
Engineering Trustworthy Software:
A Mission for LLMs
Marco Vieira, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA

Abstract—LLMs are transforming software engineering by accelerating
development, reducing complexity, and cutting costs. When fully integrated into
the software lifecycle they will drive design, development and deployment while
facilitating early bug detection, continuous improvement, and rapid resolution
of critical issues. However, trustworthy LLM-driven software engineering requires
addressing multiple challenges such as accuracy, scalability, bias, and explainability.

L arge Language Models (LLMs) are revolution-
izing how we engage with technology, from
improving natural language processing to au-

tomating tasks and suporting decision-making. These
models are trained on extensive datasets and demon-
strate great capabilities in analyzing and generating
context-specific content1.

With software deeply embedded into our daily lifes,
from critical power grids and healthcare systems to
financial networks and transportation, trustworthiness
is becoming essential2. A key challenge is managing
complexity while maintaining quality attributes such
as reliability, security, scalability, fairness, and ease
of maintenance. This is increasingly difficult as soft-
ware integrates a wider range of technologies (cloud
computing, microservices, AI/ML components, edge
devices, etc) and agile development and continuous
integration and deployment (CI/CD) demand faster
development cycles.

Developers need to deal with the balance between
fostering innovation, rigorously testing code, preserv-
ing legacy systems, and addressing ethical concerns
regarding privacy and AI/ML. LLMs offer a promising
support to build trustworthy software systems in this
context. Such models can help improve key processes
across the development lifecycle, from requirements
elicitation and architecture design to code generation,
testing, and issue management, among others.

In code generation, LLMs can support developers
produce code with higher quality by adhering to best
coding practices, in a time and cost effective manner3.
During the architecture design, LLMs can help defining

NOTE: An improved/extended version of this work has been
submitted to the IEEE for possible publication. Copyright may
be transferred without notice, after which this version may no
longer be accessible.

secure and scalable designs that ensure systems to
be resilient to threats4. LLMs also have the poten-
tial to automate code analysis and testing by detect-
ing code patterns and generating comprehensive test
cases, minimizing the cost of fixing issues later in
the process5. Among many other examples, LLMs can
also help improving issue management by analyzing
bug reports, prioritizing security vulnerabilities, and
supporting root cause analysis6.

LLMs are already being used in software devel-
opment for isolated tasks, but an holistic vision that
considers broader trustworthiness objectives is miss-
ing. Such vision consists of integrating LLMs across
the entire software development lifecycle, from
requirements gathering to deployment of infrastruc-
ture as code (IaC) and post-deployment monitoring,
allowing development teams to continuously improve
their systems while considering relevant trustworthi-
ness properties. We are, however, far from realizing
this, with numerous challenges to be addressed.

Key issues include mitigating weaknesses and bi-
ases in LLM-generated code and recommendations,
enhancing the explainability of decisions to build trust
among developers and users, and improving the ac-
curacy of LLM-driven assessments. Additionally, re-
search is needed to understand how LLMs could be
integrated with existing software engineering tools and
practices, handle the complexity of large-scale sys-
tems, comply with legacy codebases, and ensure com-
patibility with standards and regulations. Until these
and other challenges are resolved, the adoption of
LLMs for trustworthy software remains incomplete.

TRUST AND TRUSTWORTHINESS
Trust and trustworthiness have been extensively stud-
ied across various domains. Numerous works in the

November 1



literature focus on the issue of trust in social rela-
tionships as well as trust and trustworthiness within
business environments7.

In the software context, trust can be understood
as a stakeholder reliance on a system to behave as
expected8. This reliance is inherently risky, as it is
often based on a subjective belief formed through
past experiences with the same or other systems.
Consequently, the trust level can be interpreted as
the estimated probability of such reliance, which is
uncertain and subject to dynamic change. In other
words, trustworthiness can be defined as the degree
to which a software system deserves to be trusted.

Although trust is defined differently across various
fields, a common objective in all definitions is the
precise assessment of trust levels7, which serve as a
foundation for informed decision-making. Thus, estab-
lishing trustworthiness is both the first and most essen-
tial step in fostering trust, calling for robust methods for
design, development, deployment and assessment.

