive and non-negligible. Therefore, we let ϵ = 0.

The rationale behind the target throughput goes as follows. At the initial bucket,
the target throughput is µ: any deviation of the throughput to values smaller than
µ causes an increase in the number of tokens in the bucket. Then, each additional
bucket corresponds to a smaller target throughput. In particular, once the current
bucket overflows (or underflows), the target throughput x̃ is shifted downward
(or upward) by one standard deviation.

By decreasing the target throughput as a function of b, as in Eq. (3.1), the goal
is to prevent false alerts. Indeed, adding tokens to buckets becomes more chal-
lenging as b grows, i.e., as we move from left to right in Figure 3.4. When all
buckets overflow, a performance degradation event is detected, and an alert is
triggered. Alternatively, when all buckets underflow, the system has recovered
from a transient performance degradation event.

The proposed performance degradation detection algorithm, hereinafter referred
to as the Bucket Algorithm (BA), is given by Algorithm 1.

Algorithm 1 The Bucket Algorithm

1: b← 1 ; d← 0 // buckets are empty
2: for each new throughput sample x̂ do
3: if (x̂ < µ− (b− 1)σ) then
4: d← d + 1 // add a token to the current bucket
5: else
6: d← d− 1 // remove a token from current bucket
7: end if
8: if (d > D) then
9: d← 0 ; b← b + 1 // bucket overflow

10: end if
11: if (d < 0 and b > 1) then
12: d← D ; b← b− 1 // bucket underflow
13: end if
14: if (d < 0 and b = 1) then
15: d← 0 // recovered from transient degradation
16: end if
17: if (b > B) then
18: alert()
19: end if
20: end for

We can tune the performance degradation detection algorithm by varying the
bucket depth, D, and the number of buckets, B. The larger the product D ×
B, the longer it takes for the algorithm to detect the performance degradation.
The statistical analysis of the behavior of this family of BAs has been described
in [Avritzer et al., 2006].

52

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

3.2.2 Hypothesis Testing

We must continuously evaluate two alternative hypotheses: (i) the null hypothe-
sis H0, representing a scenario with no attack, and (ii) the alternative hypothesis
H1, indicating that the system is under attack. For this, we need to define the
key quantities of interest as functions of H0 and H1. The following discussion
measures time by the number of collected samples for simplicity.

Definition 1. The mean time until a false alert under H0 is denoted by AB(D).

As discussed in the following section, AB(D) is given by the mean time to reach
the absorbing state of a Markov chain characterizing the bucket algorithm. When
B = 2, we provide closed-form expressions for AB(D).

Definition 2. A lower bound on the number of samples until a true-positive under H1
is denoted by L. Assuming all buckets are initially empty, we let L = BD.

Definition 3. Under H0, we define the probability of a false alert as the probability that
the algorithm triggers an alert outside an attack: fB(D) = P(R < T), where R is
a random variable with mean AB(D) characterizing the time until an alert is triggered,
and T is a random variable with mean 1/α characterizing the time until an attack occurs.

In this work, except otherwise noted, we assume that fB(D) depends only on R
and T through their means.

Definition 4. The expected cost of a given system parameterization is a weighted sum of
the probability of false-positives, computed under H0, and a lower bound on the number
of samples to detect an attack, computed under H1:

C(p, w, D, B, α) = BD + w fB(D) (3.2)

Table 3.2 summarizes the notation introduced in this chapter. Additional details
on how to estimate AB(D) and fB(D) are provided in Sections 3.2.3 and 3.2.4,
respectively. The cost function (3.2) (Definition 4) will be instrumental to param-
eterize the bucket algorithm in Section 3.2.5.

3.2.3 Analytical Model

Simple algorithms to detect attacks, such as the BA, can be optimized by analyz-
ing the fundamental trade-offs rather than relying only on empirical tuning. One
important adjustable parameter is the bucket depth, which directly impacts both
the false-positive rate and the time required to detect actual attacks.

Increasing the bucket’s depth lowers the probability of a false positive but de-
lays the identification of a true positive. To simplify the analysis, we work under
the assumption that attacks will change the throughput distribution, and will al-
ways be detected. However, the number of samples to detect the attack may vary
depending on the depth of the bucket. Our second key simplifying assump-
tion is that the number of samples to detect the attack is much smaller than the

53

Chapter 3

Table 3.2: Table of notation

variable description
Basic Terminology (Section 3.2.1)

x̂ current sample
µ baseline mean of metric of interest,

e.g., baseline average throughput or response time
σ baseline standard deviation
x̃ target value of metric of interest
B number of buckets
b current bucket, b = 1, . . . , B
D maximum bucket depth
d current depth of bucket b, d = 0, . . . , D

Bucket Algorithm Modeling and Analysis (Sections 3.2.2 to 3.2.5)
AB(D) mean time to false alert, under hypothesis of no attack

(mean number of collected samples to reach absorbing state)
fB(D) probability of false alert
F target probability of false alert
α attack rate
pi probability that sample adds ball to bucket, when b = i

Unified Framework for Sequential Analysis (Section 3.2.6)
Xn n-th sample
Sn current state of sequential analysis
S(l) lower bound on system state (absorbing barrier)
g(Xn) incremental additive contribution of Xn to Sn

number of samples collected before getting a false-positive (which, in practice,
should always be the: the time until a false-positive should be much longer on
average than the time until a true-positive). These are acceptable assumptions,
as the methodology focuses on addressing system performance issues. Only un-
expected changes in the operational profile (infrequently occurring events) will
cause false positives.

We aim at answering the following question: what is the smallest bucket depth to
produce a false-positive probability bounded by a given threshold?

In the following, we introduce a discrete time birth-death Markov chain (DTMC)
to characterize the behavior of the BA. State (b, d) of the Markov chain corre-
sponds to the setup wherein there are d balls in bucket b, and D balls in buckets
b− 1, . . . , 1.

Each transition of the DTMC corresponds to the collection of a new sample. Such
a sample causes the system to transition from state (b, d) to one of its two neigh-
boring states. Let pi be the probability that the number of balls in bucket i in-
creases after a new sample is collected. Then, pi = P(x̂ < µ− (i− 1)σ|b = i), for
1 ≤ i ≤ B. Figure 3.5 directly provides the entries of the transition probability
matrix.

Reaching the terminal absorbing state triggers an alert. Figure 3.5 illustrates the

54

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

b=1
d=0

b=1
d=1

b=1
d=D

b=2
d=1

b=2
d=2

b=B
d=D A

p2 1p1p1 p1 pB pBp1

Figure 3.5: Discrete time Markov chain characterizing the behavior of the BA.
Each transition corresponds to the collection of a new sample.

DTMC. The number of samples collected until absorption accounts for a tradeoff
between the mean time until (a) a false alert in the absence of attacks and (b)
a detection in the presence of an attack. Larger bucket depth values D favor
reducing the former but increasing the latter.

Let ÃB(D; p1, p2) be the time until absorption, measured in number of collected
samples, accounting for B buckets of depth D each. We denote its mean by AB,
E(ÃB) = AB. Under the hypothesis of no attack, ÃB is the time to a false alert. We
derived a closed-form expression for AB (Appendix A.2.1), which is instrumental
in handling tradeoffs in the choice of the bucket depth D as illustrated in the
upcoming sections. In particular, for B = 2, the resulting expression is given by:

A2(D; p1, p2) = A(1)
2 (D; p1, p2) + A(2)

2 (D; p1, p2) (3.3)

where A(i)
B is the mean time to overflow the i-th out of B buckets, starting from an

empty system. In particular, A(1)
2 and A(2)

2 are the mean time to add D + 1 and D
balls to the first and second buckets, respectively, starting from an empty system,
noting that after adding D + 1 balls to the first bucket it will overflow. The second
bucket will contain one ball, and adding additional D balls to the second bucket
will overflow and trigger an alert. Then:

A(1)
2 = ∆1

(
δ
(D+1)
1 − (D + 1)

)
(3.4)

A(2)
2 = ∆2

(
δ
(D)
2 − D

)
+ ∆1

(
1− ρD+1

1

ρD+1
1

)
δ
(D)
2 (3.5)

and:

ρi =
1
pi
− 1, ∆i =

1 + ρi

1− ρi
=

1
2pi − 1

, δ
(D)
i =

1− ρ−D
i

ρi − 1
. (3.6)

Note that if ρ1 = ρ2 = ρ and p1 = p2 = p then the algorithm behavior is equiva-
lent to that with a single bucket, B = 1, with depth 2D:

A1(2D; p) = A2(D; p, p) = ∆1

(
δ
(2D+1)
1 − (2D + 1)

)
. (3.7)

Our experimental results indicate that B = 2 suffices in the considered scenarios
(see Section 3.3). For this reason, in the remainder of this work, all numerical
results derived from the proposed analytical model are reported, letting B = 2,
making use of equations (3.3) and (3.6).

55

Chapter 3

3.2.4 Modeling the Probability of False Alerts

We leverage the proposed model to estimate the probability of a false alert. To
that aim, we assume that attacks arrive according to a Poisson process with rate
α. Recall that fB(D) denotes the probability of a false alert (Definition 3). In
what follows, we derive expressions for fB(D) under different assumptions on
the distribution of ÃB(D).

Assume that ÃB(D) can be approximated by a constant and that the time between
attacks follows an exponential distribution with mean 1/α. Then:

fB(D) = e−AB(D)α. (3.8)

Alternatively, if we approximate ÃB(D) by an exponential distribution:

fB(D) =
1/AB(D)

1/AB(D) + α
=

1
1 + AB(D)α

. (3.9)

In the expressions above, we made the dependence of fB and AB on the bucket
depth D explicit, as one of our goals is to study the relationship between D, fB,
and AB. The closed-form equations (3.8) and (3.9) are instrumental in under-
standing the interplay between the different model parameters. In particular, as
D increases, AB increases and fB decreases (Definition 1), but the time to detect a
real attack increases (Definition 2). As mentioned, the equations above allow us
to find the minimum D such that fB(D) is below a given threshold. In Section 3.3,
we experimentally validate that the values of D obtained through the proposed
model produce the desired probability of false-positives in realistic settings.

3.2.5 Parameterization of the Anomaly Detection Mechanism

Next, we show how to use the proposed model and the obtained expressions of
the probability of false positives to run statistical hypothesis tests to determine
whether the system is under attack.

Given a target false-positive probability, denoted by F, the system administrator’s
goal is to determine the optimal number of buckets and bucket depth to minimize
the lower bound on the number of samples to detect and attack, L, while still
meeting the target false-positive probability:

PROBLEM WITH HARD CONSTRAINTS:
min L = BD (3.10)
subject to fB(D) ≤ F (3.11)

We assume that B is fixed and given. Then, as fB(D) is strictly decreasing with
respect to D, the constraint above will always be active, and the problem trans-
lates into finding the minimum value of D satisfying the constraint. The situation
above is similar in spirit to a Neyman-Pearson hypothesis test, for which similar
considerations apply, i.e., the optimal parameterization of the test is the one that
satisfies a constraint on the false-positive probability.

56

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Alternatively, we can formulate the problem above using the corresponding La-
grangian:

PROBLEM WITH SOFT CONSTRAINTS:
minL(D) = BD + w(fB(D)− F) (3.12)

where w is the Lagrange multiplier. The Lagrangian naturally reformulates the
problem by replacing the hard constraint in (3.11) with a soft constraint. This
soft constraint appears as the penalty term fB(D) − F in the cost Lagrangian.
The Lagrangian is a cost function, motivating Definition 4. As wF is a constant,
minimizing (3.12) is equivalent to minimizing (3.2).

3.2.6 Unified Framework for Sequential Analysis

In this section, we present the general framework for sequential performance
analysis. The framework encompasses the proposed BA as a special case, allow-
ing the comparison of the considered BA against alternative sequential analysis
techniques, such as CUSUM, CUSUM-Sign, and SPRT. Table 3.3 summarizes all
algorithms compared in this section.

We assume that the collected samples correspond to a metric whose value is such
that the lower, the better. Whereas in the remainder of this work we consider sam-
ples from throughput, in this section we assume, for concreteness and without
loss of generality, samples from delay, or inverse throughput. This assumption
aligns with most CUSUM literature, which typically treats the metric of interest
as one where larger values indicate worse outcomes.

For all the sequential analysis algorithms considered, we have:

Sn+1 = max(S(l), Sn + g(Xn)) (3.13)

where Sn is the state of the system after the n-th sample is collected, and Xn is the
n-th sample. S(l) is a lower bound on the system state, also known as the process
absorbing barrier. Under CUSUM, for instance, S(l) = 0 (see Table 3.3a). Function
g(·) intuitively determines “how much of an outlier Xn is.” Whenever Sn reaches a
target value, an alert is triggered.

From the above x, all considered sequential analysis techniques can be regarded
as random walks, differing in 1) the absorbing barrier S(l), 2) how sample Xn
impacts the current state, and 3) the definition of the current state.

Under CUSUM, CUSUM-Sign, and SPRT, the current state is a single scalar value,
Sn ∈ R. Under the bucket algorithm, in contrast, the current state is a discrete
vector (see Table 3.3d), characterizing the current bucket and its depth, Sn ∈N×
N. In the case of a single bucket, we have Sn ∈N.

Concerning the absorbing barrier, CUSUM and CUSUM-Sign use S(l) = 0 (see
Table 3.3c), enforcing Sn ≥ 0. In contrast, SPRT includes a lower absorbing barrier
(see Table 3.3b), allowing Sn ∈ (−∞,+∞).

57

Chapter 3

Table 3.3: Sequential analysis algorithms: Detailed descriptions of four sequential
algorithms used for process monitoring and fault detection.

Attribute Details
Algorithm CUSUM [Grigg et al., 2003; Page, 1954]
Barrier S(l) = 0
Function g(Xn) = Xn − ℓ(Xn; H0), given by (3.14)
Current State Sn ∈ R+

Comments Cumulative sum assumes the system starts at H0 and monitors until an alert
is raised.

(a) CUSUM Algorithm: A cumulative sum process to monitor deviations starting from
H0.

Attribute Details
Algorithm SPRT [Grigg et al., 2003; Wald, 1945]
Barrier Set as input
Function Log-likelihood ratio, given by (3.15)
Current State Sn ∈ R

Comments Sequential probability ratio test, carrying out a hypothesis test H0 vs H1, pos-
sibly raising multiple alerts over time.

(b) SPRT Algorithm: Performing a sequential hypothesis test between H0 and H1.

Attribute Details
Algorithm CUSUM-Sign [Yang and Cheng, 2011]
Barrier S(l) = 0
Function I(Xn − µ > 0)− κ̃, given by (3.16)
Current State Sn ∈ R+

Comments CUSUM adapted to use the Xn− µ sign, incrementing based on whether Xn−
µ > 0.

(c) CUSUM-Sign Algorithm: Leveraging the sign of deviation from µ for incremental
updates.

Attribute Details
Algorithm Bucket [Avritzer et al., 2006]
Barrier (0, 0)
Function (fb(Xn), gd(Xn)), given by (3.20)-(3.22)
Current State Sn = (b, d) ∈N2

Comments Extends CUSUM-Sign to account for a 2-dimensional state, allowing for time-
varying parameter changes.

(d) Bucket Algorithm: Extending CUSUM-Sign to accommodate 2-dimensional state
variations.

CUSUM and SPRT differ in how samples impact the current state, but most for-
mulations typically assume that:

g(Xn) = Xn − ℓ(Xn; H0) (3.14)

and

g(Xn) = log ℓ(Xn; H1)− log ℓ(Xn; H0) = log
ℓ(Xn; H1)

ℓ(Xn; H0)
, (3.15)

Here, ℓ(Xn; H0) and ℓ(Xn; H1) denote the likelihood of Xn given hypothesis H0
and H1, respectively. Intuitively, Sn increases if Xn is more likely under the hy-

58

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

pothesis of an anomaly as opposed to the null hypothesis, i.e., if ℓ(Xn; H1) −
ℓ(Xn; H0) ≥ 0.

CUSUM-Sign modifies CUSUM by using the indicator variable I(Xn − µ > 0) to
decide whether to increase the current state. Under CUSUM-Sign, we have:

g(Xn) = I(Xn − µ > 0)− κ̃ (3.16)

where κ̃ = p0 − κ̂, p0 is a baseline estimate of the probability that Xn − µ > 0,
e.g., due to random noise, and κ̂ is a constant.

CUSUM-Sign resembles the BA because both use a discrete component to decide
whether to increment the current state. However, they differ in several aspects,
including that CUSUM-Sign parameters are homogeneous over time. In contrast,
the BA admits a change in its parameters as a function of the current bucket,
providing additional flexibility in the search for anomalies.

Under the BA, let S(b)
n and S(d)

n be the bucket index and bucket depth at the n-th
iteration of the algorithm. Then, state Sn is given by an ordered pair:

Sn = (S(b)
n , S(d)

n). (3.17)

Correspondingly, the dynamics of Sn is governed by two functions, gb(Xn) and
gd(Xn), which impact the first and second coordinates of the above ordered pair.
In particular:

gd(Xn) = Sign(Xn − µ′) + κ′(Xn). (3.18)

Note that µ′ and κ′(Xn) play, in the BA, the roles of µ and−κ̃ in the CUSUM-Sign
algorithm, respectively. Indeed, µ′ is related to µ as follows:

µ′ = µ + (S(b)
n − 1)σ (3.19)

and

κ′(Xn) =


−(D + 1), if S(d)

n + Sign(Xn − µ′) = D + 1
D + 1, if S(d)

n + Sign(Xn − µ′) = −1
0, otherwise.

(3.20)

In addition:

gb(Xn) =


+1, if S(d)

n + Sign(Xn − µ′) = D + 1
−1, if S(d)

n + Sign(Xn − µ′) = −1
0, otherwise.

(3.21)

The two functions above together comprise g(Xn) for the BA:

g(Xn) = (gb(Xn), gd(Xn)) (3.22)

and
S0 = S(l) = (0, 0). (3.23)

Comparing the CUSUM-Sign dynamics against the BA, we note that both rely on
the sign of Xn minus a constant. However, as observed in (3.16), CUSUM-Sign
produces a real scalar as its state, whereas the BA produces a discrete vector (3.22)

59

Chapter 3

leveraging the sign of Xn− (µ + (b− 1)σ) to determine whether depth should be
incremented or decremented.

Recall that under the BA we refer to AB(D; p1, p2) as the mean time until a false
alert, accounting for B buckets of depth D each. In the CUSUM terminology, AB
is the average run length (ARL). According to [Page, 1954], “it captures the average
number of articles sampled before an action is taken.” Under the hypothesis that
the system is initially not facing anomalies, the larger the value of ARL, the longer
it takes for the system to produce a false alert.

3.3 Experimental Validation

We conducted an experimental campaign based on the TPC Express Benchmark
V [Tra, 2019] (TPCx-V) to demonstrate and validate our methodology, as intro-
duced in Section 3.3.1. We emulated performance-degrading security intrusions
using a fault injection approach (Section 3.3.2), targeting representative phases
of the benchmark workload. The experimental process follows our three-phase
methodology detailed in Sections 3.3.3 to 3.3.4, where we also explain the ratio-
nale behind key design choices and discuss the resulting performance and accu-
racy of our anomaly detection framework.

3.3.1 System Under Test and Experimental Setup

TPCx-V is a publicly available, end-to-end benchmark for data-centric workloads
on virtual servers. The benchmark kit provides the specification, implementation,
and tools to audit and run the benchmark. It models a brokerage firm with many
features commonly present in cloud computing environments, such as multiple
Virtual Machines (VMs) running at different load demand levels, and significant
fluctuations in their load level [Bond et al., 2013].

The architecture of the brokerage firm modeled by the TPCx-V benchmark re-
flects a modern, distributed deployment designed to handle a financial services
institution’s diverse and demanding operations. The architecture includes multi-
ple tiers, with Tier A managing transaction-specific logic and serving as the inter-
face between the driver systems and the underlying databases. In contrast, Tier
B is responsible for database management and query execution (see Figure 3.6).
Each tier runs within an isolated VM and these VMs are grouped into "tiles" to
support modular replication for scalability and load balancing. Such distributed
deployment mirrors real-world brokerage systems by integrating heterogeneous
workloads across multiple databases, such as customer-initiated transactions,
market updates, and administrative tasks. Transactions are processed concur-
rently across virtualized environments, ensuring flexible resource allocation and
high system utilization. By modeling such interactions, the system captures the
complexity of distributed systems, where data is partitioned or replicated across
nodes, and resources must dynamically adapt to changing workload demands
while maintaining strict ACID compliance for transaction integrity. This archi-

60

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

tecture exemplifies modern financial platforms’ distributed and scalable nature,
providing a realistic benchmark for evaluating system performance in similar en-
vironments.

We use the workload and software provided by the TPCx-V to emulate the con-
text of a real-world scenario of brokerage firms that must manage customer ac-
counts, execute customer trade orders, and be responsible for the interactions of
customers with financial markets [Bond et al., 2015]. Figure 3.6 shows the transac-
tion flow. The virtual client emulator (VCE) interacts with the different brokerage
firms (distinct groups), which in turn communicate with the virtual market em-
ulator (VME). TPCx-V uses virtualization technology to co-locate database tiers
and application-management tiers on logically distinct VMs within a single com-
puter system.

Figure 3.6: TPCx-V components and transactions flow (from [Tra, 2019]). In this
work, we treat each group as a distinct subsystem.
The goal of TPCx-V is to measure how a virtualized server runs database work-
loads, using them to measure the performance of virtualized platforms. The min-
imal deployment of the TPCx-V has four groups, each representing different sub-
systems, each with three VMs. A typical run has 10 distinct load phases of 12
minutes each. Figure 3.6 illustrates the architectural distribution of the different
TPCx-V components.

The TPCx-V workload includes 12 types of transactions with distinct characteristics
designed to simulate the stock trade process. They are submitted for processing
at multiple databases (market, customer, and broker) following a specified mix of
transactions for different phases. The primary performance metric for the bench-
mark is the business throughput (tpsV). It represents the number of completed

61

Chapter 3

Trade-Result per second.

The TPCx-V workload provides an adequate testbed environment for our anomaly
detection approach since it captures the scalable nature of complex virtualized en-
vironments by providing different groups of virtual machines with various sizes
and configurations while serving an elastic workload in different phases of the
execution. In addition to the specification, the benchmark kit comes with a set of
software components with their implementation and tools to audit and run the
benchmark. Discussion about experimental performance metrics, design consid-
erations, tuning deployments, and other practical considerations of the TPCx-V
are present in [Bond et al., 2013, 2015].

Our setup is a deployment of the TPCx-V over two physical servers. The first
server, a Dell PowerEdge R710 with 24 cores, 96GB RAM, and 12TB disk, runs
under the management of a Xen hypervisor (version 4.4.1). It has a privileged do-
main (dom0), 17 virtual machines with different configurations, a set dedicated to
the TPCx-V, and another set representing our compromised tenants. The second
server, configured with two cores, 8GB RAM, and 1TB disk, also runs the Xen hy-
pervisor (version 4.4.1). It hosts the VM driver component on a separate machine,
as prescribed by the TPCx-V specification. Table 3.4 details each VM along with
the resource specifications for each group. We refer to the VM for group n as gn,
and each group is defined according to the benchmark recommendations [Tra,
2019]. As a group is a set of three VMs, our malicious user will have access to
the same amount of VMs. We are overcommitting the number of vCPUs (see Ta-
ble 3.4) issuing 45 vCPU, greater than the physically available number of cores, a
common strategy in cloud computing to optimize resource usage [Hayes, 2008],
since not all vCPUs are fully used at the same time once there is an emulation of
a load variation by the TPCx-V.

We also developed a management tool that triggers all tests while monitoring the
physical environment. This tool captures events, reports any problems during
the test, and handles all interactions between the environment, benchmark, and
tests. Each single experiment lasts roughly 4 hours, which corresponds to the
two hours demanded as a minimum by the benchmark specification, and another
two hours to restore the whole environment to the same initial state. Initial state
restoration is achieved by rebooting the servers and recovering the system and
databases (restoring all virtual disks).

The vanilla TPCx-V configuration aims to stress the system and evaluate the max-
imum load the virtualized environment can handle. However, this workload is
not representative of standard operational services. We changed the default con-
figuration to handle this limitation so that the carried load is just a fraction of the
system capacity. Otherwise, any other activity on the system could jeopardize
the validity of our experiments since we are not accounting for transient spikes
on the carried load.

62

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Table 3.4: VMs name, memory, and the number of virtual CPUs. The tpc-driver
is supported on a different physical host

vm GB vCPU vm GB vCPU vm GB vCPU

g1a 1 1 g1b2 4 4 g1b1 8 2
g2a 1 1 g2b1 12 2 g2b2 6 6
g3a 1 1 g3b1 16 2 g3b2 8 8
g4a 1 2 g4b1 20 2 g4b2 10 8

Ten. A 1.5 2 Ten. B 1.5 2 Ten. C 1.5 2

Dom0 1.9 4 Driver 1.8 2

3.3.2 Fault Model

The proposed fault model abstracts from a typical cloud computing attack pat-
tern: the resource exhaustion pattern [Gruschka and Jensen, 2010], where a vir-
tual guest can obtain more resources than allowed. This pattern can be catego-
rized as [Groza and Minea, 2011]: i) excessive use, where there is no abnormal use,
but the consumption of resources is significantly higher for one tenant, and ii)
malicious use, where the malicious excessive use of resources can cause a failure.

Note that our technique can assess many workloads, including the resource ex-
haustion pattern. In particular, our approach can evaluate any attack that im-
pacts overall system performance. Still, we adopted the resource exhaustion pat-
tern since we could fine-tune its intensity and frequency to enrich the evaluation,
which may not be easily possible with other workloads.

TPCx-V is a database-centric benchmark, and thus an attack that explores
database resources can impact performance. However, we are unaware of a doc-
umented exploit focused explicitly on the hypervisor that attempts to exhaust
the resources used by database services. This gap motivated us to use Stress-
NG [Ubuntu, 2019] to simulate resource exhaustion behavior. Stress-NG exercises
computer subsystems and operating system kernel interfaces. Hackers produce
malware [Ji et al., 2019] using the same kernel interfaces as Stress-NG.

We have defined three configurations to emulate the resource exhaustion attack:

• A High-Intensity workload (H): starts eight processes to exercise the system
IO and runs for 300 seconds.

• A Low-Intensity workload (L): perform ten intervals of 15 seconds of IO-
exercise and 15 seconds with no workload. The workload uses two IO stres-
sor processes and runs for 300 seconds.

• Shorter Low-Intensity workload (Ls): the same as the L configuration but
with only three intervals.

We defined the configuration attack-length based on the proportional time of the
TPCx-V run, about 4% and 1%. The configuration length is also smaller than the

63

Chapter 3

benchmark phase (12 minutes, as explained in Section 3.3.1).

Since the TPCx-V has different phases with diverse load demands (see Sec-
tion 3.3.1), we focused the attack on two distinct phases, on the 4th, which is
when the group with more physical resources has a more significant contribu-
tion to the overall load, and the 6th, when the reference metric achieves the
highest rate. Combining those two definitions, we have a total of 6 fault models,
which we will refer to using the phase plus the configuration reference: 4H, 4L,
4Ls, 6H, 6L, and 6Ls.

3.3.3 Instantiation of the Three-Phase Approach

The initial phase is the Exploratory Phase, during which we conducted trans-
action characterization through exploratory runs, utilizing BA and TPCx-V run
data. The analysis showed that system load does not impact all TPCx-V trans-
actions; some maintain consistent throughput even as the system degrades. We
defined our monitoring surface as the throughput information of 9 (of the 12)
transactions from TPCx-V. That data was evaluated distinctly for every subsys-
tem (the 4 TPCx-V groups), resulting in 36 (9x4) BA running in parallel. For each
of the BA instances, we associate 10 pairs of throughput mean and standard de-
viation, 1 for each distinct operation profile (10 TPCx-V phases). Each pair of
parameters corresponds to 12 minutes of continuous operation of the benchmark
(see Section 3.3.1).

In the Profiling Phase, we executed golden runs to generate data for the char-
acterization of the baseline behavior of the system (37 golden runs, comprising
the profiling set, or P set) and for validation (22 golden runs, consisting of the
validation set, or V set). For every transaction from the monitoring surface, we
computed and stored the average throughput for each subsystem in every opera-
tional profile. These values are the baseline metrics. To calibrate our performance
model (Section 3.3.4), we need to account for the following metrics:

1. The probability of a false-positive alert as a function of bucket depth;

2. The probability for each transition in the DTMC (Figure 3.5);

3. The mean time to first alert during an attack.

We applied the BA with different configurations over the V set runs data to com-
pute those probabilities. Section 3.4 presents these results.

For the validation process, we applied the BA for every golden run, accounting
for the number of alerts (false-positives). This step aims to check whether using
the parameters suggested by the model will generate an unacceptable number of
false-positive alerts. First, we executed the assessment with the same runs used
to generate the baseline metrics (B set). Here, we are not validating; we only
produce values to compare later with the validation results. This step can also be
used to check consistency and test for possible computational errors if the results
show an abnormal number of alerts. Then, we repeated the process using the

64

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

validation runs (V set). The results of both sets are not significantly different, and
thus we present only the validation values in Table 3.5.

Table 3.5: False-positive alerts: total count and average (µ) by run in validation

B D # Alerts µ B D # Alerts µ B D # Alerts µ

1 30 27373 1244,23 2 12 4 0,18 2 21 0 0,00
2 6 185 8,41 2 15 0 0,00 3 10 0 0
2 9 12 0,55 2 18 0 0,00

Table 3.5 also shows that using two buckets is more effective, as this has fewer
false-positive alerts. One bucket has too many alerts, and three will likely be in-
effective in increasing the throughput threshold further. Looking at the Table 3.6,
we can see that for distinct transaction types, we have distinct sensitiveness for
the same parameterization, when applying the BA. These distinct sensitivities
suggest applying different values of D for diverse operations.

Table 3.6: False-positive alerts segmented by TPCx-V’s transactions

Transaction ID 0 1 2 4 5 6 7 8 9

D
6 23 43 28 34 12 23 14 2 6
9 0 1 4 6 1 0 0 0 0
12 0 0 2 2 0 0 0 0 0

We obtain similar results when running the BA in both golden run sets. This
similarity suggests that the profile derived from baseline metrics generalizes well
across different runs.

After the previous analyses, we applied the performance model to the experimen-
tal data. Section 3.3.4 contains the process details. The calibrated performance
model suggests that bucket depth D shall be configured in the range D ∈ (12, 15],
because the number of false-positive alerts within this range is acceptable.

In the Operational Phase, as prescribed in Section 3.1.3, we have to define the alert
reporting criteria. We adopted distinct approaches to detect true-positives (TPs) and
false-positives (FPs). A TP is when we detect at least one alert on the attack phase
(we only need one alert in any group for any transaction type). Complementarily,
a false negative (FN) occurs when the system raises no alert during the same phase.
We consider an FP every bucket overflow that occurs in the no-attack phase. In
this case, two bucket overflows in distinct transactions, or even in the same, but
in different groups, will account for two distinct FPs. This approach is justified
because alert systems are required to minimize the number of false positives.

An alert on the post-attack phase can be an FP or a residual effect caused by the
faultload, as discussed in Section 3.4.1. The true-negative (TN) does not need to
be defined, because the goal of this work is to apply the BA algorithm to detect
performance metric deviations during system attacks continuously.

Each test run comprises three phases during the testing campaign process, as
depicted in Figure 3.7. As described earlier, we will count the number of FP,

65

Chapter 3

TP, and FN in those periods. Each alert on the post-attack phase will count as a
residual effect. When executing the workload of the TPCx-V, we will run just one
attack, as defined in Section 3.3.2. As shown in Table 3.7, we performed 21 runs
for each fault injection type, while applying the BA throughout the monitoring
surface.

No-attack Attack No-attackPhases

Alerts
False

Positives
True Positives

False Negatives
Residual
Effects

TPCx-V Workload Faltload

time

False
Positives

Post-attack

Figure 3.7: Distinct phases and their alert meanings during a test run.

After the test executions, we used the data collected to apply the BA with dif-
ferent parameterizations to study the method’s effectiveness. Based on the data
presented in the previous analysis and Table 3.8, an initial observation is that the
optimal number of buckets is two. In Section 3.4, we discuss the BA algorithm’s
effectiveness for the specific configurations analyzed.

3.3.4 Model Assisted Calibration of Anomaly Detection

This section presents the application of the model calibration using the experi-
mental data. First, we parameterize the proposed model from the experimen-
tal data. To exemplify the general process, we focus on the TRADE_LOOKUP
transaction. Recall that p1 = P(x̂ < µ|b = 1) and p2 = P(x̂ < µ − σ|b = 2).
Then, we identify that for TRADE_LOOKUP we have p1 and p2 equal to 0.466
and 0.714, respectively. Interestingly, p2 > p1; that is, given that the second
bucket has been reached, the probability that the sampled throughput falls be-
low µ− σ exceeds the probability of it falling below µ while in the first bucket.
Once the second bucket is reached, the token addition rate increases, highlighting
the need for mechanisms to prevent false alerts. Such observation further moti-
vates a decrease in the target throughput value as a function of b, as discussed in
Section 3.2.1.

We assess the expected number of samples until a false alert, obtained from (3.3),
with B = 2, p1 = 0.466, p2 = 0.714, and letting D vary between 1 and 30. For
D = 15, we observed that the number of samples until a false alert surpasses
107. Figure 3.8 accounts for an attack model, wherein the mean time between
attacks is 1/α = 5× 105 samples, i.e., the attack rate is α = 2× 10−6 attacks per
sample. As the bucket depth increases, the probability of a false alert decreases.
For D ≥ 12, the likelihood of a false alert is close to 0.

As discussed above, there is a tradeoff between the probability of false alerts and

Table 3.7: Runs in Experimental Campaign

Test 4H 4L 4Ls 6H 6L 6Ls Golden
Number of runs 21 21 21 21 21 21 59

66

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Table 3.8: Fraction of attack alerts over all alerts varying B and D. We are ac-
counting for all alerts, but not following the detection criterion.

B D % B D % B D % B D %

1 30 7,71% 2 9 97,40% 2 15 98,01% 2 21 97,62%
2 6 92,22% 2 12 97,74% 2 18 98,01% 3 10 0,00%

0 5 10 15 20 25 30
D (Bucket Depth)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 F
al

se
 A

la
rm Exponential Model

Deterministic Model

Figure 3.8: Probability of false alert from model tuned based on experiments.

the time to detect attacks once they occur. To cope with such a tradeoff, we con-
sider both approaches introduced in Section 3.2.5, namely the hard and soft con-
straint problems. Under the hard constraint formulation, we need to set a target
probability of false alert and find the minimum value of D that meets this target.
For instance, if we set F = 0.03 in (3.11), the minimum value of D satisfying the
constraint is D = 13 and D = 15 under the deterministic and exponential attack
models, respectively.

We also assess how the cost C(p, w, D, B, α) introduced in Definition 4 varies as
a function of D, letting B = 2, p1 = 0.466, p2 = 0.714 and α = 2× 10−6. Let-
ting w = 20.646 which corresponds to the Lagrange multiplier of the constrained
problem under the deterministic model (see also (3.12)), the optimal bucket depth
equals D = 13, which is in agreement with the result presented in the previous
paragraph.1 Alternatively, under the exponential model we can set w = 75.239 to
obtain an optimal bucket depth of D = 15, again in agreement with the previous
paragraph.

Note that the exponential model reaches its minimum cost at D = 18, slightly
higher than D = 15 found earlier. This difference arises because the Lagrange
multiplier for the exponential model is w = 57. Using such a smaller weight
favors reducing the optimal bucket depth to D = 15, again in agreement with the
results discussed in the previous paragraph.

Take away message and engineering implications: The analysis presented in this sec-
tion is instrumental in performing what-if counterfactual analysis and executing
utility-driven model parameterization. If the system administrator implements

1Note that 1) the Lagrangian is minimized at D = 12.39 and we take its ceil as the optimal
bucket depth and 2) the Lagrangian also admits other local minima. Suppose we let w = 909, in
contrast. In that case, the optimization problem (3.12) admits a unique solution, at D ≈ 13.3, and
in this case we need to take its floor to satisfy fB(D) ≤ F.

67

Chapter 3

global countermeasures against attacks, for instance, the rate of attacks is ex-
pected to decrease. In that case, the bucket depth should be adjusted accordingly,
for example, by applying the utility-driven approach proposed in this section.

3.3.5 CUSUM comparison

We opted to evaluate the CUSUM [Grigg et al., 2003; Page, 1954] method to
contrast our approach with traditional sequential analysis algorithms. To that
aim, the first step transforms our throughput measurements into a metric for
which large deviations above the mean correspond to anomalies (recall from
Section 3.2.6 that CUSUM detects large deviations above the mean). Given a
throughput x, we experimented with different transformations to produce our
target metric x′, including e−x, 1/x, 1/ log(x + 1) and 1/

√
x. All transformations

produced similar results. We report results for x′ = e−x in what follows.

We consider a vanilla parameterization of the CUSUM method, to allow for a
fair comparison against BA. In particular, we adapted the ‘detecta’ Python pack-
age [Duarte, 2021] to evaluate the TPCx-V architecture using 36 sequential tests
(4 groups of 9 transactions) and its baseline metrics (see Section 3.1.2). We let
S(l) = 0, and allow ‘detecta’ to set the additional parameters.

We observed that CUSUM raised many false positives, even for the golden runs2,
which limited the ability to compare CUSUM against BA. Figure 3.9 shows an
example of CUSUM evaluated over the TPCx-V data. The top chart displays the
transformed throughput samples and marks triggered alerts in red (a sequence
of red dots indicates a contiguous interval during which alerts were raised). The
bottom chart shows the time series of the cumulative sum of changes (both pos-
itive and negative). Each TPCx-V phase also appears with its corresponding
threshold, scaled proportionally to its baseline profile. Specifically, the horizontal
lines correspond to T′σ, where the T′ is a threshold factor (an input parameter,
set at its default value), and σ (computed from the baseline profile).

In Figure 3.9 we observe that the attack did not trigger an alert (similar behav-
ior was observed across our dataset). Then, a miss-detection leads to many false
alerts, indicating that the direct application of the CUSUM algorithm is not suit-
able for detecting anomalies in a complex environment like TPCx-V. Next, we
further detail some of the reasons for the low accuracy:

1. Input transformation: We transformed the throughput data into a target met-
ric and designed it so that large deviations above the mean are undesirable.
Although we tried four transformations leading to similar conclusions, ad-
ditional experiments are necessary to determine if alternative transforma-
tions suit our needs.

2. Threshold and absorbing barrier: the parameterization of CUSUM threshold

2 Since we did not proceed with the comparison, we did not report the false positive (FP) count
for the Golden Runs. However, the frequency and pattern are similar to those observed in the 7th

phase shown in Figure 3.9.

68

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Figure 3.9: An instance of the CUSUM evaluation of the TPCx-V in a run with an
attack in the fourth phase.

and the absorbing barrier is also subject to transformations and may require
additional refinements;

3. Abrupt changes in input: The frequent and abrupt changes of throughput un-
der TPCx-V negatively impact anomaly detection. In particular, note that
the plot in Figure 3.9(a) corresponds to a line, and we see a whole area filled
in blue because of the erratic behavior of the throughput under short time
scales. We envision that an additional mechanism, such as a moving aver-
age, can attenuate such abrupt changes.

For these reasons, applying the CUSUM methodology to the considered systems
requires further research, which we identify as a direction for future work. In par-
ticular, we could not find a unified parameterization for the CUSUM algorithm
that works under all considered workloads and phases. In contrast, for the BA
we found a combination of bucket width and depth that reached our goals, as
further detailed next.

3.4 Results and Discussion

This section first analyzes how the approach performs under different fault mod-
els. Next, we evaluate the residual effects that may arise after attacks and how
to identify them. Following this, we assess the effectiveness of the anomaly de-
tection approach by using two case studies. We discuss the results using three

69

Chapter 3

widely adopted classification metrics [Zaki and Wagner Meira, 2014]: precision,
recall, and F-measure. These metrics are defined as functions of true positives
(TP), false positives (FP), and false negatives (FN), as follows:

Pr =
TP

TP + FP
, Re =

TP
TP + FN

, F1 =
2× Pr× Re

Pr + Re
(3.24)

Precision (Pr) measures the impact of FP on the method’s positive prediction.
Recall (Re) reflects the algorithm’s sensitivity, capturing the fraction of corrected
predictions. F-measure (F1) is the harmonic mean of precision and recall, balanc-
ing them in a single metric.

The following section analyzes the alerts that occur shortly after the attack ends.
Section 3.4.2 presents the Alert Delay Evaluation. We then introduce two case
studies in Sections 3.4.3 and 3.4.4, and conclude with a statistical validation
through variability tests in Section 3.4.5.

3.4.1 Residual Effects

During our experimentation, we observed that the number of alerts immediately
after the attack phase was significantly higher than in other non-attack periods.
We analyzed this effect by accounting for the number of alerts and the distance,
in seconds, from the end of the attack injection phase to understand why alerts
appear in the post-attack phase. Figure 3.10 shows that most bucket overflows
happen a few seconds after the attack, suggesting that those alerts can be residual
effects, not false positives.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

15

30

45

Al

er
ts

300 600 900 1200 1500 1800 2100

B=
2,

 D
=1

2

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

15

30

45

Al

er
ts

300 600 900 1200 1500 1800 2100

B=
2,

 D
=1

5

Seconds since attack's end.

Figure 3.10: Post-attack alerts distribution for bucket configuration with B=2 and
D=[12,15]. We cropped the x-axis scale to simplify the presentation.

At this point, the key question is What is a reasonable threshold that would discrim-
inate between false-positives and residual effects of the attack? Regression techniques,
outlier detection techniques, among others, can be used to estimate that thresh-
old. This work uses the mean time to the first alert during the attack phase as the

70

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Table 3.9: Mean time to first alert during the attack injection (in seconds)

Transaction d=6 d=9 d=12 d=15

TRADE_LOOKUP 31,03 50,06 69,18 61,63
MARKET_WATCH 36,08 54,11 60,38 59,51

discrimination threshold. In Table 3.9, we report the mean time to the first attack
for two transactions for different bucket depths.

Let us define δ as the number of seconds to the first BA alert, for a given config-
uration (parameters and transaction). In addition, given that an attack has just
ended, we can assume that any alert that occurs in time t < δ can be associated
with residual effects (emptying queues, recovering from error states, etc.) of the
previous attack. Figure 3.11 shows additional evidence to support this assump-
tion.

6 9 12 15 18
Bucket Depth

0

60

120

180

Re
sid

ua
l E

ffe
ct

s 4H
4L

4Ls
6H

6L
6Ls

Figure 3.11: Distribution of the residual effects by failure mode and bucket depth.

The failure mode with higher (H) intensity triggers residual alerts. In addition,
the number of alerts triggered for phase six, the blue dashed line, is greater than
the number of alerts triggered in the fourth phase. Finally, when D increases,
the number of alerts decreases, as expected, because if those alerts are related to
residual effects, the larger the value of D, the higher the tolerance for transient
faults.

3.4.2 Alert Delay Evaluation

We now discuss how fast the approach responds to the attacks evaluated in this
study. The Figure 3.12 shows the frequency of alerts and the cumulative distri-
bution function (CDF) from seconds elapsed since the start of the attack and the
first alert given by the BA. We must remember that our dataset has the resolution
of seconds; thus, the worst-case time to detect an alert in our experiments is BD
seconds (see Definition 2 in Section 3.2.2) when all buckets are empty at the start
of the attack. As we can see, more than 50% of the anomalies were detected in
less than half a minute, and this percentage goes roughly to 75% if we increase
to a minute. Considering that: (1) we are using a sample with a resolution in
seconds; (2) we are assessing a complex system; and (3) and the algorithm is de-
signed to accommodate transient faults (at least BD samples), the detection time

71

Chapter 3

can be considered fast for such requirements and restrictions.

15 30 60 120 180 240 298
Time to alert (s)

0
75

160

274
Fr

eq
ue

nc
y

0.00
0.25
0.50
0.75
1.00

CD
F

Figure 3.12: The overall distribution of the time to first alert in the presence of an
attack. All fault models and configurations together.

We also evaluate the alert delay when the system is under attack and how it is im-
pacted by: 1) parameterization of the detection algorithm and 2) the fault model.
When the system is under attack, a lower bound on the number of samples until
a true positive is given by L (Definition 2 in Section 3.2.2). Assuming all buckets
are initially empty, we have L = BD. Additionally, since the resolution of our
dataset is in seconds, there is a direct relationship between time to detection and
the number of evaluated samples.

In what follows, we perform a breakdown evaluation of all true positive alerts
to understand how the algorithm behaves in the presence of the attack, account-
ing for the detection’s responsiveness. For this, we study the data related to the
time elapsed since the start of the attack and the first alert given by the bucket
algorithm.

Parameterization

Figure 3.13(a) shows the delay distribution for depth D = 12 and Figure 3.13(b)
for D = 15. The two figures show data from all attack runs aggregated with
all fault models, differing only by the bucket depth. Figures 3.13(a) and 3.13(b)
are quite similar. Nonetheless, for D = 12, we have more alerts (1007) than for
D = 15 (825), noting that in this section, we are accounting only for the first
true positive alert. Additionally, recall that in our methodology (Section 3.1.3),
an alarm is not generated for all alerts. Also, different transactions impact the
same attack differently, which can sometimes lead to a False Negative. In the
best-case scenario (where every transaction is equally impacted across all sub-
systems) we would observe 4536 alerts in Figure 3.13(a)/(b), corresponding to 2
attack phases × 3 fault models (Section 3.3.2) × 21 runs × 4 groups × 9 transactions
(Section 3.3.3).

