LLMs for Trustworthy Software
Engineering: Insights and Challenges

@ LADC/SBESGC 2024

Marco Vieira

marco.vieira@charlotte.edu

CHARLOTTE

Open Positions @ UNC Charlotte

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

T UL LU
et faedt e o,

/-
r
»
.
- . :
. - 'l.
- " ’
L
N »
. o h ‘
. .

LLMs in Software Engineering

LLMs are already used in software engineering: but for isolated tasks!

Code: produce code
Analysis: detect patterns

Documentation: document code

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Vision: LLMs for Trustworthy Software

Need a holistic vision:

— Requirements, architecture, coding, analysis, testing, fault and vulnerability
injection, IaC, issue tracking, monitoring, assessment. ..

— Focus on continuous improvement of trustworthiness

There are many challenges...
— Integration with existing practices
— Weaknesses and biases
— Lack of explainability
— Large-scale systems and legacy codebases

— Compliance with standards and regulations

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

properties

G vamic VSion

BN rusTRe=ILY SR

2 7 | Tracking
\ Infeapshnee / Bsealsﬂter

Laige
Z\ssule Tracking and S4

Engineering Trustworthy Software:

A Mission for LLMs

O | l [} Marco Vieira, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA

Abstract—LLMs are transfornfiily software en,
development, reducing compl A

the software lifecycle they williliriv
facilitating early bug detectiorjior
of critical issues. However, tr 0
addressing multiple challengefilluc

v 2024

Starting with some basics...

— Software engineering

— Trust and trustworthiness

(Potential) role of LLMs in Trustworthy Software Engineering
— Design
— Development
— Deployment

— Assessment
Case: Benchmarking vulnerability detection and patching with LLMs
(Some of) the open challenges...

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

What is Software Engineering?

"Software Engineering is the systematic application of engineering
approaches to the development of software"

Deliver software that meets user needs

Pegple
Ensure reliability, maintainability, security, ...
Optimize resources (time, cost, effort)
Processes + People + Tools
Ty Tols

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Software Development Lifecycle

Framework that defines the processes involved in developing software

— From concept to deployment and maintenance

Popular lifecycle models:
— Waterfall: sequential phases
— Agile: iterative and incremental approach Requremion ~ DeSi8N - Tesign

— DevOps: continuous integration and delivery

Phases: requirement analysis, architecture
design, implementation, testing, deployment,
maintenance

3D: Design, Development, Deployment A e
i Rel;e‘erate -

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Trust and Trustworthiness

Concepts broadly studied in many different areas

— Sociology, economics, psychology...

Human trust and trustworthiness

— Changes over time and can be highly subjective

Trust: Reliance on a system that 1t will exhibit the expected behavior

— Includes many perspectives!

— Trust level: estimated probability of this reliance

Trustworthiness: worthiness of a system for being trusted
— Assessed based on evidences

— Complex and potentially subjective!

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Trustworthiness Properties

Trustworthiness 1s frequently seen as a security aspect

— It 1s trustworthy 1f 1t is secure!?

I consider it a more general notion!

— Even broader than dependability...

Requires 1dentifying and evaluating all relevant measurable
characteristics that may influence reliance

— Functional and non-functional

Security, privacy, reliability, performance, fairness, transparency, ...

— Just define as needed!

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs

DNN for parsing and generating human-like text

* Internet texts

* Books

» Wikipedia

* Research articles

e

Raw, unlabeled text
(trillions of words)

Figure from: Sebastian Raschka, Build a Large Language Model (From Scratch)

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs are Intelligent!

"LLMs are intelligent systems capable of understanding and reasoning
like humans"

LLLLMs do not think or understand in the human sense!

— They generate outputs based on patterns in the data they were trained on

LLMs simulate understanding through
pattern recognition and statistical modeling

They lack awareness, reasoning, or intent!

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

LLMs are Useless Hype!

"LLMs are overhyped, unreliable, and impractical for real-world
applications"

While not perfect, LLMs are far from useless!
— Demonstrated value in numerous practical applications

— Code generation, content creation, and research...

LLMs are tools that require proper usage,
oversight, and understanding of limitations

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Truth Lies in Between...