Trustworthiness is a key concern for developers, re-
searchers, and enterprises9. However, several factors
contribute to the difficulty of ensuring trustworthiness.
These include the diversity of software systems, the
scale and complexity of modern systems, and the sub-
jective nature of trust and trustworthiness. Depending
on the context (e.g., critical or noncritical systems), dif-
ferent quality attributes (e.g., security or performance)
may play a role in the system’s trustworthiness.

Trustworthy software requires a range of functional
and non-functional requirements to be met. While the
attributes and metrics used to evaluate software func-
tionality can vary depending on the specific purpose,
they remain independent of the environment in which
the software operates. The relative importance of non-
functional requirements, however, depends on factors
such as the criticality of the software (e.g., safety-
critical or business-critical), the significance of the data
handled (e.g., private data), financial implications (e.g.,
monetary transactions), among many others.

In short, common trustworthiness requirements
include9: security - protect data and operations from
unauthorized access or breaches, ensuring confiden-
tiality, integrity, and availability; reliability - perform
functions accurately and consistently; privacy - user
data must be handled responsibly, complying with
regulations; robustness - handle unexpected inputs
or stress conditions gracefully; maintainability - code
should be designed for ease of updates and modifi-
cations; and ethical and legal compliance - adhere to
ethical principles and relevant legal standards.

LLMs IN TRUSTWORTHY
SOFTWARE ENGINEERING

The advent of LLMs is initiating a paradigm change in
software engineering by enabling advanced solutions
for tasks such as code generation, fault and vulnerabil-
ity detection, and compliance assurance3−6. However,
the integration of LLMs into the software engineering
lifecycle - from requirements gathering to deployment
and post-deployment monitoring - calls for solutions
that incorporate trustworthiness considerations from
the begging. Figure 1 exemplifies how LLMs can and
will play a key role in engineering trustworthy software.

Design
In the requirements elicitation phase, LLMs can fa-
cilitate a comprehensive and systematic approach to
understand both functional and non-functional needs.
Requirements elicitation traditionally relies on a com-
bination of stakeholder interviews, document review,
and use-case development10. This process is time-
intensive and susceptible to mistakes, particularly
when it comes to non-functional requirements. LLMs
can enhance this process by automating the analysis
of diverse sources, including stakeholder meeting tran-
scriptions, user stories, and regulatory documents.

Automation can help in the identification of the
relevant trustworthiness requirements, embedding se-
curity, reliability, and privacy aspects from the early
stages of the development process. For instance, in ap-
plications handling sensitive personal data, LLMs can
extract privacy requirements directly from regulatory
frameworks like the GDPR, identifying needs for data
minimization, encryption, and user consent. Similarly,
LLMs can highlight security concerns by analyzing
threat models. All this will contribute to a foundational
stage where the principles of a secure, reliable, and
resilient system are established.

Once requirements are clearly defined, the focus
shifts to architectural design, where LLMs can play a
key role in guiding the creation of designs that consider
and fulfill the relevant trustworthiness requirements.
While architecture design typically emphasizes mod-
ularity, scalability, and maintainability, other aspects,
such as resilience, fairness, data privacy, and security,
are also essential to building trustworthy systems11.
LLMs can assist in this process by analyzing the
requirements and recommending design patterns that
align with the needs. For instance, in a distributed
healthcare application where data privacy is critical, an
LLM might suggest a microservices-based architecture
with isolated data processing modules, reducing data
exposure and improving fault tolerance.

2 November 2024



FIGURE 1. Role of LLMs in engineering trustworthy software.

LLMs may also be leveraged to understand the
trade-offs that arise between architectural choices,
such as the balance between scalability and security,
enabling architects to make informed decisions. By
embedding LLM-informed design principles, engineers
can establish an architectural foundation based on
trustworthiness attributes, thus minimizing the need
for retroactive modifications to address security and
reliability concerns.

