

Security
Benchmarking of
Transactional

Systems

Afonso Comba de Araújo Neto

Dissertation submitted to the University of Coimbra
 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
September 2012

Department of Informatics Engineering
Faculty of Sciences and Technology

University of Coimbra

iii

This research has been developed as part of the requirements of the Doctoral
Program in Information Science and Technology of the Faculty of Sciences and
Technology of the University of Coimbra. The work is within the Dependable
Systems specialization domain and was carried out in the Software and Systems
Engineering Group of the Center for Informatics and Systems of the University of
Coimbra (CISUC).

This work was partially supported by the Programme Alβan, the European Union
Programme of High Level Scholarships for Latin America, scholarship no.
E07D403033BR.

This work has been supervised by Professor Marco Paulo Amorim Vieira,
Assistant Professor of the Department of Informatics Engineering of the Faculty
of Sciences and Technology of the University of Coimbra.

v

Don't you believe in flying saucers, they ask me?

Don't you believe in telepathy? — in ancient astronauts? — in the Bermuda
triangle? — in life after death?

“No”, I reply. “No, no, no, no, and again no.”

One person recently, goaded into desperation by the litany of unrelieved negation,
burst out “Don't you believe in anything?”

“Yes”, I said. “I believe in evidence. I believe in observation, measurement, and
reasoning, confirmed by independent observers. I'll believe anything, no matter
how wild and ridiculous, if there is evidence for it. The wilder and more
ridiculous something is, however, the firmer and more solid the evidence will
have to be.”

―Isaac Asimov, The Roving Mind (1997), 43

~…~

vii

Abstract
Most organizations nowadays depend on some kind of computer infrastructure to
manage business critical activities. This dependence grows as computer systems
become more reliable and useful, but so does the complexity and size of systems.
Transactional systems, which are database-centered applications used by most
organizations to support daily tasks, are no exception. A typical solution to cope
with systems complexity is to delegate the software development task, and to use
existing solutions independently developed and maintained (either proprietary or
open source).

The multiplicity of software and component alternatives available has boosted the
interest in suitable benchmarks, able to assist in the selection of the best candidate
solutions, concerning several attributes. However, the huge success of
performance and dependability benchmarking markedly contrasts with the small
advances on security benchmarking, which has only sparsely been studied in the
past.

This thesis discusses the security benchmarking problem and main characteristics,
particularly comparing these with other successful benchmarking initiatives, like
performance and dependability benchmarking. Based on this analysis, a general
framework for security benchmarking is proposed. This framework, suitable for
most types of software systems and application domains, includes two main
phases: security qualification and trustworthiness benchmarking. Security
qualification is a process designed to evaluate the most obvious and identifiable
security aspects of the system, dividing the evaluated targets in acceptable or
unacceptable, given the specific security requirements of the application domain.
Trustworthiness benchmarking, on the other hand, consists of an evaluation
process that is applied over the qualified targets to estimate the probability of the
existence of hidden or hard to detect security issues in a system (the main goal is
to cope with the uncertainties related to security aspects).

The framework is thoroughly demonstrated and evaluated in the context of
transactional systems, which can be divided in two parts: the infrastructure and
the business applications. As these parts have significantly different security
goals, the framework is used to develop methodologies and approaches that fit
their specific characteristics. First, the thesis proposes a security benchmark for

viii

transactional systems infrastructures and describes, discusses and justifies all the
steps of the process. The benchmark is applied to four distinct real infrastructures,
and the results of the assessment are thoroughly analyzed.

Still in the context of transactional systems infrastructures, the thesis also
addresses the problem of the selecting software components. This is complex as
evaluating the security of an infrastructure cannot be done before deployment.
The proposed tool, aimed at helping in the selection of basic software packages to
support the infrastructure, is used to evaluate seven different software packages,
representative alternatives for the deployment of real infrastructures.

Finally, the thesis discusses the problem of designing trustworthiness benchmarks
for business applications, focusing specifically on the case of web applications.
First, a benchmarking approach based on static code analysis tools is proposed.
Several experiments are presented to evaluate the effectiveness of the proposed
metrics, including a representative experiment where the challenge was the
selection of the most secure application among a set of seven web forums. Based
on the analysis of the limitations of such approach, a generic approach for the
definition of trustworthiness benchmarks for web applications is defined.

Keywords: Security, Benchmarking, Transactional Systems, Databases, Security
Metrics, Security Evaluation, Security Benchmarking.

ix

Resumo
A maioria das organizações depende atualmente de algum tipo de infraestrutura
computacional para suportar as atividades críticas para o negócio. Esta
dependência cresce com o aumento da capacidade dos sistemas informáticos e da
confiança que se pode depositar nesses sistemas, ao mesmo tempo que aumenta
também o seu tamanho e complexidade. Os sistemas transacionais, tipicamente
centrados em bases de dados utilizadas para armazenar e gerir a informação de
suporte às tarefas diárias, sofrem naturalmente deste mesmo problema. Assim,
uma solução frequentemente utilizada para amenizar a dificuldade em lidar com a
complexidade dos sistemas passa por delegar sob outras organizações o trabalho
de desenvolvimento, ou mesmo por utilizar soluções já disponíveis no mercado
(sejam elas proprietárias ou abertas).

A diversidade de software e componentes alternativos disponíveis atualmente
torna necessária a existência de testes padronizados que ajudem na seleção da
opção mais adequada entre as alternativas existentes, considerando uma conjunto
de diferentes características. No entanto, o sucesso da investigação em testes
padronizados de desempenho e confiabilidade contrasta radicalmente com os
avanços em testes padronizados de segurança, os quais têm sido pouco
investigados, apesar da sua extrema relevância.

Esta tese discute o problema da definição de testes padronizados de segurança,
comparando-o com outras iniciativas de sucesso, como a definição de testes
padronizados de desempenho e de confiabilidade. Com base nesta análise é
proposta um modelo de base para a definição de testes padronizados de
segurança. Este modelo, aplicável de forma genérica a diversos tipos de sistemas
e domínios, define duas etapas principais: qualificação de segurança e teste
padronizado de confiança. A qualificação de segurança é um processo que
permite avaliar um sistema tendo em conta os aspectos e requisitos de segurança
mais evidentes num determinado domínio de aplicação, dividindo os sistemas
avaliados entre aceitáveis e não aceitáveis. O teste padronizado de confiança, por
outro lado, consiste em avaliar os sistemas considerados aceitáveis de modo a
estimar a probabilidade de existirem problemas de segurança ocultados ou difíceis
de detectar (o objetivo do processo é lidar com as incertezas inerentes aos
aspectos de segurança).

x

O modelo proposto é demonstrado e avaliado no contexto de sistemas
transacionais, os quais podem ser divididos em duas partes: a infraestrutura e as
aplicações de negócio. Uma vez que cada uma destas partes possui objetivos de
segurança distintos, o modelo é utilizado no desenvolvimento de metodologias
adequadas para cada uma delas. Primeiro, a tese apresenta um teste padronizado
de segurança para infraestruturas de sistemas transacionais, descrevendo e
justificando todos os passos e decisões tomadas ao longo do seu desenvolvimento.
Este teste foi aplicado a quatro infraestruturas reais, sendo os resultados obtidos
cuidadosamente apresentados e analisados.

Ainda no contexto das infraestruturas de sistemas transacionais, a tese discute o
problema da seleção de componentes de software. Este é um problema complexo
uma vez que a avaliação de segurança destas infraestruturas não é exequível antes
da sua entrada em funcionamento. A ferramenta proposta, que tem por objetivo
ajudar na seleção do software básico para suportar este tipo de infraestrutura, é
aplicada na avaliação e análise de sete pacotes de software distintos, todos
alternativas tipicamente utilizadas em infraestruturas reais.

Finalmente, a tese aborda o problema do desenvolvimento de testes padronizados
de confiança para aplicações de negócio, focando especificamente em aplicações
Web. Primeiro, é proposta uma abordagem baseada no uso de ferramentas de
análise de código, sendo apresentadas as diversas experiências realizadas para
avaliar a validade da proposta, incluindo um cenário representativo de situações
reais, em que o objetivo passa por selecionar o mais seguro de entre sete
alternativas de software para suportar fóruns Web. Com base nas análises
realizadas e nas limitações desta proposta, é de seguida definida uma abordagem
genérica para a definição de testes padronizados de confiança para aplicações
Web.

Palavras Chave: Segurança, Testes Padronizados, Sistemas Transacionais, Bases de
dados, Métricas de Segurança, Avaliação de Segurança, Testes Padronizados de
Segurança.

xi

List of Papers
This thesis relies on the published scientific research presented in the following
peer reviewed publications.

Book Chapter:

Afonso Araújo Neto, Marco Vieira. 2012. Assessing the Security of
Software Configurations. In Threats, Countermeasures, and Advances in
Applied Information Security. IGI Global, 2012. Pages 129-157.

Journal Papers:

1. Afonso Araújo Neto, Marco Vieira. 2011. Selecting Secure Web
Applications Using Trustworthiness Benchmarking. International
Journal of Dependable and Trustworthy Information Systems (IJDTIS).
Volume 2(2):1-16.

2. Afonso Araújo Neto, Marco Vieira. 2011. Security Gaps in Databases: A
Comparison of Alternative Software Products for Web Applications
Support. International Journal of Secure Software Engineering (IJSSE).
Volume 2(3): 42-62.

3. Afonso Araújo Neto, Marco Vieira. 2010. Benchmarking
Untrustworthiness: An Alternative to Security Measurement.
International Journal of Dependable and Trustworthy Information
Systems (IJDTIS). Volume 1(2): 32-54.

Conference Papers:

1. Afonso Araújo Neto, Marco Vieira. 2011. Trustworthiness Benchmarking
of Web Applications Using Static Code Analysis. Proceedings of the
Sixth International Conference on Availability, Reliability and Security
(ARES). Pages 224-229.

2. Afonso Araújo Neto, Marco Vieira. 2011. Selecting Software Packages
for Secure Database Installations. Proceedings of the Sixth International
Conference on Availability, Reliability and Security (ARES). Pages 67-74.

3. Afonso Araújo Neto, Marco Vieira. 2011. Towards benchmarking the
trustworthiness of web applications code. Proceedings of the 13th

xii

European Workshop on Dependable Computing (EWDC 2011). Pages 29-
34.

4. Afonso Araújo Neto, Marco Vieira: TO BEnchmark or NOT TO
BEnchmark security: That is the question. 2011. Proceedings of the 2011
IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops. (HotDep 2011). Pages 182-187.

5. Afonso Araújo Neto, Marco Vieira. 2009. Untrustworthiness: A trust-
based security metric. Proceedings of the Fourth International
Conference on Risks and Security of Internet and Systems (CRiSIS 2009).
Pages 123-126.

6. Afonso Araújo Neto, Marco Vieira. 2009. Benchmarking
Untrustworthiness in DBMS Configurations. Proceedings of the Fourth
Latin-American Symposium on Dependable Computing (LADC'09). Pages
1-8.

7. Afonso Araújo Neto, Marco Vieira 2009. Appraisals Based on Security
Best Practices for Software Configurations. Proceedings of the Fourth
Latin-American Symposium on Dependable Computing (LADC'09). Pages
57-64.

8. Afonso Araújo Neto, Marco Vieira. 2009. A Trust-Based Benchmark for
DBMS Configurations. Proceedings of the Pacific Rim Dependable
Computing Conference (PRDC 2009). Pages 143-150.

9. Afonso Araújo Neto, Marco Vieira and Henrique Madeira. An Appraisal
to Assess the Security of Database Configurations. 2009. Proceedings of
Second International Conference on Dependability (DEPEND'09). Pages
73-80.

10. Afonso Araújo Neto, Marco Vieira. 2008.Towards assessing the security
of DBMS configurations. Proceedings of the IEEE International
Conference on Dependable Systems and Networks With FTCS and DCC
(DSN 2008). Pages 90-95.

11. Naaliel Mendes, Afonso Araújo Neto, João Durães, Marco Vieira,
Henrique Madeira. 2008. Assessing and Comparing Security of Web
Servers. Proceedings of the Pacific Rim Dependable Computing
Conference (PRDC 2008). Pages 313-322

xiii

Table of Contents
1	 Introduction	 ...	 1	

1.1	 Benchmarking	 Security	 ...	 4	
1.2	 Main	 Contributions	 of	 the	 Thesis	 ..	 6	
1.3	 Structure	 of	 the	 Thesis	 ...	 10	

2	 Background	 and	 Related	 Work	 ...	 13	
2.1	 Overview	 of	 Computer	 Security	 Aspects	 ..	 13	
2.2	 Security	 Evaluation	 ..	 19	

2.2.1	 The	 Common	 Criteria	 ..	 20	
2.2.2	 The	 OCTAVE	 method	 ...	 24	
2.2.3	 The	 Center	 for	 Internet	 Security	 benchmarks	 	 26	
2.2.4	 Additional	 Security	 Evaluation	 and	 Risk	 Analysis	 Methodologies	 ...	 29	
2.2.5	 Security	 Characteristics	 Identification	 Techniques	 	 29	

2.3	 Threat	 Modelling	 ...	 30	
2.4	 Benchmarking	 ...	 36	

2.4.1	 Performance	 Benchmarking	 ..	 38	
2.4.2	 Dependability	 and	 Resilience	 Benchmarking	 	 39	
2.4.3	 Security	 Benchmarking	 ..	 40	

2.5	 Security	 Benchmarking	 as	 an	 Open	 Problem	 	 41	
2.5.1	 Dependability	 Benchmarking	 vs	 Security	 Benchmarking	 	 42	
2.5.2	 Benchmarking	 Trust	 ..	 46	

2.6	 Conclusion	 ...	 48	

3	 A	 Framework	 for	 Security	 Benchmarking	 	 51	
3.1	 Threat	 Vectors	 as	 Basis	 for	 Benchmarking	 Security	 	 56	
3.2	 Security	 Benchmarking	 Framework	 ...	 58	

3.2.1	 Security	 Qualification	 ..	 62	
3.2.2	 Trustworthiness	 Benchmarking	 ...	 66	
3.2.3	 Instantiating	 the	 framework	 ...	 70	

3.3	 Transactional	 Systems:	 the	 Case	 Study	 ..	 73	
3.3.1	 Elements	 of	 a	 Transactional	 System	 ..	 73	
3.3.2	 Security	 Benchmarking	 of	 Transactional	 Systems	 	 75	

3.4	 Conclusion	 ...	 76	

4	 Security	 Benchmarking	 of	 Transactional	 Systems	 Infrastructures	 ...	 79	
4.1	 Base	 Scenario	 ..	 81	
4.2	 Security	 Qualification	 ..	 84	

xiv

4.3	 Trustworthiness	 Benchmarking	 ...	 86	
4.3.1	 Threat	 Vectors	 ...	 88	
4.3.2	 Security	 Recommendations	 ...	 95	
4.3.3	 Pessimistic	 Scenarios	 ...	 106	
4.3.4	 Benchmark	 Procedure	 ...	 113	
4.3.5	 Benchmark	 Metrics	 ..	 116	

4.4	 Case	 Study	 ...	 121	
4.4.1	 Systems	 Under	 Testing	 ..	 122	
4.4.2	 Analysis	 of	 the	 Results	 of	 the	 Tests	 ..	 124	
4.4.3	 Trustworthiness	 Assessment	 ...	 126	

4.5	 Conclusion	 ...	 130	

5	 Trustworthiness	 Benchmarking	 of	 Web	 Applications	 	 133	
5.1	 Web	 Applications	 from	 a	 Security	 Perspective	 	 136	
5.2	 Benchmarking	 the	 Trustworthiness	 of	 Web	 Applications	 using	 Static	
Code	 Analysis	 ..	 140	

5.2.1	 Trustworthiness	 Metrics	 ..	 141	
5.2.2	 Empirical	 Analysis	 of	 the	 Metrics	 ...	 147	
5.2.3	 Experimental	 Evaluation	 ..	 152	
5.2.4	 Lessons	 Learned	 ...	 161	

5.3	 Towards	 a	 General	 Approach	 for	 Trustworthiness	 Benchmarking	 of	
Web	 Applications	 ..	 162	

5.3.1	 Web	 Applications	 Code	 Threat	 Vectors	 ...	 163	
5.3.2	 Security	 Precautions	 in	 Web	 Applications	 	 164	
5.3.3	 Accounting	 for	 Secure	 Coding	 Practices	 ..	 167	
5.3.4	 Trustworthiness	 Metrics	 ..	 170	
5.3.5	 Preliminary	 Experimental	 Evaluation	 ...	 173	

5.4	 Conclusion	 ...	 175	

6	 Selecting	 Software	 for	 Transactional	 Systems	 Infrastructures	 	 177	
6.1	 Identifying	 Security	 Mechanisms	 ...	 181	
6.2	 Establishing	 the	 Impact	 of	 Security	 Mechanisms	 	 185	
6.3	 Benchmark	 Metric	 and	 Execution	 ..	 187	
6.4	 Experimental	 Evaluation	 ..	 188	

6.4.1	 Software	 Packages	 Assessed	 ..	 188	
6.4.2	 Comparing	 the	 Software	 Packages	 ..	 189	
6.4.3	 Software	 Packages	 Gap	 Analysis	 ..	 190	

6.5	 Conclusion	 ...	 199	

7	 Conclusions	 and	 Future	 Work	 ..	 201	

References	 ...	 209	

xv

Annex	 A	 Security	 Recommendations	 Tests,	 Weights	 and	 Analytical	
Results	 ...	 227	

Annex	 B	 Pessimistic	 Scenarios	 ..	 239	

xvii

List of Figures
FIGURE 2.1 OVERVIEW OF THE OCTAVE METHOD PHASES. 25	
FIGURE 2.2 DEPENDABILITY VS PERFORMANCE BENCHMARKING 42	
FIGURE 3.1 HIGH LEVEL VISION OF THE BENCHMARKING PROCESS 59	
FIGURE 3.2 A TYPICAL TRANSACTIONAL SYSTEM ARCHITECTURE. 74	
FIGURE 4.1 GENERAL UNTRUSTWORTHINESS FOR EACH SCENARIO. 127	
FIGURE 4.2 UNTRUSTWORTHINESS FOR EACH THREAT, GROUPED BY CASE 128	
FIGURE 4.3 ALTERNATIVE PRESENTATIONS FOR UNTRUSTWORTHINESS

COMPARISON BETWEEN CASES ... 128	
FIGURE 4.4 FINE GRAIN ANALYSIS OF UNTRUSTWORTHINESS, FOR EACH CASE . 129	
FIGURE 4.5 UNTRUSTWORTHINESS COMPUTATION FOR THE INTERACTION

CLASSES .. 130	
FIGURE 5.1 BENCHMARK RESULTS OF OUR CONTROLLED TPC-APP VERSIONS . 149	
FIGURE 5.2 COMPONENT LEVEL EVALUATION OF RAW-NVR 150	
FIGURE 5.3 RAW-NVR EVOLUTION IN 16 VERSIONS OF 3 DIFFERENT SERVICES,

RANGING FROM 0 TO 4 VULNERABILITIES .. 151	
FIGURE 5.4 CALIBRATED METRIC ANALYSIS FOR THE 16 VERSIONS OF EACH

SERVICE .. 152	
FIGURE 5.5 OVERALL BENCHMARK RESULTS ... 174	
FIGURE 6.1: MECHANISMS BY COMPONENT OF THE ANALYZED PACKAGES. 191	
FIGURE 6.2. AVAILABILITY OF MECHANISMS ... 192	
FIGURE 6.3: NUMBER OF MECHANISMS AVAILABLE ACROSS PACKAGES. 192	

xix

List of Tables
TABLE 4.1 POTENTIAL THREAT VECTORS IN DBMS INFRASTRUCTURES 92	
TABLE 4.2 DBMS CONFIGURATION SECURITY BEST PRACTICES DEVISED FROM

THE ANALYSIS OF THE CIS DOCUMENTS .. 98	
TABLE 4.3 COMPLEMENTARY DOD BEST PRACTICES ... 102	
TABLE 4.4 BEST PRACTICE IMPACT KEY ... 104	
TABLE 4.5 BEST PRACTICES ORDERED BY RELATIVE WEIGHTS 105	
TABLE 4.6 PESSIMISTIC SCENARIOS ASSOCIATED WITH NOT FOLLOWING

SECURITY RECOMMENDATIONS. ... 111	
TABLE 4.7 SET OF ATTACKS CORRELATING THE PESSIMISTIC SCENARIOS AND THE

THREATS ... 112	
TABLE 4.8 MAPPING FOR THE FOURTEEN MOST IMPORTANT SECURITY

RECOMMENDATIONS .. 113	
TABLE 4.9 BENCHMARK SECURITY TESTS (SAMPLE) .. 114	
TABLE 4.10 INFRASTRUCTURES DETAILS ... 123	
TABLE 4.11 CASE 1, ORACLE 10G INSTALLATION .. 124	
TABLE 4.12 CASE 2, SQLSERVER 2005 INSTALLATION 124	
TABLE 4.13 CASE 3, MYSQL 5.0 INSTALLATION ... 124	
TABLE 4.14 CASE 4, POSTGRESQL 8.1 INSTALLATION 124	
TABLE 4.15 MOST IMPORTANT BEST PRACTICES YET TO BE IMPLEMENTED 125	
TABLE 4.16 TESTS WITH UNANIMOUS RESULTS IN ALL FOUR CASES 126	
TABLE 5.1 WEB FORUMS RANKED BY TRUSTWORTHINESS (TM). 154	
TABLE 5.2 EXPERTS’ RANKINGS ... 156	
TABLE 6.1 CLASSIFICATION OF DATABASES SECURITY BEST PRACTICES IN

REGARD TO THEIR REQUIREMENTS ... 182	
TABLE 6.2 EXAMPLES OF THE MAPPING BETWEEN SECURITY BEST PRACTICES,

SYSTEM STATE GOALS AND MECHANISMS GOALS. 184	
TABLE 6.3 MOST IMPORTANT SECURITY MECHANISMS IDENTIFIED 187	
TABLE 6.4. OVERALL RESULTS OF THE EXPERIMENTAL EVALUATION OF THE 7

DIFFERENT SOFTWARE PACKAGES. ... 189	
TABLE 6.5 LIST OF MECHANISMS AVAILABLE IN ALL PACKAGES 193	
TABLE 6.6 LIST OF MECHANISMS NOT AVAILABLE IN ANY OF THE PACKAGES .. 196	
TABLE 6.7 LIST OF MECHANISMS AVAILABLE IN SOME OF THE PACKAGES (X

MEANS THAT THE MECHANISM IS AVAILABLE IN THE CORRESPONDING
PACKAGE) ... 197	

TABLE 6.8 MECHANISMS AVAILABLE ONLY IN SPECIFIC SETS OF PACKAGES 198	

xx

TABLE A.1 SECURITY RECOMMENDATIONS DEVISED FROM THE ANALYSIS OF THE
CIS DOCUMENTS .. 227	

TABLE A.2 COMPLEMENTARY DOD CONFIGURATION BEST PRACTICES 229	
TABLE A.3 BEST PRACTICES WEIGHTS .. 229	
TABLE A.4 COMPLETE LIST OF TESTS. .. 231	
TABLE A.5 ANALYTICAL RESULTS OF THE INFRASTRUCTURES EVALUATED 236	
TABLE B.1 COMPLETE LIST OF PESSIMISTIC SCENARIOS 239	

1

1

Introduction
There is no disagreement nowadays about the importance of security in computer
systems. The need for considering security as one of the pillars of any software
architecture or implementation fills the pages of many popular newspapers and
magazines, and the extensively documented consequences of security breaches
range from public embarrassment to the loss of time, credibility and money.

Security of computer systems is a flourishing field with several distinct but
complementary branches of research. Starting from pure theoretical aspects, like
cryptography, security considerations are so wide that ultimately reach the
complexity of the human factors that are inherently involved (Patrick 2003).
Secure software design, development and configuration, attack mitigation and
tolerance technologies, vulnerability discovery, analysis and prevention, are just
some examples of research topics that are currently discussed in top security
conferences. All these topics are applicable, generally or specifically, to almost all
other branches of computer science. As a matter of fact, security research can be
seen as a layer of concern that spreads in parallel with applied computer science
research.

A key particularity of computer security is the central role played by human
factors. In practice, there are two concepts that are fundamentally important in
any security context: capabilities and intention. When analyzing a computer
system from a security perspective, these concepts lead to questions that in other
contexts are not usually taken into consideration. Take as example the following
deliberation about a given System A: “can any part of System A offer any
advantage to any third party not considered in its specifications?”. The security
implications of the potential answers to this question are clear when we instantiate
System A as a system running in a bank, designed to manage bank accounts, in
contrast to instantiating System A as a simple program that makes calculations
(i.e. a software calculator). This exercise quickly leads to the following

Chapter 1 w Introduction

2

conclusion: the reason why the developer of the calculator program could, to a
certain point, disregard security aspects, is that breaking the specifications of the
application does not pose any significant advantage (or disadvantage) to anyone,
while that is clearly not the case for the system running the bank operations, at
least in the majority of the contexts where these systems are used.

Although the intention of breaking a system’s specification is usually related to
the value that this action would provide to a given person/entity (which could, or
not, be the attacker that attempts the breaking), it is important to realize that the
intention is not the only condition to trigger an attack attempt: attacking a system
also requires the attacker to have the means to do it. In that sense, the security of a
system is not related only with the possibility of facing attacks, but also with the
amount of resources – in a very broad sense – that are needed to break the system.
Here, we are talking about the capabilities of the attacker.

In a simplistic view, the amount of effort required to break a system represents its
level of security, which is a property independent from the motivations of the
potential attackers. In fact, the amount of effort is a relationship between the
technical capabilities available to the attackers versus the amount of barriers, or
security mechanisms, which are put in place to disable those capabilities. If the
mechanisms available allow nullifying completely the capabilities of an attacker,
then the system can be classified as secure with respect to this particular attacker.
In practice, when it comes to finding ways to effectively secure a computer
system, the real challenge is answering the following questions:

Is the system already secure?

How far is the system from ideal security?

How do we modify the system in order to make it more secure?

Identifying all the potential attackers of a system is an impossible task, as this
involves knowing exactly the persons to which the system has some kind of value
(and as the system evolves and societies change, this becomes an endless, ever
changing task). Given the pervasive nature and interconnectedness of computer
systems, the only sensible approach is to assume that the system will be (sooner
or later) attacked and that the attackers will have a considerable amount of
resources available to accomplish the task. Due to this lack of precise knowledge,
the approach followed by most organizations nowadays is to implement the
highest number of security mechanisms they can afford, mostly following expert
advice and intuitions about how much these mechanisms actually help.

Security Benchmarking of Transactional Systems

3

An ad hoc approach to security, while usually helping in some way, has several
clear disadvantages. Without a systematic method to properly assess the security
of the system, the blind implementation of security mechanisms ends up being
much more costly and less effective than it should. For instance, after adding a
new security mechanism to the system, the inability to check if the security state
really improved leaves the administrator with no clue whether the mechanism
helped in any way. At the same time, if a highly secure state is achieved, the
administrator cannot appreciate whether implementing any further mechanisms
will be a waste of resources or not. Furthermore, while additional security
mechanisms may effectively help in some way, the system administrators are left
with no way to identify additional problems in the security barrier that may have
been introduced by those same mechanisms. This ad hoc approach also leads to
another unfortunate consequence: having a large number of costly mechanisms in
place tends to transmit an unfounded sense of security. As the mere volume of
security mechanisms never guarantees that all details are accounted for, the
system may potentially be left with problems whereas the administrators think
their security goals have already been accomplished.

Without a deterministic, representative and simple enough approach to evaluate
security, it is utterly impossible for administrators to understand the security
impact of systems’ structural or functional changes. Administrators are also
unable to make informed decisions concerning security aspects when it comes to
tasks such as choosing between alternative software packages during the process
of installing new software systems to support the organization activities. Means
for reliably supporting the evaluation of the security level of computer systems
are thus indisputably important.

The process of comparing systems in a standard, representative and accepted
manner is called benchmarking (Gray 1993). In particular, a security benchmark
is a method that is expected to support, at least, the following two tasks:

a) Compare the level of security of a same computer system in two
distinct points in its lifetime. This process allows understanding how the
security of the system varies when it is subjected to modifications, be
these modifications of the system itself or of the environment where it is
integrated in;

b) Compare the level of security of alternative systems aimed at
implementing the same task. This allows making informed decisions
regarding the selection of alternative software solutions taking into
account existing organizational needs.

Chapter 1 w Introduction

4

The computer industry already holds a reputed infrastructure for performance
evaluation, where the Transaction Processing Performance Council (TPC) (TPC
2012) and the Standard Performance Evaluation Consortium (SPEC) (SPEC
2012) benchmarks are recognized as the two most successful benchmarking
initiatives ever pursued. Furthermore, the concept of dependability benchmarking
has gained ground in the last few years, having already led to the proposal of
dependability benchmarks for several domains, including: operating systems, web
servers, and databases and transactional systems in general (Kanoun and
Spainhower 2007). Security, however, has been largely absent from previous
efforts, in a clear disparity to performance and dependability benchmarking
(Kanoun 2001, Vieira 2009). Researching alternative solutions for security
benchmarking is precisely the goal of this thesis.

1.1 Benchmarking Security
Security evaluation methodologies have been proposed in several forms. One of
the most popular security evaluation frameworks available is the Common
Criteria standard (CC 1999) supported by the ISO/IEC group. While marginally
allowing the comparison of systems, the Common Criteria is not considered a
much successful approach due to several reasons, including its high complexity
and emphasis in the analysis of specification documents instead of real
implementations (Jackson 2007). Another important methodology for security
evaluation is the OCTAVE® (Operationally Critical Threat, Asset, and
Vulnerability EvaluationSM) approach (Alberts et al. 2002) from the Software
Engineering Institute (SEI) of the Carnegie Mellon University, which is a risk-
based strategic assessment and planning technique for security. The OCTAVE
approach is actually a set of security evaluation guidelines that support the
process of self-evaluation within an organization. However, it is quite difficult to
use this approach to compare different environments, to understand the impact of
security decisions, or to evaluate the security of software alternatives, as the
methodology is designed for the organization as a whole. Furthermore, risk based
approaches require understanding the potential damage that attackers may cause
in the assessed system, which is an extremely hard task due to the lack of
historical data (Jaquith 2007).

Approaches like the ones introduced above can be classified as security
evaluation methodologies, and indeed help organizations improving computer
systems security when applied correctly. However, they are not suitable for
supporting the tasks that a security benchmarking methodology is expected to
support, as they are either too complex to be used by average system
administrators or they require external expert analysis to be carried out (as is the

Security Benchmarking of Transactional Systems

5

case of Common Criteria). Expert analysis, in particular, is problematic in
benchmarking contexts mainly because people change. Being a standard
approach, benchmarking requires the measurements performed in distinct points
in time to be done using absolutely the same criteria, which is difficult to
guarantee when we rely on what a person (or group of people) exactly knows.
This nullifies the possibility to accomplish task a) (self-comparison in two points
in time) mentioned previously, as we cannot be certain whether variations on the
metrics are due to system changes or due to changes in the knowledge of the
person running the benchmark. Benchmarking should rely on metrics that are
standard and precise enough, so that evaluations in different points in time or of
distinct targets are as little biased by external variables as possible (Gray 1993).

When trying to establish the security level of a computer system, in the terms
mentioned previously, we find two distinct key perspectives. The first is related to
actually finding real characteristics that can be exploited by attackers to cause
some damage to the system or its owners. Those characteristics are usually called
vulnerabilities or weaknesses and, depending on the system in question, may
come from different aspects (Lyu 1996). For instance, when evaluating a web
page, a typical vulnerability would be a software bug allowing attackers to apply
input modifications capable of changing the pre-defined behavior of the
application. Another example would be either buffer overflow vulnerabilities,
which are coding mistakes that may allow injection of commands directly on the
operating system, or configuration vulnerabilities, which arise from configuration
inconsistencies or errors that may allow malicious users to obtain privileges they
should not have (and therefore can be abused). Nowadays, the scientific
community is putting a very significant effort in techniques and tools to find all
sorts of vulnerabilities in all kinds of systems (e.g. penetration testing, static
analysis, code inspections, etc.) (Livshits 2005, Long 2007, Antunes 2009). The
vulnerabilities detected in a system may be corrected or not, depending on several
contextual factors, but finding them is the main the goal of evaluation
methodologies.

The second perspective for assessing the security level of a system is related to
the fact that the entire set of vulnerability detection methods available nowadays
is not enough to guarantee that systems are secure (as detectors typically suffer
from coverage limitations) (Antunes and Vieira 2010). After trying to actually
find existing vulnerabilities, we must consider the probability of the system still
having hidden, hard to detect vulnerabilities, and that certain characteristics of the
system may be used as leverage to facilitate attacks (e.g. an improper file system
configuration may allow an attacker that has already gained access to the system

Chapter 1 w Introduction

6

to obtain even more information, or the fact that a server is not physically
protected allows for alternate ways of gaining access the system). Such properties
are much more complex to find and evaluate as, by definition, they cannot be
identified as vulnerabilities that either exist or not, but rather as characteristics
that can raise the probability of occurrence of security incidents.

The type of analysis involved in comparing alternative systems in terms of their
level of security is much more than simply trying to find actual vulnerabilities
(Bondavalli 2009). In fact, when we are comparing two different systems, it is
important to understand the following: even after applying a large amount of
effort into finding vulnerabilities in two alternative systems, the fact that they
both show zero obvious vulnerabilities does not mean that they are equally
secure. This is mainly due to our inability to assure that no other vulnerabilities
exist. This way, distinguishing the security level of two systems with no obvious
vulnerabilities is still an open problem, which we thoroughly discuss in this work.

In this thesis we propose a security benchmarking framework that takes into
consideration the issues and difficulties just presented. The fundamental
assumption of our proposal is that to achieve fair comparison, security
benchmarking must necessarily consider the two perspectives mentioned
previously: the active search for vulnerabilities and security problems, and the
propensity for other hidden or unidentified problems to exist. This is crucial,
especially because each of these perspectives arise from different systems
characteristics and may lead to different considerations when such information is
used to support decision making processes.

1.2 Main Contributions of the Thesis
In this thesis we study the problems involved in performing security
benchmarking, and show the type of concerns and characteristics that such
benchmarks should have in order to attain their goals (i.e. allow comparing
alternative solutions from a security point-of-view). To the best of our
knowledge, we propose the first generic framework that is designed to support
practical, representative, and useful security benchmarks.

The proposed security benchmarking process is divided in two key steps: security
qualification and trustworthiness benchmarking. The first step is where the
System Under Test (SUT) is evaluated to have a minimum level of security in
order to be considered acceptable for use in a given application domain. The goal
of this step is to actively try to find vulnerabilities in the system and also evaluate
the security mechanisms it provides. A SUT that fails this step is automatically

Security Benchmarking of Transactional Systems

7

classified as insecure, with security level equal to zero. In a comparison process,
where two or more SUTs are being compared, this step is qualificatory, in the
sense that the systems with vulnerabilities are immediately disqualified for
practical use.

The second step of the benchmarking process, which makes sense only for
systems that pass the first one (and therefore have no obvious vulnerabilities), is
based on trustworthiness benchmarking concepts. This step is designed to
provide, to a certain extent and given some premises, a relative level of
probability that the SUT may be compromised when facing attacks that try to
accomplish certain malicious effects. In a way, trustworthiness benchmarking
provides the level of trust that a user can justifiably have when it comes to the
ability of the system in avoiding a specific set of threats. In other words, the goal
is to identify the system characteristics that entitle it to be trustworthier in face of
uncertainties.

The proposed framework is a guide for the definition of concrete security
benchmarks for specific application domains. In this thesis we present and discuss
thoroughly the framework, devoting particular attention to the reason why a
security benchmarking process should be divided and structured in such a way.
Understanding the motivations for this benchmarking approach allows identifying
its properties and, in particular, its limitations, which are also extremely
important.

As a case study and proof of concept, we apply the proposed framework to design
and run security benchmarks in the context of transactional systems, also referred
to as On-Line Transaction Processing (OLTP) systems (Vieira 2003). These
systems are characterized by having a central Database Management System
(DBMS) and several remote clients running one or more applications that define
the business rules of the data that are stored in the database. In this context, we
divide a transactional system in two main parts (the transactional system
infrastructure and the business applications that use the infrastructure) and
proposed a specific benchmark approach for each of them. By applying our
framework to both complex and simple realistic scenarios, we aim to demonstrate
its generality and practical viability.

The focus on transactional systems is justified by the fact that this kind of systems
are used to support the business operations of almost all organizations, making
them a very representative use case (Sawyer 1993). Additionally, managing a
transactional system is a complex task that many times is performed by people
with very little security knowledge. This is a key concern as the security of such

Chapter 1 w Introduction

8

systems is absolutely vital for the success of a company’s business. Therefore, a
way to systematically evaluate and compare the security of transactional systems
without complex trainings or requirements is of utmost importance.

In summary, the main contributions of this thesis are:

• A survey on the state of the art on security evaluation and computer
systems benchmarking. The first important contribution of this thesis is
the systematization of the work that has been done in the security
evaluation and benchmarking domains. We discuss some of the existing
approaches and identify the major aspects and difficulties that should be
considered when devising generic security benchmarking approaches.

• A security benchmarking framework composed of two steps (qualification
and trustworthiness benchmarking) based on a reference domain and
representative threat vectors for that domain. Considering the difficulties
identified before, we develop a framework aimed at overcoming those
difficulties. The framework breaks the problem in two parts, each one
providing a particular semantic outcome: the first is related to what we
can clearly evaluate about systems security, and the second is related to
the aspects that we can only estimate. The reasoning behind this approach
and the goals of each step of the benchmarking process are discussed in
detail.

• The application of the proposed security benchmarking framework to the
domain of transactional systems, in order to study and understand its
effectiveness and viability. The first consequence of the framework
instantiation is the need for dividing the transactional system in two parts:
the transactional system infrastructure, and the business applications
based on that same infrastructure. This results from the fact that the
security goals of these two parts are essentially different, and the
framework automatically forces the benchmark to have a consistent view
of them. The instantiation of the framework to each of these parts resulted
in several complementary contributions, as presented next.

• A security benchmark for transactional systems infrastructures, which
resulted in the following detailed contributions:

o A representative set of security recommendations for
transactional systems infrastructures, which can be used to
support other assessments and security evaluation methodologies
besides the proposed benchmark.

Security Benchmarking of Transactional Systems

9

o A set of representative threats that should be of knowledge of
any database administrator, and a set of security tests that can be
used for understanding the security problems that may arise in
transactional system infrastructures.

o A complete trustworthiness benchmarking methodology and
implementation for transactional system’s infrastructures, which
allows understanding, from a high level perspective, the biggest
security concerns that may manifest in the infrastructures under
benchmarking. To demonstrate its effectiveness, the proposed
trustworthiness benchmark was applied to four different real
transactional systems infrastructures.

o The development of a tool to assist on the selection of the
software components (e.g.. DBMS engine and operating system)
that best fit the security requirements of the transactional system
infrastructure. This tool was used to assess seven representative
distinct software packages (i.e. a combination of several DBMS
engines and operating systems), which allowed evaluating them
from the point-of-view of the existing security mechanisms.

• A study on the implementation of the framework in the context of web-
based business applications, which resulted in the following
contributions:

o A detailed discussion on alternatives for conducting
trustworthiness benchmarking of business applications, taking
into account the security characteristics of the code of the
applications under benchmarking. The study was done focusing
on web technologies, which are the technology of choice
nowadays, and whose security is largely dependent on the correct
design.

o A detailed study, including a complete validation cycle, on the
use of static code analyzers as reliable and effective tools for the
automated computation of trustworthiness metrics in web
applications. In detail, we considered a representative use case,
where a user would have to choose the most secure among seven
existing software alternatives (in this case, seven web forums),
and compared the automated benchmark proposal with the
evaluation conducted by six security experts. The comparison of
the results allowed the validation of the effectiveness of our

Chapter 1 w Introduction

10

proposal, along with the identification of its most important
advantages and limitations.

o The proposal of a generic approach for the definition of
trustworthiness benchmarks for web applications, based on the
findings of the previous study. In this case, we focused on the
design of a tool that does not depend on the characteristics of
static code analyzers, which could eventually change due to a
diversity of factors. Even though we did not implement a real tool
based on this generic approach, we demonstrate it by manually
computing and interpreting the metrics in a small-scale scenario.

It is important to emphasize that all the studies, proposals and methodologies are
accompanied with detailed justifications and discussions about their limitations,
particularly about why and how they could fail their objectives. In fact, it is
probable that the most important contribution of this thesis are not the tools or
studies presented, but rather a consistent view on how to correctly rationalize
security aspects when the goal is fair comparison.

1.3 Structure of the Thesis
This thesis is divided in seven chapters, as described in the following paragraphs.

Chapter 1 introduces the problem of security benchmarking and describes the
main contributions of the thesis.

Chapter 2 presents the background and existing work related with this thesis.
Section 2.1 presents an introductory view to security of computer systems.
Section 2.2 presents several security evaluation frameworks and methodologies,
focusing on the few that are more important in the context of our work. Section
2.3 presents techniques and approaches for threat modeling, which is an important
aspect of security evaluation. Section 2.4 presents a description of the evolution
of benchmarking, from performance to dependability benchmarking. Section 2.5
presents a discussion about the main difficulties of security benchmarking
(particularly in contrast to the dependability benchmarking model), and presents a
discussion about the idea of benchmarking trust and how the concept could be
related with security benchmarking.

Chapter 3 presents the security benchmarking framework. Section 3.1 discusses
the aspects that have to be considered when benchmarking security. Section 3.2
presents the concept of threat vectors, why they are needed and how to
understand them. Section 3.3 describes the framework, starting with a general
view, and then detailing the qualification and trustworthiness benchmarking

Security Benchmarking of Transactional Systems

11

phases. Section 3.4 presents a decomposition of transactional systems needed to
apply the framework, justifying why, this has to be done.

Chapter 4 describes the application of the framework to the context of
transactional systems infrastructures. Section 4.1 describes the base scenario used
as a frame of reference for the whole benchmark, justifying its characteristics and
representativeness. Section 4.2 put forward some ideas about the security
qualification step. Section 4.3 describes our approach for the evaluation of
trustworthiness benchmarking of transactional systems infrastructures, including
the threats vectors, the list of security elements, the pessimistic scenarios, the
actual benchmarking tool, and the metrics. Section 4.4 is about the application of
the benchmark to four distinct real infrastructures.

Chapter 5 presents the study of trustworthiness benchmarking approaches in the
context of business applications, using as case web applications. Section 5.1
presents a general discussion of the security of web applications. Section 5.2
describes the set of experiments we conducted to evaluate the plausibility of using
static code analysis tools to accomplish trustworthiness benchmarking. Section
5.3 draws from the limitations identified in the previous experiments, and
proposes a general targeted approach for trustworthiness benchmarking of web
applications. In both section 5.2 and 5.3, several experiments are presented.

Chapter 6 discusses the problem of security qualification when applied to
transactional systems infrastructures, proposing a tool that can help in the
selection of the software components needed to support that infrastructure.
Section 6.1 describes how to identify security mechanisms from a set of security
recommendations. Section 6.2 discusses the identification of the impact of such
mechanisms. Section 6.3 discusses the metrics that are computed by the tool.
Section 6.4 presents an experimental evaluation of the tool, where we used it to
assess seven distinct software packages, consisting of multiple database
management systems and operating systems.

Chapter 7 presents generic conclusions and a general overview of the main
lessons of this thesis, also putting forward future work that is directly related to
the achievements of this thesis.

13

2

Background and
Related Work

This chapter presents the fundamental concepts and overviews the state-of-the-art
on techniques related to security evaluation and benchmarking. We start by
revising the most important concepts regarding security, and then discuss existing
approaches for security evaluation, introduce the concepts behind benchmarking
in general, and discuss the main difficulties related to security benchmarking.
Even though security aspects are vast and can be rationalized from a series of
perspectives (from the technical aspects to the human factors and their relation
with security in general), we introduced these topics from the perspective of their
relevance to the approaches, techniques and tools proposed in the rest of the
thesis.

This chapter is organized as follows. Section 2.1 introduces basic computer
security concepts. Section 2.2 presents an overview of relevant security
evaluation methodologies and techniques. Section 2.3 addresses threat modeling
and Section 2.4 presents related work on benchmarking in general, and on the
approaches that are being applied for security benchmarking. In Section 2.5, we
discuss the main motivation for this thesis, putting it in contrast to the current
state-of-the-art, and also discuss the idea of benchmarking trust and how this
concept can be related with security attributes. Finally, Section 2.6 concludes the
chapter.

2.1 Overview of Computer Security Aspects
Before addressing more specialized topics, it is necessary to define some aspects
and characteristics of the terminology related to computer security. The term
computer security, which is actually the idea of information security applied to
computers, is an integrative concept that includes all aspects related to the

Chapter 2 w Background and Related Work

14

preservation of the several different properties that can be attributed to a specific
information asset (Russell 2011). However, to deeply understand the relevance of
these properties, it is necessary to define beforehand the elements over which they
apply.

First of all, security only makes sense when there is something to be secured. It is
important to understand that the goal of computer security has nothing to do with
security of hardware or people, even though it might involve these in certain
cases. What computer security is concerned with is the security of the information
that is generated, accessed and stored by computer systems (Siponen 2007). More
specifically, within a given environment, the information always suffers a set of
actions that might generate more information or trigger more actions. The rules
that define the transformations that can or cannot be applied to the information
are called business rules and represent essentially the principles that the system
must follow to fulfill its objective. Each transformation defines not only the
outcome, but also the allowed executors (usually the persons or other
transformations that are allowed to trigger it). In that sense, computer security is
related to ensuring that the information within the system will follow the business
rules despite anything else, even assuming a very intelligent malicious person (or
group of people) with an unpredictable amount of resources, trying to break any
of the rules.

Given a certain system, there is a multitude of ways through which the business
rules can be violated. However, not all of these ways are security concerns, as
some cannot cause any type of damage or loss to any of the people involved or
affected by the system. For example, a typical operator error (like a mistype) is
not usually a security concern but might be an example of a business rule
violation. A breach of a rule that is related to security is usually called a security
incident or simply an attack (Russel 2001). The methods and techniques used to
execute the attacks are referred to as attack vectors or attack methods and the set
of all attack vectors present in a system defines its attack surface.

The issues that historically are considered security concerns are related to the
violation of the following information properties (Parker 2002):

• Confidentiality – property that guarantees that the information is not
accessed, used, copied, or disclosed by anyone except the authorized
individuals.

• Integrity – property that guarantees that the information is not created,
changed, or deleted by individuals without proper authorization.

Security Benchmarking of Transactional Systems

15

• Availability – property that guarantees that the information is timely
and correctly available to authorized individuals.

For a long time, confidentiality, integrity and availability were considered the
core properties of information security. In fact, these three properties were
considered complete enough to be the only properties that the security
mechanisms would be in charge of preserving. However, Donn B. Parker (Parker
2002) pointed out some small deficiencies in the original set of properties, and
showed that some particular types of very important attacks could not be specified
by the loss of any of these properties. He introduced three other security
properties of information:

• Authenticity – this property refers to the guarantee that the information
is correctly labeled and that it is in fact what is said about it. This
property is distinct from integrity because the information might not
have been altered or deleted, but still be understood in a different way
from what it was meant to. Fraudulent information is an example of
non-authentic information that is correct from the point of view of its
authorized creator. The security problem is that this information is not
what its creator said it is.

• Possession or Control – the information can be out of the control of the
rightful owner, possibly being transferred to someone else or used in a
non-authorized way. This property is distinct from confidentiality
because an attacker can violate it without violating confidentiality and
vice versa (e.g. when the attacker takes control of a machine but does
nothing with this control). Another important kind of breach is when
one makes an unauthorized copy of a copyrighted intellectual work (like
a movie). Notice that in this case there is no breach of confidentiality
(the owner is authorized to see the movie), no breach of integrity and the
information is available to its rightful owner.

• Utility – probably the most controversial “complementary property”,
utility is related to guaranteeing that the information can still be used for
its original purpose. The most common example for a breach of utility is
when a user encrypts some data and then loses the encryption key. The
idea is that the data is still confidential, available (it is there), integral (it
is correct), under control and authentic, but cannot be used anymore
because of a transformation that cannot be undone. Unauthorized source
code obfuscation sometimes is also used as an example, as the code still
compiles and generates the corresponding executable code, but can
hardly be modified anymore (without an effort that would not be
necessary with the original code). The critics, on the other hand, say that
utility can always be understood as one of the other properties. In the
first example, the data is actually not available anymore exactly as it

Chapter 2 w Background and Related Work

16

would not be in the case of a hard drive that cannot be turned on (but
with no damage to the magnetic data). In the second example, the source
code is not integral anymore because it has lost the semantics that was
present only in the original source code.

Most of the security properties of information are defined in terms of the figure of
an authorized person. Although, usually, most actions in a system are executed by
real people, sometimes the actions might be also triggered by other systems (for
which authorized agent would probably be a more accurate term). Authorization
in this context is directly defined by the business rules of the system and specifies
the set of actions that each agent within the system has the right to execute and
the set of actions that it cannot execute. Usually, there is also a default policy for
all actions not explicitly defined, which could be “all else is authorized” or “all
else is denied”, and also depends on the purpose of the system. The mechanisms
through which authorization is actually implemented in a system might vary a lot
(privileges or access controls lists are two common examples). However, the
most complex security issue involved is related to identifying precisely who
should have which authorization. This is called an authentication procedure
(Daswani 2007) and is the process of assuring, to the desired level of certainty,
that someone really is who he claims to be.

Another security property, which can be considered as a special case of
authenticity, but is, frequently, considered separately, is non-repudiation
(Stallings 2010). This property is related to guaranteeing that if someone performs
an action then that action cannot be denied in a later future. For example, the idea
of digital signatures only works when the system is built with non-repudiation in
its core, meaning that it has the same properties of undeniability of a traditional
signature. Although not necessary in every context, several other scenarios might
require the preservation of this property (possibly not in a so strong form). For
instance, if a legitimate system operator excludes some information then it is
important that the system registers, in a reliable way, who performed the
exclusion, generating evidence that cannot be hidden. This kind of auditing
preserves this property not as strongly as a digital signature (that no one should be
able to forge), as the system administrator may be able to alter the evidence in
some way. However, the property holds because the operator does not have the
same privileges that of the administrator and that is sufficient for this purpose. In
this case, the system administrator is expected to have the power to view or
modify data in the system, and therefore that is not a security breach. The fact is
that he is supposed to do it only according to what are his authorized assignments.

Security Benchmarking of Transactional Systems

17

A malicious administrator (which is an example of an insider threat, (Martinez-
Moyano 2006)) eliminating evidence or using its privileges to abuse the system in
some way provides an example of the abuse of trust (Bishop 2008). This is a
problem that circumvents any computer system and does not have a definitive
solution. The biggest difficulty, in this case, is that it is mostly a human aspect
and not a technical one (Whittaker 2003). In any system, some amount of trust is
posed upon all people involved, being it the administrator who bears a very large
amount of trust, or a simple end user that has a very limited, but non-negligible,
amount of privileges. The problem is inevitable because whenever the system
poses any amount of authorization to a given individual, it is opening the
possibility for someone to find ways to abuse it and break the rules. Actually, it is
a known fact that the most access a person has to the system the higher is the
number of combinations of actions that it can perform. Some of these actions can
readily be used to cause a security breach and avoiding it is, in most scenarios,
completely unfeasible. The principle of least privilege, which is to always place
the least amount of privileges possible to any element within a system, is one of
the most important and recognized principles of authorization distribution. This
principle has been proposed more than 30 years ago, and has been proven right
since it was first discussed in (Denning 1976).

Computer security research is done not only to understand security aspects but
also to develop security mechanisms designed to fulfill several goals.
Mechanisms for the preservation of the security properties, mechanisms to allow
reliable authentication and authorization and mechanisms to lower or eliminate
the possibility of abuses of trust are just some examples. These security
mechanisms are commonly known as security controls and can be classified in
several forms. When a security control is active in a system and a security
incident is about to happen, there are three moments in which the control may act
(Bowen 2006):

• It may act before the occurrence of the incident (or its completion),
effectively avoiding its occurrence. In this case it is called a preventive
control. An authentication mechanism is an example of a preventive
control.

• It may act during the incident by trying to identify its occurrence and,
when possible, activate an alert so the person responsible can act
accordingly. This is called a detective control and auditing and logs are
examples of this type of control.

• It may act after the incident, possibly reducing or eliminating the
consequences of the attack. These are called corrective controls. Backups
and redundant servers are examples of it.

Chapter 2 w Background and Related Work

18

Security controls can also be classified in regard to their nature. They may be
classified in one of the following four categories (Bowen 2006):

• Physical controls, e.g. fences, doors, locks and fire extinguishers;

• Procedural controls, e.g. incident response processes, management
oversight, security awareness and training;

• Technical controls, e.g. user authentication and access controls, antivirus
software, firewalls;

• Legal and regulatory or compliance controls, e.g. privacy laws, policies
and clauses.

In theory, a system implementation together with its environment and appropriate
security controls are expected to not be susceptible to attacks (as that is the goal
of the security controls). However, in practice, it is impossible to have a
completely secure system, especially if one considers an insider threat. The
weaknesses that the system still presents and can be used as attack vectors, despite
the security controls in place, are called vulnerabilities (McGraw 2006).
Examples of classical vulnerabilities are software bugs or incorrectness (e.g., a
buffer overflow and SQL injection attacks (Daswani 2007)), authentication
weaknesses (e.g., the existence of weak passwords (Blackwell 2000)),
configuration problems (e.g., a poorly configured firewall (Wool 2004)), or even
a physical security problem (e.g., leaving the database server stationed in an
uncontrolled room full of unauthorized people).

Instead of being cases of exception, more and more the computer science research
community is learning that vulnerabilities cannot be completely eliminated,
despite all efforts to avoid them (McGraw 2006). As a consequence, two
important guidelines are frequently emphasized as key security practices that
should be applied to any context: security by design and defense-in-depth
(Howard 2002).

Security by design means thinking about the security of a system while designing
it, instead of considering security as a new layer of features. This turns out to be a
much more successful approach because of a simple fact: when one adds security
functionalities to an existing system, the number of inconsistencies (i.e.
vulnerabilities) that can emerge from the combination of the original state
(without security controls) with the state with the new functionalities (the security
controls) is much higher than the number of defects in a system that was designed
with these functionalities from scratch. In other words, the attack surface of a
system designed with security in mind is always smaller than the attack surface of
a system that has been secure by the later appliance of security controls.

Security Benchmarking of Transactional Systems

19

Defense-in-depth, on the other hand, is the idea of always assuming that the
security controls can be surpassed. In other words, instead of protecting a system
with one huge barrier, always consider that each part of the system must be
secured independently as if all other barriers were already defeated. The principle
of least privilege, for instance, is an example of the application of the principle of
defense-in-depth. If some attacker takes control of some agent in a system (e.g. a
process) the damage it can do is limited by the original purpose of the agent if this
agent does not have more privileges than the ones it needed in the first place.
Securing a network with a global firewall and still having local firewalls on the
operating systems of the machines on that network is also another example of
defense-in-depth.

2.2 Security Evaluation
Computer security evaluation, in some contexts referred to as risk analysis
applied to computer systems, has been a concern for organizations and systems
administrators for a long time. To decide if the security mechanisms present in an
installation are enough or should be improved, first it is necessary to evaluate
them. Security evaluation is the process of determining how well the security
controls of a given system are working and how effective they are against known
attacks and threats (Bowen 2006).

The challenge faced by systems administrators is that computer security
evaluation is a task that requires a very specialized knowledge. To perform a
reliable evaluation, the analyst must have the capability for understanding all
factors at stake, the nature of the threats involved, and how the security controls
in place work, and these topics are usually not part of the administrators’ training.
To solve this, the choices are either hiring outside help or learning and applying
an appropriate security evaluation methodology.

The urge in proposing security evaluation methodologies was always historically
so strong that several private and governmental organizations have invested a lot
of time and money on it. For example, in the early 80’s, the government of the
United States through its Department of Defense started developing what later
would be called the Rainbow Book Series. This is a series of standards designed
for the evaluation of trusted systems, and describes the process to be used inside
the US government. In particular, the Trusted Computer System Evaluation
Criteria (DoD 1985), also known as the Orange Book, is a standard that sets basic
requirements for assessing the effectiveness of computer security controls built
into a computer system.

Chapter 2 w Background and Related Work

20

In 1999, the concepts in the Orange book were merged together with other related
standards like the Canadian Trusted Computer Product Evaluation Criteria
(Mate Bacic 1990) and the Information Technology Security Evaluation Criteria
(Jahl 1991), giving rise to a new international standard that was supposed to be
accepted worldwide. The Common Criteria for Information Technology Security
Evaluation (Common Criteria 1999), or simply the Common Criteria, became the
standard ISO/IEC 15408 in a joint action of the International Organization for
Standardization (ISO 2012) with the International Electrotechnical Commission
(IEC 2012).

This section focuses on the main aspects of three of the most representative
approaches: the Common Criteria framework, the OCTAVE method and the
Center for Internet Security benchmarks. These methodologies were chosen
because they provide very distinct approaches to security evaluation, and most
others either resemble one of them or share characteristics. However, additional
methodologies for security evaluation and risk analysis are introduced in Section
2.2.4.

2.2.1 The Common Criteria
The Common Criteria standard (Common Criteria 1999) is a security evaluation
framework that defines a process where a computer system is evaluated against a
set of security requirements. The evaluation results in a level of assurance, or
Evaluation Assurance Level (EAL) and a certification from the Common Criteria.
Essentially, the assurance level expresses the effort that was applied by the
Common Criteria evaluators in order to be certain that the system has the security
requirements that it claims to have. The first draft of the standard was published
for comments in 1993, and finally became an official ISO standard in its version
2.0, in 1999. The main objective of the standard was to replace the security
evaluation and processes used in different countries by a unified process that
would be accepted by all of them. This would allow product evaluations
conducted in one country to be accepted in other countries.

