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Abstract

Service-based infrastructures consist of several software resources that interact to
support (critical) business services of organizations. These resources are packaged as
services, which are well-defined, self-contained, standard-based and protocol-
independent modules providing business functionalities that are independent from
the state or context of other services. These infrastructures typically support the
implementation of Service Oriented Architectures (SOAs) and can be supported by
different types of services and technologies, although Web Services are usually the
implementation of choice.

Although software services should behave in a secure manner, they are often
deployed with bugs that can be maliciously exploited. In fact, several studies show
that, in general, web applications and services present dangerous flaws.
Furthermore, the characteristics of service-based environments open the door to
security challenges that must be handled properly, including services under the
control of multiple providers and the dynamism of interactions and compositions.

To prevent security vulnerabilities, developers should apply best coding practices,
perform security inspections, execute penetration tests, etc. However, many times,
developers focus on the satisfying user’s functional requirements and time-to-market
constraints, disregarding security aspects. The problem is that software services are
so exposed that hackers will most probably uncover any existing security
vulnerability. Under this scenario, automated vulnerability detection techniques and
tools play an extremely important role on helping deploying more secure service-
based infrastructures, as they provide an easy and low cost way to detect software
vulnerabilities.

This thesis addresses the problem of automated detection of software
vulnerabilities in services and service-based infrastructures. First, the thesis
proposes a framework defining the assumptions, the concepts, and the generic
approaches that lay the basis for the development of innovative vulnerability
detection techniques and tools. In practice, the framework defines a reference
service-based infrastructure and proposes generic approaches for designing
vulnerability detection tools for web services and for service-based environments.

The thesis also presents different techniques and tools to detect software
vulnerabilities, designed following the approaches in the proposed framework.
These include three new techniques to detect vulnerabilities in individual web
services, each one addressing a different testing scenario and based on a different
detection approach, namely: improved penetration testing, attack signatures and
interface monitoring, and runtime anomaly detection. Built on top of such
techniques, it is also proposed an integrated approach for security testing of service-
based infrastructures, which is based on continuous monitoring to automatically
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discover and test the existing services, resources and interactions, coping with the
specificities of these dynamic and complex environments.

Finally, the thesis proposes a generic approach for designing benchmarks that
allow assessing and comparing vulnerability detection tools for service
environments. The approach specifies the components and the steps needed to
implement concrete benchmarks, while focusing on two key metrics: precision and
recall. It has been used to define two benchmarks, one supported by a predefined set
of workload services and the other based on a set of services provided by the
benchmark user. These benchmarks have been used to run several case studies to
assess the vulnerability detection techniques proposed in the thesis, and to compare
them to other existing tools, which at the same time allowed validating the
benchmarking approach.

Keywords

Software services; service-based infrastructures; security vulnerabilities;
vulnerability detection; testing; security assessment; benchmarking.
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Resumo

As infraestruturas baseadas em servigos consistem em conjuntos de componentes de
software que interagem entre si, utilizados de forma a suportar os processos de
negodcio (criticos) das organiza¢des. Estes componentes, designados como servigos,
sao modulos bem definidos, auto contidos, baseados em standards e independentes
de protocolos, que disponibilizam funcionalidades que sdo independentes do
contexto ou estado de outros servicos. Estas infra-estruturas suportam a
implementagao de Arquiteturas Orientadas a Servigos (SOAs), e podem usar
diferentes tipos de servigos e tecnologias, embora os servigos web sejam a forma de
implementagao mais comum.

Apesar de estes servigos possuirem requisitos de confiabilidade, varios estudos
demonstram precisamente o contrdrio. De facto, estes estudos mostram que muitos
dos servigos e aplicagdes web sao disponibilizados com falhas graves que podem ser
exploradas de forma maliciosa. Para além disso, as caracteristicas inerentes aos
ambientes baseados em servigos, incluindo servigos sob controlo de wvarios
fornecedores de servigo assim como dinamismo na interagdo e composi¢ao de
servigos, abrem a porta a novos desafios de seguranga.

De forma a evitar vulnerabilidades de seguranga, as equipas de desenvolvimento
devem aplicar boas praticas de programacao, levar a cabo inspeg¢des de seguranga,
executar testes de penetracao, entre outros. No entanto, muitas vezes estas equipas
focam nos aspectos funcionais e na apresentagao do produto dentro do tempo
especificado, desprezando as preocupagdes de seguranga. O problema é que estes
servigos estao de tal modo expostos que qualquer brecha existentes acaba, muito
provavelmente, por ser descoberta por potenciais atacantes. Nesse sentido, as
técnicas e ferramentas de deteccdo automatica de vulnerabilidades sao
extremamente importantes para facilitar a disponibilizacdo de infraestruturas
baseadas em servigos mais seguras, uma vez que proporcionam uma forma fécil e de
baixo custo para detectar potenciais vulnerabilidades.

Esta tese ataca o problema da deteccao automatica de vulnerabilidades em servicos
e infraestruturas baseadas em servicos. Primeiro, a tese define um enquadramento
que inclui os pressupostos, conceitos e abordagens genéricas para o
desenvolvimento de técnicas inovadoras para deteccdo de vulnerabilidades. Na
pratica, este enquadramento define uma infraestrutura baseada em servicos de
referéncia e propde abordagens genéricas para desenhar ferramentas de deteccao de
vulnerabilidades em servicos web e em ambientes baseados em servicos.

Para além disso, a tese apresenta diferentes técnicas e ferramentas que permitem
detetar vulnerabilidades de software, desenhadas seguindo as abordagens
mencionadas acima. Assim, foram desenvolvidas trés novas técnicas de detec¢ao de
vulnerabilidades em servicos web, cada uma delas baseada numa abordagem
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diferente e dirigida a um cendrio de teste diferente, nomeadamente: testes de
penetracdo, assinaturas de ataques e monitorizacdo de interligagdes, e por fim
deteccdo de anomalias em tempo de execugdo. Tirando partido destas técnicas, é
ainda proposta uma abordagem integrada para testes de seguranca em
infraestruturas baseadas em servigos, a qual é baseada em monitorizagao continua
para descobrir e testar os servigos, recursos e interacgoes existentes, lidando com as
especificidades destes ambientes dindmicos e complexos.

Por fim, esta tese propde uma abordagem genérica para desenhar testes
padronizados que permitam avaliar e comparar ferramentas de deteccio de
vulnerabilidades para ambientes baseados em servigos. Esta abordagem especifica
0s componentes e 0s passos necessarios para a implementagao de testes concretos,
tendo por base duas métricas chave: precisdo e recuperagdo. Esta abordagem foi
utilizada para definir dois testes padronizados: um baseado num conjunto pré-
definido de servigos e outro baseado em servigos fornecidos pelo utilizador. Estes
testes foram aplicados em varios casos de estudos, permitindo desse modo nao sé
avaliar as técnicas de detecgao de vulnerabilidades propostas na tese (estabelecendo
uma comparagao com outras ferramentas disponiveis no mercado), mas também
validar a abordagem genérica para desenho de testes padronizados.

Palavras-chave:

Servicos de Software; infraestruturas baseadas em servigos; vulnerabilidades de
seguranca; deteccao de vulnerabilidades; testes; avaliacao de seguranca; testes
padronizados.
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Chapter 1
Introduction

A Service-Based Software Infrastructure! consists of several software resources
working together to support the information infrastructure of one or more
organizations (Bennett et al. 2000). These software resources allow the interaction
between consumers and providers and are packaged as services. Software services?
must be autonomous and self-contained, coarse-grained and loosely coupled, thus
independent from the state or context of other services (Papazoglou and Heuvel
2007). This way they can be reused to implement different business processes, while
the reduced dependencies allow replacing and/or modifying a service without the
need for changing other components of the infrastructure.

In a dynamic and competitive business world, organizations need to adapt quickly
and efficiently to new challenges and opportunities. Hence, it is necessary to
simplify the Information Technology (IT) infrastructure and improve the
interoperability and business agility of the organization. Service-based
infrastructures provide the ground for satisfying such demands, being typically used
to support the well-known Service Oriented Architectures (SOAs)® (Erl 2005). In a
SOA context, a service is a function offered by a provider that allows consumers to

" A Service-Based Software Infrastructure is an infrastructure based on the interaction of several
software services with the objective of supporting the information infrastructure of one or more
organizations (Bennett et al. 2000).

> A Software Service is a well-defined, self-contained and reusable component that implements a
business functionality that is delivered to other applications through a standard-based interface in a
protocol-independent environment (Papazoglou and Heuvel 2007).

> A Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed
functionalities that may be under the control of different ownerships, following an architectural style
whose main emphasis is on the loose coupling among interacting software agents or components
(Perrey and Lycett 2003; MacKenzie et al. 2006).
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achieve some desired outcome, with both of these roles being played by software
agents on behalf of their owners. Service-orientation provides means for separation
of concerns, taking advantage of the characteristics of software services to allow
multiple functionalities without adding design complexity or increasing
communication principles (Papazoglou and Heuvel 2007), and is nowadays used in
a wide range of organizations and scenarios, including business-critical systems.
Frequently, services are connected through a Enterprise Service Bus (ESB) (Keen et
al. 2004), whose purpose is to connect and coordinate, in a reliable manner, the
interaction among services across extended enterprises (David A. Chappell 2009).
Although SOAs can be implemented using different types of software services and
technologies, Web Services are usually the implementation of choice (Singhal,
Winograd, and Scarfone 2007).

Web Services (WS)* are thus a strategic mean for data exchange, content
distribution, and systems integration. Web services are supported by a complex
software infrastructure, which typically includes an application server, the operating
system, and a set of external systems (e.g. other services, databases, and payment
gateways). In practice, a web service provides a simple interface between the
consumers and the provider, based on the exchange of standardized messages over
the network using the HTTP or HTTPS protocols (D. A Chappell and Jewell 2002a).
The web service and the format of the messages to be exchanged are typically
described in a definitions file.

Nowadays, there are two main classes of web services: SOAP and RESTful. SOAP
web services (D. A Chappell and Jewell 2002a) are session-less and follow the XML-
based Simple Object Access Protocol, after which the technology was originally
named, and use a WSDL (Web Services Definition Language) file to describe the
interface and the format of the messages to be exchanged. On the other hand,
RESTful (REpresentational State Transfer) web services reuse the HTTP methods
(e.g. GET, POST, DELETE) together with a simplified message format, and a WADL
(Web Application Description Language) file may optionally be used to describe the
interface (Richardson and Ruby 2007). While SOAP web services are interoperability
oriented thus more platform independent, RESTful web services rely on a much
lighter infrastructure, being much more suited for simpler and ad hoc integration
scenarios (Pautasso, Zimmermann, and Leymann 2008).

For supporting Business-Critical Systems, SOAs and software services must be
dependable and secure. However, several studies show that, in general, web-based
applications present dangerous faults (OWASP Foundation 2013; Acunetix 2007) and
services are no exception. In fact, previous works demonstrate that web services are

*A Web Service (WS) is a self-describing software component designed to support machine-to-
machine interaction based on messages exchange, over a network and using the HTTP protocol
together with Web-related standards (W3C 2004).
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frequently deployed with security vulnerabilities (Vieira, Antunes, and Madeira
2009; Lowis and Accorsi 2009). The same is true for other types of software services,
including messaging middleware, for which several robustness and critical security
related problems have been disclosed in the past (Laranjeiro, Vieira, and Madeira
2008)

Security Vulnerabilities are a particular type of software fault that open the door
for attackers to unduly access a system or network (Christey and Martin 2006),
leaving space for the system/data exploitation and/or corruption. Existing studies
show that injection vulnerabilities are among the most common and dangerous
vulnerabilities in the Web (OWASP Foundation 2013). Injection attacks try to take
advantage of improperly coded applications to execute the commands specified by
the attacker, enabling, for instance, access to critical data and resources (OWASP
Foundation 2013). These types of vulnerabilities are particularly relevant in software
services (Vieira, Antunes, and Madeira 2009), as these frequently use a data
persistence solution over a relational (Ramakrishnan and Gehrke 2003) or a XML
database (Meier 2003).

Due to hard time-to-market requirements and other limitations, the security of web
applications is frequently disregarded. In particular during the evolution of such
applications (in terms of features and complexity), this problem tends to increase, as
security is not one of the main concerns in the development lifecycle. Even when
security is a concern, it is typically addressed from the network and operating
system points of view. In such cases, assessment teams rely on automated tools to
help finding breaches in the operating system and/or the network, ignoring that
today's priorities are different (Curphey et al. 2002) as, being the publicly exposed
face of an organization, web applications and services became the preferred targets
for hackers. In fact, hackers moved their focus from the network to applications’
code, searching for vulnerabilities by exploiting the inputs of applications with
specially tampered values. These application level attacks are performed through
network ports that are used for regular web traffic and thus cannot be mitigated by
traditional security mechanisms such as firewalls and network intrusion detection
systems (Singhal, Winograd, and Scarfone 2007).

To deploy software services without security vulnerabilities developers must follow
a defense-in-depth approach (Howard and Leblanc 2002; Curphey et al. 2002). This
approach assumes that any security precaution can fail and so, security depends on
several layers of mechanisms that cover the failures of each other. Software
engineering teams are expected to apply the effort needed to introduce adequate
security precautions in a way that minimizes the probability of successful attacks. In
practice, this means that they must address security in all the phases of the software
product’s development lifecycle (ranging from requirements elicitation to testing
and deployment), which includes applying best coding practices, perform security
inspections, execute penetration tests, deploy runtime attack detection systems, etc.
(Antunes and Vieira 2012a). However, it is in the testing phase that the software
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should be tested and verified in an effort not only to assure that the system fulfills
the intended functional requirements, but also to detect and remove any existing
security vulnerabilities. In fact, testing represents the last opportunity to prevent
applications from being deployed with security flaws.

This work focuses on the testing phase of the development lifecycle (in particular
from the automated security testing perspective) and proposes techniques and tools for
the detection of injection vulnerabilities in service-based software infrastructures. In short,
the motivation is threefold: 1) many times, developers focus on the satisfying user’s
functional requirements and time-to-market constraints, disregarding security
aspects; 2) similarly to other web applications, web services are so exposed that
hackers will most probably uncover any existing security vulnerability; and 3) in a
service-based scenario, injection attacks are the most dangerous and common ones.
Automated vulnerability detection techniques and tools thus play an extremely
important role on helping the developers to produce non-vulnerable code while
improving productivity, as they provide an easy and less expensive way for testing
applications, without requiring the availability of human resources specifically
specialized in computer security.

1.1 Detecting Vulnerabilities in Software Services

Many different techniques for the detection of software vulnerabilities have been
proposed in the past (Stuttard and Pinto 2007). These are usually divided into white-
box analysis, which consists in the analysis of the code of the application without
executing it, and black-box testing that analyzes the execution of the application
without accessing its internals (i.e. based on the outputs of the application).
Exceptionally, other techniques, normally referred as gray-box, may combine black-
box and white-box characteristics. All these approaches can be applied manually or
automatically with the help of tools.

White-box approaches analyze of the program from an internal point-of-view and
include code inspection, reviews, walkthroughs, etc. In a security code inspection the
programmer delivers the code to his peers and they systematically examine it in a
formal meeting, searching for security vulnerabilities. This is regarded as the most
effective way for assuring that a piece of software has a minimum number of
vulnerabilities (Curphey et al. 2002), but it is usually very time consuming and
expensive. Less expensive alternatives are code reviews and code walkthroughs
(Freedman and Weinberg 2000). Code reviews are a simplified version of code
inspections that are still formal, but do not require a formal review meeting. Code
walkthroughs are an informal approach that consists of manually analyzing the code
by following the code paths as determined by predefined input conditions.
However, these techniques still bring the cost of having more than one expert
manually analyzing the code.
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The alternative to reduce the cost of white-box analysis is to rely on automated tools,
such as static code analyzers. In fact, the use of these tools is seen as an easier and
faster way to find bugs and vulnerabilities. Static code analysis tools vet the code in
an attempt to identify common implementation-level faults (Stuttard and Pinto
2007). The analysis performed varies depending on the tool sophistication. The main
problem is that exhaustive source code analysis may be difficult and may not find
many security flaws due to the complexity of the code and the lack of a dynamic
(runtime) view.

Black-box approaches analyze the execution of the program from an external point-
of-view. Testing is the most used technique for verification and validation of
software and consists in executing the software and comparing the outcome with the
expected result (Myers, Sandler, and Badgett 2011). There are several levels for
applying black-box testing, ranging from unit testing to integration testing and
system testing. The tests specification defines the coverage criteria and should be
elaborated before development. The idea is that the test specification should help
developers during the coding process. Furthermore, by designing tests a priori, it is
possible to avoid biasing the tests due to knowledge about the code developed.

Robustness testing is a specific form of black-box testing. The goal is to characterize
the behavior of a system in the presence of erroneous input conditions (Koopman
and DeVale 2000; Vieira, Laranjeiro, and Madeira 2007). Penetration testing, by its
turn, is a specialization of robustness testing and consists of the analysis of the
program execution in the presence of malicious inputs, searching for potential
vulnerabilities (Stuttard and Pinto 2007). In practice, the tester needs no knowledge
about the implementation details and uses fuzzing techniques to test the inputs of
the application from the malicious user’s point of view (Stuttard and Pinto 2007).
The problem is that the number of tests can reach hundreds or even thousands for
each vulnerability type, representing a very repetitive, tedious and, essentially,
expensive task if performed manually. Penetration testing tools allow reducing this
cost by providing the required support for searching for vulnerabilities in an
automatic way. The most common penetration testing tools used in web applications
are generally referred to as web security scanners (or web vulnerability scanners).

Previous research and practice show that both white-box and black-box state of the
art vulnerability detection tools have a very limited effectiveness (Fonseca, Vieira,
and Madeira 2007; Wagner et al. 2005; Teixeira, Antunes, and Neves 2007). In the
particular context of web services, studies show that static code analysis and
penetration testing tools present very high false positive rates, which reduces the
confidence on the precision of the vulnerabilities detected (Vieira, Antunes, and
Madeira 2009; Antunes and Vieira 2009a). Those studies also demonstrate that the
coverage of penetration testing tools is very low, suggesting that many
vulnerabilities may remain undetected. Another key observation is that, even when
implementing the same approach, different tools frequently report distinct
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vulnerabilities for the same piece of code, generating conflicting results that again,
reduce the confidence in the output of those tools.

The problem is that penetration testing is the technique most used by web
developers to detect vulnerabilities in their applications (Stuttard and Pinto 2007). In
the context of software services and infrastructures, where services are deployed,
interconnected and updated at anytime, being often composed by third-party
components, penetration testing assumes an even bigger importance as many times
it is necessary to assess the security of services that are under the control of external
entities. In this context, the effectiveness problems highlighted before clearly create
the need for new and more efficient tools that allow testing services in different
scenarios.

As a black-box technique, penetration testing has no visibility on the internal
behavior of the tested services. In fact, it can only observe the application from the
point of view of an external user, which results directly into two major restrictions:

* The vulnerability detection process must be based only on the analysis of the
output of the web service (leading to a lack of information for decision
making). This limits the capabilities of the tools, as most times the
information that is released to the client is not enough to effectively detect
vulnerabilities. Also, many times the output of the application is
preprocessed to avoid the leakage of information about the system, making it
almost impossible to identify any vulnerability (although they may exist and
the testing tool may effectively exploit them).

e It is impossible for the tool to know what inputs to use in order to maximize
the number of web service’s code paths that are tested (resulting in
inadequate code coverage). Obviously, if some paths of code are not executed
during the testing process, obviously the vulnerabilities located in these
pieces of code will not be detected.

In addition to these restrictions, the specific characteristics of service-based
infrastructures raise new challenges for security testing. First of all, these
infrastructures are dynamic in nature, facing (runtime) changes in the services used
and in the way they interact. Second, they usually include services that are under the
control of multiple providers, creating the need for diverse vulnerability detection
tools that can cope with different kinds of information available (e.g. the source code
may be available or not). Finally, the security (or lack of it) of a given service can
impact the services and resources of the infrastructure with which it interacts,
creating the need for considering the interactions with resources and other services.

Another major challenge is the ability to select the most effective vulnerability
detection tools and configurations from a set of alternatives available. This is
particularly relevant as different tools may generate different (or even conflicting)
results. However, existing evaluations are limited by the small number of tools
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assessed and by the representativeness of the experiments (Vieira, Antunes, and
Madeira 2009; Antunes and Vieira 2009a; Fonseca, Vieira, and Madeira 2007; Wagner
et al. 2005), thus not allowing the generalization of the results. This way, web
services developers frequently select the tools based on common sense, which may
lead to wrong decisions and ultimately to code deployed with vulnerabilities, thus
calling for techniques that allows assessing and comparing such tools under realistic
conditions.

In summary, taking into account the intrinsic characteristics of service-based
infrastructures, the importance and widely usage of automated vulnerability
detection, and the low effectiveness of existing tools, this thesis focus on addressing
the following needs:

1. An integrated approach able to continuously monitor, discover and testing
the services in the service-based infrastructure, coping with the dynamicity of
these environments;

2. Effective vulnerability detection techniques and tools that can be used to test
different services, under different scenarios, and with different levels of
access and information available;

3. Adequate benchmarking approaches that allow evaluating and comparing
vulnerability detection tools, thus helping providers and consumers to select
the most effective ones and guiding the design and development of new
tools.

1.2 Main Contributions of the Thesis

The main contribution of this thesis is an integrated approach that allows
continuously discovering the services and resources of a service-based
infrastructure, and supports the process of testing those services for injection
vulnerabilities with improved effectiveness by using the testing technique most
adequate to each scenario, depending on the type of service to be tested and on the
information that is available. In detail, the contributions of this thesis are:

* The definition of a framework for the detection the vulnerabilities in
service-based infrastructures, defining the assumptions, the concepts, and
the generic approaches that lay the basis for the development of innovative
techniques and tools. This framework includes a reference service-based
infrastructure and generic approaches for designing vulnerability detection
tools for web services and service-based environments.

* The proposal of a generic approach for designing vulnerability detection
tools for web services, which includes the definition of the testing procedure
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and of the tool components. Tools designed based on this approach should be

able to detect a broad range of vulnerabilities, with priority to injection

vulnerabilities, the most dangerous and common in the service-based

context. Based on this generic approach, three new techniques to detect

vulnerabilities in web services are proposed:

o An improved penetration testing approach to detect SQL Injection

vulnerabilities [IPT-WS] (Antunes and Vieira 2009b). The approach
uses representative workloads to exercise the web services,
implements effective attackloads, and applies well-defined rules to
analyze the web services responses, thus improving detection
coverage while reducing false positives. The implemented prototype
has shown to be, in several cases, more effective than existing
commercial security scanners.

An approach based on attack signatures and interface monitoring to
detect injection vulnerabilities [Sign-WS] (Antunes and Vieira 2011).
The approach overcomes the visibility limitations of penetration
testing by introducing special tokens inside the injection attacks
(signatures) and then monitoring the interfaces of the service under
testing looking for these tokens to detect vulnerabilities. The
implemented prototype is able to largely outperform existing
penetration testing tools in terms of vulnerability detection coverage
and false positives. Also, comparing to IPT-WS, the tool is able to
detect more vulnerabilities, while reducing false positives to zero.

A runtime anomaly detection approach able to detect SQL Injection
and XPath Injection vulnerabilities [RAD-WS] (Antunes et al.
2009a). The approach exercises the service for profiling its regular
internal behavior (learning phase) and then attacks the service
(attacking phase), reporting a vulnerability when some deviation is
detected. The implemented prototype has shown to be able to
consistently outperform the aforementioned approaches and other
existing tools, being able to achieve a higher detection coverage, while
avoiding false positives.

* The proposal of an integrated approach for security testing of service-based

infrastructures [SOA-Scanner] (Antunes and Vieira 2013). This approach is

based on continuous monitoring to automatically discover and test the

existing services, resources and interactions, coping with the dynamicity of

these environments. This includes:
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o The design of a generic architecture based on three key generic steps:
architecture description, profiling interactions, and testing services. It
includes the design of the main components of the approach, namely:
an integrated controller, a testing service, and a set of probes to be
deployed in the infrastructure. It also includes the definition of
guidelines on how to integrate different vulnerability detection
techniques and tools in the testing service.

o The implementation of a prototype focused on web services and
injection vulnerabilities (Antunes and Vieira 2013). The prototype
uses probes that are deployed in the infrastructure for monitoring the
interactions among the services and resources of the infrastructure
and then applies the vulnerabilities detection technique (or
techniques) most adequate considering the level of access and
information available about each web service. The goal is to achieve
maximum effectiveness, both in terms of vulnerability coverage and
false positives.

The proposal of a generic approach for designing benchmarks for
vulnerability detection tools for services (Antunes and Vieira 2010). The
approach specifies the requirements for the benchmark components (i.e.
workload, metrics and procedure) and the steps needed to implement
concrete benchmarks. This approach focuses on two key metrics: precision
(the ratio of correctly detected vulnerabilities to the number of all reported
vulnerabilities) and recall (the ratio of correctly detected vulnerabilities to the
number of known vulnerabilities). It has been used to define two concrete
benchmarks:

o A benchmark based on a predefined workload targeting tools able
to detect SQL Injection vulnerabilities in web services
[VDBenchWS-pd] (Antunes and Vieira 2010). This benchmark is
based on a well defined and large set of web services adapted from
standard performance benchmarks, and includes both vulnerable and
non-vulnerable versions of the services. The main limitation of this
benchmark is that, although based on a well-defined set of rules, it is
not fully protected against "gaming" (i.e. adaptations/tuning that allow
producing optimistic or biased results). In fact, as the set of web
services is well known, vendors can easily tune their tools to
maximum effectiveness in the context of the benchmark, while failing
in different scenarios.

o A benchmark based on a user-provided workload (any set of
services) targeting penetration testing tools for the detection of
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injection vulnerabilities in web services [PTBenchWS-ud] (Antunes
and Vieira 2012b). This benchmark follows an alternative approach,
solving the “gaming” problem by allowing the benchmark user to
specify the workload (i.e. the target set of web services is not
predefined and is unknown to the tools’ providers) that best
represents his specific development conditions, providing at the same
time more realistic results. To support the (user) task of defining the
workload, the benchmark includes a procedure and a tool to help
characterizing the injection vulnerabilities that exist in the web
services (and that serve as reference for the metrics calculation), thus
avoiding the need for conducting such analysis manually.

The execution of multiple campaigns to experimentally evaluate and
compare vulnerability detection tools, including the ones proposed in this
thesis and other well-known and widely used tools. This includes:

o The evaluation of existing penetration testing tools in public web
services (Vieira, Antunes, and Madeira 2009). This allows
understanding the most frequent vulnerabilities and also the
effectiveness and limitations of existing tools (and what needs to be
improved). The results highlight the limitations of penetration testing
as different tools reported different vulnerabilities and presented low
detection coverage (less than 20% for two of the scanners), and high
false positives rates (35% and 40% in two cases).

o The use of VDBenchWS-pd to evaluate different techniques and
tools, including the tools defined in this work (Antunes and Vieira
2010). Besides helping on improving the proposed methodologies, the
goal is to validate the benchmarking approach. In practice, the
benchmark has been used to compare several tools, including
commercial and open-source penetration testers and static code
analyzers. The results showed that the benchmark allows ranking the
different tools according to the different measures, providing the
support needed for the users to select the most effective tool under
diverse requirements. Also, results demonstrated that the
vulnerability detection approaches proposed in this work consistently
provide better results than other state-of-the-art tools.

The use of PTBenchWS-ud to evaluate different penetration testing tools
(Antunes and Vieira 2012b). The goal is to show that the proposed
benchmarking approach can be used to assess and compare this type of tools
in the specific context of the services of an organization (i.e. under specific
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workload conditions). Comparing to VDBenchWS-pd benchmark, similar
results were obtained as, although some of the detailed measures differed,
both benchmarks leaded to the same ranking of the tools.

o The application of the SOA-Scanner tool in a case study based on a
subset of the jSeduite SOA (Antunes and Vieira 2013). The case
study consists of a simplified service based infrastructure that uses
the code of the jSeduite SOA (Delerce-Mauris et al. 2009). This allows
demonstrating all the different testing scenarios and the
functionalities of the integrated tool in a simple infrastructure,
validating this way its capabilities.

Although it is possible to use some of the techniques proposed in this thesis beyond
the testing phase (i.e. at runtime), such usage raises problems related to service
degradation and failure propagation due to the execution of testing activities on
production services. To tackle these problems, there are other works on techniques
that provide partial solutions, such as sandboxing, virtualization, etc. (Michelsen and
English 2012). Although this is a very important challenge, these concerns are out of
the scope of this work and so, they will not to be addressed in this thesis.

1.3 Thesis Structure

This first chapter introduced the problem addressed and the main contributions of
the thesis.

Chapter 2 presents background on web services, service based infrastructures, and
SOAs. It also discusses related work on vulnerability detection techniques, with
focus on techniques that apply to web applications and services, as well as on tools
for monitoring and testing service based infrastructures. Finally, it discusses existing
works on assessment and comparison of vulnerability detection tools, focusing
particularly on benchmarking.

Chapter 3 presents the framework for the detection of vulnerabilities in Service-
Based Infrastructures. The chapter starts by establishing an infrastructure that is
used as reference throughout the work and the challenges and requirements of such
kind of infrastructure. Furthermore, it presents a generic approach for designing
vulnerability detection tools and the generic integrated approach for testing Service-
Based Infrastructures for vulnerabilities.

Chapter 4 presents the vulnerability detection techniques developed based on the
generic approach introduced in Chapter 3. It presents IPT-WS: a penetration testing
technique able to detect SQL Injection vulnerabilities in web services, Sign-WS: a
technique based on attack signatures and interface monitoring for the detection of
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injection vulnerabilities, and RAD-WS: a runtime anomaly detection technique able
to detect SQL Injection and XPath Injection vulnerabilities in web services.

Chapter 5 presents the integrated tool for security testing for service-based
infrastructures. The tool implements the approach proposed in Chapter 3 and uses
interface monitoring to continuously monitor and discover the services and
resources of the infrastructure. For testing the services, the approach makes use of
the vulnerability detection techniques presented in Chapter 4.

Chapter 6 presents a generic methodology for designing benchmarking approaches
to evaluate vulnerability detection tools for web services. It also presents two
instantiations of this methodology: VDBenchWS-pd, a benchmark based on a
predefined workload targeting tools able to detect SQL Injection vulnerabilities in
web services; and PTBenchWS-ud, a benchmark based on the use of any workload
and targeting penetration testing tools able to detect injection vulnerabilities in web
services.

Chapter 7 presents the case studies developed to show the practical application and
to evaluate the proposed techniques and tools. The first case study presents an
evaluation of commercial web security scanners using public web services. The
second demonstrates the use of the VDBenchWS-pd benchmark to evaluate and
compare a large set of vulnerability detection tools, including tools implementing
the techniques presented in Chapter 4. The third case study demonstrates the
VDBenchWS-pd benchmark by evaluating and comparing four penetration testing
tools. The final case study demonstrates the capabilities of SOA-Scanner in the
detection of vulnerabilities in a simple service-based infrastructure.

The last chapter concludes the thesis and proposes topics for future research.
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Chapter 2
Background and Related Work

The research on software services has been a hot topic in the last decade, as shown
by the increasing number of publications in this area. On the other hand, research
related to security concerns dates way back before the concept of software services
even existed, with exploratory research on defenses against malicious faults, i.e.
security threats, starting in the mid-80s (Dobson and Randell 1986). The conjunction
of both concerns is a key topic and, although research in web security and threats
has also been a major topic in the last few years, in most cases the existing works do
not deal with the specificities of services environment (Curphey et al. 2002; W. G.
Halfond, Viegas, and Orso 2006; Bau et al. 2010; Fonseca, Vieira, and Madeira 2009).

This chapter presents background on software services and service-based
infrastructures, software security threats, and concepts and the best practices
regarding the software development process. It also includes an overview of the
most relevant related work on vulnerability detection and on the assessment and
benchmarking of existing tools. It is important to emphasize that some of the works
presented are relative to web applications in general, and not to services. However,
although few works have focused the problem of security and vulnerability
detection in the web services environment, the works presented here contain
important ideas that should be taken into account when researching new techniques.

The structure of this chapter is as follows. The next section introduces the basic
concepts on software services and service-based infrastructures. Section 2.2 presents
the background on software security, including security threats and how to deal
with them. Section 2.3 reviews the related work on vulnerability detection
techniques, while Section 2.4 reviews the related work on assessment and
benchmarking approaches. Section 2.5 concludes the chapter.
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2.1 Software Services and Service-Based Infrastructures

Service-based infrastructures consist of several software resources that interact to
support (critical) business services of organizations. These resources are packaged as
software services, which allow the interaction between consumers and providers
(via the exchange of messages based on standards). Essentially, services are reusable
components that represent business functionalities delivered in an efficient way
within a protocol-independent distributed environment and through a standardized
interface. Also, services are coarse-grained and loosely coupled and are designed to
interact without the need for dependencies between services, supporting multiple
functionalities without adding design complexity or increasing communication.

Service-based infrastructures typically support the implementation of Service
Oriented Architectures (SOAs), which are no more than a paradigm for taking
advantage of distributed functionalities that may be under the control of different
owners, following an loosely coupled architectural style (Perrey and Lycett 2003;
MacKenzie et al. 2006).

“You don’t need Web services to build SOA!" These are words you'll hear many say
prior to explaining service-oriented architecture. However, this statement is typically
followed by something equivalent to “...but using Web services to build SOA is a darn
good idea...”” (Erl 2005).

A web service is a piece of business logic available on a network (usually Internet)
and accessible through an Internet protocol (such as HTTP or HTTPS) by the
exchange of messages according to the definition of the interface of the service, that
is usually described using a machine readable format (D. A Chappell and Jewell
2002b; Sandoval, Roussev, and Wallace 2009; Christensen et al. 2001). The service
provides a set of operations and, in practice, each operation is a method with
several input parameters. In each interaction the consumer (client) sends a request
message to the provider (server). After processing the request, the server sends a
response message to the client with the results. To facilitate the discovery of Web
services, brokers are usually used.

A web service is supported by a complex software infrastructure, which typically
includes an application server, the operating system and external systems such as
data sources (DBMS, XML databases, etc.) or other web services. Figure 2.1 presents
a simplified view of the typical structure of a web services system. Web services can
be implemented in a wide variety of architectures and technologies and can
interoperate with other technologies and software design approaches, allowing an
evolutionary adoption that does not require major transformations to legacy
applications (Singhal, Winograd, and Scarfone 2007).

Actually, this interoperability is one of the main causes for web services adoption,
which was also fostered by the advent of Service Oriented Architectures (SOA). As
with any new technology, this success comes with a level of increased risk
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(Lindstrom 2004). In fact, “web services are a technology that can be used to implement
Service Oriented Architectures (SOA) and are increasingly becoming the SOA
implementation of choice. For a SOA to truly meet its goals, applications developed must be
secure and reliable.” (Singhal, Winograd, and Scarfone 2007).
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Figure 2.1 - SOAP Web Services Typical Structure.
A registry is used to discover the services and then the interactions are performed using
SOAP messages that follow the specification in the WSDL file.