Development
During development, LLMs can significantly improve
the process of writing code that adheres to best
practices and trustworthiness principles3. The role of
LLMs in code generation should extend beyond mere

syntax completion; these models should be explored to
generate code that incorporates security and reliability
features, ensuring that developers do not inadvertently
introduce bugs and vulnerabilities. For example, LLMs
assisting in the development of a web application
may include input validation mechanisms to prevent
common vulnerabilities such as SQL injection, while
also embedding proper error-handling to ensure ro-
bustness. Furthermore, LLMs can also be leveraged to
provide suggestions for integrating secure and reliable
libraries or third-party APIs, which can help reduce
development time and ensure trusted components to
be consistently used.

The role of LLMs becomes even more pronounced
in code analysis, where exploring their capabilities

November 2024 3



for detecting flaws, vulnerabilities, and performance
issues allow proactive quality assurance5. LLMs can
perform real-time code analysis by evaluating potential
weaknesses as code is developed, thus identifying
areas that may require rework. For instance, an LLM
might detect an unprotected user input field and prompt
the developer to implement validation checks. This pre-
vents security and reliability issues from propagating
through the codebase.

In addition to code analysis, LLMs can support
automated testing by generating test cases that eval-
uate both functional and non-functional aspects5. By
generating comprehensive test cases, LLMs can help
ensuring that code is rigorously evaluated against po-
tential edge cases, reducing the likelihood of unfore-
seen errors. For example, in a financial application,
LLMs might generate test cases that simulate high
transaction volumes to verify the system’s capacity
to maintain performance. Integrating LLM-based code
analysis and automated testing into CI/CD will enable
continuous assessment of quality, ensuring that only
code meeting trustworthiness standards is deployed.

Fault injection and vulnerability assessment are
advanced alternatives for validating error detection and
intrusion tolerance mechanisms12. LLMs can facilitate
these processes by injecting faults or simulating vul-
nerabilities in the code, allowing engineers to observe
its behavior under stress. This is particularly valu-
able in critical applications, where even minor faults
can lead to catastrophic consequences. For example,
LLMs can help creating complex attack vectors to test
the system’s defensive mechanisms. LLMs can also
be explored to define advanced fault and vulnerability
models based on historical incident data from the same
or other similar systems.

As codebases evolve over time, LLMs have the po-
tentail to support refactoring to maintain alignment with
trustworthiness standards13. For example, by detecting
code patterns that may become security liabilities or
performance bottlenecks, LLMs may prompt develop-
ers to revise outdated practices, keeping the codebase
reliable, secure, and easy to maintain. This contributes
to the long-term quality and resilience of the system,
promoting trustworthiness throughout the lifecycle.

In the context of program repair, LLMs have the
potential to automatically detect and resolve defects,
enhancing the trustworthiness of codebases14. When
issues arise, whether due to bugs, security vulner-
abilities, or performance issues, LLMs can assist in
generating context-aware fixes that align with best
practices. For instance, if a null pointer exception or an
unhandled edge case is detected, LLMs can be used
to generate corrective code. In scenarios where a bug

might be security-related, such as a missing access
control check or inadequate input validation, LLMs
can suggest security-enhancing code modifications to
prevent exploitation. Program repair facilitated by LLMs
may go beyond high-level fixes by understanding the
broader implications of changes in an attempt to avoid
introducing new vulnerabilities or compromise other
parts of the codebase.

Programming language migration is often neces-
sary to modernize legacy systems, enhance perfor-
mance, improve maintainability, or adopt more se-
cure solutions. LLMs can play a role by facilitating
the process of translating code from one language
to another15. Migrating code manually is error-prone,
especially in complex systems where syntax, libraries,
and underlying language semantics vary significantly.
LLMs, trained on diverse language pairs and pro-
gramming paradigms, can help automate this process
by accurately converting language-specific constructs,
functions, and data structures to their equivalents in
the target language. For example, migrating a system
from C/C++, which often relies on pointers and manual
memory management, to Rust involves adapting to
a strict memory management and ownership model
that emphasizes safety and concurrency. LLMs have
a great potential to automate this transition.