For a given Target Of Evaluation (TOE), which is the product or system under
assessment, the evaluation within the Common Criteria framework is based on a
fundamental document that describes the characteristics of the TOE: the Security
Target. The security target, on the other hand, may or may not reference another
document called a Protection Profile. Both documents are structurally similar but
have distinct purposes. However, understanding a protection profile allows to
more easily understanding a security target.

Security Benchmarking of Transactional Systems

21

The protection profile identifies the security requirements that the particular TOE
must implement in order to be secure against an identified set of threats typically
found in environments surrounding it. In other words, a protection profile is an
implementation independent statement of security requirements that address
threats in a specific environment. The most important elements that are part of a
Protection Profile are:

• Security Environment definition: a high level description of the
environment where the TOE typically operates.

• Secure Usage Assumptions: definitions about some important
characteristics of fundamental elements of the environment. For example,
some characteristics of the network, considerations about the kind of
physical control that is assumed regarding the TOE or the characteristics
of trustworthiness of the administrators. These assumptions are the basis
over which the evaluation is valid.

• Organizational Security Policies: the policies that the organization must
enforce in order for the product to effectively have the security stated.

• Threats to security: enumeration of the security threats that must be
addressed by the implementation of the TOE in order to be considered
secure in the sense of this Protection Profile.

• Security Functional Requirements: high level security elements that must
be present in the TOE implementation and that should be employed to
avoid the threats identified before. These elements are catalogued by the
standard, and form eleven classes divided in 67 families, 138 components
and 250 elements.

• Security Assurance Requirements: the evaluation requirements to be
performed over the TOE as to be able to certify it with a specific
Evaluation Assurance Level. The possible assurance requirements are
also catalogued by the standard.

A protection profile is a document defined generically, meaning that it is
implementation independent. In practice it defines a class of devices or scenarios
working in a specific environment. For instance, it is possible to define a
protection profile for a firewall in a particular scenario, or a smart card in another
scenario. The definition of different protection profiles for the same class of
devices is possible as well, with different security requisites for each one.
Basically, the main purpose of protection profiles is to provide means for some
person or organization to express the security requisites that are necessary for a
given purpose. A government, for example, might require a particular product to
be certified against a specific protection profile before considering its acquisition.

Chapter 2 w Background and Related Work

22

The security target, on the other hand, specifies the characteristics of the product
or system that will undergo the certification process. It can be seen as an
instantiation of what would be a generic protection profile relatively to a
particular product, and is usually provided by the developer of the product. A
security target typically includes all elements that are part of a traditional
protection profile, but explains how they are applied to the product in question. It
also includes a detailed description of the mechanisms that are implemented to
satisfy the security functional requirements. Although not required, usually it also
mentions a list of protection profiles which the TOE might comply with. The
TOE is then evaluated against all of them, and the certification states that.

The most important part of a security target or of a protection profile is the
definition of the security functional requirements expected from the TOE. The
standard defines the following eleven high level classes of functional requisites
that a system or product might have:

• Security Audit – monitor, capture, store, analyze, and report information
related to security event.

• Communication – Assure the identity of originators and recipients of
transmitted information; non-repudiation.

• Cryptographic Support – Management and operational use of
cryptographic keys.

• User Data Protection – Protect user data and the associated security
attributes within a TOE and data that is imported, exported, and stored.

• Identification & Authentication – Ensure unambiguous identification of
authorized users and the correct association of security attributes with
users and subjects.

• Security Management – Management of security attributes, data, and
functions and definitions of security roles.

• Privacy – Protect users against discovery and misuse of their identity.

• Protection of the TOE Security Functions– Maintain the integrity of the
TSF management functions and data.

• Resource Utilization – Ensure availability of system resources through
fault tolerance and the allocation of services by priority.

• TOE Access – Controlling user session establishment.

• Trusted Path Channels– Requirements for trusted paths and trusted
channels.

Security Benchmarking of Transactional Systems

23

The assurance requirements defined in the security target will set the level that the
implementation of the TOE will be evaluated. In any certification process, the
evaluation is done by the application of the Common Methodology for
Information Technology Security Evaluation (CEM), also part of the standard.
The evaluation process is done by a third party laboratory complying with the
ISO/IEC 17025 (Honsa 2003), which certifies and states management and
technical requirements for testing and calibration laboratories. A successful
evaluation provides a certification of the TOE within one of the seven possible
levels of assurance, with the following corresponding rigorousness:

• EAL 1 – the TOE is functionally tested and a minimum level of
confidence in the correct operation of the security functions is guaranteed.
This EAL is appropriate for environments where no serious security
threats are anticipated.

• EAL 2 - the TOE is structurally tested, and a low to moderate level of
confidence in the correct operation of the security functions is guaranteed.
This EAL is assigned to systems for which little documentation exists.

• EAL 3 - the TOE is methodically tested and checked and a moderate level
of confidence in the correct operation of the security functions is
guaranteed. EAL 3 represents a thorough investigation of the TOE and its
development, starting at the design phase. Testing and evaluation are
conducted against functions, interfaces, and guidance documents.

• EAL 4 - the TOE is methodically designed, tested, and reviewed and a
moderate to high level of confidence in the correct operation of the
security functions is guaranteed. EAL 4 is the highest level of assurance
usually provided to commercial off-the-shelf software.

• EAL 5 - the TOE is semiformally designed, tested, and reviewed,
providing moderate to high level of confidence in the correct operation of
the security functions. EAL 5 is appropriate in environments where
resistance to attackers with a moderate attack potential is needed.

• EAL 6 - the TOE is semiformally verified design and tested, and provides
a high level of confidence in the correct operation of the security
functions. To be evaluated as EAL 6, the software design requires the use
of systematic security engineering practices and techniques.

• EAL 7 - the TOE is formally verified design and tested, providing a very
high level of confidence in the correct operation of the security functions.
EAL 7 represents complete, independent white-box testing that employs
formal methods, similar to those in use by the safety engineering
community. EAL 7 is intended for use in extremely high-risk
environments that must protect high-value assets.

Chapter 2 w Background and Related Work

24

Despite its popularity, the Common Criteria is not a standard unanimously
accepted. The major criticism against the standard is that it tests almost only the
design of the product, and not the implementation, even at the highest levels of
evaluation. In the words of Alan Paller, director of research at the SANS Institute,
“You are not testing the product at all. You are testing the paperwork” (Jackson
2007). As it is, a certificated product is a long distance from been considered
secure, so the cost of certification (which is very significant) is actually not worth
it. One recurring example against the standard is the certification with EAL4 of
the Windows 2000 operating system, which continuously had security corrections
long after the certification (Baumhardt 2006). Jonathan Shapiro, assistant
professor at Johns Hopkins University also puts it as not worth it: “The evidence
so far suggests that it is a waste of time and resources. I would be extremely
happy to see evidence to the contrary, but it doesn’t seem to be out there”
(Jackson 2007).

Another criticism against the common criteria is that the certification is valid only
in regard to the security target document (and mentioned protection profiles). A
certification, even with a correct implementation, means that the product is secure
only with the configuration and environment defined in the document. For
example, the configuration and environment defined in the Windows 2000
certification strips it of so much functionalities (for example, the Internet
Explorer browser and the Internet Information Services) that sometimes it turns
out to be almost a useless shell. In that sense, practically all installations of this
operating system running today invalidate the certification.

2.2.2 The OCTAVE method
The Operationally Critical Threat, Asset, and Vulnerability Evaluation method
(Alberts 2002) was developed in 2003 by the Software Engineering Institute
(SEI) at Carnegie Mellon University on behalf of the Department of Defense of
the United States government. It is a self-directed risk assessment methodology,
suited for small teams of people from the operational and the IT departments of
an organization.

A fundamental difference of the OCTAVE approach comparing to most proposed
risk assessment methodologies, is that it is driven mostly by operational risk and
security practices instead of pure technology considerations. The design of the
approach is aimed at allowing an organization to:

Security Benchmarking of Transactional Systems

25

• Perform self assessments without outside requirements;

• Identify risks that are particular to the organization business and
operations;

• Identify and focus on the protection of the most important information
assets of the organization;

• Raise the security awareness at all levels of the staff.

Figure 2.1 Overview of the OCTAVE method phases.
(Alberts 2002)

Figure 2.1 presents a high level view of the methodology steps. The OCTAVE
method is based on three main phases that are further broken down into processes,
and evolves through a series of workshops carried out by the analysis team. In
Phase 1, the analysis team identifies important information-related assets and the
current protection strategy for those assets. The team then determines which of
the identified assets are most critical to the organization’s success, documents
their security requirements, and identifies threats that can interfere with meeting
those requirements. In Phase 2, the analysis team performs an evaluation of the
information infrastructure to complement the threat analysis performed in Phase 1
and to support mitigation decisions in Phase 3. Phase 3 includes risk identification

Chapter 2 w Background and Related Work

26

activities and the definition of a risk mitigation plan for the critical assets
(Alberts 2002).

All OCTAVE phases are supported by catalogues of information provided by the
method, which are designed for teams without security expertise and without
outside help. The main catalogues are the following:

• Catalogue of practices - a collection of best strategic and operational
security practices;

• Threat profile - the range of threats that a typical organization needs to
consider;

• Catalogue of vulnerabilities - a collection of vulnerabilities based on
existing platform and applications, for consultation regarding technical
aspects that should be considered.

The OCTAVE method was designed as a complete process for large
organizations. As is, it is not suitable for small organizations, which created a gap
that was covered later by two other methodologies. These alternative
methodologies are the OCTAVE-S and the OCTAVE Allegro, and are derived
from the original OCTAVE method. While the OCTAVE-S methodology is just
an adaptation of the original OCTAVE to smaller organizations (Alberts 2005),
the OCTAVE Allegro has a slightly different approach, built up from the
experience gathered with years of application of the original method (Caralli
2007).

The idea of the Allegro approach is that when information assets are the focus of
the information security assessment, all other assets can be easily brought into the
process as containers where information assets are stored, transported, or
processed (Stevens 2005). In this sense, a container can be a person (since people
can store information as knowledge, transport information by communicating, or
process information by thinking and acting), an object (e.g. a piece of paper), or a
technology (e.g. a database). Thus, threats to information assets are identified and
examined through the consideration of where they live, which effectively limits
the number and types of assets brought into the process. Moreover, focusing on
information assets effectively limits the amount of information that must be
gathered, processed, organized, analyzed, and understood to perform a risk
assessment.

2.2.3 The Center for Internet Security benchmarks
The Center for Internet Security (CIS) is a non-profit organization formed by
several well-known academic, commercial, and governmental entities that has

Security Benchmarking of Transactional Systems

27

created a series of security configuration benchmark documents (CIS 2008). The
documents, which in some cases are accompanied with tools that verify the
compliance with the configurations suggested, cover specific brands of several
kinds of very popular software. Most of the software for which CIS benchmarks
were developed are fundamental pieces of software that are the basis of most
information systems in use today: operating systems, database management
systems and network devices. Although fundamental, it is known that this kind of
basic software is usually complex and does not come with good security
configurations by default (Schweitzer 2006). Building information system’s
infrastructures over insecurely configured software results in systems that are
insecure in all their levels. Also, by being widespread, they are prime targets for
attacks and knowledge regarding security vulnerabilities (especially coming from
insecure default options) is very likely to spread fast.

These CIS benchmarks are developed and maintained by the public and private
members of the organization. Building from personal experiences, each document
is created through discussions and consensus regarding the most secure
configuration options applicable. They are based on best practices for
deployment, configuration, and operation in networked systems. In essence, each
document contains explicitly all relevant security configuration options that are
considered important in the usual environments that they are found. The
configurations are divided in two different levels of security:

• Level 1 – prudent minimum due care. This is the set of configuration
options that are considered the minimum level of security an organization
should enforce. The suggestions are chosen to be simple, in a way that
any system manager can understand and apply them, and are unlikely to
cause any kind of disruption or degradation of the services they provide.

• Level 2 - prudent security beyond the minimum level. This is the set of
configuration options that are necessary for systems demanding high
security. Also, these configurations might cause impact in the operation
of the system, so a system’s manager with a reasonable level of security
knowledge might be necessary to understand and apply them correctly.

Even though most of the benchmarks do not take into account the actual business
rules of the environment where the software is being used, the approach from CIS
has a significant number of advantages over other security evaluation approaches.
One important characteristic of the approach is that it separates the security
knowledge from the technical knowledge necessary to apply it, making the
suggestions much more accessible than other methodologies. Another relevant
advantage is that it is widely accepted, as the documents are the product of

Chapter 2 w Background and Related Work

28

extensive analysis and consensus of several distinct representatives from public
and private sectors. Also, as they are based in field experience, the threat model
that supports them has the advantage of already being put in practice, being
perhaps a form of validation of the security ideas behind it.

Despite the advantages, the CIS documents also have some noticeable drawbacks:

• The documents are not designed and written in a single standard way, and
are actually overlapping in some areas. This implies that when more than
one document is used in a single installation (e.g. hardening an operating
system and then the DBMS installed on it), difficulties might arise if
similar things are stated in different forms in each document.

• Each document focuses specific software of a specific version. New
versions of the software, even similar versions, cannot use the document
without incurring in the risk of existing a significant difference that
hinders the original settings as insecure;

• The documents are focused only on the specific configuration options
available in the particular software being configured. In some cases, this
causes that major security principles are not even mentioned. If the
administrator is not warned that some important security control is
missing from the software he is using, he cannot evaluate if it is
important enough that he replaces it or implement the control in an
alternative way;

• Even though some rationale is provided in some cases, the major security
principles behind the choices are frequently not provided. Not mixing the
security justifications with the actual configurations they provide is good
from a practical sense, but the security principles behind them are
necessary for several reasons: a) the administrator should be able to
understand what are the risks he is facing when he is not able to comply
with a recommendation (which might happen frequently in production
environments); b) the administrator should be given the choice of
coming out with alternative solutions to the security concern behind each
suggestion (something he cannot do if he does not know what the
suggestion’s goal is).

Overall, the CIS approach is very interesting, very practical and is important in
several ways. However, it is clear that there is room for improvement. In
particular, because of some of these drawbacks, they cannot actually be
considered representative benchmarks, as is discussed in Section 2.4.

Security Benchmarking of Transactional Systems

29

2.2.4 Additional Security Evaluation and Risk Analysis
Methodologies

While the Common Criteria standard presents a product oriented approach for
security evaluation, the OCTAVE method appears as a self-evaluation process
that takes in consideration as much aspects and particularities of the organization
as possible. Even though they present complementary perspectives to security
evaluation, several other frameworks, approaches and methods have been
proposed and lie somewhere in between. Some relevant proposals that can be
found in the literature:

• MEHARI (CLUSIF 2004): a risk management methodology developed
by the CLUSIF (Club de la sécurité de l’Information Français) and built
on the top of two other methods: MARION and MELISA not maintained
anymore.

• CRAMM (Siemens 2003): the CCTA Risk Analysis and Management
Method is a risk management method from UK originally developed by
CCTA3 in 1985 and currently maintained by Insight Consulting.

• CORAS (Vraalsen 2007): CORAS (Risk Assessment of Security Critical
Systems) was a European project developing a tool-supported framework
based on UML, exploiting methods for risk analysis and risk assessment
of security critical systems.

• ISRAM (Karabacak 2005): methodology developed in December 2003 at
the National Research Institute of Electronics and Cryptology and the
Gebze Institute of Technology in Turkey. It is a survey-based model with
a quantitative approach to risk analysis that allows for the participation of
the manager and staff of the organization.

• NIST SP 800-30 (Stoneburner 2002): The Risk Management Guide for
Information Technology Systems was developed by the National Institute
of Standards and Technology as a recommendation for use by all federal
agencies of the US. The process is subdivided in several steps: system
characterization, threat identification, control analysis, likelihood
determination, impact analysis, risk determination, control
recommendations and result documentation. Like the OCTAVE method,
a small knowledgebase of common threats is provided to help the
assessment.

2.2.5 Security Characteristics Identification Techniques
The security evaluation frameworks previously described are essentially aimed at
evaluating systems security from a high level perspective, including very large
classes of threats simultaneously. However, security evaluation can also be done

Chapter 2 w Background and Related Work

30

in smaller scales, looking for known kinds of security problems which when
corrected may indeed increase the overall level of security, even if they cannot
express by how much.

Static code analysis (Livshits 2005) is a technique where a program is used to
analyze the source code of a program in order to find vulnerabilities in the source
code. They usually are based on the search of coding patterns that normally can
be attributed to vulnerabilities (Chess 2007). Several static code analysis tools are
used in a series of experiments in Chapter 5.

Vulnerability scanners (Shahriar 2012) are programs designed to test systems
against a list of known vulnerabilities, listing the ones that are found and therefore
allowing them to be corrected. They are highly dependent on vulnerability
databases, and therefore their effectiveness depends on them being constantly
updated. Vulnerability scanners are tools that can be employed as integrative parts
in the implementation of our benchmarking framework.

Penetration testing tools or fuzzers (McClure 2009) are tools also designed for
searching vulnerabilities. However, instead of being based on databases of known
vulnerabilities, they interact with the system by submitting series of random or
maliciously crafted input values in order to verify if the system has some kind of
input validation failure. Most of these validation failures can be used to attack the
system, and therefore can be considered vulnerabilities. Penetration testing is a
technique that can also be done manually, in which a security expert will study
and try to violate the input validation of the system (Long 2007). In this context,
it is usually called manual code inspection.

A whole set of alternative techniques for identifying vulnerabilities also exist,
ranging from direct attack injection approaches (Fonseca 2009, Antunes et al
2010), software testing (Antunes and Neves 2012) to robustness testing
approaches (Saad-Khorchef 2007, Oliveira 2011). Most of these tools also can be
used as components in our framework, and security benchmarking would not be
possible without such capabilities. Nevertheless, their results and contributions in
the context of benchmarking and selection have to be considered carefully.

2.3 Threat Modelling
Threat modeling is a technique that naturally appears as part of any kind of
security and risk evaluation process, and started to take a formal shape in the last
years. The idea behind threat modeling is to identify what are the potential threats
against a particular scenario, and based on them determine what are the
procedures or security controls necessary to mitigate these threats (Shahriar

Security Benchmarking of Transactional Systems

31

2012). This kind of technique can be useful in the context of existing
environments that must be further secured, but is especially useful when applied
during the design phase of a system.

In most security evaluation methodologies, identifying threats is always posed as
the process of brainstorming about the potential attacks and vulnerabilities that
the system might be susceptible to. Although the formal approach to this task also
requires some inventiveness to try to cover as much threats as possible, threat
modeling is currently evolving in the direction of being a methodology that helps
to exploit the threat space even further.

Formal approaches to threat modeling start to become considerably relevant with
the STRIDE approach proposed in (Howard 2002) and supported by Microsoft
(Swiderski 2004) as an important step to secure software design. STRIDE is
actually an acronym that stands for a threat classification method based on six
different (possibly overlapping) ways of breaking the information properties. At
the same time that it is used as a threat classification, it also forces the analyst to
think about the ways that an attacker could implement each of the breakings.
They are the following:

• Spoofing – threats that involve an entity using an identity that is not its
own. Examples: stealing and using authentication information, pretending
to be a legitimate part of the system and feed bogus information to
another part.

• Tampering – threats that involve modifying data or another part of the
system. Examples: modifying an unauthorized file or replacing the code
of a particular function that is trusted (e.g. a DLL or an input validation
function).

• Repudiation – threats involving the denial of performing an action.
Examples: the exclusion of data and consequent denial of such action or
denial of performing a digital signature.

• Information disclosure – threats involving the exposition of information
to an unauthorized entity. Examples: reading other system user private
files, eavesdropping the communication of a remote connection or
reading the environment variables values of another operating system
process.

• Denial of service – threats involving that a particular service becomes not
available to its legitimate users. Examples: defacement of a remote web
server, exceeding the processing capabilities of an application device or
changing the authorization rights of the users of an application.

Chapter 2 w Background and Related Work

32

• Elevation of privileges – threats involving an entity obtaining more
privileges than it was originally supposed to have. Examples: a regular
user obtaining administrative rights or an application executing operating
system commands.

Threat modeling in the STRIDE approach is performed as follows. First, it is
necessary to identify the assets that must be protected. To protect the information
properties within a system, it is necessary to protect the devices that carry the
information, the mechanisms that transmit the information and the means that are
used to access it (e.g. the network). For these to become more visible to the
analysts, it is suggested that a Data Flow Diagram (Stevens 1974) of the system
being analyzed is drawn (or alternatively an UML deployment diagram (Booch
2005)). Further documentation about the scenario or application being analyzed is
always welcome, and the most decomposed it is, easier will be the analysis done
over it.

With all data flows exposed, the analysis proceeds by trying to envision ways that
each of the STRIDE threats can be applied to each of the data flows and elements
involved, even the most improbable ones. When all threats are documented,
before starting to address them, they are usually ranked regarding their overall
risk, as to address first the most relevant ones. To do this, another acronym for
five different aspects that can be related to a threat is used, called the DREAD
score, which then allows computing an overall risk value for the threat. Each of
the DREAD components is assigned a rating value ranging from 1 to 10, which
extremes can be interpreted roughly as follows:

• Damage Potential: if an attack realized this threat, what is the
consequent damage?

o 1 = Disclosure of irrelevant information
o 10 = Complete system and data destruction

• Reliability: does the exploitation of the threat always cause damage?

o 1 = It will cause damage only under the most improbable
conditions

o 10 = It will always cause the most possible damage

• Exploitability: how easy is it for an attacker to exploit it?

o 1 = It requires advanced programming and networking
knowledge and physical access to a protected area of the
organization.

o 10 = Just a web browser and internet connection

Security Benchmarking of Transactional Systems

33

• Affected Users: How many users potentially can be affected by it?

o 1 = Just one user which mostly does not use the system
o 10 = All users

• Discoverability: how easy is it to discover this threat?

o 1 = Finding out about it requires knowledge of the inner workings
of several closed source components and access to confidential
parts of the system

o 10 = The threat is available in public domain and fairly obvious

The overall risk of a threat is computed as the average of the scores of all
components, and the most risky ones are considered first. After that, it is possible
to analyze each threat and evaluate if there is already a mechanism in the system
that prevents it from occurring or not. Any threat that does not have a mitigation
mechanism is considered a vulnerability of the system, which can be severe or
not. Evaluating if threats are or not already mitigated in a system can be a
challenging task on its own.

Despite the method of analysis used, techniques that deal with threats usually fall
within one of the following four different categories (Dorfman 2007):

• Avoidance – when a particular method is employed to completely
eliminate the possibility of someone exploring the threat;

• Reduction – when the probability of exploring the threat is diminished
instead of eliminated, what in some cases is the only alternative;

• Transference – when the risk is actually transferred for another party to
solve. For instance, insurance is an example of transference of risk.

• Retention – the idea of simply accepting the risk and deal with the attack
if and when it occurs.

Although the STRIDE approach does not explicitly provide formal ways to
evaluate the threats and their mitigations individually, several alternatives exist in
the literature. One popular method is using attack trees, which was suggested by
Bruce Schneier in (Schneier 1999) and resembles the use of fault trees (Roberts
1981) for the analysis of system dependability.

The process of threat modeling using attack trees starts by the definition of a set
of attack goals, which are considered the final objective of an attacker. An attack
goal could be, for instance, reading an encrypted email, executing software in a
particular remote machine or making a machine become unresponsive. The
instantiation of the threats identified in a STRIDE approach might be considered
as attack goals. The root of an attack tree is the attack goal, and the analysis start

Chapter 2 w Background and Related Work

34

by identifying all methods that can be used by an attacker to accomplish the goal,
which are state as children nodes. There might be several alternative ways of
achieving goals or there may be necessary combined steps, which defines OR and
AND nodes. A goal (or sub-goal in the case of a children node) is achieved if all
AND nodes are achieved or if any OR node is achieved. The process continues
recursively for the sub-goals, expanding the tree until the leafs are steps
considered simple enough to be evaluated.

A complete and correctly designed attack tree can be used for several different
security analyses. It shows all ways that an attack can be accomplished and
particularly any path from the root node to a plausible leaf can be considered a
vulnerability of the system. The tree also helps in the sense that the attack can be
avoided at any step of the path, providing different mitigations strategies. An
advantage of the method is that when a goal depends on an intermediary step that
has several possible ways of being achieved, mitigating this particular
intermediary step avoids several different vulnerabilities simultaneously.

Although complete, expressing attacks as trees might not be the most flexible
approach, meaning that a complex attack tree can be very difficult to analyze.
One way to allow the approach to be more flexible is to, instead of trees, use Petri
nets (or place/transition nets) that are directed graphs used to model transitions
with pre and post conditions, as suggested in (McDermott 2000). Coloured Petri
nets, which use coloured nodes as an additional formalization expression, are also
proposed as a way to extend the formalization even further (Helmer 2007).

Misuse cases (Alexander 2003) and abuse cases (McDermott 1999, 2001) are two
other formal ways of expressing threats that can be useful to help understanding
and identifying threats within a system. These methods, which are very similar
with minor distinctions, are based on use cases, which are part of the UML
language, being suitable to complement a system specification that already uses
this language. Diallo in (Diallo 2006) presented and compared misuse and abuse
cases with attack trees and the common criteria specification language, pointing
out the advantages and disadvantages of formalizing threats in each of the
approaches. Not surprisingly, this work shows that they are actually
complementary, neither of them being the optimal solution for all perspectives.

In all approaches for threat modeling, despite the formality of each one, a
significant amount of security knowledge is still required. This happens because it
is always necessary some creativity to be able to identify all the possible ways the
system can be attacked, and the most reliable way to achieve this creativity is
through security experience. To help with this problem, another branch of

Security Benchmarking of Transactional Systems

35

investigation is becoming more and more popular, which is the study of attack
patterns (Hoglund 2004). An attack pattern is an abstract mechanism for
describing how a type of observed attack is executed and providing a description
of the context where it is applicable. A formal study of repeating attack patterns
used to break software was first presented in (Hoglund 2004), and clearly is an
approach that can be applied to any kind of attack. Although fairly new, there is
already a considerable amount of investigation regarding ways of expressing
attack patterns (Pauli 2008) and using them (Gegick 2005, Gegick 2007).

The Common Attack Pattern Enumeration and Classification (CAPEC) sponsored
by the Department of Homeland Security of the United States (National Cyber
Security Division 2008) is an initiative that has as goal to try to build together
with the community a comprehensive attack pattern database. The main idea
behind the project is that such a database could be used to support any kind of
security analysis process and evaluation, as it will provide an extensive attacker
perspective (Barnum 2007).

Possibly the most comprehensive threat modeling approach already proposed is
the Trike methodology (Saitta 2005). Trike is a framework for threat modeling
built from the experiences gathered from all other methods that were already
proposed. It is a formal approach designed to be complete and had two two main
goals as motivation. First, it is known that extensive threat modeling is a very
long process that demands lots of documentation and careful analysis. Trike is
designed to allow the automation of the biggest most portion of the process
possible, meaning that the analysts can focus where it is really needed. Second,
identifying all threats within a particular system usually demands very extensive
security knowledge. By using a base attack library (provided by the framework),
Trike defines a process to generate all possible threats against the described
system in an automated manner, as to miss the least possible number of threats.
To achieve both these goals, the Trike framework was proposed together with the
implementation of a tool that implements the methodology, but this is still under
alpha stage development (Saitta 2007).

Trike differs from other threat modeling technologies from a number of ways.
Instead of using an attacker perspective, Trike models the threats from a
defensive perspective meaning that instead of considering attacks, it considers
actions that should not happen. The basic elements of Trike are actors, assets and
actions. The analyst identifies and models the actions that the actors are supposed
to do over the assets and from these modeling, two types of threats can be
exhaustively enumerated: 1) all actions that are not supposed to happen are
considered elevation of privileges threats and 2) actions prevented from

Chapter 2 w Background and Related Work

36

happening are considered denial of service threats. This automatic threat
generation is possible because the methodology is based on the principle that all
actions can be decomposed in smaller actions that ultimately are “create”, “read”,
“update” and “delete” actions over assets. This way, for a consistent description
of the systems intended behavior, the complementary action space can be
systematically identified, which cannot be done in other more ad hoc
methodologies.

Trikes main advantages can also be considered its main disadvantages. To allow
for automatic threat generation, the description of the system must be absolutely
accurate, which can take a lot of work. Any missing details will cause either for
the enumeration of non-existing threats or the failure of identifying important
ones. Another problem is that the number of threats generated tends to grow
exponentially with the number of assets within the system, which causes a serious
scalability problem for analyzing complex systems. Also, threats involving
elements outside the system boundaries are also missed in the algorithms, and
must be considered in a traditional manner. For these and other reasons, the
authors state that the framework is still under development and advise care in the
application of the methodology and of the supporting software.

2.4 Benchmarking
A computer benchmark is a standard procedure that allows assessing and
comparing systems or components according to specific characteristics (Grey
1993). Historically, the most common goal of benchmarking of computer systems
was the evaluation of performance. In particular, methods for evaluating the
cost/performance trade-off were much required as new computer architectures
and systems were being designed (Steen 1989). Nevertheless, the idea of
assessing computers, software and processes in a way that allows comparison
between different solutions can be applied to any aspect that can ultimately be
labeled as “good” or “bad”.

A useful characteristic of performance benchmarking is that it is easy to come up
with quantitative metrics capable of expressing the speed in which a system
executes tasks. When this is possible, a good/bad comparison can be trivially
done, only by numbers comparison. However, not all aspects are easily
translatable to quantitative metrics, and security is one example (Torgerson 2007).
The problem is that, even though it is easy to picture a scenario that can be
labeled unanimously as “very good” and another one that can be unanimously
labeled “very bad”, the ones in between are open for subjective interpretation. As
an example, it is not rare to find magazines inventing benchmarks (e.g.

Security Benchmarking of Transactional Systems

37

performance, usability, security, etc.) and applying them to off-the-shelf software,
authoritatively labeling them as good or bad. The problem is that this kind of
benchmarking depends exclusively on the opinion of the evaluator and it is fairly
easy to disagree with the results.

To be useful, a benchmark must be reliable in a sense that its methodology and
results should not be open for alternative interpretations. In particular, Gray
suggests that a good benchmark must meet four different criteria (Gray 1993):

• Relevance – it must be representative of the most typical operations
within the problem domain. A benchmark that applies only too small
subset of the problem domain is not useful as it allows limited
comparison.

• Portability – being portable amplifies the benchmark usefulness by
allowing comparison of a wider range of different systems and
architectures.

• Scalability – the benchmark should be scalable in the sense that it should
not depend on the size of the system being evaluated.

• Simplicity – the benchmark should be easy to understand, otherwise it
will lack credibility.

Vieira states six properties for a useful benchmark, restating and complementing
the previous four (Vieira 2005a). The rationale is that, if carefully validated,
having these properties will more easily demonstrate the benchmark usefulness
and allow its acceptance by a larger number of users. These properties are
representativeness, portability, repeatability, scalability, non-intrusiveness and
simplicity of use. Portability and scalability bears the same definition as in (Gray
1993) and representativeness can be understood exactly as relevance.

Repeatability is related to the ability of a benchmark to always produce the same
overall results for the same system (in non deterministic systems, repeatability
should be seen in statistical terms), no matter the number of times it is executed
and by whom. This property is extremely important for the credibility of the
benchmark; otherwise its results could always be disputed.

Non-intrusiveness is related to the quality of requiring minimum changes in the
system being evaluated (or none at all). The reasoning is that if the benchmark
process requires significant changes in the system, then one is not benchmarking
the original system anymore, but rather the modified one. This property is a big
concern for automated benchmarks because they usually imply installing and
executing some benchmarking software. The software will inevitably consume

Chapter 2 w Background and Related Work

38

system resources, and these should be taken into account in the results. The
installation of this software should not require system modifications for the same
reason.

At last, simplicity of use is related not only to the benchmark being easy to
understand, but also easy to apply. A complex benchmark would never appeal to
a large number of users, and therefore its usefulness would be compromised.

2.4.1 Performance Benchmarking
Benchmarking performance was historically so relevant that it is possible to find a
large number of organizations proposing these types of benchmarks for several
distinct domains. The Transaction Processing Performance Council (TPC 2012) is
a consortium of vendors defining benchmarks for transaction processing and
database domains. The System Performance Evaluation Cooperative (SPEC
2012) is a consortium that defines benchmarks for scientific and workstation
domains. The Perfect Club (Cybenko 1990) is a consortium of vendors and
universities that define benchmarks for the scientific domain, with particular
emphasis on parallel or exotic computer architectures. The EuroBen group (Steen
1993) established a series of benchmarks for the evaluation of high-performance
scientific computers. The Parallel Benchmarking Working Group (Dunlop 1994),
today the PARKBENCH committee, is a joint initiative for benchmarking parallel
systems.

Performance benchmarks (including the ones previously mentioned) typically fit
in a general profile that includes three particular components:

• Workload – a representative set of work that must be executed in the
system being evaluated during the benchmark run. Work, in this sense,
depends on what the benchmark is supposed to evaluate. In practice, the
workload represents what would be required from the system in a typical
real scenario, and the most representative it is the better.

• Metrics – a set of performance metrics that must be extracted from the
system as to characterize the effect of the workload on it. The set of
measures will depend on the kind of workload being executed and, most
importantly, on what are the factors that the benchmark is designed to
evaluate.

• Procedures and rules – the rules and procedures defining the steps that
must be followed during the benchmark run. This set of rules establishes
how the workload is executed, how the measures are collected and how
the final benchmark results are computed. They must be clear, complete
and unambiguous in order to allow the benchmark to be repeatable.

Security Benchmarking of Transactional Systems

39

2.4.2 Dependability and Resilience Benchmarking
Although most performance benchmarks fit within the profile above,
benchmarking other qualities of a system might require different approaches. The
DBench project (Kanoun 2001; DBench 2000) was an initiative by several
universities and organizations to develop dependability benchmarks. The
justification for such project is that performance benchmarks are significant only
in controlled environments, where the system suffers no adverse effects.
Dependability benchmarks, on the other hand, would provide reliable indicatives
of how a system degrades under the occurrence of faults and how is its capability
to recover from them. Being able to evaluate systems from a dependability point-
of-view is a very important because in the real world, faults are expected. For
example, no one would choose a high performance system that simply crashes in
the event of a simple fault. Thus, a way to reliably identify how different systems
behave under the presence of the most common faults is extremely relevant.

A multitude of dependability benchmarks can be found in the literature for a very
large diversity of domains (see (DBench 2000)), and a key characteristic of
dependability benchmarking is the addition of a faultload, which represents the
set of typical faults that the systems in a particular domain are subjected to and a
set of a dependability metrics, that aim at evaluating the degradation of the system
performance and the efficiency of the dependability mechanisms. In Section 2.5.1
we present a deeper discussion about the way dependability benchmarking works.

With the evolution of computer systems, the dependability mechanisms they had
also evolved and today we have the emergence of adaptation mechanisms
(Almeida 2011). Basically, instead of simply coping with a set of faults, now the
systems can adapt to a wider range of environmental changes in order to keep the
performance as high as possible given any imposed conditions. The evolution of
the dependability mechanisms again created another set of difficulties to
benchmarking of systems in general because now measuring the performance
degradation due to faults is not enough anymore, as the systems adapt to the
imposed environmental stresses of all sorts a wider range of conditions that are
not only limited to faults hove to be considered, and particularly the ability of
evaluating the overall efficiency of such adaptation mechanisms becomes a
crucial problem, as we have to account for the degradation imposed by the same
additional algorithms and modules required by them. In the literature, the concept
of faultload evolves into the concept of changeload (Almeida 2012a, Almeida
2012b) that is designed to model all the stressful conditions that the system being
evaluated will be subjected to under real conditions.

Chapter 2 w Background and Related Work

40

2.4.3 Security Benchmarking
A very initial attempt to devise a security benchmark that could hold up to
scientific standards can be found in (Vieira 2005b). This work proposes a
methodology for benchmarking the security mechanisms of database engines,
which is done through a set of classes. The benchmark defines a set of tests that
are used to characterize the mechanisms, and from the results of these tests a class
is assigned to the engine. The test set is generic in the sense that any relational
DBMS can be evaluated, and the approach is applied to two engines, Oracle 9i e
PostgreSQL 7.3. Although very limited in scope, the approach appears to have
everything that is required for a useful benchmark.

The security benchmarks proposed by CIS (presented in the Section 2.2.3), on the
other hand lack several of the properties that are expected from a benchmark.
Unlike the security benchmark of (Vieira 2005b), they are too specific for each
version of the software for which they are designed. The problem is that, as
benchmarks, their results are unreliable. First, even when a system follows all the
configuration suggestions proposed, stating that it is more secure is problematic
because security depends also on the way the system is used and on the
characteristics of the surrounding environment. Also, stating that a system is more
secure because it follows more suggestions might be misleading, because
sometimes some specific suggestions might have no influence on this particular
environment. Moreover, all of these applications have security limitations, and
these are never accounted for. Nevertheless, this is not to say that these
suggestions are not useful, but that certainly means that they are hardly
benchmarks.

The recently finished Amber project (Assessing, Measuring and Benchmarking
Resilience) (FP-7 2010), funded by the European Union under the FP7 program,
gathered the experience and expertise in benchmarking from an international
group of researchers, and successfully raised awareness of the lack of security
benchmarks proposals. In the Research Roadmap that resulted from this project
(Bondavalli 2009) the authors identify several research goals and suggest a
strategy aimed at eventually achieving research mass able to accomplish the
definition of security benchmarks. Their proposal is based in the expansion of the
extremely model used for dependability benchmarking, in which fault injection
techniques are used to evaluate the behavior of the system under faults
(Bondavalli 2009). Their assumption is that devising a representative attackload
and proper security metrics allow the specification of a security benchmark
following the same approach.

Security Benchmarking of Transactional Systems

41

The literature already shows a number of research works based on attackloads. In
most cases, the main approach is to model attacks in a very similar way to faults,
using attack injection techniques in an attempt to evaluate security aspects of
systems. In (Friginal 2011) the authors model a few attack techniques in order to
complement the analysis of COTS under the specification of ISO/IEC 25045
standard. In (Friginal 2009, 2010) we find attack injection techniques begin used
to assess ad hoc networks. It is important to emphasize that such approaches are
extremely useful and interesting, but are distant from the goal of a dedicated
security benchmark that is measuring security level of the evaluated system.
Instead, the techniques obtain information about the dependability of the systems,
the impact on performance of the system and of the security mechanisms and are
also able to identify which systems can be breached and which cannot. However,
selecting the most secure system is something that is extremely risky to do using
only the results of such techniques, as we explore in the next section.

A much more bold attempt at actually measuring the security level of systems can
be found in (Mendes 2011), where the authors use a database of known
vulnerabilities and use it to rank the evaluated systems in terms of the risk that
these vulnerabilities incur in the system. Although this approach is useful, and
could be an integrative part of a security benchmark, selecting components based
on this approach can also be misleading, particularly because vulnerabilities can
be patched, and after they are patched they give no real clue of the real security of
the remaining system.

Attack injection (Antunes et al 2012, Fonseca 2009) and vulnerability finding
(Shahriar 2012) are techniques that discover actual attack paths that can be used
by attacker to harm systems, and this is important. However, we have to be
extremely careful when interpreting what an existing vulnerability of attack path
means to the security of a system, or else you incur in the real risk of expressing
things that are actually not true, as we discuss in the next section.

2.5 Security Benchmarking as an Open Problem
Security benchmarking is still an open problem. Even though the community is
clearly trying to move forward in the proposition of alternatives to devise
solutions for this problem, the reality is that the path that security research is
taking on this matter leads to several difficulties that will be extremely hard to
overcome, due to the particularities of security that are not being taken into
account. In the next sections we will discuss such difficulties, and begin the
discussion of the measurement of trust, as an alternative to current approaches.

Chapter 2 w Background and Related Work

42

2.5.1 Dependability Benchmarking vs Security
Benchmarking

The most common dependability benchmarking model in use today (Kanoun
2008), and which is slowly becoming an accepted standard as part of the TPC
benchmarks (TPC 2012), is based on the definition of the following set of
elements:

• A representative workload, which should represent the average stress and
environment conditions that the system under test will be subjected to.

• A representative faultload, which includes typical faults that the system
may face in the field.

• Performance and dependability metrics.

• Guidelines and procedures to run the benchmark and collect the metrics.

The dependability benchmarking model is built upon already established
performance benchmarks, as discussed before. The transition is depicted in Figure
2.2. Typically, the benchmark execution is divided in two experiments: the golden
run, where performance metrics are collected during the application of the
workload, and a subsequent run where the system is subjected to the faultload
concurrently with the workload (Kanoun 2001). Besides collecting dependability
metrics relative to the fault tolerance of the system, the main goal of the second
run is to obtain performance metrics under faulty conditions, which, when
compared with the performance during the golden run, allow the evaluation of the
overall system degradation.

Figure 2.2 Dependability vs performance benchmarking

Possibly driven by the undisputed success of the dependability benchmarking
model, the scientific community has shown a general feeling that such model
could be successfully expanded and applied to the security field. For example, the

Security Benchmarking of Transactional Systems

43

Amber research roadmap (Bondavalli 2009) makes the following suggestions as
short-term goals (should be accomplished in 3 years’ time frame):

“Reference attackloads and injection tools to be used in the development
of security benchmarks: Finding whether representative types of attack
patterns and security vulnerabilities exist through field studies and
analysis of information available; Definition and validation of reference
attackloads for different security benchmarking domains and classes of
targets; Development of tools to inject reference attackloads in different
classes of benchmark target systems.”(Bondavalli 2009)

It is clear that the Amber consortium feels that the dependability benchmarking
model may work for security benchmarking, as long as representative attackloads
are defined (in the same lines as representative faultloads), and that the
community is able to design a representative set of security metrics that allow
characterizing the system regarding its ability to prevent the attacks (or their
effects) contained in the attackload.

Assuming that there exists a set of security metrics with the above capabilities,
the problem with the approach begins with the definition of what is a
representative attackload. Obtaining a representative faultload is already a very
complex problem (Arlat 2002). For example, should we consider a flooded room
as a representative “fault”? It surely depends on where the system is, and how
critical is the service it provides. But assuredly a faultload that does not include a
flood as a potential fault (despite the domain benchmarked) will not considerably
hinder the benchmark representativeness. The fact is that every single fault
included in the benchmark cumulatively renders it more representative, and any
potential fault to which the system is tested against provides valuable information
to the system owner. We may say that there is some fuzziness in the border
dividing a representative faultload from an unrepresentative one, and that
fuzziness does not have to be fully cleared for the benchmark to be useful.

In the security domain, things are more complex. Suppose, for instance, that it is
possible to determine a representative attackload for a particular domain. Using
the dependability benchmark model enhanced with an attackload and security
metrics, we apply the benchmark to choose the most secure of two systems. After
evaluating the behavior of the two systems subjected to the attackload, any
conceivable set of security metrics is expected to provide, at the very least, one
kind of security information (even if able to express more): either the systems are
completely immune to the attackload, or the systems are breached. What can we
learn from each of these results? If a system is breached, the disclosure of the

Chapter 2 w Background and Related Work

44

report of the benchmark run would make that information public, and it would
become available to anyone with knowledge of the attackload. No sane person
would choose a system that has a known security vulnerability, particularly
because knowing that the system can be attacked is equivalent of saying that the
system is essentially insecure. If confidentiality was lost, integrity was lost or the
system became unavailable (to limit our discussion to these basic security
properties) then the system was successfully breached and attributing a “level” of
security when one cannot maintain the security properties makes no sense. ON
the other hand, if the properties were not breached, then the attack was not
successful, and metrics that represent the degradation of the system due to the
interference of the attacks are either performance or dependability metrics, but
they are not security metrics, and this is true even if what we are measuring is the
degradation of the security mechanisms themselves. In the end, if both systems
are vulnerable, the benchmark user is left with little options, even if one of them
is “slightly less attackable”, whatever that may mean. But then, what if both
systems are immune to the attackload? Are both systems 100% secure, or the
attackload is unrepresentative? Which is more likely? In fact, both answers have
limited usefulness.

The previous discussion assumes that it is possible to find a representative
attackload. But when security is the issue, the dimness between a representative
faultload and an unrepresentative one may not be tolerable. A single missed
attack is enough to turn the most secure system in the world into the easiest one to
break. Furthermore, a representative attackload would need to take into
consideration the attacker’s perspective, and thus the capabilities of most
probable attackers (at least the technical capabilities, even if we ignore the
financial ones), which usually are impossible to predict beforehand. Predicting
how people will think and act in the future is simply too complex, and odds are
that the exact achievement of a representative attackload automatically renders it
unrepresentative.

Perspectives regarding the set of security metrics are also not promising. In
(Littlewood 1993) the authors proposed trying to measure the effort-to-breach a
system, which would appear interesting when allied with a representative
attackload. This kind of metric assumes that there is a metric that varies between
zero effort and a full breach effort, and would be somewhat useful to
administrators and developers. The idea was likely borrowed from the
cryptographic community, where encryption algorithms strength is evaluated
based on the effort that the attacker has to do to break it. What is generally missed
is that at any time, and given a particular technological situation, any

Security Benchmarking of Transactional Systems

45

cryptographic algorithm is assigned by the research community a binary status:
either it is broken or it is not broken. This holds even for algorithms that have
theoretical shortcomings that allow finding its solution faster than brute force, as
the encryption algorithm AES (Nikolić 2009) (which has some theoretical
shortcomings, but is not broken), and the cryptographic hash function SHA1
(Wang 2005) (which is considered broken even though no real break was
computed yet).

From a benchmarking perspective, the most information you can get from an
attack - and therefore an attackload - is whether it works or not, which amounts to
the fact that the system has a vulnerability and it is not covered by a
compensating defense mechanism. In other words, if a target is submitted to an
attack that is successful, the most important usable information that you get is the
fact that it is vulnerable to this attack. In a benchmarking context, whenever a
benchmarked target is found to be susceptible to an attack, the likely procedure
will be to correct or compensate the vulnerability, something that in the end will
alter the benchmarked target. So, any security metric based on the amount of
attacks that are successful is misleading because the actual system that will be
used in the field will be the corrected version of the benchmarked target, and not
the flawed one. If we assume that we could fix one system, then we have to
assume that we could fix all benchmarked targets. The problem is that, now, we
end up with a set of systems that is resistant to all attacks contained in our
attackload, and the metric will result in the same value for all these targets,
leaving the problem of security comparison unsolved. Moreover, attack effects
will vary depending on the system usage and goal, and even if we could measure
these, they most likely have no relation to the probability of the system being
vulnerable to that specific attack, so they will not help solving the problem.

In contrast, this model works for dependability benchmarking as the injection of
faults affords an opportunity to gain knowledge on the behavior of the system if
and when those faults occur in the field and, if faults occur, the metrics will
characterize their overall effects. For instance, the benchmark characterizes what
happens after a disk effectively fails. In security, the goal is more to identify if we
are secure during future attack events, and less to minimize the amount of damage
resulting from a known successful attack. Comparing to dependability
benchmarking, it would be like trying to understand the ability of the system in
never allowing a disk to fail in the future. We know that disks will fail, and there
is no correction/improvement on the system that may prevent, ever, a disk from
failing. Vulnerabilities, on the other hand, when found should be corrected or
circumvented.

Chapter 2 w Background and Related Work

46

In other words, the dependability benchmarking model does not seem to be the
most adequate for security, mostly because the goal of a useful security
benchmark is slightly different from the one of a dependability benchmark.
Although the knowledge of known attacks that are able to breach a given system
is extremely valuable, allowing to correct flawed systems, this information does
not help to select between candidates because if we allow all the candidates to be
corrected according to the knowledge our attacks, we end up with several systems
that measure equally concerning attackload based metrics. In the end, we are still
left with the problem of choosing the system that will behave better when
subjected to active, ingenious and malicious minds that have beforehand the
entire knowledge about any existing security benchmark. To solve this, we need
procedures and metrics that are not based only on known attacks and
vulnerabilities, but that relate to the probability of the existence of unknown
vulnerabilities and the ability of the system to resist to unknown attacks.

2.5.2 Benchmarking Trust
It is interesting that back in 1993, Littlewood (Littlewood 1993) cites the Orange
Book (DoD 1985) levels as “represent(ing) levels of trust, an unquantified belief
about security”, toning it as a downside of the approach, while at the same time
proposing effort-to-breach as a useful quantifiable metric. Although the Orange
Book levels are far away from being useful for benchmarking and comparison,
maybe they were more on the right track than realized.

The security community already noticed that the words trust and security have
been more and more used interchangeably (Marsh 2005), as if a trusted system
was a secure system, and security necessarily implied trust. This is a problem, as
this use of terminology is mixing up concepts that are necessarily different and
actually complementary.

A secure state is the state of “not being able to be attacked” or “not being
vulnerable”. Although it is possible to come up with “levels” of how vulnerable
the system is (i.e. levels of security), the definition of each of these levels is likely
to be static, and the state will either be one or the other. The fact that a certain
attack is possible effectively means one is less secure, even though it is hard to
include the notion of future unknown attacks and unknown vulnerabilities in the
concept of a definitive security state.

Trust, which is an assumed reliance on something or someone (McKnight 2006,
Sullivan 2010), on the other hand, can be thought of as a continuous concept,
which can be increased and decreased in a variable amount, depending on the

Security Benchmarking of Transactional Systems

47

circumstances and events. This makes it automatically suitable as a metric for
comparison and, therefore, for benchmarking. Also, the work done in trust
quantification is far ahead than the research in security metrics, and approaches
for measuring trust can be already found in the literature (Ray 2004). We believe
that trust is a concept that more naturally accommodates probabilities and
uncertainties related to unknown factors.

Using a real life analogy, we happen to trust more someone the more evidence
he/she provides that he/she can be trusted. Also, the degree of increased trust
varies with each situation. For instance, if you pass by a person in the street and
he does not steal from you, your trust in that person may increase a little bit. If the
same person saves your life from being run over by a car, it may increase more.
Both levels of trust are useful, as in one case it gives you the liberty of not being
particularly afraid in a subsequent encounter, and in the other you may consider
depending your life upon the person. Nevertheless, in neither case this trust
guarantees that the person will not hit you with an axe when you turn your back
away a next time. Notice that trust allows one to make informed decisions, but
without providing any guarantees. This is probably the main concern of
(Littlewood 1993) when considering trust levels as a downside of the Orange
Book. However, the security community is already comfortable with the idea that
there is no 100% secure system, so this may not be an unbearable problem if this
issue is dealt with correctly, which is something that our benchmarking
framework does.

Regarding benchmarking, when we shift the focus from measuring security to
measuring trustworthiness, several differences are evident. The most important
and controversial one is exactly the fact that trust does not necessarily imply
security, even though it may suggest it. So how could it be considered an
alternative? First, it is unlikely that we will ever be able to provide definitive
guarantees against future unknown attacks. Also, vulnerabilities are things that
are not definitive, and the simple advancement of security knowledge creates
vulnerabilities where before there was none. Basically, certain characteristics start
being vulnerabilities once someone finds out how to exploit them in an attack
scenario. In this sense, it may be impossible to have more than trust in our
systems. Second, and more important, aside from guarantees, a trustworthiness
benchmark accomplishes all goals that would be required from a security
benchmark in an easier manner. On average, a more trustworthy system will be
more robust to attacks and less likely to be attacked than a less trustworthy one.
Much like in dependability benchmarking, averages are the best possible

Chapter 2 w Background and Related Work

48

predictions we can make about the future conditions under which the system will
operate.

By accepting these fundamental limitations in security evaluation, we find out
that a trustworthiness metric should be based on the amount of evidence available
that the system is secure. More evidence of security mechanisms, processes,
configurations, procedures and behaviors (we may call each of these security
elements) results in a more trustworthy system. Also, the more widespread or
more narrow the protection provided by the existing elements, the more the
degree of trustworthiness varies. In a way, we would be measuring how wide the
umbrella of security elements of the system is, or its defensive surface (in contrast
to the attack surface concept (Manadhata 2007) suggested by an attackload). The
larger the umbrella, the less likely there is a hole somewhere, and more trust one
can justifiably put in the system.

One important characteristic of this approach is that the amount of trustworthiness
of each security element has to be correct only in a relative way (i.e. the exact
values are unimportant). For each security element, trustworthiness may be added
to the system in the amount of known attack paths that it covers. It may also be
weighted by its own constituent trustworthiness (e.g. does the element usually
works as expected and has proven to prevent real attacks?). Here, probability of
failure of security elements may play a part, and a whole lot of ideas can be
incorporated to the concept, which is more deeply discussed in the next chapter.

2.6 Conclusion
This chapter presented an overview of the state of the art of several topics related
with the rest of the thesis, ranging from security evaluation frameworks and
methodologies to the state of the art and the evolution of benchmarking. We
devoted particular attention to the reasons why current approaches to
dependability benchmarking do not fit the requirements of security
benchmarking, which was the main motivation for the framework we propose in
the next chapter.

The security evaluation techniques covered are closely related with
benchmarking, as they are also methods for assessing high level security aspects,
and may be used in situations where benchmarking is not completely necessary
(or not applicable). The chapter focused on three relevant methodologies, which
can be viewed as complementary ways for evaluating security: the Common
Criteria, the OCTAVE method and the Center for Internet Security Benchmarking
approach. Two of those contributed to some aspects of our benchmark

Security Benchmarking of Transactional Systems

49

implementations (namely the Common Criteria and the CIS benchmarks). Other
complementary security evaluation methodologies and frameworks are based on
variations of these were mentioned for completeness. A few specific techniques,
also important to our work, were presented. These techniques are not full security
evaluation frameworks, but are used to evaluate more specific security aspects
and play important roles in security benchmarking, such as vulnerability finding
techniques, static code analysis and penetration testing.

Another key topic covered was threat modeling. Even though we do not apply
directly any specific threat modeling technique in our work, we do partially
include one in the process of creating a list of threats for transactional systems
infrastructures (presented in Chapter 4).

As the goal is to provide a security benchmarking framework, this chapter also
included a detailed discussion on benchmarking topics. We described what is
traditionally expected from a benchmark, including some hints related to the
evolution of the concept over the years. Essentially, benchmarking as a scientific
research topic started with the goal of evaluating and comparing performance.
However, in the last decade, the concept evolved towards the evaluation of
dependability attributes of computer systems. This work appears exactly in a
moment where the research community is beginning to extrapolate the
methodologies, lessons and achievements from dependability benchmarking
research to other aspects, including security. However, as discussed, the problem
of benchmarking security is quite different from benchmarking dependability
attributes. Finally, the chapter discussed the concept of benchmarking trust,
namely on how it can be related with security aspects, which is an idea that we
explore extensively in our framework.

51

3

A Framework for
Security

Benchmarking

The set of metrics is the central and indispensable component of a benchmark.
Conceiving a security benchmark would be a trivial problem if the definition and
collection of security metrics were easy tasks, which is not the case. In fact,
Enterprise-Level Security Metrics were included in the 2005 Hard Problems List
prepared by the INFOSEC Research Council, which identifies key research
problems related to information security (INFOSEC 2005). Although there are
many proposals of security metrics for computer systems, so far no consensual
general security metric has been defined (Jansen 2009).

Ideally, a security metric should portray the degree to which security goals are
met in the System Under Test (SUT) (Payne 2006). The expectation is that the
comparison of the result of measurements performed on two distinct systems – or
the same system in distinct states or circumstances – provides enough security
information to allow the system administrator/owner to make informed decisions
regarding the selection of alternatives or necessary improvements. Furthermore,
although the exact kind of output we expect from a security benchmark depends
on the goals of the SUT and on the context in which it is (or will be) used, that
output should always include information about the kind of security problems the
system may have, and should allow the identification of the parts of the system
that are more prone to security breaches (and therefore deserve more attention).

Chapter 3 w A Framework for Security Benchmarking

52

One of the biggest difficulties in designing such a generic security metric is
related to the fact that the security level of a system is highly dependent on what
is unknown about the system (Torgerson 2007). For example, vulnerabilities that
exist in an application, but that nonetheless are not perceived by the
developer/administrator, are the ones that (ideally) should influence the security
metric the most; otherwise the metric will be of reduced usefulness, as decisions
based on it will not take those vulnerabilities into account, thus leading to
erroneous or misleading conclusions.

This issue becomes even more challenging when we consider complex scenarios,
with many devices, software and people involved, and where security
vulnerabilities may exist not only because of faulty elements, but also due to the
combination of the characteristics of these elements, including the environment
around and the existing interactions (e.g. a database accessed by several
applications and users). Given these factors, it is extremely hard to devise a
numeric value that correctly expresses the actual security level of a computer
system in a way that allows making meaningful and safe comparisons.

Insecurity metrics based on risk try to cope with the uncertainty associated with
measuring the security level of a system by incorporating the probability of
attacks (Jelen 1998). Risk is usually defined as the product of the likelihood of an
attack and the damage expected if it happens. In principle, this metric can be used
to decide if the hazards to which the system is exposed are acceptable or not, and
also to help selecting the ones that should be mitigated first. The problem with
this approach, in addition to the already hard problem of compiling an exhaustive
enough list of possible attacks, is that it is very easy to underestimate or
overestimate the two values (the probability and the damage), exactly for the
same reasons that a general security metric is hard to define and compute: again,
these values are highly dependent on what is unknown about the system This is,
obviously, a major problem when risks are used for supporting security related
decisions.

An additional problem of risk-based assessments is the fact that they rely too
much on external information. Basically, the probability of attacks is directly
related with “the probability of an external agent having some interest in
attacking the system to begin with”, and the potential damage is biased by the
possible interests of the attacker, which certainly varies wildly. Even if one
manages to get accurate values in a certain point in time, the context evolves and
changes depending on factors that have absolutely nothing to do with the system
that is being assessed (Grey 1993).

