
LLMs for Trustworthy Software 
Engineering: Insights and Challenges

@ LADC/SBESC 2024

Marco Vieira
marco.vieira@charlotte.edu



2 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil



3 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Several pictures in the presentation are from ChatGPT 4o

Based on what you know about me…

... draw a picture of what you 
think my current life looks like

What about my social life?

Based on what I know, your 
professional commitments—
including teaching, research, 
conference organizing, and 
writing papers—seem to 
dominate your schedule. While 
this indicates a highly productive 
and intellectually stimulating 
life, it might leave limited time 
for social activities.



4 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs in Software Engineering

LLMs are already used in software engineering: but for isolated tasks!

Code: produce code

Analysis: detect patterns 

Documentation: document code



5 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Vision: LLMs for Trustworthy Software

Need a holistic vision:
– Requirements, architecture, coding, analysis, testing, fault and vulnerability 

injection, IaC, issue tracking, monitoring, assessment…
– Focus on continuous improvement of trustworthiness properties

There are many challenges…
– Integration with existing practices
– Weaknesses and biases
– Lack of explainability
– Large-scale systems and legacy codebases
– Compliance with standards and regulations
– …



6 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Outline

Starting with some basics…
– Software engineering
– Trust and trustworthiness
– LLMs

(Potential) role of LLMs in Trustworthy Software Engineering
– Design
– Development
– Deployment
– Assessment

Case: Benchmarking vulnerability detection and patching with LLMs

(Some of) the open challenges…



7 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

What is Software Engineering?

"Software Engineering is the systematic application of engineering 
approaches to the development of software"

Deliver software that meets user needs

Ensure reliability, maintainability, security, …

Optimize resources (time, cost, effort)

Processes + People + Tools



8 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Software Development Lifecycle

Framework that defines the processes involved in developing software 
– From concept to deployment and maintenance

Popular lifecycle models: 
– Waterfall: sequential phases
– Agile: iterative and incremental approach
– DevOps: continuous integration and delivery

Phases: requirement analysis, architecture 
design, implementation, testing, deployment, 
maintenance

3D: Design, Development, Deployment



9 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Trust and Trustworthiness

Concepts broadly studied in many different areas
– Sociology, economics, psychology…

Human trust and trustworthiness
– Changes over time and can be highly subjective

Trust: Reliance on a system that it will exhibit the expected behavior 
– Includes many perspectives!
– Trust level: estimated probability of this reliance

Trustworthiness: worthiness of a system for being trusted
– Assessed based on evidences
– Complex and potentially subjective!



10 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Trustworthiness Properties

Trustworthiness is frequently seen as a security aspect
– It is trustworthy if it is secure!?

I consider it a more general notion!
– Even broader than dependability…

Requires identifying and evaluating all relevant measurable 
characteristics that may influence reliance

– Functional and non-functional

Security, privacy, reliability, performance, fairness, transparency, …
– Just define as needed!



11 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs

DNN for parsing and generating human-like text

Figure from: Sebastian Raschka, Build a Large Language Model (From Scratch)



12 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs are Intelligent!

"LLMs are intelligent systems capable of understanding and reasoning 
like humans"

LLMs do not think or understand in the human sense!
– They generate outputs based on patterns in the data they were trained on

LLMs simulate understanding through 
pattern recognition and statistical modeling

They lack awareness, reasoning, or intent!



13 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs are Useless Hype!

"LLMs are overhyped, unreliable, and impractical for real-world 
applications"

While not perfect, LLMs are far from useless!
– Demonstrated value in numerous practical applications
– Code generation, content creation, and research...

LLMs are tools that require proper usage, 
oversight, and understanding of limitations



14 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Truth Lies in Between…

LLMs are neither “intelligent” nor “useless hype”!

LLMs are powerful tools:
– Excel at pattern recognition and language generation
– Automating repetitive tasks, enhancing productivity, and assisting with creativity

LLMs have limitations:
– Lack true understanding and reasoning
– Prone to generating incorrect or biased outputs

Advanced tools that require thoughtful use, validation, and oversight!