LLMs are neither “intelligent” nor “useless hype”!

LLMs are powerful tools:
— Excel at pattern recognition and language generation

— Automating repetitive tasks, enhancing productivity, and assisting with creativity

LLMs have limitations:
— Lack true understanding and reasoning

— Prone to generating incorrect or biased outputs

Advanced tools that require thoughtful use, validation, and oversight!

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

@esign
@eve[qpment
@qp[oyment

‘Assessment

(POTENTIAL) ROLE OF LLMS IN
TRUSTWORTHY SOFTWARE
ENGINEERING

Requirements Elicitation
Design

Architectural Design

Code Generation -

Code Analysis & Testing

Development
Fault and Vulnerability Injection

LLMs in Trustworthy
Software Engineering

Refactoring & Program Repair

Infrastructure as Code (laC)

Continuous Monitoring
Deployment

Issue Management

Assess risks and compliance

Assessment Compute trustworthiness scores

Requirements Elicitation

Traditionally a manual process:
— Interviews, document reviews, use-case development, ...

— Time-intensive and error prone: particularly with non-functional requirements

How can LLMs help?

— Automates analysis of diverse sources: meeting transcriptions, user stories,
regulatory documents, ...

Security, Use-Case
ces Reguliabllys Requirments

— Identify trustworthiness requirements early: embedding R SEREEEEARIE S
security, reliability, and privacy principles il ey ’

Comprehensive approach to capturing both AT P
functional and non-functional needs, ensuring E = &
trustworthiness from the start @ rovems RS Eetine | resech

Nonr Stoories non-Functional needs

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Architecture Design

Traditional design focus on modularity, scalability, maintainability

How can LLMs help? DOCUMRENTS
& RANEABITY

— Analyze requirements | e

— Suggest design patterns aligned with trustworthiness needs LMANTACHES

— Assist 1in evaluating trade-offs: scalability vs. security

— Supports architects in making informed decisions

Design architectures that are inherently trustworthy,
ensuring alignment with critical system requirements g
from the beginning o

SEOAS

D
e
u)

I

ALGACTENT WIT

TRUSTWORTANES

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Requirements Elicitation
Design

Architectural Design

Code Generation

Role of LLMs in code generation goes beyond syntax completion

— Focus on best practices and trustworthiness principles

How can LLMs help?

— Generating code from specifications: reduce development time
— Embed features like input validation to prevent vulnerabilities

— Incorporate proper error-handling mechanisms

-LLMS

— Recommend secure and reliable libraries or third-party APIs @ Best Practices

eeeeeeeee
EEEEEEE

O&“

— Ensures consistent use of trusted components

— Helps avoid introducing bugs or vulnerabilities inadvertently

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Generation: Example

#include <stdio.h>
#include <math.h>

Write a program which prints the central coordinate (p,, p
triangle which is constructed by three points (z1, 1), (z2,

void calculateCircumcircle(double x1, double yl1l, double x2, double , double x3, double y3) {
Input double D = 2 * (x1 * (y2 — y3) + x2 % (y3 — y1) + x3 * (yl - y2));

if (D == 0) {
printf("The points are collinear, no circumcircle can be formed.\n");
return;

Input consists of several datasets. In the first line, the numt

T1Y1 T2Y223Y3

x1 yl yl y2
X2 X2 y2 y2 y3
x3 *x x3 + y3 % y3 yl

in a line. All the input are real numbers.

Output

((x1 % x1 + yl % y1) *x (x3
X2 X2 y2 y2) * (x1

For each dataset, print p,, p, and r separated by a space in e R

decimals. Round off the solution to three decimal places. Tl o GrRE =) s (e o sl o = VA 5 () e v

printf("%.3f %.3f %.3f\n", px, py, r);

Constraints

int main() {
int n;
printf("Enter the number of datasets: ");
scanf("%d", &n);

e —100 < z1,y1,%2, Y2, T3,y3 < 100
e n <20

Sample Input

for (int 1 = 0; i < n; i++) {

double x1, y1, x2, y2, x3, y3;
1 printf("Enter the coordinates of the triangle (x1 yl x2 y2 x3 y3): ");
0.0 0.0 2.0 0.0 2.0 2.0 scanf("%s1lf %1f %1f SLf SLf SLf", &1, &y1l, &x2, &y2, &x3, &y3);

calculateCircumcircle(x1, y1, x2, y2, x3, y3);

Output for the Sample Input

return 0;
1.000 1.000 1.414

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Looks easy, but it is not...