Deployment
Infrastructure as Code (IaC) plays an essential role
in ensuring consistent, reliable, and secure deploy-
ments. LLMs can help generating, validating, and trou-
bleshooting deployment configurations, reducing hu-
man error and expediting the deployment process16.
For example, LLMs might generate IaC scripts that en-
force access controls, apply network segmentation, or
integrate encryption protocols, aligning infrastructure
configurations with security and compliance standards.
This capability extends across platforms, as LLMs
can translate configurations to fit multi-cloud or hybrid
environments, making IaC more adaptable to varying
deployment contexts.

Once the system is deployed, continuous monitor-
ing and anomaly detection become key to maintaining
trustworthiness. LLMs can contribute to the analysis of
runtime data, such as system logs and user behavior,
to identify deviations from expected patterns17. For
instance, an LLM-based tool could flag unusual login
patterns as a sign of unauthorized access. Through
continuous monitoring, LLMs may not only support
security but also enhance reliability and performance
by tracking indicators such as memory usage, CPU
load, and response times. This is particularly valuable

4 November 2024



in applications that require high availability, such as
online transaction processing.

Effective issue management is vital for addressing
incidents promptly and maintaining trustworthiness in
the face of unexpected problems. LLMs will streamline
issue management by automating the triage process,
categorizing bugs, vulnerabilities, and incidents ac-
cording to their impact and urgency18. For example,
an LLM might recognize a vulnerability affecting user
authentication as critical, prompting the development
team to prioritize it for immediate remediation. Au-
tomating prioritization will enable teams to allocate
resources efficiently and ensure that critical issues are
addressed first.

LLMs can also assist in root cause analysis and
fault localization by detecting patterns in system logs or
failure reports that reveal the underlying issues19. In a
distributed system, for instance, an LLM could analyze
logs from multiple nodes to identify specific compo-
nents or locations where network latency issues are
impacting performance. This precise fault localization
helps developers pinpointing problematic components.
Additionally, LLMs can be leveraged to offer targeted
remediation suggestions, providing actionable steps for
developers to resolve issues quickly. This not only ac-
celerates response times but also reduces the impact
of incidents and fosters trustworthiness.

Assessment
Trustworthiness, as a dynamic and multifaceted quality,
requires ongoing assessment to ensure that the sys-
tem adapts to changing threats, user expectations, and
regulatory requirements9. In the context of software
engineering, maintaining trustworthiness means that
systems must not only meet initial standards but also
evolve over time, while simultaneously provide trust-
worthiness evidences.

Leveraging LLMs for continuous trustworthiness
assessment enables proactive evaluation against the
relevant metrics both during design and at runtime.
During design, LLMs can play a crucial role in trustwor-
thiness assessment by analyzing architectural choices
and system specifications. Evaluating potential risks,
such as vulnerabilities or scalability issues, and check-
ing compliance with regulatory requirements, can pro-
vide insights that support informed decision-making.
For instance, LLMs might highlight areas where ad-
ditional security controls are necessary or recommend
architectural adjustments to enhance resilience. At run-
time, LLM-based solutions can be leverage to support
trustworthiness by monitoring key events and metrics,
such as security incidents or unusual user activity.

In this context, LLMs can also play a role in the
real-time calculation of trustworthiness scores and on
deploying relevant dashboards that provide stakehold-
ers with up-to-date information about the system’s
trustworthiness. Such scores are valuable for stake-
holders who need assurance that the system consis-
tently meets required standards in areas like security,
reliability, and privacy. By continuously evaluating trust-
worthiness, LLMs can enable a proactive approach
that informs decision-makers and supports correc-
tive actions if trustworthiness scores indicate potential
weaknesses. In practice, this continuous assessment
framework provides a foundation for long-term mainte-
nance, enabling trustworthiness to evolve in response
to internal changes and external conditions.

OPEN CHALLENGES
Integrating LLMs into software engineering holds great
potential, but it also presents challenges that must
be addressed to enable trustworthiness. In fact, to
achieve a state where LLMs enhance software quality
in an effective manner and without introducing new
risks, research efforts must focus on issues such as
integration with established software engineering prac-
tices, model accuracy, bias mitigation, decision-making
explainability, and scalability, as illustrated in Figure 2.