Security Benchmarking of Transactional Systems

53

In essence, traditional security and insecurity metrics are hard to define and
compute (Torgerson, 2007), as they involve making isolated estimations about the
ability of an unknown individual (e.g. a hacker) to discover and maliciously
exploit an unknown system characteristic (e.g. a vulnerability). Moreover, these
metrics are often expected to depend only on information about the system itself,
while at the same time incorporating the capabilities, behaviors and intentions of
potential attackers, as if the information about the system could be enough to
define the behavior of a potential attacker. In other words, this perspective starts
from the assumption that a security metric can be made universal, in the sense
that it will have the same value when seen from different perspectives (e.g. the
administrators’ versus the attackers’ points of view). This will never be true as it
is virtually impossible to know all attackers’ capabilities, and the number of ways
a system can interact with its environment is practically infinite. We start the
definition of our framework by assuming that this approach is unfeasible, and
therefore we have to redefine the whole idea of benchmarking when it comes to
security aspects.

When pondering over security benchmarking, we have to be careful to never lose
sight of some fundamental aspects. One of those aspects is that we do not want
the portrayed level of security to vary depending on external variables, or else two
distinct measurements will not be comparable. To illustrate how easy it is to miss
this point let’s discuss the case of two “common” incident metrics found in
organizations, and that are very frequently misinterpreted as “security metrics”.
One we call NVD, the number of viruses detected in all computers of an
organization, and the other is NSD, the number of spams/phishing detected in the
overall bulk of email that circulates in the network (Kumaraguru 2007). Let’s
assume that these numbers are collected with some predefined periodicity that
allows us to compare two measures separated by one period (e.g. one month).

NVD and NSD are interesting administrative metrics that can be used in practice
to help in the security activities of an organization. For instance, if NVD or NSD
numbers are high, this may lead to the decision of buying or implementing more
security precautions against spam and viruses, allocating money for that task. In
this case, such decision is justified by the simple fact that the number of incidents
is high. In general, thresholds can be defined and used to raise awareness within
the organization, in order to improve the attention of the employees to the
problem and help find and mitigate potential causes. For benchmarking purposes,
however, those numbers can be extremely misleading. To understand why, we
have to consider the two main goals of security benchmarking: self-comparison

Chapter 3 w A Framework for Security Benchmarking

54

over time (to evaluate improvement or degradation) and comparison of distinct
software (for selecting the best alternatives).

Starting from the self-comparison goal, a key question can be stated as follows: if
NVD and NSD rise dramatically over time, is the security of the organization
getting worse in any sense? The answer is that it depends on why the numbers
raise, which sometimes is not easy to know. In some situations, a simple rule
modification or antivirus definitions update may trigger the detection of several
infections that were already there, but were previously unknown (meaning that
the overall security situation is improving, as the viruses that were there are now
being eliminated). It may also be the case that targeted attacks are occurring at the
present moment, and they are successfully being identified and blocked by the
filters and antivirus. In this case, we may say that the situation is getting worse, in
the sense that the organization is being attacked, but on the other hand it is good
to verify that the tools are working as they are supposed to (even though we have
no idea if they are solving the problem completely).

This reasoning can get even trickier. Suppose that NVD raises and NSD keeps
stable: this would probably turn the administrator attention to the antivirus, trying
to understand why the metric changed. But this would lead nowhere if the case
were, for example, that the users inside the organization were being victims of
phishing attacks (e.g. clicking in malicious links in emails that were not caught by
the spam filter, and infecting the machines with viruses). In such situation the
problem would have nothing to do with the antivirus, but with the spam filter and
with the lack of understanding of the employees about the problem. Alternatively,
we may see both numbers going down. What could be the course of action in that
case? Could it be because the security countermeasures lost effectiveness, or
because the number of attacks just decreased? Should one be concerned or
reassured if the number of viruses detected suddenly decreases by 50%?

The main conclusion that has to be drawn from this illustrative discussion is that
such numbers express information that can never be used to understand the status
of the security level of the organization. Even though they portray some relation
between the security level of the organization and the events that are occurring in
real time (attacks, or lack of attacks), it is not possible to extrapolate the actual
security level from this relation.

Considering now the goal of comparison of software alternatives, the usefulness
of such numbers for ranking is even worse. If an organization changes an
antivirus or anti-spam solution to an alternative one, and the numbers for NSD
and NVD go up, does that mean that the new solution is better? Again, following

Security Benchmarking of Transactional Systems

55

the same type of reasoning, we can conclude that those new solutions may very
well be worse than the old ones, and that it is impossible to justifiably and
confidently decide either way based on the values for NVD and NVD. It is
important to remember that the pattern of change of such numbers strongly
depends on external factors that cannot be controlled. In practice, this kind of
metrics cannot be used for benchmarking, as they can be significantly misleading.

Security benchmarking must be a process that consistently and systematically
identifies the actual security characteristics of the evaluated targets despite
environmental influences, and conclusions must not vary for a single target even
in the presence of new attacks or attackers, or this may invalidate the
measurements. One key mantra that should not be forgotten is that we are
measuring the system, not the attackers. In fact, whenever new attacks become
relevant to the point of making a benchmark invalid, the solution is to define a
new benchmark specification, and deem the old one as obsolete. As far as
possible, under the same benchmarking specification, the security assessment of a
target should be deterministic and not change with time or due to variations on the
attackers’ capabilities. Given all these restrictions, it becomes understandable
why security benchmarking is an extremely hard problem and why no effective
model has been proposed so far.

Another key aspect that needs to be emphasized is that security benchmarking
will never be able to express more about security knowledge than what the
current body of knowledge on security can provide. People should not expect
security benchmarking to miraculously bring forth information that was invisible
to everyone beforehand. In other words, security benchmarking should be
perceived as a procedure able to extract, analyze, organize and summarize
information related to the security level of a benchmarked target in such a way
that this information can be used confidently for relative comparison and
decision-making. From this perspective, the security characteristics of the
assessed target are much more relevant than the capabilities of the attackers,
which will serve only as a frame of reference for the threats that systems are
expected to be protected from. One key idea that we try to convey in this work is
that in security benchmarking we should model the attackers’ capabilities as
the effects that they may cause in the system, independently of their actual
capabilities or intents.

The outline of this chapter is as follows. Section 3.1 we discuss the idea o threat
vectors and what they are a good starting point for trustworthiness benchmarking.
Section 3.2 we present our benchmarking framework. Section 3.3 we present the

Chapter 3 w A Framework for Security Benchmarking

56

system that will be used as a case study of our framework. Section 3.4 concludes
the chapter.

3.1 Threat Vectors as Basis for Benchmarking
Security

The main reason why computer security is important is the existence of threats. If
there were no threats, we would not have to be concerned with security.
Therefore, in a way, threats are the component that drives almost all security
analysis approaches (Schmidt 2010).

Even though we all understand the idea intuitively, in security research works the
term “threat” (Im 2005) is frequently associated with different formal definitions.
Particularly, the exact concepts that have to be present for a specific threat to be
defined vary from one author to another. A commonly used definition is that a
threat is the specification of whom, how and in what circumstance a given action
will accomplish some undesirable effect (result) (Johnston 2010). For instance, a
threat defined this way could be stated as follows:

Terrorists may detonate a bomb in a bus causing it to explode.

Improving the security of a scenario where this threat is assumed to be possible
would require implementing measures that prevent it from being accomplished
whenever there is an attempt. Notice that the threat specification already contains
a lot of information. For example, the attackers are terrorists, not college students.
They will use a bomb, not a missile or a biological weapon, and the event would
involve a bus. Such definition also allows us to quickly understand the intended
effects of the attack attempt. Even though the immediate effect is that people on
the bus will die or be hurt, the main goal is to cause panic, first in the region
where the explosion happens and then in the general population (relying on the
helping hand of the automatic media exposure). The final goal is to cause general
fear and, ideally, mass panic and a variety of damages in all levels of society.

A way to improve security on this scenario would be to raise the awareness of the
people that use buses for transportation, and to investigate manually suspicious
buses and abandoned packages (if possible, without disregarding the side effects
of such measures, such as the hindrance and delay imposed by such procedures).
To consider a more general approach and broaden the security measures needed,
we can change a few of the elements in the definition: for instance, let’s assume
that also taxis may explode, and that college students and old ladies may also be
recruited by terrorists. This clearly shows that the number of possible threats may

Security Benchmarking of Transactional Systems

57

increase exponentially if several such variations of the elements of the initial
threat are considered, making the goal of “preventing all threats” impossible to
achieve.

Computer systems are extremely complex, and exactly due to that, they can be
attacked from an almost infinite number of angles with different approaches,
causing a myriad of distinct effects (Chapman 2011). When we generically talk
about the security of a computer system, we want to be broad, and therefore
should include all those angles simultaneously. However, exactly like in the
bombing threat we discussed previously, it is not feasible to enumerate all the
possible threats we have to take into attention when securing the system, and as
the systems evolve, so do the techniques used to accomplish the attacks. Our goal,
however, does not change: we want to reduce the probability of the system being
successfully attacked considering the set of all possible ways to do that.
Theoretically, security benchmarking should help in driving the system
modifications in a way that improves the probability of successfully stopping any
possible attack. The key question is: how do we even start achieving such goal?

In an evaluation context like security benchmarking, when we look at threats like
the preceding example (i.e. the terrorist attack), it is not hard to notice that too
many elements are fixed, and that this is not an adequate approach if the goal is to
be broad. For instance, if we focus on buses, we are forgetting about trucks and
cars. If we focus on bombs we are not considering biological weapons. If we are
going to vouch that something is more secure than another, we better do it taking
the widest angle possible, or else our assertion may be wrong in a huge number of
scenarios. Furthermore, the “who/how/when” of attacks in computer contexts
varies so much and changes so fast that we believe it makes little sense to try to
focus on specific details of these variables.

Another important aspect that cannot be forgotten is that accomplishing security
benchmarking requires considering only the characteristics of the system in the
assessment, avoiding the dependency on external factors. So, although the
benchmark driver is the concern of preventing external threats, what we should
look at and take into consideration are the characteristics of the system, and not
the characteristics of the attacker or the attack itself. In fact, as these are the
elements over which we can act (we cannot change the attackers; we can only
change the system), we have to consider threats from an alternative perspective.

In this work, threat vectors are defined as sets of characteristics of a system that
are related to threats that accomplish certain specific effects. In the example
above, mass panic would be a threat vector, which would be defined as the set of

Chapter 3 w A Framework for Security Benchmarking

58

characteristics of the environment that lead to an increased probability of the
occurrence of mass panic. In this case, we could extrapolate that certain
agglomerations of people do favor the creation of mass panic, even if this is not
the only requirement. The goal is to help discarding the information regarding
specific attackers and attacks and to focus on the characteristics of the system that
have some relation with the probability that certain bad effects may occur. Also,
while focusing on the effects, it becomes easier to identify alternative attack
situations that may not be obvious from the start. For instance, could sound based
weapons be effective to cause mass panic situations? What would be the
precautions required in that case? More importantly, if we are concerned with
panic, then we are open to techniques that act on the people that may suffer from
that panic, fighting the effect instead of the cause.

This definition of threat vector widens the way we look to security aspects, while
at the same time maintains the focus on the system instead of on the attackers. As
we are looking at systems’ characteristics that have to do with the possibility of
certain bad effects, we can then aggregate these characteristics and translate them
into probabilities of the effects being accomplished even without taking into
account the attacker’s related details. Note that, we use the expression bad effects
instead of, alternatively, malicious effects, as the later would usually assume
intentions behind them. As we are focusing on the system, it is not necessary to
consider someone with any kind of intention; what we are concerned with is that
the effects, which by definition are unwanted, do not manifest themselves.

The main challenge, therefore, is to determine, for a given domain, what are the
threat vectors that are important to consider and, more importantly, what are the
systems’ characteristics involved in accomplishing the related effects. In our
framework, this definition is what provides, in the form of trustworthiness
benchmarking metrics, comparison capabilities to a security benchmark.

3.2 Security Benchmarking Framework
The assumption that security has a lot to do with what we do not known about the
system requires us to investigate how to include in a comparison framework (i.e. a
benchmark) information about what we know and about what we do not know
about a system. In the course of our research, we came to the conclusion that the
most effective way to correctly tackle this problem is by explicitly separating the
benchmark in two parts: first, the benchmark should evaluate the explicit security
mechanisms and visible defects that the system has, and second, it should assess
the possibility of the system still having unknown security problems. This way,
the proposed security benchmarking framework requires two distinct evaluations

Security Benchmarking of Transactional Systems

59

to be carried out, namely: security qualification and trustworthiness
benchmarking (see Figure 3.1).

Figure 3.1 High level vision of the benchmarking process

Security qualification is related to the actual, tangible characteristics of the
system, and their effectiveness on complying with a pre-defined level of security
specified for a given application domain (i.e. the domain of the systems to which
the benchmark should apply). Today, most domains have a minimum level of
security that is required so that a system can be considered acceptable. For
instance, the minimum absolute level of security that we would expect for a car is
that it must require a key to be opened and to be turned on, and that the key would
be only in the possession of the owner of the car. A car without a key would not
be acceptable for most people, as that car could be easily vandalized or stolen.
The same reasoning can be made for a bank account that does not require any
authentication protocol for withdrawals. These examples (one car without keys, a
bank account without authentication) are simply not acceptable for use in most
domains, and a security benchmark would fail completely if it did not take into
consideration this type of requirements.

In computer systems, a qualification step of a security benchmark could require
the software being benchmarked to not have any obvious vulnerabilities
detectable by static code analysis tools or penetration testing tools (or both)
and/or to have a certain type of construction pattern (e.g. it could require the
application to employ specific algorithms, libraries or access methods in its
programming). Another possibility for the qualification step would be to require
the system to provide certain configuration options or security mechanisms (e.g.
encryption capabilities, enforcement of certain policies or specific methods of
authentication and access controls). These aspects are domain dependent and
qualificatory, in the sense that a system is not considered acceptable for use if it
fails these requirements.

Chapter 3 w A Framework for Security Benchmarking

60

An example of a qualification requirement for an operating system security
benchmark could be as follows: the system is disqualified if it does not ask for
authentication before allowing any kind of user interaction. This requirement is
quite intuitive and it is very easy to imagine situations where this is a fundamental
security requirement for an operating system (e.g. the operating system used in
private workstation in an organization). At the same time, we can also find
several other situations where this is clearly not a requirement (e.g. a public kiosk
designed to show repeating slides), and therefore, a security benchmark for such
case would not include a qualification requirement like this. The details and
justifications that lead to the inclusion or not of each requirement are part of the
definition of the domain, which is indeed a crucial part of the benchmark. The
issues regarding the definition of the domain are presented in more detail in
Section 3.3.3, when discussing some aspects related to the instantiation of the
framework. For now, we may understand a domain as a particular use-case of
some class of applications (e.g. operating systems for typical desktop home-users,
and operating systems for web servers are two examples of use-cases for
operating systems).

Notice that the simple existence of an authentication mechanism in a qualified
operating system provides very little information on how reliable that mechanism
is; the qualification is simply stating that a system is not acceptable if it does not
do have it at all (i.e. at the very least, the mechanism must work and not allow an
unauthenticated person to interact with the operating system easily). Other
possible qualification requirements could be: to require the operating system
software to not present any vulnerability during an automated source code
analysis (possibly using a specific tool defined by the benchmark), or to require
the operating system to employ one of a specific set of authentication protocols.

In a general perspective, security qualification comes from the observation that it
makes little sense to assign a security level to a system that has obvious ways of
being attacked (be it due to the inexistence of a security mechanism or due to the
existence of an obvious vulnerability). The main assumption is that, if one knows
how to successfully attack the system, then the security is defined as zero and the
SUT fails (i.e. is not acceptable for use). Obviously, the details and specificities
of the qualification step depend not only on the particular application domain as
discussed above, but also on how effective the benchmark will require the targets
to be. For instance, the qualification could require the SUT to implement a two-
factor authentication by default, or, alternatively, express the existence of a
simple pre-shared key setting to be enough. A more detailed discussion on
security qualification is presented in Section 3.2.1.

Security Benchmarking of Transactional Systems

61

The systems that pass the first step are considered equally secure up to this point,
and are therefore assigned for trustworthiness benchmarking, which is a
quantitative evaluation that allows some kind of security comparison. The
trustworthiness benchmarking step is designed to account for the security
characteristics that cannot be expressed simply as have or not have verifications,
and is therefore intrinsically different from the qualification requirements
discussed before. The main idea is to analyze and express a general level of trust
that can be put on the SUT characteristics according to a set of plausible
assumptions (which are based on the set of threat vectors relevant in the context
of the application domain).

Procedures for accomplishing trustworthiness benchmarking should enumerate
and aggregate the systems characteristics that increase or decrease the probability
of the effects defined by the threat vectors to manifest themselves, based on
information on how this is usually accomplished in the field for each threat. For
instance, in the context of a security benchmark for web applications let’s
consider SQL Injection attacks as a threat vector: a trustworthiness benchmarking
algorithm could look for evidences (e.g. patterns) showing that the code of the
application has some probability of having errors that may lead to SQL Injection
vulnerabilities (Amirtahmasebi 2009).

An important aspect about trustworthiness benchmarking is that this kind of
evaluation should be done only after verifying that no obvious ways of attacking
the system exist. In the web applications security benchmark example, we would
execute trustworthiness benchmarking only after trying to find actual SQL
injection vulnerabilities (e.g. by using automated tools during the qualification
step). This is a critical requirement of the approach, as the trustworthiness
benchmarking algorithm will not look for actual vulnerabilities, but for the
preponderance that hidden vulnerabilities may still exist within the assessed
application or system. A more detailed discussion on the properties and
justifications for such definition of trustworthiness benchmarking are presented in
Section 3.2.2.

In summary, the proposed security benchmarking framework includes a two-step
procedure, as depicted in Figure 3.1. First, the systems under testing undertake the
set of tests defined in the qualification step. The result states whether the SUT is
acceptable for use or not (i.e. this step decides if the target has security level zero
or more than zero). Qualified systems are subjected to trustworthiness
benchmarking, which computes a metric (or set of metrics) that represents how
trustworthy the system is in respect to the benchmark threat vectors, while
considering the set of characteristics that increase or decrease the probability of

Chapter 3 w A Framework for Security Benchmarking

62

the occurrence of the corresponding bad effects. By design, this probability does
not take into account the intentions or capabilities of attackers, but only system
characteristics, which are the ones that the system administrator is able to
influence. The values are comparable among threat vectors, but not across threat
vectors, as the measurement units may differ. For instance, if we have a SQL
Injection threat vector and a Denial of Service threat vector, the comparison of
one against the other may or may not be meaningful depending on the way the
values are computed.

3.2.1 Security Qualification
The security qualification step within our framework is related to the identifiable
characteristics and properties that are considered, in a sense or another, security
requirements for the target systems to have a security level higher than zero.
Basically, in a given domain, the framework assumes that a system has security
level zero if it does not comply with one of the following assertions:

1) The system provides the set of mechanisms required for securely
accomplishing tasks in the specified domain;

2) The set of procedures specified by the benchmark are unable to detect a
characteristic (e.g. a vulnerability) that guarantees that a malicious
attacker can accomplish a certain effect that is either unwanted or violates
the business rules of the system.

The first assertion is related to the fact that some security mechanisms are
naturally expected in certain domains. For example, access controls are expected
in database engines, authentication is expected in operating systems, but neither
of those is necessarily required for all types of software systems, and might even
be optional for those same applications in certain specific use cases. The concrete
list of security mechanisms that compose the qualification step definition is
highly dependent on the benchmarking domain and on the list of security tasks
and activities required in that domain (Section 3.2.3 discusses in detail the
problem of the domain definition in the context of the identification of the domain
that serves as the main use case in this thesis).

Another example is disk data encryption, which is not a universally required
security mechanism for database engines, even though for certain usages it could
be a requirement (e.g. databases that hold private medical data) (Weber-Jahnke
2007). Encryption of data in transit, on the other hand, is more frequently
considered a requirement, unless the data that is transmitted is already of public
access (Harbitter 2002). Notice, however, that this assertion is related with the

Security Benchmarking of Transactional Systems

63

capabilities of the target systems, and not with how these capabilities are used in
practice. Also, the definition of the set of mechanisms for this step should take
into account the fact that the lack of certain mechanisms may be compensated by
the existence of others (Howard 2002). For instance, although encryption of data
on the disk is not supported by some database engines, that can always be
implemented by encrypting the same data at the application level - even though it
could be harder to do it correctly and securely. Nevertheless, there are certain
mechanisms that are extremely difficult to compensate for and therefore urge for
a qualification step. One example is the lack of authentication at the operating
system level, which would be an extremely complex security flaw to compensate
successfully.

One possible argument against this first assumption is the fact that the security
level of a target is not directly related to the security mechanisms it provides,
exactly because often they can be compensated during use. Our assumption,
however, is that security mechanisms being designed and implemented directly in
the target system are always a better choice than adding them later as additional
complementary procedures. In other words, when security features are considered
from the design of the system instead of being included later as extraneous
features, they are not only more efficient, but also provide more capabilities
(McGraw 2006). As a simple example, suppose that a database engine providing
an intrusion detection system for malicious SQL injection is required for a given
scenario. One could argue that a network sniffing based solution (e.g. the one
proposed in (Fonseca 2008)) using an external software would be more than
enough to support this capability, making it pointless to include the existence if
such a mechanisms as a qualification requirement. However, while a sniffing
based solution can provide detection capabilities, it does not support prevention
capabilities - by denying the execution of a malicious command - which can be
certainly done if the intrusion detection system is designed within the database
engine. And even if we could achieve the exact same capabilities with a network
sniffing solution through the use of a complex set of communication processes
and tools, this solution would, without a doubt, increase considerably the
complexity of the architecture, raising the probability of configuration and
interaction vulnerabilities and also the overall maintenance effort. Nevertheless,
requiring the inclusion (or not) of each security mechanism as part of the
qualification step for a given domain should always be based on appropriate
reasoning.

The second assertion is related to the existence of actual security flaws (i.e.
failures of compliance with the defined design) on the SUT that are detectable by

Chapter 3 w A Framework for Security Benchmarking

64

current security analysis methodologies. Nowadays there are several distinct
techniques that can be used to automatically or manually detect different types of
vulnerabilities in all types of systems, and a significant research effort is applied
continuously to improve these capabilities. For instance, the effectiveness of static
code analysis tools and penetration testing tools are already good enough so that
using them to make an initial security evaluation of the target systems is actually
worthwhile (Schulte 2012). Also, we have to consider the fact that using these
tools is so easy that if the users/managers of a system do not take advantage of
them, the attackers might. Furthermore, even if the detection of such
vulnerabilities depends partially on obtaining information that is not public (e.g.
the source code of the software might not be open), this does not guarantee that
attackers also cannot obtain it. This leads to the inevitable conclusion that we
have to assume that every security flaw that an automated mechanism can detect
should be considered of public knowledge, and therefore this should be the bare
minimum analysis that a system should pass before being put into operation.

Obviously, it is arguable whether this procedure should be part of a qualification
step or not, in the sense that it may also contribute to the computation of the final
metrics in the trustworthiness benchmarking step conducted later. This is an
important issue that should be clearly examined. The argument boils down to the
fact that the number of flaws detected (by such automated tools) in each system
may differ greatly, and they can, to a certain extent, be translated into different
degrees of security, allowing to compare them instead of simply disqualifying
them as we are proposing.

Let’s analyze this in the context of an example: a campaign for benchmarking two
systems, A and B, and the benchmark specification states that, for qualifying, the
systems should pass a static code analysis with a particular tool. Now, let’s
assume that system A presents one vulnerability and system B presents ten
vulnerabilities during this analysis. Consider the following question: why
shouldn’t we define system A as more secure than system B? The reasons why we
should not do so are actually many, and are summarized in the following points:

• The visibility of a vulnerability has no relation with the total number of
vulnerabilities in the system. It may be easier for attackers to find and
exploit a unique vulnerability in system A than finding any of the ten
vulnerabilities in system B.

• If all vulnerabilities of systems A and B have the same visibility, it may
be the case that the damage an attacker is capable of accomplishing in
both systems (independently of the total number of vulnerabilities in

Security Benchmarking of Transactional Systems

65

each) is exactly equal. Therefore, using each system poses the exact same
risk to the user.

• If, otherwise, systems A and B have the same number of vulnerabilities, it
may be the case that one vulnerability in system A is more dangerous
than all the others in system B, depending on the systems’ internal
architecture.

• More importantly, even if both systems had exactly the same number and
types of vulnerabilities, the actual damage an attacker can cause depends
on the way the system is used and the value that the system has to the
attacker, which is external information that, by definition, should not be
part of a security benchmark specification, and therefore should not
contribute to the security degree computation.

The worse problem, however, is that the number of vulnerabilities - even a
number weighted considering the severity of different vulnerabilities and their
visibility and whatever else we could think of - is a fundamentally misleading
metric, even if we could circumvent all the problems mentioned above. To
understand this proposition, let’s assume that given any two systems there is an
algorithm capable of determining, beyond any doubts, that the set of
vulnerabilities that exist in system B is more dangerous than the set of
vulnerabilities of system A. The key question is: what happens if we use this
information to state that system A is more secure than B? We believe that the
answer is that the benchmark user is encouraged to choose system A. The real
problem arises from the consequence of this encouragement. Knowing that
system A has a certain number of vulnerabilities (now of public knowledge)
would also motivate the user to not put it into production before correcting those
same vulnerabilities, turning system A into a corrected version, without public
vulnerabilities, which we may call system A’. But the same can also be done for
system B, in this case turning system B into the corrected version B’. Although
the initial decision to select system A was based on the fact that A had less severe
vulnerabilities, the decision was misleading because using the same rationale to
compare systems A’ and B’ would result in a different conclusion: both systems
A’ and B’ have zero known vulnerabilities and therefore have the same degree of
security if we rank them from the perspective of the severity of the known
vulnerabilities.

This way, we have to assume that whatever flaws and vulnerabilities the
qualification step of the benchmark discloses, those will not be present during the
use of the system (unless they are harmless, and therefore are not actually
vulnerabilities in the sense that they do not “allow a malicious attacker to

Chapter 3 w A Framework for Security Benchmarking

66

accomplish a certain effect”). The reality is that the benchmark user has two
choices: either he corrects the vulnerabilities (i.e. patches them), generating a
second version of the system, or the vulnerabilities are not corrected and the
system is not put into use (thus disqualified, as it has security equal zero, meaning
that at least one possible way of attacking the system is of public knowledge).
Obviously, in the first case (i.e. if the user patches the target systems), he will end
up having a draw among all the SUTs (i.e. the corrected ones will not have
known vulnerabilities), thus distinguishing the security of those applications
cannot be done using information regarding known vulnerabilities. In our
framework, this is be the task of trustworthiness benchmarking.

As a summary, we would emphasize the following:

The actual publicly known flaws or security deficiencies of systems
should never be used as official and standard benchmarking metrics in
any way, because in a real situation they will likely not be present when
the system is put into production. Instead, actual flaws should disqualify
systems for use or point the fixes the system needs in order to be
acceptable for use. Trustworthiness benchmarking, or the task of
evaluating the propensity to unknown or hard to detect security
problems, is the only kind of metric that can put one system before the
other when nothing can be said about the actual existence of security
flaws.

We believe that this is one of the most important lessons of our thesis discussion
and our framework is fundamentally based on this idea.

3.2.2 Trustworthiness Benchmarking
Trustworthiness benchmarking is a process ultimately based on a very intuitive
reasoning: the system that should be trusted the most is the one that demonstrates
more evidence of including trustable characteristics. For any particular domain,
trustworthiness benchmarking is the formalization of this intuitive perspective in
the form of algorithms able to compute quantitative attributes representing the
tendency of the system for having good or bad security. As explained before,
even though trustworthiness benchmarking should be applied to systems that do
not present obvious security problems (i.e. that passed the qualification phase),
this does not exempt them from having characteristics that are related with better
or worse security characteristics in general.

Based on the identification of the threat vectors selected for a given domain, the
trustworthiness benchmark should identify and group the set of characteristics of

Security Benchmarking of Transactional Systems

67

the system related to each vector, and should allow a quantification of trust based
on their presence, their absence and/or their effectiveness. Although such a
benchmark will depend on the domain specification and on the threat vectors
being considered, it should express how frequently one could find evidences that
allow understanding the probability of the bad effects defined for each vector to
manifest. In other words, given some predefined characteristics related to the
threats, the process computes the prevalence of such characteristics and their
manifestation density, based on a predefined expression of the size of the system
under testing.

As an example, consider a coding pattern (i.e. a programming style) that is in
general known to be a bad programming practice in terms of security. A
trustworthiness benchmarking algorithm could be based on counting the number
of times this pattern appears in the source code of the systems being
benchmarked, normalized by the size of each system, thus providing a
manifestation density of such practice. In a higher-level, where the source code is
only a small part of the problem, the approach would start from a list of security
recommendations that are consensually recommended in the context of the target
application domain and compute a compliance level of the system against that
list; the main challenge in this case is to understand the consequences of
implementing or not such recommendations. In this thesis we explore both these
approaches in the context of transactional systems, investigating both of them
from their conceptual and fundamental propositions up to their application and
validation, evaluating at the same time the limitations of such algorithms and
approaches.

A fundamental part of our trustworthiness benchmarking approach is the idea that
the characteristics being evaluated and aggregated must be related to the threat
vectors without actually being vulnerabilities themselves. In other words, those
characteristics can be identified as potentially contributing to security or
insecurity without being decisive to the existence of security flaws, which dictates
the main difference between the qualification and the trustworthiness evaluation.
By definition, the characteristics to be considered in this case are usually not
enough to allow attacks, but instead they are either partially related with known
attack scenarios or they are related with a higher probability of the appearance of
vulnerabilities (even if we cannot be sure that any vulnerability really exists).
Defined in this way, the system with the higher density of characteristics related
with the accomplishment of the effects of threat vectors should be ranked as the
least trustworthy one.

Chapter 3 w A Framework for Security Benchmarking

68

The concept of trustworthiness benchmarking is one of the biggest challenges of
this work and, in our opinion, the second most important contribution, in addition
to the security benchmarking framework as a whole. As explained in the previous
section, the result of the qualification step is a system (or set of systems) that has
no obvious flaws and vulnerabilities - to the extent of the procedures defined in
the benchmark specification - and that are considered acceptable for use. The goal
of trustworthiness benchmarking is then to provide the relative level of
confidence that the benchmark user can justifiably put into each system when it
comes to its ability to avoid the bad effects defined by the threats vectors
identified for the domain. This confidence, or trust, may be interpreted as the
relative probability of attackers to be successful when trying to attack the system,
even though this interpretation is not required. In other words, while the first step
of the framework (qualification) provides some guarantees that the system can be
put into work, this second step (trustworthiness benchmarking) provides an index
that distinguishes the qualified systems using an estimative of how robust the
systems are expected to be in the long run.

While there is plenty of information in the literature that can help in the
specification of qualification steps within our security benchmark framework,
trustworthiness benchmarking in this particular form is a new proposal, and very
little work can be found in the literature concerning the concept (Yang 2011,
Toma 2010, Gefen 2002). This way, we devote two entire chapters to the concept,
in order to show that the idea of trustworthiness benchmarking is sound and does
in fact correlate with security aspects in practice. However, it is important to
understand that this kind of evaluation can be seen as a generalization of concepts
and practical ideas that are already being used in several areas computer science.
Two techniques that are based on the same premises as our proposal are described
next.

A long-standing procedure used in the field of computer systems dependability
that is based on the same principle we are proposing is called defect seeding
(Sherriff 2006). Defect seeding is the process of purposefully injecting random
bugs in a piece of source code that will be later submitted to manual review for
the identification of general bugs (i.e. programming errors). After the review, the
ratio between the number of injected bugs that were found and the total number of
bugs injected is used to compute an estimative of the number of real bugs that
could not be found. The procedure takes advantage of the following assumption:
if programming errors are not intentional (and therefore random), they present a
normal distribution, and therefore the difficulty of finding errors will be the same
for the injected errors and the real ones (assuming that the injected ones also have

Security Benchmarking of Transactional Systems

69

a normal distribution). This is also true for the distribution of security flaws and
vulnerabilities, exactly because we know that, as general bugs, they are also not
intentional, and can be viewed as a subset all the bugs of an application. This
way, trustworthiness benchmarking will take advantage of the following relation:
if a given characteristic of the system can sometimes lead, or be related to, a
certain security flaw, then the number of hidden security flaws will tend to be
proportional to the number of security characteristics that lead to it. This way, we
connect trustworthiness benchmarking with real security characteristics.

Another interesting work that is based on the exact same assumptions as
trustworthiness benchmarking is the work on attack surface identification from
Pratyusa K. Manadhata (Manadhata 2007). In this work the author demonstrates
that a higher number of alternative entry points in a software system increases the
probability of one of them being found and ultimately exploited by attackers. In
other words, the work demonstrates that the insecurity of software can be
correlated with a higher or lower number of entry points, which are functions of
the system that are primarily linked with the possibility of attacks.

Trustworthiness benchmarking extrapolates the ideas presented in the examples
above and generally assumes that a system with more evidences for insecurity
will in the long run be less secure (or, from another perspective, the one with
more evidences for security should be the one we trust more). The reasoning in
which we base our approach, however, highlights one important limitation of
trustworthiness benchmarking: evidences for security are no guarantee of
security. For that reason, in our framework, any security guarantees that can be
obtained without any doubt should be obtained in the qualification step, while the
second step only deals with relative probabilities and unknown factors. For
example, if a system has a hidden vulnerability that no static code analyzer,
penetration tester or even manual analysis can detect, it is unrealistic to expect
any trustworthiness benchmarking procedure to take it into account.

What we should expect is that if some hidden vulnerability is the result of
detectable insecurity patterns in the construction or characteristics of the system,
then this system will be ranked lower than another system that do not possess any
kind of insecurity pattern, or at least has less insecurity patterns, correctly
inducing the user to choose the system that is more likely to be secure. For
instance, taking the example of the attack surface concept, if a vulnerability in
one entry point is a direct result of the existence of too many entry points (i.e.
more entry points increase the probability that one of them will have a
programming error) then the attack surface metric will be a probabilistic

Chapter 3 w A Framework for Security Benchmarking

70

expression of the hidden vulnerabilities. This is exactly trustworthiness
benchmarking.

3.2.3 Instantiating the framework
The instantiation of the framework into a concrete benchmark instance is not
simple, and several a-priori definitions have to be made. In the following
paragraphs we discuss the main aspects that have to be considered, the reasoning
behind those requirements and why they are important. We finish with a detailed
summary of all the steps involved in the definition of a concrete benchmark.

The actual specification of a benchmark instance starts from the definition and
careful study of the domain in which we want to apply the benchmark. The term
domain usually refers to the specification of some particular application area, like,
for instance, operating systems, web servers, databases, etc. However, as we
discussed before, security aspects have direct relation with value and utility both
for the attacker and for the victim, and applications taken without any context
simply cannot have their security correctly evaluated, as one cannot identify the
bad effects that might occur. For example, it is impossible to determine if the lack
of authentication in an operating system is a security problem without any
assumption of where and how it will be used. For this reason, any security
benchmark has to start by assuming some kind of system usage and, depending on
the case, the existence of roles of interaction with different security properties.
This description of application use-case may be very detailed or extremely brief,
depending on the specific situation and the objectives in terms of the
representativeness of the results of the benchmark. In this thesis, we refer to this
use-case as base scenario, which is also the main foundation from where we
identify the threat vectors mentioned earlier. This way, without a precise
definition of the base scenario it is not possible to make any kind of security
judgment.

Ideally, the base scenario description should provide information regarding the
expected interactions and roles regarding the potential target systems usage.
However, in a security context, more information is required for defining a
benchmark. In particular, two very important aspects have to be specified
carefully: the benchmark goals and the benchmark user, which actually are
definitions that are basically intertwined. Even though the reasoning behind the
need for the base scenario is quite intuitive, the reasons for these extra definitions
have to be carefully understood.

Security Benchmarking of Transactional Systems

71

As already explained, benchmarking can be used to compare alternatives or to
evaluate the evolution of a single system in time. However, these tasks presuppose
that something in the domain has alternatives, or that something in the domain
may evolve. But this may not be true for all systems at all times, and must be
clearly expressed in the benchmark definition. To clarify the difficulties
mentioned before, let’s consider the case of a DBMS, which is the core of most
transactional systems, and let’s assume that we want to build a benchmark to
compare alternative DBMS engines. A benchmark with such goal would be
applied before the installation of the engine, while still being able to point the best
engine to use. In this case, there is no environment to correlate with potential
security problems, so the benchmark must be capable of taking into account,
realistically and in a useful way, the conditions of the future use of the database,
and not only the software engine in an isolated way. After the deployment of a
chosen DBMS engine, the situation becomes considerably different. In this stage,
it is not reasonable to assume anymore that the DBA will keep changing the
engine even if a more secure one is found. In most cases, the step of choosing one
DBMS engine is a commitment for the life of the system, as the effort to change it
is quite significant (involving changing not only the DBMS, but also the
applications that use it). Therefore, after deployment, what we have is a specific
engine operating within an environment that evolves. The type of benchmarks
that make sense at this point is necessarily different from the ones that were used
to select an engine in the first place even if we consider that the threats might be
the same. In this case, what the administrator needs is a tool that allows
understanding the potential security issues of the environment.

The issues discussed above have direct impact in the utility of a benchmark, or, in
other words, how useful the results of the benchmark will be for its user. Basically
what this means is that certain results are only useful in particular moments of the
lifetime of the target systems, and a security benchmark that does not take this
into consideration might be practically useless despite its correctness. For
instance, stating that a particular software is insecure (or is less secure than an
alternative) in a context where the user is obliged to use it and cannot replace it is
not a useful outcome. On the other hand, stating that one of the characteristics the
user has control over (e.g. the configuration of the software or its environment)
should be changed to a more secure state is a more useful result.

These reasons show why clearly specifying the user of the benchmark is also an
important aspect. In practice, the role of the user of the benchmark defines what
makes sense to express in the benchmark and what does not make sense, which
will influence the base scenario definition, the qualification and the

Chapter 3 w A Framework for Security Benchmarking

72

trustworthiness benchmarking specifications. For instance, a DBA and an
application developer are two distinct roles that have different capabilities and
assignments, even under the same domain, and therefore would require two
distinct security benchmarks. While the first may be interested in securing the
DBMS engine against insecure software that connects to it, the second one should
be more interested in making the software that connects to the DBMS more
secure, even if both systems are part of the same transactional system
architecture.

In summary, the definition of a useful benchmark requires the following steps to
be previously conducted:

1. Definition of the high-level application domain (i.e. the base definition of
the potential benchmark target systems).

2. Specification of the application use-case, the base scenario. If applicable,
this includes the specification of the main roles that are expected to exist
in the use-case in terms of their interaction with the system.

3. Specification of the benchmark user, or who will use the results of the
benchmark.

4. Definition of what kind of guidance the benchmark user could expect
from the benchmark (i.e. the benchmark goal).

The definitions above allow then the actual development of the benchmark, which
is done by the performing three steps:

1. Identification of the threat vectors relevant to the security of the base
scenario. These threat vectors specification should lead to a strategy for
identifying the characteristics of the architecture that are related with the
unwanted effects being considered.

2. Qualification specification: definition of the set of procedures that allow
identifying the systems that are not acceptable for use in the field (i.e.
have security 0), given the base scenario specifications. Qualification
requires the system under test to meet two requirements:

a. Have the minimum set of security mechanisms needed to carry
out the security tasks identified for the domain and taking into
account the base scenario.

b. Pass the minimum set of evaluations, automated or not, that show
that there are no publicly known ways of attacking the system.

3. Trustworthiness benchmarking specification: definition of the set of
algorithms that compute the index that represents a relative amount of
trust that can be put in systems, in terms of its characteristics to prevent

Security Benchmarking of Transactional Systems

73

the manifestation of the undesirable effects determined by the considered
threat vectors.

3.3 Transactional Systems: the Case Study
In the previous sections we described transactional systems from a very high level
perspective, assuming the reader to have a very basic knowledge of the domain.
This section describes in more detail that domain, as it is the focus of the
benchmarks presented in the next chapters. First, we describe what exactly a
transactional system is and what distinct parts it has. Then, we present the parts of
that domain were we made progress and what we actually study in detail
throughout our work. Transactional systems were chosen because not only they
are a very representative system, which is used by almost all organizations today,
but also their complexity is high enough for it to be an interesting evaluation
challenge.

3.3.1 Elements of a Transactional System
Transactional systems, as the name suggests, are systems that process data or
perform actions through series of transactions (Reuter 2008). A transaction is
usually defined as a set of elementary steps that should be considered as a unity,
and should not cause any effects if interrupted during mid-execution; either all of
them are successful or none is to be executed. Another behavior usually expected
from a transaction is that none of its effects are visible during mid-execution to
other transactions (making concurrent transactions to not perceive the effects of
each other before they are completely finished). These expected behaviors are
usually referred to as the ACID properties (Atomicity, Consistency, Isolation and
Durability (Gray 1992)).

The utility of transactions is that they allow defining complex operations based on
more basic commands. Transactions, therefore, endow systems with a trustworthy
mechanism capable of composing simple commands into more complex ones,
allowing for the system state changes to be as complex as required by the domain.
In other words, a set of data can confidently be changed from one consistent state
to another consistent state, even if the transformation from one state to the other
requires several different processing steps that may fail independently
(Gray 1992).

A transactional system is usually based on an architecture designed to help and
support some business domain, where a set of users want to use computing
capabilities with the goal of supporting a specific set of business tasks (Zsifkov
2004). The business domain is usually some specification of a real live enterprise

Chapter 3 w A Framework for Security Benchmarking

74

process (or set of processes). In practice, the transactional system helps
accomplishing the goals of the business, and is typically is composed by three
distinct elements namely a database, a Database Management System (DBMS)
engine, and one or more client applications. A general and very common setup is
depicted in Figure 3.2.

Figure 3.2 A typical transactional system architecture.

The database is the logical implementation of a data model, which is used to
shape, store and maintain data regarding the business domain that the
transactional system is designed to support (Gray 1992). The DBMS engine, on
the other hand, is the software system that maintains the database and provides
interfaces for interacting with it, allowing for the modification of the data model,
as well as the provision of commands that allow the insertion, modification and
removal of data from the database. In other words, the database data model is the
vision that the DBMS provides to the users of the data they input into it. The
DBMS is also responsible for maintaining and enforcing the series of access rules
that ultimately define what is permitted and what is forbidden within the database
(Gray 1992).

The client applications are the software implementation of the rules of the
business domain, even if some part of those rules sometimes are actually
implemented inside the DBMS engine (Eisenberg 1996). For example, a client
application may include the algorithms that decide what different types of data are
to be stored together, the consistency requirements for this data to be valid, the
computations that are permitted over this data, the methods and views through
which the data is accessible and, also, what are the transactions that are required
for maintaining the business rules of the domain. Transactions appear in this

Security Benchmarking of Transactional Systems

75

context as the sets of transformations that will keep the database in the consistent
states defined by the business rules.

One important characteristic of transactional systems is that most of them
implement a client server architecture (in a two, three or multitier architectures
(Ram 1999), meaning that the client applications and the DBMS engine
communicate through a network of some sort. This leads to the reality that most
clients applications run in an environment completely different from the DBMS
engine, and, at the very least, the information that the user inputs may come from
insecure environment and devices. This leads to a whole sort of security
complications and characteristics that make transactional systems a very attractive
domain for our study.

3.3.2 Security Benchmarking of Transactional Systems
To consider transactional systems as our case study, we need to examine the
question of what do we expect from a security benchmark in this domain. The
first aspect one notices from the description in the previous section is that even
though we defined a transactional system has having 3 elements (i.e. the database,
the DBMS engine, and the client applications), when we realize that the database
itself is only a piece of data that is inside the scope of the DBMS engine, we
conclude that actually there are preferable two levels of software to be
considered: the DBMS and the clients. Both of these have not only completely
different operational environments, but also completely different security goals,
as we examine next.

The DBMS engine is a piece of software that must ensure the integrity of the
databases it holds (Allard 2010). As being mainly software that receives orders
and commands from the applications, it must provide guarantees to the clients
that data changes do not occur except under authorized conditions. In other
words, the primary goal of the DBMS is not prevent the data it holds from
suffering any other manipulation besides the ones submitted by a correctly
authenticated application. Such guarantees, however, have to take into account all
the ways the potential attackers can use to interact with the database engine,
which are not only associated with the engine itself, but extend also to the
underlying operating system, hardware, network, etc., and all the personnel that is
in charge of maintaining the correct functioning of the system, from the Database
Administrators (DBAs), to the developers that interact directly with the DBMS
and the maintenance crew in charge of backups. All these variables have to be
accounted for if one wants to have some kind of clue about the security level of
the DBMS engine.

Chapter 3 w A Framework for Security Benchmarking

76

Throughout this thesis, we will refer to the DBMS engine plus the entire
underlying environment as a transactional system infrastructure, in the sense that
it is the part of the system that gives the fundamental support for the definition
and implementation of end users business rules. Additional security
characteristics of transactional systems infrastructures are discussed in Chapter 4,
where we study the application of our framework to this part of a system and put
forward ways for characterizing in a practical and comparable manner real live
installations. It is important to notice, however, that given such complexity, the
selection of the DBMS engine itself is also a very important, yet very difficult
thing to do correctly from a security perspective. This particular problem is
revisited in Chapter 6.

The security goals of the client applications, on the other hand, are somewhat
different. As they are the part of the system that defines and implements the
business rules of the domain, the most important thing that we want to be sure is
that such business rules are correctly implemented and cannot be broken. Usually,
functional testing of the software that is being developed tries to identify if the
defined business rules are correctly implemented, and if the system actually does
correctly what the users require it to do (Zsifkov 2004). However, doing what it
should is not the same thing as not doing what it should not do. Robustness and
security testing (Shahriar 2012) are techniques that can be used to test the system
conformity and correctness from the perspective of either unexpected interactions
or malicious interactions (i.e. interactions where an attacker may use any mean
available to lead the system to break some business rule). In practice, when
selecting an application one wants to know how likely it is for an attacker to be
successful if he tries to force the system to execute an illegal action. We discuss
these problems in detail in Chapter 5, where we identify and validate ways for
supporting such selection process under the assumptions of our framework.

3.4 Conclusion
This chapter presented a security benchmarking framework, which is divided in
two parts: security qualification and trustworthiness benchmarking. We
thoroughly discussed the framework and the reasoning behind it. The main idea is
that the correct classification of systems concerning security attributes has to be
done by means of separating the processes used to evaluate the knowable security
aspects of the target (e.g. the search of existing vulnerabilities) from the
evaluation of the aspects we can only estimate (e.g. the probability of a system
having hidden vulnerabilities.).

Security Benchmarking of Transactional Systems

77

Security qualification is the process designed to deal with the tangible security
characteristics of the system being evaluated, and the main result of it is the
identification of the systems that are acceptable for the domain. Identifiable
security vulnerabilities and the lack of fundamental security mechanisms
necessary for the accomplishment of the required security tasks in the domain are
the primary reasons for disqualifying alternatives, which are then considered as
having security level equal zero.

Trustworthiness benchmarking should then be applied to the systems that are
considered acceptable. This process, therefore, estimates the amount of trust that
we can justifiably have that the system will not bring security problems in the
future due to undetectable vulnerabilities or the lack of proper security
precautions.

The chapter ended with an introduction to the particular domain that will serve as
use case for the instantiation of the framework on concrete benchmarks, i.e.
transactional systems. From a security point-of-view, we divided transactional
systems in two parts, the transactional systems system infrastructure, which is
addressed in Chapter 4, and the business applications, which are studied in
Chapter 5.

79

4

Security
Benchmarking of

Transactional
Systems

Infrastructures
Database-centered transactional systems are typically designed following a client-
server architecture (Ram 1999). As such, they can be divided in two main parts:
the database server infrastructure, which is centered on the DBMS engine and its
related software and hardware appliances; and the business applications that
implement the business logic and provide the end user interfaces. Although these
two parts are highly tied, they have completely different characteristics, thus
requiring different approaches in a security benchmarking context.

The database server infrastructure is usually maintained by a small group of
Database Administrators (DBAs). Its security characteristics are strongly
influenced by the large number of configuration alternatives provided both by the
DBMS engine and the network and server configurations that relate with it (for
example, in most cases the operating system configuration directly affects the

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

80

DBMS security features). The problem here is that, for an average DBA1, it is
extremely hard to keep track of all the details that may influence the security of a
database installation. Furthermore, a key aspect regarding the security of the
database infrastructure is that the damage that an attacker can cause strongly
varies depending on the characteristic he exploits. This effect can be clarified by a
simple example: consider an attacker that exploits a weakness in a backup system
in order to obtain confidential information; this form of attack prevents him (on
the majority of the scenarios) from modifying the information, which would
otherwise be possible if he somehow obtained access directly to the DBMS
engine.

The business applications, on the other hand, are usually well specified and the
security problems that they may have can be narrowed down to a much smaller
list of possible variations and bad effects, making them much easier to understand
(Russel 1991). In fact, as the goal of these applications is to enforce the business
rules of the service they are built to support, security risks typically consist of
failing in enforcing such rules. This is normally related with programming
mistakes that allow following execution paths that were not originally intended
(e.g. a SQL Injection vulnerability that permits a data change that should not be
allowed). Although such mistakes are hard to detect and prevent during
development, once exposed they are quite easy to analyze and correct (Shahriar
2012).

In this chapter we apply the framework proposed in Chapter 3 to build a security
benchmark for database-centric transactional system infrastructures (security
benchmarking of business applications is addressed in Chapter 5). First, we define
a generic scenario (the Base Scenario), in which we specify the boundaries of
what we are considering to be a transactional system infrastructure. Then we
discuss the approaches for security qualification and trustworthiness
benchmarking of DBMS infrastructures, applying the abstract concepts defined in
Chapter 3 to the concrete base scenario. To demonstrate the proposed benchmark,
Section 4.4 presents a case study, where the benchmark has been applied to

1 Defining an “average” DBA is not trivial. In this context, we consider an “average” DBA as
someone that is not an absolute expert in every single system involved in the database installation
(or installations) he is in charge of. Practice shows that most DBAs in small and medium size
organizations are not security experts and do not hold extensive knowledge about all the possible
configuration options of the infrastructure elements, including the OS, network elements, etc.

Security Benchmarking of Transactional Systems

81

compare four real installations using four distinct DBMS engines. Finally, Section
4.5 concludes the chapter.

4.1 Base Scenario
In order to be able to make decisions regarding the benchmark definition, we need
to make some background assumptions regarding a few characteristics of the
benchmarking domain (i.e. the environment for which the benchmark is being
designed). As explained before, security is both related to value (something that
the attacker may obtain or the victim might lose), and resources or capabilities
needed to gain that value. Both of these require tangible properties to be
considered, or else it is impossible to reason about security aspects in a practical
manner. This way, two key restrictions are considered in this base scenario: first,
the scenario is as generic as possible, to allow the benchmark to be applicable to
the largest possible number of real installations; second, the scenario is specified
in order to be representative of security concerns in real applications.

In fact, even if personal database applications (e.g. an application for storing and
managing personal notes) may have security implications, a security benchmark
for such a domain would clearly have very limited interest. Much more relevant
are situations where critical personal and business data are at stake, and/or where
security problems may affect a very large number of individuals simultaneously.
Furthermore, as we are targeting the transactional system infrastructure, the
particularities of the business applications can be abstracted, focusing only on the
classes of users that interact with the database (i.e. the virtual identities that relate
with the system). The idea is that the database infrastructure should protect itself
against exploitations of characteristics of the environment and vulnerabilities of
the business applications; therefore, benchmarking the security of the
infrastructure should not be constrained by the business applications specificities.

The following points detail the key assumptions and characteristics of the
proposed base scenario (their representativeness is discussed later in this chapter),
which largely shape the benchmarking domain and provide the boundaries for the
definition of the benchmark components:

1. The infrastructure is composed of a relational DBMS engine on top of
an operating system (OS) running on a single physical computer.
Although this is a simple configuration, practice shows that it is
representative of the large majority of database installation in the field.

2. The platform is connected to a local area network (LAN), and the
DBMS may be accessed locally (from the console) or through that

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

82

network (from client hosts or application servers). The LAN may have a
connection to the Internet. However, Internet users do not connect
directly to the DBMS (prevented via common network configurations),
but only indirectly through web applications hosted by application
servers.

3. The DBA is the overall administrator of the environment, and either
there is only one DBA or several DBAs that act as a single entity (by
making consensual choices for the system configuration, which is a
typical management approach in the context of complex installations).

4. Threats are always associated to individuals, which might (or might
not) have a legitimate relation with the system. The only trusted
individual is the DBA. All others are assumed to be potentially
untrustworthy (i.e. a pessimistic approach is followed when it comes to
security issues), and thus may try to compromise the system in some way.

5. Individuals always interact with the system through userids, which are
virtual identities assigned to each individual (or set of individuals)
depending on the relation he has with the system. Userids are verified by
an authentication procedure and belong to one of the following
interaction classes:

a. Application userid: users that authenticate and interact with the
database system using a business application (e.g. a web-based
application), and whose actions are restricted by the application’s
rules;

b. Operating System (OS) userid: users that authenticate directly
to the OS and whose actions are restricted by the configuration of
the OS environment;

c. DBMS userid: users that authenticate using the DBMS
authentication mechanisms and whose actions are restricted by
the DBMS configuration and environment.

6. Real individuals have roles that entitle them for one or more userids.
For example, end-users have only an application userid and developers
may have a DBMS userid and also an OS userid. The DBA may hold the
three types of userids, while maintenance staff typically has only an OS
userid. Real individuals that are not users of the system do not have a

Security Benchmarking of Transactional Systems

83

legitimate userid, and they may interact with the system only through
interfaces that have an anonymous network access (e.g. an authentication
web page that may be open to the Internet, or the operating system
network layer that responds to ICMP (Stallings 2010) requests coming
from the LAN).

7. Custom business application code (implemented by developers and
restricted by the database administration policies that dictate how
applications may connect to the DBMS) may run on a local web server,
on top of remote application servers, on remote client hosts inside the
LAN, or inside the DBMS as stored procedures.

A key characteristic of the scenario proposed above is related to the interaction
classes (item 5). The definition of interaction classes assumes that a real
individual either has its relation with the system defined by one (or more) of the
three interaction classes (i.e. application, operating system, or DBMS userids) or
has no official relation with the system. Although in practice the relationships
may be much more complex than that, this approach simplifies the analysis of the
system security, as a potential attacker must always act on the system through one
of these classes. Each of the four relationships defines a distinct environment
container, with a predefined set of privileges associated with it, which must be
taken into consideration when analyzing the security of the system. This is
particularly relevant in infrastructures as complex as a database installation,
especially when inside threats are being considered Actually, we should
emphasize that in database environments, inside threats must be seen as as
relevant as anonymous Internet attacks: insiders may even be more hazardous, as
they frequently have pre-established security privileges within the system (Bishop
2008). Thus, small vulnerabilities may be more risky when facing an insider
attack than when facing an unknown Internet hacker.

In the case of applications that are publicly available to the Internet, we assume
that all users have an application userid that grants them privileges to access the
publicly available parts of the existing business applications. In our benchmark,
all those cases (from the insider threats to the anonymous Internet users) are taken
into account by evaluating each threat from the point of view of all the different
interaction classes.

It is important to realize that the definitions presented above are representative of
a very large number of real DBMS infrastructures. Even though such definitions
are quite complete (i.e. they include the most relevant aspects, from a security
point-of-view), they are at the same time very flexible. For instance, although the

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

84

scenario considers the existence of application developers, it is flexible enough to
consider the situations where the DBA is the only developer and also the
situations where there is a software development team (i.e. the number of
developers is not a constraint). Also, no specific structure is imposed on the local
area network, as that would be extremely complex due to the large number of
possible variants; the only assumption is that any connection to the Internet goes
through a specific point of communication, and direct connections to the DBMS
are not possible from outside the LAN. Obviously, we could also consider other
scenarios with alternative assumptions, including: DBMS replicas, applications
using more than one DBMS engine, three tier architectures, multiple DBAs and
operating systems running inside virtual machines, etc. However, as we will show
later, it would be quite straightforward to consider such cases during the
benchmark definition. In practice, we decided not to overcomplicate the base
scenario, as our main goal is to show the validity of the framework, and not to
propose an universal benchmark. Benchmarking should be a joint initiative,
taking input from several parties (Bondavalli 2009).

A final relevant aspect is that the complexity of the environments that fit the
assumptions above makes them highly prone to the appearance of vulnerabilities
(Russel 1991). The benchmark must help the administrator understanding the
threats to which a configuration is more exposed, allowing him to make educated
decisions and address primarily the most critical problems from his own
perspective.

4.2 Security Qualification
As defined by the base setup presented before, a transactional system
infrastructure (sometimes also referred to as database infrastructure) is a set of
network, hardware and software elements that are configured in a way that
provides the support for the business applications (which in fact implement the
end users solutions). Without considering an enclosing environment, evaluating
the security of a DBMS infrastructure is very hard, as no threats can be assumed
beforehand. This happens because we cannot pinpoint what is valuable and
should be protected, and what is not valuable and would never impose a loss to
the system owner. At the same time, the security of any business application,
which is the main reason for the existence of the infrastructure, depends
ultimately on the correct configuration of the DBMS infrastructure. Therefore, we
face the fact that the choices made before the deployment of a business
application do have impact in the security of all the systems involved.