Sometimes the code does not compile...

— Feeding back the compilation warnings and errors: easy fix!

For more complex problems, frequently the testcases fail!
— Feeding back the testcase and ask for a fix...

— Sometimes it fixes, most times fails again @

Case: large scale experiment to assess performance!
— About 4000 problem statements and testcases from coding contests
— Diverse solutions (correct and incorrect) in different languages
— How close are the generated solutions to the correct reference solutions?

— How close are the generated solutions to the bad reference solutions?

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Analysis

Proactive quality assurance through real-time analysis

— Identifies flaws, vulnerabilities, and performance issues during development

s Iys..s

) rat-Tive /‘ﬂ’\ ARDI
How can LLMs help* @ A & '

. Co al-Time Code Ansurtsce ixe Fixes Sol Iutlons

— Scan code as it 1s written

D)
l 000 €10
0 N Fan i WARNINGS

i U pr otected.
.\D I"P (\)
SOLIDES)
SOLECES

— Flag potential weaknesses or risky practices

ERE O °

— Detect vulnerabilities like unprotected user inputs

— Suggests fixes to avoid security risks

The goal 1s to reduce rework by addressing issues early and prevents
errors from propagating through the codebase

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Analysis: Example

“Identify security vulnerabilities in the code...”

— The code 1s the one generated before!

“The provided C code 1s well-written for its purpose, but it may still have potential

security vulnerabilities, especially when considering real-world usage scenarios.
Below are some vulnerabilities and areas of concern:

1. Unchecked Input in scanf
2. Lack of Input Bounds Checking D
3. Floating-Point Arithmetic Issues &
4. Division by Zero &

5. Potential Denial of Service (DoS) S
6. Lack of Error Handling for printf D
7. Hardcoded Limits on Precision &

8. Output Information Disclosure

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Testing

Generates test cases for functional and non-functional aspects

— Ensure rigorous evaluation of code against edge cases

How can LLMs help?

— Automatically generate testcases based on the specification
— Generate edge cases to reduce unforeseen errors
— Address performance, reliability, and security aspects

— Scenario-specific testing: e.g., financial application - simulate high transaction
volumes

Case: generating tests from problem statements and “test the tests”™!

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Fault and Vulnerability Injection

Facilitates error detection and intrusion tolerance validation

— Simulates faults or vulnerabilities to assess system robustness

How can LLMs help?

— Inject faults to observe system behavior under stress

— Creates complex attack vectors to test defensive
mechanisms

\
Al | INTUISION
ATTACK TOLERATION

— Leverage historical incident data to define fault
models, vulnerability models, attack models

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Vulnerability Injection: Example

“Inject a vulnerability in the code...”

PreparedStatement ps7 = con.prepareStatement ("UPDATE tpcc customer
SET ¢ balance = ¢ balance + ?, ¢ delivery cnt = ¢ delivery cnt + 1
WHERE_c_id — 2 AND c did = 7 AND c w 1id - ?") N N
ps7.setDouble (1, ol total);

ps’7.setLong (2, c_1id);

ps7.setLong (3, d id);

ps7.setString (4, w_1id);

result = ps’/.executeUpdate() ;

This 1s the “too obvious” output:

String query = "UPDATE tpcc customer SET c¢ balance = c¢ balance + "
+ ol total + ", c delivery cnt = c delivery cnt + 1 WHERE c id = "
+ cid+ " AND c d id ="+ d id + " AND ¢ w 1id = "" + w id + "'";
Statement stmt = con.createStatement()

result = stmt.executeUpdate (query) ;

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

More on Development...

Refactoring:
— Detect outdated or risky code patterns

— Suggests revisions to prevent security liabilities or performance bottlenecks

Program repair:
— Automatically detect and resolves defects: null pointers, vulnerabilities, ...