2.2 Software Security

Security, “the practice of building software to be secure and function properly under
intentional malicious attacks” (G. McGraw 2006), is an integrative concept that
includes four key properties (Cachin et al. 2000): confidentiality (absence of
unauthorized disclosure of a service or piece of information), authenticity
(guarantees that a service or piece of information is authentic), integrity (protection
of a service or piece of information against illicit and/or undetected modification),
and availability (protection against possible denials of service caused maliciously).
To achieve these properties, several security mechanisms have been developed in the
past, targeting especially subsystems such as operating systems, database
management systems, and web servers. These mechanisms can be classified as
follows (Cachin et al. 2000):

* Secure channels and envelops: mechanisms that provide communication in
a secure way (e.g. encryption, TLS, SSL). The information is transmitted
thought the network using secure channels or encapsulated in envelops.
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* Authentication: mechanisms that assure that the data accessed by the users is
authentic. (e.g. HTTP authentication, IPSec)

* Protection and authorization: mechanisms that protect resources and data
from unauthorized access and guarantee that users only do what they are
authorized to do (e.g. login/password checking, privilege management).

* Auditing and intrusion detection: these mechanisms allow a posteriori
analysis of the accesses to resources and data, allowing the detection of
unauthorized accesses or anomalous usage (e.g. auditing systems, intrusion
detection systems, web applications firewalls).

In practice, the goal of security is to protect systems and data from intrusion. The
risk of intrusion is related to the system vulnerabilities and the potential security
attacks. The system vulnerabilities are an internal factor related to the set of security
mechanisms available (or not available) in the system, the correct configuration of
those mechanisms, and the hidden flaws on the system implementation. Many types
of vulnerabilities and taxonomies to classify them currently exist (Stuttard and Pinto
2007). Vulnerability prevention consists on guarantying that the software has the
minimum number of vulnerabilities possible. On the other hand, as the effectiveness
of the security mechanisms depend on their correct configuration, the system
administrator must correctly configure the security mechanisms by following
administration best practices. Vulnerability removal consists on reducing the
vulnerabilities found in the system. For example, the system administrator must pay
attention to the new security patches release by software vendors and install those
patches as soon as possible. Furthermore, any configuration problems detected on
the security mechanisms must be immediately corrected.

Security attacks are an external factor that mainly depends on the intentionality and
capability of humans to maliciously break into the system tacking advantage of
vulnerabilities. In fact, the success of a security attack depends on the vulnerabilities
of the system and attacks are harmless in a system without vulnerabilities. On the
other hand, vulnerabilities are harmless if the system is not subject of security
attacks. The prevention against security attacks includes all the measures needed to
minimize or eliminate the potential attacks against the system. Attack removal is
related to the adoption of measures to stop attacks that have occurred before (e.g.
firewalls, security patches).

Secure Software behaves correctly in the presence of a malicious utilization
(attacks), even though software failures may also happen when the software is used
correctly (Gary McGraw and Potter 2004). Thus, many times software development
and testing are only concerned with what happens when software fails and not with
the intentions. This is where the difference between software safety and software
security lies: in the presence of an intelligent adversary with the intention of
damaging the system.
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2.2.1  Threats and Vulnerabilities

In the last two decades, the World Wide Web radically changed the way people
communicate and do business. Even critical infrastructures like water supply, power
supply, banking, insurance, stock market, retail, communications, defense, etc.,
nowadays rely on networks, on the web and on the applications that run on top of
these distributed environments. The problem is that, as the importance of the assets
stored and managed by web applications increases, so does the natural interest of
malicious minds in exploiting this new streak.

Web applications are so widely exposed that any existing security vulnerability will
most probably be uncovered and exploited by hackers. Hence, the security of web
applications is a major concern and is receiving more and more attention from the
research community. However, in spite of this growing awareness of security
aspects at web application level, there is an increase in the number of reported
attacks that exploit web application vulnerabilities (Christey and Martin 2006; Stock,
Williams, and Wichers 2007).

Hackers are nowadays moving their focus from network attacks to the exploitation
of vulnerabilities in the code of web applications. This poorly programmed code
represents a major risk and this is why we leave vulnerabilities related to security
standards and protocols outside of the scope of this work.

Attacks that target vulnerabilities related to the code of the web applications or
services take advantage of improperly implemented code, searching for
vulnerabilities by exployting applications” inputs with specially tampered values.
These values try to take advantage of existing vulnerabilities, representing a
considerable danger to the application’s owner (e.g. by giving to an attacker
privileges to read, modify or destroy reserved resources). This is also very
dangerous because traditional security mechanisms like network firewalls, intrusion
detection systems (IDS), and encryption, cannot mitigate attacks targeting web
applications, even assuming that the network and key infrastructure components
such as web servers and database management systems (DBMS) are fully secure. The
reason is that these attacks are performed through ports that are used for regular
web traffic (Singhal, Winograd, and Scarfone 2007) and even application layer
firewalls cannot protect the applications as that requires a deep understanding of the
business context (OWASP Foundation 2010).

Published studies show that, in general, web applications present dangerous
security flaws. In February 2007, Acunetix presented the results produced from the
scanning of 3,200 websites during one year (Acunetix 2007). According to the results,
70% of the web sites scanned presented high or medium risk vulnerabilities. Another
interesting point is that, in the websites having high-risk vulnerabilities, the two
most common vulnerabilities were SQL Injection (50% of the websites with high
vulnerabilities) and Cross Site Scripting (42% of the websites with high
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vulnerabilities). The NTA's Annual Security Report 2008 (NTA Monitor 2008a) states
that 25% of companies tested contain one or more high-risk vulnerabilities. This
number is lower than the 32% reported in 2007 (NTA Monitor 2007). Nevertheless, in
some sectors (finance, government, legal, retail and utilities) the overall number of
vulnerabilities found has increased. The NTA's Annual Web Application Security
Report 2008 (NTA Monitor 2008b), focused in web applications, states that 17% of
the applications tested contained, at least, one high-risk vulnerability and that 78%
of the applications contained medium risk vulnerabilities. Although these results
cannot be generalized to web services environment, they clearly show that web
software is being deployed without proper security cautions.

Web services, as web applications in general, are so exposed that any existent
security vulnerability will probably be uncovered and exploited, becoming the entry
point for attacks. Several studies (e.g. (Vieira, Antunes, and Madeira 2009), (Fogie et
al. 2007), (Jensen et al. 2007)) show that a large number of Web services are deployed
with security flaws that range from code vulnerabilities (e.g. code injection
vulnerabilities) to the incorrect use of security standards and protocols.

While the Open Web Application Security Project (OWASP Foundation) (OWASP
Foundation 2001) presented in 2007 the ten most critical web application security
vulnerabilities (Stock, Williams, and Wichers 2007), featuring at top two
vulnerabilities the same as in the Acunetix’s mentioned above (although in inverse
order being XSS the most critical), in the most recent report (OWASP Foundation
2013) XSS is ranked only in third place, being overtaken by injection vulnerabilities
in the top of the list. Additionally, although there is no large enough study to draw
definitive conclusions, the results of the study presented in Section 7.1 suggest that
the specificities of web services environments lead to a slightly different set of most
relevant vulnerabilities. In this context, the following bullets present examples of
relevant types of vulnerabilities® (see (OWASP Foundation 2001) for a survey on
types of security vulnerabilities):

* SQL Injection: allow user-supplied data to “alter the construction of backend
SQL statements” (WASC 2008). An attacker can read or modify database data
and, in some cases, execute database administration operations or commands
in the system (Stuttard and Pinto 2007). Example SQL Injection A tautology-
based attack is a specific type of SQL Injection attack that tries to modify one
or more conditional clauses of a backend SQL query in such way that it will
always evaluate to true. More details on tautologies and other types of SQL
Injection attacks can be found in (W. G. Halfond, Viegas, and Orso 2006).

> As services work without a direct attachment to web sites, XSS is not a priority in web services
environment, thus it is not included in this list.
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* XPath Injection: allow user-supplied data to modify an XPath query to “be
parsed in a way differing from the programmer’s intention” (WASC 2008).
Attackers may gain access to information in XML documents (Stuttard and
Pinto 2007).

¢ Code Execution: allow manipulating the application inputs to trigger server-
side code execution (Stuttard and Pinto 2007). An attacker can exploit this
vulnerability to execute malicious code in the server machine.

* Buffer Overflow: makes it possible to manipulate inputs in such a way that
causes buffer allocation problems, including overwriting of parts of the
memory (Stuttard and Pinto 2007). An attacker can exploit this causing
Denial of Service or, in worst cases, “alter application flow and force unintended
actions” (WASC 2008).

¢ Username/Password Disclosure: the web service response contains
information related to usernames and/or passwords. An attacker can use this
information to get access to private data (Stuttard and Pinto 2007).

* Server Path Disclosure: the response contains a fully qualified path name to
the root of the server storage system. An attacker can use this information to
discover the server file system structure and devise other security attacks
(Stuttard and Pinto 2007).

As mentioned before, Injection vulnerabilities are now at the top of the most critical
web application security risks (OWASP Foundation 2013). These vulnerabilities
“occur when untrusted data is sent to an interpreter as part of a command or query”
(OWASP Foundation 2013). This represents a large group of vulnerabilities that
includes SQL Injection, XPath Injection and Code Execution (listed above), LDAP
injection and OS Command Injection, among others. In practice, the malicious inputs
of the attacker can cause the interpreter to execute unintended commands or
accessing/destroying forbidden data.

2.2.2  Secure Coding

To mitigate the threats referred in the previous section it is necessary to apply the
best coding practices and to perform specialized security testing in order to develop
non-vulnerable code (Stuttard and Pinto 2007). Before applying vulnerability
detection techniques, developers should follow the coding practices that are widely
accepted as suitable to produce web applications” code without vulnerabilities.

To develop web applications without security vulnerabilities a defense-in-depth
approach is necessary (Howard and Leblanc 2002). This approach assumes that each
security precaution can fail and so, security depends on several layers of
mechanisms that cover the failures of each other. Developers are expected to apply
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the effort needed to put in place adequate security precautions that minimize the
probability of successful attacks.

The web applications characteristics suggest two distinct lines of defense that can be
used against threats. The first line of defense consists in reducing the input domain
of the application as a whole, acting directly on the values provided by the users.
This is frequently called input validation (OWASP Foundation 2001) and consists in
forcing the input parameters of an application to be within the correspondent valid
domain or to interrupt the execution when a value outside of the domain is
provided. In the case of web applications, this starts with the normalization of the
inputs to a baseline character set and encoding. Then, filtering strategies must be
applied over the normalized inputs, rejecting the ones that contain values outside
the valid domain. This is considered to be a good practice that may avoid many
problems in web applications’ code. Input Validation can also be performed using
positive pattern matching or positive validation. In this case, the developers
establish input validation routines that identify the inputs to be accepted, contrarily
to the previous case. This technique may be advantageous in some cases as
developers might not be able to predict every type of attack that could be launched
against their application, but should be able to specify all the forms of legal input.

A key issue is that input validation is frequently not enough as the data domain of
an input parameter may allow the existence of vulnerabilities, independently of the
validation performed. For instance, in the case of SQL Injection vulnerabilities, a
quote is the character used as a string delimiter in most SQL statements and so, it
can be used to perform a SQL Injection attack. But, in some cases the domain of a
string input must allow the presence of quotes. This way, we cannot exclude all the
values that contain quotes. This means that, in this case, additional security must be
delegated to the database statement execution.

This additional security represents the second line of defense and it is necessary to
complement the limitations of a general input validation strategy. In practice, each
type of attack to an application targets a specific set of statements of code of the
application that are prone to specific types of vulnerabilities. The second line of
defense focuses on protecting these lines, for instance by guaranteeing that the
values actually used lie within their input domain. Let’s take the specific case of SQL
Injection, in which single and double quote characters exist in the majority of attacks.
Thus, some programming languages provide mechanisms for escaping (Shema
2010) this type of characters in such way that they can be used within an SQL
expression rather than delimiting values in the statement. However, this kind of
techniques has two main problems. First, it can be circumvented in some situations
by using more elaborated injection techniques like combining quotes (‘) and slashes
(\). Second, the introduction of characters for escaping increases the length of the
string and thus can cause data truncation when the resulting string is higher than
allowed by database.
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Correctly using prepared statements (also named parameterized queries) is the most
efficient way to avoid SQL Injection vulnerabilities (Shema 2010). When a prepared
statement is created (or prepared) its structure is sent to the database. The variable
parts of the query are marked using question marks (?) or labels. Afterwards, each
time that the query needs to be executed, the values must be binded to the
corresponding variable part. No matter what is the content of the data, the
expression will always be used as a value (and not as SQL code). Consequently, it is
impossible to modify the structure of the query. To help ensuring the correct usage
of the data, many languages allow typed bindings.

It is important to emphasize that prepared statements, by themselves, cannot fix
insecure statements. It is necessary to assure that prepared statements are used
knowing how they improve security. Otherwise, using prepared statements in the
same way that regular statements are used (i.e. building the SQL queries using string
concatenation), and not using correctly the placeholders for the variable part of the
query, will result in similar vulnerabilities (Shema 2010).

Another important concept is output validation (OWASP Foundation 2001), which
refers to the process of validating the output of a process before it is sent to some
recipient, preventing the end user from receiving information that should not be
received, like information about exception inside the application that can help
conducting other attacks. Another example is searching the output of an application
for critical data (e.g. credit card numbers) and replacing them with asterisks (*)
before sending to the recipient. Output encoding is a type of output validation and it
is a mandatory precaution to avoid XSS vulnerabilities (Shema 2010). If the data sent
to the browser are to be echoed in a web page, then that data should be correctly
encoded (depending on the destination in the page, either in HTML encoding or
percent encoding). This way, even the malicious characters used in XSS attacks
become innocuous while preserving its meaning.

2.2.3  Security in the Development Process

A software development process is composed of multiple phases (Ghezzi, Jazayeri,
and Mandrioli 2002). To improve the situation regarding software security it is
important not only to focus on secure coding, but also to take a broader view by
integrating existing approaches and tools in the development process, i.e. to use such
approaches and tools in the points of the process where they can make the
difference. Different authors divide the software process in different ways, but
usually software development includes the following phases (which can be repeated
in an iterative manner): initialization, design, implementation, testing, deployment
and decommissioning. Figure 2.2 shows a simplified representation.
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Figure 2.2 — Simplified version of a Software Product lifecycle.

The security concerns must be present during the complete cycle, but with special focus on

implementation, testing and deployment.

The process starts with requirements gathering (including security requirements),
followed by specification and design, implementation (coding), testing and
deployment. Decommission takes place when the product is not useful/used
anymore. Although code security concerns should be addressed during the entire
software product development lifecycle, as highlighted by (G. McGraw 2006)
especial focus should be put in three key phases (Howard and Leblanc 2002):
implementation, testing, and deployment. The next points summarize the main
challenges and put in the context of these three phases the concepts, techniques and
tools introduced in the previous section:
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Implementation: during coding we must use best practices that avoid the
most critical vulnerabilities in the specific application domain. Examples of
practices include input and output validation, the escaping of malicious
characters, and the use of parameterized commands (Stuttard and Pinto
2007). Vulnerability and attack injection techniques (Fonseca, Vieira, and
Madeira 2009) have in this phase a very important job in the evaluation of the
best security testing tools to use. Also, for the success of this phase, it is
essential to adequately train the development teams. For instance, experience
shows that the main reason for the vulnerabilities in web application’s code is
related to training and education. First, there is a lack of courses/topics
regarding secure design, secure coding, and security testing, in most
computer science degrees (Howard and Leblanc 2002). Second, security is not
usually among the developers” main skills as it is considered a boring and
uninteresting topic (from the development point-of-view), and not as a way
to develop new and exciting functionalities.

Testing: as introduced in Section 2.3.1, there are many security testing
techniques available for the identification of vulnerabilities during the testing
phase (Stuttard and Pinto 2007). To mitigate vulnerabilities, it is necessary to



Background and Related Work

have well-trained teams that adequately apply those techniques during the
development of the application. The problem is that software quality
assurance teams typically lack the knowledge required to effectively detect
security problems. This way, it is necessary to devise approaches to quickly
and effectively train security assurance teams in the context of web
applications development, by combining vulnerability injection with relevant
guidance information about the most common security vulnerabilities. Also,
benchmarking techniques should be applied to assess, compare, and select
the most adequate security testing tools for each concrete scenario.

* Deployment: at runtime, it is possible to include in the environment different
attack detection mechanisms, such as Intrusion Detection Systems (IDS) and
Web Application Firewalls (WAF), among others. These mechanisms can
operate at different levels and use different detection approaches. The main
problems preventing their use are related to the performance overheads and
to the false positives that disrupt the normal behavior of the system. In this
phase, security benchmarking plays a fundamental role in helping to select
the best alternatives (in terms of servers, security mechanisms, etc.) to use,
according to specific security requirements. Also, vulnerability and attack
injection techniques represent in this phase an efficient way to evaluate the
effectiveness of attack detections mechanism to be installed.

This thesis focuses on the testing phase and advances the state of the art in this area
with two main contributions. First, it proposes techniques that present higher
effectiveness than the existing ones. Second, it proposes an innovative integrated
technique for testing service-based infrastructures for security vulnerabilities.

2.3 Vulnerability Detection

To minimize security issues, developers should search web applications and services
for vulnerabilities, activity for which there are two main approaches: white-box
analysis and black-box testing. Other techniques, generically named as gray-box,
combine black-box testing and white-box testing to achieve better results. The
following sections introduce these approaches and present some of the existing
techniques and tools.

2.3.1 Black-box Testing

Black-box testing is based on the analysis of the program execution from an external
point-of-view (Myers, Sandler, and Badgett 2011). In short, it consists of exercising
the software and comparing the execution outcome with the expected result. Testing
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is the most used technique for verification and validation of software. There are
several levels for applying black-box testing, ranging from unit testing to integration
testing and system testing. The testing approach can also be more formalized (based
on models and well defined tests specifications) or less formalized (e.g. when
considering informal “smoke testing”). The tests specification should define the
coverage criteria (i.e. the criteria that guides the definition of the tests in terms of
what is expected to be covered) and should be elaborated before development. The
idea is that the test specification can help developers during the coding process (e.g.
tests can be executed during development) and that, by designing tests a priori, it is
possible to avoid biasing the tests due to knowledge about the code developed.

Test-driven development (TDD) (Beck 2003) is an agile software development
technique based on predefined test cases that define desired improvements or new
functions (i.e. automated unit tests that specify code requirements and that are
implemented before writing the code itself). TDD begun in 1999, but is nowadays
getting a lot of attention from software engineers (Newkirk and Vorontsov 2004).
Development is conducted in short iterations in which the code necessary to pass the
tests is developed. Code refactoring is performed to accommodate changes and
improve code quality. Test-driven development is particularly suitable for web
services as these are based in well-defined interfaces that are quite appropriate for
unit testing. The tests specify the requirements and contain assertions that can be
true or false. Running the tests allows developers to quickly validate the expected
behavior as code development evolves. A large number of unit testing frameworks
are available for developers to create and automatically run sets of test cases, e.g.,
JUnit (http://junit.org/), CppUnit (http://sourceforge.net/projects/cppunit/), and
JUnNitEE (http://www junitee.org/).

Robustness testing is a specific form of black-box testing (Myers, Sandler, and
Badgett 2011). The goal is to characterize the behavior of a system in presence of
erroneous input conditions. Although it is not directly related to benchmarking (as
there is no standard procedure meant to compare different systems/components
concerning robustness), authors usually refer to robustness testing as robustness
benchmarking. This way, as proposed by (Mukherjee and Siewiorek 1997), a
robustness benchmark is essentially a suite of robustness tests or stimuli. A
robustness benchmark stimulates the system in a way that triggers internal errors,
and in that way exposes both programming and design errors in the error detection
or recovery mechanisms (systems can be differentiated according to the number of
errors uncovered). Web services robustness testing is based on erroneous call
parameters (Vieira, Laranjeiro, and Madeira 2007). The robustness tests consist of
combinations of exceptional and acceptable input values of parameters of web
services operations that can be generated by applying a set of predefined rules
according to the data type of each parameter.

Penetration testing, a specialization of robustness testing, consists of the analysis of
the program execution in the presence of malicious inputs, searching for potential
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vulnerabilities (Stuttard and Pinto 2007). In this approach the tester does not know
the internals of the web application and it uses fuzzing techniques over the web
HTTP requests (Stuttard and Pinto 2007). The tester needs no knowledge of the
implementation details and tests the inputs of the application from the user’s point
of view. The number of tests can reach hundreds or even thousands for each
vulnerability type. Penetration testing tools provide an automatic way to search for
vulnerabilities avoiding the repetitive and tedious task of doing hundreds or even
thousands of tests by hand for each vulnerability type.

Despite the use of automated tools, in many situations it is not possible to test all
possible input streams, as that would take too much time. So, as soon as software
specifications are complete, test cases should be designed to have the biggest
coverage and representativeness possible. The most common automated security
testing tools used in web applications are generally referred to as web security
scanners (or web vulnerability scanners). Web security scanners are often regarded
as an easy way to test applications against vulnerabilities. These scanners have a
predefined set of tests cases that are adapted to the application to be tested, saving
the user from defining all the tests to be done. In practice, the user only needs to
configure the scanner and let it test the application. Once the test is completed the
scanner reports existing vulnerabilities (if any detected). Most of these scanners are
commercial tools, but there are also some free application scanners often with
limited use, since they lack most of the functionalities of their commercial
counterparts.

The process of using such scanners to test a web application or service differs in
some points but shares three main stages (Acunetix 2008a) configuration, crawling,
and scanning. The configuration stage includes the definition of the Uniform
Resource Locator (URL) of the target web resource and the setup of the scanning
parameters.

The crawling stage differs from web applications to web services. In the case of web
applications, the vulnerability scanner produces a map of the internal structure of
the target web application. This stage is of utmost importance as failing to discover
some pages of the application prevents their testing (in the subsequent scanning
stage). The scanner calls the first web page and then examines its code searching for
links. Each link found is requested and this procedure is executed over and over
again, until no more links or pages can be found. In the case of web services, the
scanner analyses the file that specifies the interface of the service (e.g. WSDL or
WADL) in order to discover the operations of the service, their input/output
parameters, as well as the types of the parameters.

The scanning stage is where the automated penetration tests are performed. In the
case of web applications, it is done by simulating a user clicking on links and filling
in form fields (using a web browser). During this stage thousands of tests are
executed. Malformed requests are also sent in order to learn the error responses. The
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requests and the responses are recorded and analyzed using vulnerability policies.
The responses are also validated using data collected during the crawling stage.
During this stage new links are frequently discovered in web applications and when
this happens they are added to the result of the crawler in order to be also scanned
for vulnerabilities.

In the case of web services, the operations of the service are sequentially tested. For
each operation, the process starts by executing some random non-malicious
interactions (workload) to exercise the service. Afterwards, the scanner issues
sequentially all the configured attacks to the operation parameters one by one. The
requests and the responses are recorded and analyzed using algorithms to disclose
vulnerabilities. The responses are also validated using data collected during the
crawling stage. In the more advanced scanners, multiple attacks can be coordinated
to find other vulnerabilities. A simple example is the use of one attack with the
string “or 1=1 --” and another with “or 1=0 --". The differences in the
answers may lead to disclose a tautology vulnerability in (W. G. Halfond, Viegas,
and Orso 2006).

After the scanning stage the results are shown to the user and they may be saved for
later analysis. Most scanners also show some generic information about the
vulnerabilities discovered, including how to avoid or correct them. Besides the
graphical user interface, most scanners also have a command line application with
several parameters aimed for automation by using batch jobs.

Two very popular free security scanners that support web services testing are
Foundstone WSDigger (Foundstone, Inc. 2005) and WSFuzzer (OWASP Foundation
2008). WSDigger is a free open source tool developed by Foundstone that executes
automated penetration testing in web services. Only one version of this software was
released up to now (in December 2005). The tool contains sample attack plug-ins for
SQL Injection, cross-site scripting (XSS), and XPath Injection, but it was released as
open-source to encourage users to develop and share their own plug-ins and its test
files are simple to edit to add new test cases. WSFuzzer is a free open source
program that mainly targets HTTP based SOAP services. This tool was created based
on real-world manual SOAP penetration tests, but automating them. Nevertheless,
the tool is not meant to replace a solid manual human analysis. One issue with this
tool is that its configuration is very complex. A problem of both WSDigger and
WSFuzzer is that, in fact, they do not detect vulnerabilities: they attack the web
service under testing and log the responses leaving to the user the task of examining
those logs and identify the vulnerabilities. This requires the user to be an “expert” in
security and to spend a huge amount of time to examine all the results.

As for commercial scanners, three brands lead the market: HP WebInspect (HP
2008), IBM Rational AppScan (IBM 2008), and Acunetix Web Vulnerability Scanner
(Acunetix 2008a).
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HP WeblInspect is a tool that “performs web application security testing and assessment
for today’s complex web applications, built on emerging Web 2.0 technologies. HP
Weblnspect delivers fast scanning capabilities, broad security assessment coverage and
accurate web application security scanning results” (HP 2008). This tool includes
pioneering assessment technology, including simultaneous crawl and audit (SCA)
and concurrent application scanning. It is a broad application that can be applied for
penetration testing in web-based applications.

IBM Rational AppScan “is a leading suite of automated Web application security and
compliance assessment tools that scan for common application vulnerabilities” (IBM 2008).
This tool is suitable for users ranging from non-security experts to advanced users
that can develop extensions for customized scanning environments. IBM Rational
AppScan can be used for penetration testing in web applications, including web
services.

Acunetix Web Vulnerability Scanner “is an automated web application security testing
tool that audits a web applications by checking for exploitable hacking vulnerabilities”
(Acunetix 2008a). Acunetix WVS can be used to execute penetration testing in web
applications or web services and is quite simple to use and configure. The tool
includes numerous innovative features, for instance the “AcuSensor Technology”
(Acunetix 2008Db).

Many other black-box tools were proposed in the past. Although those works target
web applications, and not web services, we introduce some here due to the relevant
innovations they bring.

WAVES (Y.-W. Huang et al. 2003) is a black-box technique for testing web
applications for SQL Injection vulnerabilities. The technique is based in a reverse
engineering process that identifies the data entry points of the application and
attacks them using malicious patterns. An algorithm is proposed to allow “deep
injection” and to eliminate false negatives. During the attack phase, the responses of
the application to the attacks are monitored and machine learning techniques are
used to improve the attack methodology. The problem is that the technique can only
be applied to web applications (not to web services, where the interface is well
defined) and ignores the user knowledge about the application being tested.

SecuBat (Kals et al. 2006) is an open-source web vulnerability scanner that uses a
black-box approach to crawl and scan web sites for the presence of exploitable SQL
injection and XSS vulnerabilities. SecuBat does not rely on a database of known
bugs. Instead, it tries to exploit the distinctive properties of application-level
vulnerabilities. To increase the confidence in the correctness of the results, the tool
also attempts to automatically generate proof-of-concept exploits in certain cases.

A black-box taint-inference technique for the detection of injection attacks is
proposed in (Sekar 2009). The technique does not require any intrusive source-code
or binary instrumentation of the application to be protected; instead, it intercepts the
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inputs and outputs of the application. Then, the technique infers tainted data in the
intercepted SQL statements, and employs syntax and taint-aware policies to detect
the unintended use of tainted data. However, false positives and false negatives are
possible due to the accuracy limitations of the taint-inference algorithm and taint-
awareness policies.

In (McAllister, Kirda, and Kruegel 2008) it is presented an automated penetration
testing tool that can find reflected and stored cross-site scripting (XSS) vulnerabilities
in web applications. The presented technique improves the effectiveness of web
vulnerability scanners by leveraging input from real users as a starting point for its
testing activity. The technique follows an entire user’s session and uses recorded real
user inputs to generate test cases to launch fuzzing attacks. This way, the technique
increases the code coverage by exploring pages that are not reachable for other tools.
The experiments show that the approach is able to test more thoroughly the web
applications and identify more bugs than a number of open-source and commercial
web vulnerability scanners.

2.3.2  White-box Analysis

White-box analysis consists in the examination of the code of the web service
without executing it (Stuttard and Pinto 2007). This can be done in one of two ways:
manually during inspections and reviews or automatically by using automated
analysis tools.

Inspections, initially proposed by Michael Fagan in the mid 1970’s (Fagan 1976), are
a technique that consists on the manual analysis of documents, including source
code, searching for problems. It is a formal technique based on a well-defined set of
steps that have to be carefully undertaken. The main advantage of inspections is that
they allow uncovering problems in the early phases of development (where the cost
of fixing the problem is lower).

An inspection requires several experts, each one having a well-defined role, namely:
author (author of the document under inspection), moderator (in charge of
coordinating the inspection process), reader (responsible for reading and presenting
his interpretation of the document during the inspection meeting), note keeper (in
charge of taking notes during the inspection meeting), and inspectors (all the
members of the team, including the ones mentioned before). During the inspection
process, this team has to perform the following generic steps:

1) Planning: starts when the author delivers the artifact to be inspected to the
moderator. The moderator analyses that artifact and decides if it is ready to
undergo the inspection process. If not, then the artifact is immediately
returned to the author for improvement. This step includes also selecting the
remaining members of the inspection team.
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2) Overview: after delivering the artifact (and other artifacts needed to
understand it) to the experts, the author presents in detail the goal and
structure of the artifact to be inspected. By the end of this meeting the
inspection team must be familiar with the job to be performed.

3) Preparation: the inspectors analyze individually the artifact in order to
prepare themselves for the inspection meeting.

4) Inspection meeting: in this meeting the reader reads and explains his
interpretation of the artifact to the remaining inspectors. Discussion is
allowed to clarify the interpretation and to disclose existing issues. The
outcome of the inspection meeting is a list of issues that need to be fixed and
one of three verdicts: accept (the document does not present any problem),
minor corrections (the document presents minor issues that need to be fixed),
and re-inspection (the document presents major issues that need to be fixed
and the resulting artifact must be inspected).

5) Revision: the author modifies the artifact following the recommendations of
the inspection team.

6) Follow-up: the moderator checks if all the problems detected by the
inspectors were adequately fixed. The moderator may decide to conduct
another inspection meeting if there were considerable changes in the artifact
or if the changes made by the author differ from the recommendations of the
experts.

A code inspection is the process by which a programmer delivers the code to his
peers and they systematically examine it, searching for programming mistakes that
can introduce bugs. A security inspection is an inspection that is specially targeted to
find security vulnerabilities. Inspections are the most effective way of making sure
that a service has a minimum number of vulnerabilities (Curphey et al. 2002) and are
a crucial procedure when developing software to critical systems. Nevertheless, they
are usually very long, expensive and require inspectors to have a deep knowledge
on web security.

A less expensive alternative to code inspections is code reviews (Freedman and
Weinberg 2000). Code reviews are a simplified version of code inspections that can
be considered when analyzing less critical services. Reviews are also a manual
approach, but they do not include the formal inspection meeting. The reviewers
perform the code review individually and the moderator is in charge of filtering and
merging the outcomes from the several experts. In what concerns the roles and the
remaining steps reviews are very similar to inspections. Although also a very
effective approach, it is still quite expensive.

Code walkthroughs are an informal approach that consists of manually analyzing
the code by following the code paths as determined by predefined input conditions
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(Freedman and Weinberg 2000). In practice, the developer, in conjunction with other
experts, simulate the code execution, in a way similar to debugging. Although less
formal, walkthroughs are also effective on detecting security issues, as far as the
input conditions are adequately chosen. However, they still impose the cost of
having more than one expert manually analyzing the code.

The solution to reduce the cost of white-box analysis is to rely on automated tools,
such as static code analyzers. In fact, the use of automated code analysis tools is seen
as an easy and fast way for finding bugs and vulnerabilities in web applications.

Static code analysis tools vet software code, either in source or binary form, in an
attempt to identify common implementation-level bugs (Stuttard and Pinto 2007).
The analysis performed by existing tools varies depending on their sophistication,
ranging from tools that consider only individual statements and declarations to
others that consider dependencies between lines of code. Among other usages (e.g.
model checking and data flow analysis), these tools provide an automatic way for
highlighting possible coding errors. The main problem of this approach is that
exhaustive source code analysis may be difficult and cannot find many security
flaws due to the complexity of the code and the lack of a dynamic (runtime) view.
The following paragraphs briefly introduce some of the most used and well-known
static code analyzers, including both commercial and free tools.

FindBugs is an open source tool that “uses static analysis to look for bugs in Java code”
(University of Maryland 2009). Findbugs is composed of various detectors each one
specialized in a specific pattern of bugs. The detectors use heuristics to search in the
bytecode of Java applications for these patterns and classify it according to
categories and priorities. Some of the highest levels of priorities are usually, among
other problems, security issues.

Yasca (Yet Another Source Code Analyzer) is a “framework for conducting source code
analyses” (Scovetta 2008) in a wide range of programming languages, including Java.
Yasca is a free tool that includes two components: the first is a framework for
conducting source code analyses and the second is an implementation of that
framework that allows integration with other static code analyzers (e.g. FindBugs,
PMD, and Jlint).

Fortify 360 is a suite of tools for vulnerability detection commercialized by Fortify
Software (Fortify Software 2008). The module Fortify Source Code Analyzer
performs static code analysis. According to Fortify, it is able to identify the root-
cause of the potentially exploitable security vulnerabilities in source code. It
supports scanning of a wide variety of programming languages, platforms, and
integrated development environments.

Intelli] IDEA is a commercial and powerful IDE for Java development that includes
“inspection gadgets” plug-ins with automated code inspection functionalities
(JetBrains 2009). Intelli] IDEA is able to detect security issues in java source code.
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These functionalities are available also in a community edition that is distributed
free and open source since 2009.

Pixy is a free and open source program that performs automatic static code analysis
of PHP 4 source code, aimed at the detection of XSS and SQL injection vulnerabilities
(Jovanovic, Kruegel, and Kirda 2006). As referred in Pixy’s webpage, “Pixy takes a
PHP program as input, and creates a report that lists possible vulnerable points in the
program, together with additional information for understanding the vulnerability”.

Other approaches proposed by researchers target the detection of security
vulnerabilities in web applications using static analysis. The following paragraphs
present the most relevant works on this topic.

A static code analysis tool for checking type correctness of SQL queries generated
dynamically is proposed in (G. Wassermann et al. 2007). This approach does not
target the detection of SQL Injection vulnerabilities, but can be used to prevent
attacks that take advantage of type mismatches in a dynamically generated query
string to crash the underlying database. This technique is able to detect one of the
root causes of many vulnerabilities in code, which is improper type checking of
input. Nevertheless, this technique leaves wundetected the SQL injection
vulnerabilities that lead to syntactically and type correct queries.

In (Y. W. Huang et al. 2004) is presented an approach for the detection of
vulnerabilities related to input validation. This approach relies on developer-
provided annotations, which limits the practical applicability of the approach, and
assumes that preconditions for all sensitive functions can be accurately expressed
ahead of time, which is not always the case.

Wassermann and Su (G. Wassermann and Su 2004) proposed an approach that uses
static analysis combined with automated reasoning to verify that the SQL queries
generated in the application layer do not contain tautologies. The methodology is
extremely limited because it only detects and prevents tautologies, which is only one
of the many types of SQL Injection attacks that can be conducted.

Livshits and Lam (Livshits and Lam 2005) proposed a static analysis technique for
detecting application vulnerabilities that stem from unchecked input, such as SQL
injections and cross-site scripting. The proposed approach is based on a scalable
points-to analysis and uses context sensitivity combined with improved object
naming to detect vulnerabilities and keep the number of false positives low. In this
approach, vulnerability signatures are described using PQL (Martin, Livshits, and
Lam 2005), and a static analyzer is generated from the vulnerability description. The
experimental evaluation showed that the analyzer detects instances of the specified
vulnerability in the code but also showed that it produces a considerable number of
false positives.

A technique to statically detect SQL injection vulnerabilities in PHP scripts is
presented in (Xie and Aiken 2006). The analysis applies a custom three-tier
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architecture to capture information at decreasing levels of granularity at the
intrablock, intraprocedural, and interprocedural level. This architecture enables the
technique to handle dynamic features of scripting languages that are not adequately
addressed by other techniques. The tool was used on six popular open source PHP
code bases, finding 105 previously unknown security vulnerabilities that, according
to the authors, may be remotely exploitable. However, the technique presents
multiple limitations, as it cannot correctly handle recursive function calls, alias and
multi-dimensional arrays.