Security Benchmarking of Transactional Systems

85

Security qualification is the step where we identify what is acceptable and what is
not acceptable in terms of security within a domain. As explained in Chapter 3,
this analysis is based on two key aspects: 1) the vulnerabilities that allow
someone to attack the system, and 2) the security mechanisms that are required
for a system in that domain. The problem is that, without considering the business
applications specificities it is not possible to reliably reason about the
vulnerabilities that allow a transactional system infrastructure to be attacked,
making security qualification based on the analysis of vulnerabilities misleading.
This is due to two reasons: first, one cannot identify what is supposed to be
protected (e.g. all resources may be public, thus some vulnerabilities are
irrelevant); second, when protecting a scenario as complex as a transactional
system, the system administrator usually follows a defense-in-depth approach
(Howard 2002), meaning that any single vulnerability may be mitigated by an
alternative security layer (thus, not actually being an exposed attacker entry
point).

The second aspect regarding security qualification (the security mechanisms that
are required for the system to be used in the benchmark domain), can however be
addressed without considering the business applications. In fact, assuming that for
tuning the security configuration of a live infrastructure the administrator
effectively makes use of the set of available mechanisms to maximize the system
defense surface (following a defense-in-depth approach), then it is possible to
qualify the underlying software (i.e. the software elements that will support the
DBMS infrastructure) taking into account the specific configuration the
administrator intends to deploy. In other words, it is possible to qualify final
products (e.g. DBMS engines, OS) in terms of the mechanisms they provide for
the administrator to defend his infrastructure. This can be done by comparing the
intended configuration with the set of mechanisms provided by the benchmarked
software (mechanisms that are required but not provided by a given software
package, may disqualify in the proposed benchmarking process).

This aspect is thoroughly discussed in Chapter 6, in which we propose a
qualification benchmark that can be used by administrators to select software
packages for transactional system infrastructures. Such qualification process is
heavily based on the lessons learned when defining the trustworthiness
benchmark presented in the next sections, and will allow answering a very
specific question: how can a DBA choose a DBMS engine (and the other
supporting software) that ultimately allows easily securing a transactional system
infrastructure?

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

86

4.3 Trustworthiness Benchmarking
Within the framework proposed in Chapter 3, security comparison is given by
performing trustworthiness benchmarking, where the goal is to provide some kind
of estimation of the proneness of some security premise to be broken. As
mentioned before, given an isolated DBMS infrastructure, it is not possible to
reason about its security in terms of breaches of the business rules, as such rules
are not implemented yet: they will only exist when business applications are
deployed (when considering a benchmark for a transactional system
infrastructure, we are not considering the businesses applications, but the
infrastructure that may be the backbone of a set of applications; we will discuss
the design of such a benchmark in Chapter 5). However, as those business rules
will eventually exist and will have to be enforced when a business application is
deployed on top of the transactional system infrastructure, trustworthiness
benchmarking can be used to:

assess and compare how much control the administrator has over
his infrastructure or, in other words, how much certainty the
administrator can have that his infrastructure will not be used to
break the business rules without his consent.

In practice, the benchmark should allow the administrator (i.e. the DBA, as
specified in the base setup) to assess and compare the effectiveness of different
configurations on preventing attackers from using the infrastructure to break the
restrictions imposed by the business applications. This is the most useful point-
of-view to take when benchmarking the security of a transactional system
infrastructure, and therefore is the one chosen to guide the definition of our
benchmark.

For the actual benchmark definition we propose four key steps. Although these
steps intend to be generic (i.e. applicable for the definition of any trustworthiness
benchmark for transactional systems infrastructures), they are based on the base
setup described before, and may need to be adjusted when considering scenarios
with different characteristics. The steps are as follows:

1) Identify the threat vectors that are relevant in the context of the scenario
(i.e. that are representative of real threats). The first piece of information
needed for defining a trustworthiness benchmark is the definition of what
are the bad, undesirable or harmful effects that are considered to be
relevant security issues. In a transactional system infrastructure, the threat
vectors should be consist of generic effects that may allow or facilitate

Security Benchmarking of Transactional Systems

87

attackers to compromise the security of the business applications that run
on top of the infrastructure. For example, Denial of Service prevents the
business applications of obtaining the data they need, even if the
applications themselves are working. Other example would be obtaining
access to private information through means that the business applications
developers are not even aware that exist (Side-Channel Information
Disclosure).

2) Identify the system elements that influence the probability of one or more
of the threat vectors being instantiated as attacks. After devising the list
of harmful effects, we need to enumerate as thoroughly as possibly the set
of elements related with them. For example, encrypting communication
channels allow preventing obtaining private information, and so does the
encryption of backups. Also, small precautions like having the DBMS
engine daemon with the least amount of privileges also prevent extended
damage in the case of application’s vulnerabilities (i.e. if privileges are
correctly set, one application might not be able to affect another,
improving the overall security of the infrastructure despite the
vulnerabilities). Such elements may be directly extrapolated from the
harmful effects, or identified based on other types of analysis and
research, and may consist of security mechanisms, processes,
configurations, procedures and behaviors associated with security in the
benchmarking domain (in this case, the transactional system
infrastructure). This list will serve as the base for the definition of what
should be taken into account when evaluating trustworthiness aspects.

3) Define how much each element influences the security of the
infrastructure (in average). This is the most difficult and controversial
part of the process, as it may depend on the characteristics of the
environment being evaluated, something that should be avoided in a
benchmark for portability reasons. At the same time, it is unrealistic to
assume that all the security elements provide the same contribution to the
security surface of a system, even from a generic point of view. For
example, the security impact of having the DBMS daemon running with
administrative privileges within the operating system cannot be the same
as the impact of a complete lack of auditing or privilege management
capabilities. This way we need to assign a level of influence to each
element, even if in an approximate manner.

4) Identify how the security elements relate with the threat vectors. Even
though it is clear that the security elements identified in step 2 are related
with security, the threat vector (or vectors) they are related with is not

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

88

always obvious. The goal of this step is to perform an analysis that allows
such identification. An example is: the execution of the DBMS engine
daemon with excessive privileges may lead to what security problems?
This identification is particularly tricky, especially because the original
security elements cannot be obtained through a methodical and/or formal
method. We thus propose the concept of pessimistic scenarios to make
the correlation between security elements and threat vectors. For
example, obtaining physical access to the DBMS engine server may allow
either to have access to the operating system or directly obtaining the raw
data stored in the physical hard drives, but such things are only possible
“everything goes bad”, which is more or less the idea of the pessimistic
scenarios.

These four steps allow the design of a benchmarking procedure to guide the
assessment process of any concrete environment that fits our base setup
specification, which should allow the computation of the trustworthiness metrics.
The next sections thoroughly present the actual process we used to define the
benchmark, discuss the difficulties and decisions taken along the process, and the
set of concrete steps that allowed us to build a trustworthiness measurement tool
that can be used by DBAs. As it will become evident, most of the steps takes
advantage of field research and practice in an attempt to make the benchmark as
representative and realistic as possible. Although we realize that work based on
field research has limits (which is why formal methodologies are often preferred),
there are no formal methods available to accomplish our goals (and it seems
extremely hard to even propose one). This way, we are left with the field
experience of professionals. To better understand the problem, we also discuss
and analyze the limitations that such approach imposes on each step of the
proposed benchmarking methodology.

4.3.1 Threat Vectors
In the context of our framework, the first step towards the implementation of a
trustworthiness benchmark is the identification of the effects or circumstances
that are considered security violations, which we define as threat vectors (as
proposed in Chapter 3). In the context of transactional system infrastructures
analyzed without taking into consideration any business applications, the effects
that we want to identify are the ones that are generically associated to security
breaches in the presence of any set of conceivable business applications. In other
words, the goal is to identify the effects or circumstances that may allow (or
facilitate) attackers to circumvent one or more of the rules that the business
applications will be in charge of enforcing.

Security Benchmarking of Transactional Systems

89

Lists enumerating typical threats in the transactional systems domain are not
obvious or easy to obtain, and a set based simply on the breach of CIA properties
is too generic to be useful in practice (Parker 2002). A slightly more targeted
approach could be based on the STRIDE threat modeling methodology (see
Chapter 2 for more details), which proposes the following list of security threats:

− Spoofing: threats that involve an entity using another identity that is not
its own;

− Tampering: threats that involve unauthorized modification of data or
another part of the system;

− Repudiation: threats involving the denial of someone performing an
action;

− Information disclosure: threats involving the exposition of information to
an unauthorized entity;

− Denial of service: threats that may lead a particular service to become
unavailable to its users;

− Elevation of privileges: threats that may allow an entity to obtain more
privileges than it was originally supposed to have.

Although a relevant starting point, STRIDE is also too generic, and the actual
semantics involved in the application of each of these threats in the context of
transactional systems are too open for disagreements. To understand why, take,
for instance, the Information disclosure threat. Whenever an end user provides
some confidential information via a business application, this information
immediately goes through the following workflow (or a variation of it): first it is
processed by the user interface application, then it is transmitted through an
arbitrarily complex network to a server (that may be the DBMS server directly or
an intermediary application server), and finally it may be processed by this server
or by the DBMS engine before being stored in the database files. The information
may be temporarily stored in the server’s memory and written to a permanent
storage device, which may then be copied to another media for backup. This way,
unauthorized access to this information can happen through several distinct means
(Payton 2006), including:

- Physical access to the server: even if logical access to the server is
protected through reliable authentication procedures, the data can be
obtained from the memory footprints of RAM circuits, or even from the
physical hard drives. Alternative system boot from optical or USB drives
are also known to be possible.

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

90

- Interception of traffic data: network traffic can be collected not only on
the intermediate network routing equipment, but also at the end-points,
where privileged access to the operating system of the database server or
to the client device would allow reading the information.

- Interception of backup copies: physically and/or logically unprotected
backup devices can also be used to access unauthorized information (even
if backups can hardly be used to modify data).

- Insider threats: several different persons may work together in the
maintenance and administration of the infrastructure, thus having
legitimate access to the information. Thus, it is important to account for
the possibility of people taking advantage of their privileges in order to
obtain information they should not have access to.

In practice, we need a list of threats like the ones defined by STRIDE, but that
takes into account the characteristics of our base scenario. A possible approach
that could be used to accomplish this would be to collect information concerning
real instances of security breaches (i.e. real cases like the ones proposed above)
and extrapolate the effects involved in each one, grouping them in large
categories. The problem is that details concerning attacks to real installations are
extremely hard to find. This is mainly due to the fact that administrators tend to
follow a “security through obscurity” approach, thus hiding the occurrence of any
successful attack events against their systems (Pavlovic 2011). Their reasoning is
that disclosing such information could draw the attention to the existing
weaknesses, opening the door for more attacks.

Information that can be more easily found is related to implementation bugs in
real DBMS engines that turn out to be security vulnerabilities (Messmer 2012). In
theory, these bugs could be analyzed in terms of the threats to systems in the field
(even if it is not always possible to identify how they can be used to breach
business rules of applications, as this would depend on how these applications are
designed). However, a trustworthiness benchmark for our base scenario cannot be
based on this kind of information (at least not completely), for two reasons: first,
because software bugs do not account for all the security effects in a DBMS
installation, and are not representative of the large number of issues caused by the
myriad of possible configuration errors; second, because fixing software defects
in a DBMS engine is not usually the DBA’s responsibility, and therefore the
effects of these bugs could hardly be avoidable in a real situation. The only
measure the DBA can take is to install, as soon as possible, the existing patches
that fix software defects. In other words, such benchmark would be of reduced
usefulness for DBAs, in the majority of the cases, as it would simply provide

Security Benchmarking of Transactional Systems

91

information about something that the DBA is not able to change unless he
replaces the whole infrastructure (which is unrealistic in most scenarios).

To identify the relevant threat vectors for DBMS infrastructures we conducted an
extensive field search. We started from a wild range of documents and papers
from a variety of sources, like white papers, manuals, research papers, etc., and
analyzed them for the kind of information we needed (i.e., what should we
prevent from happening within a transactional system infrastructure). As this
specific kind of information is too scattered and most documentation we found
just touch these issues superficially (and we need at least some level of
justification for each threat), we finally ended up reducing the initial sample to
three main sources of information: the original six STRIDE threats, two
protection profiles for databases from the Common Criteria evaluation
methodology (Common Criteria 1998, 2000), and a popular white paper
(Shoulman 2009) that presents a consensual “top 10” of database threats. The
reasoning behind this decision is that each of these sources already includes a
summary of the consensual threats identified by the groups that created them.
Thus, the intersection of the four documents provides, in our opinion, a
representative set of the threats.

We then analyzed the information contained in the chosen documents and rewrote
the threat definitions that they present in the form required by our benchmark,
which can be stated as: what effects that we do not want to happen in our base
scenario infrastructure. Our analysis resulted in a set of eight infrastructure
threats, which are representative of all the threat information that could be found
in the four documents. We further validated and refined the list and the definitions
regarding their completeness and correctness, by asking the opinion of a large set
of experts, including database administrators (at least four administrators has
more than 3 years of practical experience) and researchers (at scientific
conferences). Table 4.1 presents the final threat vectors, their definition and some
examples of security aspects related with each vector.

Orthogonality was a key aspect considered in the definition of the threat vectors.
In fact, the vectors have to be as representative as possible of the real attack
threats and malicious effects that may occur in the context of our generic
infrastructure, but they also have to be as orthogonal as possible among
themselves, allowing for a reduced overlap among different vectors. For instance,
the white paper analyzed (Shoulman 2009) includes platform vulnerabilities as
one of the top 10 database threats. However, from a DBMS configuration point of
view, most platform vulnerabilities (like operating system vulnerabilities) are
used as a way for maliciously obtaining privileges. Thus, such a vector clearly

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

92

matches a very important threat defined by STRIDE: privilege elevation. These
observations, together with a careful analysis of the documents mentioned before,
allowed us to define what we believe to be the eight more relevant DBMS
infrastructure configuration threat vectors. Nevertheless, it is important that the
threat vectors provided here are periodically evaluated, and whenever necessary,
the list should be adapted and improved.

Table 4.1 Potential threat vectors in DBMS infrastructures
Threat Vector Description

Legitimate excessive
privilege achievement

(LegExPrA)

This threat is related to configuration characteristics that
increase the probability of allowing a user to obtain
more privileges than the ones he is supposed to have.
These excessive privileges are a threat because, by
definition, they allow the user to perform unauthorized
actions. Examples of issues that may lead to legitimate
excessive privilege achievement are: granting privileges
with using open ended expressions (e.g. ALL and ANY
keywords, which define the way privileges can be
forwarded), not implementing views to hide unnecessary
columns, and using an administrator OS userid to
execute the DBMS engine daemon

Illegitimate privilege
elevation
(IllPrEl)

This threat is related to configuration characteristics
that increase the probability of allowing a user to obtain
an arbitrary privilege that he should not have in any
circumstances. An attacker usually achieves
illegitimate privileges by actively exploiting
vulnerabilities at some level of the system. Examples of
vulnerabilities that may lead to illegitimate privilege
elevation are: not using a dedicated platform, not
patching the DBMS or OS software, and not disabling
unused protocols on the network stack

Denial of Service (DoS)

This threat is related to configuration characteristics
that increase the probability of a user being denied
timely access to some functionality or resource.
Examples of issues that may lead to DoS are: not
making and testing backups, storing log information in
the OS partition, and not properly setting OS file
system privileges of the DBMS data files

Security Benchmarking of Transactional Systems

93

Communication Weakness
(CommW)

This threat is related to configuration characteristics
that increase the probability of a communication
channel between a user and the DBMS to behave in an
improper way. This threat includes sensitive
information disclosure as well as traffic manipulation
and diversion, and may be due to: not encrypting a
remote connection, using a default or self signed
certificate for a server, and placing production and
development servers on the same network segment, etc.

Authentication Weakness
(AuthW)

This threat is related to configuration characteristics
that increase the probability of allowing an individual
to become authenticated to the system as another
individual. Examples of vulnerabilities that may lead to
this are: storing password information in clear text, not
forcing strong password policies, not excluding default
userids, and using host based authentication

Side-Channel Data
Exposure
(SCDtEx)

This threat is related to configuration characteristics
that increase the probability of sensitive information to
be accessed through an alternative (i.e. illegitimate)
access channel. Vulnerabilies that may lead to side-
channel data exposure are: storing schema creation
SQL files in the DBMS platform, not protecting backup
files, not configuring access permissions of DBMS data
files, etc.

Audit Trail Weakness
(AudTW)

This threat is related to configuration characteristics
that may result in a decreased ability to identify
unexpected behavior (including its causes and possible
suspects). It includes not only real audit functionalities,
but also logging mechanisms and other tracking
facilities. Problems include: not auditing sensitive
information, not protecting log files, and not auditing
application code changes

SQL Injection
Enhancement

(SQLI)

This threat is related to configuration characteristics
that increase the probability of an SQL injection
vulnerability to be exposed or enhanced. Examples of
such characteristics are: not disabling DBMS
extensions that allow file system operations, not
implementing least privileges policies, and not
protecting application code

The threat vectors (presented in Table 4.1), combined with the interaction classes
defined for the base scenario, will ultimately serve for calculating the
trustworthiness index of the evaluated systems. These two dimensions give the
DBA the flexibility to focus on the areas of the system that are more important

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

94

considering the particularities of his particular installation, and allow the use of
the same benchmark in very distinct transactional systems architectures. To
exemplify and demonstrate how a DBA can use these dimensions to tailor the
benchmark results to his environment, lets consider two different, but quite
common scenarios:

− Scenario A: in this scenario, the DBMS used is a MySQL engine over a
Linux system. The operating system also hosts an Apache web server,
which runs a single application developed in PHP that connects directly
to the database that runs in the same server. The system is maintained by
a single person that is, at the same time, the DBA and the developer of the
application (i.e. no other person has a valid userid on the DBMS or on
the operating system). All users connect to the system using via a business
application, whose interface runs over a web browser, and that
communicate with the server using the https protocol for security.

− Scenario B: in this scenario, a dedicated machine hosts a SQL Server
DBMS engine over a Windows 2003 operating system. The DBMS is
accessed directly by several stand-alone applications developed using the
Delphi language. Applications run on client hosts spread over a LAN and
on another server machine that hosts an Internet Information Services
web server and several ASP web applications that are accessed from the
Internet. A large team of developers has DBMS userids with a variety of
roles and privileges, and the maintenance staff executes backup
procedures every night, using operating system and DBMS userids.

Applying the benchmark consists of executing the procedure and computing the
corresponding levels of trustworthiness (as discussed later) for each threat vector
within each interaction class. Tailoring the results consists then of focusing the
analysis on the values that make sense for each scenario. For example, in scenario
A threats related to communications channels are very unlikely to be a concern
because communication with the database occurs only locally from the web
server process, which then communicates with the users using the https protocol,
which is known to be secure. At the same time, the DBA does not have to worry
about regular operating system users causing problems because he is the only one
with an OS userid. This way, he might decide not to spend time fixing privileges
on the file system, something that could be a problem in another context. He
should be, however, very concerned with application bugs (e.g. SQL Injection
vulnerabilities) that would allow for a non-system user to obtain private
information. Additionally, he should also worry about the availability of the
database application.

Security Benchmarking of Transactional Systems

95

The concerns of the DBA in scenario B are quite different. With so many
developers and applications he must not lose the control of privileges within the
DBMS (which could lead to unintentionally granting someone excessive
privileges). Also, the DBA is demanded to continuously collect and analyze
reports about unusual behaviors and he must be able to pinpoint the suspects and
the causes when attacks happen. At the same time, he should assume that several
individuals that cannot be fully trusted (e.g. the developers) may run commands
in the operating system, and therefore should apply measures to minimize the
consequences in the case of a disgruntled maintenance staff. The DBA should
also realize that the local network is very complex and insecure, and that
connections between the remote clients and the database should be protected.

The dimensions to consider when analyzing the benchmark results are obviously
different for the two scenarios (e.g. threats related to communications channels
are more relevant in scenario B than in scenario A), and should allow the DBA to
prioritize the areas that are of more relevance for security revision (i.e.
dimensions for which the configuration is less trustworthy). This might also help
the DBA justifying the need for replacing specific components of the
infrastructure. For instance, if it is too hard to obtain auditing information in a
particular DBMS engine and that is identified as a high priority for the specific
environment (as is the case of scenario B), then the DBA may consider replacing
his DBMS engine (or add some external auditing feature that provides the same
information). The same reasoning applies to an operating system that makes it
difficult to keep file system permissions organized, or that has vulnerabilities
being frequently disclosed and reported. Whenever a DBA justifiably distrusts
such aspects (being supported by a systematic evaluation approach, like the
proposed benchmark), then there is a good justification to engage in radical
environment modifications like these.

4.3.2 Security Recommendations
Reliably securing a database infrastructure (like the one represented by our base
scenario) requires the administrator to follow a Defense-in-Depth approach
(Howard & LeBlanc, 2002). Defense-in-Depth can be seen as a reasoning
framework in which one always assume that any security mechanism can fail, and
therefore, security depends on several layers of mechanisms that compensate the
failures of each other. For instance, no one would ever test thoroughly an
application and assume that this precaution would compensate the installation of a
database engine with default settings and empty passwords. At the same time, no
one would install a firewall on the network and assume that no outside user would
ever be able to gain control of internal servers.

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

96

Any level of acceptable security comes from the combination of several
configurations which, in the end, allow a proper definition of who and when the
access and modification of each piece of information is authorized. To
accomplish such level of security in our base scenario, the DBA is expected to
configure the whole set of existing elements available in the system, having three
key goals in mind (Said 2009): 1) • apply and configure security mechanisms that
guarantee that the existing security policies and rules are enforced to the
maximum extent possible; 2) dissuade attempts to break the rules; and 3) maintain
mechanisms that help identifying potential violations of the rules, including being
able to pinpoint suspects (in order to support punishments and avoid additional
attempts).

The challenge is, therefore, to determine the following: 1) what are the security
elements (mechanisms, processes, configurations, procedures and behaviors), in
the form of security recommendations, that have to be put in place to accomplish
the identified goals? and 2) what is the relative impact of each element in terms of
security? The problem is that, as usually happens with security aspects in
complex scenarios, to date there is no known process or methodology to
automatically deduce a complete list of these elements, and therefore field
research and practice is the only option to accomplish the task.

4.3.2.1 Identification of Security Recommendations
A very important requirement for our benchmark is that it must be independent of
specific components brand (to allow portability); for instance, independent of any
particular DBMS engine or operating system. Therefore, the analyzed security
elements should come from different sources and not be tied with the restrictions
of specific software. At the same time, the list as to include a comprehensive and
realistic set of practical security recommendations, based on existing and
consensually accepted security practices and mechanisms that can be used in real
situations, without the requirement of special conditions (e.g. considerable
additional money or time/effort).

Unlike in the case of security threats, there is an enormous quantity of security
recommendations for databases and infrastructures in the form of books, reports,
papers, manuals, etc. available for free in the literature. However, due to the
complexity and time needed to gather all this information, the collection of
recommendations must be narrowed. In our case, we focused on two reliable
independent sources: the Center for Internet Security (CIS) (CIS 2008) and the
USA Department of Defense (Defense Information Systems Agency 2001). Like
in the case of threat vectors, we consider that these sources provide a

Security Benchmarking of Transactional Systems

97

representative list of all the security recommendations that exist for the domain of
transaction systems: CIS documents from a software perspective (drawing from
all security mechanisms available in the most important DBMS engines used
nowadays), and the DoD document from a higher level behavioral perspective.
Nevertheless, we note that the list could be extended easily, although the time to
execute the analysis would grow accordingly.

As mentioned before, CIS has created a series of security configuration (CIS
Benchmarks 2012) documents for several commercial and open source DBMS,
namely: MySQL, SQLServer 2000/2005, and Oracle 8i/9i/10g. These documents
focus on the practical aspects of the configuration of these DBMS and state the
concrete values each configuration option should have in order to enhance the
overall security of real installations. Although CIS documents are indeed very
useful, three key problems have to be noted:

− The goal is to show which values or procedures should be used when
configuring the system and not to provide a way to assess the DBMS
configuration in terms of security. Although CIS refers to these
documents as benchmarks they are not explicitly designed for DBMS
configuration assessment or comparison.

− Each document targets a specific DBMS version and the configurations
and concepts cannot be easily generalized. Additionally, each document
follows a different approach regarding the way settings are presented. For
example, the level of detail is different from one document to another and
the way recommendations are written also differs.

− Although there is a concise rationale in some cases, the general security
problem that is being addressed by each choice is not clearly presented.
This is a relevant problem as the DBA learns barely anything about what
he is doing, which in the end prevents him from applying his own
alternatives for the same goals. That may also stop the DBA from
understanding the gains and dangers associated to each configuration
option, keeping him from being able to assess configuration alternatives
when new software is available.

The other document we used in our study is the Database Security Technical
Implementation Guide, version 8, release 1 (Defense Information Systems
Agency. 2001), developed by the Defense Information Systems Agency for use
within the USA Department of Defense. This document contains a very complete
series of mandatory and recommended requirements that the DoD employees
must follow when installing a database in the department. Although it is a generic

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

98

document applicable to any DBMS engine, it enforces a very strict set of
requisites that clearly implement a policy defined by the US government, which
therefore may make it incompatible with the requirements of database
installations in general. Nevertheless, it is a very good and complete source of
information on database security practices.

The first set of security recommendations, presented in Table 4.2 and
interchangeably referred as security best practices, is based on the detailed study
and subsequent generalization of the configuration settings stated in the set of CIS
documents. For each recommended setting, we identified the security property
being targeted and analyzed the value and procedure recommended. This allowed
us, for the majority of the cases, to determine the more general security
recommendation being addressed by each setting. Additionally, we counted the
number of different configuration recommendations that could be classified as
having the same practice as basis.

Table 4.2 DBMS configuration security best practices devised from the
analysis of the CIS documents

SECURITY RECOMMENDATION (CIS) # of Recommendations
in CIS documents

 M O8 O10 S
ENVIRONMENT
1 Use a dedicated machine for the database 1 1 1 28
2 Avoid machines which also run critical network services (naming, authentication, etc) 1 1 1 1
3 Use Firewalls: on the machine and on the network border 1 3 3 1
4 Prevent physical access to the DBMS machine by unauthorized people 1
5 Remove from the network stack all unauthorized protocols 1 1 1
6 Create a specific user to run the DBMS daemons 1 1 1
7 Restrict DBMS user access to everything he doesn't need 1 4 4 3
8 Prevent direct login on the DBMS user account 2 1 3 3
INSTALLATION SETUP
9 Create a partition for log information 2 1 1 1
10 Only the DBMS user should read/write in the log partition 1
11 Create a partition for DB data 1 1 1 2
12 Only the DBMS user should read/write in the data partition 1
13 Separate the DBMS software from the OS files 1 2 2 2
 Remove/Avoid default elements:
14 »»»Remove example databases 1 1
15 »»»Change/remove user names/passwords 1 4 4 2
16 »»»Change remote identification names (SID, etc...) 3 1
17 »»»Change TCP/UDP Ports 1 1 1
18 »»»Do not use default SSL certificates 1
19 Separate production and development servers 1 1
20 No developer should have access to the production server 5 5
21 Use different network segments for production and development servers 1 1 1
 Verify all the installed DBMS application files:
22 »»»Check and set the owner of the files 1 2 3
23 »»»Set read/running permissions only to authorized users 4 18 22 14
OPERATIONAL PROCEDURES
24 Keep the DBMS software updated 3 1 1
25 Make regular backups 1 4

Security Benchmarking of Transactional Systems

99

26 Test the backups 1 1
SYSTEM LEVEL CONFIGURATION
27 Avoid random ports assignment for client connections (firewall configuration) 1 1
28 Enforce remote communication encryption with strong algorithms 1 1 11 3
29 Use server side certificate if possible 1 1
30 Use IPs instead of host names to configure access permissions (prevents DNS spoofing) 1 1
31 Enforce strong user level authentication 2 6 8 4
32 Prevent idle connection hijacking 2 2
33 Ensure no remote parameters are used in authentication 1 2 1
34 Avoid host based authentication 1 1
35 Enforce strong password policies 1 2 2
36 Apply excessive failed logins lock 1 1
37 Apply password lifetime control 1 1
38 Deny regular password reuse (force periodic change) 2 2
39 Use strong encryption in password storage 3
40 Enforce comprehensive logging 1 2 1
41 Verify that the log data cannot be lost (replication is used) 2 2 1
42 Audit sensitive information 14 19 25
43 Verify that the audit data cannot be lost (replication is used) 1 1
 Ensure no “side-channel” information leak (don’t create/restrict access):
44 »»»From configuration files 2 1
45 »»»From system variables 1
46 »»»From core_dump/trace files 8 8 1
47 »»»From backups of data and configuration files 1 1 4
 Avoid the interaction between the DBMS users and the OS:
48 »»»Deny any read/write on file system from DBMS used 2 3 2
49 »»»Deny any network operation (sending email, opening sockets, etc...) 4 3
50 »»»Deny access to not needed extended libraries and functionalities 1 11 11 54
51 »»»Deny access to any OS information and commands 2
APPLICATION LEVEL CONFIGURATION AND USAGE
52 Remove user rights over system tables 1 23 25 1
53 Remove user quotas over system areas 3 1
54 Implement least privilege policy in rights assignments 9 10 6
55 Avoid ANY and ALL expressions in rights assignments 1 3 3
56 Do not delegate rights assignments 1 3 3 3
57 No user should have rights to change system properties or configurations 3 4 4 2
58 Grant privileges to roles/groups instead of users 1 1 3
59 Do not maintain the DB schema creation SQL files in the DB server 1
Total number of recommendations 48 166 183 177

The first column of Table 4.2 is a number that univocally identifies each security
recommendation and the second is the recommendation description. The last four
columns show the number of specific recommendations from each CIS document
that was associated with each generic recommendation (or best practice). The
column M is for the MySQL Benchmark document, O8 is for the Oracle 8i
Benchmark document, O10 is for the Oracle 9i and 10g Benchmark document,
and S is for the SQLServer 2000 Benchmark document.

There are three key aspects that deserve special attention regarding the procedure
followed to identify the best practices presented in the table. The first is related to
the cases where a given configuration setting can be associated with more than
one general best practice. For example, in the CIS document for Oracle 8i,

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

100

recommendation 1.32 states that the “tkprof” utility, used to access trace data,
should either be removed from the system (which can be associated with the
security best practice #50) or have its permissions reviewed in order to be
available only to authorized people (related to security best practice #23). In these
cases, field database administration experience and expert judgment were used to
determine the prevalent best practice. For the previous example (“tkprof”), we
have considered this recommendation to be related with best practice #50.

The second aspect is related to the configuration settings that are not clearly
related to a generic security best practice (e.g. Oracle 10g recommendation 6.03
related to the Automated Storage Management, and SQL Server 2000
recommendation 5.4 related to the SQL Profiler application). We were able to
observe that these recommendations are typically related to database management
and not to security aspects, and therefore are not exactly suitable for our goal.
Also, in many cases, they are applicable only to a particular DBMS and can
hardly be generalized. That is the reason why the number of items in each column
does not match the exact number of recommendations presented in the CIS
documents.

The last noticeable aspect about the definition of the best practices is that some of
them can be seen as special cases of more generic ones. The problem here is to
decide when a specialization of a particular best practice is relevant enough to
spawn a new one. For example, best practices #48 and #49 may be seen as
specializations of best practice #50. Practical experience on security trade-offs
was then used to evaluate and decide when such separation was important. For the
previous example, it is well known that network operations and access to the file
system are extended functionalities that, although useful to some extent, represent
potential sources of attacks and hence should be explicitly avoided. At the same
time, a more generic practice related to other possible extensions and
functionalities (as in practice #50) is also important. In fact, although in some
cases it may not be possible to decide for sure if a given extension can or cannot
be used as an attack path, the possibility frequently exists.

Table 4.2 is divided in 5 groups of practices that have common characteristics.
This division is useful when it becomes necessary to focus in a given subset of
practices related to a specific configuration step (i.e. installation, operation,
application deployment, etc.). The groups considered are:

− Environment: recommendations related to elements surrounding the
DBMS engine and the machine hosting it;

Security Benchmarking of Transactional Systems

101

− Installation setup: recommendations to be considered right before and
after the installation of the DBMS engine;

− Operational procedures: periodic operations related to the DBMS
maintenance;

− System level configuration: the general working parameters
recommended for the DBMS;

− Application level configuration and usage: recommendations that are
application dependent.

In terms of the representativeness of the best practices, a brief analysis of Table
4.2 raises some immediate considerations. The first one is related to the fact that
there are many recommendations that appear only in a subset of the CIS
documents. This is mainly due to two reasons: on one hand, the documents are
based on the empirical experience of different people, which results in different
sensibilities of what are the most important security problems in each DBMS; on
the other hand, the documents are focused on the configuration mechanisms and
parameters available in each DBMS, meaning that whenever a particular feature
is absent or not configurable in a given engine then it is not addressed in the
corresponding document.

The absence of certain best practices in a given document should be considered a
problem, even if they represent minor issues in the context of DBMS targeted by
the document. By being completely subjective and dependent on the environment,
security assessment should always be an exhaustive task, despite of the DBMS
considered. For example, the precaution related to not storing sensitive
information in system variables is mentioned only in the MySQL document (e.g.
best practice #45). However, this can be clearly a problem in any database
environment, and should not be overlooked. This is one of the reasons why our
complete list, which comes from the aggregation of all documents, represents a
better approach than simply using a specific document to harden a specific
engine.

Another case is when a specific feature is not available in a given DBMS. For
instance, MySQL does not have auditing capabilities, so there are no
recommendations related to auditing in the CIS document. However, it is easy to
understand that auditing can be implemented, to a certain extent, using other
DBMS features like triggers (Da-sheng 2010). The important issue to be focused
is not to “have auditing turned on”, but instead to have ways of tracking
operations done on the system (e.g. trigger based auditing).

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

102

Another aspect that can be noticed in Table 4.2 is that some recommendations
have a highly variable number of configuration settings across the four documents
(e.g. best practice #1). That is a natural consequence of the fact that different
people designed the documents. Thus, it can be seen as a side effect caused by the
differences of how fine-grained the recommendations are.

The total number of recommendations in each document (last line of the table)
also shows an interesting aspect. Even though the commercial DBMS engines
considered (Oracle and SQLServer) have a quite similar number of
recommendations, the open source one (MySQL) has significantly less. This is
understandable as the number of configuration settings presented in the CIS
documents is obviously related to the number of functionalities and configuration
options available. MySQL is an open source DBMS that provides a reduced set of
functionalities when compared to more complex DBMS like Oracle and
Microsoft SQLServer (this is a result we obtain beyond any doubt in Chapter 6).

After identifying the set of security elements based on the analysis of the CIS
documents, we turned to the second source: the DoD document. As we already
had an initial table of security elements, our goal was then to screen the document
looking for things that were not yet included in the list. After a very careful
analysis, we were able to find only a small number of complementary
recommendations that did not show in any of the CIS documents. All other
advices in the DoD document can be generalized as at least one of the CIS related
best practices shown in Table 4.2. The new best practices and corresponding
groups are presented in Table 4.3.

Table 4.3 Complementary DoD best practices
Complementary Best Practices (DoD) Group

1A Monitor de DBMS application and configuration
files for modifications Operational Procedures

2A Do not use self signed certificates System Level Config.
3A Protect/encrypt application code Appl. L. Config./Usage
4A Audit application code changes Appl. L. Config./Usage

5A Employ stored procedures and views instead of
direct table access Appl. L. Config./Usage

Following a Defense-in-Depth approach, all the 64 security recommendations
presented in Table 4.2 and Table 4.3 were selected as the set of security
recommendations for our base scenario (and will guide the rest of the benchmark
definition). Obviously, we are aware that the process employed to create this set
carries out some limitations namely:

Security Benchmarking of Transactional Systems

103

1) It may become outdated when technology advances. This is true for
almost all aspects related to security, and most of all for practical and
useful security tools. As technology advances, attack techniques also
change and a set of recommendations that is enough in one time may
become deficient in the future.

2) It may be incomplete. We tried to the best of our knowledge to identify
additional sources of security information that would provide more
security recommendations for our base scenario, and we are aware that
additional sources of information exist. For example, the documentation
of most of the DBMS engines (usually several hundred pages of technical
documentation) includes security information that is spread within the
text in the form of configuration suggestions. Academic books about
database administration and a very high number of research papers (some
not focused on security) also contain security information that might
complement our practices. However, the process of screening and
evaluating such a high volume of disperse information is beyond the
ability and the goal of a PhD work, being more suitable for a targeted
research effort accomplished by several researchers simultaneously. This
way, we decided to focus on a smaller, but more precise, set of
documents, knowing that this may leave out some important aspects.
Nevertheless, the incompleteness of the list presented in this thesis does
not invalidate the methodology used to create it, nor it diminishes the
process used to conceive and design the proposed trustworthiness
benchmarking procedure.

4.3.2.2 Impact of Security Recommendations
Although the identification of the security recommendations is the most relevant
part of the process, we need to take into account that some of them are more
effective than others in terms of their contribution to the reduction of the attack
surface of the system. We may see this effectiveness as “how critical” it is to have
the recommendation implemented. Defining this value, however, is not an easy
task, as the security perception regarding the impact of any mechanism not only
varies from one person to another, but also may depend on the target environment
(e.g. the lack of communication encryption with the DBMS is only a concern if
the business application is executing in a remote client, which is not the case if it
is executing within a web server on the same physical machine, in which case the
web server itself would be in charge of encrypting the communication).
Additionally, although security recommendations can be identified from sources
like books, forums, checklists, etc., their impact and contribution to the reduction
of the attack surface is typically not addressed or is unclear. The

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

104

representativeness of our benchmark would be compromised if this aspect was
not taken into consideration.

The process followed to incorporate the impact of each recommendation into the
benchmark was based on the definition of weights, drawn for the consensual
judgment of several experts. In this sense, the diversity of experiences becomes a
relevant issue, and experts from different fields should be explicitly included (and
not only security experts), including: database administrators, database
application developers, operating systems experts, network specialists, etc.
Ideally, this group should include a large number of both practitioners and
academics. The expectation is that, in average, the most important practices are
emphasized, even if there is no unanimity (this average should be representative
of the reality taking into account a base scenario).

Interviewing experts to obtain the importance of security recommendations is a
complex problem, and there are a few caveats we have to consider. As we want to
capture the most of a person’s experience and knowledge, the scale used for the
classification needs to be well defined, easy to understand, and include a short
(but adequate) number of values. For example, an excessively detailed scale with
20 different values forces the expert to make irrelevant considerations to decide
between close values (e.g. deciding between an 15 and a 16 is very difficult and
may be irrelevant), and makes the weighting process a lot harder without gaining
much from it. On the other hand, a too vague scale (e.g. with 2 values) does not
allow distinguishing and expressing the notion of importance of different
recommendations. In this work, we use a scale with four values (from 1 to 4),
with a very specific semantic for each one (the reason why use an even number of
values is to avoid falling into the “select the middle-one” syndrome, i.e. when in
doubt select the middle value). The description we created for each value is
intended to induce the interviewee to ask himself the following question: “how
preoccupied would I be if the system I manage did not have this feature/security
element implemented?” The semantics and scores we used are presented in Table
4.4.

Table 4.4 Best practice impact key
Score Importance to the system
4 Critical to the system
3 Important
2 Advisable to implement
1 Not much relevant

Security Benchmarking of Transactional Systems

105

Having decided on the scale, we designed a spreadsheet and handed it to the nine
experts we invited to participate in our evaluation. We asked them to assign a
score to each recommendation using the keys presented in Table 4.4. This group
of experts included five people from academia and four engineers from industry.
From the academics, three are professors in a university (two of them teach
databases courses and the third one teaches a security course), and two are PhD
students (one working on intrusion detection and security vulnerabilities
emulation and the other working on security benchmarking for web servers). In
the engineers group, we have three full time database administrators and one
technical manager for the databases area in a medium size company.

The individual weight of each security recommendation is computed as the sum
of all scores assigned by each expert, normalized to a logarithm scale (base 10).
This normalization tries to stress the difference of the scores, highlighting and
distinguishing recommendations found critical even by a small number of experts
(the idea is to differentiate these from the ones that no expert found critical). The
final relative weight (which is a percentage) of each security recommendation is
defined as the individual weight of the recommendation divided by the sum of all
individual weights.

The summarized relative weights are shown in Table 4.5. The recommendations
presented in the second column of each row (see tables 4.3 and 4.4 for the
correspondence between the numbers and the description of the practices) are
ordered by the computed weights, and have a relative importance in the interval
presented in the second column. For example, all the practices presented in the
third row of Table 4.5 (Class 2) have a relative weight between 1% and 2.5%.

Table 4.5 Best practices ordered by relative weights
Class Weight (W) Ordered Recommendations (all 64 practices)
4 5,26 % > W ≥ 4% 4, 3, 19, 28, 57
3 4 % > W ≥ 2,5% 2, 24, 39, 35, 15, 1, 6, 52, 25
2 2,5% > W ≥ 1% 20, 23, 18, 31, 8, 29, 51, 32, 36, 54, 33, 37, 10, 12, 42, 41
1 1% > W ≥ 0,15% 22, 34, 5, 48, 21, 47, 38, 55, 46, 50, 7, 44, 45, 49, 26, 40, 43, 9, 4A, 11, 17,

13, 56, 30, 1A, 53, 58, 27, 2A, 14, 5A, 16, 59, 3A

From the analysis of the detailed results (which can be found in Annex A) it is
clear that each recommendation typically falls into one of four distinct groups: 1)
the ones that are unanimously critical, 2) the ones that are not critical but are
important, 3) the ones that are advisable to implement, and 4) the ones that are
unanimously not relevant. This is very interesting and can be seen as a guide of
which best practices should be implemented in a system according to its

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

106

criticality. For example, consider three database infrastructures: one for a business
critical application like a bank, another for an important application like the
human resources database in a small company, and the last one for a non-critical
application like a web portal that disseminates information about cultural events.
It is clear that a database in a bank needs to implement all best practices,
including the less important ones; the human resources database should
implement the best practices in the three first groups (the critical, important and
advisable groups) and may relax the less important ones if their implementation
brings unaffordable costs; and, finally, the less important database needs only to
implement the best practices in the two first groups (the critical and important
groups) and may relax the others.

A very important observation is that the 14 most important recommendations
account for exactly 51.61% of the security impact of the whole set of
recommendations, while the other 50 best practices account for less than half that
same impact. This is a major aspect that shows that there is a subset of the best
practices that is unanimously considered as important for any DBMS installation.
These 14 practices are the ones presented in the first and second rows of Table
4.5.

4.3.3 Pessimistic Scenarios
Having established the set of security recommendations (including a consensual
relative impact weight) and the set of threat vectors relevant for our base scenario,
we need to establish a relation between both. This relation specifies the threat
vectors that are affected, directly or indirectly, by the implementation of the
recommendations, and will therefore allow evaluating the relative contribution of
each recommendation in preventing each threat from turning into real attacks.

The key problem in establishing such relation is that, on one side, we have static
configuration characteristics of the environment (i.e. the security
recommendations) and, on the other side, we have the high-level bad, malicious
or otherwise undesirable effects and circumstances that are considered harmful
whenever they occur in the infrastructure. In other words, the main difficulty of
this analysis arises from the fact that real attacks or events (corresponding to
particular threat vectors), may depend on other conditions that have little to do
with the static characteristics of the environment. For example, how do we
evaluate the security problems that may arise when an infrastructure does not
implement recommendations, such as “separate development and production
platforms or use a dedicated platform for the DBMS engine”, without taking into
consideration a real environment configuration (and therefore no considering

Security Benchmarking of Transactional Systems

107

attackers or using business rules to differentiate a security breach from a normal
usage of the assets involved)? At this stage of the benchmark design, we need a
methodical reasoning process that allows identifying the connection between both
sets (i.e. threat vectors and recommendations).

As mentioned before, security recommendations (like the ones proposed in
Section 4.3.2.1) are typically provided by security experts and experienced
practitioners in the form of procedures and state configurations that are
consensually accepted as having the ability to make a system or environment
more secure. However, this assumption also implies the opposite consequence: if
the recommendations help making a system more secure, then, by definition, their
absence can always be associated with a particular insecurity circumstance.
Therefore, if our list of security recommendations is complete, then the list of
insecurity circumstances yielded that can be drawn from the pessimistic scenario
and the absence of each of the recommendations will be also complete.

4.3.3.1 Mapping process
Taking advantage of this reasoning, we propose the following methodology for
establishing the relation among threats and security recommendations (to better
understand the process, see example in Section 4.3.3.2):

1. For each security recommendation, identify a situation where not
following the recommendation creates an obvious vulnerability (in
practice, a situation where the recommendation is in fact the last layer of
defense, and where the associated insecurity would not exist if and only if
the recommendation was enforced). In this work, we refer to these
situations as pessimistic scenarios. They are pessimistic, in the following
sense: although neglecting a recommendation may not necessarily lead to
attacks, in this pessimistic circumstance it would certainly do. In other
words, neglecting the security recommendation degrades the security of
the infrastructure in the perspective posed by the pessimistic scenario.

2. Starting from each pessimistic scenario, identify any concrete attacks that
could exploit the related vulnerability. These attacks should have harmful
effects that may be correlated with the threat vectors. The reasoning is
that, whenever a vulnerability in a pessimistic scenario and a threat vector
are related by an attack that exploits the related vulnerability and
instantiates a threat, a correlation between the original security
recommendation and the threat vector can be established.

3. While evaluating the attacks allowed by the pessimistic scenarios, it is
important to recall that real individuals (and attackers) interact with the

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

108

system by using one of the four interaction classes defined by our base
scenario (i.e. application userid, OS userid, DBMS userid, or none). This
is important because, to properly identify the plausible attacks, we need
to know how much access an attacker already has inside the system and
that is defined by the environment where the attacker is contained (i.e. the
interaction class he is using). Different interaction classes may allow
different attacks according to the different privileges associated to each
class.

4. This process, when completed for all pessimistic scenarios, for all
interaction classes, and for all threat vectors, generates a list of attacks
that identifies the trustworthiness relationship between each security
recommendation, each interaction class, and each threat.

It is important to emphasize that pessimistic scenarios are not the simple negation
of a security practice. The absence of a security practice simply shows that the
administrator is not fully aware of the potential system states in terms of security.
A pessimistic scenario, however, is the definition of a system state where
neglecting the associated practice derails into an obviously insecure circumstance
that can easily be associated with actual security attacks (this notion is important
as it supports the specific reasoning step that allows aligning the benchmark being
proposed in this chapter with the definition of trustworthiness benchmarking
presented in Chapter 3). In practice, by neglecting consensually accepted security
recommendations, the administrator of a transactional system infrastructure is
allowing for a certain set of circumstances to become possible, and therefore
increasing the probability of a set of attacks to happen. The harmful effects that
consequentially have their probability raised are defined by the consequences of
each possible attack allowed by a specific pessimistic scenario. How much each
probability is raised is given by the relative weights of the recommendation from
which the pessimistic scenario was identified (which is related with the
consensual impact identified for its implementation, as defined in Section
4.3.2.2).

We finally point out that, even if these probabilities give no guarantees that the
system can be attacked, they provide necessarily some evidence that the system
cannot be trusted to be secure, which is exactly what we are proposing to
measure (see discussion on metrics in Section4.3.5). In order to better illustrate
the process, next section presents a complete example detailing the reasoning
behind each step.

Security Benchmarking of Transactional Systems

109

4.3.3.2 Mapping example
Consider the security recommendation “separate development and production
platforms”. In practice, what this recommendation defines is that the database
server used by the developers to develop and test applications should not be the
one that hosts the production data. Elaborating on the opposite of this
recommendation allows us to identify a pessimistic scenario where developers
have the ability to execute untested and under development code on the
production database. Note that if testing and production platforms were in fact
independent, then any code could be tested thoroughly before reaching production
data, which may not happen when both environments coincide (the goal of the
recommendation is to prevent users with access to the development
infrastructures from executing malicious or potentially destructive code in the
production environment).

Given the pessimistic scenario “developers can execute code in the production
DBMS engine”, we need to analyze the threat vectors from the point of view of
the 3 interaction classes (DBMS userid, OS userid, application userid) and also
from the point of view of non-system users. First consider the Legitimate
excessive privilege achievement vector (see Table 4.1). For each interaction class
we should ask if the scenario enables “an increase of the probability of a user
legitimaly obtaining more privileges than he should have”. Clearly, a malicious
code injection is not a legitimate way for obtaining more privileges, so there is no
mapping between the best practice (“separate development and production
platforms”) and the vector (“Legitimate excessive privilege achievement”).

Let’s now look to the second vector (“Illegitimate privilege elevation”) and assess
if the scenario enables “an increased probability of an user obtaining an arbitrary
privilege that he should not have in any circumstances”. As a relation seems to
exist, each of the four interaction classes should be analyzed individually:

1. From the point of view of non-system users the answer to the question is
yes, as code injection may be used for bypassing authentication, allowing
a non-system user to access private data.

2. From the point of view of an application userid, the answer is also yes, as
the malicious code injected could bypass privilege checks, augmenting
the current userid privileges.

3. From the point of view of an operating system userid, the answer is no, as
it is not possible to elevate OS privileges by executing code in the
production DBMS engine.

4. For a DBMS userid the answer is yes again, e.g. if code injection is

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

110

performed over a stored procedure meant to control operations over
tables. For a particular DBMS userid, the stored procedure could then
behave in a malicious way and allow increasing privileges.

This way, the final mapping of the security recommendation “separate
development and production platforms” into the “Legitimate excessive privilege
achievement” threat vector is not possible, while into the “Illegitimate privilege
elevation” is possible for three interaction classes: application userid, DBMS
userid and non-system users. The same process should be repeated for all
remaining threat vectors and security best practices, resulting in a three
dimensions matrix relating security recommendations, threat vectors, and
interaction classes, as discussed in the next section.

4.3.3.3 Complete mapping
The process of relating the 64 security practices identified in Section 4.3.2 with
the eight threats presented in Section 4.3.1 is extremely complex to be executed
correctly, and actually not suitable to be executed by a small number of
researchers. With the help of several database administrators and security
researchers, we performed the complete process for the fourteen most important
practices identified Table 4.5 (which already account for more than 50% of the
identified impact). The fourteen pessimistic scenarios devised are presented in
Table 4.6.

Table 4.7 presents an excerpt of the complete correlation of pessimistic scenarios
with threats (as the complete matrix is too extensive, it is presented in (PhD
Thesis Complementary Info 2012)). The attacks presented in the table are
preceded by one or more of four acronyms, stating that the attack presumes a
given interaction class: A – Application userid; D – DBMS userid; O – Operating
system userid; and N – Non-system user. Recall that these interaction classes do
not map directly to real individuals, and it is expected that some roles need more
than one interaction class. In particular, any real individual (including the ones
that have userids) can accomplish attacks that require no relation with the system
(identified by the N acronym). For instance, the attacks under the pessimistic
scenario #1 can be accomplished by anyone able to achieve a physical proximity
with the machine, and that has the knowledge needed to carry out the actions
indicated (e.g. rebooting the system with a live CD for an illegitimate access to
the file system).

Security Benchmarking of Transactional Systems

111

Table 4.6 Pessimistic scenarios associated with not following security
recommendations.

Pessimistic scenarios

1 The platform is physically stationed in a place where people that have nothing to do with the
DBMS have regular unsupervised access

2

a) The platform does not have an operating system firewall, leaving all locally open ports
accessible to the local area network
b) The network does not have a firewall separating the internal network (LAN) from the
servers that provide services to the Internet
c) The network does not have a border firewall, leaving all network fully accessible to
internet traffic

3

a) The development DBMS is installed in the same platform as the production DBMS, but
use different DBMS instances with separate data and configurations
b) The development DBMS and the production DBMS are the same, and are only set apart by
privileges within the database

4 Remote communications with the DBMS can be very easily captured and understood (no
encryption)

5
a) DBMS userids can alter or influence the DBMS environment and behavior
b) OS userids can alter or influence the operating system environment and behavior

6 The DBMS platform also hosts a email, naming or similar critical network service which is
completely open for access from the Internet

7 The DBMS has known critical vulnerabilities which are of public domain knowledge
8 Stored password information in the database is clear text

9 DBMS/applications/OS users may choose any password they like, even the most easy to
guess ones

10 Information of one username/password pair that can be used to login in the database is public
domain

11

a) The operating system of the DBMS loads several unknown default services on the boot
process, which may open listening ports on the server and may contain security
vulnerabilities
b) The operating system of the DBMS have several applications and tools installed on the file
system, which may be used by an operating system user as leverage to an attack (like a
compiler, for instance)

12
a) The OS userid used to run the DBMS daemons has administrator’s privileges
b) The OS userid used to run the DBMS daemons is used for other daemons and tasks as well

13 DBMS userids have privileges to access internal control information, and may alter the
DBMS engine behavior

14
a) There is no regularly updated copy of the production data in a separate storage
b) There is no regularly updated copy of platform file system and important configurations in
a separate storage

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

112

Table 4.7 Set of attacks correlating the pessimistic scenarios and the threats

Legitimate Excessive
Privilege Achievement

Illegitimate privilege
achievement

Denial of
service

Communication
Weakness

1
D: User can bypass
application/network level restrictions,
by logging directly to the database, as
long he can login to the OS

N: Boot by a CD/USB pendrive,
copy all file system

N: Disconnect cables,
turn off the server or
simply destroy it
physically. Each of those
actions can be intentional
or not.

N: Install a sniffer physically in the
network adapter

2a D: User can bypass application level
restrictions and connect directly into
the DB through a DB client

N: A LAN user connects to a
vulnerable local listening service,
causes a buffer overflow allowing
arbitrary code execution

N: A LAN user connects
to a local listening service
and causes it to consume
all CPU resources

2b
 N: An attack on a server with

internet applications may be used to
launch another attack on a private
network host, achieving access to
all computers on the network,
including the DBMS platform

2c
 N: Internet port scans are free to

find servers with vulnerabilities and
which can be used as leverage to
other attacks

N: Internet users may
request all kinds of
connections to any ports
in any network server,
flooding the network and
hogging resources

N: Local network may be flooded
with invalid requests consuming all
Internet bandwidth

3a A, D: Development and testing may
cause effects on the behavior of the
production applications

O: Developers may be able to
eavesdrop production connections

3b
A: Untested applications can mess
with production server resources and
data

D: Execute malicious stored
procedures may read or write over
production data

A, D: Activated malicious
code may erase
information
O: A system command
may consume all CPU
resources

O: Developers may be able to
eavesdrop production connections

4 N: LAN users may have access to
the data transit
O: OS users may sniff all traffic
from the network interface

 N: LAN users may have access to
the data transit
O: OS users may capture all traffic
from the network interface

5a D: DBMS users may
modify the size of
working areas as to not
allow correct operation

5b O: OS users may alter environment
variables that affect the DBMS
startup or behavior

O: OS user may modify
memory configurations
affecting availability

6 N: Buffer overflow in the offered
service, taking control of the
machine and the DBMS

N: Overuse of the offered
service, causing CPU or
disk exhaustion

N: Buffer overflow in the offered
service, taking control of the
machine installing a packet sniffer

Table 4.8 presents the complete mapping for the fourteen most important security
recommendations. It is important to emphasize that we are aware that this
mapping is most probably incomplete, as it is very hard to envision all the ways
security can be affected in such a complex environment, even when considering a
focused approach with several assumptions (like the ones defined in the
beginning of Section 4.1). The benchmark needs to be completed and perfected in
an incremental way, by integrating knowledge of more and more experts and by
incorporating the new attack information that becomes available. Nevertheless,
we believe that even such an incomplete mapping can be used to implement a
fairly representative benchmark, thus allowing demonstrating the effectiveness of
our trustworthiness benchmarking approach.

Security Benchmarking of Transactional Systems

113

Table 4.8 Mapping for the fourteen most important security
recommendations

L
eg

iti
m

at
e

E
xc

.
pr

iv
ile

ge

ac
hi

ev
em

en
t

Il
le

gi
tim

at
e

pr
iv

ile
ge

ac

hi
ev

em
en

t

D
en

ia
l o

f s
er

vi
ce

C
om

m
un

ic
.

W
ea

kn
es

s

A
ut

he
nt

ic
at

io
n

W
ea

kn
es

s

Si
de

-c
ha

nn
el

 D
at

a
E

xp
os

ur
e

A
ud

it
T

ra
il

W
ea

kn
es

s

SQ
L

 In
je

ct
io

n
E

nh
an

ce
m

en
t

1 D N N N N N N
2 D N N N N
3 A, D D A, D, O O N, A
4 N, O N, O N N, O N N
5 O D, O O, D
6 N N N N N N N
7 A, D N, D, O
8 O, D N, D, A, O N, D, A, O D, O
9 N N, D, A, O N, D, A, O

10 N, O N, O N N N
11 N, O N, O N, O N, O N, O N, O N, O
12 O N, O O O N, O
13 D A D D, A
14 A, O O, D, A

4.3.4 Benchmark Procedure
In the previous sections we discussed the reasoning and justifications behind the
internal assumptions and the design of the proposed trustworthiness benchmark.
A key aspect that has to be addressed when proposing a benchmarking procedure
is the practical use of the benchmark (i.e. the steps required for executing it). Any
benchmark specification has to include a set of deterministic operations or
procedures that, when carried out by benchmark user (which we assume to be the
administrator of a transactional system infrastructure), allow the computation of
the metrics (Grey 1993).

A key aspect is that a benchmark is expected to be repeatable, at least in a
statistical basis, and should depend the least possible on external variables (Grey
1993). Typically, a benchmarking process based on the simple execution of a
deterministic software application (or a set of applications) ensures the “ideal”
means for obtaining correct results. Unfortunately, in our case the person that
executes the benchmark is, by definition, an external variable, as the input of the
benchmark is the user perception about the status of the implementation of the
security recommendations (which cannot be obtained in an automated manner). In
fact, the high complexity and variability of the systems and environments targeted

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

114

by the proposed benchmark, allied with the complexity of the semantics of the
security recommendations, makes it unfeasible to create a program able to
perform this assessment automatically for all cases, even if for a small number of
recommendations this could be accomplished. For example, identifying the
privileges of the existing userids is something that is trivial to automate, while at
the same time, identifying if the physical hardware that hosts the database is
adequately protected is not so easy.