— Suggest context-aware fixes aligned with best practices

Programming language migration:
— Facilitate modernization of legacy systems by automating code translation
— Convert language-specific constructs and adapt to new paradigms

— Example: migrating from C++ to Rust to ensure safety and concurrency

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Code Generation

Code Analysis & Testing

Development
Fault and Vulnerability Injection

tworthy
Jineering

Refactoring & Program Repair

Deployment

Infrastructure as Code (IaC):
— Codify infrastructure configurations, reducing manual intervention
— Ensure consistent, reliable, and secure deployments

— LLMs: automate creation of scripts, identify configuration problems, detect and
resolve deployment issues, translate configurations to diverse environments

Monitoring and anomaly detection:
— Ensure security, reliability, and performance by identifying deviations
— Tracking key indicators: memory usage, CPU load, response times, ...
— Analysis of runtime data: system logs, user behavior, ...

— Example: flag unusual login patterns as potential unauthorized access.

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Issue Management

Ensures timely resolution of incidents
— Maintain trustworthiness by addressing unexpected problems

— Time-consuming task especially in very large projects

How can LLMs help?
— Automating triage and prioritization
— Root cause analysis and fault localization TR . r
— Remediation suggestions 82 € LE#isAu”g%'Zi%n
k | =
- G883 e

RAPORT
SUGGESTION

System Logs . Vulnarite Reports

[and Suggestuon

Bugs Dopts LLLM Analysis Ac‘uorable Steps
Triage Triage and Suggetion for Developers

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

]

I

|

Case: Triage and Prioritization

— AN

Jorvamo ;o;\ Project Language Issues Bugs Non-bugs LoC
Firefox C/IC++ 25423 18607 6816 25,300,000

i Mozilla Core C/IC++ 164708 128608 36100 20,300,000
! NextCloud Server PHP 15392 10821 4571 9,110,000
Roslyn C# 10248 8290 1958 5,900,000

MariaDB Server C/IC++ 11746 9855 1891 4,280,000

OQuality? Kibana TypeScript 13680 11461 2219 3,230,000
Tensorflow C/C++ 6546 4912 1634 3,090,000

l QGis C/IC++ 24080 20543 3537 2,190,000
yo= A Godot C/C++ 23720 21105 2622 1,590,000
: (Isseiort\ MongoDB Server C/C++ 28641 13730 14911 1,590,000
o Spring Framework Java 12734 4440 8294 1,420,000
| Elasticsearch Java 20026 9605 10421 1,200,000
Bazel Java 3283 2110 1173 1,110,000

Mozilla NSS C/IC++ 6493 4144 2349 1,080,000

Symfony PHIP 16759 11602 5157 1,030,000

SeaMonkey C/IC++ 9946 8765 1181 1,020,000

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Medium

Low

by Tasfia Tasnim

Infrastructure as Code (laC)

Continuous Monitoring
Deployment

Issue Management

Risks and Compliance

Ensures systems remain trustworthy over time

— Proactive evaluation supports informed decision-making

LLMs (@ design:

— Analyze architectural choices and system specifications
— Evaluate potential risks like vulnerabilities and scalability 1ssues
— Check compliance with regulatory requirements

— Example: Highlight areas requiring security controls

LLMs (@ runtime:

. - PO EM:Lvssm:\ 3 V_,’;‘,xi -6
— Montitor key events and metrics: security incidents,)l7= NI .|
unusual user activity, ... , :

F . -

— Identify and address emerging threats R o e

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Case: Risks and Compliance

Llama3.1 Model Assessment

Code File

|
|
|
|
|
: 5 M Overall Score
| B Size
: B Memory Management
| W Clarity
: B Error Handling
| ; B Complexity
|

. |
|
|

Large Language Model O
Vo013 V_050 V_056 V_252 V_256

Inputted Files

ﬁ O||ama ? i — (Almost) consistent results across multiple

] 1terations

IS

w

LLM Rating

N

=y

Trustworthmess Assessment — (Slightly) conflicting results compared to

: |
' |

' |

' |

i Overall Score :3 Explanation: | other models

| Size: 2 i - i

! Error Handling: e gave this | .. .