(POTENTIAL) ROLE OF LLMS IN 
TRUSTWORTHY SOFTWARE 
ENGINEERING

Design
Development
Deployment
Assessment





17 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Requirements Elicitation

Traditionally a manual process:
– Interviews, document reviews, use-case development, …
– Time-intensive and error prone: particularly with non-functional requirements

How can LLMs help?
– Automates analysis of diverse sources: meeting transcriptions, user stories, 

regulatory documents, …
– Identify trustworthiness requirements early: embedding 

security, reliability, and privacy principles

Comprehensive approach to capturing both 
functional and non-functional needs, ensuring 
trustworthiness from the start



18 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Architecture Design

Traditional design focus on modularity, scalability, maintainability

How can LLMs help?
– Analyze requirements
– Suggest design patterns aligned with trustworthiness needs
– Assist in evaluating trade-offs: scalability vs. security
– Supports architects in making informed decisions

Design architectures that are inherently trustworthy, 
ensuring alignment with critical system requirements 
from the beginning





20 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Generation

Role of LLMs in code generation goes beyond syntax completion
– Focus on best practices and trustworthiness principles

How can LLMs help?
– Generating code from specifications: reduce development time
– Embed features like input validation to prevent vulnerabilities
– Incorporate proper error-handling mechanisms
– Recommend secure and reliable libraries or third-party APIs
– Ensures consistent use of trusted components
– Helps avoid introducing bugs or vulnerabilities inadvertently
– …



21 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Generation: Example



22 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Looks easy, but it is not…

Sometimes the code does not compile…
– Feeding back the compilation warnings and errors: easy fix!

For more complex problems, frequently the testcases fail!
– Feeding back the testcase and ask for a fix…
– Sometimes it fixes, most times fails again L

Case: large scale experiment to assess performance!
– About 4000 problem statements and testcases from coding contests
– Diverse solutions (correct and incorrect) in different languages
– How close are the generated solutions to the correct reference solutions?
– How close are the generated solutions to the bad reference solutions?



23 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Analysis

Proactive quality assurance through real-time analysis
– Identifies flaws, vulnerabilities, and performance issues during development

How can LLMs help?
– Scan code as it is written
– Flag potential weaknesses or risky practices
– Detect vulnerabilities like unprotected user inputs
– Suggests fixes to avoid security risks
– …

The goal is to reduce rework by addressing issues early and prevents 
errors from propagating through the codebase



24 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Analysis: Example

“Identify security vulnerabilities in the code…”
– The code is the one generated before!

“The provided C code is well-written for its purpose, but it may still have potential 
security vulnerabilities, especially when considering real-world usage scenarios. 
Below are some vulnerabilities and areas of concern:

1. Unchecked Input in scanf
2. Lack of Input Bounds Checking
3. Floating-Point Arithmetic Issues
4. Division by Zero
5. Potential Denial of Service (DoS)
6. Lack of Error Handling for printf
7. Hardcoded Limits on Precision
8. Output Information Disclosure

Inc
lud

ing
 m

an
y m

ore
 de

tai
ls!



25 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Testing

Generates test cases for functional and non-functional aspects
– Ensure rigorous evaluation of code against edge cases

How can LLMs help?
– Automatically generate testcases based on the specification
– Generate edge cases to reduce unforeseen errors
– Address performance, reliability, and security aspects
– Scenario-specific testing: e.g., financial application - simulate high transaction 

volumes
– …

Case: generating tests from problem statements and “test the tests”!



26 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Fault and Vulnerability Injection

Facilitates error detection and intrusion tolerance validation
– Simulates faults or vulnerabilities to assess system robustness

How can LLMs help?
– Inject faults to observe system behavior under stress
– Creates complex attack vectors to test defensive 

mechanisms
– Leverage historical incident data to define fault 

models, vulnerability models, attack models
– …



27 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Vulnerability Injection: Example

“Inject a vulnerability in the code…”
PreparedStatement ps7 = con.prepareStatement("UPDATE tpcc_customer
SET c_balance = c_balance + ?, c_delivery_cnt = c_delivery_cnt + 1 
WHERE c_id = ? AND c_d_id = ? AND c_w_id = ?");
ps7.setDouble(1, ol_total);

ps7.setLong(2, c_id);
ps7.setLong(3, d_id);

ps7.setString(4, w_id);
result = ps7.executeUpdate();

This is the “too obvious” output:
String query = "UPDATE tpcc_customer SET c_balance = c_balance + " 
+ ol_total + ", c_delivery_cnt = c_delivery_cnt + 1 WHERE c_id = " 
+ c_id + " AND c_d_id = " + d_id + " AND c_w_id = '" + w_id + "'";
Statement stmt = con.createStatement();
result = stmt.executeUpdate(query);



28 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

More on Development…

Refactoring:
– Detect outdated or risky code patterns
– Suggests revisions to prevent security liabilities or performance bottlenecks

Program repair:
– Automatically detect and resolves defects: null pointers, vulnerabilities, …
– Suggest context-aware fixes aligned with best practices

Programming language migration:
– Facilitate modernization of legacy systems by automating code translation
– Convert language-specific constructs and adapt to new paradigms
– Example: migrating from C++ to Rust to ensure safety and concurrency





30 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Deployment

Infrastructure as Code (IaC):
– Codify infrastructure configurations, reducing manual intervention
– Ensure consistent, reliable, and secure deployments
– LLMs: automate creation of scripts, identify configuration problems, detect and 

resolve deployment issues, translate configurations to diverse environments

Monitoring and anomaly detection:
– Ensure security, reliability, and performance by identifying deviations
– Tracking key indicators: memory usage, CPU load, response times, …
– Analysis of runtime data: system logs, user behavior, …
– Example: flag unusual login patterns as potential unauthorized access.