2.3.3  Gray-box Testing

The main limitation of black-box approaches is that the vulnerability detection is
restricted by the output of the application. On the other hand, white-box analysis
does not take into account the runtime view of the code. Gray-box approaches
combine black-box and white-box techniques in order to overcome their limitations
and can be used for both vulnerability and attack detection.

Dynamic program analysis consists of the analysis of the behavior of the software
while executing it (Stuttard and Pinto 2007). The idea is that by analyzing the
internal behavior of the code in the presence of realistic inputs it is possible to
identify bugs and vulnerabilities. Obviously, the effectiveness of dynamic analysis
depends strongly on the input values (similarly to testing), but it takes advantage of
the observation of the source code (similarly to static analysis). For improving the
effectiveness of dynamic program analysis, the program must be executed with
sufficient test inputs. Code coverage analyzers help guaranteeing an adequate
coverage of the source code (Doliner 2006)(Atlassian 2010).

“Acunetix AcuSensor Technology” (Acunetix 2008b) is a technique introduced by
Acunetix that combines black-box scanning with feedback obtained during the test
execution. This feedback is provided by sensors previous placed, using code
instrumentation, inside the source code or bytecode. Acunetix states that by using
this technique it is possible to find more vulnerabilities, to indicate in the code
exactly where they are, and to report less false positives. This technology is only
available to web applications, specifically .NET and PHP web applications. In case of
.NET this technology can be injected in the bytecode.

Two techniques that combine static and dynamic analysis have been proposed to
perform automated test generation to find SQL Injection vulnerabilities.
SQLUnitGen, presented in (Shin, Williams, and Xie 2006), is a tool that combines
static analysis with unit testing to detect SQL injection vulnerabilities. The tool uses a
third-party test case generator and then modifies the test cases to introduce SQL
injection attacks. These concrete attacks are obtained by using static analysis to trace
the flow of user input values to the point of query generation. Sania, presented in
(Kosuga et al. 2007), is a testing framework to detect SQL Injection vulnerabilities in
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web applications during development and debugging phases. Sania intercepts the
SQL queries between a web application and a database and constructs parse trees of
these queries. Terminal leafs of parse trees typically represent vulnerable spots. The
technique then generates attacks according to the syntax and semantics of these
potentially vulnerable spots. Finally, Sania compares the parse trees of the original
SQL query and with the ones resulting after an attack to assess the safety of these
spots. The differences between the parse trees are considered vulnerabilities,
originating a warning.

While other works focused on identifying vulnerabilities related to the use of
external inputs without sanitizations, the work presented in (Balzarotti et al. 2008)
introduces an approach that combines static and dynamic analysis to analyze the
correctness of sanitization processes in web applications. First, a technique based on
static analysis models the modifications that the inputs suffer along the code paths.
This approach uses a conservative model of string operations, which might lead to
false positives. Then, a second technique based on dynamic analysis works bottom-
up from the sinks and reconstructs the code used by the application to modify the
inputs. The code is then executed, using a large set of malicious input values to
identify exploitable flaws in the sanitization process.

Runtime anomaly detection tools can also be used for vulnerability detection. One of
those tools is AMNESIA (Analysis and Monitoring for NEutralizing SQL-Injection
Attacks) (W. G. J. Halfond and Orso 2005) that combines static analysis and runtime
monitoring to detect and avoid SQL injection attacks. Static analysis is used to
analyze the source code of a given web application building a model of the
legitimate queries that such application can generate. At runtime, AMNESIA
monitors all dynamically generated queries and checks them for compliance with
the statically generated model. When a query that violates the model is detected it is
classified as an attack and is prevented from accessing the database. The problem is
that the model built during the static code analysis may be incomplete and
unrealistic because it lacks a dynamic view of the runtime behavior of the
application.

2.4 Assessment and Benchmarking

A key aspect when applying automated approaches is to select the ones that are
most effective from the (frequently) large set of alternatives available. This way, we
need always to consider techniques to perform assessment and benchmarking. This
section introduces the key concepts, techniques and tools related to assessing and
benchmarking the security of computer systems, components, and tools. The topics
discussed are: workload generation, vulnerability and attack injection, security
benchmarking, runtime assessing and monitoring and assessment of vulnerability
detection tools.
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2.4.1 Workload Generation

One component stands out when testing a system: the workload. The workload or
the test data represents the work that the system must perform during the
experiments. In the specific case of services, the workload is no more than a set of
non-malicious requests that are used to exercise the service under study to
understand its behavior. Besides just generating requests, it is important to
understand the proprieties of the workload, including its representativeness (how
close are the characteristics of the workload to the real work the system will execute
in the field) and its code coverage (how much of the code the workload is able to
exercise). This way, executing the workload may also be useful to obtain feedback
about the its own properties, for instance by gathering information about the code
coverage of the tests using a tool like Cobertura (Doliner 2006).

Several approaches are available for workload generation. A survey on automatic
test data generation techniques is presented in (Edvardsson 1999). Examples of
possible approaches include the obvious random workload generation and the
generation of the workload based in the automated analysis of the service source
code (obviously, the source code is needed). In (Santiago et al. 2006) state charts are
used for automated test case generation. Another approach is to generate the
workload using the characterization of real load patterns through the application of
Markov Chains (De Barros et al. 2007).

2.4.2  Vulnerability and Attack Injection

The use of fault injection techniques to assess security is a particular case of software
fault injection, focused on the software faults that represent security vulnerabilities
or may cause the system to fail in avoiding a security problem (Fonseca, Vieira, and
Madeira 2007). Security vulnerabilities are in fact a particular case of software faults,
which require adapted injection approaches. This way, in the same way fault
injection techniques are essential to evaluate the effectiveness of fault tolerant
mechanisms, also vulnerability and attack injection is highly valuable to evaluate
security mechanisms such as vulnerability and attack detectors.

Vulnerability injection avoids the need for having vulnerable software, although
there are vulnerability representativeness issues to be considered (i.e. artificially
injected vulnerabilities may not be as representative as real vulnerabilities). The
vulnerability injection mechanism is normally paired with an automated attack
component, i.e. an attack injector that exploits injected vulnerabilities. This way, the
process usually includes two major steps: first, an analysis of the target system's
source is performed so that locations where vulnerabilities can be injected are
identified; then, a vulnerability is injected by performing some code or configuration
mutation.
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In (De Barros et al. 2007) the vulnerabilities of six web applications were analyzed
using field data based from 655 security fixes. Results show that only a small subset
of 12 generic software faults is responsible for all the security problems. In fact,
considerable differences are observed when comparing the distribution of the fault
types related to security with studies on common software faults.

A procedure inspired on the fault injection technique (that has been used for decades
in the dependability area) targeting security vulnerabilities is proposed in (Fonseca,
Vieira, and Madeira 2009). In this work, the "security vulnerability" plus the "attack"
represent the space of the "faults" that can be injected in a web application; and the
"intrusion" is the "error" (Echtle and Leu 1992; Fonseca, Vieira, and Madeira 2009).
To emulate real world web vulnerabilities with accuracy the work relies on the
results obtained in the field study on real security vulnerabilities (Fonseca, Vieira,
and Madeira 2007).

Conceptually, attack injection is based on the injection of realistic vulnerabilities that
are automatically attacked, and finally the result of the attack is evaluated. As
proposed in (Fonseca, Vieira, and Madeira 2009), a tool able to perform vulnerability
and attack injection is a key instrument that can be used in several relevant
scenarios, namely: evaluate security tools like vulnerability detectors, train security
teams, evaluate security teams, and estimate the total number of vulnerabilities still
present in the code, among others.

2.4.3  Security Benchmarking

Comparing different alternatives in terms of security is a difficult problem faced by
many developers and system administrators. Security benchmarking allows
assessing and comparing the security of systems and/or components, supporting
informed decisions while designing, developing, and deploying complex software
systems and tools.

Several security evaluation methods have been proposed in the past (Commission of
the European Communities 1993; Infrastructure and Profile 2002; Qiu et al. 1985;
Sandia National Laboratories 2012). The Orange Book (Qiu et al. 1985) and the
Common Criteria for Information Technology Security Evaluation (Infrastructure
and Profile 2002) define a set of generic rules that allow developers to specify the
security attributes of their products and evaluators to verify if products actually
meet their claims. Another example is the red team strategy (Sandia National
Laboratories 2012), which consists of a group of experts trying to hack its own
computer systems to evaluate security.

The work presented in (Maxion and Tan 2000) addresses the problem of
determining, in a thorough and consistent way, the reliability and accuracy of
anomaly detectors. This work addresses some key aspects that must be taken into
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consideration when benchmarking the performance of anomaly detection in the
cyber-domain.

The set of security configuration benchmarks created by the Center for Internet
Security (CIS) is a very interesting initiative (“Center for Internet Security” 2012). CIS
is a non-profit organization formed by several well-known academic, commercial,
and governmental entities that has created a series of security configuration
documents for several commercial and open source systems. These documents focus
on the practical aspects of the configuration of these systems and state the concrete
values each configuration option should have in order to enhance overall security of
real installations. Although CIS refers to these documents as benchmarks they
mainly reflect best practices and are not explicitly designed for systems assessment
or comparison.

Vieira & Madeira proposed a practical way to characterize the security mechanisms
in database systems (Vieira and Madeira 2005). In this approach database
management systems (DBMS) are classified according to a set of security classes
ranging from Class 0 to Class 5 (from the worst to the best). Systems are classified in
a given class according to the security requirements satisfied.

In (A.A. Neto and Vieira 2008) the authors analyze the security best practices behind
the many configuration options available in several well-known DBMS. These
security best practices are then generalized and used to define a set of configuration
tests that can be used to compare different database installations. A benchmark that
allows database administrators to assess and compare database configurations is
presented in (A.A. Neto and Vieira 2009). The benchmark provides a trust-based
security metric, named minimum untrustworthiness, that expresses the minimum
level of distrust the DBA should have in a given configuration regarding its ability to
prevent attacks.

The use of trust-based metrics as an alternative to security measurement is discussed
in (Afonso Aratjo Neto and Vieira 2010). Araujo & Vieira also proposed a
trustworthiness benchmark based on the systematic collection of evidences of the
use (or lack of it) of secure coding practices (collected using static analysis
techniques), which can be used to select one among several web applications, from a
security point-of-view.

2.4.4 Runtime Monitoring and Testing

A monitoring system can be used for different purposes. For example, it can be used
to check if certain service is working correctly, to check if the availability of the
service fulfills the requirements defined in a Service Level Agreement (SLA), to
check the compositions of the services, to get information about the architecture,
among other objectives.
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Several techniques based on monitoring and model checking at runtime are
discussed in (Calinescu 2011). In this work it is advocated the need for using a
collection of “@runtime” techniques for the development, operation and
management of software capable of self adaptation and high integrity. Additionally,
there is also an increasing interest in incremental model checking techniques, as
shown in (Pistore et al. 2004) that presents techniques based on “Planning as Model
Checking” to automatically compose web services and synthesize monitoring
components.

Petri nets are also used together with a simple monitoring system to model the
external behavior of the software in (Grosclaude 2004). The components are
associated to a local controller that scrutinizes its messages and compares them with
the specified behavior. As the components interact, information about errors and
time constraints violations are collected and analyzed to infer indicators about the
state of components.

In (B. Wassermann and Emmerich 2011), is described a monitoring system for Web
Service compositions called Monere. It instruments some components across the
layers of a service composition and exploits the structure of BPEL workflows to
obtain structural cross-domain dependency graphs. In (Baresi, Ghezzi, and Guinea
2004), the authors propose approaches to monitor dynamic service compositions
with respect to contracts expressed via assertions on services. In (Gao et al. 2000) is
included a support for monitoring of software components in component-based
programs. In (Zubin67 2010), it is presented a module for monitoring services in
Service Oriented Architectures, focusing on the Enterprise Service Bus (ESB) level,
allowing collecting data in a easy way even if the services are executed on different
servers.

A tool for testing SOAs is proposed in (Ceccarelli, Vieira, and Bondavalli 2011a). It is
supported by a discovery algorithm that is able to trace the SOA evolution by
automatically discovering the services that compose the architecture and the
connections among them. This approach is then used in the context of a testing
service for SOA validation (Ceccarelli, Vieira, and Bondavalli 2011b) that is basically
a composite service able to monitor SOA evolution and test the various services
according to specific testing policies. The work proposes the use of copies of the
services to avoid service degradation and error propagation caused by the testing
activity. This algorithm is based on a collaborative approach where providers need
to share information they have on their part of a SOA.

In (Bertolino et al. 2006; Bertolino et al. 2009) the authors present a way for online
testing for Web Services, more specifically interoperability testing, where the service
invocations are redirected to stubs, suggesting the correctness of a service against its
specification. The problem with the proposed approach is that services that are
already active in SOA do not take part in the testing process. For runtime testing, the
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system under production should be protected from undesired side effects, which is
also not considered in this work.

2.4.5 Assessment of Vulnerability Detection Tools

Regardless of the importance they have, automated approaches for vulnerabilities
detection are frequently unable to produce accurate results. In consequence of this,
many works have been published proposing methodologies to evaluate tools and
presenting results of tools evaluations. Following are presented the most significant
published studies.

In what concerns to web security scanners, previous research suggests that their
effectiveness in the detection of vulnerabilities varies a lot, being often
unsatisfactory. In (Fonseca, Vieira, and Madeira 2007) it is proposed a method to
evaluate and benchmark automatic web vulnerability scanners in web application’s
environment using vulnerability injection techniques. Software faults are injected in
the application code and the tool under evaluation is executed, showing its strengths
and weaknesses concerning coverage of vulnerability detection and false positives.
The study focused on the SQL Injection and Cross Site Scripting (XSS) types of
vulnerabilities. Three leading commercial scanning tools were evaluated and the
results showed that in general the coverage is low and the percentage of false
positives is very high (ranging from 20% to 77%).

Another evaluation of web vulnerability scanners is presented in (Doupé, Cova, and
Vigna 2010). Both commercial and open-source scanners were evaluated, in a total of
11 scanners. To test the tools the authors introduced different types of vulnerabilities
in a realistic web application, challenging the crawling capabilities of the tools. The
main findings of the study were that the crawling process is critical to the success of
the scanning process and that many classes of vulnerabilities are completely
overlooked by these tools.

In (Teixeira, Antunes, and Neves 2007) is proposed a preliminary version of a
benchmark to compare the effectiveness of static analysis tools effectiveness. This is
based on a study conducted using code analysis tools freely available on Internet.
The benchmark uses an application developed by the authors containing
vulnerabilities manually introduced. The tools are run over the application to find
the existing vulnerabilities. The experiment has shown that each tool is able to find
only few classes of vulnerabilities. Using these results work was developed to
aggregate the results of the benchmarked tools originating a new tool with higher
coverage and less false positives. However, the work targets types of vulnerabilities
that are not the focus of this Ph.D. work and the fact that the application used to
evaluate the tools is synthetic hurts the representativeness of the evaluation.

In (Wagner et al. 2005) authors evaluated three bug finding tools and compared their
effectiveness with a review team inspection. The tools achieved higher efficiency
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than the review team in detecting software bugs (the study did not consider security
issues) in five industrial Java-based applications, but all the tools presented false
positive rates higher than 30%. The work focuses on application code defects that are
also outside the focus of this thesis.

In (Bau et al. 2010) the authors evaluated 8 automated black-box leading tools it
terms of the class of vulnerabilities tested, their effectiveness, and the relation of the
target vulnerabilities to vulnerabilities found in the field. The study was conducted
using a vulnerable web application and previous versions of widely used web
applications containing known vulnerabilities. The results showed that “stored”
forms of Cross Site Scripting (XSS) and SQL Injection (SQLI) vulnerabilities are not
currently found by many tools.

Another important technique to evaluate vulnerability detection tools is
vulnerability injection. In the same way fault injection is an approach that can be
used to validate specific fault handling and fault detection mechanisms (Carreira,
Madeira, and Silva 1998), vulnerability injection is a powerful tool that can be used
to assess the effectiveness of vulnerability detection and attack detection tools and
methodologies. In (Fonseca, Vieira, and Madeira 2009) is proposed a methodology to
inject vulnerabilities and attacks in web applications. The methodology can be used
to evaluate both defensive mechanisms and vulnerability detection mechanisms. As
mentioned in Section 2.4.2, to provide realistic vulnerabilities the methodology is
based on a field study that included a large number of vulnerabilities in web
applications. During the experimental evaluation the methodology was used to
evaluate the coverage and false positives of an intrusion detection system for SQL
injection and two web vulnerability scanners. The problem is that the methodology
applies only to web applications and does not take into account the specificities of
the web services environment. Additionally, the tool presented is specific for LAMP
(Linux, Apache, MySQL, and PHP) web applications and requires access to the
application source code to perform vulnerability injection.

Although the works presented until now tried to assess the effectiveness of
vulnerability detection tools, none has proposed a standard approach that allows the
comparison of tools and so developers urge the definition of practical approaches
that help them comparing alternative tools concerning their ability to detect
vulnerabilities. As performance benchmarks have contributed to improve the
performance of systems, we believe that the use of a benchmarking approach on
automated vulnerability detection tools is for improving the state of the art on
vulnerability detection in services-based environments.
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2.5 Conclusion

This chapter presented background on services and service-based infrastructure and
discussed the state of the art in terms of vulnerability detection tools and assessment
and benchmarking techniques.

The basic characteristics of service-based environment were introduced and the
security threats faced in such environments clearly show the need for new means to
help developers and researchers improving security. The framework proposed in
Chapter 3 is a possible answer towards advancing the state of the art in this area.

A key aspect is that, although a large number of vulnerability detection tools were
introduced, very few aim to tackle the specific problem of vulnerabilities in service-
based environment. This shows the need for an integrated approach able to tackle
these specific requirements as proposed in Chapter 5.

The findings regarding works on assessing and benchmarking the value of
vulnerability detection tools show that in many cases the existing tools present very
low effectiveness. The low effectiveness of the tools presented show the need for the
development of more efficient tools, as the ones presented in Chapter 4.

Finally, most of these studies do not fit the model of a standard way to evaluate and
compare vulnerability detection tools, as they mostly consist of ad-hoc experiments
design for the specific tools under scrutiny. Additionally, most of studies presented
above are focused specifically in web applications and the results obtained cannot be
easily generalized, especially if we take into account the specificities of web services
environments. This highlights clearly the need for benchmarking approaches
focusing vulnerability detection tools for web services, as the one presented in
Chapter 6.
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Framework for the Detection of
Vulnerabilities in Service-Based
Infrastructures

In order to support business-critical scenarios, Service-Based Infrastructures must be
secure and reliable (Singhal, Winograd, and Scarfone 2007). However, studies and
reports show that both web applications and services are many times deployed with
security vulnerabilities (Vieira, Antunes, and Madeira 2009; NTA Monitor 2011a;
OWASP Foundation 2013). Studies also show that, although penetration testing is
considered to be the vulnerability detection technique most used by web developers
(Stuttard and Pinto 2007), it has limited effectiveness, reporting very high numbers
of false positives, while leaving many vulnerabilities undetected (Vieira, Antunes,
and Madeira 2009; Fonseca, Vieira, and Madeira 2007; Doupé, Cova, and Vigna
2010). Furthermore, the specific characteristics of service-based infrastructures raise
new security requirements, not addressed by existing tools. First, these
infrastructures are dynamic in nature, facing changes in the services used and in the
way they interact. Second, these infrastructures usually include services that are
under the control of multiple providers. Finally, it is necessary to consider
interactions with resources and other services.

Such requirements create the need for innovative techniques that help developers
improving the current situation. In this chapter we define a framework® that
provides the context for the work on detecting vulnerabilities in service-based

®In the context of this work, we define a framework as being a set of assumptions, concepts, and
practices that represent a way of viewing and addressing a problem.
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infrastructures presented in the thesis. The framework is composed of three key
parts, as introduced in the next paragraphs.

To help understanding the research challenges and to clarify the types of
infrastructures targeted, we defined a reference service-based infrastructure. This
infrastructure, portraying the typical characteristics of web services, guided the
work conducted and influenced the solutions proposed. In practice, the reference
infrastructure defines the security challenges to be addressed, including both the
traditional security requirements and the ones that are raised by service-based
orientation.

The services considered in the reference infrastructure are divided in three testing
scenarios with specific characteristics. Addressing these testing scenarios calls for
techniques that take into account the different access conditions to the services under
testing. Furthermore, a generic procedure that supports the design of standardized
and modular tools and that guarantees exhaustive and effective detection of
vulnerabilities is needed. The idea is that the different components should
implement specific features of the tool, in a decoupled manner, allowing for easily
designing and later improving the tool. This way, we propose a generic approach
for designing vulnerability detection tools for web services. This approach
includes the definition of the testing procedure and of the main components that
should be implemented by the tool.

To orchestrate and integrate the tools developed following such design approach, in
a way that allows detecting vulnerabilities in service-based infrastructures in
general, we propose a generic integrated approach that encompasses aspects like
how to create and manage a description of the underlying architecture, how to
define what should be done gather information about the infrastructure, and how to
run the tests using the tools that best suit each service.

The outline of this chapter is as follows. The next section presents the reference
infrastructure, discussing the characteristics of web services, the main security
challenges, and the testing scenarios considered. Section 3.2 presents the generic
approach for designing vulnerability detection tools for web services, including the
components and the testing procedure that a tool should implement. Section 3.3
presents the integrated approach for detecting vulnerabilities in service-based
infrastructures. Finally, Section 3.4 concludes the chapter.

3.1 Reference Service-Based Infrastructure

Service-based Infrastructures and SOAs represent the response for the need to
simplify the IT infrastructure of organization, improving at the same time
interoperability and increasing the business agility, Although they can be
implemented in multiple different ways, there is a consensus about their basic
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design principles (Erl 2005; Papazoglou and Heuvel 2007), which are summarized
next.

It is widely accepted that the functionalities implemented by the system should be
available in the form of services that allow the interaction between consumers and
providers. Services are reusable components that efficiently deliver business
functionalities within a protocol-independent distributed environment through a
standardized interface. Services must also be autonomous and self-contained,
coarse-grained and loosely coupled. In order to help the implementation of these
principles, the services are frequently connected through a service bus component,
designated as Enterprise Service Bus (ESB) (Keen et al. 2004).

A detailed representation of the concepts and components around service-based
infrastructures could become too complex to be analyzed, thus rendering such
representation useless. This way, it is necessary to make some representation
simplifications in order to focus on the key parts of these infrastructures that are the
subject of this thesis. Also, as it is not possible to address all the existing
technologies, we need to reduce the diversity of technologies addressed. Finally, it is
necessary to make some assumptions in order to help directing the development of
techniques and tools. To accomplish such needs, we established a reference
infrastructure that includes the key concepts and components that should be kept in
mind to understand the present work. Figure 3.1 portrays this reference
infrastructure.

The figure shows a simplified example of a service-based environment, with a small
number of Services (Sx) and Resources (Rx). The example includes a Provider (P0),
with a gray ellipse that represents the parts of the system under his total control.
This provider offers two services (S0.5 and S0.6) to the exterior, while other
resources (R0.7 and R0.8) are for internal access only. While the service 50.6 is fully
under control, the service S0.5 is not. In fact, the former uses only the services and
resources owned by the provider to complete its business functionality, but the latter
(50.5) uses some resources that are outside the control of the provider (R3 and 54).

The services and resources outside the gray ellipse are not controlled by P0, thus
being distributed throughout the Internet. Although they are not under control of
PO, they are known and within-reach, which means that P0 is able to invoke them.
The example also includes a consumer (C), which represents the users of the
infrastructure that can be persons, organizations or even other systems. In this
specific case, C is a consumer that uses services 51, S2, S0.5 and S0.6. The cloud (?)
represents parts of the system about which PO has no information, but that may be
used by some of the services not under his full control.
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Services Partially Under Control (2)

Figure 3.1 — Reference Service-Based Infrastructure.
Simplified representation of the most important concepts and components on service-based
infrastructures needed to better understand the present work.

It is important to emphasize that this is a simplified representation of a service-based
infrastructure, and thus there are some key observations that should to be made.
First, service-based infrastructures are frequently much more complex than the
represented one. However, in order to maintain the analysis feasible, we decided to
keep the representation as simple and clear as possible. Second, no service bus is
represented, which does not mean that the services are connected in a point-to-point
basis. We opted by not representing a service bus because it is not an important
point for our work (we just need to know the interfaces of services and that they may
be inter-connected). Finally, service-based environments are dynamic, meaning that
they can change over time, which we opted not to represent in the figure but that is
important for our work, as it makes testing a continuous and difficult process,
requiring tools to cope with such evolution.
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3.11

Specific Characteristics of Web Services

A Web Service delivers some business functionality in a protocol-independent

distributed environment through a standardized interface, which allows the service

to be used independently from the implementation. There are several specificities

that distinguish web services from other web applications. These should be kept in

mind by researchers and developers when talking about detecting security

vulnerabilities, and include:

Web services are reusable components that deliver business functionalities
in an efficient way within a protocol-independent distributed environment
through a standardized interface. The reusability allows them to be applied
in different business processes while their standardized interface enables
access to be independent from implementation specificities. This way, any
problem in a web service may affect the organization in multiple ways.

Web services have a well-defined interface. This is mostly a positive aspect,
as it avoids the need for a crawling/learning phase (required by some
vulnerability detection approaches to learn the interface of a web
application), but makes it easier to mask information about internal problems
of the application (internal errors, exceptions raised, etc.). This can be a
limiting factor, as it reduces the available information (e.g. compared to what
testing tools can extract from the service’ responses during crawling).

Web services may include several operations, as defined in the service
interface. Each operation includes several input and output parameters, that
have a data type. The data types may be simple or complex. Besides the data
type, each input parameter may have a domain that may be defined in the
interface or not. When defined in the interface, the input domain allows
improving the interoperability of the service.

Web services must be autonomous and self-contained, coarse-grained and
loosely coupled, allowing multiple functionalities without adding design
complexity or increasing communication. In fact, web services should
represent an effective way for reducing the complexity and overhead that
comes with custom-coded interfaces allowing at the same time efficiently
managing changes and evolution.

The interoperability and reduced dependency among services not only
facilitates their replacement or modification (without requiring changes in
other parts of the system), but also requires vulnerability detection to be
effective (i.e. conducted in reduced times in order to not delay the
deployment process) and to take into account the potential interactions
among services.
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* In many situations, the user that needs to test the security of a web service is
not its owner, thus cannot access its internals (a requisite for some
vulnerability detection techniques). A common example of this scenario is
when a consumer has to select a service from a multitude of alternatives
provided by third parties.

Although the characteristics above are common to services implemented in different
kinds of technology, there is one key technology-dependent difference: RESTful web
services do not always have a well defined and machine readable description, while
SOAP web services do. In fact, although WADL constitutes a clearly structured,
detailed and extensible format to describe web applications, it does not seem to be
widely adopted by developers, probably due to its perceived complexity (Kopecky,
Gomadam, and Vitvar 2008). This way, in most cases RESTful service descriptions
remain as unstructured text (Kopecky, Gomadam, and Vitvar 2008). On the other
hand, SOAP web services are required to have a WSDL file describing its interface,
increasing interoperability and fostering adoption.

3.1.2 Challenges in Service-Based Infrastructures

Although the problem of security testing of software services has been addressed in
the past (see Section 2.3), most of the existing works focus on testing a single service
at a time, disregarding key characteristics of service-based environments. In fact,
several challenges are raised when considering security testing in service-based
infrastructures and SOAs:

e Itis necessary to consider interactions between services and other resources
or services. Thus, besides testing each service offline and individually from
each other, testing tool should take into account the overall architecture of
the infrastructure. In practice it, is necessary to test all the interfaces of the
services, including the ones between a service and the resources and other
services used (contrarily to black-box techniques that focus only on the
interface between the service and the external user).

* Service-based infrastructures are usually built using services that are under
the control of multiple providers, creating the need for testing tools that can
cope with different levels of available information and different levels of
access (e.g. the source code may be available or not).

* The services under control of an organization may invoke services that were
developed internally or externally by a third party. Service consumers are
not necessarily end-user applications, but can also be portals, internal or
external systems, or composite services, making use of other services. This
creates the need for tools that cope with different levels of access and
information to the services.
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3.1.3

SOAs are dynamic in nature, facing changes related to services being added,
removed or updated (i.e. new versions are deployed), as well as related to the
way services interact with each other. This brings the need for automated
approaches able to continuously monitor and test the whole architecture in
an automated way.

Frequently, the third-party services to be invoked are only known at runtime
using directory services (or brokers). These brokers allow the consumer to
find the services that fulfill some kind of criteria or set of functionalities.
However, it is the consumer’s responsibility to check whether the offered
service meets the desired security requirements. This creates a need for tools
that detect changes at runtime and discover new services to be tested.

Web Services Testing Scenarios

Knowing both the specificities of web services and the challenges of detecting

software vulnerabilities in service-based infrastructures in general, we can identify

distinct testing scenarios representing the information and level of access that the

user can have to each service. In the context of this work three scenarios are

envisaged:

1)

2)

3)

Services under control: a service is under control and also the resources that it
uses are known, like in the case of S3 in Figure 3.1. This service uses only
services and resources owned by the provider PO to complete its business
functionality. It is possible to use all kinds of vulnerability detection
techniques, including the ones that require access to the source code (e.g.
static analysis).

Services partially under control: a service is under control but some of the
resources that it uses are not, like in the case of S2 in Figure 3.1 (it uses
resource R2 that is not under control). In practice, this service requires
services and/or resources that are not owned by the provider PO to complete
its business functionality. In this case, it may not be possible to access the
source code (e.g. in the case of legacy systems or systems based in off-the-
shelf components). However, all the interfaces between the service and the
external environment are known, which allows one to obtain relevant
information about input domains and about the use of external resources.
This allows using techniques that take advantage of such information (e.g.
techniques based on interface monitoring).

Services within reach: a service is within reach but not under control, like in
the case of S1 in Figure 3.1. This means that provider PO is able to invoke this
service, but not to control it (e.g. has no access or detailed information about
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the service). As it is not possible to access the internals of the service, only
black-box testing techniques can be used. This scenario also represents the
typical point-of-view of the consumer.

The cloud identified with a question mark (?) represents services and resources that
are unknown to provider PO, but may be used by other within-reach services, like in
the case of S1 in Figure 3.1. The provider has no access to the internals of within
reach services and, consequently, he has no information about the unknown
services.

As mentioned before, these scenarios call for a solution based on effective tools for
vulnerability detection that are supported by innovative techniques that take into
account the different access conditions to the services under testing. In order to
tackle the characteristics of service-based infrastructure, these techniques may be
integrated into an iterative testing process that monitors, discovers and tests services
at runtime. However, applying this kind of approach after deployment raises new
problems, including the impact of the testing in services that are running, and failure
propagation, for which different works proposed and studied alternative supporting
techniques such as sandboxing, virtualization, etc. For instance, past works tried to
overcome this difficulty by testing copies of services, avoiding service degradation
and error propagation caused by the testing activity (Ceccarelli, Vieira, and
Bondavalli 2011b). Another approach is virtualizing the services under testing as in
(Michelsen and English 2012). Although this is a very important challenge, these
concerns are out of the scope of this work and thus, we rely on other works to
provide the required support for the testing process.

3.2 Designing Vulnerability Detection Tools for Web
Services

Research and practice shows that state-of-the-art scanners frequently present low
effectiveness both in terms of vulnerability coverage and false positive rates (Vieira,
Antunes, and Madeira 2009; Fonseca, Vieira, and Madeira 2007). The main problem
is that most of these tools try to be as generic as possible (to detect many types of
vulnerabilities), but are typically very limited in terms of the detection approaches
they implement for each vulnerability type and do not take advantage of the specific
access conditions to the target services.

Building effective tools demands for innovative techniques that take into account the
different access conditions to the services under testing (i.e. that consider the testing
scenarios presented in Section 3.1.3). For example, if one has access to the web
service interfaces (e.g. Scenario 2), including interfaces with external resources like
other services or databases, then an improved technique based on interface
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monitoring may be used in detriment of traditional penetration testing. Furthermore,
we argue that vulnerability detection tools should implement a procedure that
supports the design of standardized and modular tools, based on multiple
components implementing specific features in a decoupled manner, thus allowing
for easily designing and later improving the tool.

This section proposes a generic approach for designing vulnerability detection
tools for web services. The approach defines the components and the testing
procedure that a tool should implement. The components include a workload
emulator (responsible for generating and executing a set of requests to exercise the
web service), an attack emulator (in charge of generating and injecting requests that
simulate attacks), a service monitor (in charge of instrumenting the service under
testing, if needed, and collecting relevant information to support vulnerabilities
identification), and a vulnerability detector (responsible for analyzing the collected
information and identify vulnerabilities, and for running the testing procedure).
Figure 3.2 depicts these components, and the relation among them and with a web
service under testing.

As it is possible to observe, the workload emulator and the attack emulator work
together to create and submit attacks, the vulnerability detector uses knowledge
about the attacks and information collected from the web service to identify
vulnerabilities, and the service monitor is in charge of instrumenting the web service
and collecting information to feed the vulnerability detector (the type of information
collected depends on the vulnerabilities being detected and on the detection
technique used). The vulnerability detector is also in charge of implementing the
testing procedure by coordinating the remaining components.

Due to the high diversity of web services technologies, types of vulnerabilities, and
vulnerability detection approaches, designing an effective tool requires focusing on a
well-defined domain. In fact, the division of the spectrum into well-defined areas is
necessary to better support decisions during the definition of the components and
procedure. In this context, the definition of the tool domain includes selecting:

* The class of web services (e.g. SOAP, REST), which allows understanding
the characteristics of the services that will be tested.

* The types of vulnerabilities (e.g. SQL Injection, XPath Injection, file
execution) that should be detected by the tool.

* The vulnerability detection approach (e.g. penetration testing, anomaly
detection) that the tool will use to detect vulnerabilities.
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Figure 3.2 — Design of a web service vulnerability detection tool.
Generic interactions between the modules and also with the web service. Some of the
presented modules are optional, as it will be possible to observe in other related figures.

The next subsections detail the proposed components. The testing procedure is
discussed together with the vulnerability detector component. Note that the goal of
this section is not to design a specific tool (that is done in Chapter 4), but to define an
approach that can be used to design tools for detecting vulnerabilities in web
services.
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3.2.1  Workload Emulator

The workload emulator (WE) component is in charge of generating a set of valid
requests. These requests will be used by the attack injector to generate attacks, but
can also be executed in the absence of attacks to exercise each operation of the web
service under testing and thus understanding its typical behavior. The WE includes
two elements: a workload generator and a workload injector.

The workload generator (WG) starts by obtaining the required definitions about the
web service under testing. As mentioned before, we assume that the web service
interface is described in a descriptor file (e.g. WSDL, WADL) (D. A Chappell and
Jewell 2002; Richardson and Ruby 2007), which should be processed to obtain the list
of operations, parameters (including return values), and associated data types.
However, as in most cases the valid values for each parameter (i.e. the domain
restrictions of the parameter) are not available in that file and associated schemas,
the user should be allowed to provide additional information about the valid
domains for each parameter (including for parameters based on complex data types,
which are composed by a set of individual parameters). Note that, for web service
operations with several input parameters, the valid domain for a given parameter
may be dependent on the value specified for another parameter (e.g. for a service
that has the parameters “country” and “city”, the domain of the city depends on the
country, which must also be specified).