LLMs and Established Practices
Integrating LLMs with existing software engineering
practices, techniques, and tools is a mandatory step
to achieve automation, improve efficiency, and address
complexity challenges. However, this integration is not
simple. For example, LLM-generated outputs may con-
flict with deterministic methods, creating inconsisten-
cies. Also, the reliance of LLMs on contextual data can
hinder the combination with structured and systematic
outputs required by traditional software engineering
tools.

Taking static code analysis for vulnerability detec-
tion as an example: traditional static analysis tools
rely on precise, rule-based methods to identify specific
patterns or issues in the code, producing deterministic
results. If LLMs are introduced to improve this pro-
cess, such as to generate explanations for detected
vulnerabilities or to suggest fixes, they may produce
probabilistic outputs that conflict with the findings of
the static analysis tool.

To overcome these challenges, research should
focus on designing frameworks that integrate LLMs
with existing techniques in a holistic manner. This
includes developing hybrid approaches that combine

November 2024 5



FIGURE 2. Challenges for LLMs in engineering trustworthy software.

6 November 2024



LLM probabilistic reasoning with deterministic outputs,
and fine-tuned models tailored to tools like static
analysis, penetration testing, and traceability solutions.
Enhanced cross-tool interoperability and mechanisms
for synchronization between LLMs and traditional tools
also need to be developed.

Accuracy and Reliability
Accuracy is foundational for LLMs in trustworthy soft-
ware engineering. As LLMs are deployed across the
different lifecycle stages, it becomes of critical im-
portance to ensure that outputs are precise and
free from errors. Unlike conventional automation tools,
LLMs generate probabilistic outputs based on patterns
learned from large datasets, which can lead to both
contextually correct and misleading suggestions. For
instance, during code generation, LLMs may provide
solutions that appear syntactically correct but introduce
security flaws or performance bottlenecks due to insuf-
ficient contextual understanding.

Research is needed to develop mechanisms that
validate and verify LLM outputs, especially in business-
and mission-critical applications where even minor is-
sues can lead to significant consequences. Techniques
such as output validation layers, specialized training
datasets tailored for domain-specific contexts, and hy-
brid systems combining rule-based checks with LLM-
driven suggestions could enhance accuracy. Addition-
ally, integrating feedback loops, where human experts
review and correct LLM outputs, may provide continu-
ous refinement to improve accuracy and reliability.

Bias Mitigation
Bias in LLMs is a major challenge, as these models are
trained on datasets from various sources, some con-
taining biases related to language, coding practices,
or even ethical aspects. For example, LLMs trained on
open-source code might inherit biases from less se-
cure or less efficient coding practices commonly found
in certain community-contributed libraries. This can
result in LLMs suggesting outdated or non-standard
approaches that undermine trustworthiness.

To mitigate biases, research is needed to develop
detection techniques that analyze LLM outputs for de-
viations from established best practices or unintended
patterns. Techniques such as adversarial training,
where LLMs are trained to detect and counteract their
own biases, as well as fine-tuning models with curated,
bias-free datasets, may help minimize these risks.
Additionally, transparency in training data sources and
audits of LLM-generated outputs can help identifying
patterns of bias. These are essential for establishing

an ethical and fair LLM integration framework that
supports unbiased, trustworthy software development.

Explainability and Interpretability
The opaque nature of LLM decision-making processes
is a significant obstacle in building trust. Developers
and stakeholders need to understand the rationale
behind LLM-generated outputs, especially in critical
domains like healthcare, finance, and cybersecurity.
However, the black-box nature of LLMs complicates
interpretability, making it challenging to understand
why specific architectural decisions, code patterns, or
testing suggestions are recommended.

Research into explainable AI methods specifically
tailored for LLMs is necessary. Explainability could
involve generating natural language explanations to-
gether with the technical recommendations, or visual-
izing decision flows that trace how an LLM arrived at a
particular suggestion. For instance, if an LLM recom-
mends a specific architectural pattern, a corresponding
explanation should indicate how this choice aligns with
trustworthiness attributes like scalability and security.
Developing models with built-in interpretability where
simpler, interpretable models validate LLM recommen-
dations may also help in improving transparency.