The question is whether, in such an environment, a smaller bucket can favor
transactions that take longer to trigger its first alert. If so, the proportion of alerts
issued as time passes would increase compared with those from the configura-
tion of D = 15. To answer this question, we plot in Figure 3.13(c) the fraction
of alerts issued after the attack as a function of time, for D = 12 and D = 15.
Note that there is no significant difference between the decay of the fraction of
alerts for D = 12 and D = 15. Therefore, we conclude that the excess alerts is-
sued when D = 12 followed roughly the same distribution as those issued when

72

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

15 30 60 120 180 240 295
Time to alert (s)

0

60

120

181
Fr

eq
ue

nc
y

a) D = 12, Alerts Count - 1007

17 30 60 120 180 240 298
Time to alert (s)

0
40

90

139

Fr
eq

ue
nc

y

b) D = 15, Alerts Count - 825

0 30 60 90 120 150 180 210 240 270
Elapsed Time

10 2

10 1

%
 o

f a
le

rts

c) Fraction of Alerts by Time-Interval - (Grouped in 30s)
D=12
D=15

0.00
0.25
0.50
0.75
1.00

CD
F

0.00
0.25
0.50
0.75
1.00

CD
F

Figure 3.13: Time to detect attack, for D = 12 and D = 15.

D = 15. In particular, this rules out the hypothesis that a smaller bucket can
favour transactions that might take longer to issue an alert.

Impact of Fault Models

While evaluating the impact of the different fault models, we focus on the positive
correlation between the intensity of the attack (and its frequency) and the num-
ber of alerts issued by the anomaly detection system. Recall from Section 3.3.2
that our fault model stresses the system with a High intensity load (H) (for 300
seconds), with a Low intensity load (L) (10 periods of 15 seconds of stress, halt-
ing for 15 seconds) and Low intensity short load (Ls) (3 periods of 15 seconds of
stress, halting for 15 seconds).

For the H fault mode (Figure 3.14(a)), the majority (75%) of the alerts were is-
sued during the first minute after the attack occurred. We see a similar detection
time for the L fault mode in every attack performed in the complete interval (300
seconds). The CDF of the number of alerts for the L fault model approximates
a linear function of time, indicating that the number of alerts increases linearly
over time. Finally, the Ls fault model (Figure 3.14(c)) comprises an observation
interval of 90 seconds, and a significant number of alerts were raised in the last
burst of attack. The last burst, in turn, shows the same behavior as the first 90
seconds of the L fault model.

73

Chapter 3

15 30 60 120 180 240 298
Time to alert (s)

0
75

150

274
Fr

eq
ue

nc
y

a) Fault Mode H, Alerts Count - 1485

17 30 60 120 180 240 295
Time to alert (s)

0

10

20

31

Fr
eq

ue
nc

y

b) Fault Mode L, Alerts Count - 271

18 30 60 87
Time to alert (s)

0

4

8
11

Fr
eq

ue
nc

y

c) Fault Mode Ls, Alerts Count - 76

0.00
0.25
0.50
0.75
1.00

CD
F

0.00
0.25
0.50
0.75
1.00

CD
F

0.00
0.25
0.50
0.75
1.00

CD
F

Figure 3.14: Time to detect attack by fault mode. Total of Alerts = 1485

In summary, the results presented here suggest that the number of alerts issued
over time 1) follows attack intensity, and 2) tracks the attack over time. When
comparing D = 12 and D = 15, the former produces more alerts than the lat-
ter, but still under trends 1) and 2). When comparing the different fault models,
across all fault models, the number of alerts grows during the busy period of the
attack. Still, it tends to stabilize after this period ends.

3.4.3 Case Study 1

In our first case study, we assess the detection effectiveness of the BA over our
fault models and how the parameterization affects the method’s performance. In
this case study, we use the same parameterization for all operations. The optimal
D value, according to our calibrated model, resides between 12 and 15. Table 3.10
shows the metrics obtained from our tests, segmented by different failure modes,
and for ALL failure modes mixed.

The first observation is the method’s low number of alerts outside an attack. Since
we count every alert as an FP, the possible numbers for this category could be
much higher since we are accounting for 4× 9 buckets simultaneously. We can
observe that BA usefulness varies with attack intensity and algorithm configu-
ration. Specifically, the algorithm f-metric was assessed in the positive range for
most attacks and configurations evaluated, with an f-measure greater than 0.78.
For the 6H fault model and D = 15, the f-measure was 1. We have found that
static values of D are not so useful for short attacks with low intensity. For ex-

74

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Table 3.10: Result of Case Study 1 showing the Residual Effects counts (RE),
Precision, Recall and F-measure (F1) metrics.
(Maximal value for TP in ALL is 126, others classes is 21)

TP FN FP RE Pr Re F1
B

 =
 2

 &
 D

 =
 1

2 All 108 18 12 135 0.90 0.86 0.88
4H 20 1 0 38 1.00 0.95 0.98
4L 21 0 3 0 0.88 1.00 0.93
4Ls 9 12 1 0 0.90 0.43 0.58
6H 21 0 2 97 0.91 1.00 0.95
6L 21 0 4 0 0.84 1.00 0.91
6Ls 16 5 2 0 0.89 0.76 0.82

B
 =

 2
 &

 D
 =

 1
5 All 82 44 2 76 0.98 0.65 0.78

4H 20 1 0 23 1.00 0.95 0.98
4L 16 5 0 0 1.00 0.76 0.86
4Ls 1 20 1 0 0.50 0.05 0.09
6H 21 0 0 53 1.00 1.00 1.00
6L 17 4 1 0 0.94 0.81 0.87
6Ls 7 14 0 0 1.00 0.33 0.50

ample, for the 4Ls fault-model and D = 15, we have found an f-measure of 0.09,
because larger values of D cannot detect shorter bursts.

Figure 3.15 illustrates these results by showing the impact of the bucket depth on
the target metrics (Equation 3.24). A general observation from the Precision and
Recall charts in Figure 3.15 is that these metrics relate differently to the bucket
depth. Precision increases with D because false-positives (FPs) decrease as D in-
creases, due to a higher tolerance to performance variability in normal conditions.
On the other hand, recall decreases with D, because false-negatives (FNs) increase
as D increases, as it takes longer to detect attacks in this case. Therefore, the
F-measure is an excellent way to balance the method’s efficiency. From the ’All
curve’, we can observe that D = 12 provides better results than other values of D
for the same curve. However, this is not the case for every system or attack fault
model.

3.4.4 Case Study 2

Table 3.6 shows that the transactions used in the benchmark have different con-
figurations. Therefore, we expect that different parameterizations for each op-
eration could produce better performance results. To validate this intuition, we
created a mix (Mix 6/9/12/15) for parameterization using each transaction’s first
D value, based on the data in Table 3.6. The results in Table 3.11 show that the
increased number of FP greatly penalizes the overall performance of the config-
uration because transactions with lower bucket depth cause a higher number of
FP.

Using the analytical model, Table 3.11 also shows the results of the next tuning
step. We avoided the values of D below 12 by setting the values of 6 and 9 to 12.

75

Chapter 3

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

6 9 12 15 18
Bucket Depth

0.0
0.2
0.4
0.6
0.8
1.0

F-
M

ea
su

re

All 4H 4L 4Ls 6H 6L 6Ls

Figure 3.15: Campaign results for all fault models using two buckets. The data
are shown with the pre- and pos- phases split into two sets.

We can conclude that there is an opportunity for improved performance using
adaptive tuning methods, especially for the L cases. Therefore, dynamic tuning
methods [Avritzer et al., 2006] could be used to balance the algorithm parame-
ters for performance improvement. In addition, this observation reinforces the
importance of applying the methodology introduced in this work.

3.4.5 Variability Tests

We performed a statistical validation to assess the comparison between different
configuration scenarios and validate our experiments. For each parameteriza-
tion, we performed the following split to validate our results. First, we selected
30 random combinations of 15 from the 21 testing runs for each fault model. Next,
we obtain the average of the performance metrics. We sampled those values 100
times and performed a t-test study to evaluate the results using a confidence in-
terval of 95%. The experiments showed a low variability in its performance, with
a margin of error below 1%. The exception is the Ls fault model, which presents
a 2% variability average.

76

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

Table 3.11: Result of Case Study 2, showing the Residual Effects counts (RE),
Precision, Recall, and F-measure (F1) metrics
(Maximal value for TP in ALL is 126, others classes are 21)

TP FN FP RE Pr Re F1
M

ix
 6

/9
/1

2/
15

All 111 15 33 115 0.77 0.88 0.82
4H 20 1 3 34 0.87 0.95 0.91
4L 21 0 8 0 0.72 1.00 0.84
4Ls 9 12 6 0 0.60 0.43 0.50
6H 21 0 3 81 0.88 1.00 0.93
6L 21 0 5 0 0.81 1.00 0.89
6Ls 19 2 8 0 0.70 0.90 0.79

M
ix

 1
2/

15

All 106 20 9 114 0.92 0.84 0.88
4H 20 1 0 34 1.00 0.95 0.98
4L 21 0 2 0 0.91 1.00 0.95
4Ls 8 13 1 0 0.89 0.38 0.53
6H 21 0 1 80 0.95 1.00 0.98
6L 21 0 3 0 0.88 1.00 0.93
6Ls 15 6 2 0 0.88 0.71 0.79

3.5 Threats to Validity

Next, we discuss some of the assumptions considered in this work and their im-
plications.

Applicability domain: Our technique mainly applies to anomalies induced by
the performance deviation class of attacks. The approach can generalize to any re-
source degradation that impacts the mean performance, not necessarily implying
exhaustion. The reasoning is that our approach assesses how a system behaves in
the presence of anomaly load variations caused by different kinds of faults, even
how it would handle attacks that take advantage of (potentially unknown) vul-
nerabilities that impact the performance. Additionally, this approach targets the
evaluation of complex systems with longer workloads. Applying it to isolated,
short-lived jobs may yield limited results and prove ineffective.

Practical relevance: Our approach requires a stationary operational load, which
may be challenging to maintain in an operational system over extended peri-
ods. However, we observed that despite the TPCx-V workload being generally
non-stationary, the load produced by different transactions, the corresponding
workload, remains roughly stable over the periods of interest. Therefore, our
numerical investigation indicates that anomalies in the conditional workload are
amenable to being detected using the bucket algorithm. In [De Oca et al., 2010],
the authors demonstrate how to extend CUSUM to account for non-stationary
workloads. Similarly, we leave the extension of the bucket algorithm (drawing
inspiration from [De Oca et al., 2010] to handle non-stationary baselines) as a
subject for future work.

Short-lived malicious jobs: As we showed with our results, the intensity and
duration of the malicious activities can limit the applicability of the proposed

77

Chapter 3

technique. For shorter bursts of attack, if the effect of the malicious activity does
not interfere with the system’s performance signature, the approach’s effective-
ness is limited and may not be recommended.

Fault model representativeness: The injected faults stress the underlying OS,
while real-world attacks may impact multiple layers of the system stack. Nonethe-
less, as far as the subsumed OS states resulting from those attacks correspond to
states generated by our fault injection, the considered failures represent those that
occur in systems under operation [Arlat et al., 2002].

Target environment and workload: As in any practical exercise, we had to trade
simplicity and representativeness. To that aim, we considered a database work-
load, namely the TPCx-V benchmark. We envision a straightforward extension
of our experiments to other workloads and leave this as a subject for future work.

Assessment at scale: We consider system-wide global detection of anomalies. Al-
ternatively, one can consider segmented anomaly detection for subsystems inside
the considered ecosystem. The nuts and bolts of combining the results of multi-
ple anomaly detection instances per subsystem are out of the scope of this work.
However, the proposed methodology includes provisions for such an assessment.

Profile obsolescence: If user profiles are unstable (operational profile changes
frequently), the number of false alerts can increase significantly, making the de-
tection system useless until the next iteration. One possible approach is to use
windows of time segmentation and apply and tune the bucket algorithm for
every time segment. To determine the optimal window size, one may rely on
techniques for learning in non-stationary environments [Sayed-Mouchaweh and
Lughofer, 2012].

Covert degradation: Single metrics may not suffice to detect anomalies. For in-
stance, a detector using response time as its metric may miss-detect attacks that
impair system availability if the few transactions that succeed in completing have
their response time within the expected range. A similar effect occurs when mea-
suring throughput in specific elastic systems. This can be mitigated by using
multiple complementary metrics for anomaly detection.

3.6 Summary

This chapter presented a methodology for detecting anomalies in complex multi-
tenant systems deployed in virtualized environments. The proposed approach
utilizes performance signatures to identify deviations from expected behavior.
By leveraging the bucket algorithm, we established a lightweight and effective
anomaly detection mechanism that operates efficiently within a shared virtual-
ized infrastructure.

The methodology was validated through experimental testing using the TPCx-V
benchmark, which emulates a real-world cloud workload. The experiments fo-
cused on identifying resource exhaustion anomalies, providing insight into how
these affect system performance and stability. The performance model allowed

78

Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach

for fine-tuning the sensitivity of the detection mechanism, balancing false posi-
tives against detection speed.

The key conclusion from this work is that anomaly detection using business
transaction throughput is a feasible and effective method for enhancing the se-
curity of virtualized environments. The bucket algorithm provided a practical
solution for detecting performance issues with a low rate of false alerts. It is a
viable choice for cloud providers looking to safeguard their virtual infrastructure
without introducing significant overhead.

This chapter has examined the challenges of anomaly detection in multi-tenant
virtualized environments, highlighting performance deviations as indicators of
potential attacks. To deepen this investigation, it is essential to understand the
underlying robustness and security properties of the virtualization layer itself.
The following chapter focuses on the robustness and security of the Xen Hy-
pervisor, combining mutation-based testing of the hypercall interface with a sys-
tematic vulnerability analysis. It outlines the experimental framework for assess-
ing hypercall behavior under fault injection and presents a structured analysis of
hypervisor vulnerabilities using historical data and empirical models. Together,
these approaches provide complementary perspectives on system reliability, ex-
posing limitations of existing failure models and static vulnerability assessments,
and motivating the need for context-aware, system-level security evaluation.

79

Chapter 4

Understanding Exploitable
Hypervisor Vulnerabilities

Securing virtualized systems requires a deep understanding of hypervisor attack
surfaces and the proactive use of evaluation techniques. Although methodologies
such as penetration testing [Miller et al., 1990], fuzz testing [Miller et al., 2022],
fault injection [Arlat et al., 1993], and vulnerability analysis are well established in
security and dependability, their systematic application to virtualization remains
underexplored. This chapter addresses this gap by adapting techniques proven
effective in other domains [Alhazmi et al., 2007; Koopman et al., 1997; Massacci
et al., 2011; Ozment and Schechter, 2006] to assess the exploitability of hypervisor
vulnerabilities.

We examine the feasibility of applying robustness testing in realistic virtual-
ized environments, derive trustworthiness indicators from historical vulnerabil-
ity data, and characterize vulnerabilities based on their potential to result in se-
curity breaches. These efforts aim to deepen the understanding of hypervisor
resilience to malicious or malformed interactions and support the design of more
secure virtualized infrastructures.

In practice, the chapter makes the following key contributions:

• An empirical evaluation of hypercall robustness testing on the Xen hy-
pervisor, based on over 28,000 test cases generated through systematic hy-
percall input mutation.

• A discussion of the limitations of traditional robustness testing and the
challenges for effective evaluation in virtualized environments, empha-
sizing the need for system-aware mutation strategies and failure detection
mechanisms tailored to hypercall-specific behaviors.

• A systematic characterization of hypervisor vulnerabilities through life-
cycle analysis, vulnerability density modeling, and saturation-phase evalu-
ation (MAM) for Xen, providing empirical evidence of how security efforts
translate into trustworthiness indicators.

81

Chapter 4

• A causal taxonomy of hypervisor security violations for KVM and QEMU,
mapping root causes (e.g., improper memory management) to exploitable
functionalities (e.g., arbitrary code execution) and systemic consequences
(e.g., denial of service), thereby addressing critical gaps in actionable vul-
nerability assessment.

The following sections organize the chapter. Section 4.1 presents the robustness
testing campaign targeting the Xen hypercall interface, detailing the methodol-
ogy, experimental setup, results, and lessons learned. Section 4.2 analyzes Xen’s
historical vulnerability data to develop trustworthiness evidence. Section 4.3
characterizes vulnerabilities in KVM and QEMU based on causal relationships
between faults and security violations. Section 4.4 discusses threats to the va-
lidity of the study, and finally, Section 4.5 summarizes the findings and outlines
future research directions.

4.1 Robustness Testing in Virtualized Environments

A potential method for investigating hypervisor security is analyzing its inter-
action with potentially malicious inputs from compromised VMs. Among other
techniques, robustness testing [Koopman and DeVale, 1999b] stands out: unlike
fuzzing, penetration testing, or attack injection, which tend to focus on known
vulnerabilities, robustness testing evaluates how a system behaves under invalid
or unexpected inputs. The IEEE defines robustness as “the degree to which a system
or component can function correctly in the presence of invalid inputs” [Radatz et al.,
1990].

Researchers have applied robustness testing to various systems and compo-
nents [Albinet et al., 2004; Koopman et al., 1997; Vieira et al., 2007], but its use in
virtualization contexts remains underexplored [Kao, 2020; Patil and Modi, 2019;
Sgandurra and Lupu, 2016]. Such limited use is concerning because hypercall in-
terfaces represent a critical attack surface. Even a legitimate user with administra-
tive access to their VM can exploit this interface to attack the hypervisor [Zhang
et al., 2011]. In cloud environments, where multiple tenants rely on the hypervi-
sor’s reliability, this risk is particularly significant [Cogranne et al., 2017].

This section investigates the applicability of robustness testing for assessing the
Xen hypercall interface. We aim to study how malformed hypercalls impact sys-
tem stability and security in a realistic cloud-like environment. We use auto-
mated input mutation to test hypercalls and systematically evaluate their effects
on system components. The goal is to: (i) evaluate the practicality of automating
robustness testing in virtualized environments; (ii) identify requirements for im-
plementing adequate failure detectors; and (iii) assess the suitability of traditional
failure modes (e.g., CRASH scale).

In short, our approach is based on a compromised VM to inject malformed hy-
percalls into the Xen hypervisor, generating over 28,000 test cases under realis-
tic workloads using the TPCx-V benchmark [Bond et al., 2015], to observe and

82

Understanding Exploitable Hypervisor Vulnerabilities

categorize the resulting failures, such as silent failures, guest crashes, and mis-
behaving hypercalls. We adapted the hInjector tool [Milenkoski et al., 2015a]
for hypercall fault to facilitate testing injection, which enabled us to perform con-
trolled experiments and measure the impact of malformed inputs.

The rest of this section is structured as follows: Section 4.1.1 introduces the ro-
bustness testing approach applied to the Xen hypercall interface, outlining the
methodology used to define mutation rules, generate test cases, and execute the
experimental campaign. Section 4.1.2 details the experimental environment, in-
cluding the virtualization infrastructure and the deployment of the supporting
cloud-like workload, and Section 4.1.3 discusses the results of the testing cam-
paign and identifies key failure modes. Finally, Section 4.1.4 discusses the lessons
learned and the limitations of existing robustness techniques when applied to
hypervisors.

4.1.1 Robustness Testing Approach

We gain insights into potential security weaknesses by evaluating how hyper-
visors respond to malformed or unexpected hypercalls. The motivation is to
analyze the security and stability implications of malformed hypercalls in real-
istic, multi-tenant cloud environments such as those represented by TPCx-V [Tra,
2019]. To achieve the intended goal, we defined an experimental approach to
explore these aspects, which includes the steps depicted in Figure 4.1.

Campaign
Definition

3

Hypercall
Interface Study

and Analysis

1

Mutation Rules
Definition

2

Use Cases and
Test Cases
Generation

5

Conclusions

8

6

Analysis and
Evaluation

Test Case
Execution

7

Adapting the
Injection Tool

4

Figure 4.1: Experimental Approach for the Robustness Testing Evaluation

The first step was to acquire a basic understanding of the hypercall interface,
including identifying the available hypercalls, their supported operations, and
their expected outcomes. Understanding the characteristics of these hypercalls
enables the definition of realistic use cases (i.e., valid interactions with the hyper-
call interface), which in turn serve as a basis for the design of test cases (i.e., mu-
tated or invalid inputs used to assess robustness). This step proved challenging
due to the extensive hypercall API and limited documentation. To understand
the interface, the analysis examined the source code and evaluated the domain of
each hypercall parameter. Each parameter’s domain includes data type, expected
value range, and semantic or contextual constraints.

The second step involved defining mutation rules to simulate realistic faults.
These rules must align with the parameter domain. In practice, we designed

83

Chapter 4

rules that generate values to challenge the system’s robustness. For example,
if a parameter is expected to be a pointer, mutations include assigning a NULL
pointer or using valid but inappropriate pointers (e.g., pointing to uninitialized
memory). If the parameter is an integer, we apply boundary-value and overflow-
oriented mutations. Furthermore, for a parameter with an expected domain of
[−100, 100], possible mutations include −101 (below domain), 101 (above do-
main), INT_MAX and INT_MAX+ 1 (overflow), −1 and 0 (control and edge values).
This step follows best practices established in prior work (e.g., [Koopman and
DeVale, 2000], [Vieira et al., 2007]). Each mutation rule is applied in isolation to a
single parameter, while the remaining parameters maintain valid use-case values.

As the mutation rules definition evolved, we often needed to revisit and refine
our understanding of the hypercall interface (arrows between steps 1 and 2 in
Figure 4.1). This iterative process ensured that the mutation space aligns with
the operational semantics of each hypercall. Table 4.1 details the complete set of
mutation rules applied to each parameter type.

Table 4.1: Mutation Rules applied on the API parameters.

DataType Rules

Pointer*
Invalid pointer to an allowed memory zone
Invalid pointer to a forbidden zone of memory
NULL pointer

Struct

Fill with dynamically allocated struct
Replace with another struct type (of the same size)
Replace by smaller struct
NULL pointer

Signed
Integer

Replace by NULL value
Replace by 0
Replace by 1
Replace by -1
Add one
Subtract one
Replace by type maximum value
Replace by type maximum value plus one
Replace by type maximum value minus one
Replace by type minimum value
Replace by type minimum value plus one
Replace by type minimum value minus one
Replace by domain maximum value
Replace by domain maximum value plus one
Replace by domain maximum value minus one
Replace by domain minimum value
Replace by domain minimum value plus one

84

Understanding Exploitable Hypervisor Vulnerabilities

Table4.1 .. continued from previous page ..

DataType Rules

Replace by domain minimum value minus one

Unsigned
Integer

Replace by NULL value
Add one
Subtract one
Replace by type maximum value
Replace by type maximum value plus one
Replace by type maximum value minus one
Replace by type minimum value
Replace by type minimum value plus one
Replace by type minimum value minus one
Replace by domain maximum value
Replace by domain maximum value plus one
Replace by domain maximum value minus one
Replace by domain minimum value
Replace by domain minimum value plus one
Replace by domain minimum value minus one

String (Char*)

Replace by NULL value
Replace by empty string
Replace by a predefined character
Replace by a predefined string
Replace by nonprintable character
Replace by string with nonprintable characters
Remove null character (’\0’)
Add nonprintable characters to string
Replace by alphanumeric string
Add characters to overflow max size

The third step defines the experimental campaign by selecting the precise scope,
specifically the hypercalls to be tested. Although ideally, all hypercalls should
be tested, the effort to understand the whole API was impractical given our con-
straints. To balance the feasibility of interpreting hypercall parameters with their
operational relevance during workload execution, we decided to profile hyper-
call invocations during the TPCx-V workload. We selected hypercalls for test-
ing based on a trade-off between (1) the availability of information and the ef-
fort needed to understand their parameter values and domains, and (2) the fre-
quency of their usage during a TPCx-V benchmark run. Profiling hypercall usage
on TPCx-V involved executing a complete benchmark run. To capture the full list
of hypercalls issued during execution, the experiment used xentrace with xenalyze,

85

Chapter 4

lightweight tracing tools integrated into Xen that track hypercall invocations with
minimal overhead.

The TPCx-V run executed only 13 hypercalls. Among them, HYPERVISOR_vcpu_op
and HYPERVISOR_mmuext_op presented large and complex parameter spaces that
are challenging to analyze. Understanding these parameters thoroughly de-
mands a deep dive into the hypervisor internals and their relationship to vari-
ous system components, especially the hardware specification. We leave a thorough
analysis for future work.

The hypercall HYPERVISOR_multicall, aggregating multiple operations into a sin-
gle request to minimize context switches, is conceptually similar to serializing
various hypercalls. We assume that grouping hypercalls in the multicall hypercall
is as secure as the security of the individual hypercall that it groups. Meanwhile,
the HYPERVISOR_xen_version provides static information about the hypervisor
version. We believe those two hypercalls pose less risk and left them out of the
evaluation.

Not every hypercall has the same relevance to virtualization environments. For
instance, the HYPERVISOR_xen_version hypercall primarily assists compatibility
adjustments. In contrast, hypercalls such as HYPERVISOR_grant_table_op, which
facilitate inter-domain communication, are significantly more critical from a se-
curity standpoint. However, robustness problems and security issues are not ex-
clusive to frequently used or high-criticality hypercalls. Therefore, we recognize
the importance of addressing the excluded operations in future work. Table 4.2
summarizes the assessed hypercalls and operations, while Table 4.3 presents the
complete list. Note that a single hypercall may support multiple operations. The
suffix “_op” in the hypercall name typically indicates that various operations are
available, and it is common for such hypercalls to include an operation parameter
to specify the intended action.

Table 4.2: Summary of Hypercall Covered

Xen Covered %

Hypercalls 39 26 66.6
Operations 285 95 33.3

The fourth step establishes the mechanism to inject malformed hypercall invoca-
tions and enable runtime introspection without disrupting the hypervisor’s orig-
inal execution logic. We accomplished this goal by extending and adapting the
hInjector tool, introduced initially in [Milenkoski et al., 2015b] for evaluating In-
trusion Detection Systems (IDS) via hypercall-based attacks. We redesigned the tool
to meet robustness testing needs by implementing several key upgrades. First,
the Linux-side hypercall mapping layer was modified to support instrumenta-
tion, capturing the invoked hypercall, associated return code, and the specific
mutation rule applied to each test.

The hypervisor-side code refactored each hypercall handler to support test injec-
tion and tracing. Specifically, it renamed every original handler with an _old
suffix (e.g., do_mmu_update_old) and introduced a wrapper using the original

86

Understanding Exploitable Hypervisor Vulnerabilities

function name to encapsulate the instrumentation logic. These wrappers call the
pre_hirt() and post_hirt() routines, which log contextual metadata such as the
function name, line number, and result code. A new field governs the activation
of this tracing mechanism, hypercall_number, added to the arch_shared_info
structure and dynamically checked by the hirt_hypercall() routine. This mod-
ular design ensures that runtime behavior remains unaffected unless explicitly
triggered. A dedicated module encapsulates the tracing logic and logs outputs
through Xen’s logging system.

Table 4.3: Detailed Operations Hypercalls

Hypercall No Tests Runs

HYPERVISOR_set_trap_table 0 335 805

HYPERVISOR_mmu_update 1 395 790

HYPERVISOR_set_gdt 2 150 180

HYPERVISOR_stack_switch 3 150 449

HYPERVISOR_set_callbacks 4 300 758

HYPERVISOR_fpu_taskswitch 5 90 90

HYPERVISOR_sched_op_compat 6 530 608

HYPERVISOR_set_debugreg 8 165 198

HYPERVISOR_get_debugreg 9 90 108

HYPERVISOR_update_descriptor 10 150 180

HYPERVISOR_memory_op 12 4690 10153

HYPERVISOR_update_va_mapping 14 240 240

HYPERVISOR_set_timer_op 15 75 375

HYPERVISOR_console_io 18 220 264

HYPERVISOR_grant_table_op 20 5355 8975

HYPERVISOR_vm_assist 21 150 181

HYPERVISOR_update_va_mapping_od 22 315 379

HYPERVISOR_iret 23 5 10

HYPERVISOR_set_segment_base 25 165 239

HYPERVISOR_xsm_op 27 90 126

HYPERVISOR_nmi_op 28 150 181

HYPERVISOR_sched_op 29 1240 2656

HYPERVISOR_callback_op 30 30 39

HYPERVISOR_event_channel_op 32 3500 4200

HYPERVISOR_physdev_op 33 8335 19243

HYPERVISOR_hvm_op 34 825 990

The generation of use cases and test cases is the fifth step of the process. In the

87

Chapter 4

context of this work, as mentioned earlier, a use case refers to a set of valid input
values (i.e., conforming to the parameter domain) used in a hypercall invocation.
A mutation rule is applied to one of the input values of a use case to derive a
test case, to intentionally violate the expected domain to evaluate the system’s
behavior under invalid or unexpected conditions.

Based on the understanding of the hypercall API, we define the use cases for the
experimental evaluation, and apply mutation rules to these use cases to generate
the corresponding test cases. Each use case is derived from the correct usage pat-
terns of the hypercall interface, instantiated by systematically enumerating valid
parameter combinations according to their type and expected domain, thereby
capturing a representative set of legitimate API invocations. Each test case in-
cludes exactly one mutation, applied to a single parameter.

Figure 4.2 ilustrates the test case generation process. For each hypercall (which
may include multiple operations), we apply a single mutation to every parame-
ter, repeating this process for all mutation rules applicable to the parameter’s do-
main. This systematic approach ensures coverage of a wide range of invalid input
scenarios. The process generated approximately 28,000 distinct test cases, which
ran in over 50,000 individual executions during the experimental campaign.

Figure 4.2: Test Case derivation process and its life cycle

The sixth and seventh steps in our approach are the execution of test cases and
the evaluation of the test results, respectively. These two steps form an iterative
process of execution and assessment, as illustrated by the two rounded arrows
in Figure 4.1. Table 4.3 summarizes the number of test cases generated and the
corresponding number of execution runs. In this context, the number of tests refers
to the total number of mutation rules applied to the parameters of each hypercall.
The runs show the actual executions performed during the study. The number of
runs exceeds the number of distinct test cases because some tests ran multiple
times. These repetitions revalidated observed failures or confirmed behaviors
that required further investigation.

The last step involves drawing conclusions based on the experimental results, as
discussed in Section 4.1.3. In the following section, we describe the architecture
and configuration of the experimental setup.

88

Understanding Exploitable Hypervisor Vulnerabilities

4.1.2 Experimental Setup

A virtualization environment that realistically reflects real-world scenarios, such
as those observed in cloud computing, can be highly complex. A typical config-
uration that we aim to represent is one in which multiple users share the same
infrastructure, and one of these users attempts to exploit vulnerabilities in the
underlying hypervisor. This setup is particularly relevant in Infrastructure as a
Service (IaaS) cloud models, where multi-tenant environments are the norm. In
these settings, a single compromised or malicious tenant can potentially escalate
privileges or interfere with other virtual machines by leveraging hypervisor-level
vulnerabilities, which makes the secure design and evaluation of the hypervisor
a fundamental concern.

We adopted the TPCx-V benchmark workload and setup as the baseline work-
load in our environment. TPCx-V is particularly well-suited for assessing cloud
environments, as it simulates realistic, mixed-use virtualized workloads com-
monly found in cloud data centers. The benchmark stresses systems under typ-
ical conditions such as resource contention, overcommitting of resources, load
fluctuation, and workload consolidation. TPCx-V emulates real-world usage pat-
terns to evaluate how well a system maintains performance and stability under
load, making it a valuable asset for testing cloud-based platforms.

As shown in Figure 4.3, our experimental setup is composed of a Xen hypervi-
sor (version 4.4.1), a privileged domain, named dom0 in Xen’s terminology, and
the 14 Virtual Machines (VMs) that support the TPCx-V workload, which act as
different tenants sharing the same infrastructure. The Dom0 manages the virtu-
alized environment via the Xen Toolstack, which, in its time, uses the Xen API
to access the hypervisor functionalities. Since the TPCx-V models a multi-tenant
environment, the dedicated virtual machine where all tests are run is referred to
as Compromised Tenant (CT). This deployment is on top of a Dell PowerEdge
R710 with 24 Cores, 96 GB RAM, and a 12 TB disk.

Hardware

Hypervisor (Xen 4.4.1)

Privileged Domain

User Space

Kernel

Xen
Toolstack

System Call

User Space

Kernel

Compromised Tenant

Tester

System Call

LKM

H
ypercall

User Space

Kernel

Tenant 1

User Space

Kernel

Tenant N

...
Xen API

Figure 4.3: Testing Environment and its components relations

89

Chapter 4

To support test delivery and execution, we developed a Loadable Kernel Module
(LKM) template that implements the injection logic within the guest kernel space
of the CT. This module enables parameterization of both the hypercall and the
mutation rule, which is essential since hypercall invocation is a privileged op-
eration in guest VMs. A complementary test generation tool translates abstract
mutation rules into concrete test cases by generating valid hypercall invocations
in code, effectively instantiating the LKM template into executable test modules.

The testing process (Tester in Figure 4.3) iterates over the list of test cases, perform-
ing injections by loading the precompiled Loadable Kernel Module (LKM) into
the CT’s kernel. A dispatcher and monitoring component manages the test execu-
tion and collects runtime diagnostics, including return codes, Operating System
(OS) log messages, and Xen log messages.

We also use the Xen Toolstack on Dom0 to monitor the test environment. Infor-
mation such as VM status (e.g., up or /down), Dom0 and Xen logs, and resource
usage patterns (e.g., spikes in CPU or memory) provides valuable insights for
assessing potential failures.

4.1.3 Results and Discussion

This section presents our results about the feasibility of applying robustness test-
ing to the hypercall interface of hypervisors. An experimental campaign can ex-
plore many security aspects in a multi-tenant virtualized environment. To guide
our evaluation, we established four research questions to investigate the effec-
tiveness and limitations of our experimental campaign to test the Xen hypercall
interface:

RQ1: To what extent are interface faults, generated by mutating hypercall
input parameters, capable of exposing vulnerabilities or triggering ob-
servable failures?

RQ2: Can robustness testing be effectively automated and integrated into re-
alistic, cloud-like virtualized environments without manual interven-
tion?

RQ3: What are the key requirements and operational characteristics of fail-
ure detectors capable of identifying and classifying failures in virtual-
ized infrastructures?

RQ4: Are traditional failure mode classifications, such as those defined by
the CRASH scale, adequate for capturing the failure behaviors ob-
served in hypervisor-level robustness testing?

As a first step in our testing campaign, we aimed to evaluate how the hypervi-
sor would behave when subjected to a high-volume sequence of robustness tests.
Specifically, we attempted to execute all generated test cases sequentially within
the same compromised virtual machine (CT). However, this approach proved im-
practical. The Xen hypervisor includes built-in security mechanisms that monitor

90

Understanding Exploitable Hypervisor Vulnerabilities

guest behavior and automatically terminate any virtual machine exhibiting sus-
picious or potentially harmful actions. As a result, certain test cases triggered
these mechanisms, causing the CT to be forcibly shut down and interrupting the
execution of the whole test sequence.

The next step in our testing process was identifying the subset of test cases that
did not trigger Xen’s built-in security mechanisms. We can think of this mecha-
nism as the first security barrier. That way, those operations will be relevant from
a secure perspective since they are not subject to this protection mechanism. Ad-
ditionally, the only way to have a realistic test is by triggering the hypercall from
an unprivileged domain. With that goal, we executed each test individually on
the CT, recording whether the virtual machine crashed. From this experiment,
we observed that approximately 12.1% of the test cases led to the termination of
the CT.

Closer inspection revealed that not all crashes resulted directly from Xen’s se-
curity mechanisms. In some cases, the CT became unresponsive or terminated
without any indication from the hypervisor. To better categorize these behav-
iors, the analysis introduced two distinct failure types: GUEST_CRASH, for cases
where the CT crashed silently without visible feedback from the hypervisor, and
GUEST_KILLED, for instances where logs or system behavior clearly showed that
Xen deliberately terminated the guest.

Failures categorized as GUEST_CRASH align with the concept of Silent failures
as defined by the CRASH failure mode classification [Koopman et al., 1997].
According to discussions on the xen-devel mailing list, such silent crashes are
not expected to occur under normal conditions: when they do, they represent
a clear indicator of insufficient robustness in the hypervisor. However, the cur-
rent methodology does not collect enough information to determine whether all
GUEST_CRASH cases were silent failures. A more precise analysis would re-
quire access to low-level logs, such as those obtained via serial consoles, which
were not part of our experimental setup.

To validate the tests that did not crash the CT, we re-executed some of these tests,
which resulted in new crash failures, indicating that crash behavior was not en-
tirely deterministic. To better understand this variability, we grouped the test
cases by hypercall. Among all hypercalls tested, only HYPERVISOR_grant_table_op
exhibited this unpredictable behavior. Of 5355 test cases associated with this hy-
percall, 2617 caused crashes during the first execution.

We performed multiple iterations, progressively refining the test set by removing
cases that had caused crashes in the previous round. The goal was to isolate a
stable subset of tests that could run without crashing the CT. When three consec-
utive runs did not lead to any crash, we accept the list as the stable test subset. Since
HYPERVISOR_grant_table_op supports inter-VM memory sharing and functions
such as network packaging, a tailored setup that accounts for this specificity is
necessary to assess its robustness effectively.

After identifying the subset of tests that caused abrupt interruptions in the CT,
we examined the test results in detail to infer behaviors from the experiment logs.
Some test cases failed during execution due to early-stage errors and were never

91

Chapter 4

fully loaded into the CT kernel. The majority of these cases (32 in total) triggered
a SIGSEGV signal during the execution of the LKM, indicating segmentation faults.
Additionally, two other cases failed due to an invalid module format, which sug-
gests potential issues during the LKM compilation or generation process.

The following behaviors were observed (Table 4.4 summarizes the results):

• ERROR: Error on LKM module loading (error code).

• GUEST_CRASH: CT crashes without any notification (on Dom0).

• GUEST_HANG: CT became unresponsive.

• GUEST_KILLED: CT is deliberately killed by the hypervisor.

• INJECTION_HANG: The CT is up, the Tester process is running, but did
not return in the period accessed.

• RESTART: The CT is running but it has restarted.

• SUCCESS: The Tester process injected the test and returned appropriately,
the CT is running (may include Silent failures [Koopman and DeVale, 2000]).

• UNKNOWN_ERROR: A timeout when waiting for a test response (none
of the previous state was identified).

Table 4.4: Tests Results Breakdown by State

State #

ERROR 34
GUEST_CRASH 6642
GUEST_HANG 2
GUEST_KILLED 248
INJECTION_HANG 20
RESTART 26
SUCCESS 24521
UNKNOWN_ERROR 195

We must highlight that a SUCCESS test does not necessarily imply robust op-
eration. It can include Silent [Koopman and DeVale, 2000] failures, i.e., cases in
which the system performs an invalid operation without any external indication.
We could not reliably detect those errors by the limited visibility into the internal
state of the CT, as we did not have a physical serial terminal during the experi-
mental campaign. Without this capability, some low-level error messages remain
uncaptured, allowing inevitable silent failures to go unnoticed in the analysis.

Although return status handling is inconsistent across all hypercall operations, a
subset returns neg_errnoval.Table 4.5 summarizes the distribution of exit codes
observed from operations that adopt this return convention, highlighting the va-
riety of errors and their semantic implications. This type encodes an error using

92

Understanding Exploitable Hypervisor Vulnerabilities

a negative integer value that maps to a standard error code, helping to iden-
tify the outcome of an operation. Excluding the successful operation, for which
neg_errnoval assumes 0, each error code typically reflects the scope or context
of the operation; for instance, EBUSY indicates that the target resource is currently
unavailable.

Using the neg_errnoval mechanism allowed us to evaluate the robustness of spe-
cific hypercall operations by analyzing their returned codes. However, this ap-
proach is applicable to only approximately 50.7% of the test cases (see Table 4.5).
For the remaining operations that do not expose standardized return codes, we
relied on ad hoc interpretations of system behavior. This highlights the difficulty
of performing robustness assessments in virtualization platforms and reinforces
the need for dedicated failure detectors.

Regarding the detection of non-robust behavior in operations that returned suc-
cess (i.e., return code zero), our evaluation was limited to the same subset of
operations (50.7% of the total). These cases represent only 11.2% of all test cases,
or 22.1% of the subset with interpretable return codes. Further investigation is
required to confirm robustness violations in these scenarios.

Table 4.5: Breakdown by exit codes

No Code Description

97 -95 EOPNOTSUPP
Operation not supported on transport
endpoint

4590 -38 ENOSYS Function not implemented
133 -28 ENOSPC No space left on device

5231 -22 EINVAL Invalid argument
414 -19 ENODEV No such device
21 -17 EEXIST File exists
24 -16 EBUSY Device or resource busy

2621 -14 EFAULT Bad address
4131 -3 ESRCH No such process
355 -2 ENOENT No such file or directory

3070 -1 EPERM Operation not permitted
5881 0 - Normal Operation

4.1.4 Lessons Learned and Open Challenges

Although our analysis identified behaviors suggesting a lack of robustness, such
as SIGSEGV during hypercall invocation, silent crashes on the guest, and non-
deterministic behaviors in HYPERVISOR_grant_table_op, the results from the ex-
perimental campaign indicate that we need further research in this domain. The
proposed approach, adapted from traditional robustness testing mutation rules,
proved ineffective in exposing failures within the hypercall interface. This lim-
itation appears to derive from the mutation strategy’s lack of awareness of the

93

Chapter 4

system’s runtime context, responding to our RQ1: the mutation rules used in this
work have limited applicability in virtualized infrastructures.

One of the key challenges is that many hypercall input parameters have mean-
ings that are highly context-dependent, rather than being strictly defined by their
data types. For example, in the set_timer_op hypercall, the input is a times-
tamp, semantically meaningful as an integer, but mutating it without consider-
ing the context yields little insight. Similarly, many parameters refer to other VMs
or domain-specific structures, and mutations often lead to trivial errors, such as
"domain does not exist" messages, which do not reveal deeper robustness issues.
Moreover, certain hypercalls operate directly on memory or low-level system re-
sources. For instance, HYPERVISOR_set_segment_base involves memory manip-
ulation, and the consequences of malformed input may only manifest indirectly
through subsequent operations, making them difficult to detect through isolated
test cases.

These observations do not imply that robustness testing is inherently unsuit-
able for virtualized environments, but that existing mutation-based techniques
require extension. More context-aware, system-informed mutation strategies are
necessary to uncover robustness vulnerabilities in complex virtualization stacks
effectively. Addressing these contextual limitations requires considering the in-
herent differences in virtualization mechanisms, which bridge software interfaces
(hypercalls) and hardware operations. Hence, robustness assessment strategies
must be tailored distinctly for these two domains, as further detailed below.

Realistic injection mechanisms can be automated (RQ2). However, achieving this
goal requires a deeper exploration of the interplay between the runtime environ-
ment and the hypervisor. By understanding how the system-level interactions in-
fluence hypervisor behavior, we can better detect the robustness impacts caused
by malformed inputs. A holistic approach integrating insights from the over-
all system rather than relying solely on isolated hypercall mutations may offer
a more effective means of identifying and mitigating robustness weaknesses in
hypervisor security.

In this study’s target environment, accurately detecting failures requires a holis-
tic view that can correlate evidence from multiple sources to identify faults effec-
tively. Failure detectors must be operation-aware, as there is no unified or stan-
dardized way to retrieve exit statuses across hypercalls. For example, some op-
erations always return zero, others rely on specific register values, and some use
multiple return contexts, such as status codes combined with register contents.
Additionally, specific hyper calls can destroy or reboot guest machines, and these
operations must be carefully managed or excluded during testing to avoid dis-
rupting the environment. Finally, the hypercall interface blends hardware-level
operations (e.g., direct memory access and interrupts) and software-level abstrac-
tions (e.g., I/O multiplexing), requiring distinct handling strategies to ensure ac-
curate failure detection. These observations highlight the key requirements for
effective failure detection mechanisms in virtualized environments, thus address-
ing RQ3.

Concerning RQ4, we observed that traditional failure mode classifications com-

94

Understanding Exploitable Hypervisor Vulnerabilities

monly used in the literature are not well-suited to virtualized environments. The
multi-perspective nature of failures, where different stakeholders (e.g., tenants,
system administrators, hypervisors) may be affected in other ways, makes apply-
ing existing models consistently or meaningfully to our test results challenging.
Failures can occur at multiple layers of the virtualization stack, each with vary-
ing degrees of visibility and impact. Furthermore, complex trust relationships
between components complicate assessing who is affected by a particular fail-
ure and to what extent. These characteristics call for more nuanced and context-
aware failure models explicitly tailored to the virtualization domain.

Throughout the campaign, we also reflected on the dual nature of virtualization,
which bridges both software and hardware layers. Robustness testing in such
environments must account for this distinction. On one side, there are software-
based interfaces, such as hypercalls in paravirtualized guests, which involve con-
trolled communication between the guest operating system and the hypervisor.
Failures in these cases often manifest as unexpected return values, guest crashes,
or silent failures. Conversely, hardware-assisted virtualization mechanisms (e.g.,
Intel VT-x or AMD-V extensions) enable direct interactions with physical re-
sources, introducing failure modes that may bypass typical software-level checks.
These different categories require separate testing strategies and distinct failure
detection mechanisms to assess robustness accurately.

Above, we focused on the boundary between guest OS and the hypervisor. We
exposed a key challenge: existing methods fail to account for more sophisti-
cated fault-injection techniques and context-aware failure detection mechanisms.
Given the limited results from the robustness testing study, enhancing hypervi-
sor security requires additional perspectives. Consequently, in the next section,
we expand our approach by incorporating an analysis of historical vulnerability
data. By doing so, we complement robustness insights with empirical vulnera-
bility analyses, exploring a proxy estimation for hypervisor trustworthiness and
supporting more informed system adoption decisions.

4.2 Vulnerability Analysis as Trustworthiness Evi-
dence

As organizations increasingly adopt cloud services, including those previously
hesitant [Donnelly, 2020], the hypervisor has emerged as a critical target for se-
curity threats. A compromise at this layer can cascade across the cloud infras-
tructure, undermining data integrity, confidentiality, and availability. Despite the
hypervisor’s central role, stakeholders lack reliable metrics to assess its security
posture. This gap complicates risk management, leaving users to rely on indirect
risk estimates without clear guidance for comparing alternatives. Developing
empirical approaches to improve confidence in system selection is therefore es-
sential.