A workload (set of valid web service calls) should then be generated to exercise each
operation of the web service under testing. As it is not possible to define a generic
workload that fits all web services, a specific workload is needed for each service
under testing. A vulnerability detector may provide more than one way to generate
the workload, thus offering to the user the option of selecting the one that best fits
his requirements. Usually, three alternatives are available for implementing the
workload generation:

* Use a user-defined workload generator: in this case the user of the tool
should implement a generation component based on the knowledge he has
about the service being tested. The workload emulator should provide an
easy way for integrating this generation component, which needs to interact
with the workload injector (in charge of submitting the workload requests to
the services under testing) and with the attack generator (that creates attacks
based on the workload requests in an educated manner, as described in
Section 3.2.2).

* Use the functions of an existing vulnerability scanner: consists of
supporting the integration of external tools in a similar way to the user-
defined workload. A key aspect is that in this case we are not interested in
the attack generation and vulnerability detection capabilities of such tool (this
will be addressed later in the design of the attack injector and of the
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vulnerability detector), but only on interface identification and workload
generation features. Also note that selecting an existing vulnerability scanner
to provide this feature may not be an easy task as, depending on the type of
vulnerabilities to detect and on the detection approach to implement, existing
scanners may be limited in the support they provide (thus such selection
process is of utmost importance).

* Include a workload generator module in the tool: several approaches can be
used for generating web service requests, including (see Section 2.4.1 for
details on these approaches): deterministic generation (e.g. based on constant
values, step functions, values shuffling, etc.), stochastic methods (e.g. based
on uniformly distributed random values, random values added by a step
function, and Gaussian, Poisson, or exponential distributions), and hybrid
approaches (a combination of multiple approaches). As the goal is to generate
(valid) requests that adequately exercise the services under testing (i.e. allow
achieving a high coverage of the code under testing), this process should take
into account the web service definitions mentioned above. It is also of
extreme importance to design a workload generator that satisfies the
requirements in terms of the target vulnerabilities and of the detection
approach being implemented.

The workload injector (WI) component takes the workload generated and submits it
to the web service. This is an optional element, as some approaches may not require
the execution of a workload. For example, classical penetration testing is based only
on the execution of the penetration tests. On the other hand, anomaly detection
approaches require a training phase, thus a workload execution is required. A
feature that may be added to the workload injector is code coverage analysis
(Doliner 2006; Atlassian 2010). The idea is that in the cases where source code or
bytecode is available, code coverage can be used to drive the generation of the
workload requests. To obtain such a code coverage value a tool that analyzes the
execution profile of the web service during the execution of the workload may be
used (e.g. Cobertura (Doliner 2006), Clover(Atlassian 2010), etc.). As the
completeness of code coverage is always relative to a specific population of possible
test cases, many metrics are available, including Line coverage, Branch coverage,
Path coverage, Loop coverage, among others (Kaner 1996). The calculated coverage
value should be used to decide if more requests are needed to increase coverage. In
such case, the injector component should ask the generator component to create
additional requests.

3.2.2  Attack Emulator

The attack emulator (AE) component is in charge of automatically generating attacks
and of submitting them to the web services under testing. For this, it includes two

52



Framework for the Detection of Vulnerabilities in Service-Based Infrastructures

elements: an attack generator, in charge of creating attacks, and an attack injector,
responsible for submitting those attacks.

Two alternatives can be considered for implementing the attack generator (AG):

Use the functions of an external vulnerability scanner: this consists of
supporting the integration of external generators in a similar way to what is
done for the workload generation (see previous subsection). As before,
selecting an adequate external attack generator may be difficult, because
existing tools may not implement the testing strategies required to
successfully implementing a given vulnerability detection approach.

Include an attack generator module in the tool: this module takes the
workload and replaces valid values by malicious ones following a set of
mutation rules (see Table 3.1 for examples of typical mutation rules for SQL
Injection and XPath Injection). Obviously, the mutation rules depend on the
type of vulnerabilities to detect and should be as complete as possible in
order to achieve high detection coverage. This way, defining the set of
mutation rules is a complex task that should consider multiple sources of
information, including information on how existing tools work, knowledge
on previous successful attack attempts in the field, and scientific references.

Table 3.1 - Examples of SQL/XPath Injection attack types.

The attack generator module should use this type of rules to mutate the workload elements

into attacks.

SQL/XPath Injection mutation rules

"or 1=1 --

" or 1=1 or ""="

or (EXISTS)

or uname Tike '%

or userid like '%

or username like '%

' UNION ALL SELECT

' UNION SELECT
char%2839%29%2b%28SELECT
&quot; or 1=1 or &quot;&quot;=&quot;
&apos; or &apos;&apos;=&apos;

Although the process of generating the attacks may depend on the vulnerability
detection technique, we propose a generic procedure whose goal is to support the
design of generation approaches capable of creating comprehensive sets of attacks.
As shown in Figure 3.3, such procedure includes several phases, where each phase

focuses on generating malicious calls that target a given operation of the web service
and includes a set of steps. Each step targets a specific parameter of the operation,
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and comprises several attack sets. An attack set includes the attacks to be performed
over a given parameter, which are generated by applying the mutation rules
mentioned before. Obviously, the same mutation rule may be applied one or more
times over the same input parameter in order to increase the code coverage of the
tests (as the requests of the workload may use different values for the remaining
parameters).

The attack injector (AI) component is in charge of submitting the generated attacks
to the web service under testing. If an external attack generator is used, then the
injector should provide the required integration interfaces. Similarly to the workload
injector, the attack injector may also support coverage analysis features, whose
output can be used to drive the generation of additional attacks.

Phase | Operation 1 | Operation 2 | Operation N |
I I I
Steps Parameter 1 | Parameter 2 | Parameter N
I I I
Sets |Mutation 1 | Mutation 2 | | Mutation N

Figure 3.3 — Generic process for generating the attacks.
Workload elements are used to generate attacks based on attack mutation rules. Only one
parameter is attacked at a time.

3.2.3 Service Monitor

To identify vulnerabilities we need to collect as much information as possible about
the behavior of the web services under testing (this information is later used by the
vulnerability detector component). Obviously, the information that can be collected
depends on the access conditions to the target web services. In fact, as explained in
Section 3.1, these environments are based on services that can be under the control of
multiple providers, and the users of the testing tool may have different types of
access to the services to be tested (i.e. services may be within reach, partially under
control, or under control).

Each vulnerability detection technique has its specific requirements in terms of the
information needed, but the most basic information are the web services requests
and corresponding responses (to both workload requests and attacks). In the case of
more advanced approaches, additional information may be related to the internal
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functioning of the web service, to the web services interfaces (including interfaces
with external resources like other services and databases), etc. This way, the service
monitor should be able to instrument the target services in a way that allows
collecting the required information, in the less intrusive way possible. Depending on
the type of information needed and on the level of access to the internals of the web
service, there are multiple options to monitor web services. Some examples are:

* Network packet sniffing: consists of reading each packet as it flows across
the network. Packet sniffers usually work by setting the network interface
into a mode in which it captures all traffic (Fuentes and Kar 2005). Multiple
tools and libraries are available to perform packet sniffing, for instance
Tcpdump & Libcap (Fuentes and Kar 2005);

* Use a proxy: a proxy is a relay for requests. The clients send the requests to
the proxy, which then forwards them to the destination server, whose
response is also sent to the proxy before being forward to the client. During
this process, the proxy is able to read and modify the requests and responses.
An example of a HTTP proxy implemented in Java is LittleProxy (LittleShoot
2010);

* Driver instrumentation: when the interface to be monitored is accessed
through a driver (e.g. Java applications use JDBC drivers to access the
database server), this driver can be instrumented to include monitoring
facilities. In most cases, this can be achieved using Aspect-Oriented
Programming (AOP) (Kiczales et al. 2002).

Obviously, the driver instrumentation technique is more intrusive than the other
two, but the modifications can be easily done outside the core of the applications
being tested. In fact, it is possible to create an instrumented version of a specific
driver that can then be used by different applications. Nevertheless, one must be
extremely careful in order not to introduce bugs in the instrumented driver during
this process. On the other hand, although network packet sniffing is the least
intrusive, it is the most difficult to implement: it needs to filter the packets and
reconstruct the information that to be monitored. Finally, using proxies is less
intrusive than applying driver instrumentation, and less complex to implement than
network packet sniffing. However, it still requires the development of different
proxies for different technologies.

The service monitor (SM) component may be composed of three components:
service instrumentation (SI), an optional component in charge of instrumenting the
service under testing, as needed; information collector (IC), responsible for
collecting the information during the execution of the tests; and information
manager (IM), responsible for storing the collected information in a database and for
providing that information to the vulnerability detector component when required.
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3.2.4  Vulnerability Detector

The vulnerability detector (VD) is in charge of processing and correlating the
information collected to detect vulnerabilities. This component is probably the most
critical one and should be able to identify as much vulnerabilities as possible (based
on the available information), while minimizing the number of false positives
reported. As mentioned before, in addition to the traditional analysis of requests and
responses (applied in classical penetration testing), vulnerability detection can be
based on more elaborated approaches such as interface monitoring (Antunes and
Vieira 2011), anomaly detection (Antunes et al. 2009a), etc. (what is important is to
apply techniques that adequately take advantage of the available information). The
vulnerability detector is also the component responsible for managing all the tests by
implementing the testing procedure, which is achieved by orchestrating the
components presented before. This way, two elements should be included in the
detector: the vulnerability identifier (VI) and the testing driver (TD). We propose to
keep these two elements inside the same component as the testing procedure and the
vulnerability detection approach greatly influence each other and are highly
dependent on the vulnerability detection technique being implemented.

A key aspect is that the testing procedure should be as standard as possible in order
to guarantee exhaustive testing and high vulnerability detection coverage. Although
such procedure depends on the specificities of the detection technique, in Figure 3.4
we present an overview of the generic approach we propose. As shown, the
procedure includes four phases: 1) web service instrumentation, 2) workload
execution, 3) attack, and 4) vulnerability detection.

WS Instrum. WL Execution Attack Phase | V.D. Phase |

Legend:
Information used in vulnerability detection

---- Optional elements or connections

Figure 3.4 — Proposed generic testing procedure.
Procedure and flow of information used in the detection phase. Different information is used
by different techniques.
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In the web service instrumentation phase the service monitor component is asked
to instrument the web service under testing in a way that allows gathering the
required information. Obviously, as service instrumentation may not be required in
some techniques, this phase is optional. For example, in the case of classical
penetration testing, the only information needed is web service requests and
responses, whose collection does not require any particular instrumentation (this
information is automatically provided by the workload injector and by the attack
injector).

The workload execution phase consists of generating and submitting the workload
requests. This phase is also optional as running a workload may not be needed in
some cases. For example, classical penetration testing does not require the execution
of the workload, but only the injection of the attacks. On the other hand, more
advanced techniques need to learn the behavior of the applications during the
workload execution for later detecting vulnerabilities to attacks that otherwise
would not be detectable (e.g. blind injection attacks (W. G. Halfond, Viegas, and
Orso 2006)). In practice, the workload execution phase consists of using the
workload generator component for generating requests and the workload injector
component for submitting them. The goal is to allow the service monitor component
to gather information on the behavior of the web service in the absence of attacks.

During the attack phase the attacks are generated and submitted to the web service.
In practice, it consists of using the attacks generator component for generating
attacks and the attacks injector component for submitting those attacks. During this
process, the service monitor gathers information about the behavior of the web
service. This information, combined with the one collected during the workload
execution phase, should then be used during the vulnerability detection phase to
identify vulnerabilities.

3.3 Integrated Approach for Vulnerability Detection

Although the problem of testing services for security has been addressed in the past
(see Chapter 2), most of the existing works disregard key characteristics of service-
based environments. In fact, as discussed in Section 3.1, several challenges are
raised when considering security testing in this context (that are not addressed by
traditional techniques): SOAs are dynamic in nature, facing changes in the services
used and in the way they interact; services are usually under the control of multiple
providers, thus the users of the testing tool may have different types of access to the
services to be tested; and, the service under testing may interact with other services
and resources, thus testing only the interface between the external users and the
service is not sufficient.

To address these problems, this section proposes a generic integrated approach for
testing service-based infrastructures for vulnerabilities (an instance of this approach
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is presented in Chapter 5, including implementation details). Designed in a modular
manner, the approach can be easily implemented to support multiple types of
software services and security vulnerabilities. In practice, continuous interface
monitoring copes with the dynamicity of these environments allowing automatically
discovering the existing services, resources and interactions. This allows creating a
map of the architecture, which is required for extensively testing the overall
infrastructure. The approach considers the use of different testing approaches (that
should be developed following the approach proposed in Section 3.2), depending on
the level of access to each service (i.e. considering the scenarios defined in Section
3.1.3).

The proposed approach is depicted in Figure 3.5, being based in three key generic
steps: 1) Architecture Description, 3) Profiling Interactions and 3) Testing Services.
The following paragraphs detail each of these steps.

Architecture prof“inga Testing 6

Description Interactions Services

————

<@&>

— Requests

3| 9

VAN

Architecture

Figure 3.5 — Generic steps of the vulnerability detection approach.
Sequence of high level steps that may be implemented in different ways and using very
different technologies.

The process starts with a preliminary architecture description (phase 1: Architecture
Description). In this phase, the user must provide information about, at least, the
services that act as entry points for accessing the system (these are typically under
control services that are available to be used from an user point-of-view). However,
when possible, he must also provide information about other known services and
resources, as well as the relations between them (Service-to-Service and Service-to-
Resource). Also, if viable, the user should provide additional information about the
valid domains for each parameter, including domain dependencies among
parameters and the definition of parameters based on complex data types
(composed by a set of individual parameters). Note that, for service operations with
several input parameters, the valid domain for a given parameter may be dependent
on the value specified for another parameter. This information is important to
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improve the quality of the generated workloads and if not provided may lead to
workloads that are not able to exercise effectively the code of the services (i.e. have
low code coverage).

After the input of base information about the services and resources and their
locations, automated pre-processing should be performed to discover gather
information. During the process, the user may be asked for complementary
information for services (e.g. to define which services are under control, or not) and
for resources (e.g. to specify the type of the existing resources). The Architecture is
thus a key element to support the vulnerability testing process. In practice, it consists
of a data structure capable of persistently store information mapping the complete
infrastructure, and can be implemented in many different ways, such as metadata
database, xml files, properties files, or some proprietary binary format (e.g. Java
object serialization format (Gosling et al. 2005)). A key aspect is that it should be
continuously updated as the service-based infrastructure evolves.

Using the definitions obtained in the previous phase, a set of profiling interactions
should be generated and executed (phase 2: Profiling Interactions). The importance
of these interactions is twofold. First, they allow discovering new resources and
services. Second, they are used to gather information for the training phase of the
vulnerability detection techniques that require such training. In practice, profiling
interactions consist of running a set of workloads, one for each of the services
already mapped in the architecture.

A workload is a set of invocations to the service that simulate valid and non-
malicious usage. As mentioned in Section 0, these invocations must be generated for
each service in the infrastructure, as it is not possible to define a generic workload
that fits all services. Due to the automated nature of the process, a practical option is
to use a random workload generator. Obviously, the main problem of the random
workload generation approach is that the representativeness of the interactions is
not guaranteed. However, defining correctly the input domains of each service
allows generating more targeted workloads that may improve the effectiveness of
this phase. Nevertheless, easily integrating components that implement other
workload generation approaches, including real applications, should be possible.

The workloads are progressively submitted to the services, exercising the
infrastructure. For each new service discovered the respective workload must be
created. In the case of services that are totally or partially under control, probes
should be deployed for interface monitoring before submitting the workload. These
probes will monitor the interface activity to detect interactions with other (still not
mapped) resources and services. Similarly to the case of the monitor component
presented in Section 3.2.3, there are multiple alternatives to implement these probes,
including: network packet sniffing, use of proxies and driver instrumentation.

The profiling process is finished when no more services are discovered. Afterwards,
in the testing phase (phase 3: Testing Services), the process proceeds to test the

59



Chapter 3

services in order to detect vulnerabilities. This should take advantage of multiple
vulnerability detection techniques, implemented following the generic design
proposed in Section 3.2. As different techniques require different types of
information to implement the vulnerability detection process (i.e. several testing
scenarios exist, as discussed in Section 3.1.3), during this phase the knowledge about
the types of access and information provided by the user is used to rank the
applicable detection techniques and selected the ones to apply to each service.
Depending on the configuration, one or more of the highest ranked techniques may
be used. In other words, each service should be tested using the most effective
techniques according to its testing scenario. An important aspect is that when more
than one technique is used to detect vulnerabilities, it is necessary to deal with
contradictory results, which may appear as different tools frequently report distinct
vulnerabilities for the same piece of code, including tools that implement the same
detection approach (Vieira, Antunes, and Madeira 2009; Antunes and Vieira 2009a).

Although unlikely, new services may be found during the testing process (most of
the services are discovered during profiling phase). These services should be
included in the architecture to be also profiled and tested. Most probably these will
be within-reach, as services under control have a high probability of being detected
during the profiling phase. The testing process should finish when all the services
are tested.

To use this approach at runtime, besides the aforementioned difficulties of dealing
with tests in services that are running (e.g. due to failure propagation), it is necessary
to return periodically to the profiling phase to deal with updates in the services and
new services being used. It is also necessary to detect services that are
decommissioned or are not used anymore in the infrastructure (the deployed probes
should help identifying services that are not used anymore).

3.4 Conclusion

This chapter established the framework for the detection of software security
vulnerabilities in service-based infrastructures. It presented the specificities of these
environments and discussed the challenges that motivate us to propose such a
vulnerability detection framework. This framework answers to the requirements of
testing such infrastructures and is based on two key ideas.

The first is a standardized and consistent approach to design vulnerability
detection tools targeting web services. This includes the architecture of such tool,
the generic approach, and a set of well-defined components. The approach provides
an integrated support for developing innovative and more effective tools whose
modularity allows iterative improvements simply by upgrading each module by
improved versions of themselves.
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The second idea is an integrated approach that is able to continuously monitor and
test the infrastructure, discovering services and resources in an automated way and
testing them for security vulnerabilities. This integrated approach uses tools
designed using the proposed approach for vulnerability detection (although it is
possible to use other tools, by writing the required interface adapters). This way, has
the tools are improved or new tools are added, the effectiveness of the integrated
approach also increases.

The proposed framework is generic and concrete instantiations of the components
are presented ahead in this thesis. Chapter 4 presents three different techniques for
detecting injection vulnerabilities in SOAP web services, designed using the generic
approach proposed in Section 3.2. These techniques are later used in Chapter 5 to
develop an instantiation of the integrated approach proposed in Section 3.3, focusing
on infrastructures supported by SOAP web services and targeting the detection of
injection vulnerabilities.

An aspect that should be emphasized is that using different techniques for
vulnerability detection raises several questions about how effective these techniques
are and how can we select the best techniques for each scenario. This introduces the
need for techniques to assess and compare vulnerability detection tools. This way,
Chapter 6 addresses this problem by proposing benchmarking approaches for
automated vulnerability detection tools. In the same way performance benchmarks
have contributed to improve the performance of systems, we believe that this can
help to foster the state of the art of vulnerability detection tools for services.
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Techniques for Detecting
Injection Vulnerabilities in Web
Services

Vulnerability detection tools are a key instrument for development teams to test
their services, but research and practice show that state-of-the-art vulnerability
detection tools frequently present low effectiveness both in terms of vulnerability
coverage and false positive rates. This low effectiveness shows the need for
innovative techniques that take into account the different access conditions to the
services under testing. Furthermore, as presented in Chapter 3, vulnerability
detection techniques should implement a generic procedure that supports the design
of standardized and modular tools and that provide improved efficiency. By
implementing a tool based on multiple components (each with a specific purpose) in
a decoupled manner it is easier to later improve the tools.

With the high diversity of web services, types of vulnerabilities, and vulnerability
detection approaches available, designing effective techniques requires focusing on
well-defined domains. In fact, the division of the spectrum into well-defined areas
allows making the right decisions regarding the definition and design of the
components and procedure. As mentioned previously, in this context the definition
of the technique domain includes selecting the class of web services, the, types of
vulnerabilities, and the vulnerability detection approaches (see Section 3.2).

This chapter presents the design of three vulnerability detection techniques that
implement the generic approach and components presented in the in Section 3.2.
Regarding the domain of these techniques, the class of web services targeted is
SOAP web services, while the type of vulnerabilities to be detected are in the
Injection class. The vulnerability detection approach, however, varies from technique
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to technique. It is important to highlight that each technique is presented
individually and that the integrated approach will be discussed in Chapter 5. The
experimental evaluation of tools that implement the proposed techniques is
presented and discussed together with the case studies in Chapter 7.

Due to the importance of penetration testing in service-based environments,
particularly for the case of services within reach (see testing scenario 3 in Section
3.1.3) and the clear limitations of existing tools (Vieira, Antunes, and Madeira 2009),
we first present an improved penetration testing technique. The limitation of this
technique is that, although the testing approach is based on the execution of the code
and on extensive workloads and attacks, the vulnerability detection process still
consists on the analysis of the web services responses, which limits the visibility on
the internal behavior of the service.

To overcome the penetration testing limitations, we then present an alternative
technique that implements a detection approach based on attack signatures and
interface monitoring (Antunes and Vieira 2011). The approach goes further by
monitoring the interfaces between the web service and the resources, which allows
using additional information about the use of the resources related to the
vulnerabilities, achieving higher effectiveness. This tool is particularly useful for the
case of services partially under control (see testing scenario 2 in Section 3.1.3).

The last technique proposed aims at achieving better results by analyzing the
internal behavior of the web service. Vulnerability detection is based on a runtime
anomaly detection approach, which exercises the web service for profiling its regular
internal behavior (learning phase) and then attacks the service (attacking phase),
reporting a vulnerability when some deviation is detected. Comparing with the
aforementioned approaches, it is able to achieve better results due to the added
knowledge about the internal behavior of the application. This tool can only be used
in the case of services under control (see testing scenario 1 in Section 3.1.3).

The outline of this chapter is as follows. The next section presents the improved
penetration testing technique, in particular the generic components (some of them
used in the other techniques) and procedure and the specific vulnerability detection
mechanism. Section 4.2 presents the attack signatures and interface monitoring
technique, emphasizing the new modules (compared to the technique presented in
Section 4.1) and the vulnerability detection approach. Section 4.3 presents the
technique based on runtime anomaly detection, focusing on the innovative
components and on the specific process for vulnerability detection. Finally, Section
4.4 concludes the chapter.
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4.1 Improved Penetration Testing [IPT-WS]

Penetration testing is nowadays the technique most used by web developers to
detect vulnerabilities in their applications and services. It consists of stressing the
application from the point of view of the attacker using a black-box approach, trying
to penetrate it by issuing a huge amount of tampered interactions (Stuttard and
Pinto 2007). This technique assumes particular relevance in the web services
environment, as many times clients and providers need to test services without
having access to the source code (e.g. when testing third-party services), which
prevents the use of more effective techniques that require that access.

The technique proposed in this section targets the detection of injection
vulnerabilities, particularly for services that are within reach but not under control of
a provider (i.e. Scenario 1 presented in Section 3.1.3). Comparing to existing web
vulnerability scanners based on penetration testing, our approach has three key
improvements:

1. It uses a representative workload to exercise the services and understand the
expected behavior (i.e. the typical responses in the presence of valid inputs);

2. It uses a more complete set of attacks. The attacks considered are a
compilation of all the attacks performed by a large set of scanners plus many
attack methods that can be found in the literature; and

3. It applies well-defined rules to analyze the web services responses in order to
improve coverage and reduce false positives. These rules include comparing
the responses obtained when using malicious inputs with the normal
responses (i.e. responses in the presence of a valid workload) and with the
responses from classical robustness tests (Vieira, Laranjeiro, and Madeira
2007).

Figure 4.1 presents the overall design of the technique. Obviously, a service monitor
component is not represented as in penetration testing the monitoring consists
simply in collecting web services requests and responses, which are directly
provided by the workload emulator and by the attacks emulator. Also, information
about the services and resources that used is not accessible, thus they are not
represented. The represented modules are detailed in the following subsections.

4.1.1 Workload Emulation

For generating the workload the technique automatically reads the web service
definitions (i.e. operations, return values, parameters, data types, and domains) from
the WSDL file. As the valid values for each parameter (i.e. the domain restrictions of
the parameter) may not be available, the user is allowed to provide additional
information about the valid domains (including for parameters based on complex
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data types, which are decomposed in a set of individual parameters). Table 4.1
shows an example of how the user should specify the domains for an example web
service named ValidateService that provides the following operation to the clients:
ValidateObject (String name, String date, String trackingNumber, int number).

Workload E. (WE) V. Detector (VD)

& WG WI R'e(quest TD — >
=P esponse
@ {®>

-HTTP-

B0t —
AG Al

Attack E. (AE)
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Service

l,L Provider (SP)
Report

Legend:
WE wWorkload Emulator
& User 1input
WG workload generator
wI workload injector
AE Attack Emulator
AG Attack generator
AT Attack injector

VD Vulnerability detection module
4.1.2 TD Testing driver

VI Vulnerability identifier
R Vulnerabilities detected
SP Service Provider

S web Service under test

--- Optional elements or connections

Figure 4.1 — Overall design the improved penetration testing technique.
This technique targets Injection vulnerabilities in web services.
Being an approach based on penetration testing, some of the modules depicted in Figure 3.2
are not applicable, thus they are not presented.
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Table 4.1 - Example of the domain specification for each parameter.

Example parameters that represent different data types and domains. For instance, the

trackingNumber must respect the pattern shown in the third row in the table.

Service Operation and Parameter

Parameter Domain Definition

validateObject.name

Type: String
Min Length: 3
Max Length: 15

validateObject.date

Type: Date
Format: YYYY/MM/DD

validateObject.trackingNumber

Type: String
pattern: \u{2} \d{4} \d{4} \d \u{2}

validateObject.number

Type: Integer
Min value: 100000000
Max Value: 999999999

Two options are available for generating the workload. The first option is to use a

user-defined workload. In this case, the user should implement a workload

emulation component to be integrated in our testing technique (the tool allows to

load the workload from xml files that respect a certain format; also, an API is

provided to allow the user to program an adaptor). To simplify the implementation

of the workload generator there are several easy to use client emulation tools like

soapUI (eviware 2008) that can be used. The second option is to use the random
Workload Generator (WG) provided, which is able to generate a workload
automatically by performing the following steps:

1. Generate test values for each input parameter: using the web service

definitions mentioned above, the technique generates randomly a set of valid

input values (i.e. values in the parameter domain specified by the user). The

number of test values to be generated is also defined by the user.

2. Generate test calls for each operation: the technique creates a large set of

calls for each operation. This consists in the sum of all combinations of the

test values generated for all the parameters. For example, take an operation

with 5 parameters (p) and 10 test values (v) for each parameter. The total
number of test calls is 100000 (i.e. vP).

3. Select test calls for each operation: as it may be unfeasible to use a workload

based on all the test calls generated (e.g. due to time constraints), the

technique is able to randomly select a subset of the calls. Obviously, it is up

to the user to specify the size of this subset, which determines the final size of

the workload to be applied during the tests.

Note that, the main problem of the random workload generation approach is that the

representativeness of the web service calls is not guaranteed (although our technique

allows using workloads of different sizes and randomly generated values are
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enough in most cases). Thus, this approach should be used only if the user-defined
workload approach is not possible. Obviously, replacing the workload generator by
more advanced workload generation approaches (as discussed in Section 3.2) allows
easily improving the effectiveness of the technique. After the generation process, the
workload injector (WI) executes the workload to gather information about the web
service typical responses (i.e. responses obtained without injecting attacks).

4.1.3 Attack Emulation

The IPT-WS technique includes an attack generator (AG) module that takes the
workload and replaces valid values by malicious values one parameter at a time.
This replacement follows an extensive set of mutation rules that is based on the
compilation of the attacks used by a large set of scanners (three commercial:
Acunetix Web Vulnerability Scanner (Acunetix 2008a), IBM Rational AppScan (IBM
2008), HP WeblInspect (HP 2008), and two open source: Foundstone WSDigger
(Foundstone, Inc. 2005), and wsfuzzer (OWASP Foundation 2008)). This list was
analyzed and complemented based on practical experience and using information on
injection methods available in the literature (e.g. (Jensen et al. 2007; Stuttard and
Pinto 2007; Shema 2010; W. G. Halfond, Viegas, and Orso 2006)). The final list
includes 137 attack types (see Table 3.1 for examples and (Antunes 2013) for the
complete list).

The number of attacks to be performed can be extremely huge and depends on the
size of the workload considered and on the number of mutation rules to be applied.
Take for example a web service with 3 operations with 5 parameters each and a
workload with 25 test calls per operation. Applying all the attack types (137) over the
entire set of test calls (25) for every parameter (5) of each operation (3) would end up
representing 51375 (137 x 25 x 5 x 3) web service executions. Depending on the time
available this may be unfeasible. This way, the technique allows the user to specify
the number of test calls from the original workload that should be used for the attack
load generation. For this, the original test calls are ranked based on their ability to
help us detecting vulnerabilities and then a subset is selected. In practice, ranking is
built using the following rules:

1. Test calls that during Phase 1 leaded to valid web service responses (i.e. no
exception, no server error, and no SOAP error) are in the top of the list.

2. Test calls that during Phase 1 leaded to web service exceptions are in second
place.

3. Test calls that during Phase 1 leaded to server errors (e.g. HITP errors in the
400 and 500 intervals) are in third place.
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4. Test calls that during Phase 1 leaded to client-side errors (e.g. SOAP
exceptions) are in the bottom of the list (used only as last resource).

After the generation process, the attacks are submitted to the web service and the
responses are collected. This (attacks and corresponding responses) together with
the information gathered during the execution of the workload (valid requests and
corresponding responses) provide the support for the vulnerability detection phase.

4.1.4 Vulnerability Detection

The VD module is in charge of processing and correlating the information collected
to detect vulnerabilities. As proposed in the generic approach (see Section 3.2), two
elements are included in the detector: the vulnerability identifier (VI) and the
testing driver (TD). However, some of the (optional) elements represented in Figure
3.4 are not needed in the case of IPW-WS. In fact, as this technique is based on
penetration testing, no instrumentation phase is required and no additional
information is available besides the analysis of requests and responses. This way, the
resulting procedure includes three phases: 1) workload execution phase, which
consists of generating and submitting the workload requests as specified in 4.1.1; 2)
attack phase, in which the attacks are generated and submitted to the web service as
detailed in 4.1.3; and finally 3) vulnerability detection phase, where the information
collected is used to identify vulnerabilities, as detailed in the next paragraphs.

By analyzing the responses obtained during the workload and attacks execution,
together with the application of well-defined rules, makes it possible to identify
vulnerabilities and exclude potential false positives. This is a crucial step to achieve
high coverage low false positive rates. The proposed process is depicted in Figure
4.2.
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Figure 4.2 — Web service response analysis.
Specific vulnerability detection procedure for finding the maximum number of vulnerabilities
while reducing the false positives reported.

The following points describe the figure and the steps performed to analyze the
results for each of the attacks performed over each parameter:

1. If the response obtained is a client side error (e.g. SOAP stack error) then the attack was not
successful and no vulnerability was explored, as the web service code was not even executed.

2. Otherwise, if the response is an error then
2.1. VIf the response for the original test call (before being mutated with malicious values) was
the same then the error is not due to the attack, but to another characteristic of the service
(e.g. a software bug or database server problem).
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2.2. Otherwise, apply robustness testing over the parameter, as proposed in (Vieira, Laranjeiro,
and Madeira 2007). Creating a robustness test is very similar to the creation of an attack.
However, instead of a malicious input, the attack injector uses a non-malicious invalid input
(i.e. values outside the expected input domain). The Testing Driver module is in charge of
asking the Attack Injector to generate and execute this request. The technique includes a
predefined set of values for each possible parameter domain (see details in (Vieira,
Laranjeiro, and Madeira 2007)).

2.3. VIf the responses obtained during robustness testing include the same error then the error
obtained is due to a robustness problem and not to a vulnerability.

2.4. XOtherwise, an injection vulnerability exists as the attack leaded to invalid responses that
could not be observed when using a valid workload or when applying robustness testing.
This means that the invalid response is caused by the attack, and not by a value out of the
target parameter’s domain. This is a strong symptom of the existence of a vulnerability.

3. XOtherwise (i.e. a valid response in the presence of the attack), if the execution of the original
test call (before being mutated with malicious values) leaded to a database error, server error or
web service exception then an injection vulnerability has been detected, as the attack was able
to exercise parts of the service that were not possible to execute when using a valid workload.
An example of this situation is when an attack is able to circumvent an authentication
mechanism that was preventing valid test calls from proceeding.

4, XOtherwise, if the response obtained in the presence of the attack is the opposite of the
response obtained for the original workload call (before being mutated with malicious values)
then an injection vulnerability has been detected, as the attack leaded to the successful
execution of the operation, which was not the case when using the valid workload. Take for
example an operation that performs a database modification and only returns a value indicating
the success or nonsuccess of the modification. If and attack is able to circumvent an
authentication mechanism that was preventing valid test calls from proceeding, then there is a
security vulnerability.

5. \/Otherwise, no vulnerability was found. The attack did not change the web service behavior in
a visible manner.

The most difficult step of the algorithm is Step 4. In fact, it is quite difficult to
establish if a response obtained in the presence of an attack is the opposite of the
response obtained for the original test call. The rules must be simple and applied to
data types that allow determining the opposition between the result of a valid
request and an attack. This way we propose the set of rules presented in Table 4.2 to
make these decisions. Obviously, these rules may be a source of false positives, but
the user of the technique can easily integrate new rules.

As in classical penetration testing, the proposed IPT-WS is based on the effective
execution of the code, and as the service is tested from the user point of view, there
is no need to access or modify the source code (which many times is not even
available), for instance when testing third party web services. The main problem is
that, in practice, vulnerability identification can only rely on the analysis of the web
services output to the client. This way, the effectiveness of the proposed
penetration testing approach is still limited by the lack of visibility on the internal
behavior of the service.
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Table 4.2 — Rules for the analysis of opposite responses.
Simple and effective rules that allow the technique to easily find if one value is the opposite of

another.
Original Response Opposite Response
False True
Fail Success
0 1
Empty list or array List or array with values
0 GUID data type
Error No Error
Invalid Valid

4.2 Attack Signatures and Interface Monitoring [Sign-WS]

To tackle the limitations of penetration testing, this section presents the design of a
technique named Sign-WS that uses attack signatures and interface monitoring for
the detection of injection vulnerabilities. This technique targets the detection of
Injection vulnerabilities in services partially under control (Scenario 2 defined in
Section 3.1.3).

The goal is to improve the testing process by providing enhanced visibility, yet
without needing to access or modify the web services code. The key assumption is
that most injection attacks manifest, in some way, in the interfaces between the
attacked web service and other systems (e.g. database, operating system, gateways)
and services (e.g. other web services in a service composition). For example, a
successful SQL Injection attack leads the service to send malicious SQL queries to the
database. Thus, these attacks can be observed in the SQL interface between the
service and the database server. Similarly, XPath Injection attacks (on top of XPath or
XQuery) manifest at the interface with XML files (OWASP Foundation 2013) and OS
Command Injection are visible at the interface with the operation system (Stuttard
and Pinto 2007), etc. In practice, the approach targets the vulnerabilities that lead
web services to be used as front end for attacking backend resources.