Scalability and Integration
LLMs will face challenges when applied to large-scale
systems, especially in complex ecosystems that rely
on numerous third-party components. Modern software
systems often include legacy codebases, complex in-
terdependencies, and integration with cloud platforms,
microservices, and external APIs. Embedding LLMs
into these environments requires advanced research
into scalability and interoperability.

Ensuring that LLMs can handle the volume and
complexity of information regarding large-scale sys-
tems is crucial for a reliable integration. For example,
LLMs will struggle with inconsistencies or outdated
dependencies within legacy systems, resulting in er-
roneous recommendations or failure to adhere to best
practices. Techniques like model pruning, where non-
essential parameters are removed to optimize per-
formance, or partitioning large models to operate in-
dependently across different software modules, could
help address scalability issues. Additionally, special-
ized LLMs trained on legacy code patterns may sup-
port the ongoing maintenance of older codebases.

Standards and Regulations
As software systems increasingly interact with sensi-
tive data and critical infrastructures, compliance with

November 2024 7



standards and regulations is essential for trustwor-
thiness. However, regulatory compliance often varies
across jurisdictions and industries, from GDPR in Eu-
rope to HIPAA in healthcare and PCI DSS in finance.
LLMs must be able to navigate this complex landscape
and generate code, recommendations, and configura-
tions that align with the relevant regulations.

Research is needed to develop compliance-aware
LLMs that can recognize regulatory requirements and
integrate them into their outputs. For instance, an LLM
generating infrastructure-as-code (IaC) configurations
should enforce data encryption or role-based access
control based on applicable regulations. Rule-based
techniques should be researched to enforce regulatory
constraints to be directly applied to LLM outputs. Fur-
thermore, fine-tuning models with compliance-specific
datasets could ensure that LLM-driven software en-
gineering adheres to standards. Compliance auditing
tools should also be developed to continuously monitor
adherence to regulations.

Real-Time Adaptability
Continuous integration and continuous deployment
(CI/CD) calls for adaptability in LLM-driven software
engineering processes, especially as requirements
evolve throughout the lifecycle. As software is de-
ployed at rapid intervals, LLM-based solutions need
to promptly provide relevant and accurate feedback.
However, the latency of large models, combined with
the risk of outdated recommendations as both soft-
ware and requirements evolve, presents significant
challenges. Also, adapting to evolving requirements is
mandatory to ensure that the outputs remain aligned
with existing business goals and constraints.

Research should explore LLM architectures or
modular model deployment strategies that can de-
liver near-instant feedback. Techniques like incremen-
tal learning, where LLMs are updated continuously with
recent data, can help ensuring that recommendations
remain relevant. Additionally, exploring federated learn-
ing, where models are trained and deployed across
decentralized locations, may help LLMs keep pace with
the rapid cycles of CI/CD pipelines.

Ethics and Privacy
The ethical implications of using LLMs in software
engineering, particularly regarding privacy and user
data, require careful consideration. Models trained on
broad datasets may inadvertently expose sensitive
information or generate outputs that compromise user
privacy, especially if data sanitization is inadequate.
Furthermore, ensuring that LLMs operate ethically is

extremely important in sectors that involve sensitive
applications, such as healthcare or law enforcement.

Researching the applicability of privacy-preserving
techniques, such as differential privacy, to ensure that
LLMs generate outputs without revealing sensitive data
is mandatory. Additionally, regular ethical audits and
compliance with privacy guidelines can further support
the responsible deployment of LLMs. Transparent gov-
ernance and ethical controls can help align LLM prac-
tices with privacy and data security values, fostering
trust in LLM-driven software solutions.

CONCLUSION
The Large Language Models (LLMs) revolution in
software development is just starting! LLMs are and
will further transform software engineering by offering
powerful tools to address the growing complexity of
software systems and reduce development time and
cost. The vision is clear: effectively integrate LLM-
based solutions into the software development lifecycle
to suport requirements elicitation, architecture design,
code generation, testing, deployment, and issue man-
agement, among others. By embedding dependability
and security aspects at every stage, LLMs will enable
continuous development and improvement, early de-
tection of bugs and vulnerabilities, and faster resolution
of high-risk issues, assisting developers in producing
high-quality code that adheres to best practices. We
are, however, very far from realizing this vision, and
significant research is needed to address challenges
such as the accuracy of LLM-driven assessments,
biases in generated code and recommendations, and
explainability of decisions, to ensure LLMs reach their
full potential in engineering trustworthy software.