This section investigates whether vulnerability data can provide such evidence
by indirectly indicating hypervisor trustworthiness. Specifically, the analysis ex-

95

Chapter 4

plores whether security efforts during the development of a specific software ver-
sion influence subsequent vulnerability discovery trends. Focusing on the Xen
hypervisor, we use historical data to evaluate how proactive measures affect the
frequency, severity, and timeline of disclosed vulnerabilities.

Existing work on vulnerability analysis provides a foundation for this investiga-
tion. Researchers have studied vulnerabilities using regression models, machine
learning, statistical analyses, and reliability growth or vulnerability discovery
models (VDMs) [Alhazmi et al., 2007; Ozment and Schechter, 2006; Yasasin et al.,
2020]. For example, Alhazmi et al. [Alhazmi et al., 2007] proposed the Multi-
Attribute Model (MAM), which captures vulnerability discovery trends over time
as influenced by software adoption. Similarly, Ozment and Schechter [Ozment
and Schechter, 2006] and Massacci et al. [Massacci et al., 2011] analyzed the birth-
death cycles of vulnerabilities, identifying a significant proportion as founda-
tional, i.e., originating from early versions and persisting over time. These find-
ings suggest that legacy code contributes disproportionately to security risk and
that common patching strategies may not fully mitigate long-standing issues.

In this study, we apply these insights to the Xen hypervisor, examining whether
patterns in historical vulnerability data can reflect the effectiveness of prior secu-
rity efforts and serve as qualitative indicators of trustworthiness. By doing so, we
aim to lay the groundwork for a more evidence-based approach to hypervisor se-
curity assessment, enabling stakeholders to make more informed and justifiable
decisions. Also, we introduce the concept of trustworthiness evidence; i.e., any ob-
servable artifact, data point, or process that supports confidence in a system’s
capacity to withstand security threats. While not an absolute metric, trustwor-
thiness evidence is a proxy indicator that can inform decisions when comparing
systems with similar functional attributes.

The guiding questions for this investigation are as follows:

RQ1: Can security development efforts during a specific version be reflected
in the subsequent discovery of vulnerabilities?

RQ2: How can vulnerability data be used as evidence of system trustwor-
thiness?

The organization of this section is as follows. Section 4.2.1 describes the method-
ology for collecting and preprocessing historical vulnerability data related to the
Xen hypervisor. Building on this dataset, Section 4.2.2 evaluates whether vulner-
ability lifecycle patterns and known vulnerability density indicate system trust-
worthiness. Finally, Section 4.2.3 discusses the implications of incorporating trust-
worthiness evidence into security evaluation processes.

4.2.1 Data Collection and Preprocessing

The dataset assembly’s first step was defining the Xen versions to analyze. The
study begins when Xen officially supported a Linux kernel (version 4.0) as the
DOM0, the privileged VM that runs at the highest user level and has full hard-

96

Understanding Exploitable Hypervisor Vulnerabilities

ware access. We used this criterion, a significant milestone that facilitated the
widespread adoption of the hypervisor, including by Amazon EC2 [ec2beta].

We then used the dataset and tools provided by a public vulnerability database
project, VulinOSS [Gkortzis et al., 2018], as a starting point from which we started
creating our Xen’s dataset. We updated this database with the latest National
Vulnerability Database (NVD) dataset version. We collected the NVD dataset
and searched for all vulnerabilities related to the Xen Hypervisor, ensuring that
we excluded those not affecting Xen, such as those related to the Linux Kernel,
QEMU, hardware, etc. Our study’s final number of Xen vulnerabilities is 254.

2010 2012 2014 2016 2018 2020 2022 2024
Date

4.00
4.01
4.02
4.03
4.04
4.05
4.06
4.07
4.08
4.09
4.10
4.11
4.12
4.13

Xen Versions Life-Cycle

Data Collection
Full Support
Security Support

Figure 4.4: Xen support lifecycle and its relation with our analysis

According to Xen’s documentation, releases are scheduled roughly every four
months, with full support for stable versions lasting 18 months, followed by an
additional 18 months for security fixes (see Figure 4.4). To understand this pro-
cess, it is especially essential to comprehend the impact of the development of
new releases, where the security fixes happen, and which vulnerabilities refer to
deprecated versions, among many other aspects.

We face the challenge of available data and its quality when dealing with security
assessments. The work in [Massacci et al., 2011] shows that the number of trusted
sources and their quality are significant threats to good quality research, even for
popular software such as the Mozilla Firefox. Vulnerability reporting sometimes
lacks a consistent approach. For example, Xen Security Advisory (XSA) 15 was
initially assigned CVE-2012-3496. Although it was fixed and patched, the report’s
generic nature led to the creation of seven additional CVEs (CVE-2012-6030 to
CVE-2012-6036) to more precisely address the issue.

To address this data problem, we studied the relationship between the XSAs and
the CVEs to establish a link and not treat the same vulnerability differently. We
discovered that not every XSA (24) has a CVE, some XSAs (25) have more than
one related CVE, and two XSAs relate to the same CVE (XSA-149 and XSA-151 to
CVE-2015-7969).

We then linked vulnerability data from public repositories to the Xen source code
by associating CVEs and XSAs with corresponding commits. To achieve this, we

97

Chapter 4

Table 4.6: Xen vulnerability birth-death data. Rows indicate the versions where
the vulnerability was fixed, and columns indicate the versions where the vulner-
ability entered the codebase. The right part shows the percentage of the over-
all vulnerabilities that are Local, Inherited from previous versions, and after-life
vulnerabilities (those that affect obsolete versions)

The version in which it appear Vul. Breakdown (%)
4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 Total % I L AL

T
he

ve
rs

io
n

in
w

hi
ch

it
w

as
fix

ed 4.00 1 1 0.4 0.0 0.4 n/d
4.01 13 4 17 6.7 5.1 1.6 n/d
4.02 23 6 8 37 14.6 11.4 3.1 n/d
4.03 9 5 9 1 24 9.4 9.1 0.4 3.5
4.04 7 5 4 0 15 31 12.2 6.3 5.9 4.7
4.05 5 2 2 2 1 2 14 5.5 4.7 0.8 2.8
4.06 7 3 0 5 4 0 6 25 9.8 7.5 2.4 3.9
4.07 2 0 0 0 2 4 0 7 15 5.9 3.1 2.8 0.8
4.08 2 0 1 0 0 1 3 0 14 21 8.3 2.8 5.5 1.2
4.09 0 0 0 0 1 3 1 0 0 18 23 9.1 2.0 7.1 1.6
4.10 0 0 0 0 0 0 0 1 1 0 9 11 4.3 0.8 3.5 0.0
4.11 1 1 0 0 0 0 0 0 1 1 0 16 20 7.9 1.6 6.3 0.8
4.12 0 0 0 0 0 0 0 0 4 0 0 0 11 15 5.9 1.6 4.3 0.0

Total 70 26 24 8 23 10 10 8 20 19 9 16 11 254 100.0 55.9 44.1 19.3

% 27.6 10.2 9.4 3.1 9.1 3.9 3.9 3.1 7.9 7.5 3.5 6.3 4.3 100.0

developed a solution that parses both the Xen Security Advisory (XSA) pages and
the National Vulnerability Database (NVD) to establish relationships between
CVEs and XSAs. The system then analyzes commit messages to identify strong
correlations that indicate a direct fix or patch (e.g., explicit mentions such as “this
is CVE/XSA", which is a very common pattern). Following that, it searches for
weaker correlations that suggest any form of association with a CVE or XSA (e.g.,
patterns resembling CVE/XSA references). Finally, all collected data is organized
on a per-CVE basis, and the results are manually validated to ensure accuracy.

Determining the exact lifespan of a vulnerability is nearly impossible, as vulnera-
bilities are rarely disclosed before a fix is available [Rescorla, 2005]. Ozment [Oz-
ment and Schechter, 2006] tackles this challenge by analyzing source code to de-
termine when a vulnerability was introduced (birth date) and when it was fixed
(death date).

Databases such as NVD and CVE typically report the “reported date,” which of-
ten does not reflect the date the vulnerability was discovered. To address this lim-
itation, we examined auxiliary metadata associated with each CVE entry (specifi-
cally, references to advisories, vendor bulletins, patches, and third-party security
tools) to identify a timestamp corresponding to the release of a patch that fixes the
vulnerability. This date was then used as a proxy for the approximate date of dis-
covery. This estimation process effectively provides a date more closely related
to when the vulnerability was “discovered”. We found differences as significant
as 1610 days (CVE-2015-6815 published in 2020).

We used the earliest reference for the vulnerability death date between our esti-
mated discovery date and the patch commit date. The birth date is the earliest
affected version’s release date and is considered as presented in the release com-
mits, not as described in the documentation.

98

Understanding Exploitable Hypervisor Vulnerabilities

4.2.2 Qualifying Trustworthiness from Vulnerability Data

Evaluating a system’s security should be guided by principles that help mitigate
the risks involved. In this section, we characterize Xen’s vulnerability informa-
tion using the data described in Section 4.2.1. We then discuss how to use the
insights provided by the results as evidence of the system’s trust and support the
security characterization of Xen’s distinct versions.

Vulnerability lifecycle analysis

Many factors influence a system’s security. In Xen, as in other hypervisors, fault
sources include hardware design flaws (e.g., CVE-2017-5715 and CVE-2017-5754),
hardware specification errors (e.g., CVE-2019-19581 and CVE-2019-19582), and
unresolved issues lacking fixes or workarounds (e.g., CVE-2014-5149). Under-
standing the lifecycle of known vulnerabilities highlights the effort maintainers
invest in the system and can serve as an indicator of its trustworthiness. For this
reason, a careful vulnerability lifecycle analysis is essential.

We can consider the number of versions it affects to measure the vulnerability
lifespan. In Figure 4.5, we see the distribution of affected versions of Xen’s vul-
nerabilities. Based on our data, we determine that a vulnerability affects, on aver-
age, two versions, but we also observe notable cases where a single vulnerability
impacts 11 or 10 distinct versions (Figure 4.6).

Analyzing the birth-to-death period of vulnerabilities helps reveal how security-
related efforts are distributed throughout the system’s lifetime. Table 4.6 provides
insight into this vulnerability lifecycle. Only a small fraction of vulnerabilities in
Xen are classified as foundational (27.56%). This relatively low proportion may
be due to either (i) higher quality in the foundational code, or (ii) substantial
changes in the codebase across releases that replaced much of the original foun-
dational code. Compared with previous work, our result aligns more closely with
Firefox [Massacci et al., 2011] (31%) than with BSD [Ozment and Schechter, 2006]
(62%).

In addition to the birth-death data, Table 4.6 shows the overall percentage of vul-

4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12
Versions

0
50

100
150
200
250

CV
E

Versions affected by a CVE

Figure 4.5: Vulnerabilities’ life-span of studied Xen versions.

99

Chapter 4

nerabilities by version and a detailed breakdown on the right. Vulnerabilities are
classified as follows: local if they affect only the current version, inherited if in-
troduced in a previous version, and after-life [Massacci et al., 2011] if they impact
unsupported versions, even those no longer receiving security patches. The val-
ues for local and inherited are complementary, while after-life values represent a
fraction of the overall percentage.

From a global perspective, the distribution of inherited and local vulnerabilities
is statistically equal (55.9% vs. 44.1%). However, the early version tends to have
a higher prevalence of inherited vulnerabilities than local vulnerabilities. This
weak tendency changes after version 4.8.

The local classification may inflate the vulnerability count and requires careful
evaluation. CVE-2012-3516 illustrates this issue: although it is associated with
version 4.2, the vulnerability was fixed before the stable release and never posed
a production threat. Such cases should either be excluded from the dataset or
reclassified based on the assessment’s focus. For instance, they may reflect the
effectiveness of the software development process in identifying and eliminating
security bugs during system testing. Ideally, local vulnerabilities should exclude
these cases or categorize them separately.

It is noteworthy that 19.3% of the studied vulnerabilities are classified as after-
life. This percentage is significant, given that hypervisors are core infrastructural
systems and typically do not require frequent updates, leading to slower replace-
ment cycles. Finally, we note in Table 4.6 that after version 4.6, the absolute num-
ber (and percentage) of inherited vulnerabilities decreases. This decline may in-
dicate a positive effect of the enhanced secure development practices introduced
around version 4.6, as referenced in Xen’s development communications.

The results presented in this section represent a quantitative dimension of the
system’s historical security posture. While valuable, they are not sufficient in
isolation and should be incorporated into a broader, multi-faceted security as-
sessment framework.

2 3 4 5 6 7 8 9 10 11 12
Number of different versions

2
9

47

16

27

Nu
m

be
r o

f C
VE

s

CVEs that affect more than one version

Figure 4.6: Vulnerabilities that affect multiple Xen versions.

100

Understanding Exploitable Hypervisor Vulnerabilities

Table 4.7: Xen Versions code size, number of Vulnerabilities and its respective
Known Vulnerability Density (VKD)

Ver. KLoC #V VKD Version KLoC #V VKD

4.0 445 79 0.1773 4.7 449 29 0.0645
4.1 498 103 0.2065 4.8 455 32 0.0702
4.2 413 119 0.2877 4.9 469 33 0.0704
4.3 396 79 0.1991 4.10 480 19 0.0395
4.4 405 77 0.1897 4.11 488 27 0.0552
4.5 417 60 0.1438 4.12 498 17 0.0341
4.6 418 45 0.1075 4.13 480 1 0.0021

Vulnerability Density

In addition to the vulnerability lifecycle analysis, we can use the vulnerability
density to indicate the success of system maintainers’ efforts to produce secure
code [Ozment and Schechter, 2006]. Vulnerability density (V_D) [Alhazmi et al.,
2007; Ozment and Schechter, 2006] is the total number of the system’s vulner-
abilities over the system size (see Equation 4.2). According to [Alhazmi et al.,
2007], V_D enables comparisons across system versions developed using the
same process. Consequently, expecting a slight decrease in the V_D as the soft-
ware evolves is reasonable. At the same time, determining the V_D is almost
impossible since finding all vulnerabilities is not practical. We can measure the
known vulnerability density (V_KD) at a specific moment.

As the system evolves, a lower value of VKD is expected for three reasons: i) the
earliest versions are the ones that have more codebase changes (statistically, there
are more chances of security faults insertions), ii) the software/project maturity
and stability tend to increase, and iii) the earliest versions have more testing time
(either by a separate process or usage in production).

The data in Table 4.7 appears to reflect the impact of security and quality im-
provements introduced in version 4.6. When a new version is being developed,
it typically builds upon the existing codebase, incorporating new features or fix-
ing known bugs. As such, improvements in security practices during the de-
velopment cycle of a given version may influence the number of vulnerabilities
reported not only in that version but also in other ones. Based on this reasoning,
we estimate that the security-focused development of version 4.6 had an effect on
the VKD metric (approximately 0.8) when comparing versions 4.5 and 4.7.

Using VKD as evidence of trustworthiness in the context of security assessment
should be considered a qualitative process. When evaluating more recent ver-
sions, one should expect vulnerability density values that align with a declining
risk profile. This trend can help system administrators prioritize updates and
allocate mitigation efforts and resources to higher-risk areas. Additionally, we
recommend that users assess the evolution of a system’s VKD over time and be
cautious with versions that do not exhibit a consistent decrease. Such stagna-
tion or regression may indicate shortcomings in the security assurance processes
applied during development.

101

Chapter 4

y =
B

BCe−ABt + 1
(4.1) VD =

V
S

(4.2)

Figure 4.7: Three-Phases of the MAM vulnerability discovery process (Image
from [Alhazmi et al., 2007])

Saturation Point

The final recommended analysis is to apply the Malaya-Alhazmi Model (MAM) [Al-
hazmi et al., 2007] to determine the phase of any software version within its three-
phase framework (see Figure 4.7). MAM models the cumulative number of dis-
covered vulnerabilities using a time-based logistic function. It relates the discov-
ery time (t), the momentum from market acceptance (A), and the total number of
vulnerabilities in the software (B), as expressed by Equation 4.1.

This model tries to capture the market adoption and use of the software (parame-
ter A). Based on [Alhazmi et al., 2007], a logistic curve describes the vulnerability
discovery process that can reflect three different systems’ phases: (1) early adop-
tion, (2) increase in popularity and acceptance, and finally, (3) popularity limit.
According to the authors, in the third phase, the reward for exploring the vul-
nerabilities starts decreasing, achieving a saturation limit. That way, black hat
vulnerability finders are likelier to shift their efforts to a newer software version.

Using the vulnerability data of Xen and using the non-linear least squares method
(confidence level of 95% / alpha = 5%), we evaluated the model fitting for all ver-
sions in our study. We can see in Figure 4.8 and Figure 4.9 the distribution of the
vulnerability and the fitting curve for the logistic and linear (as a control curve)
models from different versions of Xen. For an older version (Figure 4.8a), the
vulnerability discovery rate remains low due to obsolescence, which reduces the
likelihood of discovering new vulnerabilities. At the same time, it comes with all
costs related to deprecated software. The question is how the suitability of newer
versions can be tested, considering the associated risks. We recommend avoiding
new versions that have not yet reached the saturation phase. This determina-
tion relies on comparing the distribution of the vulnerability discovery process.
Adoption should be postponed if the distribution appears more linear than the
MAM prediction.

To illustrate this approach, we apply the method to the three most recent versions

102

Understanding Exploitable Hypervisor Vulnerabilities

(a) Old Version, saturated (b) Better MAM Fit

Figure 4.8: Current momentum of Xen 4.4 and Xen 4.10 based on the MAM.
=Data was fitted using the non-linear least squares method with a confidence level of 95% (alpha
= 5%)

of Xen. Since version 4.13 was released less than a month before data collection,
we assume it is in the first phase of the MAM and classify it as untrustworthy
evidence. Version 4.12 (Figure 4.9b) shows a better MAM fit (P-value 0.991) than
the Linear (P-value 0.012)) but can also be assumed a piece of untrustworthy ev-
idence since it is clearly in the second phase of the MAM. Despite the significant
fit for both models in the 4.11 version (Figure 4.9a), the Linear fit is more likely (P-
value 0.990) than the MAM (P-value 0.621) what could also represent untrustwor-
thy evidence. The opposite situation happens for the 4.10 version (Figure 4.8b),
the MAM model is more likely (P-value 0.998) than the Linear (P-value 0.796),
and this version represents trustworthy evidence for presenting a better trade-off
when using this criterion.

The trustworthiness indicators extracted through lifecycle analysis, vulnerability
density, and saturation modeling offer important but partial insights. The follow-
ing section explores how these quantitative findings translate into practical im-
plications for system adoption, risk mitigation, and security policy enforcement,
thereby bridging empirical data with actionable evaluation criteria.

4.2.3 Implications of Trustworthiness Evidence

In the previous section, we provided examples of vulnerability evaluation meth-
ods that can serve as sources of trustworthiness evidence. A natural follow-up
question is how to consolidate these pieces of evidence within a practical secu-
rity assessment process.

One approach described in the literature is a two-phase security assessment pro-
cess [Gonçalves, 2017; Neto and Vieira, 2011; Oliveira et al., 2020], in which trust-
worthiness evidence informs both the selection and qualification of candidate
systems. In this context, the data derived from vulnerability analysis can support
decision-making in two ways: (i) as a qualitative indicator aligned with specific
security properties, or (ii) as a quantitative factor integrated into a multi-criteria
decision-making (MCDM) model [Martinez et al., 2014].

103

Chapter 4

(a) Better Linear Fit (b) Not saturated

Figure 4.9: Current momentum of Xen 4.11 and Xen 4.12 based on the MAM.
Data fitted using non-linear least squares method with a confidence level of 95% (alpha = 5%)

Although some of the evidence presented here is inherently qualitative, there is
potential for quantification. For example, the known vulnerability density (VKD)
can be normalized to facilitate inter-version comparison. Additionally, penaliza-
tion strategies based on version age can be incorporated to adjust for exposure
time and undiscovered vulnerabilities.

Despite their usefulness, such quantitative indicators must not be used in isola-
tion. When interpreted without context, they may yield misleading conclusions.
Instead, we advocate for integrating these signals into composite models that
consider additional forms of evidence, such as robustness under fault injection,
exploit reproducibility, and mitigation resilience.

This perspective is central to the methodology advanced in this thesis. The em-
pirical trends derived here can support future system evaluation decisions. In
particular, these indicators may help identify candidate versions for further ex-
periments, guiding where to simulate security-critical conditions. For instance,
versions that exhibit high VKD or fail to conform to saturation curves may repre-
sent targets with latent vulnerabilities, while saturated or declining-density ver-
sions offer a reference baseline.

In summary, the historical analysis of Xen’s vulnerability data provides both stan-
dalone insight and a foundation for structured, model-driven assessments. This
groundwork directly supports the next stage of the thesis (Section 4.3), which ex-
amines how specific classes of vulnerabilities propagate through system layers
and result in security violations.

4.3 Linking Vulnerabilities to Exploitable Consequences

Despite hypervisors’ central role in enforcing isolation and resource control in
virtualization infrastructures, the mechanisms by which their vulnerabilities are
introduced, exploited, and affect system security remain underexplored. This
gap limits the community’s ability to reason about the origin and propagation of
security failures in virtualized systems.

104

Understanding Exploitable Hypervisor Vulnerabilities

Here, we continue our exploration of virtualization security by tracing vulnera-
bilities from their root causes to their eventual impact on system integrity. We
analyze 343 vulnerability entries from the Common Vulnerability and Exposures
(CVE) [Mitre, 2021] database, specifically targeting KVM and QEMU, and aug-
ment this dataset with publicly available technical details [Gonçalves, 2021]. The
aim is to characterize each vulnerability along a fault-to-impact chain, captur-
ing the nature of the underlying fault, the system functionality it compromises,
and the resulting security violation. This analysis highlights recurring patterns,
such as the prevalence of improper memory management and the dominance of
Denial of Service (DoS) as an observed outcome.

This section makes two contributions. First, we introduce a structured causal
taxonomy of hypervisor vulnerabilities, enabling a deeper understanding of how
different classes of faults translate into exploitable behavior. Second, we propose
two directions to expand the applicability of this characterization: a methodology
for generating security policies grounded in empirical data and a novel approach
to evaluating hypervisor security using the causal profiles derived from known
vulnerabilities.

The organization of this section is as follows. Section 4.3.1 presents the scope of
the characterization and the dataset structure. Section 4.3.2 details the methodol-
ogy used to classify vulnerabilities along the fault-functionality-violation chain.
Finally, Section 4.3.3 discusses limitations and outlines how this characterization
supports security policy design and evaluation strategies for virtualized environ-
ments.

4.3.1 Vulnerability Classification Methodology

This section presents the methodology used to construct a structured and seman-
tically enriched dataset of vulnerabilities affecting the KVM and QEMU hyper-
visors. The objective is to support systematic analysis of vulnerability trends,
root causes, and security implications in virtualized systems. To achieve this, we
defined a two-phase process: (i) Data Preparation, and (ii) Vulnerability Characteri-
zation.

The Data Preparation phase consolidates and enriches publicly available vul-
nerability information, primarily sourced from the CVE database [Mitre, 2021]
and the NVD repository [NIST, 2021]. This includes querying and filtering rel-
evant entries, extracting structured metadata, and augmenting each entry with
additional references such as vendor advisories and version control system (VCS)
patches.

The Vulnerability Characterization phase builds upon the enriched dataset to
conduct a manual, semantic classification of each vulnerability. This classifica-
tion focuses on identifying the software fault (cause), the emergent or unintended
behavior it enables (abusive functionality), and the resulting impact on system (se-
curity violation). These dimensions will later support the construction of intrusion
models (see Chapters 5 and 6).

105

Chapter 4

An overview of the methodology is depicted in Figure 4.10, which outlines the
complete process across both phases. The steps illustrated are described in detail
in the remainder of this section.

Manual Analysis

Data
Preparation

NVD
Database

Query for
‘token’

Filter by
System

Candidate CVEs

System’s CVEs

Extract
Metadata

1.

2.

3.

System’s VCS

Extract
Patches

4.

Causes

Security
Violations

Abusive
Functionalities

Vulnerabilities

Vulnerability
Characterization

Figure 4.10: Overview of the vulnerability characterization process.

Phase A — Data Preparation

The goal of this phase is to construct a consistent and enriched dataset of vul-
nerabilities related to the KVM and QEMU hypervisors. This process transforms
unstructured CVE records into a curated set of entries enriched with contextual
metadata and patch references, enabling subsequent manual characterization.

• CVE Acquisition and Filtering: We began by querying the National Vul-
nerability Database (NVD) [NIST, 2021] database for CVE entries that refer-
ence either the KVM or QEMU hypervisors. We downloaded all historical
CVE data available up to July 2020 and developed custom Python scripts to
parse and analyze the fields within each entry. Filtering on the presence of
the tokens KVM or QEMU yielded an initial set of 524 candidate CVEs.

From this initial set, we removed entries that did not directly pertain to the
hypervisors themselves, for instance, issues that referenced KVM or QEMU
but were in fact attributable to the Linux kernel or external libraries. After
this filtering step, we retained 343 CVEs that represented genuine vulnera-
bilities in KVM/QEMU.

• Metadata Enrichment: We collected all additional references found within
each CVE record, including links to vendor advisories, upstream bug re-
ports, public mailing lists, and security blogs. These references were auto-
matically associated with their corresponding CVEs in our dataset.

• Patch Reference Linking: When available, we extracted links to the ver-
sion control system (VCS) commits corresponding to patches that addressed
each vulnerability. These links provided valuable insights into the specific
code changes made to mitigate the issue, supporting the later analysis of
fault types and affected components.

106

Understanding Exploitable Hypervisor Vulnerabilities

The resulting dataset from Phase A consists of 343 curated vulnerabilities, each
augmented with structured metadata and contextual references. This dataset
forms the input to Phase B, where we perform a detailed semantic classification
of each vulnerability.

Phase B — Vulnerability Characterization

With the enriched dataset constructed in Phase A, we proceed to the semantic
classification of vulnerabilities. This phase aims to extract structured, causal in-
formation from each CVE, capturing not only the technical root cause but also
the emergent system behavior and security impact. The classification is based on
three core properties:

• Cause: the underlying software fault that triggers the vulnerability.

• Abusive Functionality: a faulty or unintended behavior that was not part
of the design but emerges when the fault (cause) is activated.

• Security Violation: the resulting breach of a system security property.

These three dimensions, cause, abusive functionality, and security violation, serve
as the conceptual bridge between low-level faults and high-level security conse-
quences. They will be revisited when formalizing vulnerability semantics and
modeling exploit effects (see Chapters 5 and 6). From a security assessment per-
spective, anticipating an attacker’s capabilities requires a understanding of what
the system actually exposes, namely, which faults exist and how they may be ac-
tivated or abused. While the present classification is grounded in a pragmatic, ad
hoc analysis of real-world vulnerabilities, it lays the groundwork for the method-
ical and model-driven formalization developed in subsequent chapters.

I. Manual Analysis Procedure: The classification process was carried out
through a systematic review of each CVE record, its associated references, and
linked patches. The following steps were applied:

1. Data Examination: All information was manually reviewed to understand
the technical context, including CVE descriptions, external advisories, and
VCS diffs.

2. Cause Attribution: Each vulnerability was mapped to a CWE identifier
when possible, using either the official CVE record or inferred from sup-
porting evidence. We did this once the CWE is a reasonable estimate about
the triggering fault. This step ensured consistent terminology for fault clas-
sification. Table 4.8 presents the vocabulary adopted in this work, including
custom extensions for domain-specific issues.

1We used Wrong instead of Improper to avoid the collision of its acronyms (II) with the Improper
Initialization.

107

Chapter 4

Table 4.8: Vulnerability Causes Definitions

Type Definition

IAC Improper Access
Control

The software does not restrict or incorrectly restrict access to a re-
source from an unauthorized actor.

II Improper
Initialization

The software does not initialize or incorrectly initialize a resource,
which might leave the resource unexpectedly unavailable when ac-
cessed or used.

IIV Improper Input
Validation

The product receives input or data. Still, it does not validate or
incorrectly validate that the input has the properties required to
process the data safely and correctly.

IMM Improper Memory
Management

The code does not sufficiently manage its memory during its life
cycle, creating conditions in which it can be abused unexpectedly.

IRM Improper Resource
Management

The code does not sufficiently manage its resources during its life
cycle, creating conditions where they can be abused unexpectedly.

ICF Improper Control
Flow

The code does not sufficiently manage its control flow during exe-
cution, creating conditions where it can be modified unexpectedly.

NE Numeric Errors
The software performs calculations that generate incorrect or un-
intended results that are later used in security-critical decisions or
resource management.

UE Unhandled Errors An error is triggered inside the system, but it is not treated, and its
propagation exposes additional security breaches.

WI Wrong
Implementation1

A generic definition to group several types of faults specific to im-
plementations that are wrongly made and related to the underly-
ing technology. For example, it includes errors when emulating in-
structions, the absence of existing event handlers, incomplete sup-
port for technologies, and enabling configuration mode that should
not be supported, among many others. This is a non-CWE classi-
fication.

3. Security Violation Determination: Based on descriptions and available
PoCs or advisories, we identified the most critical security property vio-
lated. When multiple violations were possible, we selected the one with the
highest impact following a predefined severity order. Table 4.10 formalizes
this violation taxonomy.

4. Abusive Functionality Identification: This step aimed to capture the emer-
gent, exploitable behaviors enabled by the fault. Often bridging the gap
between cause and violation, abusive functionalities describe attacker-
observable capabilities such as “unauthorized memory access” or “arbitrary
code execution.” This was the most interpretative and time-intensive part
of the process. Table 4.9 summarizes the resulting classification.

The following paragraphs detail the vocabulary used for each classification prop-
erty and provide relevant commentary for their role in hypervisor-oriented secu-
rity assessment.

108

Understanding Exploitable Hypervisor Vulnerabilities

II. Causes: Understanding the root causes of vulnerabilities is fundamental to
both prevention and structured modeling. As shown in Table 4.8, we use a taxon-
omy derived from the Common Weakness Enumeration (CWE), extended with
a non-CWE category labeled Wrong Implementation (WI). This latter class cap-
tures hypervisor-specific design and emulation errors that are frequent in QE-
MU/KVM but often poorly categorized in existing taxonomies. Memory-related
causes (e.g., IMM, IRM) are particularly relevant given their tight coupling to con-
trol violations and privilege escalation paths.

Table 4.9: Abusive Functionalites Definition

Type Definition

ACE Arbitrary Code
Execution

The ability to execute any crafted code injected during the ex-
ploitation. This classification happens when there is any explicit
mention that a code execution could be achieved.

CE CPU Exception
Reaching states like activating incorrect interruption handling,
absence of exit handler, internal CPU exception, and machine-
check exceptions.

ME Memory Exception Segmentation Fault, Page Fault, Assertion failure, and others.

PMA Protected Memory
Access

The bypass of protection mechanisms such as the Current Privi-
lege Level, the Address Space Layout Randomization, the Pointer
Authentication, the Supervisor Mode Access Prevention, among
others.

RE Resource
Exhaustion

The inability to properly control the allocation and maintenance
of a limited resource enables an actor to influence the amount
of resources consumed, eventually leading to the exhaustion of
available resources.

RS Resource
Starvation

A process that cannot access a specific resource, leading to unex-
pected state changes and behaviors. Different from RE, there is
still resource available in the system, but the process cannot ac-
cess it for some reason, e.g., livelock, deadlock, lock convoy, etc.

UFA Unauthorized File
Access Acquire access to forbidden IO file operations.

UMA Unauthorized
Memory Access

The access to restricted memory locations (excluding the ones of
the PMA).

VAC Void Access
Control

When the access control mechanism exists but does not enforce a
restriction, i.e., it does not need an explicit bypass.

III. Abusive Functionalities: An Abusive functionality (AF) represents attacker-
relevant capabilities that result from activating a vulnerability. Rather than focus-
ing on the exploit path, this concept emphasizes the emergent system behavior
(the “effect” observed once the vulnerability manifests). This approach provides
a high-level understanding of the impact or effect on the system. Previous works
have done similar characterization but using the term "effect" [Duarte and An-
tunes, 2019; Elia et al., 2017]. The functionality is closely related to the security
attribute it affects. For instance, to Gain Information (which violates confiden-
tiality), an attacker should acquire access to any protected resource. Then we

109

Chapter 4

examined the resource involved in the exploit, memory, and defined the abusive
functionality of "Unauthorized Memory Access".

Table 4.9 lists the AF categories identified. These range from memory and re-
source manipulation to privilege violations. While this classification is currently
empirical and based on expert analysis, Chapter 5 formalizes its derivation and
generalization.

Table 4.10: Security Violations

Type Definition

DoS Denial of Service
a total or partial compromise on the correct service/func-
tion delivery. Impacting the availability attribute.

OI
Obtain

Information
access to content that should not be disclosed to unautho-
rized agents. Impacting the confidentiality attribute.

ByP Bypass
The circumvention of a security mechanism. Impacting the
integrity attribute.

GP Gain Privilege
A critical bypass where the circumvention of the security
mechanism increases the system’s access level. Impacting
the integrity attribute.

EC Execute Code
The ability to change the execution flow and induce the sys-
tem to execute unspecified code. Impacting the integrity at-
tribute.

III. Security Violations: The final classification axis captures the security prop-
erty compromised by the vulnerability. Our analysis adopts a pragmatic view:
when multiple potential impacts are described, we retain only the most severe
for simplicity and consistency. This ordering reflects both the attacker’s poten-
tial gain and the disruption to system operation, with information disclosure (OI)
ranked lowest due to its typically limited and passive effect, especially in contrast
to execute code (EC), which represents the highest severity owing to its broad and
lasting impact on multi- tenant environments. Denial of Service (DoS) falls in the
middle, reflecting moderate, often transient disruption

OI ByP DoS GP EC

Least Severity Most

Figure 4.11: Visual hierarchy of attack severity. The diagram illustrates the in-
creasing impact of attack types, from information disclosure (OI) to Execute Code
(EC), based on potential disruption and adversarial gain.

Table 4.10 provides the adopted violation taxonomy. This classification plays a
crucial role in evaluating trust boundaries and modeling erroneous post-exploit
states in later chapters.

110

Understanding Exploitable Hypervisor Vulnerabilities

4.3.2 Chain Analysis of Hypervisor Vulnerabilities

After evaluating each vulnerability individually, we synthesized the overall char-
acterization. The following analysis presents the foundational chain linking
causes to security violations, highlighting the most frequent patterns observed
across our dataset.

We begin by examining the distribution of categories across three key dimen-
sions: Cause, Abusive Functionality, and Security Violation, as shown in Table 4.11.
This table presents frequency counts for each category, along with their cor-
responding acronyms for ease of reference throughout the analysis. Notably,
memory-related issues dominate all three dimensions; for instance, IMM (Im-
proper Memory Management) and ME (Memory Exception) together represent
the most prevalent forms of root cause and misuse, respectively. On the viola-
tion side, Denial of Service (DoS) is the most common outcome, suggesting that
many attacks could target system availability rather than immediate privilege es-
calation

Table 4.11: Frequency counts of Causes, Abusive Functionalities, and Security
Violations, highlighting their acronyms for quick reference.

Cause Abusive Functionality Security Violation

153 IMM Improper Memory
Management 92 ME Memory

Exception 213 DoS
Denial
of Service

59 IRM Improper Resource
Management 67 UMA Unauthorized

Memory Access 60 EC
Execute
Code

38 IIV Improper
Input Validation 59 RE Resource

Exhaustion 31 OI
Obtain
Information

27 NE Numeric
Errors 57 ACE Arbitrary Code

Execution 28 GP
Gain
Privileges

21 WI
Wrong
Implementation

33 CE CPU
Exception 11 ByP Bypass

16 IAC Improper
Access Control 13 UFA Unauthorized

File Access

15 ICF Improprer
Control Flow 10 RS Resource

Starvation

10 II Improper
Initialization 8 PMA Protected

Memory Access

4 UE Unhandled Errors 4 VAC Void Access
Control

This prevalence suggests that vulnerabilities in hypervisors are closely tied to
improper handling of memory and access control, reinforcing the importance of
memory safety enforcement and fine-grained privilege management in virtual-
ized environments.

Next, we present a qualitative perspective of the classified data, focusing on each
evaluated attribute, to capture the proportion of each attribute type and how each

111

Chapter 4

attribute impacts the other dimensions. To illustrate this, we present a parallel
coordinate visualization that allows us to identify how a property impacts other
characteristics in our characterization.

Improper Access ControlImproper Access ControlImproper Access ControlImproper Access ControlImproper Access Control
Cause

Improper InitializationImproper InitializationImproper InitializationImproper InitializationImproper Initialization

Improper Input ValidationImproper Input ValidationImproper Input ValidationImproper Input ValidationImproper Input Validation

Improper Memory ManagementImproper Memory ManagementImproper Memory ManagementImproper Memory ManagementImproper Memory Management

Improper Resource ManagementImproper Resource ManagementImproper Resource ManagementImproper Resource ManagementImproper Resource Management

Improprer Control FlowImproprer Control FlowImproprer Control FlowImproprer Control FlowImproprer Control Flow
Numeric ErrorsNumeric ErrorsNumeric ErrorsNumeric ErrorsNumeric Errors

Unhandled errorsUnhandled errorsUnhandled errorsUnhandled errorsUnhandled errors
Wrong ImplementationWrong ImplementationWrong ImplementationWrong ImplementationWrong Implementation

Arbitrary Code ExecutionArbitrary Code ExecutionArbitrary Code ExecutionArbitrary Code ExecutionArbitrary Code Execution

Abusive Functionality

CPU ExceptionCPU ExceptionCPU ExceptionCPU ExceptionCPU Exception

Memory ExceptionMemory ExceptionMemory ExceptionMemory ExceptionMemory Exception

Protected Memory AccessProtected Memory AccessProtected Memory AccessProtected Memory AccessProtected Memory Access

Resource ExhaustionResource ExhaustionResource ExhaustionResource ExhaustionResource Exhaustion

Resource StarvationResource StarvationResource StarvationResource StarvationResource Starvation
Unauthorized File AccessUnauthorized File AccessUnauthorized File AccessUnauthorized File AccessUnauthorized File Access

Unauthorized Memory AccessUnauthorized Memory AccessUnauthorized Memory AccessUnauthorized Memory AccessUnauthorized Memory Access

Void Access ControlVoid Access ControlVoid Access ControlVoid Access ControlVoid Access Control

BypassBypassBypassBypassBypass
Security Violation

Denial of ServiceDenial of ServiceDenial of ServiceDenial of ServiceDenial of Service

Execute codeExecute codeExecute codeExecute codeExecute code

Gain PrivilegesGain PrivilegesGain PrivilegesGain PrivilegesGain Privileges

Obtain informationObtain informationObtain informationObtain informationObtain information

Figure 4.12: Parallel Mapping of Causes to the others dimensions. Each color represents
a type of Cause and its relation with the Abusive Functionality and the Security Violation

In Figure 4.12 we focus on the Causes. Each type of Cause is associated with one
color. Analysing the image, we can note that Improper Memory Management is the
leading cause, with 153 occurrences. It contributes notably to Memory Exception
(57), Arbitrary Code Execution (43), and Unauthorized Memory Access (34) as we can
see in Figure 4.13a. Also, we can note that Improper Resource Management can
only lead to Resource Exhaustion and consequently DoS.

IACIACIACIACIAC
Cs

ICFICFICFICFICF
IIIIIIIIII

IIVIIVIIVIIVIIV

IMMIMMIMMIMMIMM

IRMIRMIRMIRMIRM
NENENENENE
UEUEUEUEUE
WIWIWIWIWI

ACEACEACEACEACE
AF

CECECECECE

MEMEMEMEME

PMAPMAPMAPMAPMA
RERERERERE
RSRSRSRSRS

UFAUFAUFAUFAUFA
UMAUMAUMAUMAUMA
VACVACVACVACVAC

ByPByPByPByPByPSV

DoSDoSDoSDoSDoS

ECECECECEC
GPGPGPGPGP
OIOIOIOIOI

(a) Highlight of IMM Cause

IACIACIACIACIAC
Cs

ICFICFICFICFICF
IIIIIIIIII

IIVIIVIIVIIVIIV

IMMIMMIMMIMMIMM

IRMIRMIRMIRMIRM
NENENENENE
UEUEUEUEUE
WIWIWIWIWI

ACEACEACEACEACE
AF

CECECECECE

MEMEMEMEME

PMAPMAPMAPMAPMA
RERERERERE
RSRSRSRSRS

UFAUFAUFAUFAUFA
UMAUMAUMAUMAUMA
VACVACVACVACVAC

ByPByPByPByPByPSV

DoSDoSDoSDoSDoS

ECECECECEC
GPGPGPGPGP
OIOIOIOIOI

(b) Highlight of Memory Related AF

Figure 4.13: Vulnerabilities directly related to memory exploitation mechanisms.

With an emphasis on the Abusive Functionality dimension, we have Figure 4.14
that highlights the parallel lines based on each AF’s attribute. Looking at the
figure, we can gain insight into how a specific system malfunction can lead to un-
expected functionalities and what its consequences may be. We can note a preva-
lence of vulnerabilities that cause Resource Exhaustion (59) and memory viola-
tions (Unauthorized Memory Access (67) and Memory Exception (92)). Figure 4.13b
highlight this prevalence.

The relations between Causes and AFs are presented in Table 4.12. The first thing
to note is a prevalence of memory related vulnerabilities. The intersection of
Improper Memory Management and Memory Exception is more than half of the vul-
nerabilities (188).

112

Understanding Exploitable Hypervisor Vulnerabilities

Improper Access ControlImproper Access ControlImproper Access ControlImproper Access ControlImproper Access Control
Cause

Improper InitializationImproper InitializationImproper InitializationImproper InitializationImproper Initialization

Improper Input ValidationImproper Input ValidationImproper Input ValidationImproper Input ValidationImproper Input Validation

Improper Memory ManagementImproper Memory ManagementImproper Memory ManagementImproper Memory ManagementImproper Memory Management

Improper Resource ManagementImproper Resource ManagementImproper Resource ManagementImproper Resource ManagementImproper Resource Management

Improprer Control FlowImproprer Control FlowImproprer Control FlowImproprer Control FlowImproprer Control Flow
Numeric ErrorsNumeric ErrorsNumeric ErrorsNumeric ErrorsNumeric Errors

Unhandled errorsUnhandled errorsUnhandled errorsUnhandled errorsUnhandled errors
Wrong ImplementationWrong ImplementationWrong ImplementationWrong ImplementationWrong Implementation

Arbitrary Code ExecutionArbitrary Code ExecutionArbitrary Code ExecutionArbitrary Code ExecutionArbitrary Code Execution

Abusive Functionality

CPU ExceptionCPU ExceptionCPU ExceptionCPU ExceptionCPU Exception

Memory ExceptionMemory ExceptionMemory ExceptionMemory ExceptionMemory Exception

Protected Memory AccessProtected Memory AccessProtected Memory AccessProtected Memory AccessProtected Memory Access

Resource ExhaustionResource ExhaustionResource ExhaustionResource ExhaustionResource Exhaustion

Resource StarvationResource StarvationResource StarvationResource StarvationResource Starvation
Unauthorized File AccessUnauthorized File AccessUnauthorized File AccessUnauthorized File AccessUnauthorized File Access

Unauthorized Memory AccessUnauthorized Memory AccessUnauthorized Memory AccessUnauthorized Memory AccessUnauthorized Memory Access

Void Access ControlVoid Access ControlVoid Access ControlVoid Access ControlVoid Access Control

BypassBypassBypassBypassBypass
Security Violation

Denial of ServiceDenial of ServiceDenial of ServiceDenial of ServiceDenial of Service

Execute codeExecute codeExecute codeExecute codeExecute code

Gain PrivilegesGain PrivilegesGain PrivilegesGain PrivilegesGain Privileges

Obtain informationObtain informationObtain informationObtain informationObtain information

Figure 4.14: Parallel Mapping of Abusive Functionality to the others dimensions.
Each color represents a type of Abusive Functionality and its relation with its
Cause and the possible Security Violation

Another interesting observation is that there are many-to-many relations be-
tween causes and Abusive Functionalities, i.e., a single cause can lead to dif-
ferent AFs and vice versa. For instance, Improper Input Validation covers all Abu-
sive Functionalities, besides Void Access Control. The same applies to Unauthorized
Memory Access and Memory Exception AFs.

Table 4.12: Relation between Abusive Functionality and Causes

Abusive Functionality
ACE CE ME PMA RE RS UFA UMA VAC Total

C
au

se
s

Improper Resource Management 2 8 7 0 28 3 6 5 0 59
Improper Initialization 0 1 0 1 0 0 0 8 0 10
Improper Memory Management 43 0 57 0 19 0 0 34 0 153
Improper Control Flow 0 3 5 0 5 1 0 1 0 15
Numeric Errors 4 11 7 0 1 0 1 2 1 27
Wrong Implementation 0 6 2 4 0 0 1 7 1 21
Improper Input Validation 7 2 10 1 5 4 2 7 0 38
Unhandled Errors 1 1 0 0 1 0 1 0 0 4
Improper Access Control 0 1 4 2 0 2 2 3 2 16

Total 57 33 92 8 59 10 13 67 4 343

From the perspective of Security Violations, the data indicates that DoS viola-
tions are prevalent, making up the most significant portion of breaches at 62.1%.
We have divided the visualization into two parts to better visualize the rela-
tionship with the other two dimensions (Figure 4.15). On the left, Figure 4.15a
shows that DoS vulnerabilities dominate and can result from nearly any cause,
except for three abusive functionalities: Arbitrary Code Execution, Void Access Con-
trol, and Protected Memory Access. On the right, Figure 4.15b details the rela-
tionships among non-DoS security vulnerabilities, highlighting that most Execute
Code cases stem from the Improper Memory Management cause.

Table 4.13 presents the relation between AFs and the consequences. As we can
see, there are more unary relations, showing that some AFs target specific SVs.