Comparing with traditional penetration testing and with the IPT-WS technique, the
Sign-WS technique is more effective as it uses additional information that allows
increasing the number of vulnerabilities detected and reduce false positives. For

72



Techniques for Detecting Injection Vulnerabilities in Web Services

example, blind injection vulnerabilities (that exist when an application is vulnerable,
but the results of an attack are not directly visible to the attacker) cannot be detected
by traditional penetration testing (or by our IPT-WS technique); however, they can
be detected by the Sign-WS approach as they can be observed in the interface
between the web services and the resource targeted by the attack. Furthermore,
detecting vulnerabilities based on the effects of attacks (e.g. changes in SQL queries),
is much more precise than considering only the analysis of the web service output,
allowing decreasing the rate of false positives. Figure 4.3 presents the overall design
of the technique, which is detailed in the next subsections. Note that the technique
does not require a Workload Injector module, as the technique has no need to know
the regular behavior of the web service (i.e. how the service behaves under non-
malicious requests). The random workload generator presented in Section 4.1.1 is used
to support the generation of attacks when using the internal attack generator. This
way, the workload emulation component is not discussed.

4.2.1 Attack Emulation

Sign-WS supports two options for generating attacks: it includes a specific
generation module, similar to the one presented in Section 4.1.3, and also allows the
integration of an external technique (e.g. another vulnerability scanner). A key
aspect that is common to both cases is that signatures are added to the attacks to
later support the detection of vulnerabilities. This way, the concept of attack
signatures is transversal to both cases. Also common to both cases is the fact that
after the submission of a signed attack, the tool continuously waits for receiving a
notification of any signature detected. When it receives such notification, a match is
established between the information received and the attacked input. This way, it is
possible to precisely identify the attacked input and report it as vulnerable. The next
paragraphs present the concept of attack signatures and describe how they are
added to the attacks.

Defining Efficient Attack Signatures

In the literature, attack signatures are defined in multiple ways, depending on the
type of system studied, but according to (Sabhnani and Serpen 2004) an attack
signature is “a distinctive complex pattern used to detect system penetration, which may
involve comparison of audit and log data from a variety of sources within the computing
platform or infrastructure”.
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Figure 4.3 — Overall design of the Sign-WS technique.
The technique detects injection vulnerabilities in web services using attack signatures and
interface monitoring. The resources are faded because they may be outside of the provider’s
control. However, their interface is known.

In the context of this work, an attack signature is a token that is introduced inside a
malicious string (the injection attack) in such way that, if the attack is successful, the
token is observable somewhere in the interfaces of the service. For example, in a
successful SQL Injection attack, the signature should show up in the manipulated
SQL command (the target of the attack), outside any literal string (i.e. as a part of the
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actual command), revealing that it is possible for attackers to modify the structure of
the command sent to the database server (OWASP Foundation 2013). In this case, the
signature is considered active (see example in Figure 4.4 (a)). Otherwise, if the
signature is placed inside a literal string, it is considered inactive and is inoffensive
(Figure 4.4 (b)).

Select n from t where dsc LIKE '"%input' SIGNATURE%';
(a)
Select n from t where dsc LIKE "%input SIGNATURE%';

(b)

Figure 4.4 — Examples of queries with signatures.
(a) the signature is active; (b) the signature is inside a literal string, it is inactive.
The red text represents the signature while the bold signals a literal string.

Defining attack signatures is not easy. On one hand, signing attacks with complex
signatures may not be possible due to length limitations of the target commands or
parameters, restrictions in terms of the characters that can be used, etc. On the other
hand, very simple signatures may raise false positives, as there is the risk of using a
signature that matches a valid keyword (the valid keyword would wrongly suggest
the presence of the signature). This way, to maximize the success of the approach,
the signature token must be:

1. Unambiguous: the signature must not be easily confused with the
tokens/keywords regularly found in the context of the applications being
tested;

2. Inoffensive: the signature must not include characters that may be filtered,
escaped or refused. Although the goal is the attack to pass the protection
mechanisms, the signature token must be harmless;

3. Informative: the signature must include information about what is being
attacked to later allow the identification of the vulnerable input;

4. Short: the token must be as short as possible to avoid problems with limited
length fields or protection mechanisms as length validators, which are
extremely common in web services.

The proposed signature model is composed of a set of five elements, including two
delimiters, two identifiers (that represent the information transported by the
signature), and a qualifier (see example in Figure 4.5). The first delimiter (underscore
character) marks the beginning of the signature, the first identifier represents the
web service operation or resource being tested, the second identifier is the input
parameter attacked, and the second delimiter (again an underscore character) marks
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the end of the signature information. The qualifier, placed after the second delimiter,
indicates whether the signature is applied in normal or reversed mode, as explained
below.

This model allows short and informative enough signatures. To reinforce
unambiguity, each time a signature is detected in an interface, a confirmation
request is submitted, now containing a reversed version of the signature. This is
important to decrease the probability of using a signature that, by coincidence,
partially matches a part of the target command, also providing a second validation
of the vulnerability. As signatures do not include any “special” characters, they do
not suffer any transformation due to existing escaping routines, thus assuring
inoffensiveness. Obviously, to guarantee portability and allow adapting to different
types of web services, the user of the technique is allowed to configure the signature
model he wants to apply (using regular expressions).

Figure 4.5 shows the signature model (including the reversed version) used with the
default configuration of our technique. When building the signature, digit “1” is
replaced by the identifier of the web service operation under testing, and digit “2” is
replaced by the identifier of the input parameter attacked. Each identifier can be a
number (10) or a letter (52). The attack injector maintains a dictionary that maps each
identifier to their real meaning. Obviously, if the number of operations or input
parameters is greater than 62 (it rarely is) then it is necessary to add digits to the
signature model described in configuration files, increasing the size of the signature.

12 p 21 o0
(a) (b)

Figure 4.5 — Signature token used. (a) regular token; (b) reversed token.
The regular token respects characteristics that help it to be successful. The reversed token is
used to confirm the vulnerabilities detected.

Generating Signed Attacks in the Internal Attack Generator

As presented in Section 4.1.3, the approach implemented by the internal attack
generator (AG) consists of mutating the workload requests. In practice, valid values
are replaced by the malicious values. Differently from IPT-WS, however, is the fact
that Sign-WS adds signatures to the attacks for later supporting the vulnerability
identification. In the default configuration, Sign-WS uses a set of attack types that is
based on the compilation of the types used by a large set of scanners, complemented
with practical experience and information on SQL Injection methods available in the
literature (as shown in Section 4.1.3). The final list includes 102 attack types (this list
slightly differs from the list used in Section 4.1.3, as in many cases the attacks are not
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adequate to be used together with a signature). Some examples, including signatures
placeholders, are presented in Table 4.3 and the full list available at (Antunes 2013).

For better understanding the concept, consider the following examples: attack 1)
tries to invalidate the query by closing a literal string and exposing the signature.
Attack 2) is designed to avoid naive escaping mechanisms using a slash (\’) as
protection. Attacks 4) and 5) try to turn a where clause into a tautology (e.g. to
circumvent an authentication mechanism), while exposing the signature. Attack 10)
is similar to 1) but tries to also include the value of the valid workload to disguise
the attack and signature. As shown, there are some tokens representing placeholders
to be replaced at runtime. These tokens are useful to define more complex and
efficient attacks. The meaning of each of the tokens is as follows:

Table 4.3 - Examples of signed SQL Injection attack types.
These include special placeholders that define where the technique will insert the signature
and other important data.

SQL/XPath Injection mutation rules

1 ' %SIGNATURE%

2) \' %SIGNATURE%

3) ' —- %SIGNATUREY%

4) ' or 0=0 -- %SIGNATURE%
5) "= "' or %SIGNATURE% = '
6) hi') %SIGNATURE% ('a'='a
7) = %SIGNATURE% || '

8) 1" || %SIGNATURE% || '

2 ' UNION %SIGNATURE%

10) %WORKLOAD%' %SIGNATURE%
11) %WORKL_%"' or %SIGNATURE%=%SIGNATURE% --

* %SIGNATURE% - is a placeholder to be replaced by the signature token
dynamically generated. Using this, the user can control the specific location
of the signature inside the malicious string;

* %WORKLOAD% -is a placeholder to be replaced at runtime by the value of
the input in the original workload request. This is useful because it helps to
disguise the attack with valid data, avoiding some weak validators that
perform pattern matching. An example is a validator that only accepts a
format that consists of a date with some more text (“DD-MM-YYYY (...)").
For an attack to be successful, it needs to contain the date token. If the
workload was correctly generated to fit this kind of domain restrictions,
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using the workload as a base to generate the attacks increases the chances of
generating a successful attack;

* %WORKL_% - similar to %WORKLOAD%, but in this case only the initial
characters are used in order to maintain the total length of the input. This
helps avoiding length validators. For instance, considering a validator that
accepts a string with a length between 100 and 150 characters (or even a more
restrictive range), if the workload request is valid, then the attack generated
using this token is also valid (as we cut from the string the characters needed
to introduce the signature without exceeding the limits).

An important point is the use of the apostrophe character (‘). This character is
usually the one that delimits literal strings in commands or queries. However,
sometimes other characters have similar functions, for instance the quote character
(“). This way, the user can define in the configuration file the values to use in that
position, and at runtime the technique performs the needed replacements. If
multiple values are defined, the technique replicates the attack for each one. For
example, during our tests (presented in Chapter 7), four values were used: “"'”, “"”,
“&apos;” and “&quot;” (the two string delimiters and the correspondent html

entities).

The defined attacks cover the majority of the cases, using techniques that try, for
instance, to avoid weak escaping mechanisms by combining multiple escaping
characters together. However, the user can easily add more attacks using the rules
defined above. A key aspect is that, to reveal a vulnerability, the attack does not
need to be successful on accessing, modifying or destroying data. It is only required
that the attack is able to modify the structure of the backend command. For example,
in the case of SQL Injection, what is required is the attack to be able to change the
structure of the SQL query in such way that the signature token can be identified in
the service interface with the database server as being active. The same is valid for
other types of injection vulnerabilities.

Signing attacks generated by an External Attack Generator

As an alternative to the internal attack generator, the technique allows to use a third
party tool to generate the attacks that later will be signed. The concepts behind the
signatures used are exactly the same as introduced before. Here we focus solely on
the way externally generated attacks are intercepted and signed.

For supporting the integration of an external tool to generate attacks, the attack
injector intercepts the requests performed by that tool. In practice, all the requests
are intercepted, locally stored, and finally forwarded (without any change) to the
target web service. The idea consists of later strategically placing a signature close to
the attack. The overall architecture of the system is depicted in Figure 4.6.
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Figure 4.6 — Mechanism to intercept and sign external requests.
The proxy intercepts the HI'TP requests and stores a copy for future use.

As we can observe, an HTTP proxy is used to intercept the requests performed by
the penetration testing tool. Regarding the external tool, it is only required that it is
configured to use an HTTP proxy, which is allowed by most tools and consists in
changing a simple parameter (e.g. add a proxy address and port in the tool settings).
Sign-WS uses LittleProxy (LittleShoot 2010) that is an open-source “high-performance
HTTP proxy written in Java”, available online under Apache 2 license. The proxy was
modified to intercept all the requests performed by the external testing tool and
forward them without any change. In this phase, the requests are not signed, as the
goal is to allow the penetration tester to perform its work without any interference.
The only interference are the very small delays introduced by the proxy, but this is
not considered an important problem as timing issues are not particularly important,
especially during the type of security testing targeted by our tool.

After the external testing tool completes the scanning process, all the stored requests
are analyzed by the attack injector, searching for attacks (i.e. requests containing
malicious input strings). When an attack is found, a signature token is added to the
attack string. The signature includes information about the component and input
under attack (obtained from the original request) that is also inserted in the
dictionary that maps the identifiers to the inputs they represent. The place in the
attack string where the signature is inserted can be defined by the user of the
technique, in the form of key characters. These key characters depend on the type of
attack being conducted; for example, in our experiments with SQL Injection we
considered the typical characters necessary to launch SQL Injection campaigns:

literal string delimiters (' and "), the equal character (=) often used to manipulate
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SQL conditions, and the parenthesis characters () and (), used to manipulate or add
subqueries. After this, the new request is sent to the web service. If no key character
is found in the original request, then it is discarded, as it is not considered an attack
(e.g. the external tool is issuing a non malicious request).

4.2.2  Service Monitoring

Simultaneously to the submission of the attacks containing the attack signatures, it is
necessary to monitor the interfaces of the application to capture the executed
commands (IC component in Figure 4.3). To monitor the interface of the web
services there are multiple options depending on the type of interface, including (as
detailed in Section 3.2.3): use network packet sniffing, use a proxy, instrument the
code, etc. In the particular case of Sign-WS we perform driver instrumentation. In
practice, when the interface to be monitored is accessed through a driver (e.g. Java
applications use JDBC drivers to access the database server), this driver can be
instrumented to include monitoring facilities. Obviously, driver instrumentation is
an intrusive technique, but the modifications can be done outside the core of the
applications being tested. In fact, it is possible to create an instrumented version of a
specific driver that can even be used in different applications.

For example, the Sign-WS implementation targeting SQL Injection attacks we
instrumented a JDBC driver using Aspect-Oriented Programming (AOP) (Kiczales et
al. 2002), in order to monitor the queries sent to the database. AOP is a well-known
programming paradigm that allows injecting crosscutting concerns into any
application in a non-intrusive way (Kiczales et al. 2002). The Java Database
Connectivity (JDBC) API is designed to access any kind of tabular data, but it is
mostly used to access relational databases in Java applications (Reese and Oram
2000). It is the responsibility of each database vendor to provide a library containing
the JDBC driver and the implementation of the JDBC API for Java applications to
interact with its Database Management System (DBMS).

In practice, AOP was used to transparently intercept the key points inside the JDBC
library where the SQL commands are sent to the database server. The result of this
process was a new driver library. To use this driver during the web application
testing process, what is needed is to refer the modified version in the classpath of the
application instead of the original one. This is the main reason for our option: it is
very practical to use it in different Java based-systems during the experimental
evaluation. A similar approach is used for other drivers.

When the signed attacks are submitted to the service, the information collector (IC)
gathers information from the web service interfaces. This information is stored by
the information manager (IM) in a database (together with the corresponding
requests) and later used by the vulnerability detector (VD) to identify vulnerabilities.
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4.2.3  Vulnerability Detection

After capturing the commands at the service interfaces, it is necessary to process and
analyze them to detect potential vulnerabilities. In practice, when a signature token
is found outside a literal string in a command sent to an external resource, this
means that there is a vulnerability in the web service. Thus, before applying regular
expressions to find signatures, it is necessary to process the data in order to remove
the inoffensive parts (e.g. control characters, well-formed literal strings). Figure 4.7
shows an example of the transformations applied to SQL queries during the
command processing steps (a similar approach is used for other types of
commands).

* Step 1: all the correctly escaped slashes (\), apostrophes (') and quotes (")
are removed from the string. Obviously, the definition of “correctly escaped”
varies according to the type of commands that are being processed.

e Step 2: the remaining literal strings identified by the regular expression
“t[A']%"” are removed. This regular expression represents a collection of
characters delimited by two apostrophes that cannot contain apostrophes
inside.

* Step 3: any attack signature that still remains in the command after this
process is considered active, as can be observed in Figure 4.7 (a). In this case a
vulnerability is identified, having the associated information: ‘2" (operation or
resource under testing) and ‘8" (input parameter attacked). This is the
information that allows linking the vulnerability to the input that can be used
to exploit it. Obviously, the attack signatures should include the information
needed to make a correspondence between this information and the inputs of
the service under testing.

1: select n from t where dsc LIKE '%input' _28_p%';
Select from t where dsc LIKE '%input' _28_p%';
3: select n from t where dsc LIKE _28_p%';

(a)

N
=]
+

1: select n from t where dsc LIKE '%input\' _28_p%';
Select n from t where dsc LIKE '%input _28_p%"';
3: Select n from t where dsc LIKE ;

(b)

+

N
+

Figure 4.7 — Examples of command processing steps with SQL queries.
(a) an active signature is found; (b) no active signature is found. Transformations
applied to each query during the processing. Tokens in red are removed in that step. Tokens
in bold are active signatures.

81



Chapter 4

4.3 Runtime Anomaly Detection [RAD-WS]

Although the use of attack signatures and interface monitoring pushes the
effectiveness of the Sign-WS technique beyond the limits of penetration testing, it
still ignores important information that may be available to the providers of web
services. This information is related to the internals of the application and can be
effectively used to understand the internal behavior of the web services. To take
advantage of this information, this section presents the design of a runtime anomaly
detection technique for the detection of injection vulnerabilities. The technique
targets the detection of Injection vulnerabilities in services under control (Scenario 3
defined in Section 3.1.3), as it is necessary to perform some changes to the services
under testing.

The idea is to instrument the web service and then to generate and run a workload
to exercise it, while learning the profile of the internal commands issued (e.g. SQL
and XPath commands). Afterwards we generate and run a large set of injection
attacks and observe the internal commands being executed. By matching the
command issued during the attack phase with the profile that was learned during
the previous phase, it is possible to detect anomalies that can be reported as
vulnerabilities.

Comparing to the approaches proposed before, RAD-WS takes advantage of
information about the internal behavior of the service under testing, which allows
increasing detection coverage. Figure 4.8 presents the design of the technique
components, which are detailed in the next subsections. The Attack Emulator
component is not detailed as this technique uses the one implemented by IPT-WS
(presented in Section 4.1.3).

82



Techniques for Detecting Injection Vulnerabilities in Web Services

e o o o o o o o o o o o o o o

" RO_L .
Workload E. (WE) V. Detector (VD) S Monitor (SM) N
& Request| TD .) “/ :
-—-p <.> Response e /\ .
WG Ext. ! ; i N —YIs Rif |
...... 1 N .
! ' -HTTP- . \Z\ WS K’% .
' Attack| .
ern
@4 ResponT O § \\\ R3 :
AG AL | IC SRY -
IM ’
Attack E. (AE) c o) .
: : oSt | -
--------- U : S R
AG Ext. = Report . Service Provider (SP) §
Legend:
WE wWorkload Emulator
& User 1input
WG workload generator
wI workload injector
WG EXt. External workload generator
AE Attack Emulator
AG Attack generator
AT Attack injector
AG Ext. External attack generator
VD Vulnerability detection module
TD Testing driver
VI Vulnerability identifier
R Vulnerabilities detected
SM Service monitor
IC Information collector
SI Service instrumentation
IM Information manager
SP Service Provider
wS web Service under test
R Resource
RO XML database
R1 Payment gateway
R2 Database
R3 FTP server

--- Optional elements or connections

Figure 4.8 — Overall design of the RAD-WS technique.
The technique learns the profile of the regular behavior of the service and then detects
injection vulnerabilities in web services by detecting anomalies in this behavior during the
attack phase.
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43.1 Workload Emulation

The workload emulator (WE) module is similar to the one presented for the IPT-WS
technique in the Section 4.1.1. In fact, the workload generator (WG) is based on the
random workload generator presented. However, during the process of executing the
workload, a responsibility of the workload injector (WI) module, there is a key part
of the process that is substantially different: the Service Monitor must profile the
commands executed to latter be used for vulnerability detection.

The workload injector exercises the service by executing the generated workload.
During this phase, internal commands (e.g. SQL and XPath commands) are
intercepted (using AOP, as presented in Section 4.3.2) and parsed in order to remove
the data variant part (if any) and a hash code is generated to uniquely identify each
command. In other words, the information used does not represent the exact
command text, since commands may differ slightly in different executions, while
keeping the same structure. For example, in the case of the SQL command presented
in Figure 4.9, the job and the salary in the select criteria are dependent on the user’s
choices (see line 1 in Figure 4.9). Thus, instead of considering the full command text,
we just represent the invariant part of it (see line 3 in Figure 4.9). As shown, the
variant parts (i.e. numbers and literal strings) are progressively removed.

SELECT * from EMP where job 1like 'CLERK' and SAL > 1000;
SELECT * from EMP where job 1like str? and SAL > 1000;
SELECT * from EMP where job 1like str? and SAL > Nbr?;

(W N =

Figure 4.9 — Process to remove the variant parts of an SQL query.
The lines show the transformations applied to each query during the processing. Tokens in
red (and italic) are removed in that step.

Each hash signature is associated with a source code entry point (which is provided
by the AOP) in a Map structure. This does not mean that we need the original
application’s source code; it just means that we need bytecode compiled with source
code line information, which is generally the case, even in production applications,
as it provides extra information on failure events. In the previously referred Map
structure, each key corresponds to a code that includes the source code point and,
when available, a part of the stack trace information. Each key is associated with a
set of valid/expected hashed commands. Using the stack trace information allows to
differentiate information that otherwise would not be available, since the application
can use a single piece of specific code to execute all the interactions with database,
thus using only the entry source point would be less informative. Note that, as
represented in Figure 4.10, in a given point there might be several valid commands
(this is why we need a set of valid commands for each source code point).
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'.i f (isInsert()) {

sql = “INSERT INTO CLIENT VALUES (seq.nextval, Jack')”;
} else {
sql = “UPDATE CLIENT SET NAME='John' WHERE ID=1";

}

statement.execute(sql);

Figure 4.10 — Example of SQL commands execution.
The actual “sql” executed has two different valid possibilities, depending on the execution.

An important aspect is that the workload must guarantee a minimum level of code
coverage (as discussed in Section 0). Although this does not assure a complete
learning of internal commands, it allows us to have a high confidence degree. This
way, the technique allows easily integrating an external code coverage analysis
technique. Additional workload requests are generated if the coverage value is
under a given threshold defined by the user.

4.3.2  Service Monitoring

For the web service instrumentation we again use the well-known Aspect-Oriented
Programming (AOP) paradigm (Kiczales et al. 2002). In this case it was used to
intercept key web service execution points and introduce the vulnerability detection
mechanisms.

Vulnerability detection starts by automatically identifying all the locations in the
web service code where commands are executed. This is achieved by using AOP to
intercept all the calls to methods that belong to APIs used to execute SQL commands
(e.g. Java’s JDBC, the Spring JDBC, etc.), to evaluate XPath expressions (e.g. Java’s
JAXP, JaxenXPath, etc.), etc. Virtually any API can be added, as the only requirement
is to know the signature of the method to be intercepted. Figure 4.11 represents the
basic architecture of the interception mechanism.
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Figure 4.11 — The AOP Based Service Monitoring system.
The Information Collector intercepts the commands and sends them to the Profiler or to the
Vulnerability Identifier depending on the phase of the process. The names of the modules are
the same as in Figure 4.8.

As we can observe, at runtime the issued SQL commands, XPath queries, etc., are
intercepted and delivered to the Information Collector that includes a dispatcher.
The decision here is simply to check if the application is in profiling mode or in
detection mode and to deliver the request to the appropriate module (i.e. the profiler
or vulnerability identifier modules). It is important to emphasize that
instrumentation does not change the web service behavior (the code logic is not
modified) and that it is only meant for the RAD-WS technique (it is removed after
testing).

4.3.3  Vulnerability Detection

To detect vulnerabilities we perform security checks for each data access executed
during the attack phase. As mentioned before, all commands (SQL, XPath, etc.) are
intercepted (using AOP), hashed, and stored during that phase. These are compared
to the values of the learned valid commands for the code point at which the
command was submitted. In practice, the matching process consists of looking up
the current source code origin in the previously referred Map structure and getting
the set of hash codes of the valid (learned) commands for that point. This set
(generally quite small) is then searched for an element that exactly matches the hash
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of the command that is being executed. If a match is not found, the occurrence (i.e.
the potential vulnerability) is logged for future reference.

The log entry includes a reference to the code location where the vulnerability was
detected, the query that was executed in the presence of the attack, and information
about the operation input values, namely the attacked parameter and the attack
value. If the source code origin is not found in the Map lookup, the log indicates that
the line was not learned. This case indicates that the learning phase is incomplete
(coverage was not good enough) and that a more exhaustive workload is required.
Note that the lines that have not been learned provide indications on how to
improve the workload to increase coverage.

4.4 Conclusion

This chapter presented the design of three vulnerability detection techniques that
implement the generic approach and components presented in the in Chapter 3. The
domain of these techniques is SOAP web services and Injection vulnerabilities. The
vulnerability detection approaches are respectively: improved penetration testing,
attack signatures and interface monitoring, and runtime anomaly detection. For each
of these techniques the generic design was instantiated and the generic components
and procedure were defined. These tools use different parts of the generic
architecture, showing the versatility of the approach.

The improved penetration testing uses representative workloads to exercise the web
services, implements effective attackloads, and applies well-defined rules to analyze
the web services responses, thus improving detection coverage while reducing false
positives (compared to traditional penetration testing). The attack signatures and
interface monitoring approach overcomes the visibility limitations of penetration
testing by introducing special tokens inside the injection attacks and then monitoring
the interfaces of the service under testing looking for these tokens to detect
vulnerabilities. Finally, the runtime anomaly detection approach exercises the
service for profiling its regular internal behavior and then attacks the service,
reporting a vulnerability when some deviation is detected. This grasp on the internal
behavior of the application allows going even further in terms of vulnerability
detection coverage and false positive avoidance.

It is important to note that each technique presented targets the individual testing of
web services while the integrated approach focusing on service-based infrastructures
is presented in Chapter 5. The experimental evaluation results are discussed in
Chapter 7, which shows the potential of the proposed techniques, when compared to
the current state-of-the-art.
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Integrated Tool for Detecting
Vulnerabilities in Service-Based
Infrastructures

Although the problem of testing services for security has been addressed in the past
(see Chapter 2 for related work and Chapter 4 for proposed techniques), most works
disregard the specific challenges raised by service-based environments, as
discussed in Section 3.1. The integrated approach proposed in Section 3.3 is a
solution towards this problem. In short, the approach is based on continuous
monitoring to discover the services, resources and interactions, which allows coping
with the dynamicity of these environments. It is based on three generic steps:
architecture description, profiling interactions, and testing services. The key idea is
to take advantage of multiple vulnerability detection tools to test the web services
depending on the level of access and information available about each service.

This chapter presents an extensible tool, named SOA-Scanner, that instantiates the
approach presented Section 3.3. The tool is extensible in the sense that it follows a
modular architecture and can be easily extended to more types of software services
and additional kinds of security vulnerabilities, although the implementation
described here targets only SOAP web services and injection vulnerabilities. In
practice, the SOA-Scanner tool consists of three main components: a centralized
controller, a monitoring system, and a set of testing tools.

The centralized controller is responsible for the coordination of the monitoring and
testing process. During the description of the architecture of the environment, the
controller acts as the interface with the user (that should introduce some description
information). Next, the controller is responsible for executing the profiling
interactions to exercise the web services under testing. Additionally, it centralizes the
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flux of information originated by the monitoring system. Finally, it is in charge of
assigning the available testing tools to the web services being tested and, after the
completion of the testing process, of integrating the results reported.

To analyze the infrastructure we need to collect as much information as possible
about the web services under testing; this is the responsibility of monitoring system,
which afterwards sends the information to the controller. Obviously, the information
that can be collected depends on the access conditions to each target service. In
practice, the monitoring system consists of a set of probes deployed close to the
services under control or partially under control (obviously, in the case of within
reach services there is no control or access to deploy the probes).

To test the web services it is necessary to select, from a set of available testing tools,
the ones that are most suited for the level of access and information available about
each service. Three tools implementing the techniques presented in Chapter 4 are
included in the SOA-Scanner to cover the three testing scenarios defined in Section
3.1.3. More tools can easily be added, provided that those tools follow the design
approach proposed in Section 3.2.

The outline of this chapter is as follows. The next section presents the overall
architecture of the tool and explains the role of each component in the process.
Section 5.2 presents the centralized controller component and describes its role of
coordination the entire process. Section 5.3 presents the monitoring system and
details the implementation of the probes that constitute it. Section 5.4 presents the
testing tools, discusses how the tools are assigned to the services to be tested and
explains how the results are integrated at the end. Finally, Section 5.5 concludes the
chapter.

5.1 Architecture of the SOA-Scanner

As proposed in Section 3.3, the SOA-Scanner implements three main steps:

1. Architecture Description: the tool asks the user to specify the services that
act as entry points for the system and, if possible, information about the
services under control, including input domains. It is also possible to specify
additional services (not under control), resources and the relations among
them;

2. Profiling Interactions: based on the description provided, the tool issues a
set of profiling interactions to discover additional resources and services and
to gather complementary information. This is a progressive process that
finishes when no more services can be discovered;
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3. Testing Services: finally, the vulnerability detection phase consists on testing
each service using the most effective technique available and also on
integrating the reports from the multiple tools in a single one.

The tool is implemented in a modular fashion in order to be easily extended. Figure
5.1 depicts its overall architecture (the relation of the tool with the complete
infrastructure is discussed ahead in this section).

As shown, the tool is divided in three main modules, identifiable in the figure:

* Centralized Controller: subdivided in three controllers (profiling controller,
monitoring controller, and testing controller), it is responsible for the
coordination of the process.

* Monitoring System: consisting of a set of probes (W), it is responsible for
collecting information about the architecture of the infrastructure;

* Testing Tools: composed of three tools, and prepared to include additional
ones, it is responsible for testing the services to detect vulnerabilities.

Note that some optional elements are represented in Figure 5.1 (elements that are not
always applicable). For example, in the case of the workload emulator, the user has
the option of replacing the included workload generator by one that is more effective
in the context of the services to be tested. Also, the monitoring system (MS) is only
applicable in the case of services under control (partially or totally). To better
understand this and how the tool interacts with a service-based infrastructure,
Figure 5.2 depicts where each component is located considering as context the
reference infrastructure presented in Section 3.1. In the case represented, the
depicted consumer (C) is an external user of the infrastructure. The user of the SOA-
Scanner tool is assumed to be the provider represented by P0, and the services
totally or partially under control are the ones that the tool can access and in which it
is possible to deploy probes (W).
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Figure 5.1 — Design of SOA-Scanner.
Interactions between the modules and also with a web service under testing. Some of the
presented modules are optional, depending on the web service testing scenario and on user
options to improve workload generator.
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Figure 5.2 - SOA-Scanner components in the infrastructure.
The centralized controller deploys probes in the interfaces of the services under control and
uses different testing techniques depending on the testing scenario.

5.2 Centralized Controller

The centralized controller is the core of the tool and consists of three subcomponents
that interoperate to coordinate the process:

1. Profiling controller: interfaces with the tool’s users and is responsible for
controlling the generation of the profiling interactions;

2. Monitoring controller: centralizes the monitoring elements and maintains a
mapping of the service-based infrastructure;

3. Testing controller: schedules the testing tasks and merges the results in a
report to be presented to the user.
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5.2.1 Profiling Controller

The user is provided with a graphical user interface (GUI) that allows defining
services and resources that belong to the target infrastructure. The user must provide
information about, at least, the services that act as entry points to the system.
However, when possible he must also provide information about other services and
resources, as well as the relations between them (Service-to-Service and Service-to-
Resource).

For each service or resource, the user must provide the URL via which it can be
accessed or additional information about how this can be obtained (e.g. a set of
connection properties). The controller will, in background, access the URL to
discover information about the service or resource and, when applicable, the user is
asked for additional information (e.g. parameter input types and domains). For each
service the user also needs to define if it is under control (or not). For each resource it
may be necessary to select the type of resource, although in most cases the tool can
deduct this from the information provided.

For example, in the specific case of a SOAP Web Service, the user must provide the
URL of the WSDL file that describes it. This file is processed automatically to obtain
the list of operations, parameters, and data types. However, as most cases the valid
values for each parameter (i.e. the domain restrictions of the parameter) are not
available, the user is asked to provide additional information about the valid
domains for each parameter.

Based on the specification provided, the controller creates an initial mapping of the
service-based infrastructure (Architecture in Figure 5.2). It is a responsibility of the
monitoring controller to store and manage this mapping, as explained in Section
5.2.2. Using information about the architecture, the controller creates and issues a set
of profiling interactions with two goals: to discover additional resources and
services and to gather complementary information (e.g. to train vulnerability
detection tools based on runtime anomaly detection, as is the case of the RAD-WS
tool described in Section 4.3).

In practice, profiling interactions consist of running a set of workloads, one for each
of the services known. A workload is a set of invocations to the service that
simulates a valid and non-malicious usage. The tool is able to automatically generate
a random workload for each service using the random workload generator presented
for the IPT-WS technique in Section 4.1.1 (as discussed there, the main problem of
using a random workload generation is that the representativeness of the
interactions is not guaranteed). Nevertheless, the modularity of the tool allows easily
integrating components that implement other workload generation approaches,
including real applications. In practice, the tool allows loading the workload from
xml files that respect a certain format, but the user can also opt by program an
adaptor using the provided API.
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5.2.2  Monitoring Controller

Using the specification provided by the user, an initial mapping of the service-based
infrastructure is created. The monitoring controller is responsible for managing this
mapping of the architecture, which is stored using an xml format, following the
schema depicted in Figure 5.3.

As we can observe, the format allows to store services, resources and relations. Each
one consists of an URL and a type. The relations are always between an origin
service and a target service or resource. As the resources are not tested (this is out of
the scope of the tool), it is neither possible nor important to know if they use other
resources. The services are the tricky part of the definitions as it is necessary to store,
in addition to the URL and type, information about the operations, fields
(parameters) of those operations, and the domains of each field. It is also possible to
store the vulnerabilities found in each parameter for later use.

After the creation of the initial architecture, the monitoring controller starts the
monitoring phase. In practice, it deploys a set of probes close to the services under
control defined initially (see Section 5.3). The monitoring controller then listens for
information reported by these probes to update the architecture mapping.

As the workloads are progressively submitted to the services, exercising the
infrastructure, additional services and resources are discovered and reported by the
probes. For each new service discovered the profiling controller is requested to
create the respective workload (repeating the steps discussed above). In the case of
the services that are totally or partially under control, the monitoring controller
deploys the probes before the workload is submitted. Finally, the monitoring
controller receives the information collected by the probes and updates the
architecture file accordingly (Section 5.3 provides more details on the functioning of
the monitoring probes).
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Figure 5.3 — Schema of the XML format used to store the architecture.
This format allows storing all the information about the services and resources that constitute
the architecture to be tested, including vulnerability information.

5.2.3  Testing Controller

During the testing phase, the testing controller must schedule the testing tasks. As
discussed, the services to be tested may be under the control of multiple providers.
To accomplish the different testing scenarios, the testing controller needs several
vulnerability detection techniques, which should be implemented following the
generic design proposed in Section 3.2.

96



Integrated Tool for Detecting Vulnerabilities in Service-Based Infrastructures

Different techniques require diverse types of access to the services and diverse types
of information to implement the vulnerability detection process (i.e. several testing
scenarios exist, as discussed in Section 3.1.3). It is thus a responsibility of the testing
controller to assign to each service the technique (or techniques) that will be used to
test it, according to the specific testing scenario. A key aspect is that, depending on
the level of access and information available about each service, multiple techniques
may be applicable. This way, using the knowledge available, the testing controller
ranks the applicable detection techniques and, for each service, selects one or more
(depending on the configuration) from the highest ranked techniques (Section 5.4
presents the vulnerability detection tools used, the scenarios applicable to each one,
and discusses how the SOA-Scanner ranks these tools).

After completing the testing tasks, the testing controller builds an integrated report
to present to the user. In practice, the vulnerabilities detected are associated with its
location (web service, operation, parameter) and added to the architecture mapping.
When more than one vulnerability detection technique is scheduled to test the same
web service, it is necessary to deal with contradictory results because, as explained
previously, different tools frequently report distinct vulnerabilities for the same
piece of code (the current implementation associates to each vulnerability the tools
that reported it and weighs this information using the ranking defined in Section
5.4).

5.3 Monitoring System

The monitoring system consists of a network of probes (distributed as shown in
Figure 5.2) that have the responsibility of collecting information about the interface
activity originated in services totally or partially under control. To achieve this, each
time a new service is found and classified as under control, the controller module
deploys probes in this service, following the steps presented later in this section.