In practice, as we cannot avoid having information gathered by a person, at least
should prevent, to a certain extent, the security knowledge and biases of this
person from affect the benchmark results. This can be done by focused only on
technical details and procedures and in the configuration state of the system, as
these elements are usually so evident that, assuming a competent and
knowledgeable benchmark user, their identification would be unambiguous and
independent of any particular previous knowledge.

Taking into account these restrictions, the proposed benchmark is based on a non-
automated process that tries to minimize the human factor. In practice, the
benchmarking tool consists of a list of deterministic tests, in the form of yes or no
questions that depend exclusively on palpable characteristics of the environment
and on the procedures applied to the systems. Examples of the tests are presented
in Table 4.9, while the complete list can be found in the Annex A.

Table 4.9 Benchmark security tests (sample)
Test Fail

1
If the machine is turned off, does any service other than the database become unavailable? Is
there any process running on the machine which is not demanded by the DBMS, the OS or
the machine maintenance/security?

Yes

2 If the machine is turned off, does any critical network service, like naming, directory or
authentication services, becomes unavailable? Yes

3
Is there a firewall on the network border? Is there a firewall running on the DBMS machine?
Are both firewalls properly configured by experienced staff with solid network knowledge?
(Wool 2004, Kaufman 2002)

No

4 Is it possible to an unauthorized person to physically access the machine without supervision
at any given time? Yes

5 List the protocols available in the network stack in the OS of the DBMS machine. For each
protocol, is there a clear justification for its availability? No

19 Is there any kind of development or testing being done in the production server? Yes

25 Is a carefully thought out, documented backup procedure regularly executed? If the person in
charge suddenly quit, is it easy for anyone else to resume its task? No

32 Establish a connection with the DBMS and let it stay idle. Is the connection severed in a
reasonable amount of time? No

The benchmark tests should be answered by an experienced DBA with deep
knowledge about the operating system in use, and some knowledge about
computer networks. For some of the tests, however, there are variable parameters

Security Benchmarking of Transactional Systems

115

that cannot be easily predicted, and may require the security knowledge of the
user to be correctly determined. Such parameters are identified using the figures
security expert and experienced staff, the later also assuming deep knowledge
about the usage of the underlying infrastructure. In practice, input coming from
professionals that do understand security is required to pass some of the tests (i.e.
to have a yes answer). In these cases, to simplify the work, we provide references
to bibliography where such security knowledge can be obtained (e.g. in test #3 we
provide solid references to information regarding the correct configuration of
firewalls).

Two other figures that appear in the tests, reasonable and regularly, also depend
on bounds that cannot be defined without taking into account the business
applications that are using the database (e.g. in test #32 we have to define a
reasonable time for a timeout, which clearly depend on the application in
question). In these cases, we expect the DBA to either estimate those bounds or to
discuss them with the system analysts and other experts. We could have provided
average values for these cases, but obtaining this information would require
detailed field studies that were not in the scope of this work.

As can be observed in the second column of Table 4.9, the tests typically include
two steps. The initial step, which is not defined for every case, is a procedure to
obtain the particular information necessary to answer the test (e.g. in test #32 we
indicate a procedure that will provide the timeout configuration to the benchmark
user even if he does not know what a timeout is or where this information is
configured). This step is also of optional execution, in the sense that the DBA
might obtain the same information in alternative ways (e.g. technical manuals or
previous experience). The second step is a series of yes/no questions that should
be answered systematically. If, for any of the listed questions, the answer is the
one stated in the rightmost column of Table 4.9, then the test is considered as
failed. Also, in some cases, the benchmark user might not know how to answer a
particular question, which is an “unknown” answer that should be treated as a
failed test (we follow a pessimistic approach, as one cannot trust in if there are
some unknown aspects). In this case, the user is expected to further investigate in
order to better understand the current state of the system.

Although for some recommendations designing the tests is a straightforward task,
for others this brings two key difficulties. The first difficulty is related to knowing
if the test really covers all aspects of the recommendation implementation. This is
tricky due to the specificities of each scenario and is widely dependent on the
generality of the best practice statement. For example, test #25 is designed for a
recommendation that states that regular backups should be made. However,

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

116

checking whether the DBA is in fact accomplishing this practice correctly is
something that cannot be done by means of only two complementary questions.
In this case, we heavily assumed that a backup procedure that is not documented
and that cannot be quickly understood by anyone other than the DBA would not
be a reliable backup procedure, and therefore the test should fail..

The second difficulty is about how easily it will be for the benchmark user to
perform the tests. This problem does not have an obvious solution, and it is
possible that, depending on the case, the administrator might not have enough
knowledge to execute some of the tests. As mentioned above, we suggest these
cases to be treated as failed tests, meaning that if the administrator does not know
whether a given security practice is implemented or not, then he should assume it
is not (i.e. should follow a pessimistic approach). As a matter of fact, this is very
much expected to happen with non-security experts: either they do not understand
what they should do to improve security or they were never called attention to a
particular aspect. In fact, having an administrator that does not know if a certain
configuration is in place or not can already be considered a security risk, even in
the cases where the system is correctly configured. As a consequence, by
applying the tool, he will have the benchmark user attention redirected to the
configuration aspects that experts believe are more important to improve security
in such an environment (which will therefore increase the trust the user can put in
the configuration).

4.3.5 Benchmark Metrics
The main goal of a benchmark is to allow comparison, and that requires the
existence of metrics. In the previous sections we discussed and analyzed the steps
required to build a body of knowledge, whose goal is to allow the calculation of a
set of metrics that can be used for comparing the trustworthiness of transactional
systems infrastructures. This section presents a deeper discussion regarding the
benchmark metrics, including the algorithm needed to compute them.

As mentioned before, the metrics are represented as a percentage that should be
interpreted as the relative proneness of the bad or harmful effects of the threat
vectors to manifest. These percentages arise from the analysis of several
characteristics of the system that may allow, given certain events, the emergence
of circumstances equivalent to the pessimistic scenarios identified. The
characteristics we are concerned with are the lack of rigorous enforcement of the
set of security recommendations identified for our base scenario. The main
assumption is that if these recommendations are not enforced, then the system

Security Benchmarking of Transactional Systems

117

cannot be trusted as being protected against the bad effects of the threat vectors
effects.

The process that leads from the analysis of the state of the system to the metrics
that express justified trustworthiness is entirely based on our definition of
trustworthiness benchmarking, and as such is based on the collection of evidence
to place justified trust instead of on the identification of actual vulnerabilities that
can be exploited. As discussed in Chapter 3, within our framework actual
vulnerabilities are considered during the security qualification step. In summary,
the benchmarking process is based on the following assumptions:

a) The lack of active security precautions may let the environment derail
into a configuration state equal or equivalent to pessimistic scenarios.

b) Assuming the pessimistic scenarios as representative, the only elements
that prevent the occurrence of attacks are intention (which we assumed
that exists) and the achievement of some other indeterminate
requirements (e.g. physical proximity to the server or the opportunity to
connect a computer to the same network segment of the DBMS server).

c) As the two requirements mentioned in item b) depend on the
environment, we assume that there is a non-zero probability of them to
happen.

d) Given an attacker with intention and given the right circumstances, the
absence of active security measures in place allows actual attacks to
happen with some undetermined, but non-negligible, probability.

e) Whenever two different security recommendations are related with the
same threat vector and/or the same interaction class, and are both not
enforced, we assume that they can be “accumulated”. The reasoning is
that they are two independent alternatives for accomplishing the same
threat. In other words, if an attack related with security recommendation 1
has X probability of happening and another attack related with security
recommendation 2 has Y probability of occurring, and if both attacks can
take place independently, then we can safely say that the threat may be
accomplished with a probability Z > X and Z > Y, despite the real values
for X, Y and Z. For practical reasons, in our benchmark we assume that Z
= X + Y.

The proposed security benchmark for transactional systems infrastructures is able
to compute 13 distinct trustworthiness metrics, namely:

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

118

a) one general metric summarizing the trustworthiness of the whole
infrastructure.

b) eight metrics portraying the trustworthiness of the infrastructure in regard
to the eight threat vectors;

c) four additional metrics characterizing the trustworthiness related with
each interaction class.

The full algorithm for the computation of these 13 metrics is as follows:

1. The DBA executes the benchmarking procedure (as discussed in Section
4.3.4). The result of the application of the evaluation tool is an answer of
Passed or Failed for each of the 64 security recommendations included in
the benchmark.

2. Be Wrt the relative weight of the recommendation r that maps (i.e. has at
least one identified attack) to the threat vector t. For each threat t
compute:

Wrt(Passed)

Wrt(Passed) +Wrt(Failed)

where Wrt(Failed) is the sum of the weights of all recommendations that
map to the threat t and that had a Failed as an answer, and Wrt(Passed)
is the sum of the weights of all the recommendations that map to the
threat t and had a Passed as an answer.

3. Be Wri the weight of the recommendation r that maps to the interaction
class i for any of the threat vectors. For each of the four interaction
classes compute:

Wri(Passed)

Wri(Passed) +Wri(Failed)

where Wri(Failed) is the sum of the weights of all recommendations that
map to some threat with interaction class i and that had a Failed as an
answer, and Wrt(Passed) is the sum of the weights of all the
recommendations that map to some threat with interaction class i and that
had a Passed as an answer.

4. Compute the overall trustworthiness value by dividing the sum of the
weights of all recommendations that had a Failed as an answer by the
sum of the weight of all the recommendations.

Security Benchmarking of Transactional Systems

119

A key aspect is that it is possible to increase the level of detail of the benchmark
characterization by crossing each interaction class with each threat vector
(computing 32 additional metrics). For example, we could specifically compute
the trustworthiness related with the OS system users causing a denial of service in
the infrastructure. This might be of interest in the cases where the administrator
wants to assess the pros and cons of the trust he actually puts in the people that
possess userids of each class against the costs of implementing new security
precautions (e.g., what is more cost-effective? To disable the operating system
userids that were given to individuals that may not necessarily need them, or to
implement the security best practices that raise the trustworthiness in this case).

Another variation that is semantically interesting is to consider a subset of the
threat vectors in the computation of the interaction classes’ values instead of all
threat vectors. In this case, the result is the level of trustworthiness that one can
put into the fact that some individual of that class may cause some kind of
harmful effect. For instance, we could compute the metrics for the case of
operating systems users causing either denial of service, obtaining privileged
information through a side channel or taking advantage of an authentication
weakness.

The algorithm presented above is based on the notion of (positive)
trustworthiness, which expresses how much of the evidence gathered by the
benchmark user supports positively the security of the installation. At the same
time, we can easily do the inverse reasoning. The inverse of trustworthiness is
called untrustworthiness, which computed as 1 – trustworthiness. The
untrustworthiness metrics are exactly the values we would get if, in the algorithm
above, we computed all the metrics relatively to the failed tests instead of the
passed ones. Both trustworthiness and untrustworthiness are trust-based metrics
in the sense that they express relative levels of justified trust (in one way or
another).

It is important to notice that, even though trustworthiness is the numeric
complement of untrustworthiness, the way security aspects should be reasoned
about make the distinction of both these concepts quite important, especially
when non-security experts are using these values to support decisions about their
infrastructure. In fact, we have to pay attention to the fact that computing
trustworthiness is based on a summary of the amount of evidences that justify
how much one should trust the infrastructure. Conversely, if we are computing
untrustworthiness, we are summarizing the amount of evidences that may lead us
to not trust the infrastructure. When interpreting these values, however, we again
face the fundamental assumption over which our benchmark is based on: security

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

120

has much to do with what we don’t know about the system. It is wiser, therefore,
to interpret the metrics from a pessimistic perspective (as already mentioned
several times), as the benchmark user has to be aware of the impossibility to
always consider all aspects that are involved in the security of the system. For this
reason, we decided that the main metric of our benchmark is the Minimum
Untrustworthiness, which represents the amount of evidence we have about how
much we should distrust the system, at least.

This definition of Minimum Untrustworthiness helps the benchmark user to
understand the error that the metrics may have, particularly due to lack of
information, which will more easily lower the justified trust than increase it. This
approach looks arbitrary, as a typical standard error is usually considered
symmetrical (Zwillinger 1995), but this effect comes as a consequence of the
assumptions we made for our framework.

Let’s examine in detail one example in which we try to demonstrate why a
pessimistic view of security is always more correct than an optimistic view. To
simplify the example, instead of a whole infrastructure, let’s assume that we are
benchmarking a small piece of software. A trust-based metric gives a certain
value that represents how much we can trust that the software will not present
security problems in the future. We also know that, in the context of our
benchmarking framework, this metric takes into consideration only the
characteristics that can be found in the software, excluding outside variables.

Now, let’s assume that there is a very important and influential external variable:
community support and active development. Assuming that for this particular
software we do not know if there is an active community supporting
development, this manifests in the metric as an error (i.e. the value reported will
be incorrect because this information did not affect the metric). In fact, it is more
or less obvious that if there is an active community then the trust we can put in the
software is higher, and if there is no active community, then the trust we can put
in the software is lower. But consider the following issue: is the error
symmetrical? In other words, the existence of an active community should
increase the metric as much as the lack of the community should decrease it?

The answer is no, and it is quite easy to understand why. The lack of an active
community assures the following: new software bugs will not be quickly
corrected; if a user of the software finds out a bug then the rest of the users have
no way to be quickly warned; and for solving problems raised by a security
incident the user will not have the help of any other experienced user or
developer. The asymmetry of the metric comes from the fact that the mere

Security Benchmarking of Transactional Systems

121

existence of an active community does not guarantee an opposite result. The
existence of an active community does not guarantee that software bugs will be
quickly corrected, does not guarantee that security information found by users of
this community will be quickly disseminated, neither guarantees that the users
would get any kind of help in solving security incidents. In summary, improving
security is a lot harder than decreasing it, and a trust-based metric should be
interpreted considering this behavior.

We can also use the same reasoning in terms of the trustworthiness benchmark we
are proposing to justify why Minimum Untrustworthiness provides the best
semantic meaning. Assuming that the benchmark definition is correct, then an
error in the metrics computation can essentially be due to two mistakes: a test that
should have failed is reported as passed, or a test that should have passed is
reported as failed. Let’s then examine what happens in each case:

1. If the test was wrongly considered as passed, then the minimum
untrustworthiness is correct because the real untrustworthiness should
have been higher;

2. If certain test was wrongly reported as unknown or failed but the real
configuration actually should have passed, this indicated that the
benchmark user does not know or does not understand correctly the exact
state of the system. Basically, he erroneously perceived one configuration
as another configuration, and therefore he does not know the answer to
the test. As unknowns are treated as failed tests, this error does not
change the value of the metric. In fact, from a trustworthiness
perspective, a test reported as unknown is always correct, as not knowing
the state of a system is a lack of control that justifies less trust (even if the
security of the system is in fact higher).

4.4 Case Study
The main goal of a benchmark is to provide information that allows making
comparisons across different systems or different configurations of the same
system. When comparing database infrastructures, however, we quickly notice
that the idea of “selecting” one of a set of infrastructures does not appear to be
much useful if we take the point of view of the DBA that is in charge of it.
Instead, in a benchmarking context, his goal would be to evaluate the overall
security state of his installation, in order to be able to improve it, even if that
improvement would further imply being able to select alternative components for
the system (e.g. the DBMS engine or the operating system). For this reason, we
focused only on trustworthiness benchmarking in our experiments.

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

122

Selecting a secure software component of an infrastructure is an important
problem that is discussed and addressed in Chapter 6. We point out, however, that
this reality is changing, and with the appearance of database cloud services (Zhao
2012), effectively selecting a secure transactional system infrastructure among
several alternatives is becoming a relevant problem that can be addressed with our
methodology. For such cases, the base scenario would have to be adjusted, but the
overall methodology would hold.

A security benchmark is also expected to provide information that helps
administrators in further improving the evaluated system. This way, to evaluate
our methodology, we have applied it to four real database installations, and
thoroughly analyzed and discussed the results in terms of what information would
the benchmark user really obtain from the benchmark.

The main input data that required by the benchmark for the computation of the
metrics are the results of the tests that check whether the installation is in fact
following consensual security recommendations (or not). Even though the main
output of the benchmark is the set of trustworthiness metrics, the process of
applying it already provides extremely useful information. Besides showing the
validity of our proposal, we also intend to demonstrate this fact in the case study.

This section is divided in three parts. First, we show the main details of the four
infrastructures we analyzed. Second, we take the results of raw tests to show that
the benchmarking process, by itself, allows drawing some conclusions regarding
the security of the installations (even before computing the benchmarking
metrics). Finally, we compute the benchmark metrics and directly compare the
infrastructures from the perspective of the security problems that they might have.

4.4.1 Systems Under Testing
The proposed trustworthiness benchmark has been applied to four real DBMS
installations using four distinct engines. Table 4.10 presents the relevant details
about each installation, including the DBMS engine used, the operating system
running on the machine, the number of distinct applications using each database
at the time of the evaluation, the number of distinct database administrators and
the number of developers that are not administrators, along with the amount of
time needed to execute the tests.

The tests were applied by one DBA of each installation, with the exception of
Case 2 where two DBAs participated in identifying the answers to the tests. Two
cases were evaluated under the direct supervision of the authors (Case 1 and Case
3) and the other two cases were done independently (Case 2 and Case 4). In these

Security Benchmarking of Transactional Systems

123

two cases, the users that performed the evaluation had only as basis a document
that contained the list of tests (available in Annex A).

Table 4.10 Infrastructures details
 Case 1 Case 2 Case 3 Case 4

DBMS Oracle 10g SQLServer 2005 MySQL 5.0 PostgreSQL 8.1
OS Windows 2003 Windows 2003 Windows XP Windows 2000
Applications 3 54 3 2
DBAs 2 5 2 2
Developers 8 39 0 0
Test Duration 3 hours 1,5 hours 1 hour 1 hour

As we can see in Table 4.10, the scenarios have very different characteristics,
which help in evaluating the benchmark portability. The differences start with the
DBMS engines (which is different in all scenarios) and operating systems used
(three different versions of the same brand). Also, two scenarios are based on free
engines (cases 3 and 4) and two on commercial engines (cases 1 and 2). Most
importantly, two scenarios have a fair number of developers, while in the other
two the DBAs are also the developers. This is an important factor when deciding
what threats are most relevant in each case as, for instance, we are not concerned
with problems involving developers in the situations where there are none. All
databases are used within an academic context in two different universities, being
mostly utilized to support administrative processes that have university staff,
teachers and students as end-users.

Let’s start our discussion by analyzing the time needed to answer all the tests
defined by the benchmark (i.e. the 64 tests). In the worst case (Case 1) the tests
took about 3 hours of work, but the average time spent is slightly more than 1
hour for all cases. This suggests that the test set is not particularly burdensome
and does not require too much work for an experienced DBA. Another interesting
aspect is related to the comparison between the commercial DBMS and the open
source DBMS. The DBAs evaluating the open source DBMS took much less time
to answer the tests than the ones evaluating the commercial ones, and this
becomes even more evident if we remember that in Case 2, which took 1.5 hours,
two people cooperated in the process. We investigated the reasons for this and
found out that the smaller set of security mechanisms provided by the open source
DBMS allowed more easily identifying certain tests as failed (basically because
the DBAs knew they did not have support for the operations stated in the test).
The support offered by the security mechanisms available in the DBMS software
is an important issue that is discussed in more detail in Chapter 6.

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

124

4.4.2 Analysis of the Results of the Tests
The first analysis we can do is related to the number of passed tests (that identify
the number of security recommendations that are implemented in the
infrastructure), the number of failed tests and the number of tests for which the
DBA does not know the answer, the unknown tests. In this analysis we aggregated
the results using the recommendations classification proposed in Section 4.3.2.1,
and computed for each group an Impact Index, which corresponds to the relative
weight (see Section 4.3.2.2) of all the passed tests of a group over the relative
weight of all the tests that are part of each group. This impact index shows how
much of the security surface of each group is correctly protected considering the
different impacts of each recommendation. The aggregated results are shown in
tables 4.11, 4.12, 4.13 and 4.14, one for each infrastructure under testing. The
analytical results for each test and each infrastructure can be found in Annex A.

Table 4.11 Case 1, Oracle 10g installation
 Tests Passed Tests Failed Unknown II
Environment 6 2 0 83,89%
Installation setup 4 11 0 27,30%
Operational Proc. 1 3 0 34,76%
System level config. 16 8 2 55,53%
App. level conf./usage 7 4 0 92,07%
Total 34 28 2 58,44%

Table 4.12 Case 2, SQLServer 2005 installation
 Tests Passed Tests Failed Unknown II

Environment 4 4 0 59,73%
Installation setup 5 9 1 30,43%
Operational Proc.s 2 2 0 85,56%
System level config. 12 13 1 39,20%
App. level conf./usage 3 8 0 50,84%
Total 26 36 2 46,63%

Table 4.13 Case 3, MySQL 5.0 installation
 Tests Passed Tests Failed Unknown II

Environment 3 5 0 44,30%
Installation setup 7 8 0 35,66%
Operational Proc. 1 3 0 50,80%
System level config. 12 13 1 38,78%
App. level conf./usage 4 7 0 65,74%
Total 27 36 1 43,07%

Table 4.14 Case 4, PostgreSQL 8.1 installation
 Tests Passed Tests Failed Unknown II

Environment 3 5 0 46,53%
Installation setup 4 11 0 26,02%
Operational Proc. 1 3 0 34,76%
System level config. 9 15 2 29,29%
App. level conf./usage 6 5 0 68,52%
Total 23 39 2 37,21%

Security Benchmarking of Transactional Systems

125

The most important aspect we can observe in the results is that the number of
unknown answers is very low (always below 2 for the 64 questions in any of the 4
cases). Test number #27, related to the range of ports that are used to connect to
the DBMS, was answered as unknown in cases 2, 3 and 4, meaning that maybe it
should be revised or better explained. However, the rest of the unknown cases are
spread randomly through the test set, which suggests that they are probably due to
either lack of experience of the corresponding benchmarking user or some
difficulty imposed by the software on obtaining the information. Nevertheless,
from a high level perspective, the DBAs did not report any difficulties in applying
the test set. Obviously, it is hard to generally assess the usability of a complex
benchmark such as this one using only four assessments, but the conclusion we
reach within this limited set of results is that the tool appears to have a high
usability.

Concerning the analyses of the types of tests that were pass or not, an interesting
result is the low number of passed tests in the Installation Setup group in all cases
(always less than 50%). Three factors seem to contribute to these results: the
default installation settings are kept and used (this may be exploitable as default
settings are universally known), the inexistence of file system partition planning
for logs and data (which can lead to Denial of Service by exhaustion of disk
space), and the use of an operating system that does not provide easy ways to
keep track of files permissions (that usually force users to use administrative roles
for several tasks).

In terms of the 14 most important database security recommendations presented
in Section 4.3.2.2, we list in Table 4.15.the critical practices missing for each
case. Given the impact assigned to these recommendations, implementing them
would have two immediate consequences: the total impact on the security surface
of the infrastructure related to the overall set of recommendations implemented
would raise to more than 50% in all cases; for the same reason, they would boost
to the overall trustworthiness of the infrastructure.

Table 4.15 Most important best practices yet to be implemented
Case Missing critical recommendations #

1 19, 28, 24, 15, 6 5
2 3, 19, 28, 35, 6, 2 6
3 4, 19, 28, 35, 1, 6, 25 7
4 3, 19, 28, 24, 35, 1, 6, 2 8

As final analysis let’s use the raw results of the benchmark from the point-of-
view of the tests with unanimous results in all cases, as shown in Table 4.16. The

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

126

analysis of the description of the security recommendations from which we
devised these tests spots some patterns. For example, it is clear that tests #6, #7,
#8, #10, #12, #13, #23 and #45 are heavily OS dependent. Thus the same
outcome to all of them can be explained by the fact that all the infrastructures
benchmarked use some version of the same operating system; thus it is plausible
that by simply changing the operating system one could solve most of the issues.
Furthermore, the following is true for the four infrastructures:

• Testing is executed directly over critical production data;

• No auditing is performed (even when provided by the DBMS);

• There is no policy about backup testing;

• There is at least a small list of privileges attributed directly to userids
instead of groups/roles;

• No host based authentication is used;

• None of the DBMS engines has file system access functionalities enabled.

Table 4.16 Tests with unanimous results in all four cases
 # of tests with unanimous results
All cases passed 2, 8, 30, 33, 34, 39, 45, 47, 48, 57
All cases failed 6, 7, 10, 12, 13, 19, 23, 26, 28, 29, 32, 37, 38, 42, 43, 58

4.4.3 Trustworthiness Assessment
Trust-based metrics only make sense after security qualification, where the
obvious attack paths are identified and vulnerabilities that can be easily
discovered are mitigated. Also, the lack of any fundamental security mechanism
is already accounted for. Security qualification of transactional systems
infrastructures is a complex problem, as already discussed in Section 4.2, and
further revisited in Chapter 6.

In this section we are concerned with understand the relative likelihood of the
manifestation of harmful effects (the ones defined by the threat vectors) that may
lead to attacks and vulnerabilities, basically by evaluating how prone certain
security problems are. At this point, we assume that the security of the
installations is at least at an acceptable level (i.e. higher than zero), and the goal is
to distinguish in terms of their ability to prevent future security incidents or
having hidden security vulnerabilities.

We start the analysis by inspecting the general values of the minimum
untrustworthiness metric for each scenario. As presented in Figure 4.1, Case 1 is

Security Benchmarking of Transactional Systems

127

the least untrustworthy, while case 4 is the untrustworthiest. This, in general,
means that more configuration problems (and more critical ones) are present in
Case 4 than in all other cases. However, to obtain more information about the
problems we must analyze the results from the point-of-view of the relevant threat
vectors.

Figure 4.1 General untrustworthiness for each scenario.

Figure 4.2 presents the results of the minimum untrustworthiness metrics for each
threat, grouped by case study. From an analytical point-of-view, there are several
important trends in each scenario. Case 1 appears to be generally the least
untrustworthy of all, and in particular, Denial of Service (DoS) is a threat that is
very unlikely to actually be accomplished.

Legitimate excessive privilege achievement (LegExPrA), on the other hand, is the
threat against which Case 1 is untrustworthier. Considering the fact that there are
8 developers in this scenario, they may end up achieving excessive privileges. In
Case 2, the configuration is very untrustworthy against Communication
weaknesses (CommW). This may be a serious problem as Case 2 has a very high
number of developers and applications (that represent a high number of
application users), and communication weaknesses can be used to eavesdrop data
and authentication information. Case 3 strikes the eye as being very untrustworthy
against Side Channel Data Exposure (SCDtEx). This may or may not be a
problem, depending on the exact characteristics of the environment. In particular,
by having no developers, this might not be a big concern for the DBA, which can
also exclude Communications weaknesses (CommW) from his priorities. Audit
trails weaknesses (AudTW), however, can be a problem, and Denial of Service

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

128

(DoS) surely is. These observations can also be generally visualized in alternative
presentations, as shown in Figure 4.3.

Figure 4.2 Untrustworthiness for each threat, grouped by case

Figure 4.3presents the same data of Figure 4.2, but in a way that allows easily
comparing each case against the others when it comes to individual threats. On
the left graph, the very small untrustworthiness against Denial of Service (DoS) in
Case 1, and the extreme untrustworthiness against Side Channel Data Exposure
(SCDtEx) in Case 3, are the two aspects that are highlighted. The radar graph
presented on the right side of Figure 4.3 allows evaluating again the general
prevalence of untrustworthiness on the different cases. It becomes clear that Case
1 has, in general, the least untrustworthy configuration, and that cases 3 and 4
have the more untrustworthy ones (although it is not obvious that Case 4 is
generally more untrustworthy than Case 3, as is presented in Figure 4.1).

Figure 4.3 Alternative presentations for untrustworthiness comparison
between cases

Security Benchmarking of Transactional Systems

129

From an administrator perspective, comparing individual threats against each
other provide the most useful piece of information of the benchmark, in the sense
that it allows focusing in the threats that are the most relevant for a particular
environment and that have the higher untrustworthiness. One way to approach
this analysis is to evaluate the list of threats ordered from the least untrustworthy
to the untrustworthiest, which allows comparing threats two by two. This analysis
is summarized, for each case, in Figure 4.4. Besides the untrustworthiness
associated with each threat, the graphs also present visually the standard error
associated with the results (Zwillinger, 1995).

Figure 4.4 Fine grain analysis of untrustworthiness, for each case

The untrustworthiness values for Case 1 suggest that the most untrustworthy area
of configuration are related to the Legitimate excessive privilege achievement
(LegExPrA) threat. We can see, however, that given a margin of error,
Illegitimate Privilege Elevation (IllPrEl) should also be a concern in this scenario.
We can actually see a pattern dividing the threats in three or four distinct groups,
with these two threats forming the most untrustworthy group, and Denial of
Service (DoS) being in the least untrustworthy group. Obviously, these
observations depend on the administrator’s perceptions of what would be the
most dangerous threats to his system. Along these lines, in Case 2 we can spot 3
different groups with Communications Weaknesses (CommW) having the highest
untrustworthiness, while the four least untrustworthy (SQLIE, AudTW, SCDtEx
and DoS) have more or less the same values. Case 3 presents at least five clearly

Chapter 4 w Security Benchmarking of Transactional Systems Infrastructures

130

distinct groups, with Side Channel Data Exposure (SCDtEx) being clearly a very
poorly covered threat. Case 4, on the other hand, presents three groups of threats,
with Communication weaknesses (CommW) and Illegitimate Privilege Elevation
(IllPrEl) on the top priority.

The benchmark can also be used to analyze the untrustworthiness from the
perspective of the interaction classes. Figure 4.5 presents the minimum
untrustworthiness computation for each interaction class, in each infrastructure.
This analysis also shows some interesting trends. First, in Case 1, the DBMS
users are the least untrustworthy and the operating system users are the most. If in
this installation there are only a few operating system users, this may not be a big
concern. However, if for example all developers also have an operating system
account, this may be a wake-up call that some improvement should be done. In
Cases 2 and 4, application users are the untrustworthiest. Case 4, in particular, is
highly very untrustworthiness against applications users. In Case 2, on the other
hand, due to the large number of developers, we might consider DBMS users a
most relevant threat than application users.

Figure 4.5 Untrustworthiness computation for the interaction classes

4.5 Conclusion
This chapter presented the instantiation of the framework proposed in Chapter 3
to the case of transactional systems infrastructures. In the first half of the chapter
we developed a set of strategies and techniques aimed at designing the various
components of the benchmark. In the second half we actually applied the
benchmark to four real transactional systems infrastructures, identifying the
characteristics of the installations and demonstrating the potential of our
approach.

Security Benchmarking of Transactional Systems

131

The most important conclusion of this chapter is that our approach is viable and
can be applied in practice. Nevertheless, we cannot ignore the fact that the
process is long and demanding, even considering that the outcome is worth it. A
key aspect to notice is that the design of the benchmark was, in a very basic level,
a process that took as input an amount of consolidated security knowledge about a
domain and converted it into a tool able to provide indications and metrics that
can be readily interpreted by administrators and higher level business managers
that are not security experts. No part of the ben benchmarking use adds security
information to the benchmark, as all the security knowledge that is part of the
benchmark, from the threat vectors, to the pessimistic scenarios and the security
recommendations, is external information provided by reliable sources and
experts. Another aspect is that the framework conducts the benchmark designer to
correctly process and reason about the security information obtained externally,
therefore leading to a tool that effectively represents and takes advantage of all
the knowledge that is put into it.

Finally, an aspect that was not considered yet is the validation of the tool.
Intuitively, a validation process for this kind of tool would be as follows: first, we
would compute the trustworthiness metrics for a set of infrastructures. Then, for a
certain time, we would analyze the existing security incidents within those
infrastructures. The validation would consist of crosschecking the benchmark
metrics with the types of problems observed. However, there is a fundamental
problem with this approach: the security incidents observed would depend on the
two main factors that determine the successfulness of a security breach:
capabilities and intention (also indirectly related to value). Our benchmark, by
design, provides metrics related only with one of these aspects, which is the
capabilities. As discussed in Chapter 3, we should not include in the benchmark
definition external factors such as intention being (see Section 3.2 for a thorough
discussion about the effects and distortions that external factors may cause in the
metrics). As both capabilities and intention are independent, the fact that a certain
well protected area (as indicated by the benchmark) of the system suffers more
security incidents than another less protected one, does not allow to conclude that
the measures are wrong. The reality is that effectively validating our benchmark
proposal is a complex problem that does not have an easy answer, and for that
reason we leave it as future work.

133

5

Trustworthiness
Benchmarking of
Web Applications

This chapter explores the concept of trustworthiness benchmarking in the context
of a controlled evaluation target, i.e. business applications, which are the part of
the system that usually implements the business rules and that provide the
interface to the end-users. The simplest definition we can give to business
applications in the context of transactional systems is that they are the software
designed to handle two main aspects (Yang 2011):

1. To provide the interface via which the end-users interact with the
transactional system (e.g. by inputting information, retrieving
information, and issuing commands);

2. To implement and enforce the rules of the business domain.

For a particular domain, a business application should evaluate what information
requires authentication (or not) to be accessed, and provide the means to perform
such authentication. Also, the application should define the available commands
(and to whom they are available), which processes can be executed, and what data
is required for each process (e.g. the mandatory fields in a data input form).

Even considering that most transactional systems follow a client-server model
(Ram 1999), the exact place where the code is executed largely varies from one
architecture to another. On one side of the business applications spectrum, we
have thin client architectures, where most of the code executes within the server
infrastructure (much like the old mainframe architectures) and the clients serve
mostly for data input and information display. On the other side, we have

Chapter 5 w Trustworthiness Benchmarking of Web Applications

134

architectures where all the code of the application runs on the client platform, and
the communication with the server infrastructure is basically to store and retrieve
data by issuing database SQL calls (or any other equivalent data driven
communication protocol). Obviously, a variety of intermediary approaches can
also be used, including solutions where executable code is present on the client,
on a server, and also in the database engine (e.g. in the form of stored procedures
(Eisenberg 1996)).

One important variation of this distributed approach consists of using application
servers, which are responsible for hosting the executable code that implements
the business rules (in this context the clients have no direct connection to the
backend database). When processing a request, the application server connects to
the database and submits the required data access operations, in a way that is
isolated from the clients. One advantage of this architecture is that it allows the
database infrastructure to be shared by several business applications, remaining at
the same time as an independent server, which allows it to be isolated from
(potentially) untrusted computers and networks (the clients communicate only
with the application server). This approach to transactional systems architecture
design is frequently referred as three-tier architecture (Cardellini 2002).

Transactional systems based on web applications can be seen as a specific type of
three-tier architecture that is becoming more and more popular (Hoffman 2008).
A web-based application transactional system takes advantage of several
standards (e.g. HTML for form design, CSS for interface styling, Javascript for
interface functionalities (Hevery 2009), HTTP and HTTPS for network
communications (Kaufman 2002)) that ultimately allow the developers to focus
on programming the business rules, while most of the communication, network
and infrastructural aspects are automatically handled by a diversity of available
solutions. A web application is typically built based on the following set of
standardized elements:

a) Web server: being the kernel of the application server, the web server is
in charge of receiving client requests and sending the responses back. In
practice, when a request is received, the web server redirects it to the
local process responsible for processing it, and sends the output of that
process back to the client. Several implementations, free and proprietary,
are available out-of-the-box (e.g. Apache HTTP Server, Tomcat, Nginx).

b) Web browsers: applications that run in the client’s computer and that
communicate with the web servers using the HTTP and HTTPS protocols
and primarily display content encoded in HTML. Almost all standard

Security Benchmarking of Transactional Systems

135

browsers support CSS (which is essentially a formatting standard) and
JavaScript (that allows including some local processing capabilities)
languages (Hevery 2009). Standardization makes web applications
inherently cross-platform, providing usability in a diversity of devices.

The development of web applications is highly tied with the infrastructure
restrictions (the database engine and the server application), but it is almost
independent from the client devices. Nevertheless, a huge variety of
implementation languages, from compiled languages to interpreted scripting
languages, can be used for the implementation of web applications (e.g. CGIs,
java, PHP, .net, aspx, etc.) (Morrison 2002).

A key aspect is that the application server is a critical element in a three-tier
architecture, and its security should also be considered in the context of a security
benchmark. However, being a part of the transactional system infrastructure, we
do not address it here. In practice, application servers should be benchmarked
together with the transactional system infrastructure, following an extension of
the methodology proposed in Chapter 4. Although we did not include the
application server in the base scenario defined in Chapter 4, we addressed the
specific problem of web servers’ trustworthiness benchmarking in (Mendes
2008), a joint work that followed the framework proposed in Chapter 3.

Unlike a transactional system infrastructure (typically composed by a variable set
of diverse devices, network infrastructure and software), what defines the runtime
behavior of a web application is contained, in one way or another, in its source
code (possibly along with some small set of configuration files), which makes
available to a benchmark all the relevant information about the inherent security
characteristics.

In the context of our framework (see Chapter 3), a security benchmark for web
applications includes the processes and the analysis required for security
qualification and trustworthiness benchmarking. The first should be defined by
stating the set of tests needed to determine if the web application under evaluation
fulfills the minimum set of security requirements needed to be acceptable in the
application domain (a detailed discussion about those requirements is presented in
Chapter 3). Such requirements are, by definition, primarily domain dependent,
and therefore we refrain from providing any definitive list, as that is considered
out of the scope of this chapter. Nevertheless, for illustration purposes, the
following paragraphs briefly discuss the qualification step.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

136

The qualification elements that can be expected in a wide range of web
applications include: a variety of authentication methods, fine grain permissions
settings, role based privileges, general encryption capabilities (communication
and storage), backup support, auditing mechanisms, logging, support from an
active community or reliable organization, etc. All of these are actual security
elements that are greatly described in typical security literature (Stallings 2010).

Another part of qualification would be the actual search for vulnerabilities, which
can be defined as programming or configuration characteristics that allow the
application to be attacked. These vulnerabilities can be identified by a variety of
methods, ranging from automated static code analysis and penetration testing, to
manual analysis by experts (McGraw 2006). As defined in our security
benchmarking framework, the result of the qualification step is a set of systems
that are acceptable for use, and are thus considered reasonably secure (i.e. the
result of this step should not be used to compare the qualified systems). The
benchmark user will use the tests and evaluations of the qualification
specification in order to sort out the candidates that will therefore have their
trustworthiness evaluated.

This chapter discusses and proposes approaches to obtain relative trustworthiness
metrics for web applications. Section 5.1 presents an analysis of web applications
from a security perspective Section 5.2 proposes a very simple method that allows
computing a trustworthiness metric by using only a set of reliable static code
analysis tools, and this approach is evaluated using several experiments. Knowing
the limitations of the approach proposed in Section 5.2, Section 5.3 develops a
theoretical approach to trustworthiness benchmarking of web applications, which
includes the definition of what would be an “ideal” trustworthiness benchmarking
metric. Finally, Section 5.4 concludes the chapter.

5.1 Web Applications from a Security Perspective
Web applications have several characteristics that make them particularly prone
to security attacks, being their widespread exposure the most important one
(Fonseca 2008a). This exposure obviously increases the probability of being
attacked, including the risk of being used to leverage attacks against other
applications, which forces us to assume the possibility of composite attacks
(which makes the problem even more complex) (Balzarotti 2007).

Another key characteristic of web applications is that the base protocol over
which they are built (HTTP) is essentially stateless, meaning that two distinct
interactions between the web server and a client are more or less independent
(session tokens are actually a work-around for this characteristic) (Chen 2009).

Security Benchmarking of Transactional Systems

137

After a first communication between a user’s web browser and an application
hosted by a web server (potentially including an authentication step), a session
token (which is a simple global unique identifier) is generated and sent to the end
user’s web browser. This token allows the server to keep the track of the actions
performed by the user that owns it (ownership in this case if defined in terms of
knowledge, and an attacker would successfully “steal” a session from a legitimate
user if he manages to discover the value of the session token). From this point on,
communication consists of stateless requests that usually include the following
steps (Balzarotti 2007):

− Step 1. The user sends to the server a set of parameters (e.g. key-value
pairs, which might include the session token) and indicates a target
resource (e.g. a web page).

− Step 2. The server processes the code of the target resource using the
parameters provided by the user. This processing can be extremely
complex, including, for example, file system calls, database calls, and the
execution of other services and processes. If a session token is provided,
then the values stored in the server (and that are associated with that
token) may also be used as input for this execution (e.g. as the case of
session variables).

− Step 3. After finishing processing, the server replies with an output. This
output is usually a stream of data that can have several formats depending
on the application context (e.g. html text, file contents, forms).

Based on this simplified processing model, a typical web application attack
consists of crafting one or more of the input parameters in a way that at least one
of the following effects is achieved:

1. The output on step 3 presents either out-of-format data (e.g. an executable
script code instead of text information) or confidential data (e.g.
confidential database records/fields, private/critical files content, internal
server state information).

2. Step 2 causes the state of the application to be modified in an unintended
way (e.g. database or files modification, unexpected services call,
resources usage).

In other words, a threat can be defined as a particular set of parameter crafting
techniques that aims at causing one or more of the previously mentioned effects
(Jovanovic 2006). For instance, SQL injection (Amirtahmasebi 2009) consists of
manipulating input parameters in order to cause a semantic change in a specific
SQL command that is sent to a database. A cross-site-scripting (XSS) attack (CGI
Security 2010), on the other hand, includes a set of crafting techniques that cause

Chapter 5 w Trustworthiness Benchmarking of Web Applications

138

a state change, forcing the server to output out-of-format data in a set of
subsequent requests (e.g. a executable script code that is sent to another user or
reflected back to the same user).

An important characteristic is that an attack that implements such a threat usually
aims at a specific line of code (or a few strongly coupled lines of code with a
single semantic goal). For example, an SQL Injection attack typically aims at a
single database SQL call, and a XSS attack targets the statements in charge of
returning the output to a user (e.g. a “printf” or “echo” statement). This way, for
each threat type it is possible to identify a set of code statements that can be the
target of such a threat. We call these statements hotspots. In practice, even
though several hotspots may exist for a specific threat, a particular attack is
usually aimed at one specific hotspot (Integrigy 2007). Therefore, the goal of the
attacker is to manipulate input variables that influence a particular hotspot in
order to cause a malicious effect.

From the developer’s perspective, each hotspot is designed with a particular
“business activity” in mind, and helps implementing a given functionality (or set
of functionalities). Usually, a developer defines a set of input values that are
processed (directly or indirectly) by a particular hotspot, and design that hotspot
to generate the corresponding output values or actions. The set of input values
represents the input business domain of the hotspot. Attacks are accomplished by
using values outside that domain and for which the hotspot may not be correctly
designed.

Input business domains are relative to each hotspot. This is important, and means
that these domains may vary from one hotspot to another, and may also differ
from the input domain of the whole web application (i.e. the domain of the
parameters actually provided by the end user). This is a frequently overlooked
characteristic that makes the task of securing the entire web application
considerably more difficult.

The web applications characteristics previously presented suggest two distinct
lines of defense against threats. The first consists of reducing the input domain of
the application as a whole, acting directly on the values provided by the end users.
The idea is to force the input parameters to be within the valid business domains
(for the whole web application) or to interrupt the execution when a value outside
the domain is provided (this is frequently called input validation and can be
achieved by a set of filtering (Liu 2006)). This line of defense, however, is
frequently not enough, as the input business domain of a hotspot may not coincide
with the domain of the application. The problem is that the business domain of
the application corresponds to the composition of the input business domains of

Security Benchmarking of Transactional Systems

139

all hotspots, which makes this reduction extremely complex (or even impossible
in some cases). Consider, for instance, the classical problem of a string value that
contains a single quote, which is the character used as a string delimiter in most
SQL statements (Integrigy 2007). It may not be possible to escape this single
quote universally because the string value may be used in other places besides
SQL statements (e.g. it may be outputted to the user). In this case the developer
must either create an escaped copy of the value (which may not be practical if the
value is further processed, creating potential inconsistencies) or delegate the
responsibility of dealing with this issue to each hotspot. Thus, the actual relation
between the input parameters and each hotspot may be hidden under the
application’s complexity.

The second line of defense, necessary to complement the limitations of a general
input validation strategy, is to guarantee that the values actually used in each
hotspot lie within the input business domain of that hotspot. Several aspects must
be considered in this case, namely: technical characteristics (e.g. the SQL
language details for a SQL execution, the file system structure for a file access);
context characteristics (e.g. the output generated by the hotspot, how the data
should be interpreted and in what context); and the application’s business rules.
These aspects strongly define the characteristics that the values used in the
hotspot must respect in order for the hotspot to always behave in the expected
way. In practice, this set of characteristics defines what we call the Business Data
Type of each hotspot. Strong Business Data Typing (in the same sense of
traditional strong data typing (Tomatis 2004)) is different from a typical data
typing because it takes into consideration all the aspects related to the use of the
value, and not just a programming language and codification perspective of data
typing (e.g. a numeric variable may not contain a string). A key difficulty is that
the Business Data Type of a hotspot may not be easy to identify, as it is the result
of a mixture of business rules, and context and technical characteristics.
Guaranteeing its correctness is, however, the most important part of the defense,
as this is where attacks will take place in a web application (Monga 2009).

In summary, coding best practices for secure web applications can be divided into
two big groups:

• General Input validation: each input parameter of a web application
should be validated against a valid business domain. Values outside the
specified domain should either be replaced by values within the domain,
or the application must halt indicating an input problem.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

140

• Business data typing for hotspots: any value used within a hotspot must
conform to a set of technical, context and business constraints.

In a defense-in-depth approach, the developer is expected to always consider
these two types of best practices, even when one of the types seems to be enough
to protect against a specific threat.

5.2 Benchmarking the Trustworthiness of Web
Applications using Static Code Analysis

Static code analysis is a well-known white-box technique based on the assessment
of the source code (or the bytecode in more advanced analyzers) of an application,
frequently used by developers to discover bugs and security vulnerabilities in web
applications and components (Chess 2007). The goal of this technique is to
identify specific code patterns that represent security vulnerabilities. Most
analyzers are based on expert knowledge (Livshits 2005) that is built directly in
the tool and several tools implementing such technique are currently available
(including free and commercial tools) (FindBugs 2011; Yasca 2011; IntelliJ
IDEA 2011).

From a high-level perspective, a Static Code Analyzer (SCA) commits to a
certain set of patterns that define the types of bugs that it can identify. These
patterns are necessarily limited within the available expert knowledge, which
means that even excellent analyzers may miss particular types of bugs (Chess
2007). In practice, pattern sets for static code analysis can be classified as loose or
tight. A tight pattern matches precisely a wide range of code bugs, but allows
bugs represented by other unpredicted patterns to slip through. On the other hand,
a loose pattern is better for finding bugs in unpredicted formats, but more easily
points portions of code that (even though they appear to be) are not bugs, which
are known as false positives (Chess 2007).

False positives are usually considered bad as they cost time to analyze without
bringing useful information to the evaluator (i.e. they point nothing to correct)
(Nadeem 2012). However, one possibility is that they may carry other kind of
information. In fact, false positives are usually code patterns that “look as” bugs
but are not. In other words, they are code patterns that somehow are "close to
bugs and usually a single detail (either in that portion of the code or in another
related part) separates them from becoming actual vulnerabilities”. In other
words, one hypothesis is that this kind of code (i.e. false positives) may also be
dangerous, meaning that a source code filled with code patterns leading to too
many false positives may be more untrustworthy and prone to vulnerabilities than
one with less.

Security Benchmarking of Transactional Systems

141

In this section we present a series of experiments that investigate the possibility of
combining the output of different SCAs to define metrics for trustworthiness
benchmarking of web applications. In practice, we try to answer the following
question:

Is the combination of state-of-the-art static code analysis tools a potential
approach towards obtaining metrics for comparing the trustworthiness of web

applications and components?

In this study we define four metrics and investigate their behavior, trying to verify
their relation with security attributes. In other words, we attempt to provide
evidence that there is a correlation between these metrics and the security
properties of the benchmarked code. The metrics are based on the raw number of
vulnerability warnings reported by a set of static analysis tools. In this scenario,
instead of formally defining the threat vectors (as in Chapter 4 for transactional
systems infrastructures), we simply assume that the threat vectors are defined by
the insecurity characteristics that the tools are designed to detect (in the end, the
goal is to assess if such threat vectors are representative and correlate with real
security issues or not).

To understand the effectiveness of the proposed metrics, we conducted a set of
controlled experiments. In these experiments, the benchmarking approach was
applied to the detection of SQL Injection vulnerabilities (which are among the
most frequent and dangerous vulnerabilities in the web environment (OWASP
2010)) in different implementations of the TPC-C, TPC-W, and TPC-App
standard applications (TPC 2012). Results show that the raw number of
vulnerabilities detected by static code analyzers allows establishing a rough
tanking of applications, but the unstable nature of false positives is a problem
when performing fine grain comparison. To account for this, we then calibrate the
metric based on false positive rate estimations, which indeed allow improving
precision. To demonstrate the effectiveness of the calibrated metrics, we present
the results of the approach applied to a set of real web applications, namely seven
distinct web forums developed in Java. Results are validated based on an expert
analysis, further showing the usefulness of the proposed approach.

5.2.1 Trustworthiness Metrics
The aggregated total number of security warnings reported by a set of static code
analyzers is the key for building the proposed trustworthiness metrics, but its raw
value cannot be used directly for comparison, and we have to make clear why this
is true before proceeding. In practice, to design a proper metric suitable for
comparison, two problems have to be accounted for, as discussed next.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

142

The first problem is related with the applications being compared, which may
have different sizes. The problem is easy to understand through an example.
Suppose that we are comparing two applications that use exactly the same coding
style, but one is twice the size of the other. If they are similar, they have the same
type of coding patterns, and thus trigger false positives approximately with the
same rate. In this case, the application with bigger size will be considered
untrustworthier, which may not be true.

In fact, suppose we benchmark two applications, A and B. Application A presents
2 warnings and has size X. Application B also presents 2 warnings, but its size is
10X. The idea is to use the raw metric, i.e. the number of warnings, as an
estimator of the number of lines of code that can be considered bad programming
practices. We also hypothesize that more examples of bad programming practices
will tend to lead to a proportionally higher number of real hidden vulnerabilities.
Thus, as both applications have the same number of warnings, the number of
hidden vulnerabilities they are assumed to have should be similar. The issue is
that finding one vulnerability among tens of thousands of source lines of code
(SLOC) is harder, on average, than finding the same vulnerability among a few
thousands of SLOC (from an attacker perspective), which means that, for two
applications with the same number of security warnings, the one with smaller size
is more likely to have one of its vulnerabilities exposed. This rationale is the
extrapolation of the concept of “defect density” (Sherriff 2006), which is used as
a metric of software quality, where it is assumed that software with a higher
defect density most frequently manifests its defects, as code with defects is
executed with a higher frequency (therefore, the software with the higher defects
density is the one that is classified worse, and not the one with the higher absolute
number of defects). This way, to allow fair comparison, the number of security
warnings has to be normalized by the size of each application, so that the size
does not distort the results. In other words, instead of the absolute number of
security warnings, what we need is the security warnings density of the
application.

The second problem that has to be taken into account when using the results of
several static code analyzers to build a trustworthiness metric is related to the
effectiveness of such tools, and has to do with the frequency with which each one
yields false positives. As static code analyzers are mostly based on search
patterns, the number of times that these search patterns are triggered is directly
related to the intrinsic characteristics of each implementation, and varies
drastically from one analyzer to another. While we want these different patterns
to count, we do not want one analyzer to be awarded more importance in the

Security Benchmarking of Transactional Systems

143

results than the others. In other words, if one analyzer tends to trigger
proportionally much more warnings than another one, this would lead the results
of this analyzer to have more important in the calculation of the final metric. This
way, it is necessary to guarantee that all analyzers contribute in the same way for
the final result.

The exact number of false positives depends not only on the analyzers, but also
on the combination of their search patterns and the code being analyzed
(Littlewood 2010). However, as we are designing a procedure that should serve to
compare different applications, we may not have access to the source code
beforehand, therefore the best that we can do is to compute an average estimation
of the false positives rate for each analyzer. Assuming that a tool implements
either a tight search pattern (that tries to hit a precise set of known vulnerability
types) or a loose search pattern (having a more broad, but also more unreliable,
search pattern), then it will tend to report, respectively, less or more false
positives in a consistent manner. Obtaining these factors - an average of the false
positive rate for each tool - allows us to calibrate the number of vulnerabilities
reported in a way that all tools end up having approximately the same
contribution to the final metric. As computing these estimates is a difficult
problem and should rely on an extensive and targeted evaluation, in our
experiments we adopted the estimates provided in (Antunes and Vieira 2010),
where the authors computed such factors in the context of web services for the
same tools that we use in our experiments (see Section 5.2.2). However, for other
tools, these values have to be estimated, possibly using a methodology similar to
the one proposed in (Antunes and Vieira 2010).

Considering the previous discussion, the metrics we propose and analyze are:

• Raw Number of Vulnerabilities Reported (Raw-NVR). Represents the
sum of the number of vulnerabilities reported by each of the SCAs
considered. Obviously, we are expecting that different tools detect
different vulnerabilities (as is demonstrated in (Littlewood 2010)) and that
the union of the search patterns of all tools achieves higher coverage than
any single tool. As explained before, this metric is expected to be biased
by the tools characteristics, and we do not expect this to be the best metric,
even though it should also correlate with security aspects. However, it is
very easy to obtain.

• Calibrated Number of Vulnerabilities Reported (Cal-NVR). To reduce
the impact of different false positives rates we evaluate the application of a
calibration factor, as previously explained. This metric is computed by

Chapter 5 w Trustworthiness Benchmarking of Web Applications

144

applying a constant factor to the Raw-NVR metric using the estimates
provided in (Antunes 2010).

• Normalized Raw Number of Vulnerabilities Reported (Norm-Raw-
NVR). To take into account the size of the application, we also compute
normalized metrics. In our experiments we define Norm-Raw-NVR as
Raw-NVR per 100 lines of code. This could be done using any other
normalization factor relative to size, like the number of classes or the
number of features; what is important is to allow expressing the warning
density of the application (Gencel 2008).

• Normalized Calibrated Number of Vulnerabilities Reported (Norm-
Cal-NVR). This is the normalized version of the Cal-NVR metric,
considering again 10k SLOC as the normalization factor.

The next sections present a detailed analysis of the semantics of these metrics
from a benchmarking point-of-view, trying to reason about what is exactly the
meaning of the numbers being reported.

5.2.1.1 SCAs Reports as a Trustworthiness Metric
An important assumption of this work is that the aggregated reports of a set of
static source code analyzers can be considered a fair measure of trustworthiness
(i.e. they provide enough evidence of security practices to allow comparison from
a security point-of-view). This assumption has a crucial consequence: as true
vulnerabilities are not distinguished from false positives, we are effectively giving
them the same importance. This is extremely important and deserves some
justification.

It is clear that any real vulnerability in a web application is an immediate security
hazard. If a static code analyzer can find it, then it is likely that some attacker will
also be able to find it, thus it would be extremely dangerous to use the application
as is. However, within our framework, the task of distinguishing acceptable
applications from the unacceptable ones is performed during the security
qualification step, and not via trustworthiness benchmarking. Because of this, we
assume that if true vulnerabilities (that can be found by static code analyzers) are
present during trustworthiness benchmarking, then these vulnerabilities are, from
an objective perspective, as harmless as false positives. In other words, if those
vulnerabilities are not harmless, then the application under benchmarking would
not qualify in the first place. Therefore, our trustworthiness benchmarking
approach starts from the principle that any security problem in the source code is
related to hidden and hard to detect vulnerabilities that can only be estimated and
not actually found. In this sense, the original hypothesis translates into the idea

Security Benchmarking of Transactional Systems

145

that the aggregated results of false positives of several SCAs may help on
estimating the quality of web application code (from a security point-of-view),
which is directly affected by the number of hidden vulnerabilities.

Another assumption we make is that the characterization of the trustworthiness of
an application must go beyond what is allowed by a simple vulnerability
identification process. Typical web applications are constantly being upgraded,
fixed and improved, and these maintenance tasks are often a source of new
vulnerabilities (Shahzad 2012). Also, it is well known that new features are
usually developed more or less in the same coding style of the rest of the
application. The reality is that the probability of new bugs to be added during a
source code maintenance task has a direct relation with the probability of having
vulnerabilities introduced due to the coding style being used (Shahzad 2012). This
is fairly simple to understand if we consider that most vulnerabilities are simple
forgotten details (e.g. one parameter among several that is not validated properly).
On the other hand, if the coding style makes it inherently difficult to disregard
such details, then the code should be considered trustworthier.

Considering these aspects (and assuming a benchmarking perspective where the
goal is to fairly compare applications), metrics based on the number of reports
seem to be quite reasonable, as long as they do relate to secure or insecure coding
styles. The reasoning is that if they do correlate with security aspects (and the
most they correlate, the better) then the proposed metrics are useful.