113

Chapter 4

IACIACIACIACIAC
Cs

ICFICFICFICFICF
IIIIIIIIII

IIVIIVIIVIIVIIV

IMMIMMIMMIMMIMM

IRMIRMIRMIRMIRM
NENENENENE
UEUEUEUEUE
WIWIWIWIWI

ACEACEACEACEACE
AF

CECECECECE

MEMEMEMEME

PMAPMAPMAPMAPMA
RERERERERE
RSRSRSRSRS

UFAUFAUFAUFAUFA
UMAUMAUMAUMAUMA
VACVACVACVACVAC

ByPByPByPByPByPSV

DoSDoSDoSDoSDoS

ECECECECEC
GPGPGPGPGP
OIOIOIOIOI

(a) Highlight of DoS Security Violation

IACIACIACIACIAC
Cs

ICFICFICFICFICF
IIIIIIIIII

IIVIIVIIVIIVIIV

IMMIMMIMMIMMIMM

IRMIRMIRMIRMIRM
NENENENENE
UEUEUEUEUE
WIWIWIWIWI

ACEACEACEACEACE

AF

MEMEMEMEME
PMAPMAPMAPMAPMA
UFAUFAUFAUFAUFA

UMAUMAUMAUMAUMA

VACVACVACVACVAC

ByPByPByPByPByP
SV

ECECECECEC

GPGPGPGPGP

OIOIOIOIOI

(b) Security Violations without DoS

Figure 4.15: Parallel Mapping of Security Violation to the others dimensions. We
represent the DoS separately to ease the visualization.

Table 4.13: Consequences vs Abusive Functionalities

Consequences
DoS GI EC ByP GP Total

A
bu

si
ve

Fu
nc

ti
on

al
it

y Arbitrary Code Execution 0 0 57 0 0 57
CPU Exception 33 0 0 0 0 33
Memory Exception 89 0 2 0 1 92
Protected Memory Access 0 0 0 3 5 8
Resource Exhaustion 59 0 0 0 0 59
Resource Starvation 10 0 0 0 0 10
Unauthorized File Access 4 4 1 4 0 13
Unauthorized Memory Access 18 27 0 0 22 67
Void Access Control 0 0 0 4 0 4

Total 213 31 60 11 28 343

However, this interpretation is limited since we only evaluate the most critical
consequences. For example, Unauthorized Memory Access can lead to three con-
sequences that cover all three security attributes, showing the criticality of the
memory management on the security of hypervisors.

One non-obvious relation that raised our attention is that 70% of vulnerabilities
caused by Improper Initialization lead to Gain Information, leaking some sensitive
information and thus impacting the confidentiality of the system.

An overall representation of the chain of Cause→AFs→SV is presented in Fig-
ure 4.16. The goal of this picture is to emphasize the ability of the AFs to capture
diverse security faults represented by the high number of incoming arrows in
most AF rectangles. The exact relations of each fraction of Cause/(resp. AFs) be-
longing to what AFs(resp. SV) are available online in [Gonçalves, 2021], where the
reader can also find more detailed information about the CVEs analyzed.

To illustrate a specific subset of these chain relations, we chose the Unauthorized
Memory Access AF, as presented in Figure 4.17. As we can see, a single AF can
be achieved by different types of faults and, at the same time, can impact every
security attribute of the hypervisor.

Finally, we grouped the vulnerabilities based on their mainly affected security
attributes. Results indicate that availability is the most affected security attribute,

114

Understanding Exploitable Hypervisor Vulnerabilities

Figure 4.16: Overall relation between cause, AFs, and consequences. Fully data
available on [Gonçalves, 2021]

accounting for 62% of cases, followed by integrity at 29% and confidentiality at
9%. We only consider the SV with the highest impact when multiple SVs are
possible in a given vulnerability.

Initialization

8

Numeric Errors

2

Resource
Management

5

Memory
Management

34

Control Flow

1

Wrong
Implementation

7

Input Validation

7

Access Control

3

Gain
Information

27 Denial of
Service

18

Gain
Privileges

22

Unauthorized
Memory Access

67

Figure 4.17: Central role of an Abusive Functionality in linking different security
faults with their different security violations

4.3.3 Implications of the Results

The classification presented in this work has limitations. First, the vulnerabilities’
manual classification implies some subjectivity related to the authors’ expertise
in the field, compromising the reproducibility of such evaluation. We also may
criticise how orthogonal such characterization is regarding other systems or even
how deep or shallow the specificity of each type of property defined here is. Nev-
ertheless, the goal is to show a conceptual relation between different causes, AFs,
and consequences, not to establish a fixed classification.

The results presented have two critical contributions: to inform and to motivate.
The first helps to understand the dynamics of vulnerabilities in hypervisors, start-
ing with the security fault cause, further investigating the faulty behavior in-
duced by its intrusion, and finally disturbing the system into any of the conse-
quences above. The latter can raise new hypotheses to motivate further work
toward better security approaches to virtualized systems. Next, we synthesize

115

Chapter 4

some takeaways from the current characterization that address those contribu-
tions.

Our analysis suggests that memory management is a security-critical resource
affected by most vulnerabilities, either as a direct cause or as the primary asset
manipulated during an intrusion. Therefore, memory access control deserves
special attention in virtualized systems. Vendors can adopt mitigation strategies
during system design (such as memory-safe programming practices [Vasudevan
et al., 2013], formal verification of memory access routines [Kulik et al., 2022], and
fuzz testing of hypercall interfaces), and hardware-assisted protections (e.g., Intel
MPX or ARM MTE) to contain or prevent unauthorized memory manipulation.

Depending on the security scenario and the deployment context of the virtual-
ized system, some vulnerabilities pose greater severity than others. Looking at
the evidence that 70% of vulnerabilities with Improper Initialization culminated
in Gain Information consequence, we speculate the existence of a subtle relation
that can help establish priorities, rules, and practices about the security of sys-
tems. For example, in a system where customer privacy is business-critical, we
may need to invest additional effort to mitigate improper initialization in virtual-
ized environments. Following this simple example, we can establish distinct crit-
icality levels for different threats and requirements by studying the relationship
between cause, AFs, and consequences on virtualized system components. De-
veloping methods to evaluate and generalize these relations systematically could
provide evidence to guide how to mitigate each threat adequately and devise
better security policies.

As illustrated in Figure 4.17, Abusive Functionalities (AFs) act as connectors be-
tween diverse root causes and their associated security consequences. Our analy-
sis shows that 67 vulnerabilities, originating from eight distinct causes, ultimately
affect availability, confidentiality, or integrity, and can be abstracted into a single
generalized AF. If such a property can be programmatically identified, it may en-
able the creation of a systematic approach for injecting AFs and observing how
virtualized systems respond to these intrusions. One of the main challenges lies
in crafting representative workloads that faithfully simulate the effects of gener-
alized AFs. Nevertheless, this strategy could establish a new method for security
evaluation in virtualized systems.

4.4 Threats to Validity

As with any empirical study, the contributions of this chapter face specific threats
to validity. Although we designed each study carefully to ensure soundness, the
following threats exist:

Robustness Testing in Virtualized Environments. The absence of a physical
serial terminal limited the traceability of hindering or silent faults in our exper-
imental environment, which challenges internal validity. Due to this limitation,
excluding such failure modes could not be ruled out. Furthermore, excluding
some hypercall operations introduces a risk of bias in the coverage and com-

116

Understanding Exploitable Hypervisor Vulnerabilities

pleteness of the testing campaign. Limited resources and domain expertise con-
strained our ability to thoroughly assess complex hypercalls, potentially leaving
critical failure paths unexplored.

Using Vulnerability Analysis as Trustworthiness Evidence. This study relies
on external data sources such as CVEs and Xen Security Advisories, prone to in-
consistencies and other data problems. Reliance on abstract concepts that require
proxy measurements, like vulnerability density and saturation models, to infer
trustworthiness challenges construct validity. The study only approaches data
from Xen and may not generalize to other hypervisors.

Linking Faults to Exploitable Consequences. Manual classification introduces
high subjectivity, threatening internal and construct validity. Mapping complex
vulnerabilities into discrete root causes, abusive functionalities, and security vi-
olations necessarily involves interpretation, which may vary across analysts. Ex-
ternal validity remains limited due to the exclusive focus on KVM and QEMU
vulnerabilities, which may not represent the causal structures found in other hy-
pervisors, particularly non-open-source ones. Since no empirical validation of the
proposed policy-generation or assessment strategies was conducted, the validity
of this study’s conclusion is also limited.

It is important to emphasize that each of these studies advances the understand-
ing of hypervisor security from a different perspective. Still, their findings reflect
methodological trade-offs, data limitations, and interpretive choices.

4.5 Summary

This chapter explored various methodologies for assessing the security of hyper-
visors through empirical robustness testing, historical vulnerability analysis, and
causal vulnerability characterization. These methodologies provided an ample
perspective on hypervisor security, highlighting practical challenges and essen-
tial insights into improving security evaluations.

In the robustness testing study, we examined the hypercall interface of the Xen
hypervisor by injecting mutated inputs and monitoring the system behavior un-
der realistic workloads. Specifically, we observed that conventional mutation
strategies frequently resulted in superficial errors and could not effectively un-
cover deeper security flaws. These findings underscore the necessity of adopt-
ing context-aware mutation strategies tailored explicitly to hypervisor operations
and runtime environments to enhance the depth and relevance of robustness
evaluations.

In the second study of this chapter, we shifted focus to historical vulnerabil-
ity data, applying models such as the Malaya-Alhazmi vulnerability lifecycle
(MAM) and vulnerability density metrics to derive trustworthiness evidence for
the Xen hypervisor. This analysis emphasized how trends in vulnerability discov-
ery may reflect the impact of security investments, while also uncovering limita-
tions in existing metrics.

117

Chapter 4

Lastly, by analyzing longitudinal data, we highlighted the potential for these
metrics to inform adoption decisions and risk assessment processes in security-
critical environments.

The causal vulnerability characterization for KVM and QEMU further clarified
the relationships between underlying faults, exploit mechanisms, and security
violations. By mapping root causes (e.g., improper memory management) to
exploitable outcomes (e.g., privilege escalation), we provide insights into the
dynamics of similar future vulnerabilities. This causal framework can support
strategic prioritization of security measures, enabling targeted improvements in
hypervisor security.

Together, these findings demonstrate that vulnerability analysis can play a central
role in understanding and improving the security of hypervisors. Combining
empirical testing, historical analysis, and structured characterization provides a
comprehensive foundation for developing security-aware methodologies. It also
highlights specific areas that require attention to enhance hypervisor resilience,
like context-aware robustness tests and proactive vulnerability management.

Building on these insights, particularly the notion of abusive functionalities as
a recurring exploit enabler, we focus on a more proactive strategy for evaluating
hypervisor resilience. The fault observability and detection limitations motivated
the development of a targeted intrusion injection approach. The next chapter in-
troduces an Intrusion Injection methodology that enables the controlled insertion
of erroneous states into virtualized systems to simulate realistic attack scenarios,
allowing us to evaluate how hypervisors respond to exploitation attempts rooted
in the causal structures uncovered in this chapter.

118

Chapter 5

Intrusion Injection in Virtualized
Systems

Software systems have defects [Hatton, 2007], and any security mechanism can
fail [Bellovin, 2006]. Given the complexity of hypervisor codebases, often exceed-
ing millions of lines, latent vulnerabilities remain a significant concern. Under-
standing the vulnerabilities that affect virtualized environments is a step toward
enhancing their security, but it is limited. The vulnerability analysis presented
in the previous chapter examines hypervisor security flaws by mapping causal
chains from root causes to their resulting security violations. This analysis is
complemented by robustness testing, which explores how mutated hypercall in-
puts can trigger fault conditions and reveal system weaknesses. However, the
complexity of modern attacks has continued to grow, even as the technical exper-
tise required to execute them has declined [Lipson, 2002], a trend exemplified by
the widespread availability of ready-to-use exploit scripts and automation tools
for non-expert attackers. The current dilemma is not how but when a vulnerabil-
ity will be discovered and, eventually, exploited. Consequently, understanding
vulnerability dynamics is only a first step to addressing how a virtualized en-
vironment responds during and after an intrusion. This gap requires a shift in
methodology: from focusing on static vulnerabilities to actively evaluating sys-
tem behavior under simulated attack conditions.

Over the last decades, researchers have proposed solutions to assess and bench-
mark the dependability attributes of complex systems, such as robustness testing,
fault injection, and reliability modeling [Blischke and Murthy, 2011; Buhren et al.,
2021; Cotroneo et al., 2015; Koopman et al., 1997; Madeira et al., 2000]. A con-
crete example is fault injection for evaluating error detection mechanisms [Pat-
tabiraman et al., 2008] and for enabling dependability benchmarks [Kanoun and
Spainhower, 2008]. However, assessing the security of virtualized systems (and
complex systems in general) is a recent demand for which we lack consolidated
and practical solutions. Existing work on security assessment has primarily fo-
cused on techniques for evaluating and comparing security tools. A classic ap-
proach uses vulnerability and attack injection to create exploitable code, which
assesses the effectiveness of vulnerability detection tools and intrusion detection
systems [Bhor and Khanuja, 2016; Fonseca et al., 2014; Neves et al., 2006]. The

119

Chapter 5

problem with such solutions is that they fall short in empirically evaluating sys-
tem security, primarily because they assume that vulnerabilities and attacks on
the target system are known or can be injected.

Empirically assessing security by relying on real or injected vulnerabilities is
flawed for several reasons. First, predicting undiscovered vulnerabilities or fu-
ture attacks is impossible. Additionally, most vulnerabilities are fixed before a
stable software release [Goncalves and Antunes, 2020], and even when well doc-
umented, injecting an effective payload to exploit a known vulnerability can be
extremely challenging [Adams, 2015], especially in low-level systems like hyper-
visors. Furthermore, when a vulnerability is discovered in released software, it
should be promptly fixed [Canfora et al., 2020], which diminishes its value for
evaluation purposes. Even if existing vulnerabilities are known or representa-
tive vulnerabilities and attacks can be injected, designing test cases that cover all
vulnerability classes remains challenging. Software and systems evolve, altering
features and design, which limits the creation of a consistent attack corpus for
testing purposes.

The central problem addressed in this chapter is the lack of systematic methods to as-
sess how virtualized systems respond to successful intrusions, particularly those stem-
ming from unknown Abusive Functionality (AF). Thus, we introduce the novel
concept and approach of intrusion injection for virtualized environments. The
core idea is to inject erroneous states (e.g., overwrite an unauthorized memory)
that mimic the ones resulting from successful actual intrusions.

We argue that, just as fault injection evaluates error detection mechanisms, our
approach assesses how a system behaves in the presence of injected erroneous
states, and, by extension, how it would handle intrusions resulting from attacks
that exploit potentially unknown vulnerabilities. Since different attacks targeting
various vulnerabilities can produce the same or similar erroneous states, leading
to equivalent security violations, focusing on injecting erroneous states increases
assessment coverage while reducing testing complexity. We believe that every
specific mechanism that needs to be compromised to attack a system can be ab-
stracted, moving the focus to the effects of intrusions that impact system security.

Several key capabilities of intrusion injection, when compared with previous ap-
proaches [Bhor and Khanuja, 2016; Fonseca et al., 2009; Mainka et al., 2012; Neves
et al., 2006], should be highlighted: i) it is easier to induce a representative er-
roneous state than effectively attack the system, ii) our solution enables testing
when a corpus of known exploits/vulnerabilities is not available, iii) it allows
studying the impact of erroneous states of (potentially unknown) vulnerabili-
ties, iv) it allows covering different types of vulnerabilities using a single injec-
tion interface, increasing testing coverage, and v) it enables portable test cases
based on architectural conceptual aspects of the target systems rather than on
implementation-dependent ones.

To check the feasibility of the concept and illustrate our approach, we imple-
mented a proof-of-concept injector based on Xen [Barham et al., 2003]. This tool
provides an interface with the guest OS to inject memory-corruption erroneous
states directly into the hypervisor, allowing guests to access memory under the

120

Intrusion Injection in Virtualized Systems

hypervisor address space arbitrarily. This way, we can change the system behav-
ior to possibly induce security violations like code execution by writing code into
the instruction pointer address or mapping memory pages belonging to different
guests by altering the page tables controlled by the hypervisor.

We show that intrusion injection is viable by reproducing the effects of four public
exploits that abuse memory-management operations [Xen, 2015]. In practice, we
first run real exploits in a Xen-vulnerable version (4.6) and other versions where
the vulnerabilities were already fixed (4.8 and 4.13). With this, we could crash the
hypervisor (by overwriting a descriptor table handler) and escalate privileges to
the privileged domain (by acquiring root privileges) on the vulnerable version,
but not on the other two. Afterwards, using our prototype, we attempted and
succeeded in injecting the same erroneous states into the three versions of the
hypervisor. For versions 4.6 and 4.8, injecting the erroneous states leads to the
same security violations for every exploit. However, the erroneous states injected
do not lead to security violations for two of the four cases in version 4.13. This
difference in handling states suggests that Xen has improved over time and that
intrusion injection offers a viable method for assessment.

The contributions of this chapter can be summarized as follows:

• Conceptual Framework: The formalization of intrusion injection as a
methodology for security assessment in virtualized systems.

• Memory Intrusion Model: An Ad-hoc initial approach for modeling intru-
sion of memory-related erroneous states for hypervisors, providing a foun-
dation for future research.

• Injection Prototype: A practical implementation on the Xen code base
demonstrating the approach’s feasibility by implementing the Intrusion In-
jection approach for memory intrusion models.

• Empirical Validation: Evidence that intrusion injection can replicate erro-
neous states from actual exploits (RQ1), induce such states in patched sys-
tems (RQ2), and be applied for assessing security improvements (RQ3).

The rest of the chapter is as follows. Section 5.1 explains the basic concepts. Sec-
tion 5.2 presents the intrusion injection approach while Section 5.3 presents the
prototype for Xen, and Section 5.4 discusses the capability to reproduce erroneous
states, the applicability of the method in non-vulnerable systems, and its impli-
cations for security assessment. Section 5.5 discusses strengths and limitations.
Section 5.6 presents the findings and outlines directions for future work.

5.1 Erroneous States and Intrusion Injection

The definitions of fault, error, and failure have been established in the depend-
ability community a long time ago [Algirdas Avizienis et al., 2004]. A failure oc-
curs when the service delivered deviates from fulfilling the system’s goal. An er-
ror is a perturbation of the system state that is prone to lead to a failure. The cause

121

Chapter 5

for an error is called a fault, which can be active or latent. An active fault leads to
an error; otherwise, the fault is latent. These concepts were later extended to the
AVI (Attack, Vulnerability, Intrusion) composite fault model, to help understand
the mechanisms behind security attacks [Neves et al., 2006].

5.1.1 From Errors to Erroneous States

The AVI model is a specialization of the fault → error → failure in the context of ma-
licious faults. Attacks are the intentional acts that the adversary takes to subvert
the system (i.e., a malicious external fault [Algirdas Avizienis et al., 2004]) and
can have many steps (e.g, authentication bypass, code execution, etc.) usually
using exploits to reach the goal. An exploit is a component, usually a software
script, that interacts with the target system, activating a software vulnerability
(e.g, a sequence of hypercalls done by a malicious guest machine that reaches a
vulnerable code).

A vulnerability is a fault in the system introduced during design (e.g., wrong re-
quirement), development (e.g., a software bug), or operation (e.g., an incorrect
configuration). However, it is essential to distinguish between a vulnerability
and a weakness, as they are related but distinct concepts in software security. A
weakness refers to a general flaw or deficiency in a system that an attacker could
potentially exploit [Bojanova and Galhardo, 2023]. Whether a weakness leads to
a vulnerability depends on its context and the likelihood of exploitation. When
exploited, weaknesses form a chain that can result in a vulnerability [Bojanova
and Galhardo, 2023]. And when a vulnerability is successfully activated (i.e., ex-
ploited), it causes an intrusion [Neves et al., 2006].

Not every malfunction in a program leads to a security risk. To distinguish be-
nign faults from those with security implications, the system’s security proper-
ties (such as integrity, confidentiality, and availability) must be explicitly defined.
Once these properties are established, any behavior that violates them, such as
unauthorized access to protected memory, execution of arbitrary code, or denial
of service, is classified as a security error. To identify such errors, we analyze
the intended semantics and constraints of system operations and derive abusive
functionalities that deliberately break the associated security properties. For ex-
ample, if a hypercall is designed to copy memory between domains with strict ac-
cess control, an abusive variant may override this restriction to access privileged
memory. Similarly, a resource allocation interface may be misused to deplete sys-
tem resources, violating availability guarantees.

Erroneous State (ES): an error that violates a security property
caused by a malicious system interaction.

The first effect of an intrusion is an erroneous state (e.g., return address overwrit-
ten or memory corrupted). If no action is taken to correct or handle the erroneous
state, a security violation (a failure affecting a security attribute) may occur. Note
that, although the erroneous state can potentially violate a security property, the

122

Intrusion Injection in Virtualized Systems

adversary does not benefit from this if the system can handle the error.

fault error failure

attack
+

vulnerability
intrusion security

violation
erroneous state

Figure 5.1: Chain of dependability threats [Algirdas Avizienis et al., 2004] with
the extended-AVI model [Neves et al., 2006].

Figure 5.1 shows the relation between the chain of dependability threats and the
extended-AVI attack model, which supports our concept of intrusion injection.
The term erroneous states is used instead of errors to emphasize that these are
intrusion-induced. The form of an erroneous state varies depending on the vul-
nerability and how it is exploited. For example, a buffer overflow may lead to
different outcomes, such as a crash, privilege escalation, or no observable impact,
depending on the size and content of the corrupted memory.

Let us take the XSA-133 [Xen, 2015] (a.k.a VENOM) as an example to clarify the
concept further. This vulnerability is a fault in the floppy disk controller (FDC)
of the QEMU hypervisor (also affecting KVM, XEN, and VirtualBox), which does
not correctly restrict the operations on its input. To attack the system, a malicious
user with privileged access can create crafted kernel modules to send an input
buffer larger than specified to the FDC. When the attack succeeds, it overflows
an internal buffer of the FDC, placing the hypervisor in an erroneous state where
it corrupts memory that should remain inaccessible. Security violations, such
as a privilege escalation, may happen if there is no mechanism to handle this
erroneous state.

5.1.2 The Concept of Intrusion Injection

Fault tolerance mechanisms aim to prevent failures, for example, by stopping er-
ror propagation. Researchers often use fault injection to study a system’s ability
to handle residual faults. However, fault injection is highly complex due to the
sophistication of fault injection tools and because driving the system into a state
where the injected fault becomes active is challenging. This usually results in
very low fault activation rates [Natella et al., 2013]. A common approach is to
inject errors instead of root faults directly. For example, Software Implemented
Fault Injection often targets hardware faults by injecting errors (such as a bit-flip
that changes the system state) rather than injecting the actual fault that causes the
error [Carreira et al., 1998]. It is easier to flip a bit in memory through software
than to expose the hardware to, for example, radiation until a bit flips. The rea-
soning is that, by injecting errors (the effects of faults), one can still assess and
validate the fault tolerance abilities of systems [Arlat et al., 1990, 2003].

Our intrusion injection concept builds on the idea that, just as errors can be in-

123

Chapter 5

jected to emulate the effects of potential faults, they can be injected to mimic the
effects of attacks on possible vulnerabilities. Indeed, injecting erroneous states al-
lows studying how the system responds as if attacks had been crafted to exploit
known vulnerabilities. Considering the VENOM example, the intrusion injection
tool could change the QEMU process to allow the injection of the corresponding
error, e.g., by overwriting the FDC request handler method. Thus, when an I/O
request resembling a VENOM-style attack is sent to the FDC, it can trigger mem-
ory corruption in QEMU, mimicking the behavior observed when exploiting the
original vulnerability.

An important aspect to consider is reachability [Gao et al., 2024], which refers to
whether a specific system state can be reached through a defined sequence of
actions or events [Clarke et al., 2018]. In our context, the question is whether in-
trusion injection can reach a particular erroneous state from a given initial state.
There are several challenges involved in injecting erroneous states. Firstly, it is
crucial to differentiate erroneous states (security-related) from those caused by
accidental faults. Secondly, it is essential to identify erroneous states that in-
trusion injection can reach, but no known vulnerability is currently exploited.
While these states may be valuable for assessing unexpected or unknown situa-
tions, they must be used cautiously. Thirdly, consider the technical feasibility of
injecting certain erroneous states, especially those related to hardware-enabled
vulnerabilities that may not be practically injectable. Lastly, recognize that some
erroneous states remain unknown and may only be discovered through future in-
cidents. Although adequate modeling of real (known) intrusions may address the
first three challenges, the last one requires continuous modeling of new knowl-
edge on vulnerabilities and intrusions.

Similarly to fault injection that requires fault models [Chillarege et al., 1991; Jo-
hansson and Suri, 2005; Madeira et al., 2000], intrusion injection also asks for
intrusion models (IMs) that define the main aspects of the injection. In other
words, it is necessary to define the essential characteristics that can be general-
ized from a collection of exploits to related systems (those with similar architec-
tures and high-level features targeted by comparable attacks). This step is crucial
for ensuring representativeness; otherwise, the assessment may be irrelevant to
the system’s security. Although a detailed definition of Intrusion Model (IM) is
presented in Chapter 6, Section 5.2.2 further elaborates on a memory IM.

It is important to stress that Intrusion Injection does not assist in finding new
vulnerabilities, and it does not help to assess the reachability of vulnerable code,
nor how probable the activation of such areas is. We recognize that this is a
fundamental and challenging issue, but it is not the primary focus of this work.
Other techniques can handle those challenges, like fuzzing [Xu et al., 2020], model
checkers [Cook et al., 2020], among others. Nevertheless, inevitably, there will al-
ways be exploits to reach vulnerabilities. Therefore, studying the activation of
those erroneous states, how to protect systems from being compromised, or even
how to recover, are crucial aspects that we aim to support.

Finally, we mitigate the limitation of not knowing the specific path to the vulnera-
bility by abstracting any relevant factor before the intrusion. We capture the main
aspects like the vulnerability and the attack type by modeling the intrusion into

124

Intrusion Injection in Virtualized Systems

our technique (see Section 5.2.3). Still, any unknown vulnerability or attack that
leads to similar intrusions, i.e., the same intrusion model, can be assessed using
our intrusion injection approach.

5.1.3 Metaphor: Smart Vault Control System

We start with a physical metaphor to intuitively understand the concepts behind
Intrusion Injection. Consider a smart bank vault protected by a digital control
system comprising two inputs: a card reader and a keypad. Each visitor, staff
member, or admin uses a personal card and a PIN; access is granted if the card
and PIN are valid. The internal controller verifies both inputs, logs the activity,
and decides whether to open the vault.

Now, assume that a vulnerability exists in the keypad firmware. An attacker
discovers that entering an unusually long PIN overflows a shared memory buffer.
When they swipe a valid visitor card afterwards, the corrupted memory region
partially overwrites the card data for a high-privilege entry value. As a result, the
controller mistakenly authenticates the user as an admin and opens the vault.

Although the vulnerability is in the keypad firmware, the effect is that an unautho-
rized user gains access to the vault. Traditional vulnerability-based testing would
focus on the keypad bug, its conditions, exploitability, and patching. However,
Intrusion Injection proposes something different: simulate the post-compromise
state (e.g., overwritten user type entry) to observe the behavior of the system.

In this metaphor, the system inadvertently modifies the memory region hold-
ing the user’s access level, causing it to wrongly recognize a visitor as an admin.
This wrong user type represents an erroneous system state, where internal data
no longer reflects reality. The fact that this state was induced through the key-
pad, even though the keypad should not be able to influence card-based identity,
reveals an abusive functionality, a misuse of legitimate interfaces to reach un-
intended internal states. In this case, the corresponding Intrusion Model (IM)
abstracts this misuse as the ability to change the user’s privilege level via inter-
action with the keypad and a valid card. Rather than focusing on the specific
buffer overflow exploit, we define the IM by its effect: altering the user type. An
intrusion injector can simulate this scenario by directly modifying the internal
authorization buffer to reflect a compromised state. This setup allows observa-
tion of the system’s response: does it detect the inconsistency, block access, or trigger
a security alert?

This abstraction decouples how the fault occurred (overflow, race, etc.) from
its impact on the system state. Intrusion Injection lets us emulate exploit con-
sequences and measure resilience to intrusions without needing to discover or
exploit vulnerabilities.

125

Chapter 5

5.1.4 Potential Applicability

Intrusion injection is a technique that may help system vendors and system ad-
ministrators check if an erroneous state (or a group/set of erroneous states) is
detectable, understandable, interpreted, and considered by the system as unde-
sired behavior. Many examples can be given as potential areas of applicability,
like evaluating defense mechanisms, assessing the impact of intrusions in sys-
tems deployed in virtualized systems, or even "porting erroneous states" from
different systems/vendors.

Intrusion injection can be used as an enabler to evaluate a security mechanism
that focuses on specific components of the virtualized system. For example, a
hazardous type of attack is one where the adversary can write values to an ar-
bitrary location (usually called write-what-where conditions, CWE-123 [MITRE,
2021]). As an example of those threats, we can cite the vulnerabilities that enable
the attacker to have write access to the page table in a hypervisor, e.g., XSA-212,
XSA-302. Assuming a mechanism is deployed to prevent unauthorized page ta-
ble modifications, our approach can test the effectiveness of that mechanism. For
this, we need to model different intrusions that target unauthorized page-table
changes and execute a testing campaign, injecting various erroneous states using
an intrusion injector.

To exemplify the assessment of systems running on top of virtualized systems,
we can cite a transactional business-critical system that runs on a public cloud.
The question is: How can one assess the impact of successful intrusions on the hypervi-
sor on the ability of the transactional system to ensure the ACID (Atomicity, Consistency,
Isolation, Durability) properties? Unfortunately, having sufficient coverage by cre-
ating attack campaigns based on known exploitable vulnerabilities is impossible.
Intrusion injection helps mitigate this limitation by enabling the ability to induce
erroneous states similar to the ones observed in real hypervisor vulnerabilities.

Injecting the same erroneous states in hypervisors from different vendors or in
various versions of a given vendor can also be helpful for evaluation purposes.
For example, suppose cloud provider X wants to evaluate how its virtualized
environment, which runs on hypervisor A, would be affected by a vulnerability
similar to one discovered in hypervisor B. This evaluation can be performed by
injecting erroneous states derived from vulnerabilities in B into A using an intru-
sion injector. Risk assessment for security hardening is also a good example. One
can create a campaign to exercise different system components to check which
one is more vulnerable to the effects of vulnerabilities, in case they exist in those
or other components. Engineers can develop a hardening strategy based on the
assessment results to mitigate impacts and increase resilience. Using an intrusion
injector lowers the barriers to designing diverse evaluation campaigns, offering a
clear engineering advantage.

126

Intrusion Injection in Virtualized Systems

security
violation

intrusion injector

intrusion model

SYSTEM

attack

erroneous
state

erroneous state
handling

?

intrusion
vulnerability

Figure 5.2: Overview of the methodology key components.

5.2 Injecting Intrusions in Virtualized Systems

This section presents our novel approach to support the study of how systems
deal with potential intrusions effects.

5.2.1 The Intrusion Injection Approach

Figure 5.2 shows an overview of the approach and its key concepts. The top
half of the figure represents a traditional scenario, where an intrusion (i.e., an
exploit that effectively reaches a vulnerability) induces an erroneous state in the
system. As previously discussed, once the system reaches the erroneous state, it
may either experience a security violation or successfully handle the state. On
the bottom half, we can see an overview of our approach functioning and how it
simplifies the process, following the red dotted arrows.

An IM guides the process by abstracting the key aspects of intrusions and speci-
fying the erroneous state to activate. Section 5.2.2 details the definition and selec-
tion of intrusion models.

The intrusion injector is the component that injects the erroneous state into the
hypervisor (based on the IM), thus reproducing the effects of a hypothetical intru-
sion in the system. Several alternatives may exist to implement such an injector.
For example, it can be an existing system configuration or functionality used in
a non-conforming manner, or a specific component implemented for that end.
In practice, multiple implementations of this component may be necessary, since
different erroneous states can require distinct injection approaches and locations.
In Section 5.3, we present a prototype of an intrusion injector for memory-related
erroneous states.

The final step is to inspect the system behavior to understand the potential con-
sequences of the erroneous state injected. As a security violation may happen
or not, depending on the capacity of the system to deal with intrusions, system
monitoring is needed to evaluate how the system behaves in the presence of an
erroneous state. The literature extensively addresses system monitoring [Ghaleb
et al., 2019; Payne et al., 2008; Pham et al., 2014; Ragel and Parameswaran, 2006;

127

Chapter 5

Ramirez et al., 2017], which is not the focus of this work.

5.2.2 Intrusion Models for Virtualized Systems

Although new vulnerabilities and attacks emerge annually, the erroneous states
resulting from these intrusions often resemble those caused by past vulnerabili-
ties and attacks [Gkortzis et al., 2016; Li et al., 2017; Patil and Modi, 2019; Perez-
Botero et al., 2013; Sgandurra and Lupu, 2016]. In other words, existing works
show that different vulnerabilities can lead to similar erroneous states. For exam-
ple, the work in [Boutoille, 2016b] shows how the strategy to exploit the XSA-148
vulnerability is used to exploit the XSA-182 vulnerability [Xen, 2015], leading to
the same erroneous state and security violation. This way, an Intrusion Model
may represent a set of (known and unknown) vulnerabilities and attacks that
might lead to the same erroneous state.

Intrusion models for virtualized systems must effectively represent attacks that
target such systems and generalize a set of intrusions into a single definition.
Thus, the main concepts of attack, erroneous state, and the execution of unintended
functionalities within a system should be present to characterize the intrusion
model and represent the essential aspects of such a process.

This model is heavily inspired from the concepts of exploits and weird ma-
chines [Bangert et al., 2013; Bratus et al., 2011; Dullien, 2017], where an attacker
manipulates system interactions to transition it from a normal state to an erro-
neous one, resulting in unintended system behavior. This conceptual foundation is
formalized and expanded in Chapter 6, where we define Intrusion Models (IMs)
to systematically describe and replicate such transitions.

Conceptually, an intrusion occurs when an adversary interacts with a system by
supplying inputs that trigger a vulnerability and activate functionality the system
was not designed to perform, but which the attacker discovered and exploited.
In other words, a system’s exploitability is directly tied to the presence and pro-
grammability of weird machines.

An exploit functions as a program for the weird machine, ultimately violating
the system’s security properties [Dullien, 2017]. This perspective shifts our un-
derstanding of exploitation from a series of discrete steps to a more holistic view
of programming an emergent computational device, i.e., exploiting a vulnerabil-
ity is the same as programming a system using only interactions. Let us consider
a simple case to illustrate the reasoning.

A program combines instructions that use computational resources (such as
memory, CPU, and devices) to process input data and deliver an intended ser-
vice, such as producing outputs or generating files. This concrete implementa-
tion can be abstracted as an Finite State Machine (FSM) which transitions between
states when processing a set of instructions. Figure 5.3 illustrates a hypotheti-
cal FSM that models a computation of a given service. From an initial state 1
(e.g., the hypercall handler), the system will process inputs (e.g., hypercall pa-
rameters) and transition between many states given a set of instructions (e.g.,

128

Intrusion Injection in Virtualized Systems

hypercall memory_op implementation), eventually providing a service (e.g., copy-
ing memory from a device to a VM). Abstracting out this FSM, we could look
at this computation in a black-box approach, where we have a function that re-
trieves the service from a specified initial state and a set of inputs, as illustrated
in Figure 5.4.

state 1

instruction
set a

state 2

instruction
set b

… state n

…

input input

…

instruction
set n … service

Figure 5.3: A FSM represents a generic computation providing a given service.

input(s)

functionality
service

state 1

Figure 5.4: A black-box abstraction of a computational service.

Following the same reasoning, we can describe an attack on this program (i.e., a
different interaction with this same FSM). Assuming that an adversary interacts
with it, trying different inputs (usually invalid/unexpected) to see if one can ac-
tivate a vulnerability and put the system into an erroneous state1 that enables the
attack to advance. When this step succeeds, the attacker discloses an unintended
functionality (e.g., write to unauthorized memory) that takes the system from the
initial state and places it into an erroneous state (e.g., malicious return address
on the stack). In simpler terms, the attacker discovers a new operation that the
system provides but was never intended by its original design. Bratus refers to
this unintended behavior as a weird machine. Chapter 6 will further explore the
specifics of weird machines.

The diagram in Figure 5.5 represents the internal transitions of a system when an
intrusion occurs. The system is ready to receive inputs in state 1 (the initial state).
Eventually, malicious inputs arrive via the interface to state 1, which processes
the instruction set a and transitions to state 2. The system continues processing
instructions, possibly receiving new inputs and changing states, until it activates
the vulnerability and enters an erroneous state. Although this activation is ab-
stracted as a simple state transition, its actual realization can be complex and
influenced by many factors [Li et al., 2017].

From an external point of view, this set of steps represents the execution of the
abusive functionality that the system was built with, albeit unintentionally. Ab-

1Dullien [Dullien, 2017] refers to those states as weird states in his modeling.

129

Chapter 5

state 1

instruction
set a

state 2

instruction
set b

… state n erroneous
state

…

malicious
input

malicious
input

vulnerable
instruction set

…

…

?

Figure 5.5: The transitions of the FSM when an intrusion happens. The states
after the erroneous state that we want to evaluate.

stracting out the complexity of the internal transitions, the diagram in Figure 5.6
represents a conceptual model of an intrusion from an external point of view (the
attacker perspective). Both Figure 5.5 and Figure 5.6 are equivalent in function-
ality (i.e., both drive the system into a specific erroneous state based on a given
input or set of inputs). Note that the part on the right represents all concepts that
model an intrusion: the initial state where the system processes the input, the
adversary-system interaction (i.e., execution of the abusive functionality), and
the erroneous state induced.

erroneous
state

abusive
functionalitystate 1

malicious
input(s)

Figure 5.6: The transitions of the FSM when an intrusion happens can be ab-
stracted in this compact representation that captures an Intrusion Model’s core
aspects.

We refer to this function as abusive functionality. As seen in Section 4.3.1, its
definition is:

Abusive Functionality (AF): an unintended or emergent func-
tionality or faulty behavior that was not meant to exist by design,
but it is achieved when the fault (cause) is activated.

To illustrate the concepts, let us discuss two Xen vulnerabilities. The XSA-387 is
a bug on Grant table v2 status pages that should be released to Xen when a guest
switches from grant table v2 to v1. XSA-393 is a bug in the code that removes a
page mapping from a guest, activated when the XENMEM_decrease_reservation
hypercall is issued after a cache maintenance instruction. In both vulnerabilities,
a malicious guest can retain access to Xen pages even after they are used for other
purposes (e.g., assigned to other VMs).

In both cases, the erroneous state is the page reference held by the VM to which
the attacker has access. However, the specifics of the erroneous states are different
(i.e., the memory region and page type). Conceptually, both allow an adversary to

130

Intrusion Injection in Virtualized Systems

retain access to a memory page after releasing it to the hypervisor. Consequently,
the abusive functionality achieved by the attacker is of the type Retain Reference
To Page.

Note that the abusive functionality is an abstraction for limiting the injections
to the ones that are security relevant (i.e., erroneous states). For the previous
example, there are many ways to corrupt a page reference, but few leave a page
reference bounded to a domain after a hypercall invocation.

Despite offering a powerful abstraction, modeling this example accurately re-
mains challenging because, in realistic workflows, only a subset of page refer-
ences may persist after a hypercall execution. Moreover, some states may not
be reachable during execution. Therefore, model the abusive functionality with
caution, taking reachability into account.

Based on the previous explanation, we have the following definition that will be
further detailed later in Chapter 6:

Intrusion Model (IM) abstracts how an erroneous state is
achieved when using an abusive functionality through a given
interface.

The previous definition of IM is generic and should be instantiated depending
on the target virtualized system and the evaluation objectives. Suppose the eval-
uation includes several threat models (e.g., untrusted dom0 or malicious kernel).
In that case, we may need to Instantiate several IMs, each one defining a trigger-
ing source (e.g., a privileged user in a guest), a target component (e.g., memory
management component), and the interaction interface (e.g., hypercall).

Consider this instantiation: in XSA-148, an attacker sets the PSE flag on an L2
page table entry to gain a writable page-table reference. In XSA-182, faulty vali-
dation of pre-existing L4 page tables allows the attacker to achieve the same out-
come. Although the details differ (such as the page level and reference location),
the erroneous state is the same: a guest-writable page table. In both cases, the
attacker gains the abusive functionality of acquiring a guest-writable page-table
entry. Two possible instantiations of the IM could be:

i) an unprivileged guest abusing hypercalls to acquire guest-writable page table
entries to access hypervisor pages;

ii) a privileged guest (dom0) abusing hypercalls to acquire guest-writable page ta-
ble entries to access pages of guest VMs.

The following section focuses on extracting two IM from actual exploitable code
to illustrate our approach more effectively.

131

Chapter 5

5.2.3 Extracting Intrusion Models from Exploits

To enable the showcase of the Intrusion Injection approach, we focus on extract-
ing the IM of already exploitable vulnerabilities to avoid problems with the reach-
ability of the Erroneous State (ES) [Gao et al., 2024]. Next, we present and discuss
some use cases of actual vulnerabilities and their exploits.

The Third-party Exploits

Finding publicly disclosed working exploits to reproduce attacks in Xen is chal-
lenging, as few public exploits are available. To the best of our knowledge, only
four publicly available exploits meet our requirements: two related to XSA-212
vulnerability [Horn, 2017], a third related to XSA-148 [Boutoille, 2016a], and the
fourth for XSA-182 [Boutoille, 2016b]. We named these exploits by appending
meaningful suffixes to their references: XSA-212-priv and XSA-148-priv indicate
privilege escalation attacks, XSA-212-crash denotes a hypervisor crash, and XSA-
182-test is designed to check whether the vulnerability exists in the system.

XSA-212 Exploits

The report for XSA-212 [Horn, 2017] describes a vulnerability in the memory_exchange()
hypercall, caused by insufficient input address validation. This flaw allows a
malicious guest to access all system memory, enabling security violations such as
privilege escalation, potential code execution, and host or guest crashes.

Figure 5.7: Attack Strategy from XSA-212-priv

The Google Project Zero Page presents two Proofs of Concept (PoC) for this vul-
nerability [Horn, 2017]: the first causes a Xen crash (XSA-212-crash) by corrupting
the page fault handler in the Interrupt Descriptor Table. The second performs a
privilege escalation (XSA-212-priv). In this latter case, the attack strategy is to
craft malicious pages to install the target exploit in memory and install an inter-
rupt handler to execute that malicious exploit in every domain at the host, includ-
ing the privileged one. The attack scheme of this exploit is depicted in the Fig-

132

Intrusion Injection in Virtualized Systems

ure 5.7. A technical report provides complete details about these exploits [Horn,
2017].

When carefully evaluating the vulnerability description, the XSA report, the
patch, and the exploit presented, we can see that the access enabled by this vul-
nerability is an arbitrary write operation of 8-byte content. This information re-
veals the capability gained by the malicious agent: the ability to write to any
memory address in the system. Based on this, we define the AF as Writing Unau-
thorized Arbitrary Memory, using "arbitrary" to emphasize the lack of restric-
tions on memory access.

Intrusion Model:

An unprivileged guest abusing hypercalls to abuse the ability of Writing
Unauthorized Arbitrary Memory.

XSA-148 and XSA-182 Exploits

The XSA-148 [Xen, 2015] and XSA-182 [Xen, 2015] are both vulnerabilities that
allow creating writable page table mappings in PV guests. The first is due to a
missing check on the Xen L2 page-table entries invariant. In the latter, the code
that optimizes an L4 page update in safe cases was buggy. The re-validation of
page tables is resource-intensive, and those optimizations aim to avoid it.

A detailed report and a working PoC for the XSA-148 is in [Boutoille, 2016a].
This exploit enable remote privilege escalation. It accomplishes this by scanning
all physical memory and locating the dom0 startup_info page, which can be easily
fingerprinted in memory. Once found, the code searches for the vDSO (virtual
Dynamic Shared Object) [Lin, 2021] page, in which it installs a backdoor to open
a reverse shell to the outside attacker. Figure 5.8 depicts the strategy of this attack.

Figure 5.8: Attack Strategy from XSA-148-priv

For the XSA-182, a detailed discussion on how to escalate privileges using this
vulnerability is in [Boutoille, 2016b]. In short, it follows the same attack strat-
egy of the XSA-148-priv. The PoC presented is a test to check whether a system

133

Chapter 5

is vulnerable to XSA-182 [Boutoille, 2016b]. The test creates a self-mapping L4
page without the write flag, then uses the vulnerability to create a writable map-
ping, and finally, crafts a virtual address to point to the self-mapping page with
writable permissions and adds the user flag to enable writing from user space.

For either the XSA-148 or the XSA-182, the capability achieved by the malicious
agent running the exploit is to be capable of corrupt page tables, which conducts
us to the definition the AF of Write Unauthorized Page Table Entries.

Intrusion Model:

An unprivileged guest abusing hypercalls to abuse the ability of Write
Unauthorized Page Table Entries.

The IMs for all use cases covered in this chapter differ only in the abusive func-
tionality, as shown in Table 5.1. In practice, our four use cases cover two distinct
abusive functionalities, where the complete instantiation is an unprivileged guest
virtual machine that uses a hypercall to target the memory management compo-
nent in the virtualization layer. For this similarity, we use the AF name as an
alias to refer to the IM in the rest of this chapter.

Table 5.1: Intrusion Models Abusive Functionalities from the Use Cases.

Use Case Abusive Functionality

XSA-212-crash Write Unauthorized Arbitrary Memory
XSA-212-priv Write Unauthorized Arbitrary Memory
XSA-148-priv Write Unauthorized Page Table Entries
XSA-182-test Write Unauthorized Page Table Entries

Chapter 6 details the complete approach for assessing and defining Intrusion
Models. Here, we provided only a brief introduction to maintain focus on the
broader perspective of the approach. Next, we demonstrate how to create a pro-
totype that injects the specific intrusion model described above.

5.3 A Prototype Injector for Unauthorized Memory
Accesses in the Xen Hypervisor

The intrusion injector is a key component that makes our methodology possible.
This section presents the implementation of a prototype injector that can inject
erroneous states resulting from arbitrary unauthorized memory accesses in a Xen
Hypervisor. We already highlighted the prevalence of memory access vulner-
abilities, which can be observed in the National Vulnerability Database [NIST,
2021] and also in related literature [Gkortzis et al., 2016; Patil and Modi, 2019;
Sgandurra and Lupu, 2016]. Free access to any memory location allows the repro-
duction of erroneous states caused by a wide range of vulnerabilities, potentially
impacting all security attributes.