O Memory © * W el hlsiing | — LLMs are capable of explaining their scores
| |Management: 3 R | based on function attributes

i Complexity: 4 i

' |

Work by Austin Lee

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Scores and Dashboards

Generate trustworthiness scores based on current system data

— Provide up-to-date insights into system trustworthiness

Proactive decision-making:
— Inform stakeholders of potential weaknesses

— Support timely corrective actions if needed

REAL TIME TRUSTTWINESS SCORING
REALTlME POWERED BY LLMS | |
® =—(@)POWEREDBY yor— -

Enables trustworthiness to evolve with:
— Internal changes (e.g., system updates)

— External conditions (e.g., regulatory shifts)

‘ SECURITY RELIBABITY

@ ’ T @ m @

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVD and SVP Work by Arastoo Zibaeirad

Our Benchmark
Some Results

Cﬁa[fenges

CASE: BENCHMARKING
VULNERABILITY DETECTION
AND PATCHING WITH LLMS

SVD and SVP

SVD: Software Vulnerability Detection
SVP: Software Vulnerability Patching

Rising need for automation
— Surge 1n 1dentified software vulnerabilities each year: > 29,000+ CVEs in 2023

Some traditional techniques:
— Static Analysis Tools (SAT)
— Fuzzing and Penetration Testing Tools

— Automatic Program Repair (APR)

LLMs as a complementary approach... but what 1s the performance?

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Current Limitations

No real-world datasets
— Small code snippets rather than complex real-world vulnerabilities

— Lacking ground truth labels and patches (small dataset, manual labeling)

Data leakage in evaluation

— LLMs evaluated on datasets that include code they were trained on

— Inflated performance does not reflect capabilities in real-world settings

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Our Benchmark

| & | v

D i Y
f ataset Prompt Design LLMs |
Commit hash: {x - x} Rank CVE G :
Rank CWE :
Commit hash: {x - x} Vuln code is vuIln? Gemma 1
CVE: {CVE - x -x} Patch code is vuln? 1 : .
Vuln code is vuln to CVE, CWE? h : N
. 2 ‘1‘ ,"
eI E T Patch code is vuln to CVE, CWE? . S e el R
CVE:{CVE - x -x} : C Mistral a
CWE: {CWE -} N 12 S s ¥
N E;if]ﬁ'r{’g'ﬁ}" n : @ OQ " Response and Filtering Evaluation SVvD and SVP Metrics
| Vulnerable code ’ Llama
s Block: {"Code"})
: Patched code Fix vuln code (Zero shot)

Fix vuln code (Few shot)

a1 Precision/Recall/Accuracy/F1
(.*) w 2. Top5 Accuracy
3 » 3. MRR
- | Block: {"Code"} sl i 4. Rouge Score

) \/\ RegEX "
K V ol ", 6. Cyclomatic Complexity

» 5. CodeBLEU Score
N) S

l (3) A

Real-world vulnerable and patched code: > 300 vulnerabilities from
Linux kernel

1|| // File path: path/to/filel // File path: path/to/filel

1

..'| Non-function element 1 2|| Updated non-function element 1

' $| // File path: path/to/file2 3|| // File path: path/to/file2

Va ua e S. 4|| Function 1(int paraml, char *param2, 4|| updated Function 1(int paraml, char *param2,
|))
5]] € 5]| €
6 // Function body 6 // Updated function body
} 71| 3

8|| // File path: path/to/file3 8[| 77 File path: path/to/file3

9|| Non-function element 2 Updated non-function element 2

10|| Function 2(double paraml, int param2, 10|| Updated Function 2(double paraml, int param2,
I . .
11)] € 11]] {
12 // Function body 12 // Updated function body
13]] 3 13]|
\ J

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVD: Overall Performance

Precision Recall Accuracy F1 Score
SVD3,4 SVD5,6 SVD3,4 SVD5,6 SVD3,4 SVD5,6 SVD3,4 SVD5,6

Codellama-7b 48.95 68.08 48.53 56.95 49.26 65.15 49.02 56.10
Codellama-34b 49.86 60.76 49.83 54.77 51.02 52.08 51.04 5155