As discussed in Section 3.3, there are multiple alternatives available for
implementing these probes, including: network packet sniffing, use of proxies and
driver instrumentation (details on these alternatives are provided in Section 3.2.3). In
its current implementation, the SOA-Scanner uses probes implemented making use
of driver instrumentation with aspect-oriented programing (AOP), which allows
injecting crosscutting concerns into any application in a non-intrusive way (Kiczales
et al. 2002). In this case, the aspects used are as simple as possible to avoid
introducing bugs. Figure 5.4 presents an example of an aspect.

As it is possible to observe, minimum changes are introduced in the drivers. In
practice, a light thread is added to each driver. This thread runs in background and
is responsible for handling the task of reporting the new interactions found to the
centralized controller. The Around advices (line 3) are introduced to intercept the
necessary methods. In this case, the interception consists of extracting the necessary
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values from the intercepted method arguments (line 5), check if they are new (line 6)
and if so deliver it to the background thread (line 7), and finally proceed with the
execution of the method (line 8). This way, the impact of the probe in the behavior of
the application is reduced to a minimum. Nevertheless, the introduced method is the
result of well tested code effort and the resulting drivers were also thoroughly tested
to detect potential bugs.

@Aspect
public class AroundConnectionProbe extends AbstractProbe {

N R

@Around("execution(* java.sql.Driver.connect(..))")
public Object aroundConnect(ProceedingloinPoint p) throws {
final string dburl = (String) p.getArgs()[0];
if (databaseurls.isNew(dburl)) {
Thread.enqueue(dburl);
}
return p.proceed();

NOoOYwvihw

[+

Figure 5.4 — Example of an Aspect in Java.
The code intercepts jdbc connections and in the case of the new ones, enqueues to a
background thread that will report to the controller, and proceeds immediately.

The tool includes aspects that can be used to instrument three types of drivers,
which is sufficient to test a complex infrastructure consisting of SOAP web services
using relational database solutions or XML based solutions. Those aspects are:

* JAX-WS: the Java API for XML-Based Web Services is used for creating web
services. It can be also be used to invoke other web services (Kotamraju 2007).
In this case, the probe monitors interactions among services.

* JDBC: the Java Database Connectivity API is designed to access any kind of
tabular data, but it is mostly used to access relational databases in Java
applications (Reese and Oram 2000). In this case, the probe monitors the
interactions with database resources.

* JDOM: a complete Java-based solution for accessing, manipulating, and
outputting XML data from Java code (Hunter 2002). It supports XPath, a
query language for selecting nodes from an XML document. In this case, the
probes monitor the access to XML resources.

The output of this process consists of new driver libraries that can be used by
referring the modified versions in the classpath of the deployed application (instead
of the original ones). In practice, the SOA-Scanner copies the required set of libraries
to the application servers where the web services are running and replaces the
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original ones by updating the classpath parameter. At runtime, this enhanced driver
library monitors the target interface. During the execution of the workloads
(profiling phase), the probes monitor the interactions and report the newly found
ones to the centralized controller via the network, which updates the architecture
accordingly. This process continues in an iterative way, expanding the mapping of
the architecture of the infrastructure, until no new services are detected, i.e. until
finishing the execution of the workloads for all the services known.

5.4 Testing Tools

After completing the profiling phase, the services are tested. It is possible, although
improbable, that new services are found in this phase. These services must also be
reported to the controller in order for the process to be applied to them also (starting
from the profiling phase).

As mentioned before, the SOA-Scanner supports the integration of testing tools that
implement the generic approach and components presented in Section 3.2. The
current implementation includes three tools implementing the techniques presented
in Chapter 4, which cover the three testing scenarios defined in the reference
infrastructure in Section 3.1.3: 1) within-reach, 2) partially under control, and 3) fully
under control. Just to recall, the included tools are:

1. Penetration Testing (IPT-WS): black-box technique that tries to penetrate the
service by issuing a huge amount of interactions;

2. Attack Signatures and Interface Monitoring (Sign-WS): penetration testing
improved with extra information, yet without needing to access or modify
the service code;

3. Runtime Anomaly Detection (RAD-WS): profiles the behavior of the service
to detect vulnerabilities by finding deviations from the normal (earned)
behavior during an attack phase.

To better understand the context, Table 5.1 crosses the testing techniques against the
scenarios where it is possible to apply them (report to Chapter 4 for details on these
techniques and the discussion on their weaknesses and strengths).

The techniques in the table are ordered from the least effective (IPT-WS) to the most
effective (RAD-WS). This ranking was established using the results from the
benchmarking campaigns presented in Chapter 7. These results are far from
unexpected, as the most effective tools use more information than the less effective
ones, constraining the scenarios in which they can be used (e.g. the most effective
tool (RAD-WS) can only be used in services under control, but the less effective can
be used in all scenarios).
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Table 5.1 — Correlation between testing techniques and scenarios.
The check symbol marks the scenarios in which each tool is available. The tools are
ordered from the least effective (left) to the most effective (right).

Partially Under
Control

New tools that extend the design presented in Section 3.2 can be easily added to
SOA-Scanner. For this, it is necessary to add the libraries of the tool to the SOA-
Scanner and register the tool in the configuration file. It is also necessary to configure
in which scenarios the tool can be used (in practice, fill another column in the Table
5.1) and to provide information about the ranking of the tool in respect with the
existing ones.

The testing task finishes with the tool reporting to the testing controller the
vulnerabilities identified. This report includes, for each tested service, information
about the vulnerabilities detected: web service, operation, parameter, and type of
vulnerability. The testing controller maintains a global report of the vulnerabilities,
executing a process based in two key steps: 1) the reported vulnerabilities are added
to the architecture description and indexed by their location in the infrastructure:
web service, operation, parameter; 2) the tool extracts all the vulnerabilities reported
and unifies them in a single report, keeping the information of the location of the
vulnerability, its type and which tools reported it vulnerability. Figure 5.5 depicts
this process.
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Figure 5.5 — Process to Integrate the Reports of multiple tools.
The vulnerabilities are added to the mapping of the architecture indexed by operation
parameter (field). In the second step, all the vulnerabilities are extracted to create an
integrated report.

5.5 Conclusion

This chapter presented the SOA-Scanner, an extensible tool implementing the
integrated approach for vulnerability detection in service-based infrastructures
presented Section 3.3. Although the current implementation targets only SOAP web
services, and focuses on injection vulnerabilities, the tool follows a modular
architecture and can be easily extended to more types of software services and
security vulnerabilities.

The tool is based in three main components that allow implementing the generic
steps of the approach. The first is a centralized controller that, besides controlling the
execution of the complete process, is in charge of receiving input information from
the user and reporting the testing results to him. Additionally, it is responsible for
scheduling the profiling interactions and testing tasks. The second is the monitoring
system that, using a set of probes deployed to the services, collects information
about the interactions between the parts of the infrastructure, also discovering new
services and resources to be tested. The final component is in charge of integrating a
set of vulnerability detection tools following a generic and modular design. Three
testing tools are already included, covering different testing scenarios and taking
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advantage of the different levels of access to the services. Adding new tools to the
component is easy and improves the effectiveness of the testing process.

A case study demonstrating the capabilities of the tool is presented in Chapter 7. The
case study consists of a service-based infrastructure that represents a simple
organization. The infrastructure is composed by different services with different
levels of access and using different types of resources and, consequently, containing
different types of vulnerabilities.
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Benchmarking Vulnerability
Detection Tools for Services

Vulnerability detection tools are frequently considered the silver-bullet for finding
vulnerabilities in web services. As mentioned before, developers and system
integrators widely use such tools to perform automated security checking in web
applications and services, which makes them some of the best examples of critical
artifacts for secure software development.

Due to time constraints or resource limitations, developers frequently have to select
a specific tool from the large set of tools available (usually without really knowing
how good each tool is) and strongly rely on that tool to detect potential security
problems in the code being developed. Furthermore, it is clear that the performance
of a given tool strongly depends on the specificities of the application scenario (i.e.
the class of target web services (e.g. SOAP, REST), the types of vulnerabilities to
detect, etc.), and that the same tool may have different performance levels in
different scenarios.

In this context, developers and researchers urge the definition of a practical
approach that helps them assessing and comparing alternative tools concerning their
ability to detect vulnerabilities. Benchmarking is a standard way to evaluate and
compare different systems or components according to specific characteristics (e.g.
performance, dependability, etc.) (Gray 1992). Several works have tried to assess the
effectiveness of vulnerability detection tools (e.g., (Antunes and Vieira 2009a; Vieira,
Antunes, and Madeira 2009; Fonseca, Vieira, and Madeira 2007; Wagner et al. 2005))
however, none has proposed a standard approach that allows the comparison of
results, as is the case of benchmarking.

To address this problem, we propose an approach for benchmarking vulnerability
detection tools for web services. This approach specifies all the components and
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steps needed to define benchmarks to assess and compare alternative tools, with
particular focus on two well known metrics: precision and recall. Additionally, it
defines the other required components, which include a workload (work that the
vulnerability detectors under testing have to do, in the form of a set of web services
that should be searched for vulnerabilities) and a well-defined benchmarking
procedure (set of steps that have to be followed for conducting a benchmarking
campaign, ranging from the preparation of the experiments to the ranking of the
tools and selection of the most adequate one). A key aspect if that the proposed
approach is generic and can be used to specify different benchmarks for specific
application domains and different types of vulnerabilities.

The benchmarking approach has been used to define two concrete benchmarks. The
first targets tools capable of detecting SQL Injection vulnerabilities in SOAP web
services, including detection approaches based on penetration testing, static code
analysis, and runtime anomaly detection. This benchmark is based on a well
defined and large set of web services adapted from standard performance
benchmarks, and includes both vulnerable and non-vulnerable versions of the
services. The main limitation of this benchmark is that, although based on a well-
defined set of rules, it is not protected against "gaming" (i.e. adaptations/tuning that
allow producing optimistic or biased results). In fact, as the workload is known,
providers can easily tune their tools to maximum effectiveness in the context of the
benchmark, while failing in different scenarios.

To overcome this limitation, we propose a second benchmark for penetration testing
tools capable of detecting SQL Injection vulnerabilities in SOAP web services. This
benchmark circumvents the “gaming” problem by allowing the benchmark user to
specify the workload (i.e. the workload is not predefined and is unknown to the
tools” providers) that best represents his specific development conditions, thus
providing more realistic (and specific to the development environment) results. To
support the user in the task of characterizing the workload, the benchmark includes
a procedure and a tool to identify vulnerabilities in the target web services, thus
avoiding the need for conducting such analysis manually.

The outline of this chapter is as follows. Next section presents the generic
benchmarking approach and its components. Section 6.2 presents the benchmark
based on the predefined workload, while Section 6.3 discusses the benchmark based
on the user-defined workload. Section 6.4 discusses aspects related to the validation
of key benchmarking properties. Finally, Section 6.5 concludes the chapter.

6.1 Generic Benchmarking Approach
Our proposal to benchmark vulnerability detection tools is inspired on

measurement-based techniques. The basic idea is to exercise the tools under
benchmarking using web services code with and without vulnerabilities and, based
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on the detected vulnerabilities, calculate a small set of measures that portray the
detection capabilities of the tools.

Due to the high diversity of web services, types of vulnerabilities, and vulnerability
detection approaches, the definition of a benchmark for all vulnerability detection
tools is an unattainable goal. This way, as recommended in (Gray 1993), a
benchmark must be specifically targeted to a particular domain. In fact, the division
of the spectrum into well-defined areas is necessary to make it possible to make
choices during the definition of the benchmark components. In the context of this
work, the definition of the benchmarking domain includes selecting the class of
web services, the type of vulnerabilities, and the vulnerability detection approaches
for the target tools under benchmarking, which mainly influence the definition of the
workload (see Section 6.1.2).

The main components of a benchmark are:

* Metrics: characterize the effectiveness of the tools under benchmarking in
detecting the vulnerabilities that exist in the workload services. The metrics
must be easy to understand and must allow the comparison among different
tools.

* Workload: represents the work that a tool must perform during the
benchmark execution. In practice, it consists of a set of services (with and
without security vulnerabilities) that will be used to exercise the vulnerability
detection tools during the benchmarking process. Depending on the goal of
the benchmark, the workload can be predefined (i.e. defined in the
benchmark specification itself) or provided by the benchmark user.

* Procedure: describes the procedure and rules that must be followed when
executing the benchmark.

The procedure and rules have to be specified during the definition of the benchmark.
In fact, those procedures and rules are the core of the benchmark specification.
Although this is, obviously, dependent on the specific benchmark, in the following
points we identify some guidelines on specific aspects needed in most of the cases:

* Standardized procedures for “translating” the workload defined in the
benchmark specification into the actual workload that will be applied to the
tools under benchmarking. These procedures guarantee that the different
users understand and use the benchmark in a consistent way.

* Uniform conditions to build the experimental benchmark setup, perform
initialization tasks that might be defined in the specification, and run the
benchmark according to the specification (i.e. apply the workload and
calculate the metrics).
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* Rules related to the collection of the experimental results. These rules may
include, for example, available possibilities for system instrumentation,
degree of interference allowed, common references and precision for timing
measures, etc.

* Rules for the production of the final measures from the direct experimental
results, such as calculation formulas, ways to deal with uncertainties, errors
and confidence intervals, etc.

* Disclosures required for interpreting the benchmark measures. In a similar
way to what happens in other domains (Kanoun and Spainhower 2008), a
report may be required in order for results to be considered compliant with
the benchmark specification. The goal is to allow the reproduction of the
experiments in other sites using the same vulnerability detection tools.

* Rules to avoid “gaming” to produce optimistic or biased results. For example,
rules regarding the use and/or definition of the workload.

6.1.1 Metrics

The benchmark metrics should be computed from the information collected during
the benchmark run and must follow the well-established measuring philosophy
typically used in performance and dependability benchmarking (Gray 1993; Kanoun
and Spainhower 2008). In fact, benchmarks should provide relative measures (i.e.
measures related to the conditions disclosed in the benchmark report) that can be
used for comparison or for improvement and tuning. For example, it is well known
that performance benchmarking results do not represent an absolute measure of
performance and cannot be used for planning the capacity or to predict the actual
performance of the system in field. In a similar way, the measures in a benchmark
for vulnerability detectors must be understood as results that can only be used to
characterize the tools in a relative fashion (e.g. to compare alternative tools).

A key difficulty related to the definition of the benchmark metrics is that different
vulnerability detection tools report vulnerabilities in different ways. For example, for
penetration testing tools (that identify vulnerabilities based on the application
response) vulnerabilities are reported for each vulnerable input. On the other hand,
for static analysis tools (that vet code looking for possible security issues)
vulnerabilities are reported for each vulnerable line in the code. Due to this
dichotomy, it is very difficult (or even impossible) to compare the effectiveness of
tools that implement different vulnerability detection approaches, based on the
number of vulnerabilities reported for the same piece of code. This way, our
proposal is to characterize vulnerability detection tools using the F-Measure
proposed by van Rijsbergen (Van Rijsbergen 1979), which is largely independent of
the way vulnerabilities are counted. In fact, it represents the harmonic mean of two
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very popular measures (precision and recall), which, in the context of vulnerability
detection, can be defined as:

* Precision: the ratio of correctly detected vulnerabilities to the number of all
detected vulnerabilities. In our context it can be represented as:

.. TP
precision = ———— (1)
TP + FP

* Recall: the ratio of correctly detected vulnerabilities to the number of known
vulnerabilities. In our context it can be represented as:

recall = — )

Where:

o TP (true positives) is the number of true vulnerabilities detected (i.e.
vulnerabilities that, in fact, exist in the code);

o FP (false positives) is the number of vulnerabilities detected that, in
fact, do not exist;

o TV (true vulnerabilities) is the total number of vulnerabilities that
exist in the code.

Assuming an equal weight for precision and recall, the formula for the F-Measure is:

F — Measure = 2- precision - recall ®

precision + recall

A highly effective tool will generate a high F-Measure (which obviously ranges
between 0 and 1). For example, consider a set of 100 vulnerabilities in a piece of
code. A tool that achieves a precision of 0.7 is able to detected vulnerabilities with a
probability of 70%. A recall of 0.8 expresses that 80% of all the known vulnerabilities
are detected and that 20% are missed. In this case the F-Measure would be
approximately 0.7466.

The three metrics can be used to establish a ranking of several tools depending on
the purposes of the benchmark user (i.e. to select the tool with the highest precision,
the highest recall, or having the best compromise between precision and recall). Note
that these are proven metrics that are typically used to portray the effectiveness of
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many computer systems (Van Rijsbergen 1979), particularly in information retrieval.
Thus, they are easy to be understood by most users.

6.1.2

Workload

The workload defines the work that has to be done by the vulnerability detection

tools during the benchmark execution. In other words, the workload should include

the code that will be used to exercise the vulnerability detection capabilities of the

tools under benchmarking. It is mainly influenced by three factors:

The class of web services (e.g. SOAP, REST), which allows defining the
characteristics of the services that will be used to exercise the tools under
benchmarking;

The types of vulnerabilities (e.g. SQL Injection, XPath Injection, file
execution) to be detected by the tools. This defines vulnerabilities that must
exist in the workload;

The vulnerability detection approaches (e.g. penetration testing, static
analysis, anomaly detection), which specify the approaches used by the tools
under benchmarking to detect vulnerabilities.

Three different types of workloads can be considered for benchmarking purposes:

Real workloads: these are made of applications used in real environments
that have real vulnerabilities. Benchmarks using real workloads are expected
to be quite representative. However, many applications and vulnerabilities
may be needed to achieve good representativeness and those applications
frequently require some adaptation.

Realistic workloads: artificial workloads that are based on the adaptation of
real applications in the domain of the benchmark. Although artificial, realistic
workloads still reflect real situations and are more portable than real
workloads.

Synthetic workloads: a synthetic workload can be a set of randomly selected
code elements in which vulnerabilities are artificially injected. Synthetic
workloads are easy to use but their representativeness is questionable.

In summary, the workload includes the web services code that will be used to

exercise the vulnerability detection capabilities of the tools under benchmarking. For

example, the workload for a benchmark targeting static code analysis tools capable

of detecting SQL Injection vulnerabilities in web services must include the source

code of web services with realistic (and well identified) SQL Injection vulnerabilities.
On the other hand, for penetration testers access to the source code is not needed.
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Two options are available regarding the definition of the workload (these apply to
the three types of workloads defined above):

* Predefined workload: the benchmark includes a predefined set of web
services with vulnerabilities.

* User-defined workload: the benchmark leaves to the user the responsibility
of selecting the target set of services.

While the first approach guarantees some level of standardization and uniformity of
results across different executions of the benchmark, the second allows
circumventing the “gaming” problem and best represents the user specific
development conditions, thus providing more realistic results. A key aspect is that
the workload should include both vulnerable and non-vulnerable services in order
to better characterize the tools under assessment (e.g. vulnerable services are useful
to gather coverage metrics while non-vulnerable services help on assessing false
positive rates).

In both cases, information about the vulnerabilities that exist in the target web
services is needed in order to be able to calculate the metrics. This can be obtained by
extensively searching the web services for vulnerabilities, using different techniques,
including penetration testing, code inspection, static analysis, etc. For the case of
predefined workloads this information must be provided together with the
benchmark specification. On the other hand, for user-defined workloads, the
benchmark may provide only guidelines on how to perform the workload
characterization or include tools to facilitate the work.

As different vulnerability detection approaches report vulnerabilities in different
ways, different characterizations about the existing vulnerabilities may be required
(e.g. the number of vulnerable inputs is needed for penetration testing tools, while
the number of vulnerable lines of code is required for static analysis tools),
depending on the vulnerability detection approaches of tools targeted by the
benchmark (as defined in the benchmark domain).

6.1.3  Procedure

Although the detailed procedure depends on the specificities of the benchmark, we
proposed three main phases:

1. Preparation: prepare the benchmark execution, including;:

a. Workload selection and characterization: this is a step that is
required only when the benchmark leaves to the user the
responsibility of selecting the target services. In such case, the user
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has to define the web services and characterize the existing
vulnerabilities (as discussed before).

b. Tools identification: select the vulnerability detection tools to be
benchmarked.

2. Execution: use the tools under benchmarking to detect vulnerabilities in the
workload services.

3. Comparison: characterize the tools benchmarked. This includes two steps:

a. Metrics calculation: analyze the vulnerabilities reported by the tools
(i.e. confirm true positives and identify false positives) and calculate
the metrics.

b. Ranking and selection: rank the tools under benchmarking using F-
Measure, precision, and recall. Based on the preferred ranking, select
the most effective tool (or tools).

In the case of benchmarks based on a predefined workload Step 1.a is not required,
as the target web services are characterized in the benchmark specification
(including the number of existing vulnerabilities). On the other hand, for
benchmarks based on a user-defined workload Step 1.a is extremely relevant, as it
greatly influences the benchmark results (e.g. if the workload services do not contain
representative vulnerabilities then the measures will not be representative of the
tools effectiveness).

The benchmark execution is a straightforward process and consists of using each
tool to detect vulnerabilities in the workload code. Depending on the tool under
benchmarking this may require some configuration of the parameters. After
executing the benchmark it is necessary to compare the vulnerabilities detected by
the tool with the ones that effectively exist in the workload code. Vulnerabilities
correctly detected are counted as true positives and vulnerabilities detected but that
do not exist in the code are counted as false positives. This is the information needed
to calculate the precision and recall of the tool, and consequently the F-measure.

6.2 Benchmark with a Predefined Workload
[VDBenchWS-pd]

In this section we present a benchmark (VDBenchWS-pd) based on a workload
consisting of a well defined and large set of web services adapted from standard
performance benchmarks, including both vulnerable and non-vulnerable versions of
the services. The benchmark targets the following domain:
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* Class of web services: SOAP web services implemented in Java;
* Type of vulnerabilities: SQL Injection;

* Vulnerability detection approaches: penetration testing, static code analysis,
and runtime anomaly detection.

The reasoning behind the selection of this domain is as follows. Web services
implemented in Java are nowadays widely used in many scenarios, with several
frameworks available to implement and support the development (Curbera et al.
2002; D. A Chappell and Jewell 2002a). SQL Injection vulnerabilities are particularly
relevant in web services (Christey and Martin 2007), as these frequently use a data
persistence solution based in a relational database. Finally, we have all the
information needed regarding the vulnerabilities in predefined set of web services,
which are quite representative of real scenarios. Although (virtually) any
vulnerability detection approach can be used to detect vulnerabilities in these
services, the benchmark targets specifically penetration testing, static code analysis,
and runtime anomaly detection (Arkin, Stender, and McGraw 2005; Ayewah et al.
2008; Kruegel and Vigna 2003), which are widely used techniques (and that include
the ones used by the tools proposed in Chapter 4).

As mentioned before, the workload is the component most influenced by the
benchmarking domain and strongly determines the benchmark results. In order to
define a representative workload we have decided to adapt code from three
standard benchmarks developed by the Transactions processing Performance
Council, namely: TPC-App, TPC-C, and TPC-W (see details on these benchmarks at
(Transaction Processing Performance Council 2009)). TPC-App is a performance
benchmark for web services infrastructures and specifies a set of web services
accepted as representative of real environments. TPC-C is a performance benchmark
for transactional systems and specifies a set of transactions that include entering and
delivering orders, recording payments, checking the status of orders, and
monitoring the level of stock at the warehouses. Finally, TPC-W is a benchmark for
web-based transactional systems. The business represented by TPC-W is a retail
store over the Internet where several clients access the website to browse, search,
and process orders’.

As an adaptation of real applications, the proposed workload follows the realistic
workloads approach, and thus needs to include realistic SQL Injection
vulnerabilities. Although feasible, artificial vulnerabilities injection (Fonseca, Vieira,
and Madeira 2007) would introduce complexity and suffer from representativeness
issues. When possible, the option should be to consider code with real

7 Although TPC-C and TPC-W do not define the transactions in the form of services, they can easily be implemented and
deployed as such.
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vulnerabilities, (inadvertently) introduced by the developers during the coding
process. This way, for the present work we invited an external developer to
implement the TPC-App web services (without disclosing the objective of the
implementation in order not to influence the final result) and successfully searched
the web for publicly available implementations of TPC-C and TPC-W, which were
adapted to the form of web services by the same external developer (this adaptation
consisted basically on the encapsulation of the transactions as web services, without
modifying the functional structure of the code). Obviously, this was a risky choice as
there was some probability of getting code without vulnerabilities. However, as
expected, the final code includes several SQL Injection vulnerabilities (see Table 6.1),
which is representative of the current situation in real web services development (as
shown in (Vieira, Antunes, and Madeira 2009; NTA Monitor 2011b)).

The workload services are currently implemented in Java. Although this is not
relevant when benchmarking penetration testing tools (that detect vulnerabilities
based on the application responses and do not need to have access to the source
code), it limits the application of the benchmark to static code analyzers and runtime
anomaly detectors that look for vulnerabilities in Java code. This way, to increase the
domain of the benchmark, we would need to develop the workload in more
languages. The problem is that different implementations of the services might have
different vulnerabilities, which limits tools comparison. For example, the
comparison of a static code analyzer for Java with a static code analyzer for C# is not
possible if the Java code has vulnerabilities that are different from the ones in the C#
code. One possibility to mitigate this problem is to use automatic code
transformation to translate the current implementation of the services to other
languages, while maintaining the existing vulnerabilities. Obviously, this process
requires a subsequent manual verification step to check the correctness and
usefulness of the transformed code. Nevertheless, the current implementation is
sufficient to demonstrate the benchmarking approach proposed in this chapter, as
Java is a language widely used to implement web services and there are many
vulnerability detection tools that focus on Java code.

To characterize the vulnerabilities that exist in the workload code, we invited a team
of 3 external developers, with two or more years of experience in security of
database centric applications, to conduct a formal inspection of the code looking for
vulnerabilities. As the different vulnerability detection approaches considered report
vulnerabilities in different ways (penetration testers report the vulnerable inputs,
while static code analyzers and runtime anomaly detectors report the vulnerable
lines of code), we asked the security experts to identify both the input parameters
and the source code lines prone to SQL Injection attacks. Table 6.1 presents the
summary of the vulnerabilities detected by the security experts, the total number of
lines of code (LoC) per service, and the average Cyclomatic Complexity (Lyu 1996)
(Avg. C.) of the code (calculated using SourceMonitor (Campwood Software 2008).
The results show a total of 56 vulnerable inputs and of 49 vulnerable SQL queries in
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the set of services considered. As shown, the services have diverse sizes and

complexities, which is representative of real scenarios.

In order to exercise the tools under benchmarking in a more exhaustive and realistic

manner we decided to generate additional versions of the web services. The first step

consisted of creating a new version for each service with all the known

vulnerabilities fixed. Then we generated several versions for each service, each one

having only one vulnerable SQL query. This way, for each web service we have one

version without known vulnerabilities, one version with N vulnerabilities, and N

versions with one vulnerable SQL query each. This accounts for a total of 80

versions, with 158 vulnerable inputs and 87 vulnerable queries as listed in Table

6.2, which we believe is enough to exercise detection tools (as shown in Chapter 7).

In summary, we have the following versions for each web service:

Table 6.1 — Vulnerabilities found in the workload services.

For each service it is presented the vulnerabilities reported, the number of lines of code and
the average complexity of the code. The differences of the presented values show the diversity

of the services.

Source Service Name Vuln. Vuh,L LoC Avg. C.
Inputs Queries

ProductDetail 0 0 121 5
NewProducts 1 1 103 45

TPC-App
NewCustomer 15 4 205 5.6
ChangePaymentMethod 2 1 99 5
Delivery 2 7 227 21
NewOrder 3 5 331 33

TPC-C OrderStatus 4 5 209 13
Payment 6 11 327 25
StockLevel 2 2 80
AdminUpdate 2 1 81
CreateNewCustomer 11 4 163 3
CreateShoppingCart 0 0 207 2.67
DoAuthorSearch 1 1 44 3
DoSubjectSearch 1 1 45 3
DoTitleSearch 1 1 45 3

TPC-W
GetBestSellers 1 1 62 3
GetCustomer 1 1 46 4
GetMostRecentOrder 1 1 129 6
GetNewProducts 1 1 50 3
GetPassword 1 1 40 2
GetUsername 0 0 40 2

Total 56 49 2654 -
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Version with all the vulnerabilities: includes all the vulnerabilities
introduced by the developers, which makes it representative of real
scenarios. In fact, it simulates the situations in which a tool is used over a
web service that includes multiple (and maybe interdependent)
vulnerabilities.

Version without known vulnerabilities: useful to characterize the tools in
terms of false positives. In fact, tools should not detect any vulnerabilities in
this code as it does not have known vulnerabilities (guaranteed by the
experts that reviewed the code).

Versions with one vulnerability: represent more subtle scenarios in which
there are few vulnerabilities in the code. This makes vulnerability detection
more complex.

Table 6.2 — Final numbers of vulnerabilities in the workload servicers.

For each service it is presented the number of versions created and the total number of

vulnerabilities exiting.

Source Service Name Versions Vuln. Inputs Vuh.\.
Queries

ProductDetail 2 0 0
TPC-App NewProducts 2 1 1
NewCustomer 6 35 8
ChangePaymentMethod 2 2 1
Delivery 9 10 14
NewOrder 7 15 10
TPC-C OrderStatus 7 18 10
Payment 13 34 22
StockLevel 4 4
AdminUpdate 2 2 1
CreateNewCustomer 6 27 8
CreateShoppingCart 2 0 0
DoAuthorSearch 2 1 1
DoSubjectSearch 2 1 1
DoTitleSearch 2 1 1

TPC-W
GetBestSellers 2 1 1
GetCustomer 2 1 1
GetMostRecentOrder 2 1 1
GetNewProducts 2 1 1
GetPassword 2 1 1
GetUsername 2 0 0
Total 80 158 87
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It is important to emphasize that we are aware of the limitations of the workload
code. In fact, this code may not be representative of all the SQL Injection
vulnerability patterns found in real web services. However, what is important is to
define the benchmark components in such a way that allow characterizing the
effectiveness of the tools under benchmarking in a relative manner (i.e. that allow
establishing comparisons between tools). Based on the extensive experimental
evaluation conducted (see Chapter 7), and in particular on the benchmark properties
discussion, we believe that the proposed workload is sufficient to assess and
compare the effectiveness of SQL Injection vulnerability detection tools for web
services. Nevertheless, the proposed benchmark can easily be extended to include
more services. Readers can find details on the benchmark (with detailed results) at
(Antunes 2013).

6.3 Benchmark with a User-Defined Workload
[PTBenchWS-ud]

In this section we present a benchmark (PTBenchWS-ud) based on a user-provided
workload (any set of services), allowing to the user to overcome the “gaming”
problem and providing, at the same time, more realistic results. The benchmark
targets the following domain:

* Class of web services: SOAP web services (Curbera et al. 2002).
* Type of vulnerabilities: SQL Injection (Christey and Martin 2007).

* Vulnerability detection approaches: penetration testing (Arkin, Stender, and
McGraw 2005).

Contrarily to the benchmark presented in Section 6.2, this benchmark is not limited
to Java, as it is independent from the technology used to implement the web
services. The main reason for this is that penetration testing, the target vulnerability
detection approaches, does not require access to source code testing the web services
from an external point of view. Together with the focus of approach for
characterizing the workload (which is based on testing, as discussed later on this
section), this is also a reason for focusing this benchmark on penetration testing.

The set of web services that compose the benchmark workload is to be defined by
the benchmark user. This should include a number of SOAP web services with and
without SQL Injection vulnerabilities. As defined in Section 6.1.2, this workload can
be real, realistic, or synthetic. What is important is to understand that the workload
definition determines the benchmark results and properties, thus the user should be
aware of the impact of the decisions regarding the web services being considered.
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A key aspect is the characterization of the existing vulnerabilities. As the target of
the benchmark is penetration testing tools, the number of vulnerable inputs is
needed to later calculate the metrics. Such characterization can be based on an
extensive manual analysis of the selected web services in order to identify the
existing vulnerabilities (in a similar way to what we did for the benchmark proposed
in Section 6.2). The problem is that such process can become extremely expensive if
the set of services is large and complex. Thus, as an alternative, we propose an
automatic approach for identifying the base set of vulnerabilities, grounded on the
use of a tool that combines attack signatures and interface monitoring to detect SQL
Injection vulnerabilities in web services presented in Section 4.2.

As mentioned before, the Sign-WS technique addresses the limitations of penetration
testing by using attack signatures and interface monitoring for the detection of
injection vulnerabilities in web services. The goal is to improve the detection process
by providing enhanced visibility, yet without needing to access or modify the code
of the target service. The key assumption is that most injection attacks manifest, in
some way, in the interfaces between the attacked web service and other resources
(e.g. database, operating system) and services. Although the proposed approach
does not guarantee the detection of all existing vulnerabilities, it assures that no false
positives are reported. The vulnerabilities detected will serve as reference to estimate
the number of true positives and false positives of the tools under benchmarking, as
discussed next.

In practice, the signatures and monitoring approach provides information that is not
available to the penetration testing tools under benchmarking, thus it is expected to
detect more vulnerabilities and present less false positives. In fact, and based on the
precise detection of signatures, no false positives are expected (see Section 4.2). Thus,
the vulnerabilities identified using interface monitoring can be effectively used as a
baseline for evaluating other tools.

The vulnerability detection coverage is the percentage of real vulnerabilities that are
detected by a tool. Assuming that the number of vulnerabilities reported by the
signatures and monitoring approach is a valid estimation of the total number of
existing vulnerabilities, then the percentage of those vulnerabilities that are reported
by a given penetration testing tool is also a valid estimation for its vulnerability
detection coverage. In a similar way, we can estimate the false positives rate, which
represents the percentage of vulnerabilities reported by the tool that in fact do not
exist. Considering that the set of vulnerabilities detected using our approach does
not include false positives (guaranteed by the use of adequate signatures), we can
estimate the false positives rate of a penetration testing tool by calculating the
difference between the vulnerabilities reported by such tool and the vulnerabilities
identified via interface monitoring.

To better understand our proposal, let’s take a simple scenario. Consider that the
signatures system is able to detect 10 SQL Injection vulnerabilities in a given web
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service and that a penetration testing tool A detects 8 of those and 6 more, and that a
penetration testing tool B detects 4 of those and 1 more. As shown in Table 6.3 we
can use these values to estimate the coverage and false positives of both tools. A
similar approach can be used to estimate the metrics of our benchmark (precision,
recall, and F-Measure). Note that, the considered total number of vulnerabilities is
only an estimated value, as there is no guarantee of perfect detection coverage from
the signatures system. This way, the total number of vulnerabilities will be always
equal or superior to the estimated number of vulnerabilities and this fact can
diminish the importance of the evaluation in two ways.

First, the coverage rates calculated for the evaluated tools may be overestimated.
Although this seems a key problem, it is important to stress that the evaluation of the
different tools is done for benchmarking purposes (e.g. to select one) and not for
assessing actual effectiveness (as this depends on several factors, including the target
application, programing language, type of vulnerability, etc.). Thus, taking a relative
perspective of the results (rather than an absolute perspective), the overestimation
should be equivalent for all the evaluated tools, affecting them in a similar manner,
while maintaining a fair comparison.

Second, the false positive rates for the evaluated penetration testers may also be
overestimated. Again, although this seems a major issue, in practice the impact will
be minor: it is highly probable that a vulnerability detected by a tester will also be
detected by our approach as it is based on the internal behavior of the application
provided by the interface monitoring. This way, the estimation for the false positives
should be close to the real values, which again is adequate for a relative view of the
results.

Table 6.3 - Example of coverage and false positive rates estimation.
The values presented are estimated using the results of Sign-WS as the baseline to evaluate
the penetration testing tools.