5.2.1.2 Combining the Output of Several Tools
The Number of Vulnerabilities Reported (NVR), which is the simple count of the
security warnings reported by a tool, can be expressed by three factors: the
number of True Vulnerabilities in the code analyzed, the number of Missed
Vulnerabilities (MV), and the number of False Positives (FP). In short, NVR can
be defined by the following equation:

NVR = TV – MV + FP

As mentioned before, different analyzers end up presenting different results
because they scan for different vulnerability pattern sets. One way to find more
vulnerabilities and insecure coding patterns is to have a looser pattern set
(potentially increasing the number of false positives). Another way is to use
several different tools that implement different and complementary patterns. The
combination of several SCAs is an easy way to amplify the search pattern,
without raising the false positives rate significantly. In this case, the aggregated
result can be expressed as:

Raw-NVR = TV – MA + FP1 + FP2 + … + FPn

Chapter 5 w Trustworthiness Benchmarking of Web Applications

146

where FP1 to FPn represent the false positives reported by each tool and MA is the
number of vulnerabilities missed by ALL scanners. MA will be significantly
smaller than any individual MV if the search patterns complement each other.

As we assume that obvious vulnerabilities (detected by SCAs) were previously
(i.e. before the trustworthiness benchmarking step) fixed by developers or are as
harmless as false positives, we can consider that only the vulnerabilities missed
by ALL analyzers remain in the code, and no true vulnerabilities are reported. So,
Raw-NVR can actually be defined as:

Raw-NVR = FP1 + FP2 + … + FPn

We expect this metric to give an insight on the trustworthiness of the
benchmarked code, based on the number of false positives. In other words, the
biggest the Raw-NVR, the more untrustworthy is the code and the higher is the
number of vulnerabilities hidden. If our metric (i.e. the number of false positives)
correlates to the security of the application, then in some sense false positives
must be proportional to the number missed/hidden vulnerabilities. In practice, if
this proportion is equal for all SCAs in all benchmarked applications, then the
Raw-NVR should be the best metric in our set. However, as false positives
depend much on the patterns of each tool and on the code being benchmarked, it
is possible that Raw-NVR unrealistically award more importance to the results of
the SCA that tends to report more false positives, which would not be in the best
interest of the benchmark. To better understand this case, we should consider
calibrated metrics.

5.2.1.3 Calibrated Number of Reported Vulnerabilities
In order to reduce the influence of false positives rate of specific SCAs, we
propose to calibrate the results from the individual tools by applying a factor to
the number of reported vulnerabilities. Assuming that that rate depends on the
pattern of the SCA and is proportional (on average) to the number of missed
vulnerabilities (MV), we conclude that NVR is determined by the following
equation, where FPF represents the False Positives Factor for a specific tool:

NVR = MV * FPF

By dividing the number of vulnerabilities reported by the False Positives Factor,
we obtain the number of missed vulnerabilities. Thus, if we aggregate several
calibrated SCAs, we get the following calibrated NVR metric:

Cal-NVR = NVR1 / FPF1 + … + NVRn / FPFn

Cal-NVR = n * (MV1 + … + MVn)

Security Benchmarking of Transactional Systems

147

Assuming that the vulnerabilities missed are the same for all analyzers (i.e. the
detected ones were corrected before starting the trustworthiness benchmarking
step) then Cal-NVR is proportional to the number of hidden vulnerabilities. A key
aspect is that the False Positives Rate required for each tool corresponds to an
estimation of the average rate of false positives reported by that tool in a wide
range of possible source codes. The problem then becomes gathering realistic
estimates for FPF, which is not a simple task. In our work, we use the estimates
presented in (Antunes 2010). This work provides an evaluation of the average
false positive rates for several SCAs in the context of Web Services, which are
usually based on similar constructions and programming languages as Web
Applications in general (Almonaies 2011).

5.2.1.4 Normalized Metrics
The proposed normalized metrics are quite easy to compute. Basically, the idea is
to apply to the previous two metrics a factor that represents the size of the
application being benchmarked. The metrics present then the following form:

Norm-Raw-NVR = Raw-NVR / Size_Factor

Norm-Cal-NVR = Cal-NVR / Size_Factor

Any factor that represents what the benchmark user understands by “application
size” can be equally fair. For instance, the number of classes or the number of
features can be both used (Gencel 2008). However, as vulnerabilities tend to
manifest in specific lines of code (see discussion in Section 5.1), source lines of
code (LoC) appear to be the most interesting and adequate size metric. In our
experimental evaluation, we consider 100 LoC as the size factor for convenience
and readability, as it has absolutely no effect in the relative values (i.e. they do not
affect the comparison of tools).

5.2.2 Empirical Analysis of the Metrics
To understand the effectiveness and validity of the proposed metrics, we
conducted a series of experiments under controlled conditions. For these
experiments, we designed three distinct versions, each one with distinct security
qualities, of four of the web services specified by the TPC-App standard (tpc
2011), which is widely accepted as being representative of web services. Using
these implementations, we analyzed the behavior the NVR-Raw metric by
comparing it to the number of true vulnerabilities in each version. This analysis
was done for all the applications and also at a component level. In a subsequent
experiment, we created sixteen versions of three completely distinct web services,
one from the TPC-App, one from the TPC-C (TPC 2005) and another from the
TPC-W (TPC 2002) standards. These sixteen versions where created by injecting

Chapter 5 w Trustworthiness Benchmarking of Web Applications

148

real vulnerabilities in each of the versions, creating a progressively worse set of
applications. We then computed and analyzed the NVR-Raw metric and the
calibrated metrics of each of these versions.

5.2.2.1 Static Code Analyzers and Web Applications Studied
The experimental setup is based on three well-known SCAs: FindBugs (FindBugs
2011), Yasca (Yasca 2011), and IntelliJ Idea Analyzer (IntelliJ IDEA 2011).
These tools are widely used by practitioners and were also applied in several
previous research works (e.g. (Ayewah 2007, Antunes 2009, Antunes 2010)). The
experiments focus only on SQL Injection, as this vulnerability is one of the most
frequent and dangerous in web applications (OWASP 2010), and also because
(according to the vendors’ web sites) the three tools are able to detect them. Note,
however, that any other type of vulnerabilities for which good tools exist could
have been considered.

To implement the services, we started by inviting a 3rd year undergrad student.
During a subsequent security inspection conducted by us, 9 SQL Injection
vulnerabilities were identified in this first version (referred to as implementation
V1). Afterwards, we took this implementation and, by performing the minimum
changes possible, corrected the 9 vulnerabilities, creating an implementation
similar to V1, but with no SQL Injection vulnerabilities (called V2). Finally, we
invited an experienced programmer (with more than 3 years of programming
experience and extensive knowledge of security of web applications) to develop a
secure version of the same application (named V3), which presented zero
vulnerabilities during code inspection. In summary, the experiment included
implementation V1, with 9 vulnerabilities, implementation V2, with 0
vulnerabilities, but having a coding style very similar to V1, and implementation
V3, with 0 vulnerabilities and having a coding style completely different from V1
and V2. All applications have approximately the same size (a few hundreds of
lines of code), and therefore normalization of the metrics is not necessary. We
study metrics normalization when comparing real applications in Section 5.2.3.

5.2.2.2 General and Component Level Analysis of Raw-NVR
We started the experiments by computing the Raw-NVR metric for the three
versions. Figure 5.1 presents the results, including the true vulnerabilities (as
detected in our manual analysis).

As shown, the metric clearly highlights some differences in the security of the
applications. The actual Raw-NVR value is very different from the true number
of vulnerabilities, but the relative values resemble very accurately the security of
each version. In fact, both V2 and V3, which have no vulnerabilities, scored the

Security Benchmarking of Transactional Systems

149

same value (10), while the implementation with 9 vulnerabilities scored more
than the double of the others. Even though we expected similar values for V2 and
V3, it was a surprise that they both scored so equally. To better understand this,
Figure 5.2 Component level evaluation of Raw-NVRbreaks down the metric for
the four services in each version. As we can see, even though V2 and V3 scored
equally in total, the distribution of the false positives is quite different in both
implementations. In V2 they are centered in the NewCustomer service, while in
V3 they are more evenly spread. The higher than average score found in the
service in V3 calls the attention as this means that this service was built using a
programming pattern different from the rest. At the same time, we notice that the
programming style used by the experienced programmer was more consistent,
and no module stands out from the others. Nevertheless, we cannot forget that this
is the Raw metric, and these results are biased by the false positives rates of the
tools.

Figure 5.1 Benchmark results of our controlled TPC-App versions

To more extensively evaluate the problems of the NVR-Raw metric we did
another experiment using implementations of three different TPC services
implemented by three distinct developers: NewCustomer service from TPC-App,
CreateNewCustomer service from TPC-W, and Delivery service from TPC-C,
having zero known vulnerabilities each (these specific classes were chosen by the
simple fact that at the time of the experiments they were already implemented for
other research works, but were exactly what we needed for our experiment,
therefore we would not have to wait again for new implementations. It is
important to understand that other classes could also have been chosen).

Based on these three initial implementations, we created 15 more versions for
each service by injecting randomly chosen SQL Injection vulnerabilities in the
code (the vulnerabilities injected are from real samples drawn from vulnerable

Chapter 5 w Trustworthiness Benchmarking of Web Applications

150

versions of the same applications). The idea was to create different versions of the
same applications that were progressively worse in terms of security, which
would allow analyzing the metrics behavior by comparing the values computed
for each version. The 15 versions of each service were generated as follows: first
we created four versions with one different vulnerability each; then, we took these
four versions and by mixing each of the four vulnerabilities we created the
remaining combinations (6 versions with all combinations of 2 vulnerabilities, 4
versions with 3 vulnerabilities, and one version with the 4 vulnerabilities).

Figure 5.2 Component level evaluation of Raw-NVR

Figure 5.3 shows the Raw-NVR metric for the 16 versions of each service,
ordered by version (the version with no vulnerabilities is number 1, the ones with
1 vulnerability are numbered 2 to 5, and so on). The dotted line in the graph (the
bottom one) is a baseline representing the true number of vulnerabilities in each
corresponding service version (i.e. the vulnerabilities injected).

The data presented in Figure 5.3 clearly shows the imprecise nature of the Raw-
NVR metric when used to compare components that have a very similar (or
equal) number of true vulnerabilities. We can see that in some cases the metric is
more influenced by the false positives than in others, yielding a varied number of
erroneous characterizations. For instance, the profile of the Delivery service
metric is very similar to the base line (which portrays the true number of
vulnerabilities of each version), allowing a fair relative comparison. In fact, the
metric on this service shows an error only in 3 cases: when we compare versions
4 and 5 with versions 6 to 8, and when we compare versions 11 and 12. On the
other hand, for the service CreateNewCustomer, the metric leads to several
erroneous comparisons, stating, for instance, that version 5 is worse than versions

Security Benchmarking of Transactional Systems

151

6 to 13, which is not true because we know that version 5 has less vulnerabilities
than the others.

Figure 5.3 Raw-NVR evolution in 16 versions of 3 different services, ranging
from 0 to 4 vulnerabilities

An important aspect that can be observed in Figure 5.3 is that the experiment
confirms our first hypothesis: if there is a significant difference in the number of
vulnerabilities, the metric actually portrays it. In fact, in all implementations, the
versions with 0 or 1 vulnerabilities are better scored than versions with 4
vulnerabilities, despite how erratic the false positives rate. This suggests that
using the results of several representative SCAs may be a representative way to
compare the trustworthiness of web applications that have a very distinct security
quality, but may not be a so good approach to distinguish applications that are too
similar (in security terms).

5.2.2.3 Analysis of Cal-NVR
As mentioned before, to calculate the Cal-NVR metric we adopted the calibration
factors proposed in (Antunes 2010). The False Positive Factors used are 7% for
Findbugs, 36% for Yasca, and 67% for IntelliJ Idea. To understand the accuracy
of this metric we computed it for the 16 versions of the NewCustomer,
CreateNewCustomer, and Delivery web services mentioned above. The results are
presented in Figure 5.4.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

152

Figure 5.4 Calibrated metric analysis for the 16 versions of each service

Figure 5.4 shows that the detailed pattern of the curves did not change much
(when comparing to the Raw-NVR metric shown in Figure 5.3). This was more or
less expected, as the calibration factor is constant. The other thing that can be
observed is a really important improvement. While for the Raw-NVR metric the
three curves almost never intersect (as shown in Figure 5.3), the same does not
happen for Cal-NVR. This suggests that, even though the comparison between
versions of the same service is roughly accurate when using the Raw-NVR
metric, comparisons between different services are completely off. The calibrated
metric, on the other hand, is better than the raw metric when comparing diverse
software. This claim, however, requires more evidence, as presented in a more
broad evaluation in the next section.

5.2.3 Experimental Evaluation
In this section we present an experiment conducted to understand the validity of
the metrics in a scenario more close to a real use case of trustworthiness
benchmarking. To accomplish this, we used the proposed benchmark to rank
seven distinct web forums implemented using Java, and having a variety of sizes
and features. In order to have a baseline for comparison, we invited six experts to
rank these same seven web forums. Of these six experts, four are PhD students
working in the area of web applications security, all of them with at least two
years of experience in the field. The other two are software engineers with more
than five years of experience in the development of web applications with
security requirements.

Security Benchmarking of Transactional Systems

153

The problem we proposed to these volunteers was quite simple and
representative, and can be summarized as follows:

“Suppose your company wants to install a web forum for its employees to
communicate internally, but the forum will also be accessible through the web.
Concerning features, usability and performance, it was determined that any of
these seven web forums can be used. Your job is to provide a ranking among
these seven web forums concerning security: the ones most secure (in the
broadest sense of the word) come first. No ties are allowed”

To conduct this task, we asked the volunteers to consider in the ranking process
all the aspects they believe to be important from a security point-of-view and also
to report the overall process and judgments that lead them to their decisions. This
allowed us to have a rough idea of the most important aspects considered by the
experts when analyzing the web applications, which we took into consideration in
our final analysis (see Section 5.2.2.3).

The web forums benchmarked are the following: Yazd 3, JavaBB v0.99, JForum
v2.1.9 and v3beta, JGossip v1.1.0, mvnForum 1.2.2 and JSForum 0.0.1 beta
(Forums Benchmarked, 2011), all available for free download. Most of these are
extremely popular (e.g. Yazd and mvnForum), others not so much (e.g.
JSForum). To make the experiment the most representative possible, we used a
set of representative criteria to select the forums, namely: they have the most
common features expected in a web forum, they are developed in Java, and the
source code is publically available. The last two criteria were necessary as the
static analyzers used target only Java code and require the source code of the
application to be available (even though FindBugs only requires access to the
bytecode). Clearly, these constraints may be changed if another set of analyzers is
chosen. At the same time, it is expected that results provided by different sets of
analyzers should not be compared (in absolute terms).

In this experiment we decided to evaluate only the Raw-NVR and Norm-Cal-
NVR metrics, omitting the intermediary Cal-NVR and Norm-Raw-NVR. We
chose to not analyze these metrics for two reasons: first, we already established,
in the controlled experiments, that the calibrated metric is better suited for
comparing diverse software, which is what we are doing in this experiment;
second, we need to apply normalization because the forums being compared have
very different sizes, and as discussed previously, we need to focus on the problem
of density.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

154

We also invert the Norm-Cal-NVR metric in order for it to grow with the
trustworthiness of the application. This is only a cosmetic decision, and the
behavior of the metric does not change. However, in order to be consistent, we
call this inverted metric as Trustworthiness Metric (TM). TM is computed as the
inverse of Norm-Cal-NVR, so that it grows with less vulnerability warnings. The
exact formula for TM is as follows:

TM =
No. Lines of Code/100

F*0.93 + Y*0.64 + I*0.33

where F is the number of security warnings reported by Findbugs, Y is the
number of warnings reported by Yasca, and I is the number of warnings reported
by IntelliJ Idea, while the constants are the false positive factors of each tool, as
explained before. The trustworthiness value is normalized in terms of the size of
the target application considering blocks of a hundred lines of source code.

5.2.3.1 Analysis of the Overall Results
Table 5.1 presents the overall results of the benchmark, where the first column
presents the rank of each application. We also include the number of Lines of
Code and the average Cyclomatic Complexity of each application (Lyu, 1996).
Cyclomatic complexity is a metric that tries to express how complex a certain
code is by counting the number of linearly independent paths through a program's
source code. It is speculated that a source code with high cyclomatic complexity
could induce software bugs due to the difficulties involved in manipulating and
testing such complex code correctly (Lyu, 1996). If this is the case, then it is
possible that cyclomatic complexity may also be a good estimator for the
trustworthiness of a web application, so this comparison is relevant.

Table 5.1 Web forums ranked by Trustworthiness (TM).

#	 Web	 Forum	 Lines	 of	
Code	 Avg.	 CC	 Raw-‐NVR	 Trustworthiness	

Metric	 (TM)	
1	 JGossip	 1.1.0	 34633	 1,89	 4	 138,5	
2	 JForum	 3	 47650	 1,43	 8	 93,4	
3	 JForum	 2.1.9	 61262	 2,05	 16	 64,5	
4	 Yazd	 3	 56255	 2,41	 58	 17,7	
5	 JavaBB	 0.99	 23807	 1,49	 41	 10,2	
6	 mvnForum	 1.2	 76774	 2,73	 108	 10,2	
7	 JSForum	 0.0.2	 1693	 2,76	 58	 0,4	

Security Benchmarking of Transactional Systems

155

Up to now, we have not yet established the reliability of the proposed metrics, so
we cannot assure that the order is correct; this will be addressed later in Section
5.2.3.3. However, we can start analyzing the relationship between the total
number of security warnings (Raw-NVR), the Trustworthiness Metric (TM), and
the average Cyclomatic Complexity (CC) of the benchmarked applications. At
first glance, the average CC does not appear to correlate well with any of the
metrics. When it comes to CC and Raw-NVR, JGossip and JForum 3 have
inverted positions, and JavaBB, which has a small CC, actually has a fair high
Raw-NVR. The last two positions are also inverted regarding these two metrics.

When comparing CC with TM, even though the last two positions are the same,
bigger differences in the metrics are observed. For example, JavaBB and
mvnForum, while having the same TM values, also have dramatically opposite
CC (one on the top and other at the bottom). Given these differences, the only
conclusion possible is that if CC is a good estimator for the trustworthiness of
code, then our metrics are not, and vice versa. In Section 5.2.3.3 we show that our
metric has merit to compare applications, suggesting that CC is not a good
trustworthiness estimator for security aspects.

Another important analysis is the comparison between Raw-NVR and TM.
Although they present more or less similar rankings, like, for instance, in the three
first positions, there are some crucial differences. Take for example the scores for
JSForum and Yazd3. Even though they have exactly the same Raw-NVR values,
they present very different trustworthiness values. This is mainly due to their
relative sizes: Yazd3 is much larger than JSForum. Because they present the same
number of warnings, JSForum has a higher warning density, which in principle
may manifest as a high propensity to hidden vulnerabilities. The same rationale
applies, in a smaller scale, to the differences between JavaBB and Yazd3. An
interesting aspect is that, even though they have a quite different number of
warnings, JavaBB and mvnForum ended up having the same trustworthiness. This
means that, while they have different sizes and warnings, they present
approximately the same defect density, so they have similar propensity to
vulnerabilities.

As TM is essentially designed for comparison, the actual values of the metric are
not meaningful, so absolute scores of 10 or 100 do not translate semantically into
anything: what is meaningful are the relative values. If we compare the scores of
each application with the others, we observe that the applications can be actually
divided in three big groups: the first group is composed by the top 3 applications
(JGossip, JForum 3 and 2.1.9), which have very high scores. The second group is
comprised of the following 3 applications (JavaBB, mvnForum and Yazd3),

Chapter 5 w Trustworthiness Benchmarking of Web Applications

156

which are separated from the first group by a factor of approximately four
(calculated by dividing the TM of JForum 2.1.9, which is 64.5, by the TM of Java
BB, which is 17.7). The last group includes only one application, JSForum, with a
score of less than 1/20 of the worst score of the second group. Even though it is
difficult to argue that an application within a given group is explicitly better (or
worse) than the others on the same group, the difference between each group is
significant. The question now is whether this difference does map into real
evidences; if it does not then the metric cannot be considered representative. To
actually evaluate this aspect, we have compared this ranking with the assessment
provided by the six security experts.

5.2.3.2 Benchmark Results vs Experts’ Analysis
The final output of the assessment performed by each of the six experts was a
table with their proposed ranking, which consists of a simple ordering
accompanied by a qualitative description of the process they used to determine it.
A key aspect is that no single pair of experts proposed the same ranking, which
shows that individual human analysis may not be a good source for
benchmarking, as the ultimate result is based on opinion and knowledge that
varies from person to person, and that is, most likely, not repeatable (unless a
detailed process is followed, as the one proposed in Chapter 4 for security
benchmarking of transactional infrastructures).

In order to compare the experts’ evaluations with the results of the trustworthiness
metric, we need to have an agreement between the experts. Although several
options could have been followed to achieve that agreement, we decided to
consider a simple average between the rankings provided by them (similar to a
voting scheme). Table 5.2 presents the ranking proposed by each expert, along
with the average for all experts, and the values for the trustworthiness metric.

Table 5.2 Experts’ rankings

Forum	 Exp1	 Exp2	 Exp3	 Exp4	 Exp5	 Exp6	 Avg.	
Rank	

TM	

JGossip	 1.1.0	 3	 2	 3	 2	 6	 7	 3,83	 138,5	

JForum	 3	 1	 1	 1	 1	 1	 1	 1,00	 93,4	

JForum	 2.1.9	 4	 3	 4	 3	 2	 2	 3,00	 64,5	

Yazd	 3	 6	 5	 2	 4	 4	 5	 4,33	 17,7	

JavaBB	 0.99	 2	 6	 6	 5	 5	 4	 4,67	 10,2	

mvnForum	 1.2	 5	 4	 5	 6	 3	 3	 4,33	 10,2	

JSForum	 0.0.2	 7	 7	 7	 7	 7	 6	 6,83	 0,4	

Security Benchmarking of Transactional Systems

157

There are several relevant aspects in this analysis. The most obvious is the
unanimity regarding the first place, JForum 3, which was actually ranked in
second by the benchmark. This does not invalidate our benchmark, as the scores
of the three first positions are proportionally very close. What differs most is the
fact that JGossip, the first in the benchmark ranking, came as third in the average
of the experts, which requires a more thoughtful analysis.

A close look to the scores provided by the experts shows that the first four put
JGossip in the top 3 forums (which, in average, would actually put it in the
second position), while experts Exp5 and Exp6 decided that it should be
positioned in the bottom of the ranking, along with JSForum. By analyzing the
experts’ justifications, we can observe that both Exp5 and Exp6 did not take into
account the source code specificities, which is actually the only aspect that is
portrayed by our trustworthiness ranking. While experts 1, 2, 3 and 4 mention
clearly the fact that JGossip is correctly designed, something that our metric
expressed quite well, the justifications for the Exp5 and Exp6 rankings were
threefold: lack of paid support, not being actively updated, and inexistence of a
community of users capable of helping mitigating future security incidents.

The goal of our trustworthiness benchmark is to provide a metric able to help
selecting the application that is least likely to have security incidents in the future,
and not the one with better outside support when incidents occur. Obviously, this
information cannot be extracted from the source code of the application, and it is
unlikely that we will ever be able to include it in a security benchmark. While this
is a complementary aspect that should, of course, be taken into consideration
when selecting among applications, it does not invalidate the value of our
automated benchmark.

Another key observation is that, although ignoring source code aspects, experts 5
and 6 still considered JForum 3 the best option. Their confidence is justified by
the existence of an active development community and the offer of paid support.
Obviously, source code quality cannot be directly related to this, suggesting that
the experts ranking may be actually a coincidence. In fact, this coincidence is
confirmed by the scores given to mvnForum, which was ranked in the second half
of the raking by the first four experts, for reasons like: being “less organized and
maintainable” and employing “incorrectly prepared statements, using
concatenations of values instead of parameters”. These characteristics clearly
show that mvnForum is based on an insecure coding style, where a simple coding
error may cause the introduction of vulnerabilities. However, experts 5 and 6
ranked it quite high based on the argument that an active community supports its
development.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

158

If the scores given by the benchmark for JGossip are too high, and should actually
have been lower because JGossip lacks of an active community and support
(which is the opinion of experts 5 and 6), than we could also argue that the scores
that were given to mvnForum by these same experts are also incorrect as they did
not take into account the insecure coding style, something which was fairly
expressed by our automated benchmark. The problem we are considering here is
that even though we cannot automatize the identification of the fact that certain
software does not have active community, we can automatize the identification of
insecure coding patterns in the software. If the information provided by our
benchmark was available to experts 5 and 6, then they would surely not consider
giving mvnForum a ranking as good as they did and, at the same time, they would
possibly consider the fact that JGossip is in fact securely designed. This
discussion demonstrates how important is the kind of results that our benchmark
provides when it comes to complement other types of analysis. Should experts 5
and 6 have an automated method to accomplish this technical evaluation, they
would never fail in this regard.

Another important aspect that can be observed in Table 5.2 is the unanimous
ranking given to JSGossip. As pointed by some of the experts (particularly
experts 1 and 2), this application is crawled with vulnerabilities, and should never
be considered for use because it has “the worst design possible when it comes to
security precautions”. Being a project abandoned since 2003, experts 5 and 6 also
assigned low rankings to it. However, if they ever had to choose between JGossip
and JSForum (both of which do not have active communities), only an automated
tool like ours could point out how dramatically better-designed JGossip is. In fact,
we do believe that positioning JGossip after JSGossip, as done by Exp6, is an
indefensible mistake that should be prevented.

A key aspect that can also be noticed when analyzing the average rankings of the
experts is that the three groups of applications suggested by our trustworthiness
benchmark are exactly the same as the ones we could create based on the experts’
rankings (even if we also include the biased evaluations given by experts 5 and
6). The top three applications (for both the experts and the benchmark) are
JForum 3, JForum 2.1.9, and JGossip. The intermediary group is formed by
mvnForum, JavaBB and Yazd 3. Finally, JSForum is isolated in the last position.

Looking closely to the rankings of the middle group (Yazd 3, mvnForum, and
JavaBB), we can see that the experts that did consider source code evidences
could not reach any kind of consensus regarding their relative ranking. Our
benchmark could also not differentiate them very much: while all of them are not
terribly designed, they are not good examples of secure design. In fact, all three

Security Benchmarking of Transactional Systems

159

present coding patterns with a “propensity to the introduction of vulnerabilities”,
as stated by one of the Exp1.

In summary, our benchmark ranking matched fairly well the joint opinions of the
six experts. While one drawback of our method is the inability for evaluating the
kind of support the users can get from the community, which is indeed an
important aspect when evaluating some new software, it correctly considered and
portrayed all source code aspects that our experts took into consideration.
Actually, in the cases where the experts did not take source code information as
basis for the ranking, some poor decisions were made. This shows that our
proposal can help in benchmarking the trustworthiness of applications, by
considering technical aspects regarding the source code, which may be far from
the reach of administrators and users with reduced security knowledge. Although
characteristics like the existence of an active community can be easily assessed by
an administrator, technical details like the correctness and security of the design
of an application begs for the use of an automated tool, role that our proposal
seems to fulfill in an adequate manner.

5.2.3.3 Cross Validating based on Source Code Characteristics
To further understand and cross-validate not only the decisions of the experts, but
also the behavior of the benchmark metric, we analyzed in detail the source code
of the applications. The summary of our findings, together with our own
qualitative ranking is as follows:

1) JForum 3. This application has the most secure design. This is mainly due
the use of the Hibernate persistence framework (Hibernate 2011), which is
well known for providing high protection against SQL Injection (OWASP
2010). The use of this framework appears to be correct; thus, it is very
unlikely that there is a way to break the application.

2) JForum 2 and JGossip. Both of these applications perform database
accesses through prepared statements, which are recognized by
programmers as an effective method for protecting against SQL Injection
(Amirtahmasebi 2009). The security is guaranteed by carefully using only
constant SQL queries and by correctly passing values via parameters to
previously prepared commands. No traces of vulnerabilities or bad design
could be found during our analysis.

3) Yazd 3. This application also uses prepared statements, but, in various
locations, external variables are directly concatenated to SQL query strings
(i.e. system properties are directly appended to the query, without using

Chapter 5 w Trustworthiness Benchmarking of Web Applications

160

parameters). The main input values, however, are passed through
parameters. This construction is clearly more error prone than the others,
and the risk of this design is in accidentally concatenate to a query a
variable that the programmer believes is a constant, but that is not, or
whose value can be influenced by an attacker indirectly. A typical Yazd 3
query is as follows:

private static final String LOAD_USER_BY_USERNAME = "SELECT
* FROM " + SystemProperty.getProperty("User.Table")+" WHERE
" + SystemProperty.getProperty("User.Column.Username")+"=?";

4) mvnForum and JavaBB. Both applications concatenate input values directly
to create SQL statements. Even though mvnForum uses prepared
statements, the feature is useless due to this construction (i.e. no use of the
query parameters). The application input parameters appear to be all
validated before this concatenation, but all it takes to create a vulnerability
is failing a single input validation, as no extra defenses are in place.
Examples of such code constructions found in these applications are:

mvnForum:

Collection globalPermissions= execSqlQuery("SELECT
Permission"+” FROM "+MemberPermissionDAO.TABLE_NAME+
" WHERE MemberID="+Integer.toString(memberID));

JavaBB:

ResultSet rs = stmt.executeQuery("select downloads from
jbb_posts_files where file_id=" + fileId);

5) JSForum. This application has a large number of vulnerabilities, as input
values are extracted from the HttpServletRequest object and concatenated
directly, in String format, to the queries being built. No validation is done
on the inputs. Most database access occurs like the following:

String RegUser = request.getParameter("user");
ResultSet rs=db.selectQuery("SELECT * FROM forum_users "+
"WHERE user_name=\""+ RegUser + "\"");

As can be seen, our evaluation also resembles the ranking provided by the
proposed benchmark. The reality is that all evidence we gathered regarding our
original hypothesis of using false positives as a coding quality estimator suggests
that our original assumption is valid. In fact, the dangerous coding practices that
we put forth as evidence for security or insecurity of the applications, are exactly
what shaped the results of the analyzers and, therefore, of our benchmark.

Security Benchmarking of Transactional Systems

161

5.2.4 Lessons Learned
Several lessons can be deduced from the experiments conducted, some related to
the strengths of the approach and a lot related to the weaknesses. From the
strengths of our benchmark, we immediately learned that using static code
analysis tools to perform trustworthiness benchmarking automatically guarantees
several of the properties expected in any benchmark: repeatability, simplicity of
use, portability, scalability, non-intrusiveness, and representativeness (which were
discussed in Chapter 2, Section 2.4).

Repeatability, which is the ability of re-executing a benchmarking campaign and
obtaining the same results (at least, in statistical terms), is guaranteed by the fact
that SCAs are deterministic. If ran multiple times with same input, they report the
same results.

Simplicity of use is another property expected in a benchmark. Static analyzers
are applications that take source code as input and automatically provide as output
a list of potential bugs/vulnerabilities. Because of this simple process, most static
analyzers are naturally very simple to use. The automated analysis of the reports
is also simple, as all tools provide them in XML format. This is also required in
order to provide scalability to the benchmark, or the evaluation of the results
would be unfeasible for applications with too big pieces of source code.

Fulfilling two additional properties of benchmarks, SCAs are naturally non-
intrusive, as they perform a passive analysis of the provided source code, and
portable, as they work over most source codes of a specific programming
language (i.e. in our case, the approach will work to compare all applications that
were designed in java, but will not be usable for other programming languages).

The most important property of all, however, is related to the representativeness
of the results. Our analysis put forward evidence that a carefully chosen set of
SCAs provide enough representativeness to be used for benchmarking the
trustworthiness of real complex web applications. Although the evidence we
present demonstrates this point specifically to Java, the construction should apply
for all programming languages that have a good set of tools.

We also have to evaluate the weaknesses of the approach. The first thing is that
we must account for the discrepancies in the validation experiment. By design,
our benchmark can only take into account the characteristics of the software, and
aspects like community support cannot be part of the benchmark (at least in an
automated manner). The conclusion we can take from this is that trustworthiness
benchmarking is actually an excellent tool to help in the decision of what

Chapter 5 w Trustworthiness Benchmarking of Web Applications

162

software to choose, and in fact provides information that cannot be easily
obtained. However, it is unlikely that it is possible to conceive an automated
benchmarking procedure capable of guaranteeing the selection of the best
alternative in all situations, without taking additional information into
consideration.

Another important problem that we noticed is that the benchmark can only be
used to evaluate source code developed without considering the benchmark
specification, which is a huge problem to benchmark approaches. In section 5.3
we discuss why this is true, and why we need an approach that is not dependent
on tools like static code analyzers.

Nevertheless, the lasting conclusion of our experiments is that, on average, coding
styles can be correlated with security attributes by searching for evidences of
secure coding best practices. Cross-validation and manual analysis suggest that
such correlation is indeed useful to support the selection of secure web
applications, even if source code metrics are not enough to account for all
important aspects (e.g. outside support and active development).

5.3 Towards a General Approach for Trustworthiness
Benchmarking of Web Applications

In the previous section we explored the use of expert analysis tools to build a
practical and usable trustworthiness benchmark. The assumption is that the false
positives of a good set of static code analyzers is a good predictor of the quality of
the source code of a web application, and that too many false positives may be
related, to a certain extent, to bad programming practices. In our experiments we
provided evidence that this assumption is sound and that a benchmark built upon
it could be sufficiently accurate, thus allowing the comparison of the
trustworthiness of web applications.

There is, however, a contradictory aspect to that proposal: we exploit the failures
(in the form of false positives) of otherwise good static analysis tools to obtain
information that the tools were not designed to provide in the first place.
Assuming that such a benchmarking approach becomes a common standard, two
effects should be considered in the future:

1) As static analysis tools become more precise at their task, which is
finding actual vulnerabilities while avoiding false positives, they will
progressively contribute less and less to the benchmark. For instance, an
ideal tool able to find 100% vulnerabilities and report 0 false positives

Security Benchmarking of Transactional Systems

163

would not contribute to a better benchmark, as detected vulnerabilities
would not contribute for the calculation of the trustworthiness metrics
(real vulnerabilities are used only for qualification purposes, as explained
in Chapter 3).

2) In order to improve software rankings, the techniques that software
developers employ would shift to the ones that more efficiently avoid
false positives. However, the tendency could be for such coding practices
to only be better at avoiding false positives, nothing more, and therefore
would not lead to more secure coding practices. False positives tend to be
correlated with bad coding practices only if the software is not developed
with such a benchmarking context in mind, which is a problem in the
long run. In practice, the benchmark can be gamed, in the sense that
developers can improve the metrics for a given application without
improving its quality in the way that the metrics are intended to portray.

In this section we build upon these aspects and propose a process to design a
benchmarking tool able to accomplish the specific goal that static code analysis
tools accomplish only as a side effect: how to evaluate if a web application
coding style is prone to security vulnerabilities or not. Even though our goal is
not build a complete ready to use benchmark, we will present the main
requirements needed for building one.

5.3.1 Web Applications Code Threat Vectors
As explained in Section 5.1, a web application threat is a set of parameter crafting
techniques aimed at leading the application to behave in a malicious way. These
techniques focus particular types of lines of code, designed for specific purposes,
which we call hotspots. When subjected to the crafted input data, an insecure
hotspot behaves in way that does not conform to the application business rules.
Therefore, threat vectors can be defined as sets of programming practices that
either facilitate those crafting techniques or that block them. In this initial
proposal we focus on two of the most important web applications threats, namely:

#SQL Injection threat
a) description: crafting techniques aimed at modifying semantically a target SQL

command that is sent to a backend database.

b) hotspots: any line of code which submits a SQL command to a database.

#Cross-Site Scripting

a) description: crafting techniques that lead the application to send executable code
to a client that expects only textual information. This executable code may

Chapter 5 w Trustworthiness Benchmarking of Web Applications

164

comprise scripting code or embedded applications (e.g. activeX, flash, etc.). The
malicious executable code may be stored for later retrieval or be immediately
reflected back to the client.

b) hotspots: any line of code that sends an output to the client application.

5.3.2 Security Precautions in Web Applications
A representative trustworthiness benchmark depends of properly identifying the
source code characteristics that distinguish a secure software from an insecure
one, and therefore we must understand those characteristics in more detail. The
relevant security precautions that can be applied in the context of web
applications are divided in two groups (Liu 2006): general input validation and
strong business data typing for hotspots. The problem is how to find enough
evidence indicating that both types of precautions are being applied in a source
code (and to what extent they are being applied). Our approach consists of
looking for code patterns typically used to implement these security precautions
in order to prevent the considered threats. The next sections provide an overview
of the patterns being considered in our proposal.

5.3.2.1 General input validation
General input validation can be done using three major algorithmic approaches:
accept known good, reject known bad, and transform invalid into valid.

The accept known good approaches (sometimes called whitelist filtering) include
any strategy that implements a “if not exists in, then remove/reject” semantic. The
“remove” part of this approach might be implemented as the complete
replacement of the value by a known good value, therefore completely ignoring
the actual value used as input. Implementing this kind of validation usually
requires only information about the input domain of the application (which the
developer is expected to know). This is an important strategy that is considered
the safest type of validation, as it is the one that offers the developer more control
over the inputs. Several code patterns are associated with this strategy, including:

§ Enforcing strong variable data types

§ Match against a regular expression

§ Algorithms implementing a “if not exists in, then remove/reject” filter

§ Out of range check/set to known good

§ Out of length check/set to known good

§ Empty/null check/set to known good

Security Benchmarking of Transactional Systems

165

The reject known bad approach (or blacklist filtering) is comprised of strategies
that try to enumerate exhaustively bad values that input parameters can have and
try to remove/reject these values. Basically, it includes any kind of algorithm
implementing an “if exists in, then remove/reject” semantic. The main problem is
that the set of values used to validate the inputs may be extremely difficult to
define and maintain. The reason is that inputs considered as acceptable in a
certain moment might become bad in the future due to technology evolution and
context modification. Also, bad inputs frequently depend on specific threats and
attack techniques, meaning that more information besides the business domain of
the application may be required. However, in some cases this approach may be
easier to implement than an accept known good, as it may be impossible to
specify all the “known good” values for a certain input parameter.

Transforming invalid into valid (also known as massaging the data) is used when
a combination of the two strategies above is applied. This consists of situations
where only parts of the data are bad (but not all the data are) and it is not possible
to simply replace a “contaminated” input with a known good value without losing
information. This approach is comprised of any “replace x by y within z”
algorithm, and is based on the ability to separate the bad parts of the input from
the good parts. This is the technique most difficult to implement due two key
aspects:

1) It may not be easy to identify the bad parts of the input. This issue
presents the same problems of the “reject known bad approach”, but with
an additional difficulty: the bad data is mixed with the good data, and
therefore a simple comparison may be insufficient.

2) The replacement algorithm may be difficult to implement in a secure way.
This happens because whenever some bad piece of data (let’s say X) is
replaced by some good piece of data (let’s say Y), then this good piece
may lead to the creation of another piece of bad data (i.e. Y might not be
universally good, and may become bad when included in the context
previously occupied by a certain X).

The correct implementation of each of these three input validation approaches
demands different degrees of control and knowledge from the developer. Accept
known good algorithms are relatively simple to implement correctly, as most of
them depend only what the application is expected to do (i.e. the business rules of
the application). Reject known bad approaches are more difficult to develop and
maintain correctly, as they depend on knowing what are the bad values, and these
are related not only with information about threats, but also with the techniques
used to accomplish such threats (i.e. the real attacks). Transformation techniques

Chapter 5 w Trustworthiness Benchmarking of Web Applications

166

are the hardest of all to implement securely, as not only they depend also on threat
information, but also on the context where the bad input values might appear.

These difficulties require the definition of a hierarchy of what would be the
preferable ways of implementing the validation of a particular input parameter.
Therefore, we argue that accept known good approaches are usually better then
reject known bad approaches, which are better than transformation approaches. In
practice, this hierarchy is based on the previously presented characteristics of
each approach and the control and knowledge required for implementing them.

However, the possibility of using the best available approach depends on the
application being developed, as some applications may have input parameters that
do not have a clearly identifiable “good” form. For instance, arbitrary files and
free text input frequently have an open form that may be extremely hard to match
against a “known good” format. Validating these inputs may require the use of the
other approaches, and therefore knowledge about threats and attack techniques.

5.3.2.2 Strong Business Data Typing for Hotspots
As defined before, hotspots are the lines of code in a web application that are the
target of an attack (Integrigy 2007), and protecting hotspots should be done by
enforcing a strong business data typing for all variables used as input to the
hotspot. The main idea is that whenever the values used in a hotspot conform to
its corresponding business data typing, then the hotspot will behave as expected.

Reliable protection of hotspots requires the developer to know the business data
type for each hotspot. If the hotspot is a function call, this requires knowing
exactly the domains of parameters that are expected by the function is expecting
and guaranteeing that no value outside those domains is processed. Also, if there
are business restrictions for such parameters, then should also be considered as
part of the business data typing for the hotspot. For instance, for most DBMS
engines a string containing an unescaped single quote is not a valid string in the
context of a SQL execution call, as it may change the semantics of the command.
The same is true for a numeric value containing text characters.

Enforcing strong business data typing can be done in several ways. The input
validation algorithms presented in the previous section can also be used to
validate variables of hotspots according to its business data type. However,
depending on the business data type of the hotspot and on the algorithm used to
validate its input, threat information may be required to properly design a correct
validation algorithm.

Security Benchmarking of Transactional Systems

167

Depending on the case, automated methods for enforcement of business rules may
be available when it comes to the technical aspects of a hotspot. For instance,
parameterized queries can be used in a SQL command call to guarantee that,
independently from the input passed to the database, the semantic of the SQL
command does not change. In this sense, the call itself will force variable data
typing (accept known good) in such a way that no semantic change of the SQL is
possible. Automated enforcement methods should be preferred against the manual
development of validation algorithms, as the developer has more control over
them and the probability of error is lower.

5.3.3 Accounting for Secure Coding Practices
For each threat vector defined in the benchmark (SQL Injection and Cross Site
Scripting as described in Section Web Applications Code Threat Vectors), we
need a set of coding best practices consensually accepted as being able to reduce
or eliminate the probability of malicious effects of threats. However, in contrast to
our approach for trustworthiness benchmarking of transactional systems
infrastructures presented in Chapter 4, we should now look for practices directly
related with each threat, so the correlation is quite obvious. However, field
research is always necessary, as explained next.

In practical terms, the process is based on the analysis of the hotspots and their
relation with the input variables. For each security recommendation, we provide
specifications of the preprocessing and post-processing activities that should be
implemented to each particular value used in the context of the hotspot. We call
these specifications variable accountability statements, which are aimed at the
variables that “carry” the values from the input to the hotspots. Based on the
discussion in Section 5.3.2, three general types of accountability are defined:
business data typing, automatic enforcement, general input validation.

Accountability statements can be either positive statements (that, when applied,
tend to improve the trustworthiness of the code) or negative statements (that,
when not applied, lower the trustworthiness of the code). Additionally,
hierarchies of recommendations may generate interrelated accountability
statements, which may represent positive and negative statements simultaneously.
In fact, although using lower quality alternatives (i.e. not preferred solutions) is
positive (better than not using anything), it is also negative due to the existence of
better solutions that could have been applied (e.g. removing known control
characters from a string is a good practice, but a better choice would be to allow
only known good characters instead of removing only the bad ones, therefore this
would be a good and bad practice simultaneously).

Chapter 5 w Trustworthiness Benchmarking of Web Applications

168

A bibliography study (including, but not limited to (Cenzi 2009, CGI Security
2010, Fonseca 2007, Howard 2006, Integrigy 2007, Jovanovic 2006, OIWASP
2010, Seacord 2006) regarding typical countermeasures against the threats
considered in this benchmark yielded several recommended security best
practices (again, we remember that researching for security best practices is an
error prone task, and therefore the list should be periodically evaluated and
updated for further use). In the next paragraphs we present those general
recommendations and their translation to accountability statements. The
accountability statements have the weights indicated before their description.
Most statements have weight 1 (+1 or -1), but some negative statements have
weight -2 and -3. The reason is that the application of these practices only occurs
when some other preferred method is ignored. For instance, the accountability
statement C for Cross-Site Scripting (“Variable does not output any of the
characters ><()&# as is”) has weight -3. Indeed, if the program outputs those
characters, then the variable is not being addressed by any of the following filters:
accept known good (only known good values are accepted), reject known bad
(known malicious values are rejected), and transformation (invalid values are
transformed into valid values). The three missing alternatives results in a -3
weight.

#SQL Injection prevention recommendations

• Use strongly typed parameterized query APIs, either by applying the
mechanisms provided by the programming language or using stored
procedures (provided by the database backend).

• Validate input parameters and enforce correct data types.

• Properly escape values used in dynamic queries (i.e. query construction
through concatenation).

#SQL Injection variable accountability statements

Strong Business Data Typing

A) (-1) Business data typing is enforced; strings are escaped according to the
DBMS characteristics

Automated Enforcement

B) (-1) Variable is not concatenated to the SQL statement

Security Benchmarking of Transactional Systems

169

C) (+1) Variable is assigned through a proper parameterized assignment
function

General input validation

D) (+1) Variable has its length/range checked; it is rejected or set to a known
good value if the length/range checking fails

E) (+1) Variable is subjected to a “if not exists in SET, remove/reject” filter
algorithm or regular expression

F) (+1) Variable is checked for empty/null values; it is rejected or set to a
known good value if the empty/null checking fails

G) (-1) Variable is subjected to at least one accept known good validation
algorithm (i.e., statements D, E or F)

H) (+1)(-1) Variable is filtered using reject known bad algorithm

I) (+1)(-2) Variable is filtered using transformation algorithm

#Cross-Site Scripting prevention recommendations

• Enforce proper character output encoding (e.g., UTF-8).

• Validate input parameters, enforcing correct data types.

• Escape output according to the output context (e.g. HTML section, CSS
section, script section, etc.).

• Avoid the output of any of the following characters ><()&# if not as
HTML entities.

#Cross-Site Scripting variable accountability

Strong Business Data Typing

A) (-1) Business data type is enforced

B) (-1) Variable is outputted with an enforced fixed character encoding

C) (-3) Variable does not outputs the characters ><()&# as is

Chapter 5 w Trustworthiness Benchmarking of Web Applications

170

General input validation

D) (+1) Variable has its length/range checked; it is rejected or set to a known
good value if the length/range checking fails

E) (+1) Variable is subjected to a “if not exists in SET, remove/reject” filter
algorithm or regular expression

F) (+1) Variable is checked for empty/null values; it is rejected or set to a
known good value if the empty/null checking fails

G) (-1) Variable is subjected to at least one accept known good validation
algorithm (i.e., statements D, E or F)

H) (+1)(-1) Variable is filtered using reject known bad algorithm.

I) (+1)(-2) Variable is filtered using transformation algorithm.

Variable accountability statements are as simple as possible, turning the
verification of their implementation into an easy task. This is aimed towards
making the benchmark application as easy as possible (and certainly much
simpler than a deep vulnerability analysis). This simplification however, may
have some drawbacks. For instance, take as an example the accountability
statement C for Cross-Site Scripting (i.e. “Variable does not outputs any of the
characters ><()&# as is”). Actually, depending on the section of HTML code
where they are inserted, some of these characters may be harmless. But assuming
that a certain character is harmless in a certain section also assumes that the
developer has absolute control over where he is outputting them. Verifying if a
character is outputted is relatively easy, but verifying if it is outputted in a
harmless section is significantly more difficult. Our benchmark proposal follows
a pessimistic approach in these cases, assuming that developers may make
mistakes. Therefore, they should always avoid outputting these characters. If it is
impossible to avoid it, then the application is penalized. Nevertheless, for the sake
of comparison, if it is impossible to not output them, then all other equivalent
applications will also find it impossible, therefore being penalized too.

5.3.4 Trustworthiness Metrics
The benchmark defines five complementary metrics that characterize different
trustworthiness and untrustworthiness aspects of the benchmarked code:

Security Benchmarking of Transactional Systems

171

- Average Code Prudence (ACP): the sum of the average positive
accountability statements applied to the hotspots. This metric expresses
how much precaution the developer employed in the hotspots
benchmarked.

- Average Code Carelessness (ACC): the sum of the average negative
accountability statements not applied to the hotspots. This metric
expresses, on average, how careless the developer was on the hotspots
benchmarked.

- Average Code Quality (ACQ): the sum of the positive aspects of the
code and the negative aspects of the code, yielding an overall comparison
metric for the code general quality concerning the threats of the
benchmark. This metric can also be computed for each hotspot, providing
a way to compare the hotpots of the same application in a relative way,
highlighting the ones that have lower quality (thus may deserve more
focus in terms of improvement efforts).

- Hotspot Prudence Discrepancy (HPD): this is the standard deviation of
the ACPs of all accounted hotspots. This metric portrays the consistency
of the developer (or developers) in his prudence or tendency to harden
some parts of the code, but not others.

- Hotspot Carelessness Discrepancy (HCD): this is the standard deviation
of the ACCs of the hotspots, portraying how much inconsistent the
developer (or developers) is when considering negative accountability
statements.

The algorithm that should be used to compute each of these metrics includes five
main steps:

- Step 1. For each threat, scan the applications to identify the lines of code
that comply with the description of the hotspots.

- Step 2. For each hotspot, list the variables used. Select all the variables
whose value depends directly or indirectly on an external source of data.
External sources are: a) direct input from a user or call, b) values read
from a database, c) values read from local files. If there is no variable
whose value depends on any these sources, then discard the hotspot.

- Step 3. Compute the partial metrics for each variable in the non-
discarded hotspots by evaluating the path followed by the value from the
external source to the hotspot. Considering this path, evaluate all the
variables affected against all the accountability statements of the

Chapter 5 w Trustworthiness Benchmarking of Web Applications

172

benchmark. Applied positive accountability statements count +1
multiplied by its weight; not applied negative accountability statements
count -1 multiplied by its weight. The metrics for the hotspot are
proportional to the number of variables involved in the hotspot, which is
as follows (for each hotspot and each threat):

Hotspot ACP = (ΣPositive statements)/Number of variables

Hotspot ACC = (ΣNegative statements)/Number of variables

Hotspot ACQ = Hotspot ACP + Hotspot ACC

- Step 4. Compute the overall code metrics as follows:

Code ACP = (Σ Hotspots ACP)/Number of hotspots

Code ACC = (Σ Hotspots ACC)/Number of hotspots

Code ACQ = Code ACP + Code ACC

− Step 5. The discrepancy metrics are computed as follows:

HPD = √ Σ (Each Hotspot ACP – Average ACP)2
Number of hotspots accounted

HCD = √ Σ (Each Hotspot ACD – Average ACD)2
Number of hotspots accounted

For each pair threat/hotspot the metrics should be interpreted as follows:

- Hotspot ACP: higher values mean that more security precautions against
the threat are present in a given hotspot.

- Hotspot ACC: low (negative) values mean that the hotspot has
characteristics that typically yield vulnerabilities.

- Hotspot ACQ: higher values denote that more security precautions are
evident in the hotspot.

For the overall code, the metrics and their relative interpretations are as follows:

- Code ACP: higher values show that more security precautions against the
considered threats are present in the overall benchmarked code.

- Code ACC: low values suggest insecure coding practices.

Security Benchmarking of Transactional Systems

173

- Code ACQ: higher values show that more evidence of security best
practices is present in the code.

- Code HPD: higher values denote a developer that is more inconsistent
when protecting hotspots.

- Code HCD: higher values show that the developer is more inconsistent
when avoiding dangerous coding characteristics.

Like the very idea of measuring trust and trustworthiness, these metrics are not
absolutely precise, meaning that the confidence on the results increase with the
difference on the scores (e.g. the most distant are the scores of two evaluated
pieces of software, more confidence we may have that the one with higher score
is better designed than the one with lower score). It is important to emphasize that
the overall code metrics are defined in a way that the number of hotspots and the
number of variables will not influence them. Also, we propose a set of
discrepancy metrics, in the form of standard deviations, to complement the
analysis of the main metrics, as simple averages sometimes may hide important
irregularities in the distribution of the values.

5.3.5 Preliminary Experimental Evaluation
To demonstrate the ideas behind the proposed benchmarking approach, we
compared two distinct implementations of an application in terms of the SQL
injection threat. The implementations we decided to compare were the ones that
were developed for the experimental evaluations presented in Section 5.2.2 one
developed by a graduate student and the other one by an experienced developer,
both implementations of the TPC-App web services benchmark (TPC 2011). In
the context of these experiments, the application developed by the experienced
developer was called V_0 and the other is referred to as V_1.

As the proposed approach is yet in a preliminary stage (the goal is yet to assess its
applicability), we did not implement any tool to compute the metrics
automatically, so we conducted a manual code inspection to execute the
benchmark. Even though this is not ideal, it is enough to illustrate the concepts.

The first step of the analysis consisted of finding the hotspots. The two
implementations use a JDBC connector (Bales 2001) to access the database,
therefore the analysis started by finding all lines of code that invoked the methods
executeQuery and executeUpdate (Bales 2001). In version V_1 these methods
receive a string as parameter, which is traced back to a SQL command with
several concatenations. In version V_0 no concatenation is found, and the
variables are passed through parameterized assignment functions. In both

Chapter 5 w Trustworthiness Benchmarking of Web Applications

174

applications, there are 6 hotspots (the number is the same in the two cases, as both
versions implement the same standard specification), and in both hotspots 2 and 5
could not be traced back to any input source (they were constant SQL
commands), so these were discarded from the analysis.

We proceeded to examine all variables directly or indirectly related with the
remaining hotspots concerning the 9 SQL Injection accountability statements
presented in Section 5.3.3. For this experiment, the Business Data Typing was
either numeric or free text for all table fields. Figure 5.5 presents the overall
benchmarking results. By analyzing the final values, we can see that, for V_1, a
huge penalization is given to the code, as the ACC score is higher (in absolute
value) than the ACP score, while we see the inverse for V_0, certainly due to the
use of parameterized queries. Nevertheless, it is clear that improvements could
have been done to V_0, as several penalizations are still present (e.g. input values
are not filtered in any way).

Overall, version V_0 is better in all metrics: better Average Code Prudence, lower
Average Code Carelessness, and higher Average Code Quality, meaning that this
version is trustworthier than V_1. The discrepancy metrics are similar, meaning
that each developer took more or less the same considerations across all hotspots.

Figure 5.5 Overall benchmark results

Although further research and validation is needed, this small experiment
suggests that the proposed benchmarking approach is useful and may be
applicable in practice. A tool implementing this algorithm would be a reliable
replacement for the benchmark based on the outputs of static analysis tools
presented in Section 5.2.

Security Benchmarking of Transactional Systems

175

Although the goal of the benchmark is to compare applications that provide
similar functionalities, its use is not limited to applications that implement the
same specification. In fact, the metrics simply state how careful, on average, the
developers were on protecting the hotspots of each application, thus any two
applications are comparable (obviously, considering the same threats). Given an
automated tool to compute the values, we could easily see it being used to choose
between several brands of wikis or forums, for instance.

As a final remark, we would like to emphasize that the automation of the tool is a
technical problem that, although requiring a lot of work, will not pose any
theoretical difficulties. In practice, parsing the code, identifying the hotspots, and
tracing the execution path between the hotspots and the entry points (in a similar
way to what is done by static analyzers (Jovanovic 2003)), would provide the
required support to build a graph representing the transformations suffered by the
values of the variables (e.g. filtering, escaping, concatenation, etc.). This graph
could then be used to find transformation patterns for the accountability
statements, thus getting the information required to calculate the benchmark
metrics. Nevertheless, this automation is out of the scope of our thesis, and is
proposed as future work.

5.4 Conclusion
This chapter studied the problem of trustworthiness benchmarking of web
applications, as a representative use case of transactional system business
applications. We first investigated the idea of using tools that already exist, in this
case static code analyzers, to perform automated trustworthiness benchmarking.
We started from small controlled experiments, and finished with an evaluation of
the proposal in a representative use case, which was the selection of web forums
applications. We validated the results by cross-checking them with the manual
analysis of real security experts, finding out that our automated evaluation
resulted in an assessment equivalent to that of the experts. A set of limitations that
were identified on the approach conducted us to the proposal of a general
approach for the trustworthiness benchmarking, which was tested in small-scale
preliminary evaluation, nevertheless showing promising results.

The most important result of this chapter is related to the effective correlation
between source code characteristics and the security quality of software.
Basically, our experiments clearly suggested (particularly by the validation done
by the experts) that the way software is designed allows gathering a
trustworthiness measure that is related with the presence or the absence of pro-
active measures to avoid programming vulnerabilities.

Chapter 5 w Trustworthiness Benchmarking of Web Applications

176

The limitations of a benchmark based on static code analyzers, especially
considering the effects of the evolution of the tools, should not be taken lightly.
An inevitable conclusion is that even if this approach works for now, it wont keep
working forever, particularly if developers notice that their software is being
evaluated using such metrics. This is why a more generic approach is relevant.
We believe that the approach proposed for automation of the benchmark would be
a huge step towards the creation of a sustained solution to the task of
trustworthiness benchmarking of web applications. But even if we have sketched
the most important steps in the design of such tool, we understand that the
difficulties in doing so are clearly considerable, and therefore the problem is not
closed.

177

6

Selecting Software
for Transactional

Systems
Infrastructures

Chapters 5 and 6 were dedicated to the study of methodologies, approaches and
actual implementations for trustworthiness benchmarking, in the context of two
fairly representative scenarios: complex environments, namely, transactional
system infrastructures, and web-based business applications. In both cases, even
though we stressed the importance of separating security benchmarking in two
parts (as a way of coping with the tangible and the intangible aspects of security),
we did not propose detailed approaches for security qualification, leaving this step
open for further investigation. The reason for this was already presented in the
respective chapters, and has mainly to do with the fact that most of the research
done nowadays on security mechanisms (and also on vulnerability scanning and
prevention technologies) can be used as part of a security qualification step,
which lead us to focus on the most promising step: trustworthiness benchmarking.