31 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Issue Management

Ensures timely resolution of incidents
– Maintain trustworthiness by addressing unexpected problems
– Time-consuming task especially in very large projects

How can LLMs help?
– Automating triage and prioritization
– Root cause analysis and fault localization
– Remediation suggestions
– …



32 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Case: Triage and Prioritization

Work by Tasfia Tasnim

Critical

High

Medium

Low

Quality?

Bug? Criticality?





34 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Risks and Compliance

Ensures systems remain trustworthy over time
– Proactive evaluation supports informed decision-making

LLMs @ design:
– Analyze architectural choices and system specifications
– Evaluate potential risks like vulnerabilities and scalability issues
– Check compliance with regulatory requirements
– Example: Highlight areas requiring security controls

LLMs @ runtime:
– Monitor key events and metrics: security incidents, 

unusual user activity, …
– Identify and address emerging threats



35 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Case: Risks and Compliance

– (Almost) consistent results across multiple 
iterations

– (Slightly) conflicting results compared to 
other models

– LLMs are capable of explaining their scores 
based on function attributes

Work by Austin Lee



36 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Scores and Dashboards

Generate trustworthiness scores based on current system data
– Provide up-to-date insights into system trustworthiness

Proactive decision-making:
– Inform stakeholders of potential weaknesses
– Support timely corrective actions if needed

Enables trustworthiness to evolve with:
– Internal changes (e.g., system updates)
– External conditions (e.g., regulatory shifts)



CASE: BENCHMARKING 
VULNERABILITY DETECTION 
AND PATCHING WITH LLMS

SVD and SVP
Our Benchmark
Some Results
Challenges

Work by Arastoo Zibaeirad



38 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVD and SVP

SVD: Software Vulnerability Detection

SVP: Software Vulnerability Patching

Rising need for automation
– Surge in identified software vulnerabilities each year: > 29,000+ CVEs in 2023

Some traditional techniques:
– Static Analysis Tools (SAT)
– Fuzzing and Penetration Testing Tools
– Automatic Program Repair (APR)

LLMs as a complementary approach… but what is the performance?



39 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Current Limitations

No real-world datasets
– Small code snippets rather than complex real-world vulnerabilities
– Lacking ground truth labels and patches (small dataset, manual labeling)

Data leakage in evaluation
– LLMs evaluated on datasets that include code they were trained on
– Inflated performance does not reflect capabilities in real-world settings



40 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Our Benchmark

Real-world vulnerable and patched code: > 300 vulnerabilities from 
Linux kernel

Evaluated 10 LLMs!



41 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVD: Overall Performance

– SVD3: Is vulnerable (Z)?
– SVD4: Is patched vulnerable (Z)?
– SVD5: CVE/CWE-Vuln Check (Z)? V, CVE, CWE
– SVD6: CVE/CWE-Patch Check (Z)? P, CVE, CWE



42 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVD: Vulnerable vs. Patched Code

Struggle to distinguish between vulnerable (on the left) and 
patched (on the right) code

– Particularly when changes are subtle!



43 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVP: Oversimplification

Generated patches often oversimplify the original code
– Resulting in lower cyclomatic complexity

This can improve readability, but impacts functionality or security



44 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVP: Incompleteness

Similarity scores lower than for ground truth

LLMs produce solutions that are incomplete or require refinement

Generated patches are typically shorter
– Omit critical context or introduce new issues if essential details are missed



45 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Challenges

Limited understanding of program behavior
– Struggles with data flow, control flow, data dependencies, and interactions

Generalization issues
– Difficulty identifying complex or unseen vulnerabilities
– Reduced precision and recall

Vulnerability to adversarial attacks
– Small changes, like function renaming, can mislead the models



(SOME OF) THE OPEN 
CHALLENGES…









50 Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Take-Away(s)

LLMs have the potential to reshape software engineering practices
– Automating code generation, bug detection, documentation, …

Empowering teams to build faster, smarter, and trustworthy

Key challenges:
– Ensuring generated outputs align with real-world requirements
– Addressing inherent biases to ensure 

fairness and ethical use
– Making model decisions transparent 

and interpretable for developers
– Adapting LLMs to diverse, complex, 

and large-scale projects
– …