LLMs

Llama3-8b 49.65 [NOSHENN 4935 6478 4850 |[7915 | 4756 60.15
Llama3-70b 47.57 28.66 4853 3577 4699 28.01 4821 35.10
Llama3.1-8b 50.09 [IN8893N 5016 64.08 49.60 [80M46 | 4935 | 61.37
Llama3.1-70b 50.48 68.73 50.65 5821 49.16 66.78 48386 56.63
Mistral-7b 4938 5147 4935 5040 49.59 3941 49.67 43.92
Mixtral-8*7b 4923 | 72.88 4886 58.76 4932 3562 4951 4137
Gemma2-27b 5233 4756 5212 4983 4959 | 59.61 = 4951 54.14
Gemma2-9b 50.78 [NBSANN 5130 63.67 4934 | 7362 @ 49.02 59.08

— SVD3: Is vulnerable (Z)?

— SVD4: Is patched vulnerable (7)?

— SVDS5: CVE/CWE-Vuln Check (2)? V, CVE, CWE
— SVD6: CVE/CWE-Patch Check (Z2)? P, CVE, CWE

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Llama3-70b Llama3-8b Codellama-34b Codellama-7b

Llama3.1-8b

SVD: Vulnerable vs. Patched Code

SVD3 SVD4 SVD5 SVD6

CWE-119 | N 3350 [I 17/50 | O 35/50 [I 17/50
CWE-416. | N 27757 [I 10/37 [I 1537 [I 13737
CIWE-200 | N 25/31 [I 531 I M 2331 [I 631
CWE-476. | N 20727 [27 [N 17727 [W 10727
CWE-20 | I 20726 [N 925 [M 1826 [I 10125

CWE-119. [I 27/50 [S 24/50 [I 25/50 [M 24/50
CWE-416. | I 2%/57 | I 1437 [W 19737 [N 15/37
CWE-200 [I 19/31 [I 1231 [I 14/31 [W 20731
CWE-476. | I 1527 [I 13727 [I 1227 [M 1227
CWE-20 [I 1426 [I 10726 [I 12126 [M 12725

CWE-119 [4550 | I 2/50
CWE-416 | 35757 | I 2/37
CWE-200 | 2931 | 031
CWE-476 || 26727 [I 327
CWE-20 [I 2326 [2126

N 3550 N I 650
I N 26737 [I 5137
P I 26731 [6131
A N 2027 [I 7127
P N 1926 [R 326

CWE-119. [I 15/50 Y N 3250 S I 19/50 [W 3050
CWE-416 | I 537 [N 27/37 [I 7/57 [N 27737
CWE-200 [I 10731 [N 231 [551 [- 2331
CWE-476 1 I 427 [N 22727 [N 427 [W 21727
CWE-20 [I 11726 [N 1626 [I 10726 [M 17726

CWE-119 I 47/50 | I 5/50
CWE-415. | I 30737 [N 6/37
CWE-200 | I 27731 | 2131
CWE-476 [I 24727 | 0127
CWE-20 | I 22126 [I 3126

T 37750) I —— 950
[I 2837 I—onsr
[I 25/31 | — 10/31
I 22027 [—— 42
[2526 [— 4026

Gemma2-9b Mixtral-8*7b Mistral-7b Llama3.1-70b

Gemma2-27b

SVD3 SVD4 SVDS SVD6

CWE-119 I N 3650 [I /50 [O 350 [O 15/50
CWE-416. I I 22/57 [I 15/37 s M 25/57 [I 1337
CWWE-200 [I 23731 [I 12731 [I 1431 [I 531
CWE-476. [I 5727 I 10727 [N 17727 [M 12727
CWE-20 [N 1726) I 526 [M 21726 [I 725

CWE-119 I N 29/50 | I 22/50 [S 20750 [I 29/50
CWE-416. I N 25757 [I 15/37 [I 1437 [M 21137
CWE-200 [I 11/31 [I 1331 [I 10731 [W 16731
CWE-476. e I 12727 [N 17727 [I 27 [M. 20127
CWE-20 [I 12726 [N 16/26 [I 9726 [M 1326