Tool Estimated Coverage Rate Estimated False Positive Rate
PTA 8/10=280% 6/(8+6)~=43%
PTB 4/10=40% 1/@+1)=20%

It is important to note that the proposed benchmark can be easily extended to other
types of injection vulnerabilities. The only constraint is that the benchmark user has
to define a workload containing other types of vulnerabilities and then characterize
those vulnerabilities. Although in this benchmark we are targeting only SQL
Injection, the Sign-WS technique can also be used to detect other Injection
vulnerabilities (see Section 4.2 for additional details).
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6.4 Benchmarking Properties

Computer benchmarking is primarily an experimental approach (Gray 1993). As an
experiment, its acceptability is largely based on two salient facets of the experimental
method: 1) the ability to reproduce the observations and the measurements, either
on a deterministic or on a statistical basis, and 2) the capability of generalizing the
results through some form of inductive reasoning. The first aspect (ability to
reproduce) gives confidence in the results and the second (ability to generalize)
makes the benchmark results meaningful and useful beyond the specific setup used
in the benchmarking process.

In practice, benchmarking results are normally reproducible in a statistical basis. On
the other hand, the necessary generalization of the results is inherently related to the
representativeness of the benchmark experiments. The notion of representativeness
is manifold and touches almost all the aspects of benchmarking, as it really means
that the conditions used to obtain the measures are representative of what can be
found in the real world.

The key aspect that distinguishes benchmarking from existing evaluation and
validation techniques is that a benchmark fundamentally represents an agreement
(explicit or tacit) that is accepted by the computer industry and by the user
community. This technical agreement is in fact the key that turns a benchmark into a
standard. In other words, a benchmark is something that the user community and
the computer industry accept as representative enough of a given application
domain to be deemed useful and to be generally used as a (standard) way of
measuring specific features of a computer system and, consequently, a way to
compare different systems.

The concept of benchmarking can then be summarized in three words:
representativeness, usefulness, and agreement. A benchmark must be as
representative as possible of a given domain but, as an abstraction of that domain, it
will always be an imperfect representation of reality. However, the objective is to
find a useful representation that captures the essential elements of the application
domain and provides practical ways to characterize the computer features that help
the vendors/integrators to improve their products and help the users in their
purchase decisions.

To achieve acceptance by the computer industry or by the user community a
benchmark should fulfill a set of key properties (Gray 1993): representativeness,
portability, repeatability, non-intrusiveness, and simplicity of use. These properties
were taken into account from the beginning of the definition of the components of
the proposed benchmarks and were validated after the benchmark has been
completely defined (see sections 7.2.4 and 7.3.4).

To be credible, a benchmark for vulnerability detection tools must report similar
results when run more than once over the same tool. However, repeatability has to
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be understood in statistical terms, as it might be impossible to reproduce exactly the
same conditions concerning the tool and the web services state during the
benchmark run. In practice, small deviations in the measurements in successive runs
are normal and just reflect the non-deterministic nature of web applications.

Another important property is portability, as a benchmark must allow the
comparison of different tools in a given domain. In practice, the workload is the
component that has more influence on portability, as it must be able to exercise the
vulnerability detection capabilities of a large set of tools in the domain.

In order to report relevant results, a benchmark must represent real world scenarios
in a realistic way. In our work, representativeness is mainly influenced by the
workload, which must be based on realistic code and must include a realistic set of
vulnerabilities. This can more easily be taken into account in the case of benchmarks
based on a predefined workload, as it is possible to address representativeness
issues during the benchmark specification. However, this may be an issue in the case
of user-defined workloads, as the benchmark user may not be aware of the
representativeness issues of the services considered and, consequently, of the results
obtained.

A benchmark must require minimum changes (or no changes at all) in the target
tools. If the implementation or execution of the benchmark requires changes in the
tools (either in the structure or in the behavior) then the benchmark is intrusive and
the results might not be valid.

Finally, to be accepted, a benchmark must be as easy to implement and run as
possible. Ideally, the benchmark should be provided in a form ready to be used or, if
that is not possible, as a document specifying in detail how the benchmark should be
implemented and executed. In addition, the benchmark execution should take the
smallest time possible (preferably not more than a few hours per tool). This is
obviously easier to achieve in benchmarks based on a predefined workload, as in the
case of user-defined workloads the benchmark user has the added work of defining
and characterizing the workload (if possible, the such benchmark should include
guidelines and/or tools to facilitate this task).

6.5 Conclusion

This chapter presented a generic approach to define benchmarks for vulnerability
detection tools in web services. It specifies the guidelines for the definition of the
benchmark components (i.e. workload, metrics and procedure) and the steps
necessary to implement concrete benchmarks, focusing on two key metrics: precision
and recall. This approach has been used to define two concrete benchmarks targeting
tools able to detect SQL Injection vulnerabilities.
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The first benchmark is based on a predefined workload that consists of large set of
web services adapted from standard performance benchmarks, and including
versions of the services both with and without vulnerabilities. Being based on a
predefined set of services, the main limitation of this benchmark is that it is not fully
protected against "gaming".

The second benchmark leaves to the user the responsibility for defining that
workload, thus avoiding the “gaming” problem. The problem of such approach is
that it leaves to the user the task of characterizing the workload in terms of the
existing vulnerabilities. To support the user in this task, the benchmark includes a
procedure and a tool to identify injection vulnerabilities in the web services,
providing a good estimation of the benchmark metrics.

The experimental evaluation of these benchmarks will be presented in Chapter 7. In
practice, the benchmarks were used to evaluate and rank several tools with
capabilities to detect SQL injection vulnerabilities in web services, including the tools
that implemented the techniques presented in Chapter 4.

Finally, this chapter discussed the benchmarking properties that guarantee that its
results are reproducible and can be generalized in that specific domain. To be
accepted by the computer industry and by the user community a benchmark should
fulfill such a set of properties, namely: representativeness, portability, repeatability,
non-intrusiveness, and simplicity of use. These properties will be discussed in more
detail for both benchmarks together with the results in Chapter 7.
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Case Studies

This chapter presents the practical application and experimental evaluation of the
techniques and tools proposed in the previous chapters. Four case studies are
presented with the objective of assessing how effective are the vulnerability
detection techniques and tools proposed. Furthermore, the case studies show how to
assess and compare vulnerability detection tools using the benchmarks presented in
Chapter 6.

The first case study focuses on the use of well known web security scanners in
publicly available web services. In these experiments we use four web security
scanners to identify security flaws in 300 publicly available web services. The
purpose of this experiment is twofold. In the one hand, it allows understanding the
effectiveness of well-known web security scanners. On the other hand, it allows
understanding the most common types of vulnerabilities in web services
environments, providing some insight on the priority of the types to be addressed.

The second case study presented is a benchmarking campaign conducted using the
VDBenchWS-pd benchmark to evaluate and rank a large set of vulnerability
detection tools including web security scanners, static code analyzers, and the three
tools proposed in Chapter 4. The objectives of this campaign are: assessing the
effectiveness of the vulnerability detection tools proposed in this work
(comparing to other existing ones) and validating the proposed benchmark.

The third case study is another benchmarking campaign, now using the
PTBenchWS-ud benchmark, to evaluate four penetration testing tools, including
three commercial scanners and the improved penetration testing tool presented in
Chapter 4. This campaign was conducted with the objective of validating the
PTBenchWS-ud benchmark as an alternative that can be effectively used in specific
scenarios for comparing penetration testing tools (recall that this benchmark is based
on a user-defined workload).
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The final case study demonstrates the use of the SOA-Scanner presented in Chapter
5. This case study uses a simple infrastructure based on SOAP web services having
injection vulnerabilities. In practice, this infrastructure is a subset of jSeduite SOA
(Delerce-Mauris et al. 2009). Although the resulting infrastructure is quite simple, it
allows demonstrating all the different scenarios and thus, exploring the
functionalities of the tool.

The outline of this chapter is as follows. The next section presents the first case study
where web security scanners are used to detect vulnerabilities in publicly available
web services. Section 7.2 presents a benchmarking campaign using VDBenchWS-pd
to evaluate and compare several tools, including the ones proposed in Chapter 4.
Section 7.3 presents a benchmarking campaign using PTBenchWS-ud to evaluate
and compare four penetration testing tools. Section 7.4 presents the case study based
on a service based infrastructure to demonstrate the effectiveness of the integrated
tool proposed in Chapter 5. Finally, Section 7.5 concludes the chapter.

7.1 Case Study #1: Assessing Public Web Services

As discussed before, commercial web security scanners are widely used by
developers and are considered as representative of the state of the art in web
applications black-box testing (Acunetix 2008a). These scanners are regarded as an
easy way to test applications searching for security vulnerabilities. However,
previous research suggests that the effectiveness of scanners in the detection of
vulnerabilities varies a lot, most times providing unsatisfactory results (Fonseca,
Vieira, and Madeira 2007). This section presents an experimental campaign
conducted to understand the strengths and limitations of penetration testing in
public web services and to try to identify the common types of vulnerabilities in
such environments. In summary, the experiments were conducted to answer to the
following three questions:

*  What is the detection coverage (percentage of total existing vulnerabilities
detected by the tool) of the vulnerability scanners tested?

* What is the false positives rate (percentage of vulnerabilities identified by
the tool but that do not really exist) of the web vulnerability scanners tested?

* What are the most common types of vulnerabilities in web services
environments?

The experimental study consisted of four steps:
1. Preparation: select the security scanners to use and the web services to scan.

2. Execution: use the security scanners to scan the services in order to identify
potential vulnerabilities. The tests were executed with the scanners
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configured to use their most complete profile (i.e. to use all the tests that they
have available for web services assessment).

3. Verification: perform manual testing to confirm that the vulnerabilities
identified by the scanners do exist (i.e. are not false positives).

4. Analysis: analyze the results obtained and systematize the lessons learned.

Four commercial web vulnerability scanners widely used were selected, including
two different versions of a specific brand. The three brands, introduced in Chapter 2,
are: HP Weblnspect (HP 2008), IBM Rational AppScan (IBM 2008), and Acunetix
Web Vulnerability Scanner (Acunetix 2008a). For the results presentation we decided
not to mention the brand and the versions of the scanners to assure neutrality and
because commercial licenses do not allow in general the publication of tool
evaluation results. This way, the scanners are referred in this section as VS1.1, VS1.2,
VS2, and VS3 (without any order in particular). Vulnerability scanners VS1.1 and
VS1.2 refer to the two versions of the same product (being VS1.2 the most recent).

Three hundred publicly available web services were randomly selected. The reason
for random selection is twofold: allow a fair comparison between the scanners and
allow us to gather information about vulnerability distribution in web services
context without biasing the results. The set of web services included services
implemented with several technologies (.NET, Java, php, etc.) and services owned
by different relevant parties, including Microsoft, Google, and Xara.

7.1.1  Overall Results

Table 7.1 presents the overall results of the study. For each scanner it is presented the
total number of vulnerabilities reported and the number of services in which those
vulnerabilities were found. The scanners pointed six different types of vulnerabilities
(already introduced in Chapter 2).

As we can see, different scanners report different types of vulnerabilities. This is a
first indicator that tools implement different forms of vulnerability identification and
that the results from different scanners may be difficult to compare. Some additional
observations are:

* Tool VS1.1 and VS1.2 (two different versions of the same brand) are the only
ones that detected XPath Injection vulnerabilities. An important aspect is
that, when compared to SQL Injection, the number of XPath-related
vulnerabilities is quite small. In fact, XPath vulnerabilities were detected in a
single service, suggesting that most web services make use of a database
instead of XML documents to store information.

* Tools VS1.1 and VS1.2 detected a code execution vulnerability. This is a
particularly critical vulnerability that allows attackers to execute code in the
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server. After discovering this vulnerability we performed some manual tests
and we were amazed by the possibility of executing operating system
commands and get the corresponding answer in a readable format.

* VS3 was the only one pointing vulnerabilities related to buffer overflow,
username and password disclosure, and server path disclosure.

* SQL Injection is the only type of vulnerability that was reported by the four
scanners used. However, different scanners reported different vulnerabilities
in different web services. In fact, the number of SQL Injection vulnerabilities
detected by VS1.1 and VS1.2 is much higher than the number of
vulnerabilities detected by VS2 and VS3.

Table 7.1 - Overall results obtained.
For each type of vulnerability scanner, the table shows the number reported by each scanner
and the number of web services with vulnerabilities.

VS1.1 VS1.2 VS2 VS3
Vulnerability Types # # # # # # # #
Vuln. |WS |Vuln. |WS |Vuln. |WS |Vuln. WS
SQL Injection 217| 38 225| 38 25 5 35| 11
XPath Injection 10 1 10 1
Code Execution 1 1 1 1
g(isesrlzloevi’arameter Based Buffer 0 0 0 0 0 0 4 3
Possibl rname or Passwor
Dci)ss:kljsi 1ise ame or Password 0 0 0 0 0 0 47 3
Possible Server Path Disclosure 0 0 0 0 0 0 17 5
Total 228 40 236| 40 25 5 103 22

As SQL Injection is the only type of vulnerability reported by all the scanners, we
look at this vulnerability type in more detail. The intersection areas of the circles in
Figure 7.1 represent the number of vulnerabilities detected by more than one scanner
(the number of vulnerabilities detected is shown; zero is the value when no number
is presented). Note that the area of each circle is roughly proportional to the number
of vulnerabilities detected, but there is no correspondence between the size of the
intersection areas and the number of vulnerabilities (it is too complex to represent
graphically).
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Figure 7.1 — Interception of SQL Injection vulnerabilities reported.
The circles areas are proportional to the number of vulnerabilities reported by the respective

scanner. The cloud represents the unknown vulnerabilities.

Figure 7.1 clearly shows that the four scanners detected different sets of SQL
Injection vulnerabilities and the differences are considerable, pointing again to
relatively low detection coverage of each vulnerability scanner individually. In fact,
even for VS1.1 and VS1.2, two consecutive versions of the same scanner, there are
considerable differences. VS1.1, the older version, reported 19 SQL Injection
vulnerabilities that were not reported by VS1.2. On the other hand, VS1.2 reported 27
vulnerabilities that were not reported by VS1.1.

7.1.2  False Positive Analysis

The results presented so far do not consider false positives (i.e. situations where tools
detected a vulnerability that in the reality does not exist). However, it is well known
that false positives are very difficult to avoid. This way, we decided to manually
confirm the existence (or not) of each vulnerability reported.

Confirming the existence of a vulnerability without having access to the source code
is quite difficult. Thus, we defined a set of rules and corresponding checks to classify
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the vulnerabilities detected by the penetration testing tools in three groups: a) False

positives, b) Confirmed vulnerabilities, and c) Doubtful.

Reported vulnerabilities were classified as false positives when meeting at least one

of the following cases:

For SQL Injection vulnerabilities, if the error/answer obtained is related to an
application robustness problem and not to a SQL command (e.g. a
NumberFormatException).

The error/value in the web service response is not caused by the elements
"injected" by the scanner. In other words, the same problem occurs when the
service is executed with valid inputs.

For path and username/password disclosure, the information returned by the
service is equal to the information submitted by the client (e.g. the
vulnerability scanner) when invoking the web service. In other words, there
is no information disclosure.

Reported vulnerabilities were classified as confirmed vulnerabilities if satisfying

one of the following conditions:

For SQL Injection vulnerabilities, if it is possible to observe that the SQL
command executed was invalidated by the values "injected" by the scanner
(or manually). This is possible if the SQL command or part of it is included in
the web service response (e.g. stack trace).

For SQL Injection vulnerabilities, if the “injected” values lead to exceptions
raised by the database server.

If it is possible to access unauthorized services or web pages (e.g. by breaking
the authentication process using SQL Injection).

For Path disclosure, if it is possible to observe the location of folders and files
in the server.

For XPath Injection, if the “injected” values lead to exceptions raised by the
XPath parser.

For Buffer Overflow, if the server does not answer to the request or raises an
exception specifically related to buffer overflow.

If none of these rules can be applied then there is no way to confirm whether a

vulnerability really exists or not. These cases were classified as doubtful. Figure 7.2

shows the results for SQL Injection vulnerabilities (the only type detected by all the

scanners tested).
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Figure 7.2 — False positives for SQL Injection in the public services.
Doubtful cases are cases in which the vulnerability was not confirmed but also it was not
possible to rule it as a false positive.

As shown, the percentage of vulnerabilities that we were not able to confirm
(doubtful cases) is low for VSI1.1, VS1.2, and VS3 (always less than 15%), but
considerably high for VS2 (32%). This means that the false positive results are
relatively accurate for the first three tools, but it is an optimistic figure (zero false
positives) for scanner VS2. Obviously, we can also read the false positive results
shown in Figure 7.2 as a range, going from an optimistic value (confirmed false
positives) to a pessimistic value (confirmed false positives + doubtful cases).

The number of (confirmed) false-positives is high for scanners VS1.1 and VS1.2, and
is also high for VS3, in relative terms. Scanner VS2 shows zero confirmed false
positives, but it detected a fair percentage (8 out of 25) of vulnerabilities that were
classified as doubtful, thus a pessimistic interpretation of results is that 8 out of 25
vulnerabilities may be false positives. Obviously, the low number of vulnerabilities
detected by VS2 and VS3 (25 and 35 respectively) also limits the absolute number of
false positives.

Table 7.2 presents the false positive results for the other vulnerabilities. In this case,
we were able to confirm the existence (or inexistence) of all vulnerabilities and no
doubts remained. An interesting aspect is that all XPath injection and Code
Execution vulnerabilities were confirmed. On the other hand, all vulnerabilities
related to username and password disclosure were in fact false positives (in all cases
the username/password information returned is equal to the one sent by the
scanner).
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Table 7.2 - False positives for other vulnerability types.
As these types of vulnerabilities were reported by only one brand of scanners, for each type of
vulnerability the table also indicates the scanner that reported.

Vulnerability Scanner Confirmed E. Positives
XPath Injection VS1.1 & VS1.2 10 0
Code Execution VS1.1 & VS1.2 1 0
Possible Parameter Based Buffer VS3 1 3
Overflow
Possibl P
ossible Use.rname or Password V3 0 .
Disclosure
Possible Server Path Disclosure VS3 16 1

Due to the large percentage of false positives observed for SQL Injection
vulnerabilities, we decided to repeat the analysis of the interceptions of the
vulnerability report sets. Figure 7.3 presents the SQL Injection vulnerabilities
intersections after removing the false positives. The doubtful situations were in this
case considered as existing vulnerabilities (i.e. optimistic assumption from the point
of view of scanners detection effectiveness).

Results clearly show that, even after removing the false positives, the four tools
report different vulnerabilities. An interesting result is that three vulnerabilities were
detected by VS1.1 and were not detected VS1.2 (the newer version of the scanner).
The reverse also happens for 15 vulnerabilities, which is expectable as a newer
version is anticipated to detected more vulnerabilities than an older one (but that
should happen without missing any of the vulnerabilities identified by the older
version, which was not the case). These results called our attention and we tried to
identify the reasons. After analyzing the detailed results we concluded that all of
these 18 vulnerabilities are in the group of the doubtful ones (maybe they are really
false positives, but we were not able to demonstrate that), preventing us from
drawing a definitive conclusion.
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Figure 7.3 — Interception of SQL Injection vulnerabilities without False Positives.
The circles areas are proportional to the number of vulnerabilities represented. The cloud
represents the unknown vulnerabilities.

7.1.3  Coverage Analysis

A key aspect is to understand the detection coverage of the vulnerabilities detected.
Detection coverage compares the number of vulnerabilities detected against the total
number of vulnerabilities. Obviously, in our case it is impossible to know how many
vulnerabilities were not disclosed by any of the scanners (we do not have access to
the source code). Thus, it is not possible to calculate the coverage. However, it is still
possible to make a relative comparison based on the data available.

In practice, we know the total number of vulnerabilities detected (which correspond
to the union of the vulnerabilities detected by the four scanners after removing the
false positives) and the number of vulnerabilities detected by each individual
scanner. Based on this information it is possible to get an optimistic coverage
indicator for each scanner (i.e. the real coverage will be lower than the value
presented). Obviously, this is relevant only for SQL Injection vulnerabilities as it is
the only type that is detected by all the scanners.

Table 7.3 presents the coverage results. As shown, 149 different SQL Injection
vulnerabilities were detected (as before, we decided to include the doubtful
situations as existing vulnerabilities). Each scanner detected a subgroup of these
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vulnerabilities, resulting in partial detection coverage. VS1.1 and VS1.2 presented
quite good results. On the other hand, the coverage of VS2 and VS3 is very low.

Table 7.3 — Coverage for SQL Injection vulnerabilities.
As it is not possible to know the total existing number of vulnerabilities, the values presented
are probably overestimated.

Scanner # SQL Injection Vulnerabilities Detection Coverage
VS1.1 130 87.2%
VS1.2 142 95.3%
VS2 25 16.8%
VS3 26 17.4%
Total 149 100.0%

7.1.4 Lessons Learned

The results presented before allow us to observe some interesting aspects. The first
observation is that different scanners detected different types of faults. SQL Injection
was the only type that was detected by all scanners. The two scanners of the same
brand (VS1.1 and VS1.2) were the only ones that detected XPath and code execution
vulnerabilities. Only one scanner (VS3) detected vulnerabilities related to buffer
overflow, username and password disclosure, and server path disclosure. VS2 only
detected SQL Injection vulnerabilities.

SQL Injection vulnerabilities are the dominant type in the web services tested (see
Figure 7.4). However, different scanners detected different vulnerabilities of this
type. In fact, VS1.1 and VS1.2 detected a huge number of vulnerabilities (215 and 225
respectively) while VS2 and VS3 detected a very low number (25 and 35
respectively). Additionally, SQL Injection vulnerabilities together with the other
types of injection vulnerabilities reported (XPath Injection and Code Execution)
represent approximately 90% of the vulnerabilities detected.

A key observation is the very large number of false positives. In fact, for three of the
scanners the percentage of false positives was more than 25%. VS2 presented zero
false positives, but 8 out of the 25 SQL Injection vulnerabilities detected by this
scanner remained as doubtful (i.e. could not be manually confirmed as real
vulnerabilities nor as false positives). This reduces the confidence on the precision of
the vulnerabilities detected.

A very low coverage, lower than 18%, was observed for two of the scanners (VS2
and VS3), while the other two scanners (VS1.1 and VS1.2) present a coverage
superior to 87%. Note that this value represents an optimistic coverage, as the real

130




Case Studies

coverage of the tested scanners (at least for the 300 web services used in the
experiments) is definitely lower than the value observed, with many vulnerabilities
probably remaining undetected.

To sum up, the results show that selecting a vulnerability scanner to use for
detecting vulnerabilities in web services is a very difficult task. First, different
scanners detect different types of vulnerabilities. Second, the number of false
positives is quite high, reducing the confidence on the scanners” results. Finally, the
coverage is in some cases very low, suggesting that many vulnerabilities probably
remain undetected. This also highlights the need that users have for techniques that
allow to evaluate and compare the effectiveness of different vulnerability detection
tools in a fair way, as addressed previously in this thesis.

The final remark goes to the final distribution of vulnerabilities per type, presented
in Figure 7.4, after removing the confirmed false positives but including the doubtful
cases (i.e. optimistic evaluation of the scanners). As the doubtful cases only affect the
SQL Injection, it means that the number of SQL injection vulnerabilities could be
overestimated. Scanners have found 177 different vulnerabilities in 25 different
services, which represent approximately 8.33% of the tested services. As mentioned
before, the predominant vulnerability is SQL Injection, representing 84.18% of the
vulnerabilities found, with injection vulnerabilities representing approximately 90%
of the vulnerabilities detected. This is a very important observation due to the high
number of cases found and the high severity of this type of vulnerability.

Injection (160)

1
1 SQL Injection (149)
W Possible Server Path
Disclosure (16)
XPath Injection (10)
B Code Execution (1)
149

B Possible Parameter Based
Buffer Overflow (1)

Figure 7.4 — Vulnerabilities detected distributed per type.
The values represented exclude false positives. The sum of injection vulnerabilities (~90%)
further highlights the importance of this type of vulnerabilities.
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7.2 Case Study #2: Using VDBenchWS-pd to Benchmark
Vulnerability Detection Tools

Using the VDBenchWS-pd to benchmark a set of vulnerability detection tools is
basically a straightforward process that consists in following the steps defined in the
benchmark procedure (see Section 6.1.3). As specified, the tools under benchmarking
must be selected in Phase 1: Preparation. Phase 1 also specifies the step of selecting
and characterizing a workload, however this is only necessary in the case of
benchmarks based on a user defined workload, which is not the case of
VDBenchWS-pd. Table 7.4 summarizes the tools used in this experimental
campaign, which are able to detect SQL Injection vulnerabilities in SOAP web
services, the target domain of the benchmark.

Table 7.4 — Tools under benchmarking.
The third party penetration testing and static code analyzers are referred to throughout the
section by using the codes VS1, VS2, VS3, SA1, SA2, and SA3.

Provider Tool Technique
HP WeblInspect
IBM Rational AppScan Penetration testing / Identify
Acunetix Web Vulnerability Scanner vulnerable inputs
Univ. Coimbra IPT-WS (see Section 4.1)
Attack signatures and interface
Univ. Coimbra Sign-WS (see Section 4.2) monitoring /
Identifies vulnerable inputs
Univ. Maryland FindBugs
Static code analysis /
SourceForge Yasca ] .
Identify vulnerable queries
JetBrains Intelli] IDEA
Anomaly detection
Univ. Coimbra RAD-WS (see Section 4.3) nomaty I
Identifies vulnerable queries

As shown, four penetration testing tools have been benchmarked, including three
well-known commercial tools, namely: HP Weblnspect (HP 2008), IBM Rational
AppScan (IBM 2008), and Acunetix Web Vulnerability Scanner (Acunetix 2008a).
These tools were introduced in Section 2.3.1. The last penetration tester considered is
the improved penetration testing (IPT-WS) tool presented in Section 4.1.

Three vastly used static code analyzers that provide the capability of detecting
vulnerabilities in Java applications’ source or bytecode have also been considered in
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this study, namely: FindBugs (University of Maryland 2009), Yasca(Scovetta 2008),
and Intelli] IDEA (JetBrains 2009). These tools were introduced in Section 2.3.2.

The last two tools used are also proposed in this thesis. Sign-WS is presented in
Section 4.2 and implements a technique based on attack signatures and interface
monitoring. RAD-WS is presented in Section 4.3 and combines runtime anomaly
detection with penetration testing for uncovering SQL Injection vulnerabilities in
web services.

The second phase of the benchmark consists of running the selected tools over the
workload code (Phase 2. Execution). Basically, the tools are used to detect
vulnerabilities in the web services of the workload. An important aspect is that, in
the case of testing tools and when allowed, information about the domain of each
web service input parameter was provided. If the tool requires the user to set an
exemplar invocation per operation, the exemplar respected the input domains of
operation. All the tools in this situation used the same exemplar to guarantee a fair
evaluation. Similarly, during the experiments the static analyzers were configured to
fully analyze the services code. For the analyzers that use binary code, the
deployment ready version was used.

The vulnerabilities detected were then compared with the existing ones and used to
calculate the benchmark metrics and rank the tools (Phase 3. Comparison).
Vulnerabilities correctly detected by the tools were counted as true positives.
Vulnerabilities detected by the tools that did not match any of the known ones were
manually analyzed before being classified as false positives. Although this is not a
step included in the benchmarking approach, it was useful to validate the result of
the code reviews conducted by the security experts (during the definition of the
benchmark, as detailed in Chapter 6). The outcome was that no additional
vulnerabilities were identified by any of the tools (i.e. all the vulnerabilities reported
by the tools were already known or were in fact false positives), which gives us some
guarantee that the code reviews were conducted in an appropriate manner and
identified all the vulnerabilities.

7.2.1  Overall benchmarking results

Table 7.5 presents the overall benchmarking results. As we can see, the anomaly
detection tool (RAD-WS) is the one that presents the higher F-Measure. Additionally,
two of the static code analysis tools (SA1 and SA2) present better results than the
penetration testing tools. SA3 and VS3 are the tools with the lowest F-Measure.
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Table 7.5 - VDBenchWS-pd Benchmarking results.
After the execution of the benchmark it is possible to calculate the measures for each tool.

Tool F-Measure Precision Recall
VSi1 0.378 0.455 0.323
VS2 0.297 0.388 0.241
VS3 0.037 1.000 0.019

IPT-WS 0.338 0.567 0.241
Sign-WS 0.851 1.000 0.741
SA1l 0.691 0.923 0.552
SA2 0.780 0.640 1.000
SA3 0.204 0.325 0.149
RAD-WS 0.885 1.000 0.793

The benchmark measures can be used to rank the tools under benchmarking (Step
3.b: Ranking and Selection) according to three criteria: precision (focus on the
balance between true positives and false positives), recall (focus on the true positives
rate), and F-Measure (focus on the balance between precision and recall). Table 7.6
presents a possible ranking for the tools. We divide the ranking in two, considering
the approach used to report vulnerabilities (vulnerable inputs or vulnerable SQL
queries), as defining a single ranking for tools that report vulnerabilities in different
ways may not be meaningful (nevertheless, the benchmark measures allow such a
ranking). Tools presented in the same cell are ranked in the same position due to the
similarity of the results.

Table 7.6 - VDBenchWS-pd tools ranking,.
The tools can be ranked according to three metrics, depending on the objectives of the
benchmark user.

Criteria Ist 2nd 3rd 4th 5th
F-Measure Sign-WS VS1 IPT-WS VS2 VS3
Inputs Precision Sign-WS VS3 IPT-WS VS1 VS2
Recall Sign-WS VS1 VS2/IPT-WS VS3
Criteria 1st 2nd 3rd 4th
F-Measure RAD-WS SA2 SA1l SA3
Queries Precision RAD-WS SA1 SA2 SA3
Recall SA2 RAD-WS SA1l SA3

As we can see in Table 7.6, RAD-WS is the most effective tool considering both F-
Measure and precision. However, the most effective tool when we consider recall is
SA2, being RAD-WS the second best. VS3 seems to be the least effective tool in terms
of F-Measure and recall. However, it has a very good precision (in fact, it reported
no false positives, but detected only 3 of the existing vulnerabilities). Excluding SA3,
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static analysis appears to be a better option than penetration testing. The following
subsections discuss the benchmark results in more detail.

7.2.2  Results for Tools that Report Vulnerable Inputs

Figure 7.5 shows the vulnerabilities reported by the penetration testing tools and
Sign-WS. Columns 1, 2, and 3 show the results for the commercial tools and the last
bar in the graph presents the total number of vulnerabilities in the workload
parameters.

As we can see, the different tools reported a different number of vulnerabilities and
the coverage for the commercial tools is always under 35%. Among these, VS1
identified the higher number of vulnerabilities (=32% of the total vulnerabilities).
However, it also reports a very higher number of false positives (=54%). The very
low number of vulnerabilities detected by VS3 can be partially explained by the fact
that this tool does not allow the user to set any information about input domains,
nor it accepts any exemplar request. This means that the tool generates a completely
random workload that, probably, is not able to test parts of the code.

160
M True Vulnerabilities M False Positives ® True Positives
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VS1 VS2 VS3 IPT-WS Sign-WS True
Vulnerabilities
Tool Detection Coverage False Positive Rate
VS1 32.28% 54.46%
VS2 24.05% 61.22%
VS3 1.90% 0.00%
IPT-WS 24.05% 43.28%
Sign-WS 74.05% 0.00%

Figure 7.5 - VDBenchWS-pd results for pen. testing and Sign-WS.
The percentages presented in the image are relative to the vulnerabilities reported.
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Comparing our tools with the commercial scanners, we can observe that Sign-WS
consistently present better results, both in terms of coverage and false positives,
largely outperforming any of the penetration tester, including the commercial tools.
Sign-WS was able to detect 117 of a total of 158 vulnerabilities (74%), presenting
much higher detection coverage than any of the commercial penetration testers. This
suggests that our approach is an effective alternative to perform detection of SQL
Injection vulnerabilities in web services. As expected, the increased visibility on the
web service interfaces, provided by the use of signed attacks and increased interface
monitoring, allows the approach to detect vulnerabilities that otherwise would not
be possible to detect. In other words, while the scanners are limited to the user point
of view, Sign-WS takes advantage of the information added by monitoring other
interfaces.

The second observation is the fact that the tool did not report false positives. In the
case of two of the commercial penetration testers (VS1 and VS2), more than 54% of
the vulnerabilities reported are, in fact, false positive alarms (for VS3 the number of
false positives is 0, but the tool only detects 3 vulnerabilities). This increases the
confidence in the vulnerabilities detected by Sign-WS in future campaigns. As
mentioned before, the rare scenario where false positives would manifest is when
tokens similar to the signatures (both normal and reversed) are used in the
construction of application’s queries. That is not the case in this set of services and
also in the large majority of applications (anyway, the tool user is able to configure
the signature model, which may allow avoiding matching similar keywords). This
way, we do believe that these results can be generally reproduced in real world web
services.

The differences between the performance of Sign-WS justify the use of this tool in the
PTBenchWS-ud benchmark (see Section 6.3) for helping the wuser in the
characterization of the workload. In fact, although the tool is not able to detect all the
existing vulnerabilities, the capacity to detect a much higher number of
vulnerabilities than all penetration testers, together with the precision presented (no
false positive reported) makes it good enough to produce the baseline results for
penetration testing evaluation. Next section will discuss this in detail.

The tool based on improved penetration testing (IPT-WS) presents better results than
two of the commercial tools (VS2 and VS3), but presents a lower coverage than VS1
(#24% against =32%). However, in terms of false positives IPT-WS performs better
than VS1 (=43% and ~54%, respectively). A detailed analysis of the results and of the
web services under testing showed that IPT-WS is better than VS1 on the
identification of false positives (i.e. the detection rules it implements are more
precise), but is less effective on exercising the target services (the workload is less
effective).

Figure 7.6 illustrates the intersection of the vulnerabilities detected by the different
tools. As before, the areas of the circles are roughly proportional to the number of
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vulnerabilities detected by the respective tool, whose name is indicated close to the
circle. The same does not happen with the intersection areas, as it would be
impossible to represent it graphically.

Figure 7.6 — Intersection of vulnerabilities detected.
The circles areas are proportional to the number of vulnerabilities represented. The cloud
represents the vulnerabilities that no tool was able to detect.

As we can see, there are 67 vulnerabilities that are detected only by Sign-WS. This
represents more than 55% of the total number vulnerabilities reported, emphasizing
the advantage of tools with extra information when compared with penetration
testing tools. Additionally, only 3 vulnerabilities were detected by all the penetration
testing tools, but this number is limited by the low coverage of VS3.

Regarding the penetration testers, VS1 presented the higher detection coverage, as it
is able to identify all the vulnerabilities detected by IPT-WS and VS2, plus 13
vulnerabilities. VS1 was also able to identify one vulnerability that no other tool
detected. Although none of the tested tools was able to exploit this vulnerability, VS1
uses heuristics to identify vulnerabilities that are in most cases very liberal, reporting
vulnerabilities from little evidences that in many cases result in false positives, but in
this case resulted in a really existing vulnerability. This is an indication that,
although Sign-WS achieves very good coverage, we may need to improve the
attackload generation technique (e.g. by including some features available in VSI).
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The final remark is relative to the 40 vulnerabilities that were not detected. After a
manual analysis of the services, we concluded that many of those are vulnerabilities
located in places in the code hard to reach via black-box testing, and the workloads
used are not yet complete enough to be able to execute those code paths. There are
also situations where a vulnerability is preceded by another very similar
vulnerability and so, the second can only be detected after fixing the first. The
solution for the first case is to develop new and better ways for generating the
workload and attackload. Regarding the second case, we need to apply an iterative
process with alternate cycles of vulnerability detection and correction.