134

Intrusion Injection in Virtualized Systems

Although we implemented our injector for Xen [Barham et al., 2003], an open-
source hypervisor widely adopted in industry and academia, the approach is not
limited to Xen. Implementing it in other hypervisors is primarily a technical task.

5.3.1 Xen Memory Management

The hypervisor is responsible for multiplexing all physical resources between
virtual machines, and it does that by using virtualization-assisted instructions
(on hardware), intercepting operations, or using paravirtualization (PV) [Barham
et al., 2003]. PV is a lightweight virtualization technique that does not require vir-
tualization extensions, providing a software layer that uses hypercalls to behave
similarly to the hardware. Hypercalls correspond to system calls in a virtual-
ization context and allow guests to invoke privileged operations in the hypervi-
sor [Barham et al., 2003; Chisnall, 2013]. The idea behind our injector is to expose
hypercalls that allow similar operations without the restriction mechanism that
ensures a secure execution. For the time being, our tool supports memory-related
operations under paravirtualization.

All hypervisors use an additional layer of abstraction to virtualize memory. In
Xen, this abstraction is the pseudo-physical addresses mapped to the physical
address through the Physical to Machine (P2M) mapping [Wiki, 2015]. In Xen
PV, the abstraction is done using a technique called Direct Paging [Wiki, 2015],
where guests write page-table entries directly to physical addresses using hyper-
calls, i.e., any page-table change must be handled and validated by the hyper-
visor. Additionally, the memory layout of Xen has segmented areas with dif-
ferent access permission levels by definition. These segments define how vir-
tual address ranges can be used by the guests and the hypervisor, e.g, the range
0xffff800000000000 - 0xffff807fffffffff is read-only for guest domains. (yel-
low area in the right Figure 5.9). The hypervisor checks and enforces these rules
and definitions. Any error in this memory layout implementation directly affects
the system security.

Figure 5.9 illustrates several concepts discussed here. The dotted rectangle high-
lights that the hypervisor must handle any page-table change. This requirement
ensures that guests do not abuse the system by accessing restricted memory areas
not attributed to their domain.

5.3.2 Injector Implementation

To induce erroneous states in a virtualization system, the injector must implement
mechanisms to handle different address modes and thus help the tester to bypass
memory protection mechanisms, which will simulate the vulnerability activation.
With that goal, we created a new hypercall to support arbitrary access operations.
The interface is as follows:

135

Chapter 5

Figure 5.9: Xen Memory Layout and Direct Paging in PV.

Listing 5.1: Prototype of the do_arbitrary_access hypercall handler implement-
ing AF1.

1 int do_arbitrary_access(
2 unsigned long addr, // Target Address
3 void *buff, // Buffer to read/write
4 size_t n, // Buffer size
5 int action); // Operation and Mode

This hypercall allows a guest kernel user to read/write n bytes from memory
starting from address addr. The action parameter specifies the operation (read /
write) and the address mode (linear / physical). Note that here we use the term
linear address to refer to the virtual memory in the hypervisor’s address space. A
linear address can be used directly by the hypervisor. Some privileged instruc-
tions (e.g, sidt) return linear addresses. A physical address refers to hardware
memory, which the system must map before use. This simple interface was de-
signed with possible portability across different virtualization systems in mind to
enable the reuse of testing scripts.

The internal mechanism of our arbitrary_access() hypercall is straightforward.
If addr is a physical address, we map it into the Xen linear address space and per-
form the read/write operation using Xen/Kernel directives that handle user/k-
ernel memory exchanging, specifically __copy_from_user and __copy_to_user.
When addr is a linear address, the mapping is unnecessary, and the hypervisor
can access it directly.

We implemented the prototype on three distinct versions of Xen: 4.6, 4.8, and
4.13. Although the injector’s core remains unchanged, we had to make minor
modifications to the hypercall table in each version to add the new hypercall,
accounting for slight architectural differences between versions. The build and
experimental environments are kept the same throughout the entire process to
minimize differences in the runtime evaluation.

136

Intrusion Injection in Virtualized Systems

5.4 Case Studies

This chapter presents concrete case studies that demonstrate the applicability
of the Intrusion Injection methodology in reproducing and evaluating security-
relevant system states. These studies show how it can be used to simulate the
effects of real-world vulnerabilities.

5.4.1 Reproducing Erroneous States for Known Vulnerabilities
and Attacks

In this section, we aim to answer the following Research Question (RQ):

• RQ1: Is it possible to inject erroneous states in a virtualized system in a way
that emulates the effects of attacks exploiting real vulnerabilities?

Our prototype injector (see Section 5.3.2) allows unlimited R/W operations,
which is pretty evident that this is unrealistic. In the context of a hypervisor
with shared memory among different tenants, the reachability problem involves
determining which memory regions can be accessed or modified by an attacker
who has exploited a vulnerability to break isolation mechanisms. Since each vul-
nerability’s activation path will depend on its current system/implementation,
we must have the means to ensure that the states we are reaching are realistic.
For this, we grounded the experiments on working exploits, because if an exploit
can trigger an erroneous state, then this state is indeed reachable.

We use our intrusion injection prototype to test whether we can reproduce the
effects of existing third-party-developed exploits by injecting the same erroneous
states using the intrusion models derived from the underlying vulnerability. In
Section 5.2.3, we briefly explained the details of each exploit and the correspond-
ing attack strategy. In what follows, we show how to recreate the effects of those
exploits with intrusion injection. Finally, we discuss the experimental evaluation
and results.

Injecting Intrusions

This section demonstrates how our prototype injects the erroneous state associ-
ated with the XSA-212-priv use case. This use case involves a complex attack
strategy to escalate privileges and execute shell commands as a superuser across
all virtual machines on the host, including dom0. The attacker exploits the vul-
nerability to inject malicious code into physical memory, maps the code using a
virtual address space accessible to all guests, and executes it by registering a new
interrupt handler entry in the IDT for each CPU and triggering it.

As discussed in section 5.3.1, Xen restricts operations in the virtual memory page
table to ensure that guest users do not abuse the system memory. As shown in

137

Chapter 5

the following script, the XSA-212-priv exploit uses the memory_exchange() vulner-
ability to manipulate the virtual memory and link a fake L2 (PMD) [Int, 2020]
page into an L3 (PUD) [Int, 2020] page from a valid virtual address. This entry
in the L2 page-table points to a forged L1 page that holds all the code needed
to fulfill the attack. In practice, the XSA-212 vulnerability allows an arbitrary
memory write by encoding the target address in the hypercall parameter, specif-
ically: exch.out.extent_start + 8 * exch.nr_exchanged, including the shell
commands to be executed on every host. Those shell commands are passed as
parameters to the exploit when the attacker invokes it.

1 exch = (struct xen_memory_exchange){
2 .in = {
3 .extent_start = (u64)&in_extent - (nr_exchanged * 8),
4 .nr_extents = nr_extents,
5 .domid = DOMID_SELF
6 },
7 .out = {
8 .extent_start = out_extent_base_addr,
9 .nr_extents = nr_extents,

10 .domid = DOMID_SELF
11 },
12 .nr_exchanged = (target_addr - out_extent_base_addr) / 8;
13 };
14 ret = HYPERVISOR_memory_op(XENMEM_exchange, &exch);

Our hypercall injector can inject the corresponding erroneous state (see Section
5.3) by specifying the encoded address, as in the following script snippet:

1 HYPERVISOR_arbitrary_access(
2 exch.out.extent_start + 8 * exch.nr_exchanged,
3 &val, sizeof(u64), ARBITRARY_WRITE_LINEAR);

Following this procedure, we created scripts to inject the erroneous states for each
use case presented in Table 5.1.

Experiments and Results

Figure 5.10 presents an overview of the experiments conducted to answer RQ1.
The idea is to study whether it is possible to inject erroneous states in a virtualized
system in a way that emulates the effects of exploiting real vulnerabilities. This
can be achieved by comparing the security violation observed when injecting
the erroneous state using the prototype (bottom of the figure) with the security
violation observed when attacking the vulnerability using the original PoC (top
of the figure), for the same version of Xen (in this case, the vulnerable version 4.6).
Also, we want to observe if the states injected are similar to those induced by the
exploits. If the violations and erroneous states observed are the same, we could
emulate effects caused by real intrusions.

138

Intrusion Injection in Virtualized Systems

vulnerability
System

Test B

Test A

intrusion
injector

System

compare

Intrusion Model

Attack

erroneous
state

erroneous
state ?

?

intrusion

Figure 5.10: Overview of the experimental validation strategy.

Following the steps described above, we first executed all PoCs in the Xen 4.6
version, being able to exploit the respective vulnerabilities in that version. We
also performed the erroneous states injection in Xen 4.6, as discussed in the
following paragraphs.

XSA-212-crash

In this case study, we reproduce the effects of the XSA-212 vulnerability, which
leads to a crash of the hypervisor. The execution of the original exploit triggers a
fatal condition in the Xen monitor, as shown in the output below:

1 (XEN) *** DOUBLE FAULT ***
2 (XEN) ----[Xen-4.6.0 x86_64 debug=n Tainted: C]----
3 ...
4 (XEN) **
5 (XEN) Panic on CPU 23:
6 (XEN) DOUBLE FAULT -- system shutdown
7 (XEN) **
8 (XEN) Reboot in five seconds...

Overwriting the IDT page fault handler triggers an immediate hypervisor crash,
allowing straightforward verification of the erroneous state and the resulting se-
curity violation.

The ability to write to the IDT address suffices to verify whether the induced erro-
neous states are equivalent. The sidt assembler instruction retrieves the IDT ad-
dress, which is typically protected from write access. Since our prototype wrote
to this address without raising an exception, it confirms that the same erroneous
state was induced, immediately followed by a double-fault (indicating a security
violation).

139

Chapter 5

XSA-212-priv

In this scenario, we reproduce the privilege escalation variant of the XSA-212 vul-
nerability. To execute the exploit, the attacker must run the following command
from within the compromised guest virtual machine:

1 root@guest03 ~/xsa212/privesc_poc:
2 $./attack ’echo "|$(id)|@$hostname)"’ > /tmp/injector_log
3 press enter to contine
4 root@guest03 ~/xsa212/privesc_poc:

This exploit attempts to escalate privileges by tampering with control structures
in the hypervisor, ultimately granting unauthorized access within the guest do-
main. The successful execution of this command results in a security property
violation, confirming that the injected erroneous state mirrors the behavior of the
original exploit.

While executing, the script outputs messages that indicate that the L2 page was
linked to the L3 page:

1 [116.268081] ### crafted PUD entry written
2 [116.284080] going to link PMD into target PUD
3 [116.292081] linked PMD into target PUD

When the process ends, a file /tmp/injector_log appears in every domain with
content similar to the one below:

1 root@xen3 ~:
2 $ cat /tmp/injector_log
3 |uid=0(root) gid=0(root) groups=0(root)|@xen3

When injecting the erroneous state (using the script in Section 5.4.1, the presence
of the file in each domain shows that the same security violation happened. The
observation of the same output message and the same linked pages, in both exe-
cutions, shows that the erroneous states are the same.

XSA-148-priv

This use case involves an additional host where the reverse shell is connected.
The process begins by creating a remote connection listener on the host where
the attack will be consolidated. We used the following command to listen for
connections: nc -l -vvv -p 1234. Then, in the compromised guest, we run the
exploit, which sets up a crafted page table to access unrestricted memory ad-
dresses (‘start_dump ok’ line below) and searches for the hypervisor memory
fingerprints to install the backdoor. Once the vDSO library is patched, a connec-
tion with the remote host is established, from where the user can execute com-
mands as a root user.

The following steps are logged into the guest as the exploit runs:

140

Intrusion Injection in Virtualized Systems

1 [132.1765] xen_exploit: - xen_version = 4.6
2 [132.1768] xen_exploit: - aligned_mfn_va = ffff880078000000
3 [132.1768] xen_exploit: - aligned_mfn_va mfn = 0x81400000
4 [132.1771] xen_exploit: - l2_entry_va = ffff880077600000
5 [132.1771] xen_exploit: - l2_entry_va mfn = 0x81e00000
6 [132.1772] xen_exploit: - startup_dump ok
7 [134.1972] xen_exploit: - start_info page: 0x212bc2
8 [134.1993] xen_exploit: - dom0!
9 [135.1652] xen_exploit: - dom0 vdso : 0x212219c

10 [135.1747] xen_exploit: - patch.

In the example below, the attacker can read a message left in the privileged do-
main root directory:

1 xen@xen2:~$ whoami
2 xen
3 xen@xen2:~$ nc -l -vvv -p1234
4 Listening on [0.0.0.0] (family 0, port 1234)
5 Connection from [10.3.1.181] port 1234 [tcp/*]
6 whoami && hostname
7 root
8 xen3
9 cat /root/root_msg

10 "Confidential content in root folder!"

After reproducing the erroneous state with our prototype, we observed the same
output messages in the guest, confirming its ability to read an arbitrary page and
initiate a connection to the remote host. We successfully escalated privileges in
the same manner as the original exploit. Additionally, we performed a page-table
walk to audit the induced erroneous state.

XSA-182-test

This test checks the ability to create a writable self-mapping L4 page, followed
by the attempt to update its content. The code consists of an explicit process of
checking for such an erroneous state. The debug messages show every memory
address changed by this simple exploit:

1 poc:38 - xen_version = 4.6
2 poc:39 - page_directory mfn = 0x82da9
3 poc:40 - page_directory[260] = 0x0000000200dac063
4 poc:41 - page_directory[42] = 0x0000000000000000
5 poc:45 - rc = 0x0
6 poc:46 - page_directory[42] = 0x0000000082da9005
7 poc:50 - rc = 0x0
8 poc:51 - page_directory[42] = 0x0000000082da9007
9 poc:59 - writable_page_directory = 0x0000150a8542a000

10 poc:62 - writable_page_directory[260] = 0x0000000200dac063

141

Chapter 5

11 poc:64 - writable_page_directory[260] = 0x0000000200dac067
12 poc:65 - vulnerable

The injector version printed page_directory[42], line 6, demonstrating the write
flag set in the self-mapping L4 page.

In summary, the analysis in the previous paragraphs suggests a positive answer
to RQ1: it is possible to use intrusion injection to correctly induce the erroneous
states and their security violations for the Xen 4.6 version, exactly as caused by
the exploit scripts.

5.4.2 Injecting Erroneous States in Non-Vulnerable Versions

In this section, we are interested in studying whether the injection of erroneous
states in non-vulnerable versions (i.e., versions without known vulnerabilities) is
similar to the ones observed in vulnerable versions by answering the following
research question (RQ):

• RQ2: Can intrusion injection induce the erroneous states (similar to those
observed in real intrusions) in non-vulnerable versions2?

We first confirmed that the original exploits (see Section 5.2.3) could not execute
in Xen 4.8 and 4.13 versions, attesting that the vulnerabilities were indeed fixed.
All attempts to execute the original PoCs resulted in an error, i.e., we could not
induce the erroneous states. For example, when running the XSA-212-crash in
those versions, the exploit execution fails with a return code of -EFAULT (bad ad-
dress return code). Also, when running the XSA-182-test, the output shows a not
vulnerable output. For the XSA-212-priv and XSA-148-priv, the code fails with a
kernel exception, unable to handle a page request. In summary, we were unable to
execute any of the exploits in versions 4.8 and 4.13 (all ended in errors, showing that
the vulnerabilities were fixed).

In the following, we discuss how we injected the erroneous states in non-
vulnerable versions of Xen (4.8 and 4.13). We must ensure our prototype injector
correctly injects the erroneous states induced by the original exploit code. For ev-
ery script, we have collected evidence that shows that the erroneous states have
been injected:

• XSA-212-crash: In both non-vulnerable versions, the IDT fault handler ad-
dress could be written without triggering any exception, confirming that
the erroneous state was consistently reproduced.

• XSA-212-priv: We verified the correct page linking by performing a page-
table walk for the virtual address in both test scripts. The same physical

2These are not non-vulnerable versions (there may be unknown vulnerabilities), but are ver-
sions where our use case vulnerabilities were fixed.

142

Intrusion Injection in Virtualized Systems

pages (i.e., the erroneous state) were linked in versions 4.8 and 4.13. Ad-
ditionally, the guest terminal displayed the same output message: linked
PMD into target PUD.

• XSA-148-priv: In both 4.8 and 4.13, the system output confirmed the ability
to read arbitrary memory pages. A review of the written page-table entries
further demonstrated that identical erroneous states were induced.

• XSA-182-test: The output message showed that the RW flag was added to
the L4 page in both non-vulnerable versions, indicating the same modifica-
tion was applied in each case.

The Err. State column in Table 5.2 presents the overall results for versions 4.8
and 4.13. The table shows that our prototype successfully injects memory-related
erroneous states in Xen, even as the software evolves. These observations provide
an answer to RQ2: intrusion injection can induce erroneous states similar to those
caused by real intrusions, even in versions where the related vulnerabilities have
been fixed.

Table 5.2: Results of the injection campaign in non-vulnerable versions.

Use Case
Xen 4.8 Xen 4.13

Err. State Sec. Viol. Err. State Sec. Viol.

XSA-212-crash ✓ ✓ ✓ ✓
XSA-212-priv ✓ ✓ ✓
XSA-148-priv ✓ ✓ ✓ ✓
XSA-182-test ✓ ✓ ✓

✓ Property successfully induced
System handled the erroneous state (no security violation)

5.4.3 Intrusion Injection for Security Assessment

Since intrusion injection can inject erroneous states into non-vulnerable versions,
we now investigate whether it supports security assessment. The research ques-
tion (RQ) is:

• RQ3: Can intrusion injection potentially support the assessment of security
attributes in virtualized systems?

The idea consists of analyzing and comparing the security violations observed in
vulnerable and non-vulnerable versions of Xen. It is important to remember that
an injection should induce erroneous states, like real attacks exploiting vulnera-
bilities. Still, the potential security violations observed may vary across different
system versions (or different systems). Different versions or configurations may
implement various security measures that handle the erroneous states in diverse
ways and may prevent total or partial security violations.

143

Chapter 5

Table 5.2 summarizes the security violations observed when injecting the erro-
neous states with our prototype implementation in the two non-vulnerable ver-
sions. We were able to cause violations in some cases, as discussed next:

• XSA-212-crash for this use case, we got the same crash report message in the
Xen terminal for versions 4.8 and 4.13 as the one observed when executing
the exploit in version 4.6.

• XSA-212-priv We observed the same security violation in Xen 4.8 and the
vulnerable version 4.6. However, for version 4.13, we could not induce the
security violation of escalating the privilege as designed by the creators of
the original exploit. The code terminates in an exception when accessing
some memory areas. This limitation results from the security improvements
applied to Xen [Cooper, 2017]. Since there is no specification in the IN-
TEL ABI [Int, 2020], the Xen developers removed a 512GB RWX mapping of
the linear page table, restricting some operations, particularly how L4 and
L3 memory pages are accessed by guests, increasing the defense for some
attack strategies such as the one implemented by XSA-212-priv. For this,
despite being able to inject the erroneous state, some assumptions of the
exploit are not valid, specifically, the direct access to virtual addresses at the
guest level for the range 0xffff804000000000 to 0xffff80403fffffff, which
were used by the exploit to install the malicious code. This is why we could
not observe a security violation.

• XSA-148-priv in versions 4.8 and 4.13, we connected the reverse shell on
the remote host. A backdoor installation in an essential library triggers the
privilege escalation on dom0. Since the erroneous state injection enables the
installation, security violations also occur.

• XSA-182-test was also impacted by the security fixes mentioned above. The
exploit creates an L4 writable self-mapping page in the hardened memory
address space. Thus, although the injector could add the RW bit directly
using its API, the self-mapping L4 page is no longer a valid guest space
reference address. Therefore, an exception is triggered when updating this
invalid address in the 4.13 version.

Analyzing the results in the Table 5.2, we can observe that the impact of the same
injected erroneous state may vary depending on the target version. When eval-
uating Xen 4.8, the security violations observed are similar to the ones observed
when attacking version 4.6 using the original exploits. However, Xen 4.13 can
handle the erroneous states injected for the cases of XSA-212-priv and XSA-182-
test. These differing behaviors map to security hardening introduced in the Xen
4.9 code [Cooper, 2017], which we interpret as evidence of improved security.

We demonstrated that injecting similar erroneous states into different versions
results in distinct violations, reflecting each system’s specific security level (later
confirmed as hardening measures). These findings support a positive response
to RQ3: intrusion injection is a viable method for assessing security attributes in
virtualized systems.

144

Intrusion Injection in Virtualized Systems

5.5 Discussion: Strengths and Limitations

Next, we discuss the strengths and limitations of our approach, the prototype,
and the experiments presented.

5.5.1 Strengths and Motivation

We propose the Intrusion Injection methodology as a response to the limitations
of traditional techniques for evaluating security attributes in virtualized systems.
Previous approaches [Bhor and Khanuja, 2016; Fonseca et al., 2009; Mainka et al.,
2012; Medeiros et al., 2016; Neto and Vieira, 2011; Neves et al., 2006; Oliveira
et al., 2020] often depend on prior knowledge of specific vulnerabilities or ex-
ploits, which can be a barrier to proactive assessment. In contrast, Intrusion In-
jection abstracts away the exploit details and focuses on modeling the resulting
erroneous states induced by common abusive functionalities.

A significant advantage of this methodology is its ability to consider multiple
vulnerability classes simultaneously. Intrusion Models (IMs) capture common
abuse patterns that span across diverse vulnerabilities, thereby reducing the need
to craft tailored attacks for each individual flaw. This generalization significantly
lowers the complexity and overhead of experimental design.

Another key strength is the decoupling of security evaluation from known ex-
ploits or working proof-of-concepts, which are often unavailable or infeasible to
develop for proprietary or evolving systems. Instead, IMs allow for the emula-
tion of consistent erroneous states across versions and configurations, improving
reproducibility and enabling early validation of potential exploitability, even be-
fore vulnerabilities are fully disclosed or weaponized.

Additionally, this approach enables cross-system evaluation. For instance, an IM
defined from a KVM-based environment can be used to guide erroneous state
injections in Xen. Although differences in design and runtime behavior pose
translation challenges, these are primarily technical and can be addressed by de-
veloping system-specific injectors. Such injectors expose abusive functionality
interfaces adapted to the architecture of each hypervisor, thereby preserving the
semantics of the modeled intrusion.

5.5.2 Challenges in Defining Intrusion Models

The definition of representative Intrusion Models is a topic yet to be carefully
explored and is crucial to addressing the reachability problem in the context of
erroneous states. For instance, the corruption of memory protected by hardware
virtualization extensions may define an unreachable state, while unauthorized
memory access inspired by use-after-free vulnerabilities appears more plausible.

The examples presented in this chapter are still limited, serving only to demon-
strate the viability of the Intrusion Injection approach. A key challenge lies in

145

Chapter 5

ensuring portability: system-specific models reduce the generalizability of as-
sessments across systems or versions. Attackers typically progress through mul-
tiple steps to achieve a breach, and each step can be represented as an abusive
functionality, i.e., an injection of an erroneous state through a defined interface.

While modeling abusive functionalities can be complex, especially regarding
reachability, our approach provides a structured abstraction for each attack phase.
Although we do not replicate the actual exploitation steps, we aim to reproduce
their consequences. In this sense, Intrusion Injection can conceptually emulate
the outcomes of advanced attacker tools, such as those used in APTs.

As discussed earlier, this technique can potentially be used to assess the impact of
unknown vulnerabilities, provided there exists an Intrusion Model with similar
properties. The capacity to foresee such consequences hinges on whether new
vulnerabilities align with previously defined IMs. While entirely novel abusive
functionalities may still arise, we believe their occurrence will be less frequent
than recurring patterns.

IMs are critical to addressing the reachability problem and distinguishing intru-
sion injection from arbitrary or accidental fault injection. Effective IMs should
encapsulate properties such as the abusive capability, targeted component, at-
tack interface, and type of erroneous state. However, defining such models is
nontrivial, particularly in the context of complex hypervisors composed of mul-
tiple functionalities and interacting technologies. Thus, continuous analysis of
real-world intrusions is needed to establish a robust set of shared properties that
define a “minimum useful” intrusion model.

5.5.3 Prototype and Experiments

The prototype presented is a proof-of-concept to demonstrate the viability of In-
trusion Injection. The case study focused on memory-based attacks, as memory
vulnerabilities are among the most prevalent [Compastié et al., 2020; Patil and
Modi, 2019; Sgandurra and Lupu, 2016]. However, the methodology itself is not
restricted to memory faults and could be extended to components such as inter-
rupt handlers, device drivers, or I/O subsystems. Ongoing work aims to support
IMs related to malicious interrupts and management interface abuse.

The experiments showed that erroneous states derived from known vulnerabili-
ties can be injected into patched or unaffected versions to evaluate their resilience.
For example, we injected the same erroneous state into Xen 4.8 and 4.13 and ob-
served that only the former exhibited a security violation. This demonstrates that
Intrusion Injection supports comparative analysis of security posture across ver-
sions.

All experiments were performed under controlled environmental conditions,
with the Xen version as the only variable. Our goal was to demonstrate fea-
sibility, not to validate the technique’s completeness or effectiveness at scale.
A thorough and systematic validation is an essential direction for future work.

146

Intrusion Injection in Virtualized Systems

5.5.4 Scope and Limits

The precise boundaries of Intrusion Injection’s applicability remain to be de-
fined. Our current Intrusion Models focus on memory corruption and do not
yet address logic flaws, design vulnerabilities, or side-channel attacks. However,
memory-related issues can propagate across different components due to virtu-
alization (e.g., event channels implementing interrupts in Xen).

This work concentrates on vulnerabilities introduced by implementation errors.
Although the approach demonstrates strong potential for injecting erroneous
states to assess system behavior, certain IMs may not be feasibly instantiable in
practice due to a lack of accessible interfaces or architectural constraints.

Another limitation concerns intrusiveness. Injecting erroneous states may require
system modifications, which may not be acceptable in all environments. Never-
theless, this cost may be justified by the gain in flexibility and depth of analysis.
Selecting appropriate injection mechanisms may help mitigate this trade-off and
broaden applicability.

5.6 Summary

In this chapter, we introduced Intrusion Injection, a novel approach for injecting
erroneous states to assess how virtualized systems respond to intrusions. The
proposed approach brings sound advantages, such as enabling security evalua-
tion without requiring knowledge about the existing vulnerabilities or attacks.

To demonstrate our proposal, we implemented a prototype to inject arbitrary
memory access intrusions and successfully reproduced erroneous states, similar
to those caused by published exploits, in different versions of Xen, including ver-
sions where the original vulnerabilities had been fixed. We further demonstrated
that intrusion injection can trigger security violations similar to those caused by
real exploits and can potentially assess various security aspects of virtualized sys-
tems. These results confirm the feasibility of generating representative evaluation
tests through intrusion injection.

We believe that intrusion injection opens the door for the future development of
techniques for security assessment and benchmarking that, instead of relying on
real vulnerabilities and attacks (or on their emulation), are based on the injec-
tion of the consequences of intrusions, which can be applied to different systems
similarly.

Despite the approach’s benefits, challenges remain, particularly in ensuring the
effectiveness of Intrusion Models and how they may generalize erroneous states
across different virtualization platforms. In the next chapter, we will refine the
Intrusion Model methodology, refining model precision.

147

Chapter 6

Defining Intrusion Models for
Structured Security Assessment

Intrusions are widely acknowledged as inevitable [Miller et al., 2001], highlight-
ing the need for security evaluation methods beyond identifying known vulnera-
bilities. To address this, Intrusion Injection was introduced in Chapter 5 as a tech-
nique for evaluating system behavior after its security properties have already
been compromised. Rather than triggering specific vulnerabilities, Intrusion In-
jection emulates their effects by injecting erroneous states, described by Intrusion
Models (IMs) that capture the core characteristics of an attack: abused function-
ality, affected resources, and violated security properties. This approach enables
controlled, repeatable testing of post-compromise conditions.

While Intrusion Injection supports the emulation of such scenarios, one key re-
search question remains:

RQ: How can we assess a system and its components to understand the la-
tent computational capabilities an attacker might exploit once the system
deviates from its intended execution model?

To answer this question, this chapter addresses the challenge of formally repre-
senting and systematizing the effects of intrusions in a reusable and generalizable
form. Although Intrusion Injection enables the emulation of erroneous states in
virtualized systems, its effectiveness depends on the ability to define realistic and
representative scenarios that abstract away from concrete attacks.

Intrusion Models (IMs) were introduced in Chapter 5 as abstractions that de-
scribe how erroneous states arise through the activation of abusive functionalities
via specific system interfaces. Here, we extend that concept by providing a formal
definition and a structured methodology for systematically deriving, classifying,
and reusing IMs. Each IM characterizes a class of unintended system behaviors
(manifested through abusive functionalities) and the resulting erroneous states
that compromise key security properties such as memory isolation, system in-
tegrity, and privilege enforcement.

149

Chapter 6

IMs serve as the central artifact guiding Intrusion Injection campaigns. By ab-
stracting the effects of known vulnerability classes, they support structured em-
ulation of post-compromise scenarios without relying on specific exploits. This
abstraction is grounded in the theory of weird machines [Bratus et al., 2011], which
models exploits as programs that reconfigure systems to exhibit emergent com-
putational behaviors outside their intended semantics.

We start by revisiting the formalism of weird machines [Dullien, 2017] and ap-
plying its principles to define the internal components of an Intrusion Model.
This formal foundation strengthens the generalization of intrusion behavior be-
yond specific software bugs or code paths. The core contribution of this chapter
is a methodology for defining and instantiating Intrusion Models, which rep-
resents the first step toward a systematic and reusable approach to modeling
security violations in virtualized systems.

Our approach enables the structured derivation of IMs, beginning with the identi-
fication of attack vectors and culminating in the specification of reusable, system-
aware models. We present a case study on the Xen hypervisor to demonstrate
the applicability of the methodology. By analyzing 464 Xen Security Advisories
(XSAs), we identify recurring vulnerability patterns and use them to construct a
set of representative IMs. Each model abstracts a class of attacks by specifying: (1)
the triggering source (e.g., unprivileged guest), (2) the interaction interface (e.g.,
hypercall API), (3) the affected subsystem (e.g., memory management), and (4)
the resulting abusive functionality (e.g., unauthorized page table manipulation).

These models are instantiated and validated using our previously introduced
Intrusion Injection prototype, which enables us to reproduce and assess the
system’s behavior under various security-relevant conditions, even in versions
where the original vulnerabilities no longer exist.

The key contributions of this chapter are:

• A formal definition of Intrusion Models (IMs) encapsulating abusive func-
tionalities and their associated erroneous states.

• A structured methodology for constructing and instantiating IMs based on
systematic vulnerability analysis and interface modeling.

• A case study applying the methodology to the Xen hypervisor, including ex-
tracting recurring intrusion patterns and constructing representative mod-
els.

The remainder of this chapter is organized as follows. Section 6.1.1 introduces
the theoretical foundation. Section 6.1.2 presents the formalization of Intrusion
Injection concepts. Section 6.2 describes the methodology for defining and in-
stantiating Intrusion Models. Section 6.3 applies it to real-world Xen vulnerabili-
ties. Section 6.4 explores the potential for generalization and outlines limitations.
Finally, Section 6.5 concludes the chapter.

150

Defining Intrusion Models for Structured Security Assessment

6.1 From Exploit Semantics to Structured Modeling

This section builds the foundation for modeling intrusions using weird machines.
We formalize system behavior with finite-state machines, define intrusions as
security-violating transitions into unintended states, and introduce Intrusion
Models (IMs) to capture these behaviors abstractly.

6.1.1 Abstracting the Exploitability of Computer Systems

System security often involves the presence of vulnerabilities (whether in soft-
ware, hardware, or the system itself) that attackers may exploit. The ease with
which these vulnerabilities can be exploited is called exploitability. The concept
of exploitability in computer systems is best viewed through the lens of weird ma-
chines [Bangert et al., 2013; Bratus et al., 2011; Dullien, 2017]. This model provides
a theoretical framework for comprehending the existence of exploits for security
vulnerabilities and offers valuable insights into the relationship between vulner-
abilities, weaknesses, and the mechanisms of exploitation.

To better understand the concept, one must first recognize how real-world sys-
tems fail to conform to their intended behavior due to subtle flaws in their im-
plementation. Consider the Xen vulnerability XSA-212, which allows a guest vir-
tual machine to write in a memory region to which it should never have access.
This attack illustrates the need for a rigorous abstraction that distinguishes the
intended behavior of a system from the actual behavior exhibited under adversarial
conditions. In what follows, we formalize several concepts to show how devia-
tions from this model allow emergent computation to arise in a weird machine.

Formal Model of System Behavior

Dullien et al. [Dullien, 2017] established the concepts and formalism for weird
machines, providing foundational definitions and formal proofs. While we build
directly on this theoretical groundwork, our contribution lies in adapting and
extending it to support the systematic modeling of intrusions and their injection
in real systems. For consistency, we adopt the same notation to represent the
states and transitions of the modeled system.

We model a computer program running on a machine with bounded storage as a
finite-state machine (FSM) 1 θ = (Q, i, F, Σ, ∆, δ, σ), where:

• Q is the set of all possible states

• i ∈ Q is the initial state

• F ⊆ Q is the set of final states

• Σ is the input alphabet (set of all possible inputs)

1Technically, a transducer, since it includes output behavior.

151

Chapter 6

• ∆ is the output alphabet (set of all possible outputs)

• δ : Q× Σ→ Q is the transition function

• σ : Q× Σ→ ∆ is the output function

To understand the idea of a weird machine, we must grasp the difference between
conceptual design and actual solution. Any computer program can be described
as an implicit state machine [Dullien, 2017; Hopcroft et al., 2001]. Its functionali-
ties and processes map into states and transitions. For instance, a possible design
for a hypothetical Hypercall for a memory update could be a state diagram, as
Figure 6.1 describes.

i q1 q2

f q3

Idle Hypercall
Trap

Privilege
Check

Memory
Update

Return
to Guest

Guest
Request

𝛿1

Hypercall
Dispatch

𝛿2

Validate
Conditions

𝛿3

Update
Complete

𝛿4 /𝜎1

Figure 6.1: An abstract state machine that depicts a high-level design for a hypo-
thetical memory update hypercall operation.

Let us assume that the state diagram in Figure 6.1 is well-designed and represents
precisely the intended functionality the system should perform. This conceptual
representation is called IFSM.

A concrete program, denoted as ρ, must implement this IFSM to run on a real
machine (e.g., a CPU with memory). This program is intended to emulate the
IFSM step by step on the target architecture, which we refer to as CPU. The pro-
gram ρ maps the abstract states of θ to the concrete states of cpu, i.e., Qcpu → Qθ.
However, it is essential to note that this is a partial mapping, as many states in
Qcpu do not correspond to those in Qθ. This occurs because many instructions
on a physical CPU implement a single edge in the IFSM, and the IFSM does not
explicitly represent these instructions; in other words, an edge corresponds to
multiple transitions on the concrete FSM.

Qcpu is the set of the real machine’s possible states (CPU registers + memory). We
will have:

• An abstraction mapping that partially maps each concrete CPU state to the
IFSM state q ∈ Qθ (if any) it represents:

αθ,cpu,ρ : Qcpu → Qθ

• An instantiation mapping assigns each IFSM state to a set of CPU states
that correctly represent it:

γθ,cpu,ρ : Qθ → P(Qcpu)

152

Defining Intrusion Models for Structured Security Assessment

Partial Abstraction and Transitory States

Because an IFSM transition occurs at an abstract level, it often requires several
concrete instructions. It is therefore common for the CPU to pass through states
that do not correspond to any IFSM state. These intermediate stages are referred
to as transitory states. Formally, a transitory state qtrans appears only along a cor-
rect execution path from a CPU state representing q ∈ Q to another CPU state
representing q′ ∈ Q, without producing any observable side effects, and that un-
avoidably leads back to an IFSM-valid state under the regular operation of ρ.

Compiling the Intended Finite State Machine (IFSM) into machine code forms
a new state machine that reflects the specifics of the physical platform. This
concrete implementation inherits all software development challenges, including
bugs and vulnerabilities.

Weird machines arise when there is a discrepancy between the IFSM and the ac-
tual Finite State Machine (FSM) that implements it [Dullien, 2017]. This mis-
match creates unintended computation, often leading to exploitable conditions.
We can view a weird machine as a partially Turing-complete fragment of code
that emerges from loosely defined contracts between functions or modules [Trail
of Bits, 2018]. These were neither intentionally designed nor expected to exist.
Effectively, alternative computation paths (capable of executing arbitrary logic)
can remain hidden within the system as weird machines.

i q1

Idle Hypercall
Trap

Guest
Request

IFMS
Q𝜃

icpu qcpu1 qcpu2 qcpu3

Idle Non-root
mode

Save
VMCS

Hypercall
Trap

VMPTRLD VMRESUME VMEXIT qcpu4VMCALL

FMS (𝜌)
Qcpu

Load
VMCS𝛼!,#$%,&

𝛾!,#$%,&

Figure 6.2: Relation between an IFSM and its implementation: a partial state map-
ping with multiple transitory states.

In Figure 6.2, the pairs {(i, icpu), (q1, qcpu4)} ∈ αθ,cpu,ρ are abstraction mappings,
while {(icpu, i), (qcpu4, q1)} ∈ γθ,cpu,ρ are concretization mappings. The remain-
ing states, {qcpu1, qcpu2, qcpu3}, implement the edge between IFSM states and are
classified as transitory states (always part of intended execution flows).

Any CPU state that does not correspond to an IFSM state or a transitory state
is called a weird state [Dullien, 2017]. These states can arise due to program-
ming mistakes, logic flaws, inadequate emulation of IFSM states or transitions,
hardware faults (e.g., bit flips), race conditions, compatibility issues, or lack of
specification. For example, consider the initial transition in Figure 6.1, i → qi,
representing a guest hypercall request. Its concrete implementation introduces
many intermediate CPU states because modern processors realize virtualization
through multiple low-level mechanisms:

153

Chapter 6

1. The CPU begins in the hypervisor’s idle thread, executing in VMX root
mode.

2. Xen’s scheduler selects a guest and loads its VMCS (Virtual Machine Con-
trol Structure) using the VMPTRLD instruction.

3. The VMRESUME instruction transfers control to the guest, transitioning to
VMX non-root mode.

4. The guest issues a hypercall with the VMCALL instruction.

5. A VM exit occurs: guest state is saved to the VMCS, and control is trans-
ferred to the hypervisor’s VM exit handler for hypercall processing.

This sequence highlights how a single conceptual IFSM transition entails multiple
CPU state changes, many of which are transient and unobservable yet necessary
for correct execution. To summarize the definition of states, considering an IFMS
θ and a program ρ that implements it in the target architecture CPU, all possible
states of Qcpu can be defined by the disjoint sets as follows:

Qcpu = Qsane
cpu ∪ Qtrans

cpu ∪ Qweird
cpu ,

where:

• Sane states (Qsane
cpu) are those system states (in CPU and memory) that corre-

spond exactly to valid states of the IFSM, being part of the abstraction/in-
stantiation mapping:

Qsane
cpu =

{
q ∈ Qcpu | ∃ αθ,cpu,ρ(q)

}
• Transitory states (Qtrans

cpu) are intermediate states qtrans on the CPU that oc-
cur only while the program ρ transitions from one valid IFSM state (si) to
another (s f), without diverging from the correct IFSM path (δ(si, σ) = s f).
They are part of the correct internal functioning of ρ:

Qtrans
cpu =

si
n−→ qtrans n−→ s f ∈ Qcpu

∣∣∣∣∣∣
∃ αθ,cpu,ρ(si) and αθ,cpu,ρ(s f)
∄ αθ,cpu,ρ(qtrans)
δ(si, σ) = s f


• Weird states (Qweird

cpu) are CPU/memory states that do not map to any IFSM
state nor any legitimate transitory path. These arise from unintended be-
haviors such as memory corruption, logic flaws, and hardware faults.

154

Defining Intrusion Models for Structured Security Assessment

Emergent Behavior and the Weird Machine

Once a program enters a weird state, a state not covered by the abstraction map-
ping αθ,cpu,ρ nor by any benign transitory transition, its subsequent behavior can
no longer be described as a simulation of the IFSM. Instead, the system exhibits
emergent computation that follows semantics derived from the instructions of ρ,
but on a corrupted or uncontrolled state space. Researchers define this emergent
execution as the operation of a Weird Machine [Dullien, 2017].

Definition (Weird Machine): Given an IFSM θ and a program ρ emulated on a
concrete machine cpu, the weird machineWθ,cpu,ρ is a finite-state transducer over
the weird state space, defined as:

Wθ,cpu,ρ =
(

Qweird
cpu , qinit, Qsane

cpu ∪Qtrans
cpu , Σ′, ∆′, δ′, σ′

)
where Qweird

cpu denotes the set of weird states, which include qinit, the initial state
(typically reached from a sane state via a fault or attacker input). The final states
ofWθ,cpu,ρ represent absorbing states that re-enter IFSM execution.

Emergent input and output alphabets are Σ′ and ∆′, respectively, often induced
by attacker input and observable system behavior. The transition function is δ′ :
Qweird

cpu × Σ′ → Qweird
cpu ∪Qhalt

cpu , and the output function is σ′ : Qweird
cpu × Σ′ → ∆′.

The weird machine executes unintended computations defined by the semantics
of ρ as it operates on a malformed or corrupted state. Its behavior is generally not
modeled or predicted by the original system design.

In the case of XSA-212, represented in Figure 6.3, the attacker programs the weird
machine by crafting malicious parameters for the hypercall and once the code
mistakenly validates the high-privilege address (i ∈ Qweird

cpu), it enters in the
computational space of the XSA-212 weird machine. From there, each crafted
input from the guest (e.g., interrupt invocation, memory write) serves as a symbol
in Σ′, effectively programmingWθ,cpu,ρ to perform unauthorized behavior.

Exploitation as Weird Machine Programming

From weird machines follows the definition of exploitation. An exploit is a pro-
gram τ capable of finding the right i ∈ Qinit

cpu ⊂ Qweird
cpu finite input sequence to the

weird machine that causes the system to reach states Qunsafe
cpu ⊂ Qweird

cpu that violate
a security property defined over the IFSM. A system is exploitable under a given
attacker model if such a sequence s exists. The weird machine model formal-
izes how computation can emerge from unintended state transitions triggered by
faults or adversarial influence. Exploitation becomes a form of programming,
not of the IFSM, but of the weird machine that arises when ρ fails to preserve the
design intent of θ. This abstraction provides a robust foundation for reasoning
about security-relevant failures at the semantic level of system design.

155

Chapter 6

qcpu4 qcpu5 qcpu6

memory_op
physmap
add_page VMRESUME

Handling
Memoryqcpu3

Memory
Update

fcpu

Return
to Guest

Root Mode

qinit fweird

Shell

f

Return
to Guest

Update
 Completeq3

Memory
Update

Return
to Override

Address

Load
Payload

…

qinit

update
p2m

…
Root Mode

fweird

Shell

buffer overflow
overrides the return

address

IFMS
Q𝜃

FMS (𝜌)
Qcpu

Figure 6.3: XSA-212 abstraction scenario where the system transitions into a
weird state (Step 2), then executes attacker-controlled code (Step 3) using the
weird machine’s emergent semantics.

From Theory to Practice: The Role of Intrusion Models

While the weird machine framework allows us to reason about exploitability as
a deviation from intended computation, security testing and assessment demand
more than theoretical insight. We must specify and inject conditions that trigger
such unintended computations in practice. This leads to the concept of Intrusion
Models, which capture the abstraction of erroneous states and abusive function-
alities, without requiring a current exploitable vulnerability. In the next section,
we introduce the formal definition of intrusion models and present a methodol-
ogy to derive them systematically.

6.1.2 Formalizing Intrusion Injection

In this section, we extend the Intrusion Model definition presented in Sec-
tion 5.2.2, enabling a more systematic reasoning about intrusions. Building on
the previous discussion of emulating intrusions by injecting erroneous states, we
now define the structure, semantics, and components of an IM to support its in-
stantiation and use in security assessment campaigns.

Formal Definition of Intrusions

An intrusion, as defined by the AVI composite fault-model [Neves et al., 2006],
corresponds to the activation of a vulnerability by a successful attack, resulting
in an erroneous system state. Formally, an intrusion occurs when a malicious
input sequence w = {σ0, σ1, . . . , σn} ∈ Σ∗, causes a transition from a valid state

156

Defining Intrusion Models for Structured Security Assessment

q ∈ Qsane to a state qinit ∈ Qweird via an unintended functionality exposed by the
system.

This transition must violate a defined Security Property, denoted by the pred-
icate P : Q∗ → {true, false}, which maps system execution traces to a Boolean
verdict that captures if the security property holds during all transitions. A trace
π = ⟨q0, q1, . . . , q f ⟩ satisfies P when the sequence preserves all security-relevant
invariants. Conversely, P(π) = false indicates a violation has occurred during
or at the end of the trace. Recall that δ denotes the system’s transition function,
formally defined as δ : Q× Σ→ Q, which specifies the next state q′ ∈ Q reached
from a current state q ∈ Q when processing an input symbol σ ∈ Σ.

We use the extended transition function δ∗ : Q × Σ → Q to represent the effect
of processing an entire sequence of inputs. This function recursively determines
the state reached by a finite state machine after consuming a finite string w =
{σ0, σ1, . . . , σn} ∈ Σ∗ of input symbols, starting from an initial state q0 [Hopcroft
et al., 2001; Sipser, 2012]:

q0 q1 q2 · · · q f
σ1 σ2 σ3 σnQsane

cpu Qweird
cpu

We use this notation to formally define the concept of an intrusion. An intrusion
is said to occur when a specific sequence of attacker-controlled inputs w ∈ Σ∗

causes the system to transition from a valid state q0 ∈ Qsane into an unintended or
erroneous state q f ∈ Qweird, and this execution path violates the system’s security
property P .