CWE-119. N N 3650 [I 13/50 | S 19/50 [N 31/50
CWE-416. I N 27737 [737 [I 15137 [N 2537
CWE-200 | I 24/31 [11/31 [N 1231 [S 20731
CWE-476 I N 20727 [I 627 [N 1127 [W 18127
CIWE-20 [I 19726 [I 525 [M 1325 [M 1526

CWE-119 [N [44/50 [I, ars0
CWE-416 [[32/37 [I— 7137
CWE-200 I 26/31 | — 31
CWE-476 [23727 [I, 627
CWE-20 [23026 [I, viz2s

I I 41750 [I 1350
N 25737 [N 11137
I 2731 | 231
N 16027 [I 5127
P N 17126 [M 11125

CWE- 119 I I 25/50 [I 24/50 [N 3550 [I 1450
CWE-416 I I 13/37 [N 26/37 [O 15/37 [W 17137
CWE-200 I I 16/31 [I 1551 [W 1431 [W 1231
CWE-476 I I /27 [N 18127 [N 15127 [M 15127
CWE-20 [I 10725 [N 15/26 [M 1425 [M 12126

Struggle to distinguish between vulnerable (on the left) and

patched (on the right) code

— Particularly when changes are subtle!

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVP: Oversimplification

15.0 [}
4 : B Patched Code Block
12 | B Patched LLM
10.0 : Patched LLM (Few-shot)
g : 8.5
2 7.6
a 75 6.9 L3
§ : 6057 o2 54 62 S 6.56]2 6.5
' - 47
5.0 I -
2.5 : 2.3|2
! P
0.0 i]
o \© O 0 O A O \S \S 0 0
S g 3 o O F O GV 2 DD
? & & & > 0 N xS \ Q &V
(%)

Generated patches often oversimplify the original code

— Resulting in lower cyclomatic complexity

This can improve readability, but impacts functionality or security

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

SVP: Incompleteness

1.75 e=m= Ground Truth (Vuln vs Patched) ROUGE Llama3-70b CodeBLEU === | Jama3.1-8b ROUGE == Mistral-7b ROUGE s Gemma2-9b ROUGE
s=== Ground Truth (Vuln vs Patched) CodeBLEU e Codellama-7b ROUGE @ | lama3.1-8b CodeBLEU Mistral-7b CodeBLEU Gemma2-9b CodeBLEU
1.50 e | lama3-8b ROUGE === Codellama-7b CodeBLEU e=== | Jama3.1-70b ROUGE e=== Mixtral-8*7b ROUGE e Gemma2-27b ROUGE
' @ | lama3-8b CodeBLEU === Codellama-34b ROUGE === | |lama3.1-70b CodeBLEU === Mixtral-8*7b CodeBLEU === Gemma2-27b CodeBLEU
125 s | lama3-70b ROUGE e Codellama-34b CodeBLEU
1.00 i i ‘
o llll 1
050 I I i
0.25 l | . l
II III Illllllll izl= i_1
0.00 e T s e s e e e e R o o e e e
g3L3L3L3L3L3L3Lc3L3c3L3Lc3c3L3L03c3c3¢Lc3¢L23¢8L3¢L
2] =
- [4 4 [4 [[d [4 4 [4 [4 [4 4 4 4 [
S 54545434 3>45353453>43>453>45 4545454534534 3>453>43>43>44 54
o g 2 £ 0 F o £ 0 B o £ 0 F o £ 0 F o £ 0 P o £ 0 F o £ 0 F o £ 0P o £ 0 P o £ o
g2 >3 5> ¢ >3 5> 0 >3 5>Q2 5> 355> Q0 5> 35 >0 >35> 535 5> 0 535 >0 >35> 0 5355
c 8 g~ £6 83~ £S 83~ £6 g~ £S5 3~ £8 73~ £S5 73~ £ 8 73~ £ 983~ 879~ <
S5 ® S5 ® S ® S5 ® = = S ®© = S5 ® = =
S a S > a5 > a5 > a5 > a 5 > a5 > a 5 > a5 > a5 > a5 >
@© © © © © @© © © @© ©
o o o o o o o o o o