There is, however, one aspect of security qualification that calls for further
attention under the structure of our framework: to implement a transactional
system infrastructure (i.e. a complex structure with many separate parts and that
can several distinct configurations) we need to select a DBMS engine, which is in
charge of providing all the transactional system business capabilities. However,
this selection step may not be easy due to the complexity of such software.

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

178

Today, several representative DBMS engines exist, for instance, Oracle, SQL
Server, PostgreSQL, MySQL, etc., thus the selection of the better one in terms of
security is a key aspect that should be considered if one aims to have the best
transactional system infrastructure possible. Theoretically, under the context of
the framework proposed in Chapter 3, the selection of the specific DBMS engine
to be used in a infrastructure would call for a security benchmark in the lines of
the benchmarking approach proposed in Chapter 5, even though the set of threat
vectors for this case would still have to be studied, as they are clearly not the
same of that of web applications. This is actually quite obvious, as we certainly
do not want the engine to present vulnerabilities detectable by automated scanners
and, if possible, we want it to be developed in a way that has a low probability of
introducing hidden vulnerabilities.

At the same time, we should consider the other requirement of security
qualification, which is to answer the following question: what security
mechanisms should the engine provide in order to be acceptable as an
alternative? We have already established in Chapter 3, Section 3.2.1 that the
selection of a set of security mechanisms for security qualification in any
benchmark is primarily domain dependent, and therefore changes with each
specific business domain. For example, in the case of web applications, even
though we can define a list of possible security mechanisms that can be required
from typical web applications, for each security mechanisms there is always a
situation where it is not necessary.

The goal of the security mechanisms of a DBMS engine is very clear: to help
improving the security of the transactional system infrastructure, which is exactly
what our trustworthiness benchmark measures. Therefore, if we use as reference
the trustworthiness benchmark for transactional systems infrastructures proposed
in Chapter 4, then we may extrapolate a list of security mechanisms that would
help improving the security of a real live installation. Pursuing this path, though,
requires taking into consideration a few restraining factors, namely:

1. Alternate layers of security may compensate for any security mechanism
not provided by a DBMS engine. In the worst case, a software wrapper
could be placed around the DBMS engine providing the missing
mechanisms. Therefore, the absence of a mechanism does not imply that
implementing the corresponding security precautions is impossible.
Unless otherwise required for a specific domain, a single missing security
mechanism does not necessarily make a DBMS to fail qualification.

Security Benchmarking of Transactional Systems

179

2. We can, on the other hand, assume that if a mechanism is present, then
the fact that we do not have to compensate for its absence leads, at the
very least, to a decrease in the configuration complexity (which leads to a
lower probability of introducing interaction vulnerabilities and also
vulnerabilities on the “compensating” mechanisms). Therefore, having
mechanisms available directly in the software is better than not having
them.

3. The existence of a security mechanism in the software has no relation in
the final security of the infrastructure as a whole. For the mechanism to
have any effect after deployment, it has to be used correctly, otherwise it
is useless and may even decrease the overall security (one classical
example of this effect is when a software is set to block authentication
attempts after a certain number of authentication failures - a mechanism
that can be used for Denial of Service attacks - and the number of allowed
attempts is very high). In other words, the existence (or not) of a security
mechanism in a given software product has no effect in the
trustworthiness benchmarking assessment (thus, it should be considered
during the qualification step).

We also have to take into attention another characteristic of today’s DBMS
engines: their security is highly tied to the characteristics of the underlying
operating system. This becomes clear when we look at the security
recommendations identified in Chapter 4, where several of them are specific to
the operating system, even though it is a “transactional system security
recommendation”. Therefore, instead of selecting a DBMS engine, we deal with
the selection of an entire software package, which in our case is the composition
of a DBMS engine and an operating system. As it will be made clear in our
experimental analysis, the security mechanisms available in a specific DBMS
engine vary with the underlying operating system even for the same engine brand.

In the following sections we present the methodology used to devise and calibrate
a list of the security mechanisms that should be implemented by DBMS engines
for supporting the security practices identified in Section 4.3.2. The methodology
includes the following general steps:

• Each security recommendation for a transactional system infrastructure is
mapped into a desirable system state (System State Goal) that represents
the state of the system when the recommendation is being correctly
applied.

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

180

• That state goal is analyzed in order to identify the series of steps that must
be used to obtain such goal (the Mechanisms Goals).

• Each of the steps is analyzed to evaluate which of them can be automated
and therefore be supported by security mechanisms provided by the
software.

The application of the benchmark results in a metric that represents an estimation
of the aggregated importance of the mechanisms present and available in the
package under benchmarking. Additionally, the procedure allows computing a
gap analysis matrix that can be used to compare the actual security features of a
set of software packages with the features that would have to be provided to fulfill
all the security recommendations.

To demonstrate the approach, we benchmark seven distinct software packages
that could be considered representative candidates for use in transactional systems
installations. These packages are based on four different DBMS engines (Oracle
10g, SQL Server 2005, PostgreSQL 8, and MySQL Community Edition 5) and
two different operating systems (Windows XP and Red Hat Enterprise Linux 5).
We evaluate their main characteristics using gap analysis, and draw some general
conclusions regarding their advantages and deficiencies.

It is important to emphasize that the results obtained are not supposed to be used
alone to decide what is the best software package for a database installation,
especially outside the context of our security benchmarking framework.
Particularly, what we provide here is a benchmarking tool that can be used
for security qualification support, and not a trustworthiness benchmarking
tool. As part of the qualification step, several other factors should also be
considered (e.g. cost, performance, availability, and familiarity), but those are out
of the scope of this work. The reason is that, although there are tools to help
evaluating several of these factors, evaluating the security capabilities og a
software package is still an open problem.

This chapter is divided as follows. In Section 6.1 we discuss our methodology
that we used to identify a list of security mechanisms that could have been
implemented by the evaluated software packages. Section 6.2 presents a
discussion of how to establish the potential impact that the identified mechanisms
could provide to the security of the infrastructure. In Section 6.3 we present the
benchmark metrics and execution process. In Section 6.4 we present the results of
the evaluation of seven software packages done using our benchmark, discussing
the most important conclusions that our tool is capable of. Section 6.5 concludes
the chapter.

Security Benchmarking of Transactional Systems

181

6.1 Identifying Security Mechanisms
The list of security recommendations used as the base for the trustworthiness
benchmark for transactional systems infrastructures presented in Chapter 4, was
also used to extrapolate the security mechanisms needed to fulfill those same
recommendations. However, this process was not trivial, requiring several steps
of careful analysis, as detailed in the following paragraphs.

We started by analyzing the 64 security recommendations (see Table 4.2 and
Table 4.3), where each recommendation was classified in terms of the type of
support needed for its implementation, namely:

• Hardware support: recommendations that require either specific
hardware components or a specific physical setup for the underlying
hardware;

• Network support: recommendations that require the network to have some
specific setup or characteristic;

• Plain policies: general guidelines that do not require any mechanism in
particular, and are just behaviors that should be enforced;

• OS support: recommendations that require some features of the operating
system;

• DBMS support: recommendations that require some specific DBMS
features;

• Third party support: recommendations that require complementary
software not usually found in a basic database software package (DBMS
and OS).

Table 6.1 presents the number of best practices that were classified in each class.
Note that some practices have been classified in more than one class, which
explains why the second column of the table adds to more than 64 practices. This
first classification allowed us to focus on the practices that required at least some
support from the software components (a total of 51 out of 64 security practices),
which is the focus of our approach.

The next step consisted of rewriting the recommendations in a way that allowed
more clearly identifying the security mechanisms needed to support them. The
original recommendations were stated as actions that should be conducted on the
system to enhance security. However, these actions may contain several factors
that may be implicit in their statements such as: what are administrators’
responsibilities, what actions require software support, and what the environment

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

182

dependent elements are. This way, instead of trying to identify security
mechanisms directly from the recommendations, we decided to use two
intermediary steps to help exposing these implicit factors (obviously, these steps
could have been bypassed, but the process of explicitly performing them clearly
allowed us to achieve more effective results).

Table 6.1 Classification of databases security best practices in regard to their
requirements

Requirements N. of Practices
Network Requisites 2
Hardware Requisites 4
Plain Policies (no software requirement) 10
OS Support 28
DBMS Support 38
Third-Party Support 2

In the first step we restated each of the best practices as a System State Goal
representing the state of the system in a point in time when the practice is being
correctly applied. For instance, one of the best practices related to the operating
system configuration is stated as follows: “Remove from the network stack all
unused/unauthorized protocols”. A system state goal for this best practice is: “The
OS network stack has no unused/unauthorized protocol active”. Notice that,
although obvious in some cases, this rewriting step moves the focus from the
action to the consequences of the action. This is extremely important to disclose
the fundamental effects that are expected when applying a best practice.
Additionally, as several practices can actually be applied in several software
components at the same time (e.g. password related practices must be applied at
both OS and DBMS levels), this rephrasing forced the distinction to be made
clear, allowing us to identify the practices for which more than one System State
Goal should be defined (i.e. one for each of the components of the software
package).

When analyzing the System State Goals it became easier to start distinguishing
the effects of the practices that are exclusively administrators’ tasks (e.g. defining
what are the unauthorized protocols) from the ones that can be fully automated,
and therefore can be supported by security mechanisms. From a high level
perspective, any security practice is a policy that requires an action from the
administrator (in the sense that he can always choose to not implement it), and
can typically be automated to a certain point. For instance, the administrator may
manually check if the users’ passwords are strong enough, but a piece of software
may also perform this check automatically (and also prevent users from choosing

Security Benchmarking of Transactional Systems

183

weak passwords in the first place). Obviously, maintaining the System State Goal
in the first case (manual verification) is much more difficult than in the second
case (when automation is present). In fact, it is widely accepted that the least
work the administrator has to do to enforce security policies, the better is his
productivity and the higher are the chances that these policies are correctly
implemented. Thus, to identify the mechanisms needed to support a security
practice, first we need to know what are the steps required for achieving the
System State Goal, which is done on the next step.

In the second step we rewrote again the System State Goals, but this time in terms
of what we called Mechanisms Goals. In this additional step we break the System
State Goals in the list of actions that would lead to the System State Goal.
Mechanisms Goals can be seen as the functions that make the steps towards the
accomplishment of the System State Goal as simple as possible (i.e. the
complexity of the steps becomes hidden behind automation). Continuing the
previous example, the Mechanisms Goals for the “the OS network stack has no
unused/unauthorized protocol active” System State Goal can be described as two
simple steps: “Identify active protocols” and “disable unauthorized/unused
protocols”. Note that, defining what the unauthorized/unused protocols are is
environment dependent and can only be done by the system administrator.
However, identifying the active ones and allowing them to be easily removed
from the stack can be done by software mechanisms that may help accomplishing
the System State Goal.

The identification of the security mechanisms based on the Mechanisms Goals
was then quite straightforward, as can be seen in the example above. An
important issue is that, in some cases, more than one mechanism may be required
for the state goal to be accomplished. In other cases, different mechanisms may
be used to accomplish the same goal, possibly with different amounts of
automation. Alternative ways for performing the same tasks are useful to suit
different administrators, environments and requirements. Table 6.2 presents a few
examples of the mapping of security best practices into System State Goal and
Mechanisms Goals. The complete list can be found in (PhD Thesis
Complementary Info 2012).

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

184

Table 6.2 Examples of the mapping between security best practices, system
state goals and mechanisms goals.

Security
Recommendation. Component System State

 Goals Mechanisms Goals

Remove from the network
stack all unauthorized
protocols

OS The OS network stack has no
unused/unauthorized protocol active.

Identify active protocols and
disable unauthorized/unused
ones.

Change default passwords

OS No OS userid password is the default.
Prevent the installation of default
passwords in the OS or allow
identification and removal of
default passwords.

DBMS No DBMS userid password is the default.
Prevent the installation of default
passwords in the DBMS or allow
identification and removal of
default passwords .

Do not delegate privileges
assignments DBMS Privileges a user have should not be

delegated.

Prevent users from delegating
their privileges or identify the use
of privilege delegation
operations.

Keep the software updated
OS No patches provided by the OS vendor are

unapplied.
Not allow an available OS patch
to remain unapplied.

DBMS No patches provided by the DBMS vendor
are unapplied.

Not allow an available DBMS
patch to remain unapplied.

Restrict database OS userid
access to everything it does
not need

OS

The database OS userid has access only
to DBMS software.

Set privileges to the dedicated
DBMS userid to access only
DBMS software.

The database OS userid has access only
to designated peripherals.

Set privileges to the dedicated
DBMS userid to access only the
defined peripherals.

Prevent idle connection
hijacking

DBMS Remote connections drop when unused for
some period of time.

Set connections to timeout after
a period of inactivity.

Change/remove default
userids

OS The OS has no default userid operational.
Prevent the existence of default
userids in the OS (during or after
the installation).

DBMS The DBMS has no default userid
operational.

Prevent the existence of default
userids in the DBMS (during or
after the installation).

Make regular backups of the
data DBMS There is an up-to-date copy of the DBMS

data in a safe storage.
Make updated copies of all
DBMS data.

Avoid ANY and ALL
expressions in privileges
assignments

DBMS No user has privileges assigned from ANY
and ALL expressions.

Prevent or warn the use of ANY
and ALL expressions on
privileges assignments.

Ensure no “side-channel”
information leak through
configuration files

OS Configuration files do not contain sensitive
information.

Avoid the inclusion of sensitive
information in configuration files.

The whole process can be summarized as follows:

1. Rewrite the security recommendations in the form of System State Goals
that describe the system when the recommendation is correctly being
applied. In this step it is necessary to clarify to which component of the
software package (e.g. DBMS or OS) the goal refers to.

Security Benchmarking of Transactional Systems

185

2. Determine the associated Mechanisms Goals, which represent the steps
required to achieve the System State Goal in terms of functions provided
by the software.

3. List exhaustively the mechanisms that can be used to implement (partially
or fully) the Mechanisms Goals.

By following this process we have identified the 112 security mechanisms, which
are presented in Tables 6.5, 6.6 and 6.7. The first column of each table describes
the mechanisms that a target software component (second column) is expected to
facilitate. The mechanisms should be read as “The software provides automated
support for…”, and are not tied to any specific product, being described in a broad
way to allow a posterior assessment of their existence in the software packages
under benchmarking.

6.2 Establishing the Impact of Security Mechanisms
After devising the list of expected security mechanisms for a database software
package, an obvious problem arises: some mechanisms are more relevant than
others in terms of security. This is the same problem that we had to address when
developing our trustworthiness benchmark, as explained in Chapter 4.

One certainty is that the impact of a mechanism is directly related to the security
recommendations that it allows to implement. This way, our proposal is to inherit
the impact of the mechanisms from the relative weights computed for the
corresponding recommendations. The problem, however, is not exactly the same,
as the role of a mechanism within the context of a security recommendation
varies, and while a recommendation may be important, a mechanism used to
implement it may provide only partial support.

For each mechanism, we identified in which class its security recommendation
could be found in our relative weight computation, and we assigned values
ranging from 1 to 4 to each of the classes (first column in Table 4.5, in Chapter
4). It is important to emphasize that, although we computed specific weights for
all recommendations, we used them only as a reference to find the high-level
class of the mechanisms (ranging from 1 to 4). The reasoning is that the fine-grain
comparison would not hold for a large number of environments as aspects like the
usability and reliability of each mechanism in each package could not be
measured. Furthermore, small differences (e.g. of 0.01%) could hardly mean
anything in terms of impact and should be discarded. Nevertheless, the high-level
class can be used as a reference to compare the mechanisms for most of the
environments, always realizing that mechanisms within the same class are

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

186

considered to have the same relative impact (e.g, the function of “Automated
installation of OS pending patches” and the ability of “store credential
information using a reliable encryption scheme” are both considered of the same
relative impact because they ended with the same impact weight, even though
they are completely different and unrelated security mechanisms).

As mentioned above, in some cases, security mechanisms may provide only
partial support for the security recommendation, and may need to be
complemented. This should be reflected in the weighting process, and can be
solved using two alternative approaches: either we value mechanisms that provide
partial support only when their complementary counterparts are also present or
we count them always as providing half of the support (having half the weight of
the original importance). We opted for the second of the two alternatives due to
the simple fact that, even though a complementary mechanism might not exist in
the package, the existence of a partial mechanism may already help the
administrator, in the sense that usually it can be used for supporting part of the
recommendation implementation. Notice, however, that counting partial
mechanisms as “half” is another issue open for discussion. The problem is that
determining how much a mechanism actually fulfills of the recommendation (e.g.
80% of the practice or 30% of the practice) is generally impossible as this
depends also on other resources that may or may not be available to the
administrator (which may vary from case to case). We decided that, for the
purpose of the benchmark, partial mechanisms provide on average half the
support, even if under the certain conditions of real environments that might not
be the case.

Another problem is that some security mechanisms can be used to support
multiple best practices. In this case the choice is between emphasizing the
importance of these mechanisms or not. In other words, we had to decide if the
importance of a given mechanism should be somewhat accumulated for different
practices. For instance, should a mechanism required to implement three not very
important practices be considered more important than another mechanism that
can be used to support one single very important practice? In this case, we
decided that the best approach would be that yes, it should. We strongly support
the idea that security should be exhaustive, meaning that, from a general
perspective, in a trade-off decision, the higher is the number of security
precautions in place the better. We are aware that this can be disputed,
particularly when considering special situations where an excess of security
mechanisms may cause more problems than that they solve, but the assumption
seems to be overall reasonable. Anyway, this decision has a small impact on the

Security Benchmarking of Transactional Systems

187

overall benchmark, as there is a very small set of mechanisms that are related to
more than one security practice (3 to be exact).

The impact weight of each mechanism was computed by multiplying the best
practice importance class (from 1 to 4) by the weight of the support of the
mechanism (1 or 0.5). The individual weights (i.e. the weights per best practice)
for the mechanisms that may contribute for the implementation of more than one
practice were then added, resulting in weights ranging from 0.5 to 5. Table 6.3
presents the mechanisms with the highest impact. The complete list of
mechanisms can be found in (PhD Thesis Complementary Info 2012).

Table 6.3 Most important security mechanisms identified
Security mechanisms (automated support for…) Target W

Disabling access to extended functions. DBMS 5
Configuring the system to always encrypt a remote
connection to the DBMS.

DBMS 4

Encrypting the connection of native developer applications. DBMS 4
Removing systems privileges of DBMS userids DBMS 4
Restricting read/write privileges of a partition to a specific
userid.

OS 4

Automated installation of DBMS pending patches. DBMS 3
Automated installation of OS pending patches. OS 3
Configuring the DBMS to store credential information
using a reliable encryption scheme.

DBMS 3

Configuring the OS to store credential information using a
reliable encryption scheme.

OS 3

Defining all DBMS passwords during the installation phase. DBMS 3
Defining all DBMS userids in the installation phase. DBMS 3
Defining all OS passwords during the installation phase. OS 3
Defining all OS userids during the installation phase. OS 3
Relying the DBMS on an outside specialized authentication
mechanism.

DBMS 3

Relying the OS on an outside specialized authentication
mechanism.

OS 3

Removing privileges of users over systems tables. DBMS 3
Warning DBMS users, in an password change operation,
that their new passwords are weak and cannot be accepted.

DBMS 3

Warning OS users, in an password change operation, that
their new passwords are weak and cannot be accepted.

OS 3

6.3 Benchmark Metric and Execution
The purpose of the proposed benchmark is to allow the comparison among
alternative software packages in terms of security capability. To this end, the
benchmark provides two complementary outcomes: a Security Mechanisms
Compliance metric (SMC) that portrays the level of compliance of the package in
regard to the set of security mechanisms devised from the established security
recommendations, and a gap analysis matrix that allows identifying exactly what

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

188

are the mechanisms missing in each package (for implementing a given
configuration).

Applying the benchmark is a process that consists of verifying which of the 112
security mechanisms are included in the software package, build a gap analysis
matrix, and calculate the security compliance metric. First, the benchmark user
must check whether each security mechanism is present on the software package
being analyzed. This provides a list that can be used to build a gap analysis matrix
that allows visually comparing several alternative packages in term of their
overall capabilities compliance (in Section 6.4.3 we provide some examples of
how to use such gap analysis matrix to draw important conclusions about the
evaluated packages). The security compliance metric SMC is then computed as
the sum of the weights of all the security mechanisms present in the package.
Note that this number must be interpreted carefully, as a higher value does not
necessarily means a more secure product: it means that it offers more support for
implementing security best practices in the context database infrastructures.

6.4 Experimental Evaluation
In order to demonstrate the possibilities of our tool, we used it to benchmark a set
of software packages, and identify their characteristics and capabilities. In the
following sections we describe the experiments and analyze the results obtained.

6.4.1 Software Packages Assessed
For the experimental evaluation we decided to consider a representative set of
database solutions that can be found in the field. From the DBMS engines
perspective, we selected two commercial DBMS engines, namely Oracle 10g and
Microsoft SQL Server 2005, and two open source ones, namely PostgreSQL 8
and MySQL Community Edition 5. Oracle and SQL Server are two of the most
widely used commercial DBMS, and these particular versions account for a
representative number of installations in the field. PostgresSQL and MySQL
account for the majority of DBMS installations that use open source software, and
are very popular alternatives to commercial software.

From the operating system perspective, we used the same rationale, therefore
choosing Microsoft Windows XP and Red Hat Enterprise Linux 5. Both operating
systems are widely representative choices to support the DBMS mentioned above,
but we are aware that several other alternatives would be interesting as well (e.g.
Suse Linux and Microsoft Windows Server 2003, among many others).

Excluding Microsoft SQL Server 2005, that is only available over Windows
platforms, the other three DBMS could be installed over both operating systems.

Security Benchmarking of Transactional Systems

189

The overall results of the evaluation of the seven different software packages are
presented in Table 6.4.

6.4.2 Comparing the Software Packages
Besides using experts’ knowledge, to apply the benchmark to the software
packages selected we had to install them and analyze thoroughly their
corresponding documentation. The goal is basically to evaluate if a given package
has native support for each of 112 security mechanisms defined by the
benchmark.

A fundamental difficulty was to determine what elements were provided by the
software package as a whole in contrast to determining the elements provided by
each product individually. Password policies are one example where the platform
influences the capabilities of the DBMS. For SQL Server 2005, password policies
can be inherited from the operating system only if it is installed over Microsoft
Windows 2003, and not if the system is based on Windows XP due to the lack of
interfaces for this system. On the other hand, PostgreSQL can use the Pluggable
Authentication Module (PAM) features of Linux, which comes in the standard
installation of the Red Hat Enterprise Linux 5, and therefore is available for the
package at both the OS and the DBMS levels. This kind of detail can make the
process to be relatively costly in terms of information gathering, though the
outcome justifies the work.

Table 6.4. Overall results of the experimental evaluation of the 7 different
software packages.

Package N. DBMS Engine Operating system MP SMC %
1 SQL Server 2005 Windows XP 79 131,5 76%
2

Oracle 10g
Red Hat Enterprise Linux 5 74 118,5 68%

3 Windows XP 73 118 68%
4

PostgreSQL 8
Red Hat Enterprise Linux 5 73 123 71%

5 Windows XP 68 114,5 66%
6

MySQL Community Edition 5
Red Hat Enterprise Linux 5 66 110 64%

7 Windows XP 66 110,5 64%

Table 6.4 presents the overall evaluation of the packages. The first and second
columns identify the components of each package and the third column presents
an identification number for the package (that will be used later in Table X to
refer to each package). The fourth column presents the total number of
mechanisms present (MP) in the package, and the fifth column presents the
Security Mechanisms Compliance metric (SMC) of the benchmark (sum of the
importance of all mechanisms present). Finally, the sixth column presents the

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

190

metric in terms of a percentage of the maximum value possible for an ideal
package including all the mechanisms.

Among the evaluated packages, the one that includes more security mechanisms
is Package 1, SQL Server 2005 over Windows XP. This means that it has more
native support for implementing security best practices for databases. Notice that
the plain number of mechanisms present does not say much about the importance
of such mechanisms. For example, Package 4 has a SMC higher than Package 2,
even though it has less security mechanisms available. This happens because the
security mechanisms present in Package 4 are generically considered more
important than the ones present in Package 2.

Based on the SMC metric, the best package benchmarked is Microsoft SQL
Server 2005 over Windows XP. A key aspect that supports this result is an overall
better integration with the operating system (allowing, for instance, using the
Windows Update mechanism for keeping the DBMS software up to date with
little intervention). The feature of client application roles (that allows to better
support the development of applications with the ability to identify the end users
behind database connections based on database authentication) and some extra
backup features not present in the other DBMSs also contributed to this result.
However, the score for all the packages is not that different, which suggests that,
in general, these packages (operating systems and database engines) tend to
implement the same type of security features and mechanisms (despite being open
source or not). The worst scored package was MySQL Community Edition over
Red Hat Enterprise Linux 5.

6.4.3 Software Packages Gap Analysis
This section presents and discusses the results from a gap analysis point-of-view,
serving as an example of the full potential of the proposed tool. We start with an
overall analysis of the set of mechanisms available and then move to the analysis
of the mechanisms present in all packages, the mechanisms not available in any
package, and, finally, the mechanisms available only in some of the packages.

6.4.3.1 Overall Analysis of the Mechanisms and Packages
The first observation regarding the overall analysis is the number of mechanisms
related to each of the two software components that are part of a software package
(i.e. the OS and the DBMS). As shown in Figure 6.1, more than a third of the 112
mechanisms identified are provided by the OS, which confirms what we
suggested several times before, i.e. despite the DBMS engine being used, security
is strongly tied to the capabilities of the underlying platform. Even more
important is the fact that, for several DBMS, the provision of some security

Security Benchmarking of Transactional Systems

191

mechanisms is highly dependent on the operating system being used (e.g. some
authentication features of PostgreSQL are only natively provided if the operating
system has the Pluggable Authentication Module (PAM) installed, which is, for
instance, available on Red Hat Enterprise Linux 5, but not on Windows XP). It is
then clear that, from a security point of view, the two software components must
be selected simultaneously.

The next important global observation is the general availability of the 112
mechanisms in the analyzed packages. Figure 6.2 presents the percentages of
mechanisms available in all packages, mechanisms available in none of the
packages, and mechanisms available in at least one package. As shown, little
more than half of the mechanisms are supported by all the packages analyzed,
which is much lower than what one would expect. Worse than that is the fact that
21% of the mechanisms are not provided by any of the packages analyzed. This
suggests that many security recommendations cannot be easily implemented (or
additional software has to be acquired for their implementation) due to the
inexistence of support from the DBMS and/or OS in all the packages analyzed.

Figure 6.1 Mechanisms by component of the analyzed packages.

Figure 6.3 breaks down the number of mechanisms supported by combinations of
packages. Interestingly, a very high number of mechanisms appear on a minority
of the packages (e.g. 20 mechanisms appear on only three or less packages). This
suggests that these mechanisms, although provided by some packages, are not
considered universally important (e.g. column level privilege settings).

OS,	 42,	
37%	

DBMS,	 70,	
63%	

Mechanism	 Type	

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

192

Figure 6.2. Availability of mechanisms

The last general observation is related to the total number of mechanisms
provided by each software package (presented in Table 6.4). Although package
number 1 clearly presents the biggest number of mechanisms, the actual number
of mechanisms available in the seven packages does not vary considerably (79 in
the most and 66 in the least). This suggests that vendors follow some common
trends when deciding what mechanisms should be made available in their
products.

Figure 6.3: Number of mechanisms available across packages.

6.4.3.2 Mechanisms Available in All Packages
Table 6.5 presents the list of 59 mechanisms that are provided by all the packages.
The first observation is that there are 28 DBMS mechanisms and 31 OS

Present	 in	 all	
packages	
53%	 Present	 in	 at	

least	 1	
package	
26%	

Not	 present	
in	 any	

packages	
21%	

Availability	 of	 the	 112	
Mechanisms	 	

In	 all	
package

s	

In	 six	
package

s	

In	 five	
package

s	

In	 four	
package

s	

In	 three	
package

s	

In	 two	
package

s	

In	 one	
package	

In	 no	
package

s	

Mechanisms	 Present	 59	 2	 6	 1	 9	 2	 9	 24	

0	

10	

20	

30	

40	

50	

60	

70	

N
um

be
r	 o

f	 M
ec
ha

ni
sm

s	

Mechanisms	 Present	

Security Benchmarking of Transactional Systems

193

mechanisms in this group. This fact, together with the total number of
mechanisms initially identified for the DBMS (70 mechanisms) and the OS (42
mechanisms) components, shows that the operating systems analyzed implement
a higher percentage of the expected security mechanisms than the database
engines, suggesting that operating systems vendors may be more concerned about
helping the users in hardening their systems than the DBMS vendors are on
helping DBAs to harden their database infrastructures. The operating system is in
fact a more fundamental layer of software than the DBMS, as it is prepared to
support a diversity of distinct purposes, contrary to the DBMS that serves a
particular use. On the other hand, this does not justify more concern with security.
In fact, although operating systems may also host critical information and
services, the business purpose of DBMSs is specifically aimed at storing user
information and data, which may be even more critical than a certain service that
an operating system may provide. In summary, the security of both layers of
software is equally important, and this disparity cannot be easily justified.

Note that mechanisms such as password settings, privilege settings, some
installations choices, and the definition of some general operational parameters,
are allowed by all packages, which confirms that these mechanisms are accepted
as universal requirements for databases. Very few informational mechanisms,
however, can be found in this group. For example, the easy verification of the
current working state and configuration of the system is NOT a universal concern
of DBMS and OS vendors.

Table 6.5 List of mechanisms available in all packages

Security Mechanism (The package offers support for...)

Co
m

po
ne

nt
Ta

rg
et

Disabling access to extended stored procedures and functions DB
Config. the system to always encrypt a remote connection to the DBMS DB
Encrypting the connection of developer applications DB
Removing system privileges of DBMS userids DB
Restricting read/write privileges of a partition to a specific userid OS
Automated installation of OS pending patches OS
Configuring the DBMS to store credential information using a reliable encryption scheme DB
Configuring the OS to store credential information using a reliable encryption scheme OS
Defining all DBMS passwords during the installation phase DB
Defining all OS passwords during the installation phase OS
Relying the OS on an outside specialized authentication mechanism OS
Warning OS users, in a password change operation, that their new passwords are weak and cannot
be accepted OS

A DBMS authentication procedure that requests only credential information to the remote users DB
An OS authentication procedure that requests only credential information to the remote users OS
Configuring the DBMS so only administrators have access to log information DB
Denying login into the OS from a credential with more than a specified number of failed
authentication attempts OS

Forcing the OS users to change their passwords when they're older than a specified time frame OS

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

194

Identifying systems privileges of DBMS userids DB
Setting read/write/execution privileges over files OS
Setting that a userid cannot login OS
Setting who can change configuration files OS
Setting who can change environment variables OS
Using custom defined SSL certificates for encrypted connections DB
Changing OS userids already in use OS
Changing passwords of DBMS userids already in use DB
Changing passwords of OS userids already in use OS
Creating an OS userid with limited privileges OS
Creating file systems partitions OS
Identifying users with privileges over systems tables DB
Making a backup copy of the database DB
Storing the backup in a custom storage place DB
Using a privilege limited userid to successfully load a DBMS process. OS
Warning the administrator that there are OS vendor patches remaining to be applied OS
Allowing the DBA to not use ANY and ALL expressions DB
Allowing to explicitly state that a particular privilege cannot be delegated DB
Changing listening TCP/UDP ports DB
Changing remote identification information already in use. (e.g., SID) DB
Configuring the system to always establish connections through the same TCP/UDP ports. DB
Defining all remote identification information during the installation phase DB
Disabling the generation of core_dump files OS
Disabling the generation of trace files DB
Preventing specifying sensitive information in configuration files. (e.g., not require specifying
password in configuration files, etc.) OS

Preventing the general use of sensitive information in systems variables OS
Setting and discarding a complex password for a userid OS
Setting the owner of files OS
Specifying important events which occur in the OS that should generate a finger print OS
Specifying privileges in a database level DB
Specifying privileges in a table level DB
Warning OS users that their passwords are older than a specified time frame OS
Writing procedures that generate a trace for data changes DB
Creating stored procedures DB
Creating views DB
Disabling a network protocol OS
Identifying active protocols in the network stack OS
Removing a database DB
Selecting a different partition for OS log information OS
Selecting a different partition than the main OS partition for DBMS log information DB
Selecting a different partition than the main OS partition for the data files DB
Setting/unsetting read/write/execute privileges over files OS

6.4.3.3 Mechanisms Not Available in Any Packages
Table 6.6 shows the mechanisms that could not be found in any of the packages.
The vast majority of the mechanisms in this group are specified by the actions of
Identifying (8), Testing (4), Warning (4) and Blocking (3).

Identifying mechanisms are expected to easily provide general information about
the system state and configuration. Not having these mechanisms forces the
administrator to guess if a given setting is active or not, to create miraculous
queries over poorly documented system tables, to analyze gigantic and cryptic

Security Benchmarking of Transactional Systems

195

configuration text files, or to read enormous manuals to find the information.
Obviously, to help DBAs improving security, obtaining this kind of information
should be as simple and intuitive as possible.

Testing mechanisms are mechanisms designed to verify either if some important
operation was carried out successfully or if it will execute successfully when
attempted (e.g. data backups and software updates, respectively). Testing is
crucial to guarantee the system availability (either at the moment of execution of
such maintenance task or in the future), but it is simply disregarded by developers
of both operating systems and databases.

Warning mechanisms provide security related notifications. As these warnings
may be a hindrance when the system is known to be working as expected, it
should be possible to turn them off. However, when turned on they report
information about important operations that should not occur normally. Providing
such warning mechanisms is simply not considered in any of the packages
analyzed. (e.g. warning about outdated backups or about the modification of
configuration parameters).

Blocking mechanisms are configuration options that result in some operations not
being allowed. In this case, the blocking mechanisms that were not found in any
package are related to privilege delegation. We believe that these mechanisms
(although optional) are important because they allow the DBAs to better track
how privileges are distributed within the database. For instance, whenever a
particular user is the owner of some entity, he can decide who can access his
entity and how. In critical security scenarios, however, the DBA may want to
control this kind of delegation even about entities not owned by him, and this
cannot be done in any of the DBMS analyzed unless the DBA owns all objects.

As can be seen in Table 6.6, most of these mechanisms are security specific and
are not related to any major functional aspects of databases. As they simply do
not provide any obvious functional advantage to DBAs that are not security
experts, it seems that they are not considered as adding a significant Return of
Investment value to the software. However, the importance of security in
databases nowadays should be enough for vendors to consider these kinds of
features from a perspective of not losing credibility in the future.

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

196

Table 6.6 List of mechanisms not available in any of the packages

Security Mechanism (The package offers support for...)

Co
m

po
ne

nt
Ta

rg
et

Defining all OS userids during the installation phase OS
Removing all privileges of users over all systems tables. DB
Configuring the OS so only admins. have access to log information OS
Identifying DBMS userids with default passwords DB
Identifying default DBMS userids DB
Identifying default OS userids OS
Identifying OS userids with default passwords OS
Testing the installation of DBMS new patches DB
Testing the installation of OS new patches OS
Warning the administrator that the last OS backup is not up-to-date anymore OS
Blocking non-DBAs from delegating their privileges DB
Blocking privileges not inherited from groups/roles DB
Blocking the usage of ANY and ALL expressions in privileges granting DB
Encrypting backups with a reliable encryption algorithm OS
Identifying available functions that interact with the operating system DB
Warning the administrator if any important configuration or file was modified OS
Identifying available extended functions in general DB
Identifying available functions that can be used to perform network operations DB
Identifying available functions that can be used to read/write in the file system DB
Identifying example databases DB
Testing if a recently created backup correctly restores the database data to its
corresponding state DB

Testing if a recently created backup correctly restores the system to its
corresponding state OS

Warning administrators of ANY and ALL expressions used in privileges
assignments DB

Warning admin of users with the power of delegating their privileges DB

6.4.3.4 Mechanisms Available in Some Packages
This group includes the mechanisms that exist in at least one package, but not in
all of them (see Table 6.7). We can divide this group in two subgroups: the
mechanisms that are present in most of the packages (four or more packages,
corresponding to a total of 9 mechanisms) and the ones that are present in just a
few packages (three or less packages, corresponding to a total of 20 mechanisms).
These two subgroups seem to arise from two distinct situations.

Most mechanisms of the group present in most packages appear to be widely
considered as important. In most cases, they are not present in some packages for
very clear reasons, namely: specific platform migration decisions and feature
inheritance from old versions. In other cases, vendors opted for excluding some
mechanisms, but openly admit the lack of support (e.g. inexistence of
groups/roles in packages 6 and 7). Note that, knowing if a particular mechanism
is important for a particular environment should influence the decision of what is
the best package for it.

Security Benchmarking of Transactional Systems

197

Table 6.7 List of mechanisms available in some of the packages (X means
that the mechanism is available in the corresponding package)

Security Mechanism (The package offers support for...)

Co
m

po
ne

nt
 T

ar
ge

t

Pa
ck

ag
e 1

Pa

ck
ag

e 2

Pa
ck

ag
e 3

Pa

ck
ag

e 4

Pa
ck

ag
e 5

Pa

ck
ag

e 6

Pa
ck

ag
e 7

Automated installation of DBMS pending patches DB X
Defining all DBMS userids in the installation phase DB X
Relying the DBMS on an outside specialized authentication mechanism DB X X X X X
Warning DBMS users, in a password change operation, that their new passwords are
weak and cannot be accepted DB X

An authentication procedure for remote clients that identify individual end users instead of
individual applications DB X

Configuring the system to drop idle connections after a specific period of inactivity DB X X X X X X
Configuring the system to require that remote clients have the correct server certificate
installed DB X X X X X

Denying login into the DBMS from a credential with more than a specified number of failed
authentication attempts DB X

Forcing the DBMS users to change their passwords when they're older than a specified
time frame DB X

Specifying privileges in a row/value level DB X X
Changing DBMS userids already in use DB X X X X X
Making a backup copy of the OS which can be used to restore the environment to its
current state OS X X X X

Using a privilege limited userid to successfully install the DBMS. OS X X X
Warning the admin that the last data backup is not up-to-date anymore DB X
Warning the administrator that there are DBMS vendor patches remaining to be applied DB X
Auditing a variety of important DBMS events DB X X X
Auditing data changes DB X X X
Config. the DBMS so only DBAs have access to audited information DB X X X
Configuring the system to always establish connections through the same TCP/UDP ports
during the installation phase. DB X X X X X

Defining listening TCP/UDP ports during the installation phase DB X X X X X
Preventing the installation of a database example during installation DB X X X X X X
Removing quotas over systems areas DB X X X
Setting privileges to groups or roles DB X X X X X
Specifying important events which occur in the DBMS that should generate a finger print DB X X X
Specifying privileges in a column level DB X
Warning DBMS users that their passwords are older than a specified time frame DB X
Identifying users with quotas over systems areas DB X X X
Selecting a different partition than the main OS partition for auditing info DB X X X
Setting/unsetting access privileges over peripherals OS X X X

The mechanisms of the group present in just a few packages, on the other hand,
do not seem to be considered universally important. Take, for instance, setting
privileges at row level, only available in packages 2 and 3. It seems that it is not
seen as a relevant feature, as this kind of privilege filter is usually carried out by
the client applications themselves. However, it might happen that client
applications do not use this feature exactly because it is not usually available, and
not the other way around. Using a feature implemented directly by the DBMS is

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

198

often more reliable than implementing them at the application layer. Therefore,
providing these mechanisms allow the development of systems that are less error
prone than the ones that have to implement specific tailored solutions.

In order to understand if there is any pattern behind the distribution of the
mechanisms provided by a subset of packages, we explicitly analyzed the number
of common mechanisms in each possible combination between the seven
packages. This analysis is presented in Table 6.8. When looking to the
mechanisms from this point of view, the fact that Packages 1, 2 and 3 provide
uniquely 7 mechanisms, and Package 1 provides uniquely 6 mechanisms stands
out. On the first case, most of these mechanisms are related to auditing, which is
only provided by the commercial DBMSs analyzed (Oracle and SQLServer).
Open source databases do not usually provide these mechanisms. In the second
case, SQL Server database stands out by providing a few features that no other
DBMS provides (e.g. some types of backup warnings, more installation options,
column level privilege settings and a few automatic updates facilities). This helps
confirming the fact that this DBMS has most security mechanisms implemented
out-of-the-box, as was portrayed by the analysis presented in Section 6.4.3.1.

Table 6.8 Mechanisms available only in specific sets of packages
Set of packages Number of mechanisms provided uniquely by

this set
Packages 2,3,4,5,6,7 2
Packages 1,2,3,4,5 2
Packages 1,4,5,6,7 3
Packages 2,3,4,5,7 1
Packages 1,3,5,7 1
Packages 2,4,6 2
Packages 1,2,3 7
Packages 1,4 1
Packages 2,3 1
Package 1 6
Package 4 3

In summary, all the security mechanisms identified in this work should be seen as
being important, even if they are not usually used by most applications. Taking
into account the current situation, where the set of mechanisms implemented by
each available package is defined by factors not necessarily linked with the
requirements of the end users, the analysis presented in our work seems to be very
useful in helping clarifying and deciding which package, or set of packages, are
fit for a particular target environment.

Security Benchmarking of Transactional Systems

199

6.5 Conclusion
This chapter revisited the problem of security qualification in transactional
systems infrastructures, first discussed in the context of the security benchmark
for transactional systems infrastructures proposed in Chapter 4. The goal here was
to design a benchmarking tool able to help analyzing and selecting specific
software components that would help in securing complex infrastructures like
transactional systems, where the identification of vulnerabilities and actual attack
paths is not an easy problem. The need for such tool arises from the fact that a
transactional system infrastructure can only have a proper security assessment
after deployment, leaving the problem of selecting the components that will be
part of this infrastructure unsolved.

The proposed methodology allows assessing the effectiveness of software
packages, considering the security mechanisms that they make available for the
administrator to secure the infrastructure, and favoring the ones that help the most
in such task. We evaluated a set of real software packages regarding their ability
for helping securing live installations, and were able to put into evidence a very
large set of security characteristics that the most representative DBMS engines
have today. We also found a set of mechanisms that are not included in any of the
benchmarked engine, demonstrating that our tool is able to provide relevant
information of the assessed targets (namely, a matrix to support gap-analysis).
The list of absent mechanisms we identified is particularly interesting, as it shows
that the set of security mechanisms included in the evaluated software packages
vary only slightly, being mostly the same in each version. It may be the case that
the inexistence of procedures like the one we proposed in this chapter makes it
difficult for software vendors to become aware of which security mechanisms
would help the administrators in the field.

It is important to remember, however, that the list of mechanisms presented in
this chapter was directly derived from the list of security recommendations
devised in Chapter 4. Therefore, it may also suffer from the deficiencies already
pointed out in that case (e.g. incompleteness and/or deprecation by change of
technologies). As a matter of fact, the list of mechanisms brings no additional
security information, as it is simply another perspective from the same knowledge
that we already had in the original list of recommendations. We believe that this
is one of the great merits of this methodology, to demonstrate how to reason
about security in a consistent and methodical manner, taking security information
provided by reliable experts in one end and, by assuming that this information is
correct and sound, examining all the consequences of such information, deriving

Chapter 6 w Selecting Software for Transactional Systems Infrastructures

200

important conclusions and interpretations that allow it to be used in a variety of
distinct perspectives.

201

7

Conclusions and
Future Work

The importance of benchmarking of computer systems in general is growing with
the diversity of solutions and software implementations. This is a natural
consequence of the importance that computer systems are having in our society,
given by the boost in efficiency and productivity that they provide to every single
area of our lives. With our growing dependence on computing systems, the
necessity of considering their security becomes unavoidable.

This thesis brings two major contributions to the fields of benchmarking and
security in general. The first is a generally applicable security benchmarking
framework suited for the definition of security benchmarks in any application
domain. The framework is based on the observation that the course that research
on benchmarking has been taking over the last years does not seem appropriate
when considering security aspects. In essence, the research on benchmarking had
its roots on performance of computer systems, where the goal was to have a
measure of how efficient the system was at executing tasks. The most successful
general model for performance benchmarking was based on the idea of modeling
the work and the stress that the system under test would be subjected to in the
form of a typical workload, and such workload allied with a set of performance
metrics (e.g. number of tasks execute per amount of time) would allow a fair
comparison of different systems. TPC and SPEC benchmarks are the most notable
organizations that provide recognized standard performance benchmarks based
this approach.

However, in the last decade, the research community noticed that performance
benchmarks were not sufficient to realistically compare systems, at least not in a
variety of practical scenarios. In fact, the results of performance benchmarks are

Chapter 8 w Conclusions and Future Work

202

only correct when the system operates under no degradation effects, essentially
under ideal circumstances. Assuming that systems fail, and that the overall
execution environment is not ideal, dependability benchmarking appears as an
approach to evaluate how a system degrades under faults. In other words,
dependability benchmarking is the idea of measuring the degradation when
operating under faulty conditions. The general model followed to accomplish this
goal was based on the adaptation of the performance benchmarking model, by
adding two elements: a faultload, which represents the set of faults that the system
would typically suffer during its normal lifetime, and a set of dependability
metrics.

Resilience benchmarking appears today as the last research endeavor in
benchmarking, advancing the idea of the faultload to a changeload in which the
assumption is that the problems that systems will face in the field are much more
broad than typical faults, ranging from physical resources stress and limitations to
workload fluctuations. Resilience benchmarking research is also starting to deal
with the fact that computer systems are becoming progressively more self-
adaptive, and that adaptations mechanisms are designed exactly to deal with the
complex working conditions in which systems operate. Evaluating the
performance and effectiveness of these adaptations mechanisms is a very complex
problem that is still being researched.

With the success of this benchmarking approach, based on workloads, faultloads,
and changeloads, one could expect the same idea to also apply to security. In fact,
the Amber consortium (Assessing, Measuring and Benchmarking Resilience)
delivered a research roadmap that clearly promoted the idea of identifying
representative “attackloads” and security metrics, with the goal of defining
security benchmarking using this approach.

Throughout this thesis, and particularly in Chapters 2 and 3, we presented several
reasons that show why the traditional benchmarking approach is not the ideal one
when it comes to security. The main argument is that the information that we get
from identifying a vulnerability in a system, and therefore a potential attack, is
not the same information we get when we subject a system to faults. This comes
from a fundamental differences between faults and attacks that unavoidably has to
be taken into account when comparing systems. For example, although the
triggering of a fault may have a certain distribution probability, the triggering of
an attack is much more complex to define as it depends on a malicious person that
may or may not have interest in attacking the system. Accounting for the
exploitation of known vulnerabilities must be completely different from
accounting for the triggering of faults.

Security Benchmarking of Transactional Systems

203

A proper security benchmarking approach must necessarily take into
consideration a set of aspects that normally are not taken into consideration in
other types of benchmarks: there are lots of uncertainties about the system, the
environment, and the attackers. We believe that modeling unknown security
problems in the same way we model known/detectable vulnerabilities is an error
that ultimately leads to useless benchmarks or misleading conclusions. From a
high-level view, we may say that the framework proposed in thesis essentially
provides a way for reasoning about how to correctly rationalize security aspects
when the goal at hand is fair comparison.

The framework itself was built upon two main ideas, and therefore was conceived
with two main phases: security qualification and trustworthiness benchmarking,
both deeply discussed in chapter 3. Basically, security qualification deals with the
actual detectable security problems and results in a binary response, either a
system under benchmarking is acceptable for use or it is unacceptable. The
detectable security problems that a system may have, can actually be divided in
two groups: 1) the system should not be obviously insecure, meaning that any
severe vulnerability that opens the system to attacks renders it unacceptable; and
2) the lack of the mechanisms required by the domain for the security tasks (e.g.
authentication for a withdraw operation in a bank system) also renders it
unacceptable.

Trustworthiness benchmarking is the process of distinguishing the systems
considered acceptable by security qualification. In this case, we examine the
system under evaluation looking for evidences that show how good the design of
the system is, therefore allowing to compare the probability of different systems
having security problems. This is where we account for the uncertainty factors
related with the security of the systems. The proposal and the extensive study of
alternative approaches for defining useful trustworthiness benchmarks was
actually the second major contribution of this thesis.

Chapters 4 and 5 were dedicated to the study of methodologies, approaches and
actual implementations of the security benchmarking framework, with emphasis
on trustworthiness benchmarking, for two fairly representative use cases, as
discussed next.

Complex environments, where a diversity of people, hardware, software and
configuration options interact towards a single goal. We studied this scenario in
the form of a transactional system infrastructure. In this situation, as the possible
configurations and circumstances are too many to account for, the most
interesting usage of trustworthiness benchmarking is to help tracking the state of

Chapter 8 w Conclusions and Future Work

204

the system and suggest ways for enhancing its security, basically by addressing
the questions of what are the most important areas that should be improved and
threats that should concern the administrators. The assessment of four real
database infrastructures allowed demonstrating the capabilities of the benchmark.
Several analysis and discussions about the security properties of the environments
become evident, and such evidence can clearly be the justification required for
systems modifications and even more drastic actions. Another lesson we obtained
from the application of the benchmark was that its mere execution already
provides a very significant amount of information to the administrator. One aspect
demanded by the benchmark is the administrator to obtain information about the
actual state of his infrastructure, which is something that not all administrators are
able to do. The application of the benchmark also provided a very large amount of
information to the administrators in the form of what were the configurations and
the security mechanisms that they were neglecting or were not aware of, and what
were the potential consequences of the existing configuration state.

A targeted well-bounded and controlled use-case where the goal is to select the
most secure software implementation among several alternatives that implement
the same specification. This scenario is the case of a typical business application
working upon an already existing transactional system infrastructure. In this case,
the threats can be more tightly specified and be much more detailed and precise.
For this scenario, we first studied the design of an automated trustworthiness
benchmark based on static code analysis tools. Using a series of experiments, we
found that the metrics that can be designed based on such tools do really correlate
with the security quality of the targets, and this was a very important result. This
conclusion was particularly solid, because we evaluated the results against the
evaluation of six different security experts, which manually reached out the same
conclusions of our tool. However, we identified a series of limitations of the
approach, namely that the dependence on tools that were not designed exactly for
this goal would make the approach loose effectiveness in the future. The solution
to this problem was to design and propose a general methodology to accomplish
the exact same thing, but eliminating the problems that the static code analyzers
had. This general approach was exercised and explained from the start to end, and
was also partially validated in a small scale experiment that demonstrated that the
approach is sound and may lead to effective long term solutions to the problem of
trustworthiness benchmarking of web applications.

While chapters 4 and 5 focused on trustworthiness benchmarking approaches, in
Chapter 6 we studied a very specific problem that arise from the combination of
the two scenarios just described. The problem comes specifically from the fact

Security Benchmarking of Transactional Systems

205

that such complex infrastructure does not conform easily to a security
qualification specification. With several complementary systems and
configurations, pinpointing the security characteristics that necessarily make the
infrastructure unacceptable is not easy, as an administrator can always
compensate single vulnerabilities or missing security mechanisms with additional
overlapping defense systems. At the same time, that does not mean that any set of
components within this infrastructure can be considered acceptable. Chapter 6 is
specifically devoted to the development of a process that helps in analyzing the
security mechanisms that a complex software package, like a DBMS engine plus
an operating system, can provide to a complex infrastructure. Based on the
trustworthiness benchmark proposed in Chapter 4, we built an assessment tool
that can be used evaluate how much a particular software helps securing the
infrastructure.

We evaluated the tool by actively applying it to seven representative software
packages, which allowed finding several characteristics about the packages.
Results show that there is a common set of security mechanism that is
implemented by most packages, while several important mechanisms have no
support at all on the packages analyzed. The reasons for this are open for debate,
but we can conjecture that it has to do with a tradition of copying what has
already being proposed in the field and has proven to work, without rethinking the
whole features from scratch. When these systems are comprehensively analyzed,
the missing features become highlighted. We believe that the analysis we did in
this experiment is of utmost importance for database administrators and could be
of great interest for vendors to improve the security characteristics of future
software products and packages.

Future Work

This thesis is far from closing the problem of security benchmarking, and many
future research topics can be envisaged, including:

• Implementation of the framework for other domains. This thesis was
dedicated to the application of the framework specifically for
transactional systems. One of the lessons of this application is that the
two constituting parts of a transactional system cannot be trivially
benchmarked simultaneously because each part has a different set of
security goals. We believe that the study of the framework in the context
of other domains would further improve our knowledge on how the
different security goals of systems can affect the benchmark design.

Chapter 8 w Conclusions and Future Work

206

• More effective methods of developing and creating the components of a
benchmark. Most of the work required for the definition of the
benchmarks demanded a lot of manual inspection and analysis, along
with discussions and inputs from security experts. Even though it is
impossible to avoid completely the security knowledge needed for
designing the benchmark from coming from security experts, the
execution of several processes and definitions could be partially
automated. Some examples:

o The description of the security recommendations could be
formalized, allowing for the automated analysis of the potential
effects of the pessimistic scenarios whenever these
recommendations were not being applied.

o It is possible that the design of the security tests could be made
automatically if the description of the practices was more formal.
The automation of a partial set of security tests would already be
an advancement of the usability of the test set.

• Devising more effective ways for identifying the impact recommendations
and security mechanisms. Some of the proposed methods required the
identification of the security impact of mechanisms and
recommendations. We solved it by obtaining the consensual judgment of
several distinct security experts and practitioners. However, opinions can
always be biased, even for large samples of people. It would be extremely
valuable to have more impartial and effective ways of determining the
security impact of such elements.

• Developing an automated tool capable of performing the benchmark
proposed in Section 5.3. Our expectation is that this particular tool would
be much more efficient and precise than the benchmark based on static
analysis tools. This would be a natural consequence of the fact that this
new tool would be designed with the exact goal of performing
trustworthiness benchmarking, while the static code analysis based
benchmarking is taking advantage of a collateral effect - errors,
something that should progressively disappear with their improvement.

• Approaches to properly validate trustworthiness benchmarks. As
discussed in Section 4.5, validating the trustworthiness benchmark
proposed in Chapter 4 is a extremely complex problem for which we do
not have an easy solution. The main problem is that the most obvious
metrics that could be used to confirm if the results of the benchmark are
correct suffer from external effects that make them not suitable for

Security Benchmarking of Transactional Systems

207

comparison. In fact, the security incidents that could demonstrate if one
threat vector is better protected than another one depend not only on the
capabilities of the attackers, which are considered by the benchmark in
the form of the security mechanisms in place, but also on the intentions of
the attackers, which by design are not considered in the benchmark
because they are external variables. Therefore, we need to study methods
for validating the benchmarks results without requiring the systems to be
effectively attacked.

209

References
Alberts, C. and Dorofee, A. 2002. Managing Information Security Risks: The

OCTAVE Approach. Boston, MA: Addison-Wesley.

Alberts, C., Dorofee, A., Stevens, J. and Woody, C. 2005. OCTAVE-S
Implementation Guide, Version 1.0. Retrieved sept. 2012 from
http://www.cert.org/octave/octaves.html

Alexander, I. 2003. Misuse Cases: Use Cases with Hostile Intent. IEEE
Software, vol. 20, no. 1, pp. 58–66.

Allard, T., Anciaux, N., Bouganim, L., Guo, Y., Folgoc,L.L., Nguyen, B.
Pucheral, P. Ray, I., Ray,I. and Yin, S. 2010. Secure personal data servers:
a vision paper. Proc. VLDB Endow. 3, 1-2 (September 2010), 25-35.

Almeida, R. and Vieira, M. 2011. Benchmarking the resilience of self-
adaptive software systems: perspectives and challenges, 6th International
Symposium on Software Engineering for Adaptive and Self-managing
Systems (SEAMS'11), Waikiki, Honolulu , HI, USA, Pages 190-195

Almeida, R. and Vieira, M. 2012a. Changeloads for Resilience Benchmarking
of Self-Adaptive Systems: A Risk-Based Approach, 9th European
Dependable Computing Conference (EDCC'12), Sibiu, Romania, Pages
173-184.

Almeida, R. and Vieira, M. 2012b. Changeloads: a Fundamental Piece on the
SASO Systems Benchmarking Puzzle, 1st International Workshop on
Evaluation for Self-Adaptive and Self-Organizing Systems (Eval4SASO),
Lyon, France.

Almonaies, A.A., Alalfi, M.H., Cordy, J.R. and Dean, T.R. 2011. Towards a
framework for migrating web applications to web services. In Proceedings
of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research (CASCON '11). IBM Corp., Riverton, NJ, USA,
229-241.

References

210

Amirtahmasebi, K., Jalalinia, S.R. & Khadem, S. 2009. A survey of SQL
injection defense mechanisms. ICITST 2009. London, UK.

Antunes, J. and Neves, N. F. 2012. Recycling Test Cases to Detect Security
Vulnerabilities, Proceedings of the 23nd Annual International Symposium
on Software Reliability Engineering (ISSRE), Dallas, USA.

Antunes, J., Neves, N. F., Correia, M., Veríssimo, P. and Neves, R. 2010.
Vulnerability Discovery with Attack Injection, IEEE Transactions on
Software Engineering, Vol. 36, No. 3, pages 357-370, May/June 2010.

Antunes, N. and Vieira, M. 2010. Benchmarking Vulnerability Detection
Tools for Web Services. ICWS 2010. Miami, USA.

Antunes, N. and Vieira, M. 2009. Comparing the Effectiveness of Penetration
Testing and Static Code Analysis on the Detection of SQL Injection
Vulnerabilities in Web Services, PRDC’09. China.

Arlat, J. and Crouzet, Y. .2002. Faultload Representativeness for
Dependability Benchmarking, DSN 2002, Washington, DC, US.

Ayewah, N., Pugh, W. , Morgenthaler, J., Penix, J. and Zhou, Y. 2007.
Evaluating static analysis defect warnings on production software. ACM
SIGPLAN-SIGSOFT 2007 . California, USA.

Bales, D. 2001. Java Programming with Oracle JDBC. O'Reilly Media; 1st
edition.