Intrusion

q0 ∈ Qsane starting from a valid state

w = (σ0, σ1, . . . , σn) ∈ Σ∗ given a malicious input sequence

δ∗(q0, w) = q f and an extended transition function

π = ⟨q0, q1, . . . , q f ⟩ that leads to an execution trace of states

q f ∈ Qweird ending in a weird state

P(π) = false violating a security property

The state q f marks where the system deviates from its intended semantics enter-
ing the weird machine, i.e., it is the qinit. At this stage, execution becomes unpre-
dictable and attacker-controlled, shifting from constrained input manipulation to
arbitrary computation.

Intrusion Injection does not execute an actual exploit. Instead, it deterministically
places the system in the post-intrusion state q f , enabling controlled evaluation of
its behavior under compromise, regardless of how that state was reached. Since
an intrusion corresponds to a transition into an erroneous state via an abusive
functionality, we define an Intrusion Model (IM) as an abstraction over such transi-
tions. Rather than modeling complete exploit chains, an IM captures the essential

157

Chapter 6

elements required to reproduce and assess the impact of an intrusion. Conceptu-
ally, an IM is a representation of: (i) the interface used by the adversary to interact
with the system, (ii) the component affected by this interaction, (iii) the abusive
functionality exposed as a result, and (iv) the security implications.

This abstraction allows us to reason about intrusions not in terms of specific vul-
nerabilities or attack scripts, but through the generalized behaviors they enable.
Multiple real-world vulnerabilities can map to the same IM if they expose the
same abusive functionality or lead to equivalent erroneous states. For example,
different flaws in page table validation logic may allow a guest VM to gain unau-
thorized write access to hypervisor-owned memory. A common IM can unify
these cases despite technical differences by modeling the write access capability
and its associated impact.

Formal Definition of Intrusion Models

We define an Intrusion Model (IM) as a tuple of four components that abstract the
fundamental aspects of an intrusion:

IM =
(

AV, SP, AF, ϵ
)

Each element captures a distinct dimension of the intrusion, as detailed below.
The attack vector represents a sequence of state transitions that model the inter-
action between the attacker and the system and the propagation of the intrusion
through different components. Formally, we define:

AV ⊂ Q ∪Qweird with π = ⟨q0, q1, . . . , q′f ⟩ ∈ AV

such that q0 ∈ Qsane and q′f ∈ Qweird. We partition π into three disjoint (and
consecutive) subsets of transitions:

• πS = ⟨qs
0, . . . , qs

f ⟩ with qs
0 = q0: the source, representing the states from the

origin of the attack (e.g., unprivileged guest interaction tool).

• πI = ⟨qi
0, . . . , qi

f ⟩: the interface, the observable execution path used to in-
teract with the system (e.g., through hypercalls, syscalls).

• πT = ⟨qt
0, . . . , qt

f ⟩ with qt
f = q′f : the target, where the affected component

processes the input and produces the erroneous result.

The modeled vulnerability determines the transition from the Qsane space to
Qweird. This transition violates the security property P defined in Section 6.1.2.

The erroneous state, represented by ϵ, is the abusive functionality’s outcome. It
corresponds to the entry point into the weird machine, where the system diverges
from its intended semantics:

ϵ ∈ Qweird such that ∃ (q, i, ϵ) ∈ AF

158

Defining Intrusion Models for Structured Security Assessment

It may be abstract (e.g.,“a page table entry is writable by a guest”) and is typically
represented symbolically or structurally, depending on the model’s granularity.

The abusive functionality denotes the unintended behavior exposed by the sys-
tem due to the intrusion. It is expressed as:

AF = ⟨λ, i, ν, ϵ⟩

where we have a transition function that represents the states λ : Qsane
cpu × Σ →

Qweird
cpu ∪Qsane

cpu , ν = ⟨σ0, q1, . . . , q′f ⟩ the initial state and the erroneous state.

or, equivalently, as a partial function AF : Qsane × Σ → Qweird. The presence of
AF in an intrusion model is contingent on the predicate P evaluating to false over
the associated trace:

P(π) = false→ AF is enabled during π

This ensures that abusive functionalities are only modeled when they cause se-
curity violations.

Note that this definition abstracts away the specifics of exploits or vulnerabilities
and instead captures the behavioral footprint of classes of intrusions.

Limitations of the Intrusion Modeling Approach

Our approach focuses on modeling intrusions as security-relevant erroneous
states caused by memory corruption or logic flaws. It does not cover side-
channel attacks or intended-but-dangerous features. Side-channel exploits,
which rely on timing or resource usage, fall outside the scope of state-based mod-
eling. Similarly, insecure yet intentional behaviors (e.g., weak cryptographic pro-
tocols) do not produce erroneous states as defined by IMs.

IMs also assume that erroneous states are both representative and injectable. In
practice, some states may be unreachable or hardware-specific, limiting general-
ity. Defining precise abusive functionalities is non-trivial and essential to avoid
unrealistic injections. Despite these constraints, the methodology remains effec-
tive for evaluating security resilience to software-level intrusions in virtualized
systems like Xen.

Having established a formal structure for modeling intrusions, we now introduce
the methodology for systematically deriving such models in practice. In the fol-
lowing section, we show how to instantiate these Intrusion Models for concrete
systems and use them to guide structured security assessments.

6.2 Methodology for Defining Intrusion Models

The main challenges in adopting Intrusion Injection lie in the absence of a sys-
tematic methodology for intrusion modeling. To address this gap, we pose the

159

Chapter 6

following question:

How can Intrusion Models (IMs) be systematically designed to test systems
in a way that reflects realistic threats?

In this section, we define a structured process to guide the identification of In-
trusion Models in a system. This process leverages system knowledge and in-
formation about potential threats and functionalities to construct representative
models suitable for injection. This methodology ensures systematic coverage,
practical feasibility, and semantic consistency across multiple layers of a complex
system such as a hypervisor.

Attack Vector Intrusion Model

Figure 6.4: Intrusion Models are derived from Attack Vectors.

As discussed in Section 6.1.2, an Intrusion Model (IM) is derived from an attack
vector within the system (see Figure 6.4). Our methodology consists of two major
phases, each with several steps that enable systematic assessment. Figure 6.5
presents an overview of this process. We describe each step of the methodology
as follows:

1. Attack Vector Definition

1.1 System Understanding – Analyze the system’s architecture and be-
havior to gather the necessary background for modeling.

1.2 Threat Surface Mapping – Identify potential entry points and vulner-
able interfaces.
Output: List of attack vectors for the system.

2. Intrusion Model Instantiation

2.1 Attack Surface Characterization – Examine the technical details of
the selected attack vector, including interface behavior, underlying ab-
stractions, and affected components.

2.2 Abusive Functionality Modeling – Combine the attack vector, abstrac-
tion, and violated security property to define the abusive functionality.
Output: Formally defined abusive functionalities set.

6.2.1 Phase 1: Attack Vector Definition

According to NIST [Stouffer et al., 2015], an attack vector is the “path or means by
which an attacker gains access to a system to deliver a payload or exploit a vulnerability".
In our work, we extend this concept by decomposing the attack vector into three
abstract components:

160

Defining Intrusion Models for Structured Security Assessment

System
Understanding

Threat Surface
Mapping Attack Vector

Attack Surface
Characterization

AF
Definition

Abusive
Functionality

Attack Vector Definition

System-Aware Intrusion Modeling

Figure 6.5: Overview of the Methodology

• Source: the origin from which the modeled threat initiates the attack.

• Interface: the resource or mechanism intermediating the malicious interac-
tion.

• Target: the component where the erroneous state manifests.

Source TargetInterface
Erroneous

StateAbusive Functionality

Figure 6.6: Attack Vector

Figure 6.6 represents the core structural elements of IMs, which abstractly cap-
ture the attack source, the interface through which the attack materializes, and
the target component where the resulting erroneous states emerge. The abusive
functionality originates from the source and is exercised via the interface to com-
promise the system.

We propose a structured, multi-phase methodology to analyze the security pos-
ture of assistant-based systems. The approach progressively builds system
knowledge, identifies potential threats, and defines realistic attack vectors. It con-
sists of the following steps:

1. System Understanding: Analyze available documentation to construct a
mental model of the system’s architecture, exposed interfaces, and opera-
tional context.

2. Threat Surface Mapping:

• Threat Modeling: Identify potential adversaries, attack surfaces, and
threat scenarios using established frameworks.

161

Chapter 6

Threat
Modeling

Vulnerability
Evaluation

Threat Surface Mapping

System
Understanding Attack Vector

Figure 6.7: Inner Steps of the Attack Vector Definition Phase

• Vulnerability Evaluation: Evaluate actual vulnerabilities to identify sys-
tem weaknesses and gain insights into potential attack paths. This pro-
cess analyzes security advisories and examines known attack strate-
gies to determine their applicability within the specific system context.

3. Attack Vector: This step synthesizes the previous analyses, outlining attack
paths and exploitation strategies. The process concludes with a clearly de-
fined (though informally specified) set of attack vectors that serve as the
foundation for subsequent intrusion modeling.

This process provides a foundation for systematic risk analysis and facilitates
targeted mitigation planning. Detailed descriptions of each step follow.

A viable strategy for systematically defining possible attack vectors is to perform
threat modeling. Threat modeling is the process of identifying potential threats,
vulnerabilities, and attack surfaces within a system to understand how attackers
could exploit it [Shostack, 2014]. However, performing effective threat modeling
presents several challenges. It often requires deep domain expertise, comprehen-
sive system documentation, and active stakeholder involvement. Furthermore,
modeling complex or legacy systems can be time-consuming and error-prone due
to undocumented interactions, unclear trust boundaries, or rapidly evolving sys-
tem components.

A simpler and quicker alternative involves characterizing attack vectors through
vulnerability assessment. This approach relies on analyzing known vulnerabil-
ities in the system to identify patterns of exploitation. The advantages of this
vulnerability-based approach include its practicality, as it leverages existing data;
its efficiency, as it eliminates the need for complete system modeling; and its rel-
evance, as it reflects real-world weaknesses that have been exploited or reported
in similar systems.

The final output of this stage is a list of attack vectors for the system. While
threat modeling can provide detailed information about the system’s architecture
and potential threats, vulnerability evaluation offers a more limited perspective.
Nonetheless, both approaches should produce at least an informal definition of
the attack vectors, including the core component, such as the threat source, its tar-
get, and information about the type of operation and the interface through which
it occurs. For example, the output of this process may include attack vectors such
as:

162

Defining Intrusion Models for Structured Security Assessment

(XSA-212) a malicious paravirtualized guest exploiting the XENMEM_exchange hypercall to
perform out-of-bounds memory accesses in the hypervisor;

(XSA-141) a guest abusing the XENMEM_populate_physmap hypercall to allocate excessive
memory and exhaust host resources.

6.2.2 Phase 2: System-Aware Intrusion Modeling

This phase focuses on the construction of system-aware Intrusion Models (IMs)
by systematically combining attack vector components, including the entry point
(triggering component), the mechanism (interface capabilities), and the impact
scope (affected abstractions) to precisely specify each IM. Figure 6.8 illustrates
the overall process.

The Attack Surface Characterization evaluates attack vector information to identify
exploitable conditions. The subsequent blocks represent transformation stages
that lead to the final intrusion model.

Attack Vector
Identification

Interface Capability
Analysis

Abstracting
System Mechanics

Security Property
Identification

Abusive
Functionality

Erroneous
State

defines

Attack Surface Characterization Abusive Functionality Modeling

Figure 6.8: Intrusion Modeling Methodology with Highlighted Attack Surface
Characterization Phase

As defined in Section 6.1.2, an Intrusion Model (IM) is represented as a tuple
IM =

(
AV, SP, AF, ϵ

)
, where each component captures a core aspect of the in-

trusion scenario. However, when modeling intrusions in real-world systems, we
encounter a key challenge of representation: What exactly are the structures affected
by the erroneous states, and how should they be described?

When dealing with abusive functionalities in real-world systems, we face a sig-
nificant representation challenge. System designs often layer operations across
multiple abstractions, which may nest or tightly couple with functionalities ex-
posed to the user. As a result, the capabilities enabled by a malicious opera-
tion can affect various resources and may involve multiple components, like data
structures, hardware mechanisms, or low-level system internals.

To address this complexity, we introduce an abstraction to formally capture how
an IM can represent and differentiate these aspects. For example, the same in-

163

Chapter 6

terface operation might be associated with distinct vulnerabilities manifest dif-
ferently in the system. One vulnerability might result in a single-byte memory
corruption caused by an off-by-one error. At the same time, another could allow
complete manipulation of the core data structure involved in the operation.

To approach those challenges, we extend the IM tuple to explicitly include the
abstraction component, which is critical in determining the impact scope, i.e., the
ϵ induced by the abusive functionality. Thus, our representation becomes:

IM = (S, I, T, A, SP, AF, ϵ)

where:

• S: Source – the origin of the intrusion (e.g., a guest domain or user).

• I: Interface Used – the exposed mechanism that enables the injection (e.g.,
a specific hypercall, memory-mapped interface, or I/O instruction).

• T: Target Component – the internal subsystem or structure impacted by the
intrusion (e.g., page table handler, IDT handler, memory grant table).

• A: Abstraction Level – the granularity of the IM (e.g., byte-level, page-level,
or semantic-level, such as descriptor injection).

• SP: Security Property Violated – the violated security attribute at the ab-
straction level (e.g., IDT integrity, memory isolation, etc).

• AF: Abusive Functionality – the emergent capability or behavior exposed
through the intrusion (e.g., Write Arbitrary Memory, Trigger CPU Hang).

• ϵ: Erroneous State – the final corrupted or unexpected state (e.g., privileged
address range mapped in guest).

The process of defining an IM based on an attack vector follows these main stages:

1. Attack Surface Characterization: Involves identifying and analyzing the
specific characteristics of the selected attack vectors. It includes the follow-
ing substeps:

• Attack Vector Identification: Determining the specific interaction points
or mechanisms through which a potential threat can exploit vulnera-
bilities within a system. Such identification typically requires a com-
prehensive analysis of the system’s structure, behaviors, and external
interfaces.

• Interface Capability Analysis: Understand the operations exposed by the
targeted interface, including assumptions about inputs, outputs, and
permitted behaviors. This step identifies the functional surface avail-
able to potential adversaries.

164

Defining Intrusion Models for Structured Security Assessment

• Abstracting System Mechanisms: Once potential attack vectors are de-
fined, we abstract the system mechanisms they exploit. This abstrac-
tion precisely maps exploitation paths and their resulting erroneous
states.

• Security Property Identification: We identify the relevant security prop-
erties that the system is expected to enforce for each abstraction and
its associated operations. These may be specific to the abstraction (e.g.,
memory isolation) or general system-level guarantees (e.g., confiden-
tiality, integrity, availability).

2. Abusive Functionality Modeling: Combining the previously analyzed ele-
ments defines which capabilities can violate the identified security proper-
ties and lead to the injection of representative erroneous states. The abusive
functionality models how an intrusion can effectively induce an erroneous
state in the target component, i.e., exploit an attack vector.

• Erroneous State (ES) Definition: The definition of erroneous states is in-
trinsically tied to the identified abusive functionality. Therefore, this
step is often considered implicit. For instance, consider writing to a
privileged memory address: the erroneous state is determined by the
specific inputs to the abusive functionality, namely, the memory con-
tent and the privileged address being written to.

Through this compositional approach, the methodology enables the systematic
definition of multiple abusive functionalities, each grounded in a concrete attack
vector and abstract system behavior.

6.3 Case Study: Applying Intrusion Models to Xen
Hypervisor

This section applies the methodology from Section 6.2 to the Xen hypervisor,
chosen for its complexity, modular design, and publicly available vulnerability
data. Each phase is illustrated through a consistent example centered on mem-
ory management vulnerabilities, from attack vector definition to the stepwise
derivation of Intrusion Models (IMs). The complete set of abusive functionali-
ties and methodological artifacts is available in our repository for reproducibil-
ity [Gonçalves, 2025].

6.3.1 Attack Vector Definition

System Understanding

Our system characterization began with the official Xen documentation [Com-
munity, 2015], which provides insight into its architecture, hypercall inter-
face, and internal components. Supplementary materials, including developer

165

Chapter 6

guides [Chisnall, 2013], patch descriptions [Xen, 2015], and visualization tools,
were also consulted to understand the inner workings of privileged operations
and VM isolation mechanisms.

Xen is a highly complex system comprising interdependent subsystems [Chisnall,
2013], including memory management, scheduling, and I/O virtualization. This
complexity challenges formal security modeling. A clear understanding of these
mechanisms is essential to characterize how exposed interfaces interact with priv-
ileged components and where deviations may arise. Our initial effort dissected
this structure to support subsequent intrusion modeling phases.

Threat Surface Mapping

We defined attack vectors for IMs by analyzing Xen Security Advisories (XSA),
which provide a concrete entry point for identifying feasible attack surfaces.
While full threat modeling lies outside the scope of this work, this structured anal-
ysis supports the systematic identification of potential intrusions.

We analyzed 464 Security Advisories, of which 315 were retained after filtering
and included in the evaluation. Table 6.1 summarizes the evaluation scope and
exclusion categories. The vulnerability evaluation process included the following
steps:

1. Data Collection: We aggregated data from official XSA patches, changel-
ogs, and source-level diffs.

2. Inclusion Filtering: Advisories unrelated to Xen code (QEMU, Linux, etc)
or those related to the approach limitations (see Section 6.1.2).

3. Component Identification: Each advisory was mapped to one or more af-
fected Xen subsystems (e.g., ‘Grant Table‘, ‘Page Management‘, ‘MMU‘).

4. Validation Cycle: Advisory classifications (inclusion/components) were
refined iteratively as deeper analysis revealed component dependency and
nesting.

We must define the exact scope we are interested in assessing to determine the
relevant ones to start the study. Not every vulnerability would help our approach
in modeling an effective intrusion from which our technique may benefit: we
want to focus on errors introduced by implementation mistakes, for which we
can effectively create injectors. The scope is limited to memory-corruption bugs,
configuration errors, and the so-called "logic flaws"; everything beyond that, e.g.,
design flaws, side-channel attacks, etc., is out of scope. So, any vulnerability
outside this scope would not be considered.

For Intrusion Injection (II), the abusive functionalities should be triggered inside
the evaluated system. Suppose the problem is, for instance, in the processor de-
sign. Even for a relevant vulnerability, it is not interesting to our work because the
target system (Hypervisor) is not the source of the weakness. Based on that, we

166

Defining Intrusion Models for Structured Security Assessment

exclude any vulnerability not directly located in the Xen Hypervisor components
(e.g., Linux flaws).

Preprocess and
Consolidate XSA

data

XSA
page data

Xen Patches

Inclusion /
Exclusion
Criteria

Aggregated
XSA Data

1

2

3 4 5

Figure 6.9: Process of generating the consolidated data of XSAs

There are other cases where we did not assess the XSA. The XSAs 1 to 25 are
legacy Security Advisories, which we did not consider for this reason. Also, there
are some cases where the vulnerabilities are more like a technology limitation
(e.g., hardware that does not comply with specification, lack of specification, etc)
but still are signaled as security vulnerabilities by the vendors (e.g., XSA-163,
XSA-376, XSA-340). Some XSA entries were generated and later became unused
or withdrawn; they have no associated vulnerability.

We mapped each advisory to its affected subsystem through patch analysis and
source code inspection. To enhance consistency and scalability in this classifica-
tion task, we employed a Large Language Model (LLM), specifically ChatGPT-4o-
mini [OpenAI, 2024], integrated into a semi-automated pipeline. The methodol-
ogy is detailed in Algorithm 2, which outlines the process used to extract, enrich,
and validate information from each Xen Security Advisory (XSA).

Advisory data was obtained from the structured xsa.json feed2, and for each
entry, relevant fields such as title, description, and impact were parsed. The
LLM was then used to: (1) identify the involved subsystem components; (2) as-
sess whether these components were within the scope of our analysis; and (3)
suggest plausible abusive functionalities based on the descriptive patterns ob-
served. The LLM was queried using tailored prompts designed to elicit struc-
tured and targeted responses. While these outputs informed the initial drafting
of Intrusion Models, the final classifications were manually derived. Many of
the model components required verification, refinement, or complete restatement
to ensure alignment with domain-specific semantics and methodological consis-
tency.

At the highest level, vulnerabilities are categorized into nine major components:

1. CPU Management – Covers vulnerabilities in CPU architecture, failsafe
mechanisms, and vCPU operations, affecting core processor management.

2. Communication Channels – Includes weaknesses in event channels and
XenStore, which handle inter-domain communication.

2https://xenbits.xen.org/xsa/xsa.json

167

https://xenbits.xen.org/xsa/xsa.json

Chapter 6

Algorithm 2 Procedure for Automated Advisory Analysis with LLM Support

1: Download xsa.json from the official Xen Project repository
2: for all a ∈ Advisories do
3: Extract fields: title, description, impact
4: Construct input prompt with advisory context
5: Query_LLM(Identify involved components)
6: Query_LLM(Evaluate if components are in-scope)
7: Query_LLM(Suggest abusive functionalities)
8: Store structured output for manual validation
9: end for

3. I/O Subsystem – Encompasses device management (PCI passthrough,
drivers, device emulation), direct I/O, and I/O emulation, impacting hard-
ware interaction.

4. IRQ Management – Focuses on vulnerabilities in interrupt handling, in-
cluding remapping and MSI processing.

5. Virtualization Architecture – Covers instruction emulation, architecture-
specific issues, domain management, hardware-assisted virtualization, and
the hypercall interface.

6. Interrupt Subsystem – Includes exception handling and IRQ management
vulnerabilities affecting system stability.

7. Memory Management – The largest category, addressing issues in address
translation, page management, and MMU operations, with high security
implications.

8. Security and Isolation – Encompasses speculative execution risks and Xen
Security Modules (XSM) vulnerabilities.

9. Toolstack – Covers weaknesses in administrative tools like libxl, XAPI,
and Xen Tools, crucial for VM management.

Each category aggregates vulnerabilities in a structured manner, with refined
subcategories detailing specific subareas of the major categories. This hierarchi-
cal organization helps identify possible functionalities that a malicious user may
leverage and understand the systemic nature of vulnerabilities within the Xen
hypervisor.

Table 6.2 shows the resulting taxonomy across Xen’s core subsystems. Memory
Management accounts for the majority of cases (105), particularly in Page Man-
agement (54) and Grant Table (28). Virtualization Architecture and I/O Subsystem
also show elevated counts, reflecting their complexity and exposure.

Given the breadth of Xen’s architecture, exhaustive coverage of all attack vectors
was infeasible. Instead, we focused on a representative subset of memory-related
vulnerabilities, enabling deeper analysis.

168

Defining Intrusion Models for Structured Security Assessment

Categorization of XSA
Components

OS / Virt.
ReferencesXen Docs

Aggregated
XSA Data

XSA’s
Hierarchical

Category

Refinement and
Validations of XSA

Categorization
1

2

3 4 5

6

Figure 6.10: Process of generating the hierarchical component categories of XSAs

Inspection revealed that all memory-related cases stem from malicious guest
activities, primarily through crafted hypercall invocations. Accordingly, we
adopted this threat model. The list of attack vectors that culminate from this
analysis is the combination of this threat model and each interface listed under
the “Memory Management” category in Table 6.1.

Table 6.1: Overview of Xen Security Advisories (XSAs) Considered in the Case
Study

Category Count

Total Security Advisories (XSAs) 464
Included in Evaluation 315
Excluded from Evaluation 149

Exclusion Breakdown3

Out of Scope Advisories 88
Unused Advisories (XSAs) 14
Legacy Advisories (XSA-1 to XSA-25) 25
Advisories Covering Multiple CVEs 45
Non-Xen Project Vulnerabilities 55

Table 6.2: Xen Vulnerabilities Breakdown by Hypervisor Subsystems and Com-
ponents

Component # Vulnerabilities

Hypervisor Total – – – 315

1. CPU Management – – – 5

1.1. CPU Architecture – – 1 –

1.2. Failsafe Mechanism – – 2 –

3The lists are not disjoint. The final exclusion list is the union of all categories.

169

Chapter 6

Table 6.2 – continued from previous page

Component # Vulnerabilities

1.3. vCPU Operations – – 2 –

2. Communication Channels – – – 33

2.1. Event Channels – – 12 –

2.2. XenStore – – 21 –

3. I/O Subsystem – – – 45

3.1. Device Management – – 37 –

3.2. Direct I/O – – 1 –

3.3. I/O Emulation – – 7 –

4. Interrupt Subsystem – – – 23

4.1. IRQ Management – – 13 –

4.3. Exception Handling – – 10 –

5. Virtualization Architecture – – – 80

5.1. Instruction Emulation – – 8 –

5.2. Architecture-Specific Implementations – – 25 –

5.3. Domain Management – – 7 –

5.5. Hypercall Interface – – 13 –

6. Memory Management – – – 105

6.0. Nonspecific – – 11 –

6.1. Grant Table – – 28 –

6.2. Ballooning / PoD – – 2 –

6.3. Page Management – – 54 –

6.4. MMU – – 2 –

6.5. Address Translation and Mapping – – 5 –

6.6. Memory Operations – – 3 –

7. Toolstack – – – 22

7.1. Xen Tools – – 2 –

7.2. libxl – – 16 –

7.3. XAPI – – 4 –

170

Defining Intrusion Models for Structured Security Assessment

6.3.2 System-Aware Intrusion Modeling

Having established the relevant attack vectors and narrowed the analysis scope,
we now instantiate the remaining phases of the methodology to derive system-
aware Intrusion Models (IMs).

We focus on the memory management subsystem of Xen, a component frequently
implicated in past vulnerabilities and a critical target for malicious manipulation.
This subsystem consists of layered abstractions such as page tables, frame refer-
ences, shadow mappings, and translation buffers. Each layer exposes implicit or
explicit assumptions that, if violated, may lead to erroneous states.

Attack Surface Characterization

Attack Vector Identification. Hypercalls such as ‘XENMEM_increase_reservation‘
or ‘XENMEM_exchange‘ are typical entry points in many memory-related XSAs.
Their complexity and weak documentation make their internal semantics diffi-
cult to model. This complexity highlights the relevance of this step.

During this phase, we examine the Xen sou rce code (where many design details
are well documented) to understand precisely how many attack vectors could
effectively manifest (i.e., which erroneous states they can cause).

Abstracting System Mechanics. Each hypercall may affect multiple internal ob-
jects. For example, a single memory exchange operation may corrupt:

• a ‘p2m‘ entry (page-to-machine translation)

• a TLB cache (address resolution)

• an internal guest memory accounting structure

Thus, understanding the possibilities of each hypercall, together with the knowl-
edge acquired during the vulnerability evaluation, can help define exactly what
concrete abusive functionality we could model from a specific attack vector.

Security Property Identification. We can infer security properties from the in-
tended semantics of each hypercall. For instance, ‘mmuext_op‘, which manipulates
page tables, is restricted to privileged domains to enforce isolation. Any misuse
by guest domains thus constitutes an integrity violation. This principle gener-
alizes: analyzing a hypercall’s functional contract reveals its security guarantees
and the properties violated when misused.

However, some violations stem from low-level implementation flaws (e.g., off-
by-one errors, uninitialized variables, or missing bounds checks) whose impact
depends on runtime context. A single issue may breach multiple properties: a
crash affects availability, a buffer overwrite compromises integrity, and a stale

171

Chapter 6

pointer may leak data, violating confidentiality. Identifying the affected property
requires correlating interface semantics with observed or reported consequences.

Abusive Functionality Modeling

To complete the modeling, we define the abusive functionality combining each
component of the attack vector and the core components of the intrusion injec-
tion (see Figure 6.6) into an abusive functionality that provides an abstraction for
inducing erroneous states that are: i) or modeled judiciously from a threat mod-
eling process; or ii) inspired by previous vulnerabilities that can likely have their
erroneous states replicated in other attack vectors.

Analyzing all attack vectors, we identified 51 distinct abusive functionalities
within the memory management subsystem. To structure these observations,
we decomposed each functionality into core components: an action performed
over a resource (the abstraction in IM) and a modifier that characterizes the spe-
cific misuse, which can be empty. This decomposition enables a more systematic
representation of functional deviations.

Table 6.3 and 6.4 present the most frequent combinations of actions, contextual
modifiers, targeted resources, and affected CIA properties derived from our mod-
eling process. 4

The following presents three representative abusive functionalities and illustrates
potential use cases for each.

1. Retain Page Reference: An unprivileged guest triggers a hypercall that
allocates or maps a memory page but intentionally avoids unmapping it,
causing the hypervisor to retain stale references. Erroneous State: Orphaned
memory with dangling references, risking reuse or unauthorized access.

2. Trigger Hypervisor CPU-Intensive Operation: The guest repeatedly in-
vokes a benign but costly hypercall (e.g., memory ballooning or translation
table walks) to degrade system performance. Erroneous State: CPU starva-
tion of other domains, violating availability guarantees.

3. Write Unauthorized Page Table Entries: Exploiting insufficient validation,
the guest injects page table updates (e.g., via mmuext_op) that alter mappings
in protected address ranges. Erroneous State: Corrupted address translation,
enabling execution or access of hypervisor memory.

We can view abusive functionalities as misuse of a system’s exposed interface.
Analogous to interacting with a public API. While the internal state transitions
remain hidden, an attacker can still achieve unintended effects by manipulating
inputs within the allowed interface. In this sense, the abusive functionality in-
directly defines the resulting erroneous state, much like a malformed API call
triggers backend faults without direct access to the implementation.

4Full model available at [Gonçalves, 2025]

172

Defining Intrusion Models for Structured Security Assessment

Table 6.3: Top frequent actions, modifiers, and resources derived from abusive
functionalities

Action Count Modifier Count Resource Count

Trigger 19 no modifier 57 page reference 17
Corrupt 18 unauthorized 15 page table 15
Retain 17 stale 8 Hypervisor Operation 10
Write 16 cpu-intensive 8 Memory 8
Read 8 invalid 5 TLB flushes 6

Table 6.4: Top frequent abusive functionalities and breakdown by affected secu-
rity properties

Abusive Functionality Count CIA Property Count

Retain Page Reference 10 Integrity 42
Trigger CPU-Intensive Oper. 8 Availability 40
Write Unauthorized PTE 7 Confidentiality 23
Corrupt Page Table Entries 7 – –
Suppress TLB flushes 6 – –

This case study demonstrates the practical application of our intrusion model-
ing methodology on a complex real-world system. By narrowing the scope to
memory-related vulnerabilities in Xen, we could derive concrete intrusion mod-
els grounded in empirical vulnerability data and structured system abstractions.
This exercise confirms the method’s suitability for guiding systematic security
evaluation and targeted intrusion injection.

6.3.3 Test Case: Page Table Integrity Violation

This section illustrates the proposed methodology using a real-world attack vec-
tor with confirmed exploitability [Horn, 2017]. To demonstrate each step in prac-
tice, we walk through a concrete example. Consider a hypothetical Cloud vendor
seeking to assess how specific attack vectors could impact their services. In this
scenario, a malicious guest exploits a hypercall interface to gain unauthorized ac-
cess to hypervisor-controlled memory, violating system integrity. The example
adheres to the structured methodology introduced earlier.

Phase 1: Attack Vector Definition

In this example, the attack vector is already known, but we highlight the steps of
Phase 1 that would have led to its discovery:

1. System Understanding: One should comprehend that the system includes
hypervisor-managed page tables controlling memory mappings for isolation
between guests and the hypervisor.

173

Chapter 6

2. Threat Surface Mapping: The decision between Threat Modeling and vulner-
ability evaluation would be case-specific. Let’s assume the Vulnerability Evalu-
ation choice.

3. Vulnerability Evaluation: Historical vulnerabilities (e.g., XSA-212) reveal
page table entry corruption patterns enabling unauthorized memory map-
ping.

4. Attack Vector Synthesis: Constructed AV:

• Source (S): Malicious guest user

• Interface (I): Hypercall (XENMEM_exchange)

• Target (T): Hypervisor’s page table management subsystem

Phase 2: Intrusion Model Specification

1. Attack Surface Detailing: The hypercall permits guests to request memory
exchange operations, potentially bypassing necessary input validation.

2. System Abstraction Modeling: The intrusion affects memory management at
the page-level abstraction, specifically altering mappings in hypervisor page
tables.

3. Security Property Mapping: The primary security property violated is In-
tegrity, due to unauthorized modification of hypervisor-controlled memory
mappings.

4. Abusive Functionality Modeling: The abusive functionality allows the mali-
cious guest to:

• Perform unauthorized writes to hypervisor-controlled page table entries.

• Reach an erroneous state (ϵ), defined as guest-accessible pages erro-
neously mapped to hypervisor memory space.

The finalized Intrusion Model tuple is:

IMb = ⟨S, I, T, A, SP, AF, ϵ⟩

S: Malicious guest user
I: Hypercall (XENMEM_exchange)
T: Hypervisor Page Table Management
A: Page-level
SP: Integrity
AF: Unauthorized write to page table entries
ϵ: Guest-accessible page table entry

174

Defining Intrusion Models for Structured Security Assessment

6.3.4 Model Equivalence Across Attack Scenarios

In Chapter 5, we demonstrated how Intrusion Injection can effectively reproduce
erroneous states and leverage them to emulate privilege escalation attack strate-
gies. Specifically, we modeled and replicated the real-world exploit XSA-212, suc-
cessfully reproducing equivalent security violations, namely, interrupt descriptor
table (IDT) overwrites and shellcode execution with elevated privileges. We cap-
tured this attack through an Intrusion Model (IM1) targeting Xen’s memory man-
agement subsystem. The model focused on corrupting the page table hierarchy
to map attacker-controlled memory into privileged address spaces. To instanti-
ate this model, we defined the abusive functionality Write Unauthorized Arbitrary
Memory and injected its corresponding erroneous states using a custom hypercall
(HYPERVISOR_arbitrary_access) that enables arbitrary memory writes.

In this section, we revisit the same attack objective but instantiate a different In-
trusion Model (IM2) that leverages a semantically distinct abusive functionality
(AF2). Rather than corrupting memory byte-by-byte as in AF1, AF2 enables the
guest to map and manipulate page table entries directly via a specialized API.
This comparison allows us to assess whether distinct IMs, differing in abstraction
level and interaction interface, can converge toward the same exploit strategy and
result in equivalent security violations.

The convergence of multiple attack paths on the same erroneous state highlights
a critical dimension of security evaluation: the concept of model equivalence.
This motivates a deeper examination of how different mechanisms can produce
semantically similar compromises. By exploring these equivalences, we expand
our understanding of the attack surface and reinforce the role of Intrusion Models
in systematic, abstraction-aware testing.

The Attack Strategy

In Xen’s paravirtualized memory model, the hypervisor handles virtual-to-
machine address translation using a hierarchical page table structure composed
of four levels: Page Map Level 4 (PML4)→ Page Upper Directory (PUD)→ Page
Middle Directory (PMD) → Page Table (PT) → Page Frame. To enforce mem-
ory isolation and system integrity, Xen mediates guest page table updates and
validates the consistency of newly introduced entries [Wiki, 2015].

The attack strategy we are assessing is the same as described in the exploit of the
XSA-212 [Horn, 2017]. Its goal is to compromise the integrity of Xen’s page table
hierarchy. Figure 6.11 illustrates the process. The attack begins with the guest
domain preparing a series of memory pages that later serve as the foundation for
a forged page table hierarchy. These pages include the shellcode payload and the
supporting data structures (Step 1 in Figure 6.11).

The guest leverages an abusive functionality that permits injecting a forged Page
Upper Directory (PUD) entry into the page table hierarchy. This injected PUD en-
try is carefully constructed to point to a malicious Page Middle Directory (PMD),
also under guest control (Step 2 in Figure 6.11). By inserting this forged entry, the

175

Chapter 6

PML4 (L4) PUD (L3) PMD (L2) PT (L1)

0x0000600040000000

0x0000804000000000

PML4 (L4) PUD (L3) PMD (L2) …

high-privilege
address space

user
address space Abusive

Functionality

m_pt

shell hv
shell user
m_pmd

0 1 2 3 4 5 …

1
From user space prepare pages to support

the priviledge address mapping

2Using the AF, link the protected
address to crafted pud

3
Install the code
on high address

Figure 6.11: Overview of the procedure in the Case Study

guest establishes a new virtual-to-machine mapping that effectively links a pro-
tected, high-privilege virtual address (e.g., 0x804000000000) to a region of memory
it fully controls. This redirection enables the guest to remap its shellcode into a
memory range typically reserved for the hypervisor, bypassing standard access
control policies.

In the final step (Step 3 in Figure 6.11), the guest installs its payload into the
now-accessible privileged address region. To execute the injected code, the guest
locates and clones the Interrupt Descriptor Table (IDT), modifies one of its vector
entries (e.g., 0x85) to point to the remapped shellcode, and triggers the corre-
sponding interrupt. As a result, the hypervisor transfers execution to attacker-
controlled code, escalating the guest’s privileges.

Strategy Reproduction via Alternative Intrusion Models

In this section, we compare the implementation of two different Intrusion Models
that aim to reproduce the same high-impact attack described in XSA-212. Each
model leverages a distinct abusive functionality, one at the byte level and the
other at the page-table entry level, demonstrating how multiple abstraction layers
can lead to equivalent system compromise.

• IM1: Arbitrary Unauthorized Memory Write: As introduced in Chapter 5,
the first Intrusion Model (IM1) is based on the abusive functionality Ar-
bitrary Unauthorized Memory Write that describes the attack by using a
byte-level memory corruption primitive. In this approach, the guest con-
structs a malicious Page Upper Directory (PUD) entry by writing each byte
individually into a privileged memory region. Once this forged entry is in-
stalled, the attack proceeds as outlined in Figure 6.11: shellcode is injected,
the IDT is cloned and modified to point to attacker-controlled code, and a
crafted interrupt is triggered to hijack control flow. We formally represent

176

Defining Intrusion Models for Structured Security Assessment

this model as:

IM1 = ⟨S, I, T, A, SP, AF, ϵ⟩

S: Malicious guest user
I: Hypercall (arbitrary_access)
T: Hypervisor Page Table Management
A: Byte-level
SP: Integrity
AF: Arbitrary Unauthorized Memory Write
ϵ: Corrupted Page Table Entry (byte-level)

This Intrusion Model represents a powerful attack capable of corrupting
privileged memory at arbitrary offsets. Although such capabilities are rare
in real-world systems, their potential impact is severe. IM1 is a critical test
for evaluating system resilience against unconstrained memory manipula-
tion.

• IM2: Write Unauthorized Page Table Entry

In real-world systems, page-level manipulation capabilities are generally
more likely to be encountered than unrestricted, arbitrary memory write
primitives. While the latter may serve as a worst-case abstraction, practical
threats are more likely to exploit structured access paths exposed through
complex system interfaces.

This insight motivates the definition of a second Intrusion Model (IM2),
which captures the same attack objective using a structured primitive op-
erating at the page table level. This model uses the abusive functionality
Write Unauthorized Page Table Entry, which enables the guest to access
and update page tables directly, mapping them in its virtual address space,
mimicking scenarios where attackers leverage exposed or misconfigured
memory mapping mechanisms. We formally define IM2 as:

IM2 = ⟨S, I, T, A, SP, AF, ϵ⟩

S: Malicious guest user
I: Hypercall (arbitrary_page)
T: Hypervisor Page Table Management
A: Page-level
SP: Integrity
AF: Write Unauthorized Page Table Entry
ϵ: Corrupted Page Table Entry (entry-level)

While IM1 models a raw corruption scenario, IM2 targets structured manipula-
tion via exposed interface semantics. The final security violation is identical: a
forged page mapping pointing to attacker-controlled memory that enables IDT
overwrite and privilege escalation. However, the paths by which these models

177

Chapter 6

reach their respective erroneous states are not equivalent in complexity or seman-
tic granularity. The final erroneous state of IM2, denoted as ϵ2, corresponds to an
equivalent erroneous condition in the execution of IM1, denoted as ϵ1

e . As illus-
trated in Figure 6.12, this state in IM1 is not reached directly, but rather through
a series of intermediate erroneous states (ϵ1

1, ϵ1
2, etc.). These represent transitional

memory corruptions, which may already compromise integrity, before arriving
at the fully-formed malicious page mapping.

qn
′start q′init ϵ1

1 ϵ1
e· · ·

qnstart qinit ϵ2

σ′1 σ′2 σ′∗

σ1 σ2

IM2

IM1

Figure 6.12: Finite-state representations of two Intrusion Models (IM1 and IM2)
leading to equivalent erroneous states through distinct interaction paths. IM1
models byte-level arbitrary memory writes; IM2 abstracts structured manipula-
tion via mapped page tables.

Testing Campaign Implementations and New Hypercall Interface

We now present the implementation of the previously defined intrusion models.
These IMs are primarily based on the abusive functionalities (AF) they imple-
ment, while many other aspects remain unchanged across models, as detailed
in the previous section. To emulate the attack strategy that results in the erro-
neous state Guest-accessible page mapped to hypervisor memory, we instantiated two
distinct Intrusion Models, each relying on a specific Abusive Functionality (AF):

• AF1 – Write Arbitrary Memory : The injector enables writing arbitrary byte
values to any address space.

• AF2 – Write Unauthorized Page Table Entries: The injector allows writing
page table entries to any page level in the virtual memory.

The AF1 implementation is done by the hypercall HYPERVISOR_arbitrary_access,
as previously introduced in Section 5.3. This hypercall enables a guest kernel
user to read or write n bytes from/into memory starting at the address speci-
fied by addr. The action parameter defines both the operation type (read/write)
and the addressing mode (linear/physical). Listing 5.1 (in Chapter 5) shows the
prototype for this hypercall implementation.

To implement page-level abusive functionalities (AF2), we extended the injector
prototype described in Section 5.3 by introducing a new intrusion injection prim-
itive, the HYPERVISOR_arbitrary_page hypercall (Listing 6.1). We designed this hy-
percall to support page-level intrusion injection by allowing guest domains to

178

Defining Intrusion Models for Structured Security Assessment

explicitly request the mapping of memory pages from specific address spaces. It
accepts a structure identifying the address type (e.g., guest virtual, guest physi-
cal, Xen virtual, or machine physical) through the mode parameter. It returns the
resolved page’s machine frame number (MFN), which the system later resolves
to a local virtual address. Exposing a controlled and minimal interface facili-
tates the emulation and testing of page-table-related intrusion models, including
unauthorized access and corruption strategies within the Xen hypervisor.

Listing 6.1: Interface definition for arbitrary_page

1 #define ADDR_TYPE_GVA 0 /* Guest Virtual */
2 #define ADDR_TYPE_GPA 1 /* Guest Physical */
3 #define ADDR_TYPE_XVA 2 /* Xen Virtual */
4 #define ADDR_TYPE_MPA 3 /* Machine Physical */
5 struct arbitrary_page_op {
6 uint64_t in_addr; // In: address or frame
7 uint32_t mode; // Address mode
8 uint32_t pad; // Padding for alignment
9 uint64_t out_mfn; // OUT: MFN of mapped page

10 };
11

12 struct arbitrary_page_op op = {
13 .in_addr = 0xffff830000000000ULL;
14 .mode = ADDR_TYPE_XVA;
15 .pad = 0
16 .out_mfn = 0;
17 };
18

19 long ret = HYPERVISOR_arbitrary_page(&op);
20 void *mapped = pfn_to_virt(op.out_mfn)

We used the previously explained injection mechanisms to emulate the abusive
functionality of linking a forged Page Middle Directory (PMD) into a Page Upper
Directory (PUD) entry. For the first IM1, we used the HYPERVISOR_arbitrary_access
hypercall as described in Section 5.4.

For IM2, we leveraged the new HYPERVISOR_arbitrary_page hypercall to directly
access and map the target PUD page from Xen space into the guest. Once
mapped, the guest was able to write the forged PMD entry using normal memory
operations:

1 struct arbitrary_page_op op = {
2 .in_addr = 0xffff830000000000ULL,
3 .mode = ADDR_TYPE_XVA,
4 .pad = 0
5 };
6 HYPERVISOR_arbitrary_page(&op);
7 uint64_t *mapped_pud = pfn_to_virt(op.out_mfn);
8 mapped_pud[pud_index(MY_SECOND_AREA)] =
9 (0x7 | virt_to_machine(my_pmd).maddr);

179

Chapter 6

Experimental Demonstration of Equivalence

We conducted a new injection campaign to validate that IM2 can faithfully repro-
duce the same attack strategy as IM1, but using a new set of runs with the page-
level interface. The virtual environment and Xen versions (4.6, 4.9, and 4.13) re-
mained consistent with prior tests. The testing campaign follows a workflow that
iterates through each Xen version, executing each IM injection campaign while
monitoring the system, as described in Algorithm 3.

Algorithm 3 Procedure for executing the testing campaign

1: for all v ∈ Xen Versions do
2: → Apply the injector patch to Xen and install
3: for all m ∈ Intrusion Models do
4: → Start all VMs
5: → Begin log monitoring
6: → Launch test campaign scripts
7: → Process logs and Reboot system
8: end for
9: end for

When executed, the scripts implement the strategy described in Section 6.3.4 (and
Figure 6.13), trying to achieve three important milestones: i) post-privileged PMD
forged; ii) the IDT overwrite; and iii) malicious code execution (which only cre-
ates a file in the /tmp directory on the current host). For the first two milestones,
we can validate the results by checking the log outputs, while for the latter, we
verify the presence of the file created within the /tmp folder of each domain (in-
cluding privileged).

Following the procedure described in Algorithm 3, we executed all tests in our
environment. Table 6.5 summarizes the results.

Table 6.5: Campaign Results for IM2 Across Xen Versions

Xen Version Page Table
Forged

IDT Overwrit-
ten

Shellcode Exe-
cuted

4.6.0 Yes Yes Yes
4.8.5 Yes Yes Yes
4.13.0 Yes (Partial) No No

The outcome confirms that IM2 achieves the same violation as IM1 in earlier Xen
versions. In Xen 4.13, both models fail due to enhanced memory protections,
including removing guest-writable mappings to privileged regions. Thus, both
models converge to the same outcome under identical system constraints. The
results reflect the findings of the Section 5.4.