Similarity scores lower than for ground truth

LLMs produce solutions that are incomplete or require refinement

Generated patches are typically shorter

— Omit critical context or introduce new issues if essential details are missed

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Challenges

Limited understanding of program behavior

— Struggles with data flow, control flow, data dependencies, and interactions

Generalization 1ssues
— Difficulty identifying complex or unseen vulnerabilities

— Reduced precision and recall

Vulnerability to adversarial attacks

— Small changes, like function renaming, can mislead the models

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

Conflict with deterministic methods
LLMs vs. Established Practices Frameworks combining LLMs and existing practices

Enhanced interoperability and synchronization

Probabilistic outputs vs. precision needs
Accuracy and Reliability Validation mechanisms and feedback loops

Domain-specific training datasets

Training datasets as source of bias
Adversarial training
Bias Mitigation

Curated datasets for fine-tuning

Transparency and auditing for ethical outputs

Understanding decision-making processes

Natural language explanations
Explainability and Interpretability

Decision flow visualization

Interpretable model validation

Challenges with legacy systems and dependencies

S

Open
Challenges

Scalability and Integration Model pruning, modular operation

Specialized training for large-scale systems

Variability across industries and jurisdictions
Compliance-aware LLMs
Standards and Regulations
Rule-based enforcement
Continuous compliance monitoring
Evolving requirements
Real-Time Adaptability { Challenges in CI/CD environments
Incremental learning, federated learning
Risks of exposing sensitive data
Privacy-preserving techniques
Ethics and Privacy
Ethical audits

C HI kL L E N GE S T

Conflict with deterministic methods
LLMs vs. Established Practices Frameworks combining LLMs and existing practices

Enhanced interoperability and synchronization

Probabilistic outputs vs. precision needs
Accuracy and Reliability Validation mechanisms and feedback loops

Domain-specific training datasets

Training datasets as source of bias
Adversarial training
Bias Mitigation

Curated datasets for fine-tuning

Transparency and auditing for ethical outputs

Understanding decision-making processes

Natural language explanations
Explainability and Interpretability

Decision flow visualization

Interpretable model validation

Challenges with legacy systems and dependencies

S

Open
Challenges

Scalability and Integration Model pruning, modular operation

Specialized training for large-scale systems

Variability across industries and jurisdictions
Compliance-aware LLMs
Standards and Regulations
Rule-based enforcement
Continuous compliance monitoring
Evolving requirements
Real-Time Adaptability { Challenges in CI/CD environments
Incremental learning, federated learning
Risks of exposing sensitive data
Privacy-preserving techniques
Ethics and Privacy
Ethical audits
Governance for responsible deployment

Conflict with deterministic methods

LLMs vs. Established Practices Frameworks combining LLMs and existing practices

Accuracy and Reliability

Bias Mitigation

Enhanced interoperability and synchronization

Probabilistic outputs vs. precision needs
Validation mechanisms and feedback loops

Domain-specific training datasets

Training datasets as source of bias
Adversarial training
Curated datasets for fine-tuning

Transparency and auditing for ethical outputs

// Explainability and Interpretability

anges

Understanding decision-making processes
Natural language explanations
Decision flow visualization

Interpretable model validation

Challenges with legacy systems and dependencies

Specialized training for large-scale systems

Rule-based enforcement

Scalability and Integration Model pruning, modular operation
Variability across industries and jurisdictions
Compliance-aware LLMs

Standards and Regulations

Continuous compliance monitoring

Take-Away(s)

LLMs have the potential to reshape software engineering practices

— Automating code generation, bug detection, documentation, ...
Empowering teams to build faster, smarter, and trustworthy

Key challenges:

— Ensuring generated outputs align with real-world requirements

— Addressing inherent biases to ensure

fairness and ethical use R ==l Il" ‘ AIA& 'O'
: .. ' L @ |1 \I\‘ 1
— Making model decisions transparent e e g | oo a1 Ethical]

Ethlcal p e e

and interpretable for developers

— Adapting LLMs to diverse, complex,
and large-scale projects

Marco Vieira, LADC/SBESC 2024, Recife, PE, Brazil

CHARLOTTE