Balzarotti, D., Cova, M., Felmetsger, V. V. and Vigna, G. 2007. Multi-module
vulnerability analysis of web-based applications. In Proceedings of the 14th
ACM conference on Computer and communications security (CCS '07).
ACM, New York, NY, USA, 25-35.

Barbacci, M. et al. 2003. Quality Attribute Workshops (QAWs), Third Edition,
CMU/SEI-2003-TR-016.

Barnum, S. 2007. An Introduction to Attack Patterns as a Software Assurance
Knowledge Resource, OMG Software Assurance Workshop.

Baumhardt, F. 2006. Common Criteria - It Security Certification, Or Shiny
Sales Sticker ?, (IN)SECURITY ARCHITECTURE. Last Access: Sept
2008. URL http://blogs.technet.com/fred/archive/2006/03/02/421014.aspx

Security Benchmarking of Transactional Systems

211

Bellovin, S. and Bush, R. 2009. Configuration management and
security. Selected Areas in Communications, IEEE Journal on, 27(3), 268-
274.

Bertino, E., Jajodia, S. and Samarati, P. 1995. Database security: Research and
practice. Information Systems Journal, Volume 20, Number 7.

Bishop, M. and Gates, C. 2008. Defining the Insider Threat. Proceedings of
the Cyber Security and Information Intelligence Research Workshop, Oak
Ridge, Tennessee, EUA.

Bondavalli, A. et al. 2009. D3.2: Final Research Roadmap, formal deliverable
AMBER Project – Assessing, Measuring and Benchmarking Resilience,
IST – 216295 AMBER, EU FP7 program.

Booch, G., Rumbaugh, J. and Jacobson, B. 2005. Unified Modeling Language
User Guide, The (2nd Edition) (The Addison-Wesley Object Technology
Series). Addison-Wesley Professional, May 2005.

Bowen, P., Hash, J. and Wilson, M. 2006. Information Security Handbook: A
Guide for Managers, NIST Special Publication 800-100. National Institute
of Standards and Technology, U.S. Dept of Commerce.

Caralli, R. A., Stevens, J. F., Young, L. R. and Wilson, W. R. 2007. The
OCTAVE Allegro Guidebook, v1.0, Software Engineering Institute,
Carnegie Mellon, May 2007, available at
http://www.cert.org/octave/allegro.html, October 2010.

Cardellini, V., Casalicchio, E., Colajanni, M. and Yu, P.S.. 2002. The state of
the art in locally distributed Web-server systems. ACM Comput. Surv. 34,
2 (June 2002), 263-311.

Castano, S., Fugini, M. G., Martella, G. and Samarati, P. 1994. Database
Security. ACM Press Books, Addison-Wesley Professional.

Cenzic. 2009. Application security trends report Q3-Q4 2009.
http://www.cenzic.com.

CGI Security. 2010. The Cross-Site Scripting (XSS) FAQ.
http://www.cgisecurity.com/xss-faq.html.

References

212

Chapman, I., Sylvain, M., Leblanc, P. and Partington, A. 2011. Taxonomy of
cyber attacks and simulation of their effects. In Proceedings of the 2011
Military Modeling & Simulation Symposium (MMS '11). Society for
Computer Simulation International, San Diego, CA, USA, 73-80.

Chen, L., Feng, D., Shi; Z., Zhou; F. 2009. Using Session Identifiers as
Authentication Tokens. Communications 2009. ICC '09. IEEE International
Conference on , vol., no., pp.1-5, 14-18.

Chess, B and West, J. 2007. Secure Programming with Static Analysis.
Addison-Wesley. ISBN 978-0-321-42477-8.

CIS Benchmarks. 2012. Center for Internet Security Configuratioin
Benchmarks. Retrieved in sept. 2012 from
https://benchmarks.cisecurity.org/en-us/?route=downloads.multiform.

CLUSIF. 2004. MEHARI (Information risk analysis and management
methodology) V3, Concepts and Mechanisms.

Commission of the European Communities. 1993. Information Technology
Security Eval. Manual (ITSEM).

Common Criteria. 1998. Commercial Database Management System
Protection Profile (C.DBMS PP), Issue 1.

Common Criteria. 1999. Common Criteria for Information Technology
Security Evaluation: User Guide.

Common Criteria. 2000. Database Management System Protection Profile
(DBMS PP), Issue 2.1.

Computer Internet Security (CIS), 2008 “Benchmark/Tools”,
www.cisecurity.org Last Access: Sept 2012

Cybenko, G., Kipp, L., Pointer, L. and Kuck, D. 1990. Supercomputer
performance evaluation and the Perfect Benchmarks. SIGARCH Comput.
Archit. News 18, 3b (June 1990), 254-266.

Da-sheng; W., Sheng-yu; W. 2010. Dynamically maintain the teaching
examples of triggers and stored procedures about the course of database
application. Education Technology and Computer (ICETC), 2010 2nd

Security Benchmarking of Transactional Systems

213

International Conference on , vol.1, no., pp.V1-525-V1-527, 22-24 June
2010

Daswani, N. Kern, C. and Kesavan, A. 2007. Foundations of Security: What
Every Programmer Needs to Know, Apress, Berkely, CA.

DBench. 2000. Dependability Benchmarking Project. http://spiderman-
2.laas.fr/DBench/

Defense Information Systems Agency. 2001. Database - Security Tech.
Implem. Guide, V8, R1.

Denning, P. J. 1976. Fault tolerant operating systems. ACM Computing
Surveys (CSUR) 8 (4): 359–389. doi:10.1145/356678.356680. ISSN 0360-
0300.

Department of Defense. 1985. Trusted Computer System Evaluation Criteria.

Dept. of Defense Standard. 1985. Department of Defense Trusted Computer
System Evaluation Criteria, DOD 5200.28-STD.

Diallo, M. H., J. Romero-Mariona, et al. 2006. A Comparative Evaluation of
Three Approaches to Specifying Security Requirements. REFSQ'06,
Luxembourg

Dorfman, M. S. 2007. Introduction to Risk Management and Insurance (9th
Edition). Englewood Cliffs, N.J: Prentice Hall.

Dunlop, A.N. 1994. The Status of Parkbench, In Proceedings of the 6th RAPS
Workshop, CERFACS, Toulouse.

Eisenberg, A. 1996. New standard for stored procedures in SQL. SIGMOD
Rec. 25, 4 (December 1996), 81-88.

FindBugs. 2011. Java static code analisys tool. Retrieved April 2011 from
http://findbugs.sourceforge.net/

Fonseca, J. and Vieira, M. 2008a. Mapping Software Faults with Web Security
Vulnerabilities. IEEE/IFIP International Conf. on Dependable Systems and
Networks (DSN 2008), USA.

References

214

Fonseca, J. Vieira, M. and Madeira, H. 2008b. Online detection of malicious
data access using DBMS auditing. Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC). Brazil.

Fonseca, J. Vieira, M. and Madeira, H. 2009. Vulnerability & attack injection
for web applications. IEEE/IFIP International Conf. on Dependable
Systems and Networks (DSN 2009). Portugal.

Fonseca, J., Vieira, M. and Madeira, H. 2007. Testing and comparing web
vulnerability scanning tools for SQL injection and XSS attacks. 13th IEEE
Pacific Rim Dependable Computing Conference (PRDC 2007), Melbourne,
Victoria, Australia.

Forums Benchmarked. 2011 JavaBB. www.javabb.org, JForum. jforum.net,
JGossip. jgossip.dev.java.net, JSForum. jsforum.sourceforge.net,
mvnForum. mvnforum.com, Yazd forum. www.forumsoftware.ca

FP7 – 216295. 2010. AMBER - Assessing, Measuring, and Benchmarking
Resilience. http://www.amber-project.eu

Friginal, J, de David, A., Ruiz, J-C. and Gil, P. 2009. Attack Injection for
Performance and Dependability Assessment of Ad-Hoc Networks, 12th
European Workshop on Dependable Computing, 2009, Toulouse (France).

Friginal, J, de David, A., Ruiz, J-C. and Gil, P. 2010. Attack Injection to
Support the Evaluation of Ad Hoc Networks, 29th International
Symposium on Reliable Distributed Systems (SRDS), New Delhi (India),
Pages 21-29.

Friginal, J, de David, A., Ruiz, J-C. and Moraes, R. 2011. Using Dependability
Benchmarking to Support ISO/IEC SQuaRE, 17th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), Pasadena
(USA), Pages 28-37.

Gefen, D. 2002. Reflections on the dimensions of trust and trustworthiness
among online consumers. SIGMIS Database 33, 3 (August 2002), 38-53

Gegick, M. and Williams, L. 2005. Matching attack patterns to security
vulnerabilities in software-intensive system designs. SIGSOFT Softw. Eng.
Notes 30, 4 (Jul. 2005)

Security Benchmarking of Transactional Systems

215

Gegick, M. and Williams, L. 2007. On the design of more secure software-
intensive systems by use of attack patterns. Inf. Softw. Technol. 49, 4 (Apr.
2007), 381-397

Gencel, C. and Demirors, O. 2008. Functional size measurement revisited.
ACM Trans. Softw. Eng. Methodol. 17, 3, Article 15 (June 2008), 36
pages.

Gray, J. 1993. Database and Transaction Processing Performance Handbook.
The Benchmark Handbook for Database and Transaction Systems (2nd
Edition), Morgan Kaufmann.

Gray, J. and Reuter A. 1992. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann. First edition.

Gray, Jim. 1993. “Database and Transaction Processing Performance
Handbook.” The Benchmark Handbook for Database and Transaction
Systems (2nd Edition), Morgan Kaufmann, 1993.

Harbitter, A and Menasc, D. 2002. A methodology for analyzing the
performance of authentication protocols. ACM Trans. Inf. Syst. Secur. 5, 4
(November 2002), 458-491.

Helmer, G., Wong, G. 2007. Software fault tree and coloured Petri net based
specification, design and implementation of agent-based intrusion detection
systems, International Journal of Information and Computer Security, v.1
n.1/2, p.109-142.

 Hevery, M. and Abrons, A. 2009. Declarative web-applications without
server: demonstration of how a fully functional web-application can be
built in an hour with only HTML, CSS & Javascript Library. In
Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications (OOPSLA '09).
ACM, New York, NY, USA, 801-802.

Hibernate. 2011. Hibernate persistence framework. Retrieved April 2011 from
www.hibernate.org.

Hoffman, I. 2008. Rising Popularity of Web Application Development.
Articlesbase. Retrieved Sept 2012 from

References

216

http://www.articlesbase.com/software-articles/rising-popularity-of-web-
application-development-512839.html

Hoglund, G. and McGraw, G. 2004. Exploiting Software: How to Break Code.
Boston, MA: Addison-Wesley.

Honsa, J. D. and McIntyre, D.A. 2003. ISO 17025: Practical Benefits of
Implementing a Quality System. Journal of AOAC International 86 (5):
1038–1044.

Howard, M. and LeBlanc, D. 2002. Writing Secure Code. Second Edition,
Microsoft press.

Howard, M. and Leblanc, D. E. 2002. Writing Secure Code. 2nd. Microsoft
Press.

IEC. 2012. International Electrotechnical Commission. www.iec.ch

Im, G. P. and Baskerville, R. 2005. A longitudinal study of information system
threat categories: the enduring problem of human error. SIGMIS Database
36, 4 (October 2005), 68-79.

INFOSEC Research Council. 2005. Hard Problem List. Retrieved march,
2012 from http://www.cyber.st.dhs.gov/docs/IRC_Hard_Problem_List.pdf

Integrigy. 2007. An Introduction to SQL Injection Attacks for Oracle
Developers. White paper. http://www.integrigy.com /security-
resources/whitepapers/ Integrigy_Oracle_SQL_Injection_Attacks.pdf

IntelliJ IDEA. 2011. Retrieved April 2011 from http://www.jetbrains.com/idea

ISO. 2012. International Organization for Standardization. www.iso.org

Jackson, W. 2007. Under attack: Common Criteria has loads of critics, but is
it getting a bum rap?. Government Computer News. Last Access: Sept.
2008. URL http://www.gcn.com/print/26_21/44857-1.html

Jahl, C. 1991. The information technology security evaluation criteria. In
Proceedings of the 13th international conference on Software engineering
(ICSE '91). IEEE Computer Society Press, Los Alamitos, CA, USA, 306-
312.

Security Benchmarking of Transactional Systems

217

Jansen, W. 2009. Directions in Security Metrics Research. NISTIR 7564.
Retrieved march 2012 from http://csrc.nist.gov/publications/drafts/nistir-
7564/Draft-NISTIR-7564.pdf

Jaquith, A. 2007. .Security Metrics: Replacing Fear,. Uncertainty, and Doubt.
Addison Wesley.

Jelen, G. and Williams J. 1998. A Practical Approach to Measuring Assurance.
14th Annual Computer Security Applications Conference, Phoenix, USA.

Johnston, R.G. 2010. Being Vulnerable to the Threat of Confusing Threats
with Vulnerabilities. Journal of Physical Security. Volume 4, Issue 2.

Jovanovic, N., Kruegel, C. and Kirda, E. 2006. Precise alias analysis for static
detection of web application vulnerabilities. Proceedings of the 2006 ACM
SIGPLAN PLAS 2006, Ottawa, Ontario, Canada.

Kanoun, K. and Spainhower, L. 2008. Dependability Benchmarking for
Computer Systems. Wiley-IEEE Computer Society Press.

Kanoun, K., Arlat, J., Costa, D. J.G. , DalCin, M. , Gil, P. Laprie, J.-C.,
Madeira H. and Suri, N. 2001. DBench (Dependability Benchmarking)", in
Supplement of the Int. Conference on Dependable Systems and Networks
(DSN-2001), (Göteborg, Sweden), DEPPY Workshop, pp. D.12-15,
Chalmers University of Technology, Göteborg, Sweden.

Karabacak, B. and Sogukpinar, I. 2005. ISRAM: information security risk
analysis method, Computers & Security 24 (2) 147-159.

Kaufman, C., Perlman, R. and Speciner, M. 2002. Network Security: Private
Communication in a Public World (2nd Edition). Prentice Hall PTR

Kumaraguru, P. et al. 2007. Getting users to pay attention to anti-phishing
education: evaluation of retention and transfer. In Proceedings of the anti-
phishing working groups 2nd annual eCrime researchers summit (eCrime
'07). ACM, New York, NY, USA, 70-81.

Littlewood, B. et al. 1993. Towards Operational Measures of Computer
Security. Journal of Computer Security. v2. pp.211-229.

References

218

Littlewood, B., Popov, P., Strigini, L. and Shryane, N. 2010. Modeling the
Effects of Combining Diverse Software Fault Detection Techniques. IEEE
Trans. Software Eng. 26(12).

Liu, H. and Tan, H.B.K. 2006. An Approach to Aid the Understanding and
Maintenance of Input Validation. Software Maintenance, 2006. ICSM '06.
22nd IEEE International Conference on , vol., no., pp.370-379, 24-27

Livshits, V. and Lam, M. 2005. Finding security vulnerabilities in java
applications with static analysis. 14th USENIX Security Symposium,
Baltimore, MD, USA.

Long, J. 2007. Google Hacking for Penetration Testers. Syngress. ISBN 978-
1-59749-176-1

Lyu, M. 1996. Handbook of Software Reliability Engineering. IEEE Comp.
Society Press, McGraw-Hill.

Manadhata, P. K, Tan, K. M. C., Maxion, R. A. and Wing, J. M. 2007. An
approach to Measuring a System's Attack Surface. Carnegie Mellon
University, Technical Report CMU-CS-07-146, August 2007.

Marsh, S., Dibben, M. .2005. Trust, Untrust, Distrust and Mistrust – An
Exploration of the Dark(er) Side”. iTrust 2005, Paris, France.

Martinez-Moyano, I. J., Rich, E., Conrad, S. H. , Andersen, D. F. 2006.
Modeling the Emergence of Insider Threat Vulnerabilities. Informs Winter
Simulation Conference, Monterey, CA.

Mate Bacic, E. 1990. The Canadian trusted computer product evaluation
criteria. Computer Security Applications Conference. Proceedings of the
Sixth Annual. pp.188-196, 3-7.

McClure, S. 2009. Hacking Exposed: Network Security Secrets and Solutions.
McGraw-Hill. ISBN 978-0-07-161374-3

McDermott, J. 2000. Attack Net Penetration Testing. In The 2000 New
Security Paradigms Workshop (Ballycotton, County Cork, Ireland, Sept.
2000), ACM SIGSAC, ACM Press, pp. 15-22.

Security Benchmarking of Transactional Systems

219

McDermott, J. 2001. Abuse-Case-Based Assurance Arguments. In: Proc. 17 th
Annual Computer Security Applications Conference (ACSAC’01), IEEE
Computer Society Press.

McDermott, J., Fox, C. 1999. Using Abuse Case Models for Security
Requirements Analysis. In: Proc. 15th Annual Computer Security
Applications Conference (ACSAC’99), IEEE Computer Society Press.

McGraw, G. 2006. Software Security: Building Security In. Addison-Wesley
Professional.

McKnight, D. H. and Chervany, N. L. 2006. The meanings of trust. TR,
University of Minnesota, Carlson School of Management, 1996.

Mendes, N., Araújo Neto, A., Durães, J., Vieira, M. and Madeira, H. 2008.
Assessing and Comparing Security of Web Servers. Proceedings of the
Pacific Rim Dependable Computing Conference (PRDC 2008). Pages 313-
322

Mendes, N., Durães, J. and Madeira, H. 2012. Benchmarking the Security of
Web Serving Systems Based on Known Vulnerabilities. LADC 2011: 55-
64.

Messmer, E. 2012. Black Hat: Oracle database vulnerabilities exposed again.
Computer World UK Magazine. Retrieved in September 2012 in
http://www.computerworlduk.com/news/security/3372534/black-hat-
oracle-database-vulnerabilities-exposed-again/

Microsoft Corporation. 2011a. Microsoft SQL Server 2005. Retrieved august,
2011, from http://www.microsoft.com/sqlserver/en/us/default.aspx

Microsoft Corporation. 2011b. Microsoft Windows XP. Retrieved august,
2011, from http://windows.microsoft.com/en-
US/windows/products/windows-xp

 Monga, M. Paleari, R. and Passerini, E. 2009. A hybrid analysis framework
for detecting web application vulnerabilities. 2009 ICSE SESS.

Morrison, M., Morrison, J. and Keys, A. 2002. Integrating web sites and
databases. Commun. ACM 45, 9 (September 2002), 81-86.

References

220

Nadeem, M., Williams, B. J. and Allen, E. B. 2012. High false positive
detection of security vulnerabilities: a case study. In Proceedings of the
50th Annual Southeast Regional Conference (ACM-SE '12). ACM, New
York, NY, USA, 359-360.

National Cyber Security Division (NCSD), 2008. Common Attack Pattern
Enumeration and Classification, http://capec.mitre.org/ Last Access: Sept
2008

Nikolić, I. 2009. Distinguisher and Related-Key Attack on the Full AES-256.
CRYPTO 2009. Santa Barbara, California, USA.

Oliveira, R., Laranjeiro, N, and Vieira. M. 2011. A Composed Approach for
Automatic Classification of Web Services Robustness. In Proceedings of
the 2011 IEEE International Conference on Services Computing (SCC '11).
IEEE Computer Society, Washington, DC, USA, 176-183

Open Web Application Security Project (OWASP). 2007. OWASP top 10.
Retrieved august, 2012 from
http://www.owasp.org/index.php/Top_10_2007

Oracle Corporation. 2011a. MySQL Community Edition 5. Retrieved august,
2011, from http://www.oracle.com/technetwork/database/express-
edition/overview/index.html

Oracle Corporation. 2011b. Oracle 10g Express Edition. Retrieved august,
2011, from http://www.oracle.com/technetwork/database/express-
edition/overview/index.html

OWASP. 2010. SQL Injection prevention Cheat Sheet,
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Parker, D. B. 2002. Toward a New Framework for Information Security. In
The Computer Security Handbook, 4th ed., New York, NY: John Wiley &
Sons.

Patrick, A. S., Long, A. C., and Flinn, S. 2003. Human factors of security
systems: A brief review.

Pauli, J. J. and Engebretson, P. H. 2008. Hierarchy-Driven Approach for
Attack Patterns in Software Security Education. In Proceedings of the Fifth
international Conference on information Technology: New Generations

Security Benchmarking of Transactional Systems

221

(April 07 - 09, 2008). ITNG. IEEE Computer Society, Washington, DC,
1156-1157

Pavlovic, D. 2011. Gaming security by obscurity. In Proceedings of the 2011
workshop on New security paradigms workshop (NSPW '11). ACM, New
York, NY, USA, 125-140.

Payne, S. C. 2006. A Guide to Security Metrics. SANS Institute Information
Security Reading Room.

Payton, A. M. 2006. Data security breach: seeking a prescription for adequate
remedy. In Proceedings of the 3rd annual conference on Information
security curriculum development (InfoSecCD '06). ACM, New York, NY,
USA, 162-167.

Pernul, G. and Luef, G. 1992. Bibliography on database security. ACM
SIGMOD Rec., Volume 21, Issue 1.

PhD Thesis Complementary Info. 2012. Available at
http://eden.dei.uc.pt/~mvieira/ThesisComplAfonso.zip

PostgreSQL Global Development Group. 2011. PostgreSQL 8. Retrieved
august, 2011, from http://www.postgresql.org

Ram, P., Do, L. and Drew, P. 1999. Distributed transactions in practice.
SIGMOD Rec. 28, 3 (September 1999), 49-55.

Ray, I. and Chakraborty, S. 2004. A Vector Model of Trust for Developing
Trustworthy Systems. ESORICS 2004. France.

Red Hat. 2011. Red Hat Enterprise Linux 5. Retrieved august, 2011, from
http://www.redhat.com/rhel/

Reuter, A. 2008. Is there life outside transactions?: writing the transaction
processing book. SIGMOD Rec. 37, 2.

Roberts, N. H., Vesely, W.E., Haasl, D.F., and Golberg, F.F. 1981. Fault Tree
Handbook, U.S. Nuclear Regulatory Comission, NUREG-0492.
Washigton, D.C

Russell, D. and Gangemi, G.T. 1991. Computer Security Basics. O'Reilly
Media. First edition.

References

222

Saad-Khorchef, F. Rollet, A. and Castanet, R. 2007. A framework and a tool
for robustness testing of communicating software. In Proceedings of the
2007 ACM symposium on Applied computing (SAC '07). ACM, New
York, NY, USA, 1461-1466.

Said, H. E., Guimaraes, M. A., Maamar, Z. and Jololian, L. 2009. Database
and database application security. In Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and technology in computer science
education (ITiCSE '09). ACM, New York, NY, USA, 90-93.

Saitta, P., Larcom, B. and Eddington, M., 2008. Trike threat modelling tool”,
URL: http://www.octotrike.org,. Last Access: Sept 2008

Saitta, P., Larcom, B. and Eddington, M. 2005. Trike v.1 Methodology
Document [draft], http://dymaxion.org/trike/ Last Access: Sept 2008

Sandia National Laboratories. 2010. The Information Design Assurance Red
Team. Retrieved august 2010 from http://idart.sandia.gov

Sawyer, Tom. 1993. Doing Your Own Benchmark. The Benchmark Handbook
for Database and Transaction Systems (2nd Edition), Morgan Kaufmann.

Schell, R. & Heckman, M. 1987. Views for multilevel database security. IEEE
Trans. on Software Engineering.

Schell, R. and Heckman, M. 1987. Views for multilevel database security.
IEEE Trans. on Software Engineering.

Schmidt, H. 2010. Threat- and Risk-Analysis During Early Security
Requirements Engineering. Availability, Reliability, and Security. ARES
'10 International Conference on, vol., no., pp.188-195, 15-18

Schneier, B., 1999. Attack Trees. Dr Dobbs Journal of Software Tools 24.
URL: http://www.schneier.com/paper-attacktrees-ddj-ft.html Last access:
Sept. 2008.

Schulte, W. 2012. Ten years of automated code analysis at Microsoft (invited
industrial talk). In Proceedings of the 2012 International Conference on
Software Engineering (ICSE 2012). IEEE Press, Piscataway, NJ, USA,
1001-1001.

Security Benchmarking of Transactional Systems

223

Schweitzer, D. 2006. Factory Settings -- Insecure by Default. COmputerWorld
Magazine. Retrieved Sept 2012 from
http://www.computerworld.com/s/article/110699/Factory_Settings_Insecur
e_by_Default

Seacord, R. 2006. Secure Coding in C and C++. Upper Saddle River, NJ:
Addison-Wesley.

Shahriar, H and Zulkernine, M. 2012. Mitigating program security
vulnerabilities: Approaches and challenges. ACM Comput. Surv. 44, 3,
Article 11 (June 2012), 46 pages.

Shahzad, M., Shafiq, M. Z. and Liu, A. X. 2012. A large scale exploratory
analysis of software vulnerability life cycles. In Proceedings of the 2012
International Conference on Software Engineering (ICSE 2012). IEEE
Press, Piscataway, NJ, USA, 771-781.

Sherriff, M. and Williams, L. 2006. Defect Density Estimation Through
Verification and Validation. The 6th Annual High Confidence Software and
Systems Conference, Lithicum Heights, MD, pp. 111-117.

Shoulman, A. 2009. Top Ten Database Security Threats. Imperva, white
paper. Retrieved august 2010 from http://www.imperva.com/go/wp10/

SIEMENS. 2003. CRAMM - CCTA Risk Analysis and Management Method -
User Guide version 5.0, Insight Consulting.

Siponen, M. T. and Oinas-Kukkonen, H. 2007. A review of information
security issues and respective research contributions. SIGMIS Database 38,
1 (February 2007), 60-80

SPEC. 2012. Standard Performance Evaluation Corporation. Retrieved Sept
2012 from http://www.spec.org.

Stallings, W. 2010. Cryptography and Network Security: Principles and
Practice. Prentice Hall. 5th Edition.

Stevens, J. 2005. Information Asset Profiling. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University. Retrieved Sept 2012
from
http://www.sei.cmu.edu/publications/documents/05.reports/05tn021.html

References

224

Stevens, W. Myers, G. Constantine, L. 1974. Structured Design. IBM
Systems Journal, 13 (2), 115-139.

Stoneburner, G., Goguen, A. and Feringa, A. 2002. Risk management guide
for information technology systems. Last Access: Sept 2008 URL:
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf.

Sullivan, K., Clarke J. and Mulcahy B. P. 2010. Trust-terms Ontology for
Defining Security Requirements and Metrics. 4th European Conference on
Software Architecture (ECSA 2010). Copenhagen, Denmark.

Swiderski, F. and Snyder, W. 2004. Threat Modeling, Microsoft Press,
Redmond, WA.

Toma, C.L. 2010. Perceptions of trustworthiness online: the role of visual and
textual information. In Proceedings of the 2010 ACM conference on
Computer supported cooperative work (CSCW '10). ACM, New York, NY,
USA, 13-22.

Tomatis, N., Brega, R., Rivera, G., Siegwart, R. 2004. “May you have a strong
(-typed) foundation” why strong-typed programming languages do matter.
Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE
International Conference on , vol.4, no., pp. 3429- 3434 Vol.4

Torgerson, M. 2007. Security Metrics for Communication Systems. 12th
International Command and Control Research and Technology
Symposium, Newport, Rhode Island.

Transaction Processing Performance Council. 2012. Retrieved Sept 2012 from
http://www.tpc.org

Transaction Processing Performance Council. 2002. TPC Benchmark W,
Standard Specification, Version 1.8, 2002, available at:
http://www.tpc.org/tpcw/.

Transaction Processing Performance Council. 2005. TPC Benchmark C,
Standard Specification, Version 5.4. available at: http://www.tpc.org/tpcc/.

Transaction Processing Performance Council. 2011. TPC Benchmark App,
Standard Specification, Version 1.3, 2011, available at:
http://www.tpc.org/tpc_app/.

Security Benchmarking of Transactional Systems

225

van der Steen, A. J. 1989. Proposals for standard benchmark programs for
supercomputers. In Proceedings of the Conference on CONPAR 88
(UMIST, Manchester, United Kingdom). C. R. Jesshop and K. D.
Reimartz, Eds. Cambridge University Press, New York, NY, 621-634.

van der Steen, A. J. 1993. The benchmark of the EuroBen group. In Computer
Benchmarks, J. J. Dongarra and W. Gentzsch, Eds. Elsevier Advances In
Parallel Computing Series, vol. 8. Elsevier Science Publishers B. V.,
Amsterdam, The Netherlands, 165-175.

Verendel,V. 2009. Quantified security is a weak hypothesis: a critical survey
of results and assumptions. In Proceedings of the 2009 workshop on New
security paradigms workshop (NSPW '09). ACM, New York, NY, USA,
37-50.

Vieira, M. 2005a. Dependability benchmark for Transactional Systems. PhD
Thesis. University of Coimbra.

Vieira, M. and Madeira, H. 2003. A Dependability Benchmark for OLTP
Application Environments. 29th International Conference on Very Large
Data Bases, VLDB2003, Berlin, Germany.

Vieira, M. and Madeira, H. 2005b . Towards a security benchmark for
Database Management Systems. Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks,
DSN2005, Yokohama, Japan.

Vieira, M. and Madeira, H. 2009. From Performance To Dependability
Benchmarking: A Mandatory Path. Performance Evaluation and
Benchmarking: Transaction Processing Performance Council Technology
Conference (TPCTC).

Vraalsen, F., Mahler, T., Lund, M. S., Hogganvik, I., den Braber, F. and
Stølen, K. 2007. Assessing Enterprise Risk Level: The CORAS Approach.
In Advances in Enterprise Information Technology Security, D. Khadraoui
and Francine Herrmann, Idea Group Reference.

Wang, X. et al .2005. Finding Collisions in the Full SHA-1, CRYPTO 2005.
Santa Barbara, California, USA.

References

226

Weber-Jahnke, J. H. and Price, M. 2007. Engineering Medical Information
Systems: Architecture, Data and Usability & Security. In Companion to the
proceedings of the 29th International Conference on Software Engineering
(ICSE COMPANION '07). IEEE Computer Society, Washington, DC,
USA, 188-189.

Whittaker, J. 2003. Why secure applications are difficult to write. In Security
& Privacy, IEEE , vol.1, no.2, pp. 81-83.

Wool, A. 2004. A quantitative study of firewall configuration errors.
Computer, vol. 37, pp. 62-67.

Yan, J., Blackwell, A., Anderson, R. and Grant, A. 2000. The Memorability
and Security of Passwords -- Some Empirical Results. Tech. Report 500,
Computer Lab, Cambridge.

Yang; J. 2011. A classification evaluation model for software trustworthiness
based on trustworthiness evolution. Business Management and Electronic
Information (BMEI), 2011 International Conference on , vol.1, no., pp.222-
227.

Yasca. 2011. Retrieved april 2011 from http://www.scovetta.com/yasca.html

Zanero, S., Carettoni, L. and Zanchetta, M. 2005. Automatic Detection of Web
Application Security Flaws, Black Hat Briefings.

Zhao, L., Sakr, S., Zhu, L., Xu, X. and Liu, A. 2012. An architecture
framework for application-managed scaling of cloud-hosted relational
databases. In Proceedings of the WICSA/ECSA 2012 Companion Volume
(WICSA/ECSA '12). ACM, New York, NY, USA, 21-28.

Zsifkov, N. and Campeanu, R. 2004. Business rules domains and business
rules modeling. In Proceedings of the 2004 international symposium on
Information and communication technologies (ISICT '04).

Zwillinger, D. 1995. Standard Mathematical Tables and Formulae,
Chapman&Hall/CRC. ISBN 0849324793.

227

Annex A

Security
Recommendations
Tests, Weights and
Analytical Results

Table A.1 Security recommendations devised from the analysis of the CIS
documents

SECURITY Recommendation (CIS) Recommendations
in CIS documents

 M O8 O10 S
ENVIRONMENT

1 Use a dedicated machine for the database 1 1 1 28

2 Avoid machines which also run critical network services (naming,
authentication, etc) 1 1 1 1

3 Use Firewalls: on the machine and on the network border 1 3 3 1

4 Prevent physical access to the DBMS machine by unauthorized
people 1

5 Remove from the network stack all unauthorized protocols 1 1 1
6 Create a specific user to run the DBMS daemons 1 1 1
7 Restrict DBMS user access to everything he doesn't need 1 4 4 3
8 Prevent direct login on the DBMS user account 2 1 3 3

INSTALLATION SETUP
9 Create a partition for log information 2 1 1 1

10 Only the DBMS user should read/write in the log partition 1
11 Create a partition for DB data 1 1 1 2
12 Only the DBMS user should read/write in the data partition 1
13 Separate the DBMS software from the OS files 1 2 2 2

 Remove/Avoid default elements:
14 »»»Remove example databases 1 1
15 »»»Change/remove user names/passwords 1 4 4 2

Annex A w Security Recommendations Tests, Weights and Analytical Results

228

16 »»»Change remote identification names (SID, etc...) 3 1
17 »»»Change TCP/UDP Ports 1 1 1
18 »»»Do not use default SSL certificates 1
19 Separate production and development servers 1 1
20 No developer should have access to the production server 5 5

21 Use different network segments for production and development
servers 1 1 1

 Verify all the installed DBMS application files:
22 »»»Check and set the owner of the files 1 2 3
23 »»»Set read/running permissions only to authorized users 4 18 22 14

OPERATIONAL PROCEDURES
24 Keep the DBMS software updated 3 1 1
25 Make regular backups 1 4
26 Test the backups 1 1

SYSTEM LEVEL CONFIGURATION

27 Avoid random ports assignment for client connections (firewall
configuration) 1 1

28 Enforce remote communication encryption with strong algorithms 1 1 11 3
29 Use server side certificate if possible 1 1

30 Use IPs instead of host names to configure access permissions
(prevents DNS spoofing) 1 1

31 Enforce strong user level authentication 2 6 8 4
32 Prevent idle connection hijacking 2 2
33 Ensure no remote parameters are used in authentication 1 2 1
34 Avoid host based authentication 1 1
35 Enforce strong password policies 1 2 2
36 Apply excessive failed logins lock 1 1
37 Apply password lifetime control 1 1
38 Deny regular password reuse (force periodic change) 2 2
39 Use strong encryption in password storage 3
40 Enforce comprehensive logging 1 2 1
41 Verify that the log data cannot be lost (replication is used) 2 2 1
42 Audit sensible information 14 19 25
43 Verify that the audit data cannot be lost (replication is used) 1 1

 Ensure no “side-channel” information leak (don’t create/restrict
access):

44 »»»From configuration files 2 1
45 »»»From system variables 1
46 »»»From core_dump/trace files 8 8 1
47 »»»From backups of data and configuration files 1 1 4

 Avoid the interaction between the DBMS users and the OS:
48 »»»Deny any read/write on file system from DBMS used 2 3 2

49 »»»Deny any network operation (sending email, opening sockets,
etc...) 4 3

50 »»»Deny access to not needed extended libraries and functionalities 1 11 11 54
51 »»»Deny access to any OS information and commands 2

APPLICATION LEVEL CONFIGURATION AND USAGE
52 Remove user rights over system tables 1 23 25 1
53 Remove user quotas over system areas 3 1
54 Implement least privilege policy in rights assignments 9 10 6
55 Avoid ANY and ALL expressions in rights assignments 1 3 3
56 Do not delegate rights assignments 1 3 3 3

Security Benchmarking of Transactional Systems

229

57 No user should have rights to change system properties or
configurations 3 4 4 2

58 Grant privileges to roles/groups instead of users 1 1 3
59 Do not maintain the DB schema creation SQL files in the DB server 1
Total number of recomendations 48 166 183 177

Table A.2 Complementary DoD configuration best practices

COMPLEMENTARY BEST PRACTICES (DoD) Group

1A Monitor de DBMS application and configuration files for
modifications Operational Procedures

2A Do not use self signed certificates System Level Config.
3A Protect/encrypt application code Appl. Level Config./Usage
4A Audit application code changes Appl. Level Config./Usage

5A Employ stored procedures and views instead of direct table
access Appl. Level Config./Usage

The following table presents the individual weights given by the experts, the
relative importance to the attack surface and the cumulative importance for each
best practice. For each contributor, E stands for engineer and A for academic.

Table A.3 Best Practices Weights

Best
Practice

E1 E2 A3 A4 E5 A6 E7 A8 A9
Relative
Weight

Cumul.
Weight

4 4 4 4 4 4 4 4 4 4 5,26% 5,26%

3 4 4 4 4 4 4 4 3 4 4,73% 9,99%

19 4 4 4 3 4 4 4 4 3 4,21% 14,19%

28 3 4 4 3 4 4 4 4 4 4,21% 18,40%

57 3 4 4 3 4 4 4 4 4 4,21% 22,60%

2 3 4 3 3 4 4 4 4 4 3,68% 26,28%

24 3 3 4 4 3 4 4 4 4 3,68% 29,96%

39 4 3 4 3 3 4 4 4 4 3,68% 33,64%

35 4 3 4 2 3 4 4 4 4 3,63% 37,27%

15 4 3 4 4 3 3 3 4 4 3,15% 40,42%

1 3 4 3 2 4 4 4 3 4 3,10% 43,52%

6 2 4 4 2 4 4 4 2 3 3,00% 46,52%

52 2 3 4 3 3 4 3 4 4 2,58% 49,10%

25 4 4 3 3 1 4 4 3 2 2,52% 51,61%

20 3 4 3 3 4 3 4 3 3 2,10% 53,72%

23 3 3 4 3 3 3 4 3 4 2,10% 55,82%

18 3 3 3 2 3 3 4 4 4 2,05% 57,87%

Annex A w Security Recommendations Tests, Weights and Analytical Results

230

31 4 4 3 2 4 3 3 3 3 2,05% 59,92%

8 2 3 2 3 3 4 4 3 4 2,00% 61,92%

29 2 4 3 2 4 3 4 3 3 2,00% 63,91%

51 2 4 3 2 4 3 3 3 4 2,00% 65,91%

32 3 4 2 1 4 3 3 4 3 1,99% 67,90%

36 3 3 3 2 3 3 4 3 4 1,52% 69,43%

54 3 3 4 3 3 2 3 4 3 1,52% 70,95%

33 4 3 3 2 3 4 3 2 3 1,47% 72,42%

37 3 2 3 1 2 3 4 3 4 1,41% 73,84%

10 2 3 3 1 3 4 4 3 1 1,41% 75,25%

12 2 3 3 1 3 4 4 3 1 1,41% 76,66%

42 2 2 3 2 2 4 4 3 3 1,37% 78,02%

41 3 1 1 1 1 4 4 2 2 1,24% 79,26%

22 3 3 4 2 3 3 3 3 3 1,00% 80,26%

34 3 3 4 2 3 3 3 3 3 1,00% 81,26%

5 3 3 2 2 3 3 4 3 3 0,95% 82,21%

48 2 3 4 2 3 3 3 3 3 0,95% 83,15%

21 3 3 2 3 3 3 4 1 3 0,94% 84,09%

47 2 2 4 3 2 3 3 3 3 0,89% 84,99%

38 3 2 3 1 2 3 4 3 3 0,89% 85,88%

55 3 3 4 1 3 1 3 3 2 0,88% 86,76%

46 2 2 4 3 2 3 3 2 3 0,84% 87,60%

50 2 2 4 2 2 3 3 3 3 0,84% 88,44%

7 2 2 3 2 2 3 4 2 3 0,79% 89,23%

44 2 2 2 3 2 4 3 2 3 0,79% 90,02%

45 2 2 2 3 2 4 3 2 3 0,79% 90,81%

49 2 2 4 2 2 3 3 2 3 0,79% 91,59%

26 3 3 2 2 1 2 4 2 3 0,78% 92,38%

40 4 1 1 2 1 3 3 3 2 0,77% 93,15%

43 2 2 3 1 2 3 4 2 2 0,73% 93,88%

9 3 1 1 2 2 3 4 2 1 0,72% 94,60%

4A 1 1 4 1 1 3 3 2 2 0,71% 95,32%

11 2 1 1 2 2 3 4 2 1 0,67% 95,98%

17 2 1 2 1 1 2 4 2 2 0,62% 96,60%

13 1 1 1 1 1 2 4 1 2 0,60% 97,20%

56 3 3 3 2 3 3 3 3 3 0,47% 97,67%

30 2 3 2 1 3 3 3 3 2 0,31% 97,98%

1A 2 3 2 2 3 2 3 3 2 0,26% 98,24%

53 2 2 3 2 2 1 3 3 3 0,26% 98,50%

Security Benchmarking of Transactional Systems

231

58 3 2 1 3 2 2 3 2 3 0,26% 98,76%

27 2 3 1 1 1 3 3 1 3 0,24% 99,00%

2A 2 2 3 1 2 1 3 3 2 0,20% 99,20%

14 1 1 2 3 1 3 3 2 1 0,19% 99,39%

5A 2 2 2 3 2 2 3 2 2 0,16% 99,55%

16 2 2 2 1 2 3 3 2 2 0,15% 99,70%

59 2 2 1 2 2 3 3 2 2 0,15% 99,85%

3A 3 2 2 1 2 2 3 1 2 0,15% 100,00%

Table A.4 Complete list of tests.

TEST Fail

ENVIRONMENT

1
If the machine is turned off, does any service other than the database become unavailable? Is
there any process running on the machine which is not demanded by the DBMS, the OS or the
machine maintenance/security?

Yes

2
If the machine is turned off, does any critical network service, like naming, directory or
authentication services, becomes unavailable?

Yes

3
Is there a firewall on the network border? Is there a firewall running on the DBMS machine? Are
both firewalls properly configured by experienced staff with solid network knowledge? [9, 14, 16]

No

4
Is it possible to an unauthorized person to physically access the machine without supervision at
any given time?

Yes

5
List the protocols available in the network stack in the OS of the DBMS machine. For each
protocol, is there a clear justification for its availability?

No

6
List the DBMS processes in the OS. For each process, is the user running it used to run any other
process at any time?

Yes

7
Locate the DBMS processes user. Does that user have administration rights? Does it can run
applications not DB related? Does it have read rights on any file not necessary to the DBMS
processes?

Yes

8
Locate the DBMS processes user. Can you login in the OS with it? (assume you know its
password)

Yes

INSTALLATION SETUP

Annex A w Security Recommendations Tests, Weights and Analytical Results

232

9
Locate the log files of the DBMS and identify their file system partition. Are there any other files in
this partition besides the logs?

Yes

10
Locate the log files of the DBMS and identify their file system partition. Does that partition have
exclusive read/write rights for the DBMS user?

No

11
Locate the data files of the DBMS and identify their file system partition. Are there any other files
in this partition besides the data files?

Yes

12
Locate the data files of the DBMS and identify their file system partition. Does that partition have
exclusive read/write rights for the DBMS user?

No

13

List all OS users which work only with the DB. List all OS regular users (not DB users). List all
DBMS applications and OS applications that are necessary for the OS users that work with the
DB. Does any regular user can access any DBMS application listed? Does any DB user can
access any application not in one of the lists?

Yes

14
List all DBMS databases. Install a fresh copy of the DBMS in a test machine without any
customization and then list its DBMS databases. Is there any database in both lists which isn’t
required for the DBMS?

Yes

15
List all DBMS accounts. Install a fresh copy of the DBMS in a temporary machine without any
customization and then list its DBMS accounts. Is there any account in both lists?

Yes

16

List any identification names a remote user must know to connect to the DBMS. Install a fresh
copy of the DBMS in a temporary machine without any customization and then list the
identification names a remote user must know to connect to this DBMS instance. Is there any
name in both lists?

Yes

17
List any TCP/UDP ports a remote user must know to connect to the DBMS. Install a fresh copy of
the DBMS in a temporary machine without any customization and then list the TCP/UDP ports a
remote user must know to connect to this DBMS instance. Is there any port in both lists?

Yes

18
List all SSL certificates used with the DBMS. For each one, was it created by experienced staff
with that specific purpose? [2, 4]

No

19 Is there any kind of development or testing being done in the production server? Yes

20 Does any developer have a valid DBMS account or OS account in the production server? Yes

Security Benchmarking of Transactional Systems

233

21
List the sub-net mask of the IP address of the production and the development servers. Are they
the same? Are both servers reachable from one other through a path with only layer 2 network
equipments (hubs, switches, etc…)?

Yes

22
List all files installed with the DBMS application. For each file, is its owner correctly set as the
DBMS user?

No

23
List all files installed with the DBMS application. For each file, are its rights correctly configured
according to its purposes?

No

OPERATIONAL PROCEDURES

24
Check your DBMS version. Check the latest DBMS version available from the vendor which is an
update to your version. Are they different? Is there any recommendation from the vendor against
the use of your version?

Yes

25
Is a carefully thought out, documented backup procedure regularly executed? If the person in
charge suddenly quit, is it easy for anyone else to resume its task?

No

26
Is the backup data regularly tested after it is generated? Is a recovery procedure regularly fully
simulated? Is the backup data stored in a secure place other than the DB server?

No

1A
Is there any procedure (like checking the files hashes) employed to regularly identify if any of the
DBMS application files or configuration files have been change by someone unauthorized?

No

SYSTEM LEVEL CONFIGURATION

27
During a connection procedure, does the server assign a full range random local port for the
remote user to connect?

Yes

28
Establish a connection from any remote user to the server, capture the underlying network traffic
and ask for a security expert to analyze it. Is the connection being secured with a recognized
encryption protocol like TLS?

No

29 Does the user connection require the knowledge of a server certificate? No

30 List all configuration files/parameters of the DBMS. Is a host name used on any parameter? Yes

31
For each registered DBMS user, was it created for a specific application /purpose/person? Is the
authentication procedure used in the applications recognizably secure? Does it use a standard
algorithm or protocol? [13, 14]

No

Annex A w Security Recommendations Tests, Weights and Analytical Results

234

32
Establish a connection with the DBMS and let it stay idle. Is the connection severed in a
reasonable amount of time?

No

33
Is any specific information other than a username and password obtained from the client host
during the authentication procedure?

Yes

34
List all authentication methods used with the DBMS. For each one, does it depend only on the
host?

Yes

35
Was a clear policy defined (and documented) about how passwords would be changed, when
they must be changed, how they should be retrieved if lost and what rules they must obey? Does
it comply with standard recommendations from security experts? [13, 17]

No

36
Try authenticating several times with a wrong password. Is there a try when the account becomes
permanently locked?

No

37
Advance the server clock an unreasonable number of months. Authenticate to the server. Are you
forced or recommended to change the password?

No

38 Try changing your password to the same password. Did you succeed? Yes

39
Locate the table or file where the passwords are stored and ask for a security expert to analyze it.
Are the passwords stored as some recognizably standard hash algorithm? [13, 14]

No

40
Is logging turned on? Is the log level set to report at least database errors and client connections?
Is there a clearly justified reason for it not to be set to a higher level?

No

41
Are the logs periodically checked? Are the logs also included in the backup procedures? Is the
space of the partition where the logs are written monitored?

No

42
Are the following operations traceable: creation and destruction of users, objects and sessions,
failed and successful logins, rights assignments and data changes on critical tables?

No

43
Is the trace data stored in a different area than the database? Does that area have its read/rights
permissions correctly set? Is the space of the partition where it is stored monitored?

No

44 For each configuration file, analyze its permissions. Is it readable only by authorized users? No

45
For each system variable, does it contain sensitive information (any which should be private) and
can be seen by all OS users?

Yes

46
Are core_dump or trace files being generated for failed processes and are they generally visible in
the OS?

Yes

Security Benchmarking of Transactional Systems

235

47
Does the editor used to update configuration files generate backups of the edited files and do they
remain available for reading afterwards?

Yes

48
For each function and extended functionality available, does it allow a user to access a file on the
file system?

Yes

49
For each function and extended functionality available, does it allow a user to do any kind of
network operation?

Yes

50
For each function and extended functionality available, is its availability clearly required? Is it
impossible to do the same task without it?

No

51
For each function and extended functionality available, does it allow a user to gather any info
about the OS? Does it allow a user to run any OS command?

Yes

2A
For each certificate used in the servers, is it bought from a trusted company, which has root
certificate already installed in the most common browsers and operating systems?

No

APPLICATION LEVEL CONFIGURATION AND USAGE

52
Make a list of all system tables (not created for use with applications). For each one, check if there
is any user with some permission (read or write) over it. Are those permissions clearly justified and
necessary?

No

53
Make a list of all system databases. For each element on the list, check if there is any user with
some permission over it. Is this permission clearly justified and necessary?

No

54
For each non-DBA user, list all its permissions. For each permission, does it have a clear
justification? Is it impossible for the user to work without it?

No

55
For each non-DBA user, list all its permissions. For each permission, is it of type ANY or ALL,
which would automatically propagate to other objects of the same type?

Yes

56
For each non-DBA user, list all its permissions. For each permission, does it allow that user to
grant it to another user?

Yes

57
For each non-DBA user, list all its permissions. For each permission, does it allow that user to
change some system configuration which is either critical or valid to the whole DB?

Yes

58
For each non-DBA user, list all its permissions. For each permission, does the user inherit it from
a group or role he is assigned to?

No

Annex A w Security Recommendations Tests, Weights and Analytical Results

236

59
List all documents and files that contain any schema information. For each one, is it stored in the
DB server?

Yes

3A
Is the production application code being stored in a trusted repository (like a Concurrent
Versioning System), with proper authentication, or being closely controlled and checked against
malicious modification (e.g. encrypted)?

No

4A
Is it possible to identify unequivocally, at all times, for all application code, who made each
modification and programming?

No

5A
Are all data modification operations being applied through carefully programmed stored
procedures instead of direct updates? When reading data from critical tables, are the unnecessary
data fields being filtered through views or other means?

No

In the following table, P stands for test passed, F for test failed and U for
unknown (which is treated as failed test).

Table A.5 Analytical results of the infrastructures evaluated

Test
Number Case 1 Case 2 Case 3 Case 4

1 P P F F
2 P P P P
3 P F P F
4 P P F P
5 P F F F
6 F F F F
7 F F F F
8 P P P P
9 F F P F

10 F F F F
11 P F P F
12 F F F F
13 F F F F
14 F P P P
15 F P P P
16 F P P P
17 F F P F

Security Benchmarking of Transactional Systems

237

18 P P F P
19 F F F F
20 P F P F
21 F P F F
22 P U F F
23 F F F F
24 F P P F
25 P P F P
26 F F F F
1A F F F F
27 P U U U
28 F F F F
29 F F F F
30 P P P P
31 P F P F
32 F F F F
33 P P P P
34 P P P P
35 P F F F
36 P F F F
37 F F F F
38 F F F F
39 P P P P
40 P F P F
41 P F P F
42 F F F F
43 F F F F
44 P P F F
45 P P P P
46 F P P P
47 P P P P
48 P P P P
49 P P F P
50 U P F F
51 U P F U
2A P F P F
52 P F P F
53 P F P P
54 P F F P

Annex A w Security Recommendations Tests, Weights and Analytical Results

238

55 P P F P
56 P P F P
57 P P P P
58 F F F F
59 P F P P
3A F F F F
4A F F F F
5A F F F F

239

Annex B

Pessimistic
Scenarios

Table B.1 Complete list of pessimistic scenarios

Recommendations Pessimistic Scenarios
Use a dedicated platform for the
database

The DBMS platform hosts other applications
which may have security vulnerabilities

Avoid platforms which also run critical
network services (naming,
authentication, etc)

The DBMS platform hosts a directory, naming or
similar high critical network service

Install and properly configure a firewall
on the network border

The network does not have a border firewall,
leaving all network fully accessible to internet
traffic

Install and properly configure a firewall
on the host OS

The OS does not have a local firewall leaving any
listening process fully accessible to the local area
network

Prevent physical access to the DBMS
platform by unauthorized people

The platform is physically stationed in a place
where non-authorized personnel have regular
access

Remove from the network stack all
unauthorized protocols

The OS has several network protocols installed
which are non-essential and which characteristics
and consequences are not fully understood

Create a specific user to run the DBMS
daemons

The OS userid used to run the DBMS daemons
are used for other daemons and tasks as well

Restrict DBMS user access to
everything he doesn't need

The OS userid used to run the DBMS daemons
has privileges over non-necessary OS parts
(configuration files, for instance)

Prevent direct login on the DBMS user
account

It is possible to try to login in the OS using the
userid of the DBMS daemon

Create a partition for log/auditing
information

The log/auditing information is placed in the same
partition as the OS

Only the DBMS user should read/write
in the log/auditing partition

Any OS userid can read/write in the log/auditing
information

Annex B w Pessimistic Scenarios

240

Create a partition for DB data The data files are hosted in the same partition as
the OS

Only the DBMS user should read/write
in the data partition

Any OS userid can read/write the DBMS data
files

Remove example databases
Any potential attacker know the innerworkings
and exact details of at least one database within
the DBMS

Change/remove default user names Any potential attacker knows at least one DBMS
userid that can be used to login in the database

Change default passwords
Any potential attacker knows at least one
userid/password pair that can be used to login in
the database

Change default remote identification
names (SID, etc...)

Any potential attacker knows the remote
identification names used by the database

Change default TCP/UDP Ports Any potential attacker knows exactly to what
ports the DBMS process is listening

Do not use default SSL certificates All attackers have access to the private key of the
certificate in use

Separate production and development
servers

Developers run untested/developmental code
over real live production data

No developer should have access to
the production server

Developers have partial or total control and
access over the production data

Use different network segments for
production and development servers

The developers work and access the server
though the same local network segment where
the production server is hosted

Check and set the owner of all the
DBMS files

One or more OS users are owner of the DBMS
files

Set read/write/running permissions of
the DBMS files to authorized users

All OS users have read/write/running permissions
over all DBMS files

Keep the OS software updated The OS has known vulnerabilities which are not
patched with vendor updates

Keep the DBMS software updated The DBMS has known vulnerabilities which are
not patched with vendor updates

Make regular backups There is no updated copy of the production data
in a separate storage

Test the backups The backup files might be corrupted or being
incorrectly generated

Monitor de DBMS application and
configuration files for modifications

It is impossible to know if the configuration files or
DBMS application files have been tampered with

Avoid random ports assignment for
client connections

DBMS configuration makes it impossible to
configure the external firewall as to not accept
external connection requests to a large range of
unspecified ports

Enforce remote communication
encryption with strong algorithms

Remote clients of the database use exchange
data in clear

Use server side certificate
There is no reliable way for a remote client to be
sure he is connection to the correct server
instead of a “rogue” one

Use IPs instead of host names to
configure access permissions

The server automatically accepts connections
from computers identified by a particular DNS

Security Benchmarking of Transactional Systems

241

Enforce strong user level
authentication

The authentication mechanism used is not well
understood, may be flawed and does not pinpoint
the specific person that is connected

Prevent idle connection hijacking Connections to the server are never terminated
automatically

Ensure no remote parameters are
used in authentication

It is possible to test the reaction of the system to
an additional parameter during authentication

Avoid host based authentication The server automatically accepts connections
from specific hosts which are not complete under
control of the administrator

Enforce strong password policies DBMS users may choose any password they like,
no specific rules are enforced

Apply excessive failed logins lock Anyone may try to login in the DBMS any number
of times

Apply password lifetime control with
forced change

Users and applications may use the same
password indefinitely

Use strong encryption in password
storage

Stored password information in the database is
cleartext

Enforce comprehensive logging Nothing done in the system and DBMS is
recorded anywhere

Verify that the log data cannot be lost
or tampered with

The log data is unprotected, unreplicated and
may be susceptive to unidentified modifications

Audit sensitive information No operation done over the data within the
database is recorded anywhere

Verify that the audit data cannot be lost
or be tampered with

The audit data unprotected, unreplicated and
may be susceptive to unidentified modifications

Ensure no “side-channel” information
leak through configuration files

Configuration files are generally visible and
contain sensitive information like passwords

Ensure no “side-channel” information
leak through system variables

OS system variables (like the processes list)
contain sensitive information like passwords

Ensure no “side-channel” information
leak through core_dump/trace files

Core_dumps and trace files from sensitive
processes are created and kept scattered within
the file system

Ensure no “side-channel” information
leak through backups of data and
configuration files

Backups of data and configuration files are kept
in a location generally visible and unmonitored

Deny any read/write on file system
from DBMS used

Applications regularly create, read and
manipulate local files though DBMS commands

Deny any network operation (sending
email, opening sockets, etc...)

Applications regularly access the network through
DBMS commands

Deny access to not needed DBMS
extended libraries and functionalities

It is not known what extended functionalities are
available

»»»Deny access to any OS information
and commands Applications regularly executes OS commands

Do not use self signed certificates
Any attacker can create another server certificate
with the exact same information as the one in use

Remove users privileges over system
tables

DBMS users have knowledge and access to
internal control information, and may alter the
DBMS engine behaviour

Remove user quotas over system
areas

DBMS users have the possibility of writing new
objects in a system area

Annex B w Pessimistic Scenarios

242

Implement least privilege policy in
privileges assignments

DBMS users may read and alter critical data
which they should have access to

Avoid ANY and ALL expressions in
privileges assignments

DBMS users may read and alter critical data
which they should have access to, and may
create and modify database elements

Do not delegate privileges
assignments

DBMS users can transfer its own privileges to
other untrusted users

No user should have privileges to
change system properties or
configurations

DBMS users can alter or influence the DBMS
environment and behaviour

Grant privileges to roles/groups instead
of users

DBMS users have specific unknown privileges
which are not reflected as privileges of any
defined role

Do not maintain the DB schema
creation SQL files in the DB server

OS users have complete information about the
database internal structure

Protect/encrypt application code

Application code may be altered by unknown
individuals under certain uncontrolled
circunstances

Audit application code changes

It is generally not possible to know which
individual made which modifications to
application code

Employ stored procedures and views
instead of direct table access

DBMS users may read and alter critical data
which they should not have access to

243