180

Defining Intrusion Models for Structured Security Assessment

Xen 4.6

Mapped

IDT Written

Shellcode Run

Xen 4.8

Mapped

IDT Written

Shellcode Run

Xen 4.13

Partial Map

IDT Blocked

Exec Blocked

Figure 6.13: Injection Campaign Results Across Xen Versions

Implications of Intrusion Model Equivalence

This case study across multiple Xen versions shows the value of the flexibility
of security tests with Intrusion Models (IMs). By instantiating two distinct IMs,
each reflecting a different abstraction level and interaction mechanism, we could
reproduce the same privilege escalation strategy described in the XSA-212 advi-
sory. IM1 uses byte-level memory corruption, while IM2 manipulates page table
entries through a higher-level interface.

It is important to note that we did not expect the outcomes of this campaign to
differ from those presented in Chapter 5. The underlying attack strategy and
target system versions remain the same. Instead, the goal here was to assess
whether distinct Intrusion Models could converge on equivalent security viola-
tions, thereby validating the abstraction capacity and expressive power of the IM
framework.

This evaluation reveals that alternative paths to the same erroneous state may re-
main viable even after patching a specific vulnerability, such as the one exploited
initially in Xen 4.6. Despite known fixes, both IMs succeeded in Xen 4.6 and 4.8.5,
demonstrating that mitigating a single exploit vector does not necessarily elimi-
nate the exploitability of the underlying semantic weakness.

Both IMs failed only in Xen 4.13, where a significant architectural change was
introduced (i.e., the removal of guest-writable mappings to privileged memory).
This confirms that eliminating exploitability often requires structural changes to
the system rather than patching specific vulnerabilities in isolation.

This scenario underscores the utility of defining and evaluating alternative Intru-
sion Models for the same attack objective. By doing so, security evaluators can
identify latent vulnerabilities that may resurface through different mechanisms
or interfaces. In practice, relying on a single exploit perspective may provide a
false sense of security. At the same time, broader IM-based analysis can help
anticipate and prevent variant attacks before they emerge in the wild.

From a methodological standpoint, the IM framework provides:

• Flexibility: Different attack paths can be tested using varied interfaces and

181

Chapter 6

abstraction levels.

• Reusability: The same attack goal can be instantiated using distinct models
tailored to attacker capabilities or evaluation tooling.

• Comparability: Equivalent violations reached through different models en-
able the evaluation of system resilience from multiple perspectives.

Ultimately, this study confirms the expressiveness, modularity, and practical rel-
evance of the IM framework. It further suggests that defense mechanisms should
be evaluated not only by their resistance to specific exploit techniques but also by
their robustness against a spectrum of semantically equivalent abuse paths.

6.4 Discussion and Threats to Validity

While Chapter 5 introduced the concept of Intrusion Injection and demonstrated
its empirical feasibility for evaluating security violations in virtualized systems,
this chapter has focused on formalizing that intuition through the development
of Intrusion Models (IMs). In what follows, we reflect on the implications, ap-
plicability, and known limitations of this modeling approach. We also highlight
its role as a stepping stone toward scalable, model-driven security assessment
frameworks.

6.4.1 Discussion

The formalization of Intrusion Models (IMs) introduced in this chapter con-
tributes a structured abstraction of adversarial system behavior, enabling repro-
ducible and semantically meaningful evaluation of virtualized environments. By
modeling intrusions as state transitions driven by abusive functionalities over
privileged interfaces, this approach extends traditional fault injection into the do-
main of intentional, security-relevant violations.

Our current focus has been deliberately constrained to memory-related faults
in the Xen hypervisor. This focus enables clear modeling semantics and prac-
tical feasibility but naturally limits generality. Logic bugs, side channels, and
hardware-induced faults remain out of scope, and require future work to extend
the methodology.

A core methodological requirement is that injected states must be both reachable
and representative (plausibly achievable through attacker interactions and aligned
with real-world threat models). IMs grounded in empirical vulnerability data
(e.g., XSA advisories) fulfill this condition. Still, future applications will require
careful analysis to preserve this fidelity, particularly when generalizing to novel
systems or unknown attack classes.

While current model definition relies heavily on manual abstraction and expert
interpretation, this work lays the foundation for eventual automation. A shared

182

Defining Intrusion Models for Structured Security Assessment

vocabulary of abusive functionalities and target abstractions is a prerequisite for
automated reasoning tools, and can support the use of LLMs and static analysis in
future workflows. Nonetheless, human-driven semantic interpretation remains
central in the current phase.

Ultimately, the methodology presented here should be understood as an initial
step toward a broader research agenda. IMs provide a reusable lens to capture
classes of security violations and support portable assessments. However, vali-
dating their scalability and expressiveness across diverse hypervisors, kernel de-
signs, and embedded environments remains an open challenge.

6.4.2 Threats to Validity

Despite the structured methodology and promising results presented in this
chapter, several limitations must be acknowledged that constrain the general-
izability and interpretability of the findings.

• Scope and Coverage Limitations: The evaluation focuses exclusively on
the Xen hypervisor and memory-related vulnerabilities. This constrained
scope enables tractable modeling and targeted assessment but limits the di-
rect applicability of results to other hypervisors, subsystems, or attack sur-
faces. Systems employing fundamentally different architecture or isolation
techniques may require new modeling assumptions.

• Bias from Historical Exploits: The Intrusion Models developed are grounded
in a manually curated set of known exploits drawn from public advisories
(e.g., XSAs). While this provides relevance and empirical anchoring, it may
introduce a bias toward previously observed exploitation patterns, poten-
tially overlooking emerging or unconventional attack strategies.

• Subjectivity in Model Construction: IM definition relies on expert inter-
pretation of advisory text, source code, and system behavior. Although
structured by a repeatable methodology and supported by tooling, the ab-
straction process remains partially subjective and may vary with analyst
expertise.

• Instrumentation Intrusiveness: Realizing intrusion injection in practice re-
quired hypervisor modifications, such as the addition of custom hypercalls
for memory manipulation. While these mechanisms were designed to min-
imize disruption, their presence may deviate from standard deployment
conditions and subtly influence system behavior.

• Assumption of State Equivalence: The methodology assumes that injected
erroneous states accurately reproduce the effects of real intrusions. While
functionally validated (e.g., IDT corruption or page table modification),
subtle discrepancies related to concurrency, timing, or partial state transi-
tions may limit full semantic equivalence.

183

Chapter 6

These threats do not invalidate the approach but define the boundaries within
which the presented results should be interpreted. They also highlight impor-
tant directions for future validation, cross-system replication, and methodology
refinement.

In summary, this chapter has formalized the concept of Intrusion Models as a
mechanism to abstract, classify, and evaluate adversarial system behavior in a
principled manner. While the current methodology remains constrained in scope
and partially manual, it establishes a concrete foundation for scalable, reusable,
and semantically grounded intrusion simulation. The next chapter consolidates
the thesis’ contributions and discusses broader implications, including directions
for extending this approach to other domains within virtualized system security.

6.5 Summary

This chapter formalized the concept of Intrusion Models (IMs) as abstract repre-
sentations of exploitation strategies that capture essential aspects of intrusions,
namely, abusive functionalities and the resulting erroneous states. Unlike exploit-
specific testing or vulnerability scanning, Intrusion Models allow for generalized
reasoning about classes of security violations and provide a principled mecha-
nism to guide the emulation of post-compromise conditions.

To support the practical application of IMs, we proposed a structured methodol-
ogy that defines how to extract and instantiate these models. The methodology
builds on vulnerability analysis, interface characterization, and subsystem ab-
straction to derive reusable models that reflect adversarial capabilities in realistic
settings.

We validated the approach through a detailed case study on the Xen hypervisor,
where we analyzed 464 Xen Security Advisories to extract recurring intrusion
patterns. From these, we derived and instantiated Intrusion Models that emulate
the effects of real-world vulnerabilities, such as unauthorized memory writes and
page table manipulation, without relying on exploit execution. These models
were integrated into an Intrusion Injection framework, enabling controlled and
repeatable testing campaigns that assess how the system responds under attack-
induced conditions.

The proposed framework contributes to a more comprehensive methodology for
security evaluation by shifting the focus from exploit discovery to post-intrusion
behavior. It supports systematic and reproducible assessments aligned with soft-
ware reliability engineering principles and can complement runtime monitoring
and detection mechanisms.

184

Chapter 7

Conclusions and Future Work

This thesis was driven by the pressing need to improve how we assess the se-
curity of virtualized environments, given their growing role in modern comput-
ing and their increasingly complex attack surfaces. Since the security evaluation
available remained fragmented and heavily reliant on vulnerability disclosure
cycles, we decided to focus on addressing this gap.

7.1 Conclusions

The work started by proposing a performance-based anomaly detection method-
ology tailored for complex and dynamic virtualized systems. The method iden-
tified runtime deviations indicative of intrusions by profiling system through-
put under normal conditions and applying a bucket-based detection algorithm.
An analytical model guided the configuration of detection parameters, balancing
alert responsiveness with false positive rates. The method demonstrated high
efficacy through experimental validation using realistic multi-tenant workloads
and a degradation fault model, with most alerts triggered within one minute of
attack onset and F-measure values consistently above 78%. These findings con-
firmed that lightweight, model-guided anomaly detection can be a practical and
robust layer of defense.

Building upon the need for deeper insight into system vulnerabilities, the re-
search advanced to an empirical robustness assessment of the Xen hypervisor’s
hypercall interface. Using mutation-based test generation, the robustness evalu-
ation of the Xen hypercall interface revealed inconsistencies in the API and po-
tential flaws. However, further conclusions were hindered by the lack of appro-
priate monitoring capabilities. The dual strategy (experimental exploration and
structured mining of real-world advisories) revealed recurring fault patterns and
emphasized the importance of systematic interface validation for preemptively
identifying security-critical issues.

Recognizing that attacks can bypass detection and result in successful compro-
mise, the thesis introduced the concept of Intrusion Injection to evaluate system
behavior under post-exploitation conditions. Central to this approach is the ab-

185

Chapter 7

straction of Intrusion Models, formal representations of erroneous states defined
by their abused functionalities, violated properties, and affected resources. A
prototype was implemented on the Xen hypervisor to inject memory-based er-
roneous states via a custom hypercall. This tool replicated four publicly known
exploits, inducing the same security violations as the original attacks without ex-
ecuting exploit code. The prototype was also applied to Xen versions 4.8 and
4.13, where the original vulnerabilities had been fixed. While the same erroneous
states were injected, two did not lead to violations in version 4.13 due to inter-
nal mitigations. These results confirm that Intrusion Injection can reproduce er-
roneous states across versions and empirically assess system resilience to such
conditions.

Despite previously defining Intrusion Models (IMs), their development lacked
methodological rigor and formal grounding. To address this, the final contribu-
tion of the thesis was a first methodological step toward making Intrusion Injec-
tion a powerful and fully representative approach. A symbolic framework was
introduced to capture transitions from normal to compromised states, establish-
ing a unified language for describing intrusions. This abstraction facilitates the
comparison of intrusion strategies at varying levels of granularity, supports the
classification of erroneous behaviors, and enables structured evaluation of se-
curity test impacts. The methodology was instantiated on the Xen hypervisor,
demonstrating how vulnerability assessments can guide the identification of rel-
evant attack vectors.

The prototype injector was extended to support unauthorized page table mod-
ifications. These enhanced models were then used to replicate the behavior of
a real-world privilege escalation vulnerability across multiple Xen versions. Al-
though patches had been applied, semantically distinct models allowed success-
ful reproduction of the exploit, illustrating that system fixes may be insufficient
when alternative exploit paths remain viable.

7.2 Future Work and Research Directions

The findings and methods established in this thesis open several promising av-
enues for future research:

The content logically presents a series of future research directions related to
Intrusion Models (IM) and Intrusion Injection, building on the thesis contribu-
tions. However, there is some implicit assumption that all these directions are
equally feasible and impactful without prioritization or discussion of potential
challenges.

• Automation and AI-Driven Intrusion Modeling: Leveraging large lan-
guage models (LLMs) alongside advanced static and dynamic analysis tech-
niques offers a promising avenue to automate the derivation and refine-
ment of intrusion models from vulnerability datasets and system documen-
tation. This automation could significantly accelerate and scale security as-
sessments by reducing manual effort and increasing coverage.

186

Conclusions and Future Work

• Extension of Intrusion Injection Methodology: Investigating applica-
tions of intrusion injection beyond hypervisors, such as in serverless plat-
forms, secure container infrastructures, and edge computing environments,
can yield deeper insights into resilience mechanisms within these rapidly
evolving domains. In particular, analyzing fault propagation and inter-
component dependencies in these contexts represents a vital research fron-
tier.

• Formal Verification of Security Models: Incorporating formal verification
techniques, including model checking and symbolic execution, can rigor-
ously validate the reachability and correctness of injected erroneous states.
This approach would substantially enhance confidence in security evalua-
tions by enabling precise validation of complex intrusion scenarios.

• Integration with Secure Development Lifecycles: Embedding intrusion
injection and intrusion model frameworks into DevOps, continuous inte-
gration, and continuous deployment (CI/CD) workflows would establish
proactive security evaluation practices. Such integration ensures that re-
silience testing becomes a standard, automated step within modern soft-
ware development pipelines.

• Comprehensive Attack Scenario Repositories: Developing extensive li-
braries of documented and hypothesized real-world intrusion models would
facilitate standardized benchmarks, enabling systematic and comparative
analyses of system robustness. These repositories would be instrumental
for both research and industry to enhance defensive strategies against di-
verse threats.

• Addressing Emerging Threats in IoT and Edge Computing: Given the
rapid expansion of IoT and edge computing systems, extending intrusion
injection and intrusion modeling methodologies to address their unique
vulnerabilities and resource constraints is an urgent and impactful research
direction. Assessing resilience against firmware attacks, unauthorized con-
figurations, and distributed threats would significantly strengthen security
in these critical domains.

• Temporal and Stealth Intrusion Models: Expanding the intrusion model
framework to include stealthy, slow-progressing, and time-triggered intru-
sions (such as logic bombs or advanced persistent threats) would provide
nuanced detection capabilities and strengthen defenses against sophisti-
cated, long-term compromise scenarios.

Ultimately, these forward-looking research directions build upon the method-
ological innovations introduced in this thesis and underscore a commitment to
continuously evolving security practices, addressing both immediate threats and
future vulnerabilities inherent in virtualized and distributed computing land-
scapes.

187

References

Aaron Adams. Adventures in xen exploitation. https://research.nccgroup.
com/2015/02/27/adventures-in-xen-exploitation/, 2015. Accessed: 2021-
03-27.

A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the impact of faulty
drivers on the robustness of the Linux kernel. International Conference on De-
pendable Systems and Networks, pages 867–876, 2004. doi: 10.1109/DSN.2004.
1311957.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transac-
tions on Dependable and Secure Computing, 01(1):11–33, 2004.

O. H. Alhazmi, Y. K. Malaiya, and I. Ray. Measuring, analyzing and predicting
security vulnerabilities in software systems. Computers and Security, 26(3):219–
228, may 2007. ISSN 01674048. doi: 10.1016/j.cose.2006.10.002.

Sami B. Alqahtani and Vahid Behzadan. Fuzzing vulnerability discovery tech-
niques: Survey, challenges and future directions. Computers & Security, 120:
102813, 2022. doi: 10.1016/j.cose.2022.102813. URL https://colab.ws/
articles/10.1016%2Fj.cose.2022.102813.

J. Arlat, A. Costes, Y. Crouzet, J.C. Laprie, and D. Powell. Fault injection and
dependability evaluation of fault-tolerant systems. IEEE Transactions on Com-
puters, 42(8):913–923, 1993. doi: 10.1109/12.238482.

J. Arlat, J. C Fabre, and M. Rodriguez. Dependability of COTS microkernel-based
systems. IEEE Transactions on Computers, 51(2):138–163, February 2002. ISSN
0018-9340. doi: 10.1109/12.980005.

Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, J-C Fabre, J-C Laprie,
Eliane Martins, and David Powell. Fault injection for dependability validation:
A methodology and some applications. IEEE Transactions on software engineer-
ing, 16(2):166–182, 1990.

Jean Arlat, Yves Crouzet, Johan Karlsson, Peter Folkesson, Emmerich Fuchs, and
Günther H Leber. Comparison of physical and software-implemented fault
injection techniques. IEEE Transactions on Computers, 52(9):1115–1133, 2003.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and

189

https://research.nccgroup.com/2015/02/27/adventures-in-xen-exploitation/
https://research.nccgroup.com/2015/02/27/adventures-in-xen-exploitation/
https://colab.ws/articles/10.1016%2Fj.cose.2022.102813
https://colab.ws/articles/10.1016%2Fj.cose.2022.102813

Chapter 7

Matei Zaharia. A view of cloud computing. Communications of the ACM, 53(4):
50–58, 2010.

Algirdas Avizienis. Terminology issues in dependable computing. Presentation at
NASA Fault Management Workshop, 2012. URL https://www.nasa.gov/wp-
content/uploads/2015/04/640147main_day_3-algirdas_avizienis-2.pdf.

Alberto Avritzer, Andre Bondi, and Elaine J. Weyuker. Ensuring stable perfor-
mance for systems that degrade. In International Workshop on Software and Per-
formance (WOSP), pages 43–51. ACM, 2005. ISBN 1-59593-087-6.

Alberto Avritzer, Andre B. Bondi, Michael Grottke, Kishor S. Trivedi, and Elaine J.
Weyuker. Performance assurance via software rejuvenation: Monitoring, statis-
tics and algorithms. In DSN, pages 435–444, 2006.

Alberto Avritzer, Rajanikanth Tanikella, Kiran James, Robert G Cole, and Elaine
Weyuker. Monitoring for security intrusion using performance signatures.
In first joint WOSP/SIPEW International Conference on Performance Engineering,
pages 93–104. ACM, 2010.

Ahmed M Azab, Peng Ning, and Xiaolan Zhang. Sice: A hardware-level strongly
isolated computing environment for x86 multi-core platforms. In Proceedings of
the 18th ACM conference on Computer and communications security, pages 375–388,
2011.

Farzad Azmandian, Hsiang Che Chuang, and Tzi-cker Chiueh. Hypervisor-
based defense mechanisms against return-oriented programming attacks. In
Proceedings of the 2011 Annual Computer Security Applications Conference, pages
355–364, 2011.

Christopher De Baets, Basem Suleiman, Armin Chitizadeh, and Imran Razzak.
Vulnerability detection in smart contracts: A comprehensive survey. arXiv
preprint arXiv:2407.07922, 2024. URL https://arxiv.org/abs/2407.07922.

Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W. Smith. The page-
fault weird machine: Lessons in instruction-less computation. 7th USENIX
Workshop on Offensive Technologies, WOOT 2013, 2013.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In Proceedings of the nineteenth ACM symposium on Operating systems principles -
SOSP ’03, volume 37, page 164. ACM, 2003. ISBN 1581137575. doi: 10.1145/
945445.945462.

John Patrick Barrowclough and Rameez Asif. Securing cloud hypervisors: A
survey of the threats, vulnerabilities, and countermeasures. Security and Com-
munication Networks, 2018:1–20, 2018. doi: 10.1155/2018/1681908.

Lukas Beierlieb, Lukas Iffländer, Aleksandar Milenkoski, Charles F. Gonçalves,
Nuno Antunes, and Samuel Kounev. Towards testing the software aging be-
havior of hypervisor hypercall interfaces. In Katinka Wolter, Ina Schieferdecker,
Barbara Gallina, Michel Cukier, Roberto Natella, Naghmeh Ramezani Ivaki,

190

https://www.nasa.gov/wp-content/uploads/2015/04/640147main_day_3-algirdas_avizienis-2.pdf
https://www.nasa.gov/wp-content/uploads/2015/04/640147main_day_3-algirdas_avizienis-2.pdf
https://arxiv.org/abs/2407.07922

References

and Nuno Laranjeiro, editors, IEEE International Symposium on Software Reli-
ability Engineering Workshops, ISSRE Workshops 2019, Berlin, Germany, October
27-30, 2019, pages 218–224. IEEE, 2019. doi: 10.1109/ISSREW.2019.00075. URL
https://doi.org/10.1109/ISSREW.2019.00075.

Steven M. Bellovin. On the brittleness of software and the infeasibility of security
metrics. IEEE Security and Privacy, 4(4):96, jul 2006. ISSN 15407993. doi: 10.
1109/MSP.2006.101.

R. V. Bhor and H. K. Khanuja. Analysis of web application security mecha-
nism and attack detection using vulnerability injection technique. In 2016 In-
ternational Conference on Computing Communication Control and automation (IC-
CUBEA), pages 1–6, 2016. doi: 10.1109/ICCUBEA.2016.7860004.

Stephen Bigelow. 6 common virtualization problems and how to solve them,
2024. URL https://www.techtarget.com/searchitoperations/feature/5-
common-virtualization-problems-and-how-to-solve-them.

Matt Bishop. About penetration testing. IEEE Security & Privacy, 5(6):84–87, 2007.

Wallace R Blischke and DN Prabhakar Murthy. Reliability: modeling, prediction,
and optimization, volume 767. John Wiley & Sons, 2011.

Irena Bojanova and Carlos Eduardo C. Galhardo. Bug, fault, error, or weakness:
Demystifying software security vulnerabilities. IT Professional, 25(1):7–12, 2023.
doi: 10.1109/MITP.2023.3238631.

Andrew Bond, Douglas Johnson, Greg Kopczynski, and H. Reza Taheri. Archi-
tecture and performance characteristics of a postgresql implementation of the
TPC-E and TPC-V workloads. In 5th TPC Technology Conference, pages 77–92,
2013.

Andrew Bond, Douglas Johnson, Greg Kopczynski, and H. Reza Taheri. Profiling
the performance of virtualized databases with the tpcx-v benchmark. In 7th
TPC Technology Conference, pages 156–172, 2015.

Jérémie Boutoille. Xen exploitation part 2: Xsa-148, from guest to host. https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1184, 2016a. Ac-
cessed: 2021-08-15.

Jérémie Boutoille. Xen exploitation part 3: XSA-182, Qubes escape.
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-
escape.html, 2016b. Accessed: 2021-09-11.

S Bratus, Me Locasto, and Ml Patterson. Exploit Programming: From Buffer Over-
flows to “ Weird Machines ” and Theory of Computation. USENIX; login, pages
13–21, 2011.

Robert Buhren, Hans Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert. One
glitch to rule them all: Fault injection attacks against amd’s secure encrypted
virtualization. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi,
editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications

191

https://doi.org/10.1109/ISSREW.2019.00075
https://www.techtarget.com/searchitoperations/feature/5-common-virtualization-problems-and-how-to-solve-them
https://www.techtarget.com/searchitoperations/feature/5-common-virtualization-problems-and-how-to-solve-them
https://bugs.chromium.org/p/project-zero/issues/detail?id=1184
https://bugs.chromium.org/p/project-zero/issues/detail?id=1184
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html

Chapter 7

Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, pages 2875–
2889. ACM, 2021. doi: 10.1145/3460120.3484779. URL https://doi.org/10.
1145/3460120.3484779.

Alexander Bulekov, Qiang Liu, Manuel Egele, and Mathias Payer. Hyperpill:
Fuzzing for hypervisor-bugs by leveraging the hardware virtualization inter-
face. In 33rd USENIX Security Symposium (USENIX Security 24), pages 919–935,
2024.

Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented
cloud computing: Vision, hype, and reality for delivering it services as comput-
ing utilities. In Proceedings of the 10th IEEE International Conference on High Per-
formance Computing and Communications (HPCC), pages 5–13. IEEE, 2008. doi:
10.1109/HPCC.2008.172.

Javier Cámara, Rogério de Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Robustness evaluation of the rainbow framework for self-adaptation.
In 29th Annual ACM Symposium on Applied Computing - SAC ’14, pages 376–
383, New York, New York, USA, 2014. ACM Press. ISBN 9781450324694. doi:
10.1145/2554850.2554935.

Gerardo Canfora, Andrea Di Sorbo, Sara Forootani, Antonio Pirozzi, and Cor-
rado Aaron Visaggio. Investigating the vulnerability fixing process in OSS
projects: Peculiarities and challenges. Comput. Secur., 99:102067, 2020. doi:
10.1016/j.cose.2020.102067. URL https://doi.org/10.1016/j.cose.2020.
102067.

João Carreira, Henrique Madeira, and João Gabriel Silva. Xception: A technique
for the experimental evaluation of dependability in modern computers. IEEE
Transactions on Software Engineering, 24(2):125–136, 1998. ISSN 00985589. doi:
10.1109/32.666826.

Frederico Cerveira, Raul Barbosa, Henrique Madeira, and Filipe Araujo. The
effects of soft errors and mitigation strategies for virtualization servers. IEEE
Transactions on Cloud Computing, 10(2):1065–1081, 2022. doi: 10.1109/TCC.2020.
2973146.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

Ramaswamy Chandramouli. Security recommendations for server-based hy-
pervisor platforms. Technical Report NIST SP 800-125A Rev. 1, National In-
stitute of Standards and Technology, 2020. URL https://csrc.nist.gov/
publications/detail/sp/800/125/a/rev-1/final.

Stephen Checkoway, David Brumley, Dawn Song, Thanassis Avgerinos, and
Alexandre Rebert. Mayhem: The automatic exploit generation platform. In
Proceedings of the IEEE Symposium on Security and Privacy, 2012. URL https:
//users.ece.cmu.edu/~aavgerin/papers/mayhem-oakland-12.pdf.

192

https://doi.org/10.1145/3460120.3484779
https://doi.org/10.1145/3460120.3484779
https://doi.org/10.1016/j.cose.2020.102067
https://doi.org/10.1016/j.cose.2020.102067
https://csrc.nist.gov/publications/detail/sp/800/125/a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800/125/a/rev-1/final
https://users.ece.cmu.edu/~aavgerin/papers/mayhem-oakland-12.pdf
https://users.ece.cmu.edu/~aavgerin/papers/mayhem-oakland-12.pdf

References

R. Chillarege, W.-L. Kao, and R.G. Condit. Defect type and its impact on the
growth curve (software development). In [1991 Proceedings] 13th International
Conference on Software Engineering, pages 246–255, 1991. doi: 10.1109/ICSE.
1991.130649.

David Chisnall. The Definitive Guide to the Xen Hypervisor. Prentice Hall Press,
USA, 1st edition, 2013. ISBN 0133582493.

Zhaoyang Chu, Yao Wan, Qian Li, Yang Wu, Hongyu Zhang, Yulei Sui, Guan-
dong Xu, and Hai Jin. Graph neural networks for vulnerability detection:
A counterfactual explanation. In Proceedings of the 33rd ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, page 389–401, New York,
NY, USA, 2024. Association for Computing Machinery. doi: 10.1145/3650212.
3652136. URL https://doi.org/10.1145/3650212.3652136.

E.M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model Check-
ing, second edition. Cyber Physical Systems Series. MIT Press, 2018. ISBN
9780262038836. URL https://books.google.pt/books?id=OJV5DwAAQBAJ.

CloudWorkload. 83% of enterprise workloads will be in the cloud by 2020, 2019.
URL https://tinyurl.com/forbescloud2018.

Rémi Cogranne, Guillaume Doyen, Nisrine Ghadban, and Badis Hammi. Detect-
ing botclouds at large scale: A decentralized and robust detection method for
multi-tenant virtualized environments. IEEE Transactions on Network and Service
Management, 15(1):68–82, 2017.

Xen Project Community. Xen project wiki. https://wiki.xenproject.org/, 2015.
Accessed: 2025-02-27.

Maxime Compastié, Rémi Badonnel, Olivier Festor, and Ruan He. From virtu-
alization security issues to cloud protection opportunities: An in-depth analy-
sis of system virtualization models. Computers & Security, 97:101905, oct 2020.
ISSN 0167-4048. doi: 10.1016/J.COSE.2020.101905.

Byron Cook, Björn Döbel, Daniel Kroening, Norbert Manthey, Martin Pohlack,
Elizabeth Polgreen, Michael Tautschnig, and Pawel Wieczorkiewicz. Using
model checking tools to triage the severity of security bugs in the xen hypervi-
sor. In 2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Is-
rael, September 21-24, 2020, pages 185–193. IEEE, 2020. doi: 10.34727/2020/isbn.
978-3-85448-042-6_26. URL https://doi.org/10.34727/2020/isbn.978-3-
85448-042-6_26.

Andrew Cooper. [Xen-devel] [PATCH 0/7] XSAs 213-315 followups,
2017. URL https://lists.xenproject.org/archives/html/xen-devel/
2017-05/msg00149.html. Message to the Xen Developer Mail List.

Domenico Cotroneo, Flavio Frattini, Roberto Pietrantuono, and Stefano Russo.
State-based robustness testing of iaas cloud platforms. In Minos N. Garo-
falakis, Etienne Rivière, Luís Veiga, and Anita Sobe, editors, Proceedings of
the 5th International Workshop on Cloud Data and Platforms, CloudDP@EuroSys

193

https://doi.org/10.1145/3650212.3652136
https://books.google.pt/books?id=OJV5DwAAQBAJ
https://tinyurl.com/forbescloud2018
https://wiki.xenproject.org/
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_26
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_26
https://lists.xenproject.org/archives/html/xen-devel/2017-05/msg00149.html
https://lists.xenproject.org/archives/html/xen-devel/2017-05/msg00149.html

Chapter 7

2015, Bordeaux, France, April 21-24, 2015, pages 3:1–3:6. ACM, 2015. doi:
10.1145/2744210.2744213. URL https://doi.org/10.1145/2744210.2744213.

Forbes Technology Council. Why Cloud Migration Is Essential For Data And
AI Strategies. https://www.forbes.com/councils/forbestechcouncil/2024/
10/18/the-inseparable-triad-why-cloud-migration-is-essential-for-
data-and-ai-strategies/, October 2024. Accessed: 2024-11-12.

CyberSRC Consultancy. Virtualization under siege: A deep dive
into vmware’s hypervisor security nightmare, March 2025. URL
https://cybersrcc.com/2025/03/11/virtualization-under-siege-a-
deep-dive-into-vmwares-hypervisor-security-nightmare/. Accessed:
2025-05-25.

José D’Abruzzo Pereira and Marco Vieira. On the use of open-source c/c++ static
analysis tools in large projects. In 2020 16th European Dependable Computing
Conference (EDCC), pages 97–102, 2020. doi: 10.1109/EDCC51268.2020.00025.

Veronica Montes De Oca, Daniel R Jeske, Qi Zhang, Carlos Rendon, and Mazda
Marvasti. A cusum change-point detection algorithm for non-stationary se-
quences with application to data network surveillance. Journal of Systems and
Software, 83(7):1288–1297, 2010.

Kelley Dempsey, Arnold Johnson, Matthew Scholl, Kevin Stine, Ronald Johnston,
Alicia Clay Jones, Angela Orebaugh, and Nirali Shah Chawla. NIST SP 800-
137: Information Security Continuous Monitoring (ISCM) for Federal Infor-
mation Systems and Organizations. https://doi.org/10.6028/NIST.SP.800-
137, September 2011. NIST Special Publication 800-137.

DigitalOcean. DigitalOcean reply to Intel security advisory, 2019.
https://hup.hu/index.php/node/166970.

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Lava: Large-scale au-
tomated vulnerability addition. In Proceedings of the IEEE Symposium on Security
and Privacy, 2016. URL https://ieeexplore.ieee.org/document/7546498.

Caroline Donnelly. Coronavirus: Enterprise cloud adoption accelerates in face
of Covid-19, says research, 2020. URL https://www.computerweekly.com/
news/252484865/Coronavirus-Enterprise-cloud-adoption-accelerates-
in-face-of-Covid-19-says-research.

Ana Duarte and Nuno Antunes. An Empirical Study of Docker Vulnerabilities
and of Static Code Analysis Applicability. Proceedings - 8th Latin-American
Symposium on Dependable Computing, LADC 2018, pages 27–36, 2019. doi:
10.1109/LADC.2018.00013.

Marcos Duarte. detecta: A python module to detect events in data, 2021. URL
https://doi.org/10.5281/zenodo.4598962.

Thomas Dullien. Weird Machines, Exploitability, and Provable Unexploitabil-
ity. IEEE Transactions on Emerging Topics in Computing, 8(2):391–403, 2017.
ISSN 21686750. doi: 10.1109/TETC.2017.2785299. URL www.ieee.org/
publications/rights/index.html.

194

https://doi.org/10.1145/2744210.2744213
https://www.forbes.com/councils/forbestechcouncil/2024/10/18/the-inseparable-triad-why-cloud-migration-is-essential-for-data-and-ai-strategies/
https://www.forbes.com/councils/forbestechcouncil/2024/10/18/the-inseparable-triad-why-cloud-migration-is-essential-for-data-and-ai-strategies/
https://www.forbes.com/councils/forbestechcouncil/2024/10/18/the-inseparable-triad-why-cloud-migration-is-essential-for-data-and-ai-strategies/
https://cybersrcc.com/2025/03/11/virtualization-under-siege-a-deep-dive-into-vmwares-hypervisor-security-nightmare/
https://cybersrcc.com/2025/03/11/virtualization-under-siege-a-deep-dive-into-vmwares-hypervisor-security-nightmare/
https://doi.org/10.6028/NIST.SP.800-137
https://doi.org/10.6028/NIST.SP.800-137
https://ieeexplore.ieee.org/document/7546498
https://www.computerweekly.com/news/252484865/Coronavirus-Enterprise-cloud-adoption-accelerates-in-face-of-Covid-19-says-research
https://www.computerweekly.com/news/252484865/Coronavirus-Enterprise-cloud-adoption-accelerates-in-face-of-Covid-19-says-research
https://www.computerweekly.com/news/252484865/Coronavirus-Enterprise-cloud-adoption-accelerates-in-face-of-Covid-19-says-research
https://doi.org/10.5281/zenodo.4598962
www.ieee.org/publications/rights/index.html
www.ieee.org/publications/rights/index.html

References

Dynatrace Docs. Runtime vulnerability analytics - dynatrace docs.
https://docs.dynatrace.com/docs/secure/application-security/
vulnerability-analytics, 2024. Accessed May 2025.

ec2beta. Amazon EC2 Beta, Aug 2006. URL https://aws.amazon.com/es/blogs/
aws/amazon_ec2_beta/.

Ivano Alessandro Elia, Nuno Antunes, Nuno Laranjeiro, and Marco Vieira. An
Analysis of OpenStack Vulnerabilities. Proceedings - 2017 13th European De-
pendable Computing Conference, EDCC 2017, pages 129–134, 2017. doi: 10.1109/
EDCC.2017.29.

Chao Fanlin and collaborators. Reducing redundant sanitizer checks in c/c++
programs. In Proceedings of the 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2021. URL https://chaofanlin.com/
paper-reading/osdi2021-SANRAZOR.pdf.

Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth Breu,
and Alexander Pretschner. Chapter one - security testing: A survey. In Atif
Memon, editor, ., volume 101 of Advances in Computers, pages 1–51. Elsevier,
2016.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. Ko-
modo: Using verification to disentangle secure-enclave hardware from soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles, pages
287–305, 2017.

James Allen Fill. The passage time distribution for a birth-and-death chain:
Strong stationary duality gives a first stochastic proof. Journal of Theoretical
Probability, 22(3):543, 2009.

José Fonseca, Marco Vieira, and Henrique Madeira. Vulnerability & attack in-
jection for web applications. In Dependable Systems & Networks, 2009. DSN’09.
IEEE/IFIP International Conference on, pages 93–102, 2009.

José Fonseca, Marco Vieira, and Henrique Madeira. Evaluation of Web Secu-
rity Mechanisms Using Vulnerability & Attack Injection. IEEE Transactions on
Dependable and Secure Computing, 11(5):440–453, 2014. ISSN 15455971. doi:
10.1109/TDSC.2013.45.

Leo Freitas and John McDermott. Formal methods for security in the xenon hy-
pervisor. International journal on software tools for technology transfer, 13:463–489,
2011.

Moshe Gabel, Assaf Schuster, Ran-Gilad Bachrach, and Nikolaj Bjørner. Latent
fault detection in large scale services. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012), pages 1–12, 2012. doi: 10.1109/
DSN.2012.6263932.

Zicong Gao, Chao Zhang, Hangtian Liu, Wenhou Sun, Zhizhuo Tang, Liehui
Jiang, Jianjun Chen, and Yong Xie. Faster and better: Detecting vulnerabili-
ties in linux-based iot firmware with optimized reaching definition analysis. In

195

https://docs.dynatrace.com/docs/secure/application-security/vulnerability-analytics
https://docs.dynatrace.com/docs/secure/application-security/vulnerability-analytics
https://aws.amazon.com/es/blogs/aws/amazon_ec2_beta/
https://aws.amazon.com/es/blogs/aws/amazon_ec2_beta/
https://chaofanlin.com/paper-reading/osdi2021-SANRAZOR.pdf
https://chaofanlin.com/paper-reading/osdi2021-SANRAZOR.pdf

Chapter 7

Proceedings of the 2024 Network and Distributed System Security Symposium, San
Diego, CA, USA, volume 26, 2024.

Gartner. Cloud Migration — How and Why? https://www.gartner.com/en/
articles/migrating-to-the-cloud-why-how-and-what-makes-sense, 2024.
Accessed: 2024-11-12.

Asem Ghaleb, Issa Traore, and Karim Ganame. A framework architecture for
agentless cloud endpoint security monitoring. In 2019 IEEE Conference on Com-
munications and Network Security (CNS), pages 1–9, 2019. doi: 10.1109/CNS.
2019.8802828.

Antonios Gkortzis, Stamatia Rizou, and Diomidis Spinellis. An empirical anal-
ysis of vulnerabilities in virtualization technologies. In Proceedings of the Inter-
national Conference on Cloud Computing Technology and Science, CloudCom, vol-
ume 0, pages 533–538. IEEE Computer Society, jul 2016. ISBN 9781509014453.
doi: 10.1109/CloudCom.2016.0093.

Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. VulinOSS: A
dataset of security vulnerabilities in open-source systems. Proceedings - Inter-
national Conference on Software Engineering, pages 18–21, 2018. ISSN 02705257.
doi: 10.1145/3196398.3196454.

Charles F. Gonçalves and Nuno Antunes. Vulnerability analysis as trustwor-
thiness evidence in security benchmarking: A case study on xen. In 2020
IEEE International Symposium on Software Reliability Engineering Workshops, IS-
SRE Workshops, Coimbra, Portugal, October 12-15, 2020, pages 231–236. IEEE,
2020. doi: 10.1109/ISSREW51248.2020.00078. URL https://doi.org/10.1109/
ISSREW51248.2020.00078.

Charles F. Goncalves and Nuno Antunes. Vulnerability Analysis as Trustworthi-
ness Evidence in Security Benchmarking: A Case Study on Xen. In Proceedings -
2020 IEEE 31st International Symposium on Software Reliability Engineering Work-
shops, ISSREW 2020, pages 231–236. Institute of Electrical and Electronics En-
gineers Inc., oct 2020. ISBN 9781728198705. doi: 10.1109/ISSREW51248.2020.
00078.

Charles F. Gonçalves, Nuno Antunes, and Marco Vieira. Evaluating the applica-
bility of robustness testing in virtualized environments. In 8th Latin-American
Symposium on Dependable Computing, LADC 2018, Foz do Iguaçu, Brazil, October
8-10, 2018, pages 161–166. IEEE, 2018. doi: 10.1109/LADC.2018.00027. URL
https://doi.org/10.1109/LADC.2018.00027.

Charles F. Gonçalves, Nuno Antunes, and Marco Vieira. Intrusion injection for
virtualized systems: Concepts and approach. In 53rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Network, DSN 2023, Porto, Portugal,
June 27-30, 2023, pages 417–430. IEEE, 2023a. doi: 10.1109/DSN58367.2023.
00047. URL https://doi.org/10.1109/DSN58367.2023.00047.

Charles F. Gonçalves, Daniel Sadoc Menasché, Alberto Avritzer, Nuno Antunes,
and Marco Vieira. Detecting anomalies through sequential performance anal-
ysis in virtualized environments. IEEE Access, 11:70716–70740, 2023b. doi: 10.

196

https://www.gartner.com/en/articles/migrating-to-the-cloud-why-how-and-what-makes-sense
https://www.gartner.com/en/articles/migrating-to-the-cloud-why-how-and-what-makes-sense
https://doi.org/10.1109/ISSREW51248.2020.00078
https://doi.org/10.1109/ISSREW51248.2020.00078
https://doi.org/10.1109/LADC.2018.00027
https://doi.org/10.1109/DSN58367.2023.00047

References

1109/ACCESS.2023.3293643. URL https://doi.org/10.1109/ACCESS.2023.
3293643.

Charles Ferreira Gonçalves. Benchmarking the Security of Virtualization Infras-
tructures: Motivation and Approach. In 2017 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 100–103, Toulouse,
2017. IEEE. ISBN 978-1-5386-2387-9. doi: 10.1109/ISSREW.2017.70.

Charles F. Gonçalves. Complete result cves evaluation kvm/qemu. https://
eden.dei.uc.pt/~charles/kvmqemu.html, 2021. Accessed: 2021-07-03.

Charles Gonçalves. Xen with intrusion injection prototype. https://github.
com/charlesfg/xen, 2025. GitHub repository.

Olivia A Grigg, VT Farewell, and DJ Spiegelhalter. Use of risk-adjusted cusum
and rsprtcharts for monitoring in medical contexts. Statistical methods in medical
research, 12(2):147–170, 2003.

Michael Grottke, Alberto Avritzer, Daniel S. Menasché, Leandro Pfleger
de Aguiar, and Eitan Altman. On the efficiency of sampling and countermea-
sures to critical-infrastructure-targeted malware campaigns. SIGMETRICS Per-
formance Evaluation Review, 43(4):33–42, 2016.

Bogdan Groza and Marius Minea. Formal modelling and automatic detection of
resource exhaustion attacks. 6th Intl. Symposium on Information, Computer and
Communications Security, pages 326–333, 2011. doi: 10.1145/1966913.1966955.

Nils Gruschka and Meiko Jensen. Attack surfaces: A taxonomy for attacks on
cloud services. IEEE Conf. on Cloud Computing, pages 276–279, 2010. doi: 10.
1109/CLOUD.2010.23.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. Certikos: An extensible architecture for
building certified concurrent {OS} kernels. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16), pages 653–669, 2016.

Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao, and Feng Liu.
Evaluating machine learning algorithms for anomaly detection in clouds. In
IEEE Conference on Big Data (Big Data), pages 2716–2721, 2016.

Les Hatton. The chimera of software quality. Computer, 40(8):104–103, 2007. doi:
10.1109/MC.2007.292.

Mohamed Hawedi, Chamseddine Talhi, and Hanifa Boucheneb. Multi-tenant in-
trusion detection system for public cloud (mtids). The Journal of Supercomputing,
74:5199–5230, 2018.

Brian Hayes. Cloud computing. Communications of the ACM, 51(7):9–11, 2008.

Daniel P Heyman and Matthew J Sobel. Stochastic models in operations research. 1.
Stochastic processes and operating characteristics. McGraw-Hill, 1982.

197

https://doi.org/10.1109/ACCESS.2023.3293643
https://doi.org/10.1109/ACCESS.2023.3293643
https://eden.dei.uc.pt/~charles/kvmqemu.html
https://eden.dei.uc.pt/~charles/kvmqemu.html
https://github.com/charlesfg/xen
https://github.com/charlesfg/xen

Chapter 7

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-
tomata theory, languages, and computation, 2nd edition. SIGACT News, 32(1):
60–65, March 2001. ISSN 0163-5700. doi: 10.1145/568438.568455.

Jann Horn. Issue 1184: Xen: Broken check in memory exchange permits pv guest
breakout. https://bugs.chromium.org/p/project-zero/issues/detail?id=
1184, 2017. Accessed: 2021-03-30.

Haoqi Huang, Ping Wang, Jianhua Pei, Jiacheng Wang, Shahen Alexanian, and
Dusit Niyato. Deep learning advancements in anomaly detection: A compre-
hensive survey, 2025. URL https://arxiv.org/abs/2503.13195.

Intel 64 and IA-32 Architectures Software Developer’s Manual - Combined Volumes: 1,
2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Intel Corporation, November 2020.

Shujian Ji, Kejiang Ye, and Cheng-Zhong Xu. Cmonitor: A monitoring and alarm-
ing platform for container-based clouds. In International Conference on Cloud
Computing, pages 324–339. Springer, 2019.

Hai Jin, Wenbo Wang, Song Wu, Xiaofei Shi, and Deqing Zou. A vmm-based
intrusion prevention system in cloud computing environment. The Journal of
Supercomputing, 62(1):99–119, 2012.

A. Johansson and N. Suri. Error propagation profiling of operating systems.
In 2005 International Conference on Dependable Systems and Networks (DSN’05),
pages 86–95, 2005. doi: 10.1109/DSN.2005.45.

Wolfgang Kandek. VENOM hypervisor vulnerability CVE-2015-3456. Qualys
Security Blog, May 2015. URL https://blog.qualys.com/vulnerabilities-
threat-research/2015/05/13/venom-hypervisor-vulnerability.

Karama Kanoun and Lisa Spainhower. Dependability Benchmarking for Computer
Systems. Wiley-IEEE Computer Society Pr, 2008. ISBN 9780470230558. doi:
10.1002/9780470370506.

Chia Hung Kao. Survey on evaluation of iot services leveraging virtualiza-
tion technology. In Proceedings of the 2020 5th International Conference on Cloud
Computing and Internet of Things, CCIOT 2020, page 2634, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450375276. doi:
10.1145/3429523.3429524. URL https://doi.org/10.1145/3429523.3429524.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
sel4: Formal verification of an os kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles (SOSP), pages 207–220,
2009. URL https://www.researchgate.net/publication/220910193_SeL4_
Formal_verification_of_an_OS_kernel.

P Koopman and J DeVale. Comparing the robustness of POSIX operating sys-
tems. In Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing (Cat. No.99CB36352), pages 30–37, jun 1999a. ISBN 0-7695-
0213-X. doi: 10.1109/FTCS.1999.781031.