7.2.3  Results for Tools that Report Vulnerable SQL Queries

Figure 7.7 shows the number of vulnerable SQL queries identified by the static
analyzers and by the RAD-WS tool. Columns 1, 2, and 3 show the results for the
third party static code analyzers and the last bar in the graph presents the total
number of vulnerable queries in the workload code.

As shown, in general, RAD-WS presents better results than the static analyzers
(although it has true positives rate lower than SA2). In fact, RAD-WS presents the
best F-Measure value of all the tools benchmarked, detecting almost 80% of the
existing vulnerabilities, while avoiding false positives, which constitutes a recall
value only lower than SA2 while achieving maximum precision. Considering only
the static analyzers, SA2 detected the higher number of vulnerabilities, with 100% of
true positives (an excellent result), but identified 49 false positives, which represents
=36% of the vulnerabilities pointed. The high rate of false positives is, in fact, a
problem shared by SA3, which reported more than =67% of false positives. The
reason is that these tools detect certain patterns that usually indicate vulnerabilities,
but many times they detect vulnerabilities that do not exist, due to intrinsic
limitations of the static profile of the code analysis.
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SA3 14.94% 67.50%

Figure 7.7 - VDBenchWS-pd results for static analysis and RAD-WS.
The true vulnerabilities are the vulnerabilities identified by the review team. The percentages
depicted are relative to the total of vulnerabilities reported by the tool.

Figure 7.8 illustrates the intersection of vulnerable lines detected by the different
tools. As we can see, SA2 detects all the vulnerabilities found by the other tools
(excluding the false positives) plus 9. Our anomaly detector detects a large number
of the vulnerabilities detected by the static code analyzers. Finally, only 11 out of 87
vulnerabilities were detected by all tools.
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Figure 7.8 — Intersections for static analysis and RAD-WS.
The circles areas are proportional to the number of vulnerabilities represented. All the
vulnerabilities were reported by at least one tool, with 11 reported by all tools.

7.2.4  Properties Discussion

The representativeness of the workload greatly influences the representativeness of
the benchmark. As mentioned before, we are aware of the limitations of the
benchmark workload code, as it may not be representative of all the SQL Injection
vulnerability patterns found in web services. Our thesis is that the workload should
be good enough to allow the comparison of vulnerability detection tools. In fact,
what is important is that the benchmark results accurately portray the tools
effectiveness in a relative manner. Comparing the benchmarking results with the
effectiveness of the tools under benchmarking in different scenarios allows us to
check if the benchmark accurately portrays the effectiveness of vulnerability
detection tools in a relative manner. This way, we used the tools to detect
vulnerabilities in a small set of third-party web services.
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Eight web services implementing 28 operations were considered in the experimental
evaluation (see Table 7.7). To avoid selecting services that fit the characteristics of the
benchmark workload (and thus get biased results) we adopted the services from a
previous study (see (Antunes et al. 2009b)). Four of these services implement a
subset of the web services specified by the standard TPC-App performance
benchmark (Transaction Processing Performance Council 2008), which has also been
used to define the VDBenchWS-pd benchmark. However, these versions where
implemented by a different developer, inclusively using different technologies (thus
resulting in different web services). The remaining four services have been adapted
from code publicly available on the Internet. These height services use a database to
store data and SQL commands to manage it.

Table 7.7 characterizes the web services (the source code can be found at (Antunes
2013)), including the number of operations per service (#Op), the total lines of code
(LoC) per service, the average number of lines of code per operation (LoC/Op), and
the average cyclomatic complexity (Lyu 1996) of the operations (Avg. C.). These
indicators were calculated using SourceMonitor (Campwood Software 2008). To
perform a correct evaluation we extensively reviewed the source code looking for
vulnerabilities. The table also includes the characterization of the services in terms of
the vulnerabilities existing in the code: 61 vulnerable parameters and 28 vulnerable
queries were identified (false positives were eliminated by cross-checking the results
from different experts).

Table 7.7 — Third-party web services characterization.
For each service it is presented the vulnerabilities reported, the number of lines of code, the
average complexity of the code, the number of vulnerable inputs and lines.

Service #Op LoC |LoC/Op |Avg.C. In:): s Li‘rll.es
ProductDetail 1 105 105.0 6.0 0 0
;t NewProducts 1 136 136.0 6.0 1 1
(é NewCustomer 1 184 184.0 9.0 15 2
ChangePaymentMethod 1 97 97.0 11.0 2 1
© JamesSmith 5 270 54.0 6.0 20 5
5 PhoneDir 5 132 264 2.8 6 4
% Bank 5 175 35.0 34 4 3
2 Bank3 6 377 62.8 9.0 13 12
Total 25 1476 59.0 6.8 61 28

As expected, the measures are not equal to the ones reported by the benchmark. This
is normal as this new set of services has different code characteristics and different
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SQL Injection vulnerabilities; in fact, what is important is the ranking of the tools,
which is presented in Table 7.8 (tools in the same cell are ranked in the same
position).

Table 7.8 — Results for third-party web services.
The measures are calculated using the same rules as in the benchmark.

Tool True Pos. False P. F-Measure Precision Recall
VS1 31 5 0.639 0.861 0.508
VS2 22 1 0.524 0.957 0.361
VS3 6 0 0.179 1.000 0.098

IPT-WS 28 0 0.629 1.000 0.459
Sign-WS 61 0 1.000 1.000 1.000
SA1 23 7 0.793 0.767 0.821
SA2 28 10 0.849 0.737 1.000
SA3 11 4 0.512 0.733 0.393
RAD-WS 28 0 1.000 0.100 1.000

Comparing this ranking with the one proposed using the benchmark measures (see
Table 7.6) we can observe the following: 1) the ranking based on the F-Measure is
precisely the same; 2) the ranking based on precision differs for VS2 and VS1 (the
services used for the validation are simpler services and represent a lower challenge
to the scanners, resulting in higher values of precision for all scanners, leading to this
minor change in the ranking); and 3) the ranking based on recall is the same. This
suggests that the tools’” ranking derived from the benchmarking campaign
adequately portrays the relative effectiveness of the tools. However, to prove the
property and improve the benchmark representativeness, more vulnerable web
services need to be added to the workload.

Table 7.9 - Ranking based on third-party services.
The tools can be ranked according to the three metrics used.

Criteria 1st 2nd 3rd 4rd 5th
F-Measure Sign-WS VS1 IPT-WS | VS2 VS3
Inputs Precision Sign-WS VS3/IPT-WS VS2 VS1
Recall Sign-WS VS1 IPT-WS | VS2 VS3
Criteria Ist 2nd 3rd 4th
F-Measure RAD-WS SA2 SA1 SA3
Queries Precision RAD-WS SA1l SA2 SA3
Recall SA2/RAD-WS SA1 SA3

Regarding portability, the benchmark seems to be quite portable. In fact, we were
able to successfully benchmark four penetration testers, three static code analyzers,
one anomaly detector, and one tool based on attack signatures and interface
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monitoring. It is important to emphasize that these tools are provided by different
entities and have very different functional characteristics. The benchmark is portable
because it is not based on the implementation details of any specific tool (e.g. the
workload follows the adequate standards and is generic enough to be tested by any
tool).

The proposed benchmark must report similar results when used more than once
over the same tool. To check repeatability we executed the benchmark for VS1 and
SA2 (the penetration tester and the static code analyzer with the higher F-Measure)
two more times. Table 7.10 presents the results of the three executions. As we can
see, the results for the SA2 are always the same. This was expected as static code
analyzers analyze the code in a deterministic manner, which removes variance from
the results. On the other hand, some small variations can be observed for VSI.
However, these variations are always under 0.01, which suggests that the benchmark
is quite repeatable.

The benchmark does not require any changes to the benchmarked tools, which
guarantees the non-intrusiveness property. This is possible because the measures
portray tools effectiveness from the point-of-view of the service they provide (i.e.
vulnerabilities reported) and not based on the internal behavior.

Table 7.10 - VDBenchWS-pd repeatability results.
The repetition of the benchmark execution leads to slightly different, but equivalent, results
due to the non-deterministic characteristics of the workload

VS1 SA2
Run 0 Run 1 Run 2 Run 0 Run 1 Run 2
F-Measure 0.378 0.381 0.378 0.78 0.78 0.78
Precision 0.455 0.452 0.455 0.64 0.64 0.64
Recall 0.323 0.329 0.323 1.00 1.00 1.00

The proposed benchmark is quite simple to use (in part, because most steps are
automatic). In fact, we have been able to run it for all the tools in about 6 man-days,
which correspond approximately to an average of 0.60 man-days per benchmarking
experiment. Running the benchmark only requires executing the tools and
comparing the reported vulnerabilities with the ones that effectively exist. As
different tools report vulnerabilities in different formats (e.g. XML file, text file,
GUI), to automate the vulnerability comparison step, we need to convert the output
of the tools to a common format. Although possible, we decided not to do it in this
work (it is just a technical issue with no scientific relevance).
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7.3 Case Study #3: Using PTBenchWS-ud to Benchmark
Penetration Testing Tools

Similarly to the previous case, using the PTBenchWS-ud to benchmark a set of
vulnerability detection tools is basically a straightforward process that consists in
following the defined steps (see Section 6.1.3). However, as this benchmark is based
in a user defined workload, it is also necessary to select and characterize the
workload to be used, as specified in Phase 1: Preparation. Also according to the
preparation phase, it is necessary to select the tools under benchmarking.

As shown in Table 7.11, we used the same four penetration testing tools
benchmarked in the previews case study, including three well-known commercial
tools (introduced in Section 2.3.1, namely: HP WebInspect (HP 2008), IBM Rational
AppScan (IBM 2008), and Acunetix Web Vulnerability Scanner (Acunetix 2008a). The
last penetration tester considered is the improved penetration tester presented in
Section 4.1.

To demonstrate the benchmarking approach we considered the same set of web
services included in the VDBenchWS-pd (see Section 6.2), which include both
vulnerable and non-vulnerable versions of the services. This allows comparing the
results of both benchmarking campaigns. However, it is important to observe that no
knowledge about the existing vulnerabilities is assumed. This way, to characterize
the workload (Phase 1. Preparation) we used the attack signatures and interface
monitoring approach, as proposed in the PTBenchWS-ud specification (see Section
6.3).

The penetration testing tools under benchmarking were run over the workload code
(Phase 2. Execution). Again, when allowed by the testing tool, information about the
domain of each web service input parameter or an exemplar invocation per
operation was provided. The vulnerabilities reported were manually confirmed and
compared with the ones identified by the Sign-WS tool in the preparation phase to
calculate the benchmark metrics and rank the tools (Phase 3. Comparison).

Table 7.11 — Tools under benchmarking,.
The third party penetration testing are referred to throughout the section by using the codes
VS§1, VS2, VS3.

Provider Tool Technique
HP WeblInspect
IBM Rational AppScan

Penetration testing /

Acunetix Web Vulnerability Scanner Identify vulnerable inputs

Univ. Coimbra IPT-WS (see Section 4.1)
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7.3.1 Characterization of the workload

The vulnerabilities detected by the Sign-WS tool have been manually confirmed to
guarantee the absence of false positives (as discussed in Section 7.2.2). The tool
indeed reported 0 false positives, but the coverage was only of 74.05% (117 true
positives out of 158 true vulnerabilities). Table 7.12 shows the distribution of the 117
vulnerabilities reported by the Sign-WS tool (the Versions column represents the
number of different version of each service, as explained in Section 6.2). As we will
see later, although not all the true vulnerabilities are included in the calculation of
the metrics, the ones reported by Sign-WS are enough for a good estimation of the
tools effectiveness.

Table 7.12 — Workload vulnerabilities as reported by Sign-WS.
For each service it is presented the number of versions existing and the total number of
vulnerabilities considered for this benchmarking campaign.

Source Service Name Versions Reported Inputs

ProductDetail 2 0

TPC-App NewProducts 2 1
NewCustomer 6 35
ChangePaymentMethod 2
Delivery 9
NewOrder 7

TPC-C OrderStatus 7 13
Payment 13 17
StockLevel 4
AdminUpdate 2 2
CreateNewCustomer 6 27
CreateShoppingCart 2 0
DoAuthorSearch 2 1
DoSubjectSearch 2 1

IPC-W DoTitleSearch 2 1
GetBestSellers 2 1
GetCustomer 2 1
GetMostRecentOrder 2 1
GetNewProducts 2 1
GetPassword 2 1
GetUsername 2 0

Total 80 117
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7.3.2  Benchmarking results

Table 7.13 presents the benchmark metrics for each tool, considering the
characterization presented in the previous subsection (i.e. using as base set the 117
vulnerabilities reported by the Sign-WS tool). As we can see, V51 is the tool with the
highest F-Measure, closely followed by IPT-WS. VS2 presents very poor F-Measure
results. Regarding precision, VS3 is the best as it reported no false positives, and IPT-
WS presents the best results. Finally, in terms of recall, VS1 has the best results,
while V52 and IPT-WS performed equally. The recall of VS3 is very low as it
detected only 3 vulnerabilities.

Table 7.13 - PTBenchWS-ud benchmarking results.
Owerall results after executing the tools over the workload web services.

Tool F-Measure Precision Recall
VSi1 0.437 0.446 0.427
VS2 0.353 0.388 0.325
VS3 0.050 1.000 0.026

IPT-WS 0413 0.567 0.325

The results presented in Table 7.13 were used to rank the tools according to the
different criteria: F-Measure, Precision, and recall. Table 7.14 shows the proposed
ranking. As it is possible to observe, VS1 leads the ranking in terms of both recall
and F-Measure values, while VS3 has the best precision value (again, the tool
reported only three vulnerabilities and none of them were false positives). Our tool,
IPT-WS, ranks second in all the three metrics.

Figure 7.9 shows details on the vulnerabilities reported by the tools (the last bar in
the graph presents the number of vulnerabilities detected by the Sign-WS tool). A
key observation is that all the tools detected less than 43% of the vulnerabilities
reported by Sign-WS, which makes the base set of vulnerabilities a good reference.
Another important aspect is that VS1 reported a true vulnerability that was not
reported by Sign-WS, but this was the only case. We will discuss later the impact of
this in the metrics calculation, when compared to the benchmark based on a
predefined workload.

Table 7.14 - PTBenchWS-ud tools ranking.
The tools ranked according to each one of the three metrics depending on the objectives of the
benchmark user.

Criteria Ist 2nd 3rd 4th

F-Measure VS1 IPT-WS VS2 VS3
Precision VS3 IPT-WS VS1 VS2

Recall VS1 VS2/IPT-WS VS3
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Figure 7.9 —- PTBenchWS-ud results for the penetration testing.
The percentages presented in the image are relative to the vulnerabilities reported.

7.3.3  Comparison with the VDBenchWS-pd benchmark

A key aspect is to compare the results of the present benchmark with the ones of the
benchmark based on a predefined workload. Note that, although we are considering
the same set of web services, in the benchmark based on a user-defined workload we
consider only a subset of the existing vulnerabilities (as reported by the Sig-WS tool).
This is obviously also a way for validating the workload characterization and the
metrics estimation approaches proposed to support the benchmark.

Table 7.15 summarizes the metrics obtained for both benchmarks (it is a merge of
Table 7.13 and Table 7.5 for the case of the penetration testing tools). As expected,
the metrics differ slightly because the base set of true vulnerabilities is different in
the two cases. The F-Measure values are consistently lower in VDBenchWS-pd. This
is due to the higher values for recall in PTBenchWS-ud, which are related to the
lower number of true vulnerabilities considered as reference. Finally, precision is the
same in both benchmarks, except for the case of VS1. This is due to the fact that VS1
detected a vulnerability that was not reported by the Sign-WS tool, and thus was not
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included in the base set of true vulnerabilities. This obviously harms the reported
tool precision, but as the coverage of the Sig-WS is very high, the impact is
minimum. In fact, it does not affect the relative results and the tools’ ranking is
precisely the same for both benchmarks (see Table 7.6 and Table 7.14).

Table 7.15 — Results for both benchmarks.
Using these values it is possible to compare the results for PTBenchWS-ud with the
VDBenchWS-pd.

Tool F-Measure Precision Recall
VS1 0.378 0.455 0.323
VS2 0.297 0.388 0.241

VDBenchWS-pd
VS3 0.037 1.000 0.019
IPT-WS 0.338 0.567 0.241
VS1 0.437 0.446 0.427
VS2 0.353 0.388 0.325

PTBenchWS-ud

VS3 0.050 1.000 0.026
IPT-WS 0.413 0.567 0.325

7.3.4  Properties Discussion

The representativeness of the benchmark depends on workload defined by the user.
In fact, although leaving to the user the responsibility for defining the workload
allows obtaining environment-specific results and prevents “gamming”, it may also
affect the validity of the results if the web services and vulnerabilities in the
workload are not representative of real scenarios. Obviously, in the case of the
experimental evaluation presented in the previous section, the representativeness
issues are as discussed in Section 7.2.4. The ranking obtained (equal to the
benchmark used in Section 7.2) suggests that the procedure and the approaches for
characterizing the workload and estimating the metrics are quite adequate for
characterizing the tools under assessment even when there is no previous
knowledge about the existing vulnerabilities.

Regarding portability, the benchmark seems to be quite portable in the specified
domain. In fact, we were able to benchmark four penetration testers, from different
vendors and having diverse functional characteristics. However, it is important to
understand that the portability is tightly related to the services defined by the user as
workload. For example, if the user opts by using services that, differently from the
ones used in this experiment, do not follow standard protocols and do not present a
standard interface that every testing tool is able to understand and test, then it may
limit the portability of the benchmark.

In terms of repeatability we executed the benchmark for VS1 (penetration tester
with the highest F-Measure) two more times. Small variations where observed, but
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they were always under 0.01, which suggests that the benchmark is quite repeatable.
In fact, the repeatability results are similar to the ones discussed in Section 7.2.4.

The non-intrusiveness property is guaranteed because the benchmark does not
require any changes to the benchmarked tools.

Although the proposed benchmark is quite simple to use (most steps are automatic),
the fact that the user has to provide the workload and characterize the existing
vulnerabilities, may increase its complexity. Obviously, the approach proposed for
the metrics estimation based on the Sign-WS approach makes the work easier.
Nevertheless, by only detecting injection vulnerabilities, the use of Sign-WS limits
the use of the benchmark to services with this type of vulnerabilities (manual work is
required for the characterization of workloads having other types of vulnerabilities).

Another important aspect is that we have been able to run the benchmark for all the
tools in less than 4 man-days, which corresponds to about 1.5 man-days to select the
workload and characterize it using Sign-WS plus an average of 0.6 man-days per
benchmarking experiment. Obviously, in case the user applies another solution for
characterizing the services (e.g. code review), the time required to run the
benchmark may be higher. Anyway, after having the workload characterized,
running the benchmark only requires executing the tools and comparing the
reported vulnerabilities with the ones reported by the Sign-WS tool. The problem of
different formats in the reports (e.g. XML file, text file, GUI) also applies, and
automating the vulnerability comparison step would require converting the output
of the tools to a common format.

7.4 Case Study #4: Detecting Vulnerabilities in a Service-
Based Infrastructure

A simplified service based infrastructure was developed to demonstrate the usability
of the SOA-Scanner (the integrated tool for detecting injection vulnerabilities in
service-based infrastructures). This infrastructure uses a subset of the jSeduite SOA
(Delerce-Mauris et al. 2009). In practice, the infrastructure implements one of the
orchestrations of the jSeduite SOA that has been selected due to its proneness to
Injection vulnerabilities and the possibility of having services with different levels of
access. Some modifications were implemented (e.g. BPEL orchestrations were
replaced by direct Service-to-Service invocations) to allow demonstrating all the
different scenarios and functionalities in a simple infrastructure.

Figure 7.10 depicts the architecture of the system. As it is possible to observe, the
services can be divided in three different groups:

1. JSeduite — contains services that implement the main orchestrations of
jSeduite. These services are considered under control;
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2. JSeduite-WS — contains the services used by those orchestrations and that
use as data source database management systems. These are considered as
partially under control services;

3. JSeduite-WS-XML - contains the services used by the orchestrations and use
as data source XML-based resources. These are services within-reach.

FeedRegistry,/
getURL()

TvHelper
4 extract()

Consumer JSeduite-WS-XMj

Figure 7.10 — Architecture for the Case study #4.
The gray area represents the area under control. The numbers represent the order in which
the interactions are discovered. The * represents the existence of injection vulnerabilities.

The consumer has available the service TvShows from JSeduite, which uses services
from both of the JSeduite-WS and JSeduite-WS-XML. The code of services TvShows,
FeedRegistry and FeedSearch contains injection vulnerabilities. Details and code are
available at (Antunes 2013).

SOA-Scanner is initially configured to test the service TvShows, classified by the user
as Under Control, making the tool to deploy probes to the service. The remaining
services are automatically discovered and tested. The SOA-Scanner was able to
detect automatically the existing services, resources and relations. During the
profiling phase, the interaction with a DBMS (1) is detected by a probe in charge of
monitoring JDBC traffic, while the interactions with FeedRegistry (2), RssReader (3)
and TvHelper (4) services are detected by the probe in charge of monitoring SOAP
traffic. During this process, the tool uses a GUI similar to the one presented in Figure
7.11 to request to the user complementary information about the access level to the
service (and, consequently, the testing scenario applicable). The user classifies the
services according to the information presented in Figure 7.10. Probes are then
deployed to the FeedRegistry and TvHelper (partially under control). As RssReader is
only within-reach, no probes are deployed. When the user finishes inserting this
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information, the tool starts profiling the discovered services, discovering an external
DBMS (5) and the service FeedSearch (6), which the user classifies as within-reach
(again, no probes deployed). The interaction represented by (!) is not detected
because the services it uses has no deployed probes.

® O O  New Service Detected

Service Url:
http://infrastructure.pt/NewWebserviceName?WSDL

[Under Control M| | Change Scenario |
Under Control

Partially Under Control
Within Reach

Invoked by (Optional):

Figure 7.11 — GUI for classifying newly found services.
The service can be classified as belonging to one of the three testing scenarios considered. The
service may be invoked by other service or may be considered an entry point of the
infrastructure.

Table 7.16 presents the results obtained. The column “Rev.” shows the number of
vulnerabilities reported by a team of security specialists during a formal code
inspection , with “S” and “X” representing the type of vulnerability (respectively
SQL and XPath Injection). As in Section 6.2, the review team consisted of 3 external
developers with two or more years of experience in security of database centric
applications. These results were used as baseline to assess results reported by the
SOA-Scanner.

Regarding vulnerability detection, for the services under control and partially under
control, the SOA-Scanner was able to detect and report all known vulnerabilities,
while avoiding false positives (due to the capabilities of the Sign-WS and RAD-WS
to eliminate false positives, as demonstrated in the previous case studies).

For the service within-reach, the existing XPath Injection vulnerability was reported.
However, the tool also reported a SQL Injection vulnerability that in fact does not
exist. This false positive is reported because XPath and SQL injection vulnerabilities
many times present very similar behaviors, and because the IPT-WS tool has no
knowledge about the internals of the application. If it was possible to use one of the
other detection techniques (Sign-WS or RAD-WS) to test this service, the false
positive would be avoided, as the extra information provided would allow us to
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precisely confirm the existence of the vulnerability. This shows the advantage of,
when possible, using the SOA-Scanner tool in the mode that can take more
advantage of the visibility available.

Table 7.16 — Results for SOA-Scanner vulnerability detection.
For each service and respective inputs, the table lists the vulnerabilities identified by the
reviewers, the technique used, the vulnerabilities correctly reported and the false positives
reported.

getShowsForTonight.provider
TvShows . -

getShowsForTonight.period
FeedRegistry getURL.provider 1s | sign-ws | 1s
TvHelper extract.complexTitle Sign-ws
FeedSearch search.token 1X PT 1x 1s
RssReader read.url PT

Although the infrastructure used in the case study is quite simple, we believe that
the tool is able to achieve similar results in bigger and more complex infrastructures.
In fact, the complexity of the discovery, profiling and a testing process grows
linearly with the size of the infrastructure. This way, an increase in the number of the
services in the infrastructure and in their complexity, increases proportionally the
length of the process. Adding more relations between the same set of services has no
impact on the performance of the tool.

7.5 Conclusion

This chapter presented four case studies that illustrate the practical application and
experimental evaluation of the techniques and tools proposed in this thesis.

The first case study used well known web security scanners to detect vulnerabilities
in publicly available web services. During the experiments, it was possible to
observe a large number of vulnerabilities, confirming that many services are
deployed without proper security testing. It was also possible to observe that
existing web security scanners present very low effectiveness, showing low
detection coverage in some cases (this suggests that many vulnerabilities probably
remain undetected), while reporting a high number of false positives (which
reduces the confidence on the precision of the vulnerabilities detected). This
indicates that it is a very difficult task to select a security scanner for web services,
also because different scanners detect different types of vulnerabilities. A final
observation is that injection vulnerabilities are prevalent in the web services
tested, as they represent approximately 90% of the vulnerabilities detected,
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particularly due to SQL Injection vulnerabilities, which represent more than 84% of
all vulnerabilities.

The second case study used the VDBenchWS-pd benchmark to evaluate and rank a
large set of vulnerability detection tools. The results show that the proposed
benchmark can be easily used to assess and compare a wide range of tools. In fact,
the benchmark measures provided an easy way to rank the tools under
benchmarking according to different user criteria. During these experiments it was
also possible to evaluate the detection techniques proposed. The IPT-WS tool
ranked second among penetration testers according to the three criteria, being able
to present high recall value (only one commercial security scanner detected more
vulnerabilities), while presenting an high precision value (only one other security
scanner presented an higher value). The Sign-WS tool was able to outperform
penetration testing tools, achieving much higher recall values with maximum
precision. Finally, the RAD-WS tool presented the highest F-Measure of all tools,
presenting a recall value only lower than one static code analyzer, while achieving
maximum precision.

The third case study used the PTBenchWS-ud benchmark to evaluate four
penetration testers. The experiments allowed validating this benchmark as an
alternative to the previous VDBenchWS-pd, being able to overcome the limitation
related to the possibility of “gaming” faced by VDBenchWS-pd. The benchmark
results were compared with the ones from the VDBenchWS-pd benchmark and
similar rankings were obtained for both cases, showing that that the procedure and
the approaches for characterizing the user-defined workload and estimating the
metrics are effective.

A key aspect is that benchmarking properties were discussed in detail for the two
benchmarks. The results and discussion show that the proposed benchmarking
approach can be applied in the field to specify benchmarks for vulnerability
detection tools targeting different domains.

The final case study demonstrated the use of the SOA-Scanner. Although this is a
very simple scenario, it as the elements necessary to validate the capabilities of the
approach to monitor and discover the services of the infrastructure and to use
different testing techniques to detect injection vulnerabilities according to the level
of access and information available. In fact, results show that the tool was able to
discover all the services in the infrastructure and the combination of testing tools
allowed detecting all the existing vulnerabilities with minimum false positives
reported.
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Chapter 8
Conclusion and Future Work

This thesis proposes methodologies to detect software vulnerabilities in service-
based infrastructures. We present a framework that defines the assumptions, the
concepts, and the generic approaches that allow the development of innovative
techniques and tools. The framework encompasses a reference service-based
infrastructure, a generic approach for designing vulnerability detection tools for web
services, which includes the definition of the testing procedure and of the tool
components, and an integrated approach based on continuous monitoring to
automatically discover and test the existing services, resources and interactions.

Three new techniques to detect vulnerabilities in web services implementing the
generic design approach, were proposed: 1) an improved penetration testing
technique to detect SQL Injection vulnerabilities using representative workloads,
effective attackloads, and applies well-defined rules to improve detection coverage
while reducing false positives; 2) a technique that uses attack signatures and
interface monitoring to detect injection vulnerabilities, overcoming the visibility
limitations of penetration testing; and 3) a runtime anomaly detection approach able
to detect SQL Injection and XPath Injection vulnerabilities.

We presented also SOA-Scanner, a tool that implements the integrated approach to
detect injection vulnerabilities in service-based infrastructures and that relies on the
three vulnerability detection techniques mentioned above to test the services
depending on the testing scenario applicable.

Comparing to previous works, such proposals innovate in the following ways. In
first place, they are targeted to cope with the specificities of service-based
infrastructures. For example, a continuous and dynamic discovery and testing
process is used to test the infrastructure and multiple testing techniques are applied
to maximize the effectiveness in the context of services with different levels of access.
Finally, the proposed approaches put a strong emphasis on extensibility and
modularity allowing to easily define new testing tools and also improving existing
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tools by upgrading the existing the modules (e.g. if a more efficient workload
emulator is developed, it is very simple to replace the old one by the new one in a
tool that uses it).

This thesis also presented a generic approach for designing benchmarks for
vulnerability detection tools for services, which specifies the requirements for the
benchmark components and the steps needed to implement concrete benchmarks. It
has been used to define two concrete benchmarks: 1) VDBenchWS-pd, a benchmark
based on a predefined workload targeting tools able to detect SQL Injection
vulnerabilities in web services, and 2) PTBenchWS-ud, a benchmark based on a user-
provided targeting penetration testing tools for the detection of injection
vulnerabilities in web services. The second benchmark overcomes the “gaming”
problem faced by the first, by allowing the benchmark user to specify the workload.

Four case studies were devised to demonstrate and validate the proposed
approaches and techniques. In the first we used several well known commercial web
security scanners to detect vulnerabilities in publicly available web services. From
this we drawn three main conclusions: 1) many services are deployed with security
vulnerabilities; 2) it is a very difficult task to select a security scanner for web
services, as different scanners report different vulnerabilities and present very low
effectiveness regarding detection coverage and false positive rates; and 3) injection
vulnerabilities are prevalent in the web services tested.

Two other case studies consisted of using the benchmarks proposed to conduct
campaigns with the objective evaluating the proposed tools for vulnerability
detection and, at the same time, validating the benchmarks. During these
benchmarking campaigns it was possible to observe that VDBenchWS-pd can be
easily used to assess and compare a very wide range of tools. Also, PTBenchWS-ud
benchmark has shown to be an alternative to the VDBenchWS-pd to benchmark
penetration testers, being able to overcome the limitation related to the possibility of
“gaming” while ranking effectively the benchmarked tools. The benchmarking
properties were discussed in detail for the two benchmarks and the results suggest
that the proposed benchmarking approach can effectively be applied in the field to
specify benchmarks for vulnerability detection tools targeting different domains.

Regarding the evaluation of our detection tools, it was possible to observe that the
IPT-WS tool ranked second among all the penetration testers assessed according to
the three criteria defined by the benchmarks. The second observation is that Sign-WS
tool was able to outperform penetration testing tools, achieving much higher recall
values with maximum precision. And finally, the RAD-WS tool presented the
highest F-Measure of all tools, presenting a recall value only lower than one static
code analyzer, while achieving maximum precision.

In the last case study we demonstrated the use of the SOA-Scanner. Although a very
simple scenario, it contains services with different levels of access, it has different
types of vulnerabilities and it uses different types of resources, thus providing the
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elements necessary to demonstrate all the capabilities of the tool. During the

experiments it was possible to observe that the tool was able to discover all the

services in the infrastructure and the combination of the testing tools allowed

detecting all the existing vulnerabilities.

Future work

Several research topics are currently in progress as a continuation of the work

presented in this thesis.

1.

Implement the SOA-Scanner as a product that can easily be used by
developing teams: the tool is currently in a prototype status. Concluding the
implementation of the tool in such way that it would be easy to use by any
person would help widespreading its utilization. We believe that the tool will
be a key contribution towards improving the security of the service-based
infrastructures deployed. Additionally, we are also considering adding new
features to the tool, some of which are described in the following points.

Extend the techniques for other types of services: although some of the
proposed techniques target primarily SOAP web services, most of the
concepts can be transposed to other technologies (e.g. RESTful web services).
However, there is an important part of the work, currently in progress, that is
to understand the differences between technologies and the impact these
differences may have in the tools. We are currently conducting an field study
to get knowledge about the characteristics of RESTful web services in the
wild.

Extend the techniques to other types of vulnerabilities: although injection
vulnerabilities rank at the top of the most dangerous vulnerabilities, there are
others. A key part of this work will be to gather web services with these
vulnerabilities to be used as case study to evaluate the researched techniques.

Extend the techniques to detect second order vulnerabilities: second-order
injection happens when the malicious code is injected successfully but not
executed immediately. Instead it is stored by the application in some resource
to be retrieved and executed eventually, when that resource is accessed (W.
G. Halfond, Viegas, and Orso 2006). The SOA-Scanner tool has the
characteristics necessary to detect this kind of vulnerabilities: it monitors the
interfaces between the web services and external resources or services. With
the appropriate modifications, we intend to make the tool to attack these
interfaces and detect this kind of vulnerabilities.

Runtime Verification and Validation (V&V) of service-based
infrastructures: the traditional lifecycle in V&V assumes a structured and
highly documented software or system development process that allows
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gathering the required quality evidences, and presumes that the system does
not evolve after deployment (i.e. the structure is stable over time). This
represents a serious problem, as there are no V&V methods, tools and
processes that can cope with the dynamic nature of service based
infrastructures, as well as with many other prominent features of these
systems. Complying with nowadays organizations’ requirements demands
for deployment and maintenance of trustworthy dynamic service-based
software systems, which naturally results in the superposition of the design
and runtime phases, thus imposing the need for a V&V paradigm shift. To
overcome this problem new V&V approaches that can be applied ate runtime
are necessary. Similarly to the SOA-Scanner, runtime V&V should take
advantage of monitoring services and infrastructures, which will support the
runtime assessment of the system through the collection of measurements for
quantitative analysis of security and trustworthiness.

Using vulnerability injection to develop benchmarks for vulnerability
detection tools: in the same way fault injection has become an attractive
approach to validate specific fault handling and fault detection mechanismes,
vulnerability injection is a powerful tool that can be used to evaluate the
effectiveness of vulnerability prevention and detection tools and
methodologies. By using a realistic vulnerability injection technique it will be
very easy to create new workloads based on any set of web services, as the
vulnerabilities injected would be known. Obviously, the main challenge is
related to how realistic the injection vulnerabilities can be.

The work presented in this thesis has largely contributed to gain a broad experience

on services security testing. In addition, this work provided us an excellent standard

environment for the evaluation and comparison of alternative vulnerability

detection tools based on their effectiveness. This way, several topics can be foreseen

as a continuation of the present work:
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1. Use collaborative testing for the detection of vulnerabilities in services:

using this kind of collaboration it is possible to increase the level of access to
some of some services of the infrastructure, depending on the existing
collaboration agreements. Obviously, besides the negotiation of the
collaboration agreement, it is necessary to configure the tools in such a
decentralized way that all the parts of the collaboration would have an
instance running that could transmit information to the others.

Use static code analysis to improve vulnerability detection: as
demonstrated by the effectiveness of RAD-WS combining different tools can
be a very profitable option. Although there are dynamic analysis techniques
that combine static code analysis with the execution of tests, there is room to
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research automated tools to perform this task in the context of service-based
infrastructures.

Research vulnerability removal techniques: more than just detecting
vulnerabilities it is important to automatically remove them, which consists
of modifying the source code or byte code of the application in order to fix
security flaws without modifying or harming the functional behavior of the
web service. This is of utmost importance as, usually, developers are not
specialized in security aspects and the vulnerability patterns are repeated
several times, even in different applications.

Research attack detection approaches: attack detection is an alternative to
mitigate vulnerabilities when vulnerability removal is not possible. It consists
of introduce capabilities that, at runtime, detect and stop attacks (this is the
reasoning behind intrusion detection systems, runtime anomaly detection
systems, etc.). The idea here is to propose tools that can be integrated into the
development environment to automatically detect and stop attacks.
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