198

https://bugs.chromium.org/p/project-zero/issues/detail?id=1184
https://bugs.chromium.org/p/project-zero/issues/detail?id=1184
https://arxiv.org/abs/2503.13195
https://blog.qualys.com/vulnerabilities-threat-research/2015/05/13/venom-hypervisor-vulnerability
https://blog.qualys.com/vulnerabilities-threat-research/2015/05/13/venom-hypervisor-vulnerability
https://doi.org/10.1145/3429523.3429524
https://www.researchgate.net/publication/220910193_SeL4_Formal_verification_of_an_OS_kernel
https://www.researchgate.net/publication/220910193_SeL4_Formal_verification_of_an_OS_kernel

References

P. Koopman and J. DeVale. Comparing the robustness of POSIX operating sys-
tems. In Twenty-Ninth Annual International Symposium on Fault-Tolerant Comput-
ing, 1999., pages 30–37, June 1999b. doi: 10.1109/FTCS.1999.781031.

P. Koopman and J. DeVale. The exception handling effectiveness of POSIX op-
erating systems. IEEE Transactions on Software Engineering, 26(9):837–848, 2000.
ISSN 00985589. doi: 10.1109/32.877845.

Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and Ted
Marz. Comparing operating systems using robustness benchmarks. In Proceed-
ings of the IEEE Symposium on Reliable Distributed Systems, pages 72–79, 1997.
doi: 10.1109/reldis.1997.632800.

Kulenovic and Donko. A survey of static code analysis methods for security
vulnerabilities. Semantic Scholar, 2023. URL https://www.semanticscholar.
org/paper/A-survey-of-static-code-analysis-methods-for-Kulenovic-
Donko/c57281ddac3870eb3c567d6f3ead5a3ef97aafce.

Tomas Kulik, Brijesh Dongol, Peter Gorm Larsen, Hugo Daniel Macedo, Steve
Schneider, Peter W. V. Tran-Jørgensen, and James Woodcock. A survey of prac-
tical formal methods for security. Form. Asp. Comput., 34(1), July 2022. ISSN
0934-5043. doi: 10.1145/3522582. URL https://doi.org/10.1145/3522582.

S. Kumar, J. Turner, and J. Williams. Advanced algorithms for fast and scalable
deep packet inspection. In 2006 Symposium on Architecture For Networking And
Communications Systems, pages 81–92, Dec 2006. doi: 10.1145/1185347.1185359.

Mingzhe Li and Jingling Xue. A practical off-line taint analysis framework and
its application in software analysis. Journal of Systems and Software, 110:100–
114, 2015. URL https://www.sciencedirect.com/science/article/abs/pii/
S0167404815000218.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. A secure
and formally verified linux kvm hypervisor. In 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pages 1782–1799, 2021. doi: 10.1109/SP40001.2021.00049.

Xiaodan Li, Xiaolin Chang, John A. Board, and Kishor S. Trivedi. A novel ap-
proach for software vulnerability classification. Proceedings - Annual Reliability
and Maintainability Symposium, 2017. ISSN 0149144X. doi: 10.1109/RAM.2017.
7889792.

vdso(7) — Linux manual page. Linux Foundation, 2021. Accessed: 2021-11-07.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user
space. In 27th USENIX Security Symposium (USENIX Security 2018), 2018.

Howard F. Lipson. Tracking and Tracing Cyber-Attacks : Technical Challenges
and Global Policy. Technical Report November, Carnegie Mellon University,
2002.

199

https://www.semanticscholar.org/paper/A-survey-of-static-code-analysis-methods-for-Kulenovic-Donko/c57281ddac3870eb3c567d6f3ead5a3ef97aafce
https://www.semanticscholar.org/paper/A-survey-of-static-code-analysis-methods-for-Kulenovic-Donko/c57281ddac3870eb3c567d6f3ead5a3ef97aafce
https://www.semanticscholar.org/paper/A-survey-of-static-code-analysis-methods-for-Kulenovic-Donko/c57281ddac3870eb3c567d6f3ead5a3ef97aafce
https://doi.org/10.1145/3522582
https://www.sciencedirect.com/science/article/abs/pii/S0167404815000218
https://www.sciencedirect.com/science/article/abs/pii/S0167404815000218

Chapter 7

Liquid Web. 8 virtualization security issues and risks, 2021. URL https://www.
liquidweb.com/blog/virtualization-security-issues-and-risks/. Ac-
cessed: 2025-05-20.

Alan Litchfield and Abid Shahzad. A systematic review of vulnerabilities in
hypervisors and their detection. In AMCIS 2017 - America’s Conference on In-
formation Systems: A Tradition of Innovation, volume 2017-Augus, 2017. ISBN
9780996683142.

H. Madeira, D. Costa, and M. Vieira. On the emulation of software faults by
software fault injection. In International Conference on Dependable Systems and
Networks. DSN 2000, pages 417–426, 2000. doi: 10.1109/ICDSN.2000.857571.

Christian Mainka, Juraj Somorovsky, and Jörg Schwenk. Penetration testing tool
for web services security. In 2012 IEEE Eighth World Congress on Services, pages
163–170, 2012. doi: 10.1109/SERVICES.2012.7.

Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand
Ghalsasi. Cloud computing—the business perspective. Decision Support Sys-
tems, 51(1):176–189, 2011.

Miquel Martinez, David De Andres, and Juan-Carlos Ruiz. Gaining confidence
on dependability benchmarks’ conclusions through back-to-back testing. In
2014 Tenth European Dependable Computing Conference (EDCC), pages 130–137.
IEEE, 2014.

Fabio Massacci, Stephan Neuhaus, and Viet Hung Nguyen. After-life vulner-
abilities: a study on firefox evolution, its vulnerabilities, and fixes. In Third
International Symposium, ESSoS, pages 195–208, 2011.

Ibéria Medeiros, Nuno Neves, and Miguel Correia. Detecting and removing web
application vulnerabilities with static analysis and data mining. IEEE Transac-
tions on Reliability, 65(1):54–69, 2016. doi: 10.1109/TR.2015.2457411.

Aleksandar Milenkoski, Samuel Kounev, Alberto Avritzer, Nuno Antunes, and
Marco Vieira. On benchmarking intrusion detection systems in virtualized en-
vironments. arXiv preprint arXiv:1410.1160, 2014a.

Aleksandar Milenkoski, Bryan D Payne, Nuno Antunes, Marco Vieira, and
Samuel Kounev. Experience report: an analysis of hypercall handler vulner-
abilities. In IEEE 25th International Symposium on Software Reliability Engineering
(ISSRE 2014), pages 100–111. IEEE, 2014b.

Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira, Samuel
Kounev, Alberto Avritzer, and Matthias Luft. Evaluation of intrusion detection
systems in virtualized environments using attack injection. In Proceedings of
the 18th International Symposium on Research in Attacks, Intrusions, and Defenses
- Volume 9404, RAID 2015, page 471492, Berlin, Heidelberg, 2015a. Springer-
Verlag. ISBN 9783319263618.

200

https://www.liquidweb.com/blog/virtualization-security-issues-and-risks/
https://www.liquidweb.com/blog/virtualization-security-issues-and-risks/

References

Aleksandar Milenkoski, Bryan D Payne, Nuno Antunes, Marco Vieira, Samuel
Kounev, Alberto Avritzer, and Matthias Luft. Evaluation of intrusion detec-
tion systems in virtualized environments using attack injection. In International
Symposium on Recent Advances in Intrusion Detection, 2015b.

Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and
Bryan D Payne. Evaluating computer intrusion detection systems: A survey
of common practices. ACM Computing Surveys (CSUR), 48(1):12, 2015c.

Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the re-
liability of UNIX utilities. Communications of the ACM, 33(12):32–44, 1990. doi:
10.1145/96267.96279.

Barton P. Miller, Mengxiao Zhang, and Elisa R. Heymann. The relevance of classic
fuzz testing: Have we solved this one? IEEE Trans. Softw. Eng., 48(6):2028–2039,
June 2022. ISSN 0098-5589. doi: 10.1109/TSE.2020.3047766.

Mark D. Miller, Alan C. Schultz, Jeffrey M. Smith, and Brent R. Hilf. The
inevitability of failure: The flawed assumption of security in modern com-
puting environments. Technical report, National Security Agency (NSA),
2001. URL https://www.nsa.gov/portals/75/documents/resources/
everyone/digital-media-center/publications/research-papers/the-
inevitability-of-failure-paper.pdf.

Mitre. Common vulnerabilities and exposures. https://cve.mitre.org/, 2021.
Accessed: 2021-07-03.

MITRE. Common Weakness Enumeration. https://cwe.mitre.org/, 2021. Ac-
cessed: 2021-06-09.

John D. Musa. Operational Profiles in Software-Reliability Engineering. IEEE
Software, 10(2):14–32, 1993. ISSN 07407459. doi: 10.1109/52.199724.

Roberto Natella, Domenico Cotroneo, Joao A. Duraes, and Henrique S. Madeira.
On fault representativeness of software fault injection. IEEE Transactions on
Software Engineering, 39(1):80–96, 2013. ISSN 00985589. doi: 10.1109/TSE.2011.
124.

Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing de-
pendability with software fault injection: A survey. ACM Computing Surveys,
48(3), 2016. doi: 10.1145/2841425.

Afonso Araújo Neto and Marco Vieira. Selecting secure web applications using
trustworthiness benchmarking. Int. Journal of Dependable and Trustworthy Infor-
mation Systems (IJDTIS), 2(2):1–16, 2011.

Nuno Neves, João Antunes, Miguel Correia, Paulo Veríssimo, and Rui Neves.
Using attack injection to discover new vulnerabilities. Proceedings of the Inter-
national Conference on Dependable Systems and Networks, 2006:457–466, 2006. doi:
10.1109/DSN.2006.72.

201

https://www.nsa.gov/portals/75/documents/resources/everyone/digital-media-center/publications/research-papers/the-inevitability-of-failure-paper.pdf
https://www.nsa.gov/portals/75/documents/resources/everyone/digital-media-center/publications/research-papers/the-inevitability-of-failure-paper.pdf
https://www.nsa.gov/portals/75/documents/resources/everyone/digital-media-center/publications/research-papers/the-inevitability-of-failure-paper.pdf
https://cve.mitre.org/
https://cwe.mitre.org/

Chapter 7

Hong Quy Nguyen, Thong Hoang, Hoa Khanh Dam, and Aditya Ghose. Graph-
based explainable vulnerability prediction. Information and Software Technology,
177:107566, 2025. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2024.
107566.

NIST. National Vulnerability Database. https://nvd.nist.gov/, 2021. Accessed:
2021-06-07.

Paulo Nunes, José Fonseca, and Marco Vieira. Blending static and dynamic anal-
ysis for web application security. In IEEE Conference Proceedings, 2022. URL
https://ieeexplore.ieee.org/abstract/document/10813334.

Rui André Oliveira, Miquel Martínez Raga, Nuno Laranjeiro, and Marco Vieira.
An approach for benchmarking the security of web service frameworks. Future
Generation Computer Systems, 110:833–848, nov 2020. ISSN 0167739X. doi: 10.
1016/j.future.2019.10.027.

OpenAI. Chatgpt-4o (mini). https://openai.com/chatgpt, 2024. Accessed May
2025. ChatGPT-4o is a multimodal model by OpenAI, optimized for faster and
smaller deployment (mini variant).

Oracle. What Is Cloud Migration? Importance, Benefits, and Strategy. https:
//www.oracle.com/cloud/cloud-migration/, 2024. Accessed: 2024-11-12.

Andy Ozment and Stuart E Schechter. Milk or Wine : Does Software Security
Improve with Age ? 15th USENIX Security Symposium, pages 93–104, 2006.

Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

Rajendra Patil and Chirag Modi. An exhaustive survey on security concerns and
solutions at different components of virtualization. ACM Computing Surveys,
52(1), 2019. ISSN 15577341. doi: 10.1145/3287306.

Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar
Iyer. Symplfied: Symbolic program-level fault injection and error detection
framework. In 2008 IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN), pages 472–481, 2008. doi: 10.1109/DSN.
2008.4630118.

Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An
architecture for secure active monitoring using virtualization. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), pages 233–247, 2008. doi: 10.1109/
SP.2008.24.

Dan Pelleg, Muli Ben-Yehuda, Rick Harper, Lisa Spainhower, and Tokunbo
Adeshiyan. Vigilant: out-of-band detection of failures in virtual machines.
SIGOPS Oper. Syst. Rev., 42(1):26–31, January 2008. ISSN 0163-5980. doi:
10.1145/1341312.1341319. URL https://doi.org/10.1145/1341312.1341319.

Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. Characterizing hypervisor
vulnerabilities in cloud computing servers. In Proceedings of the 1st International
Workshop on Security in Cloud Computing (SCC), pages 3–10, 2013. doi: 10.1145/
2484402.2484406.

202

https://nvd.nist.gov/
https://ieeexplore.ieee.org/abstract/document/10813334
https://openai.com/chatgpt
https://www.oracle.com/cloud/cloud-migration/
https://www.oracle.com/cloud/cloud-migration/
https://doi.org/10.1145/1341312.1341319

References

Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. Characterizing hypervisor
vulnerabilities in cloud computing servers. In Proceedings of the 2013 interna-
tional workshop on Security in cloud computing, pages 3–10. ACM, 2013.

Cuong Pham, Zachary Estrada, Phuong Cao, Zbigniew Kalbarczyk, and Ravis-
hankar K. Iyer. Reliability and security monitoring of virtual machines us-
ing hardware architectural invariants. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, pages 13–24, 2014. doi:
10.1109/DSN.2014.19.

M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A survey of static analysis meth-
ods for identifying security vulnerabilities in software systems. IBM Systems
Journal, 46(2):265–288, 2007. doi: 10.1147/sj.462.0265.

Proxmox Forum. Meltdown and spectre discussion thread, 2018. URL https:
//forum.proxmox.com/threads/intel-bug-meltdown-and-kvm-qemu.39559/.
Accessed: 2025-05-20.

Jane Radatz, Anne Geraci, and Freny Katki. IEEE Standard Glossary of Software
Engineering Terminology. IEEE Std, 610121990, 1990.

R.G. Ragel and S. Parameswaran. Impres: integrated monitoring for processor
reliability and security. In 2006 43rd ACM/IEEE Design Automation Conference,
pages 502–505, 2006. doi: 10.1145/1146909.1147041.

A Gomez Ramirez, M Martinez Pedreira, Costin Grigoras, Latchezar Betev,
Camilo Lara, Udo Kebschull, ALICE Collaboration, et al. A security monitor-
ing framework for virtualization based hep infrastructures. In Journal of Physics:
Conference Series, page 102004. IOP Publishing, 2017.

Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Her-
bert Bos. Flip feng shui: Hammering a needle in the software stack. In 25th
USENIX Security Symposium (USENIX Security 2016), 2016.

Eric Rescorla. Is finding security holes a good idea? IEEE Security and Privacy, 3
(1):14–19, jan 2005. ISSN 15407993. doi: 10.1109/MSP.2005.17.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: Exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM Conference on Computer and Communi-
cations Security (CCS), pages 199–212, 2009. doi: 10.1145/1653662.1653687.

Ronald Ross. Guide for applying the risk management framework to federal
information systems: A security life cycle approach. Technical Report NIST
SP 800-37 Rev. 1, National Institute of Standards and Technology, 2014. URL
https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
Inside the social network’s (datacenter) network. In Steve Uhlig, Olaf Maennel,
Brad Karp, and Jitendra Padhye, editors, Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM 2015, London, United
Kingdom, August 17-21, 2015, pages 123–137. ACM, 2015. doi: 10.1145/2785956.
2787472. URL https://doi.org/10.1145/2785956.2787472.

203

https://forum.proxmox.com/threads/intel-bug-meltdown-and-kvm-qemu.39559/
https://forum.proxmox.com/threads/intel-bug-meltdown-and-kvm-qemu.39559/
https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final
https://doi.org/10.1145/2785956.2787472

Chapter 7

Moamar Sayed-Mouchaweh and Edwin Lughofer. Learning in non-stationary en-
vironments: methods and applications. Springer Science & Business Media, 2012.

Karen Scarfone, Murugiah Souppaya, Amanda Cody, and Angela Orebaugh.
NIST SP 800-115: Technical Guide to Information Security Testing and Assess-
ment. https://doi.org/10.6028/NIST.SP.800-115, September 2008. NIST
Special Publication 800-115.

Karen Scarfone, Murugiah Souppaya, and Peter Hoffman. Guide to security for
full virtualization technologies. Technical Report NIST SP 800-125, National
Institute of Standards and Technology (NIST), 2011. URL https://nvlpubs.
nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf.

Daniele Sgandurra and Emil Lupu. Evolution of attacks, threat models, and so-
lutions for virtualized systems. ACM Computing Surveys, 48(3), feb 2016. ISSN
15577341. doi: 10.1145/2856126.

Ze Sheng, Zhicheng Chen, Shuning Gu, Heqing Huang, Guofei Gu, and Jeff
Huang. Llms in software security: A survey of vulnerability detection tech-
niques and insights, 2025. URL https://arxiv.org/abs/2502.07049.

Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang,
and Jinming Li. Deconstructing xen. In NDSS, 2017.

Adam Shostack. Threat Modeling: Designing for Security. Wiley, 2014.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

Chad Spensky, Hongyi Hu, and Kevin Leach. Lo-phi: Low-observable physical
host instrumentation for malware analysis. In NDSS, 2016.

Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control systems
(ics) security. Technical Report SP 800-82 Rev. 2, National Institute of Standards
and Technology, 2015. URL https://doi.org/10.6028/NIST.SP.800-82r2.
NIST Special Publication 800-82 Revision 2.

TechTarget Editorial. What is a virtual machine escape attack?, 2024. URL https:
//www.techtarget.com/whatis/definition/virtual-machine-escape.

Trail of Bits. The good, the bad, and the weird, 2018. URL https:
//blog.trailofbits.com/2018/10/26/the-good-the-bad-and-the-weird/.
Accessed: 2024-12-26.

TPC Express Benchmark TM V (TPCx-V) Specification. Transaction Processing Per-
formance Council (TPC), 04 2019.

Ubuntu. Stress NG, 2019. https://kernel.ubuntu.com/~cking/stress-ng/.

Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James Newsome,
and Anupam Datta. Design, implementation and verification of an exten-
sible and modular hypervisor framework. In Proceedings - IEEE Symposium
on Security and Privacy, pages 430–444, 2013. ISBN 9780769549774. doi:
10.1109/SP.2013.36.

204

https://doi.org/10.6028/NIST.SP.800-115
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-125.pdf
https://arxiv.org/abs/2502.07049
https://doi.org/10.6028/NIST.SP.800-82r2
https://www.techtarget.com/whatis/definition/virtual-machine-escape
https://www.techtarget.com/whatis/definition/virtual-machine-escape
https://blog.trailofbits.com/2018/10/26/the-good-the-bad-and-the-weird/
https://blog.trailofbits.com/2018/10/26/the-good-the-bad-and-the-weird/

References

M. Vieira, N. Laranjeiro, and H. Madeira. Assessing Robustness of Web-Services
Infrastructures. In 37th Annual IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN07), pages 131–136, 2007. doi: 10.1109/DSN.2007.16.

Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathemat-
ical statistics, 16(2):117–186, 1945.

Arielle Waldman. CrowdStrike Warns of Rise in VMware ESXi Hypervisor
Attacks. https://www.techtarget.com/searchsecurity/news/366537519/
CrowdStrike-warns-of-rise-in-VMWare-ESXi-hypervisor-attacks, May
2023. Accessed: 2024-11-12.

Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, and Feng Liu.
Automated anomaly detection in virtualized services using deep packet in-
spection. Procedia Computer Science, 110:510–515, 2017.

Xen Project Wiki. X86 paravirtualised memory management. https://wiki.
xenproject.org/wiki/X86_Paravirtualised_Memory_Managemen, 2015. Ac-
cessed: 2021-02-27.

Xen. Xen Security Advisory. https://xenbits.xen.org/xsa/, 2015. Accessed:
2021-03-27.

Xen Project. Dom0 and domu explained. https://wiki.xenproject.org/wiki/
Dom0, 2024. Accessed: 2025-05-20.

Xen Project Security Team. Xen security advisory XSA-148: Uncontrolled creation
of large page mappings by PV guests (cve-2015-7835). Xen Security Advisory,
Oct 2015. Available: http://xenbits.xen.org/xsa/advisory-148.html.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace: Data race
fuzzing for kernel file systems. In 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 1643–1660. IEEE, 2020.
doi: 10.1109/SP40000.2020.00078. URL https://doi.org/10.1109/SP40000.
2020.00078.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy, pages 590–604. IEEE, 2014. doi: 10.1109/SP.2014.44.

Su-Fen Yang and Smiley W Cheng. A new non-parametric cusum mean chart.
Quality and Reliability Engineering International, 27(7):867–875, 2011.

Emrah Yasasin, Julian Prester, Gerit Wagner, and Guido Schryen. Forecasting
IT security vulnerabilities An empirical analysis. Computers and Security, 88:
101610, jan 2020. ISSN 01674048. doi: 10.1016/j.cose.2019.101610.

Mohammed J. Zaki and Jr. Wagner Meira. Data Mining and Analysis: Funda-
mental Concepts and Algorithms. Cambridge University Press, 2014. ISBN
9780521766333.

205

https://www.techtarget.com/searchsecurity/news/366537519/CrowdStrike-warns-of-rise-in-VMWare-ESXi-hypervisor-attacks
https://www.techtarget.com/searchsecurity/news/366537519/CrowdStrike-warns-of-rise-in-VMWare-ESXi-hypervisor-attacks
https://wiki.xenproject.org/wiki/X86_Paravirtualised_Memory_Managemen
https://wiki.xenproject.org/wiki/X86_Paravirtualised_Memory_Managemen
https://xenbits.xen.org/xsa/
https://wiki.xenproject.org/wiki/Dom0
https://wiki.xenproject.org/wiki/Dom0
http://xenbits.xen.org/xsa/advisory-148.html
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078

Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. Cloudvisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested virtualization.
In Twenty-Third ACM Symposium on Operating Systems Principles, pages 203–216.
ACM, 2011.

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. DoS attacks on your memory
in the cloud. In Proceedings of the 2017 ACM Asia Conference on Computer and
Communications Security (AsiaCCS), 2017a. doi: 10.1145/3052973.3052978.

Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. Memory dos attacks in multi-
tenant clouds: Severity and mitigation, 2017b. URL https://arxiv.org/abs/
1603.03404.

Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-VM
side channels and their use to extract private keys. In Proceedings of the 2012
ACM Conference on Computer and Communications Security (CCS), pages 305–316,
2012. doi: 10.1145/2382196.2382230.

Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli. Unsupervised al-
gorithms to detect zero-day attacks: Strategy and application. IEEE Access, 9:
90603–90615, 2021. doi: 10.1109/ACCESS.2021.3090957.

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. µVulDeePecker:
A Deep Learning-Based System for Multiclass Vulnerability Detection . IEEE
Transactions on Dependable and Secure Computing, 18(05):2224–2236, September
2021. ISSN 1941-0018. doi: 10.1109/TDSC.2019.2942930. URL https://doi.
ieeecomputersociety.org/10.1109/TDSC.2019.2942930.

Moshe Zukerman. Introduction to queueing theory and stochastic teletraffic
models. arXiv preprint arXiv:1307.2968, 2013.

206

https://arxiv.org/abs/1603.03404
https://arxiv.org/abs/1603.03404
https://doi.ieeecomputersociety.org/10.1109/TDSC.2019.2942930
https://doi.ieeecomputersociety.org/10.1109/TDSC.2019.2942930

Appendices

207

Appendix A

Sequential Performance Analysis
Closed Forms and Derivations

A.1 Birth-death process subsumed by the bucket al-
gorithm

The models considered in our work are discrete time models, wherein transitions
occur after a sample is collected. Nonetheless, for analytical purposes it is instru-
mental to also consider the corresponding continuous time models, wherein sam-
ples arrive according to a Poisson process, i.e., the mean time between samples is
exponentially distributed. All the results derived in this appendix that are used
throughout the rest of the paper hold for general distributions, as they ultimately
rely on transition probabilities (transition rates, when used, appear to simplify
presentation when leveraging results from M/M/1 and M/M/1/K queues, but
the final results are a function of transition probabilities as opposed to transition
rates).s

The bucket algorithm with a single bucket corresponds to an M/M/1 queue
in discrete time. Let λ and µ be the birth and death rates, ρ = λ/µ, and let
p = µ/(λ + µ) be the probability that a death (removal of ball from bucket)
occurs before a birth (addition of ball into bucket). As mentioned in the above
paragraph, all our results depend on λ and µ only through p, noting that1

ρ =
1
p
− 1.

Time is measured in number of collected samples, i.e., we consider a discrete time
system where each time slot corresponds to the duration between two sample
collections. The mean time to reach state N starting from state 0 is given by first
passage time arguments (see Section 2.5.3 in [Zukerman, 2013]).

Let VN be the mean time to reach state N from state 0, and let Un−1 be the mean

1When considering a single bucket, we let ρ = ρ1 and p = p1.

209

Appendix A

b=1
d=0

b=1
d=1

b=1
d=D

b=2
d=1

b=2
d=2

b=2
d=D A

p2 1p1p1 p1p1 p2

Figure A.1: Bucket diagram for B = 2.

time to reach state n from state n− 1. Then,

VN =
N

∑
n=1

Un−1 (A.1)

where

U0 =
1 + ρ

ρ
=

1
1− p

(A.2)

Un = 1 + p(Un−1 + Un) =
1 + pUn−1

1− p
(A.3)

Solving the recursion above, we obtain an expression for Un that we then use to
express VN in closed form.

A.1.1 Derivation of Un

Direct derivation

Let q = 1/(1− p) and r = p/(1− p). Then,

U0 =
1

1− p
(A.4)

Un = q
1− rn

1− r
+ rnU0 = q

rn − 1
r− 1

+ rnU0 (A.5)

Note that 1− r = (1− 2p)/(1− p). Then,

Un =
1− rn

1− 2p
+ rnU0 (A.6)

Note also that

r =
µ

λ
= ρ−1 =

p
1− p

(A.7)

Un =
1− ρ−n

1− 2p
+ ρ−n(1 + ρ−1) (A.8)

=
1 + ρ

ρ

1− ρ−n

1− ρ−1 + ρ−n(1 + ρ−1) (A.9)

210

Sequential Performance Analysis Closed Forms and Derivations

Alternative derivation

Next, we provide an alternative derivation for Un, leveraging results about
the M/M/1/K queue. As pointed out in the beginning of this appendix, the
M/M/1/K model assumes that samples arrive according to a Poisson process,
but this assumption is removed after uniformization, as detailed next.

The steady state probability of state K + 1 at an M/M/1/K+1 system is given by

π̃K+1 = ρK+1 1− ρ

1− ρK+2 (A.10)

Note also that
1

π̃K+1
=

1
ρK+1

1
1− ρ

− ρ
1

1− ρ
(A.11)

The mean time to go from state K to state K + 1 in an M/M/1/K+1 system is

ŨK =
1
µ

(
1

π̃K+1
− 1
)

(A.12)

Now, note that the M/M/1/K+1 system is a continuous time system, whereas
the system under consideration here is discrete time. We use uniformization to
convert one into the other,

P =
Q

λ + µ
+ I (A.13)

where P is the transition probability matrix of the discrete time system. Indeed,
we let the uniformization rate equal λ + µ, meaning that the uniformized sys-
tem will make transitions on average every 1/(λ + µ) time units, where time is
measured according to the original continuous time system (for additional back-
ground on uniformization, see [Heyman and Sobel, 1982]). Therefore, the mean
number of transitions to reach state K + 1 from state K is given by (A.12) divided
by 1/(λ + µ),

UK =
λ + µ

µ

(
1

π̃K+1
− 1
)
= (ρ + 1)

ρ−K−1 − 1
1− ρ

. (A.14)

Finally, (A.14) is equivalent to (A.9) replacing n by K.

A.1.2 Derivation of VN

Next, we derive an expression for VN,

VN = (ρ + 1)
N−1

∑
n=0

ρ−n−1 − 1
1− ρ

(A.15)

=
ρ + 1

(1− ρ)ρN

(
1− ρN

1− ρ
− ρN N

)
(A.16)

In particular, if N = 1 the above expression reduces to

V1 = c =
ρ + 1
1− ρ

(
ρ−1 − 1

1− ρ
− 1
)
=

1 + ρ

ρ
(A.17)

as expected.

211

Appendix A

Table A.1: Table of notation: a transition occurs after every sample. At state 0, we
may have self-transitions.

Variable Description
K current bucket
d number of items in current bucket
B number of buckets
D maximum depth of each bucket
VN mean number of transitions to reach state N from state 0
VD,i,j mean number of samples to increment the number of balls

in bucket i by D units, starting from j balls at bucket i
Un mean number of transitions to reach state n + 1 from state n
p probability of sample response time being smaller than target,

i.e., probability of a “good” sample, p = µ/(λ + µ)
ρ mean number of “bad” samples collected until collecting

a “good” one, i.e., until collecting one that reduces the number
of balls in a bucket or maintains the state at 0,
ρ = (1/p)− 1 = λ/µ

A.2 Probability of false positive before detecting an
attack

Assuming that VN can be roughly approximated by a constant, and that the mean
time between attacks is exponentially distributed with mean α, the probability
that we will get a false positive before we detect an attack is given by

f = e−VN/α (A.18)

Alternatively, if we approximate VN by an exponential distribution,

f =
1/VN

1/VN + 1/α
=

(
1 +

VN

α

)−1

(A.19)

A.2.1 General case: varying number of buckets and bucket
depth

Next, extend the above analysis for the case of multiple buckets. We fo-
cus on expectations (distributions are discussed in [Fill, 2009]). Recall that
AB(D; (p1, p2, . . . , pB)) is the mean time until absorption, measured in num-
ber of collected samples, accounting for B buckets of depth D each. Note that
AB(D; (p1, p2, . . . , pB)) is the mean time until a false alarm, starting from the ini-
tial state 0, and can be expressed either through (p1, p2, . . . , pB) or (ρ1, ρ2, . . . , ρB),

AB(D; (ρ1, ρ2, . . . , ρB)) = VD+1,1,0 +
B

∑
i=2

VD,i,1 (A.20)

212

Sequential Performance Analysis Closed Forms and Derivations

2 4 6 8 10
a) D (bucket depth)

0
1

3

5

M
ea

n

sa
m

pl
es

 to
 a

la
rm 1e10

2 4 6 8 10
b) D (bucket depth)

0.00

0.25

0.50

0.75

1.00

Pr
ob

. o
f f

al
se

 a
la

rm

2 4 6 8 10
c) D (bucket depth)

0.50

0.75

1.00

1.20

Co
st

 (C
=

f
0.

1D
)

p1 = 0.52, p2 = 0.7 p1 = 0.7, p2 = 0.52 p1 = 0.6, p2 = 0.6

Figure A.2: As the bucket depth increases, the probability of false alarm decreases
but the time to detect attacks increases.

where VD,i,j is the mean number of samples to increment the number of balls in
bucket i by D units, starting from the state wherein the system has j balls at bucket
i. The expression of VD+1,1,0 was previously computed, and is given by (A.16),

VD+1,1,0 = VD+1 (A.21)

=
ρ1 + 1

(1− ρ1)ρ
D+1
1

(
1− ρD+1

1
1− ρ1

− ρD+1
1 (D + 1)

)
(A.22)

To derive an expression for VD,i,1, we let Uj,i be the mean time to increment the
number of balls at bucket i by 1 unit, starting from j + 1 balls.2 Then,

VD,i,1 =
D−1

∑
j=0

Uj,i (A.23)

and

Uj,i =


Uj+1, i = 1, j < D
1 + pi(UD−1,i−1 + U0,i) =
= (1 + piUD−1,i−1)/(1− pi), i ≥ 2, j = 0
ρ
−j
i (∆i + U0,i)− ∆i, i ≥ 2, j > 0

(A.24)

It follows that for i ≥ 2,

VD,i,1 =

(
1 + ρi

1− ρi
+ U0,i

)(
1− ρ−D

i

1− ρ−1
i

)
− D

1 + ρi

1− ρi
. (A.25)

and, for i = 1,

VD,1,1 =
D−1

∑
j=0

Uj+1 = VD+1 −V1 (A.26)

where VD is given by (A.16).

2Note that the dependence of Uj,i on j occurs through the distinction bewteen cases j = 0 and
j > 0.

213

Appendix A

A.3 Derivation of metrics of interest

A.3.1 Special case: B = 2

In the particular where we have two buckets (Fig. A.1),

A2(D; ρ1, ρ2) = VD+1 + VD,2,1

=
ρ1 + 1

(1− ρ1)ρ
D+1
1

(
1− ρD+1

1
1− ρ1

− ρD+1
1 (D + 1)

)
+

+

(
1 + ρ2

1− ρ2
+ U0,2

)(
1− ρ−D

2

1− ρ−1
2

)
− D

1 + ρ2

1− ρ2
(A.27)

where

U0,2 =
1 + p2UD−1,1

1− p2
=

1 + p2UD

1− p2
(A.28)

p1 =
1

ρ1 + 1
, p2 =

1
ρ2 + 1

(A.29)

UD = (ρ1 + 1)
ρ−D−1

1 − 1
1− ρ1

(A.30)

Then, the expression of A2 can be further simplified to

A2(D; ρ1, ρ2) =

=
ρ1 + 1

(1− ρ1)ρ
D+1
1

(
1− ρD+1

1
1− ρ1

− ρD+1
1 (D + 1)

)
+

+

(
1 + ρ2

1− ρ2

)(
1 +

1− ρ2
2 + (1− ρ2)UD

ρ2(ρ2 + 1)

)(
1− ρ−D

2

1− ρ−1
2

)
−

− D
1 + ρ2

1− ρ2
. (A.31)

Similarly, A2 can be expressed as a function of p1, p2 and D, as indicated in (3.3).
It can be readily verified that (3.3) is equivalent to (A.31).

A.3.2 Special case: B = 2 and D = 1

Let states 0, 1, 2 and F correspond to the initial state, 1 ball at bucket 1, 1 ball at
bucket 2, and the final absorbing state, respectively. Next, we compute the mean
number of samples to reach state F from state 0. It follows from (A.31) that

A2(1; ρ1, ρ2) =
1

πF
− 1 (A.32)

where

1
πF

=
1 + 1−p1

1−(1−p1)p2
+ (1−p1)

2

1−(1−p1)p2
+ (1−p1)

2(1−p2)
1−(1−p1)p2

(1−p1)2(1−p2)
1−(1−p1)p2

. (A.33)

214

Sequential Performance Analysis Closed Forms and Derivations

A.3.3 Numerical examples

Next, we illustrate the trade-off in the choice of the bucket depth. Figure A.2(a)
illustrates the behavior of (A.31). The red, yellow and blue lines correspond to
three scenarios, respectively: 1) p1 = 0.7, p2 = 0.52; 2) p1 = 0.52, p2 = 0.7;
3) p1 = 0.6, p2 = 0.6. Recall that 1 − pi is the probability of getting a “bad”
sample at bucket i, that leads to an increase in the number of balls. As 1 − pi
increases, the mean time to alarm decreases. Figure A.2(b) shows the probability
of false alarm under the assumption of exponential time between attacks with
rate α = 0.001, and plots equation (3.8). Finally, Figure A.2(c) shows that there
is an optimal value of bucket depth that minimizes the cost, where cost is given
by the difference between false alarm probability and normalized time to detect
attacks, assumed to be proportional to the bucket depth.

A.3.4 Sensitivity analysis

Next, we consider the sensitivity of the cost with respect to the parameter of in-
terest, D. To that aim, we take the derivative of the cost with respect to D. Under
the deterministic model introduced in Section 3.2.4,

∂C
∂D

= B + w
∂ fB(D)

∂D
= B− w

(
e−AB(D)α ∂AB(D)

∂D
α

)
(A.34)

Note that as D grows, the term multiplying w in the above expression vanishes.
Indeed, the derivative of the cost tends to B as D grows to infinity, as for large
enough D there will be virtually no false positives and the cost will be due to the
time to detect anomalies when they in fact occur, i.e., time to detect true positives.

Figure A.3 shows how the cost varies as a function of D, for B = 2 and w =
20.646 (see Section 3.3.4). We let p1 and p2 equal 0.466 and 0.714, respectively.
Note that the cost is robust against changes in D, i.e., it varies in a small range
(Figure A.3(a)). Similar observation holds for the example in Figure A.2. The
derivative of the cost also varies in a small range (Figure A.3(b)). The cost has a
local minimum around D = 13 and a global minimum at D = 1.

Next, we let w = 909 (Figure A.4). In this case, the cost admits a unique local
minimum, again around D = 13. However, the cost is much more sensitive to
changes in D. We conclude that if the goal of the soft constraint problem is to
robustly capture the local minimum of the hard constraint problem, it suffices to
consider small w. However, if one requires that the PROBLEM WITH SOFT CON-
STRAINTS admits a unique local minimum, corresponding to the solution of the
PROBLEM WITH HARD CONSTRAINTS, it may be needed to set w to larger values,
at the expense of posing a problem whose cost is less robust to changes in D.

215

Appendix A

0 5 10 15 20
D (bucket depth)

20

25

30

35

40

C
os

t

a)

0 5 10 15 20
D (bucket depth)

-6

-4

-2

0

2

C
os

t d
er

iv
at

iv
e

b)

Figure A.3: Sensitivity analysis when w = 20.646

216

Sequential Performance Analysis Closed Forms and Derivations

(a)

(b)

Figure A.4: Sensitivity analysis when w = 909

217

Appendix B

Xen Reference Subsystem

This table serves as a reference for classifying vulnerabilities in our work, but it
is not intended to be entirely accurate. It reflects the author’s perspective and
may contain some inaccuracies. The table categorizes Xen hypervisor vulnerabil-
ities based on its subsystems and components, facilitating a structured analysis
of security risks. However, it should be noted that this table is only a reference
and does not accurately depict how the subsystems relate to one another, as these
relationships can be subtle and do not always follow a strict hierarchy. Other
subsystems and categorizations are entirely possible.

Table B.1: Xen Subsystem Reference used to guide the Vulnerabilities Breakdown.
Rows with no vulnerabilities are just presented to mark reference categories used.

Component # Vulnerabilities

Hypervisor Total – – – 315

1. CPU Management – – – 5

1.1. CPU Architecture – – 1 –

1.2. Failsafe Mechanism – – 2 –

1.3. vCPU Operations – – 2 –

1.4. Scheduler (Credit Scheduler) – – – –

1.5. Lock Management – – – –

1.6. Virtual Performance Measurement Unit (vPMU) – – – –

2. Communication Channels – – – 33

2.1. Event Channels – – 12 –

2.2. XenStore – – 21 –

2.3. XenBus – – – –

2.4. Inter-Domain Communication – – – –

219

Appendix B

Table B.1 – continued from previous page

Component # Vulnerabilities

3. I/O Subsystem – – – 45

3.1. Device Management – – 37 –

3.1.1. Device Drivers – – – –

3.1.2. Front-End Drivers – 1 – –

3.1.3. Device Emulation – 8 – –

3.1.3.0. Nonspecific 2 – – –

3.1.3.1. MMIO 2 – – –

3.1.3.2. QEMU 3 – – –

3.1.3.3. x86 I/O Intercept Code 1 – – –

3.1.4. Driver Domains – – – –

3.1.5. PCI Passthrough – 7 – –

3.1.6. IOMMU – 19 – –

3.1.7. Back-End Drivers – 2 – –

3.1.8. Disk Management – – – –

3.1.9. Device Assignment – – – –

3.2. Direct I/O – – 1 –

3.3. I/O Emulation – – 7 –

3.4. Network Management – – – –

3.5. Split Device Drivers – – – –

4. Interrupt Subsystem – – – 23

4.1. IRQ Management – – 13 –

4.1.0. Nonspecific – 10 – –

4.1.1. Interrupt Remapping – 1 – –

4.1.2. MSI Handling – 2 – –

4.2. Virtual IRQs – – – –

4.3. Exception Handling – – 10 –

220

Xen Reference Subsystem

Table B.1 – continued from previous page

Component # Vulnerabilities

5. Virtualization Architecture – – – 80

5.1. Instruction Emulation – – 8 –

5.1.1. x86 Emulator – 8 – –

5.1.2. x86 I/O Intercept Code – – – –

5.1.3. x86 System Device Emulation – – – –

5.2. Architecture-Specific Implementations – – 25 –

5.2.1. AMD Architecture – 3 – –

5.2.2. ARM Architecture – 7 – –

5.2.3. x86 Architecture – 15 – –

5.3. Domain Management – – 7 –

5.3.0. Nonspecific – 7 – –

5.3.1. Domain Control – – – –

5.3.2. Domain 0 (Dom0) – – – –

5.3.3. Unprivileged Domains (DomUs) – – – –

5.4. Hardware-Assisted Virtualization (HVM) – – 27 –

5.4.0. Nonspecific – 16 – –

5.4.1. AMD-V (SVM) – 1 – –

5.4.2. Intel VMX – 7 – –

5.4.3. VT-d – 3 – –

5.4.3. Nested Virtualization – – – –

5.5. Hypercall Interface – – 13 –

6. Memory Management – – – 105

6.0. Nonspecific – – 11 –

6.1. Grant Table – – 28 –

6.2. Ballooning / PoD – – 2 –

6.3. Page Management – – 54 –

6.4. MMU – – 2 –

6.5. Address Translation and Mapping – – 5 –

6.6. Memory Operations – – 3 –

221

Appendix B

Table B.1 – continued from previous page

Component # Vulnerabilities

7. Security and Isolation – – – –

7.1. Inter-Domain Isolation – – – –

7.2. XSM (Xen Security Modules) – – – –

7.3. Speculative Execution – – – –

8. Toolstack – – – 22

8.1. Xen Tools – – 2 –

8.2. libxl – – 16 –

8.3. XAPI – – 4 –

9. Timing Subsystem – – – –

9.1. Real-Time Clock – – – –

9.2. Virtual Time – – – –

222

	Introduction
	Problem Statement
	Contributions
	Outline of the Thesis

	Background and Related Work
	Background Concepts
	Dependability Concepts in System Security
	Security in Virtualized Environments

	Security Challenges in Virtualized Systems
	Hypervisor Vulnerabilities
	Side-Channel Attacks
	VM Isolation Failures
	VM Escape and Privilege Escalation
	Resource Contention and DoS in Multi-Tenant Environments

	Security Assessment Methodologies
	Core Security Assessment Methodologies
	Discussion and Comparative Analysis
	Trends and Open Challenges

	Virtualized System Security
	Anomaly Detection in Virtualized Infrastructures
	Hypervisor-Level Vulnerability Analysis on Xen
	Fault Injection and Robustness Testing of Hypervisors
	Adversarial Modeling and Exploit Reproduction Studies
	Formalization of Malicious States in Virtualization Layers

	Gaps and Open Challenges
	Summary

	Anomaly Detection in a Multi-Tenant Environment: A Performance-Based Approach
	Anomaly Detection Methodology
	Exploratory Analysis Phase
	Profiling Phase
	Operation Phase

	Anomaly Detection Mechanism and Model
	Anomaly Detection Mechanism
	Hypothesis Testing
	Analytical Model
	Modeling the Probability of False Alerts
	Parameterization of the Anomaly Detection Mechanism
	Unified Framework for Sequential Analysis

	Experimental Validation
	System Under Test and Experimental Setup
	Fault Model
	Instantiation of the Three-Phase Approach
	Model Assisted Calibration of Anomaly Detection
	CUSUM comparison

	Results and Discussion
	Residual Effects
	Alert Delay Evaluation
	Case Study 1
	Case Study 2
	Variability Tests

	Threats to Validity
	Summary

	Understanding Exploitable Hypervisor Vulnerabilities
	Robustness Testing in Virtualized Environments
	Robustness Testing Approach
	Experimental Setup
	Results and Discussion
	Lessons Learned and Open Challenges

	Vulnerability Analysis as Trustworthiness Evidence
	Data Collection and Preprocessing
	Qualifying Trustworthiness from Vulnerability Data
	Implications of Trustworthiness Evidence

	Linking Vulnerabilities to Exploitable Consequences
	Vulnerability Classification Methodology
	Chain Analysis of Hypervisor Vulnerabilities
	Implications of the Results

	Threats to Validity
	Summary

	Intrusion Injection in Virtualized Systems
	Erroneous States and Intrusion Injection
	From Errors to Erroneous States
	The Concept of Intrusion Injection
	Metaphor: Smart Vault Control System
	Potential Applicability

	Injecting Intrusions in Virtualized Systems
	The Intrusion Injection Approach
	Intrusion Models for Virtualized Systems
	Extracting Intrusion Models from Exploits

	A Prototype Injector for Unauthorized Memory Accesses in the Xen Hypervisor
	Xen Memory Management
	Injector Implementation

	Case Studies
	Reproducing Erroneous States for Known Vulnerabilities and Attacks
	Injecting Erroneous States in Non-Vulnerable Versions
	Intrusion Injection for Security Assessment

	Discussion: Strengths and Limitations
	Strengths and Motivation
	Challenges in Defining Intrusion Models
	Prototype and Experiments
	Scope and Limits

	Summary

	Defining Intrusion Models for Structured Security Assessment
	From Exploit Semantics to Structured Modeling
	Abstracting the Exploitability of Computer Systems
	Formalizing Intrusion Injection

	Methodology for Defining Intrusion Models
	Phase 1: Attack Vector Definition
	Phase 2: System-Aware Intrusion Modeling

	Case Study: Applying Intrusion Models to Xen Hypervisor
	Attack Vector Definition
	System-Aware Intrusion Modeling
	Test Case: Page Table Integrity Violation
	Model Equivalence Across Attack Scenarios

	Discussion and Threats to Validity
	Discussion
	Threats to Validity

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work and Research Directions

	References
	Appendix Sequential Performance Analysis Closed Forms and Derivations
	Birth-death process subsumed by the bucket algorithm
	Derivation of Un
	Derivation of Vn

	Probability of false positive before detecting an attack
	General case: varying number of buckets and bucket depth

	Derivation of metrics of interest
	Special case: B=2
	Special case: B=2 and D=1
	Numerical examples
	Sensitivity analysis

	Appendix Xen Reference Subsystem