ACKNOWLEDGMENTS
The author acknowledges that ChatGPT 4o has been
used to improve the writing and for extracting from
the text a draft version of the mind-maps presented
in figures 1 and 2.

REFERENCES
1. T. B. Brown et al, “Language models are few-shot

learners,” in Proc. 34th Int. Conf. Neural Inf. Process.
Syst. (NIPS ’20), Red Hook, NY, USA, 2020, Article
159, pp. 1877–1901.

2. J.-H. Cho, S. Xu, P. M. Hurley, M. Mackay, T. Benjamin,
and M. Beaumont, “STRAM: Measuring the trustwor-
thiness of computer-based systems,” ACM Comput.

8 November 2024



Surv., vol. 51, no. 6, Article 128, Nov. 2019, pp. 47.
doi: 10.1145/3277666.

3. L. Chen, Q. Guo, H. Jia, Z. Zeng, X. Wang, Y. Xu,
J. Wu, Y. Wang, Q. Gao, J. Wang, W. Ye, and S.
Zhang, “A survey on evaluating large language models
in code generation tasks,” arXiv preprint, 2024. doi:
10.48550/arXiv.2408.16498.

4. R. Dhar, K. Vaidhyanathan, and V. Varma, “Can LLMs
generate architectural design decisions? - An ex-
ploratory empirical study,” in 2024 IEEE 21st Int. Conf.
Softw. Archit. (ICSA), Hyderabad, India, 2024, pp.
79–89. doi: 10.1109/ICSA59870.2024.00016.

5. A. Nunez, N. T. Islam, S. Jha, and P. Najafirad,
“AutoSafeCoder: A multi-agent framework for se-
curing LLM code generation through static anal-
ysis and fuzz testing,” arXiv preprint, 2024. doi:
10.48550/arXiv.2409.10737.

6. W. Tao, Y. Zhou, Y. Wang, W. Zhang, H. Zhang, and Y.
Cheng, “MAGIS: LLM-based multi-agent framework for
GitHub issue resolution,” arXiv preprint, 2024. Avail-
able: https://arxiv.org/abs/2403.17927.

7. J. Slemrod and P. Katuscak, “Do trust and trustworthi-
ness pay off?,” Working Paper 9200, Nat. Bureau of
Econ. Res., 2002.

8. M. Nami and W. Suryn, “Software trustworthiness:
Past, present and future,” in Trustworthy Computing
and Services, Y. Yuan, X. Wu, and Y. Lu, Eds.,
Springer, Berlin, Heidelberg, 2013, pp. 1–12. doi:
10.1007/978-3-642-35795-4_1.

9. N. Medeiros, N. R. Ivaki, P. N. D. Costa, and
M. P. A. Vieira, “Towards an approach for trust-
worthiness assessment of software as a ser-
vice,” in 2017 IEEE Int. Conf. Edge Comput.
(EDGE), Honolulu, HI, USA, 2017, pp. 220–223. doi:
10.1109/IEEE.EDGE.2017.39.

10. P. A. Laplante and M. Kassab, Requirements En-
gineering for Software and Systems, 4th ed. Boca
Raton, FL, USA: Auerbach Publications, 2022. doi:
10.1201/9781003129509.

11. D. Garlan and M. Shaw, “An introduction to software
architecture,” in Advances in Software Engineering
and Knowledge Engineering, World Scientific, 1993,
pp. 1–39. doi: 10.1142/9789812798039_0001.

12. R. Natella, D. Cotroneo, and H. S. Madeira, “As-
sessing dependability with software fault injection: A
survey,” ACM Comput. Surv., vol. 48, no. 3, Article 44,
Feb. 2016, pp. 55. doi: 10.1145/2841425.

13. A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita,
and Y. Watanobe, “Refactoring programs using
large language models with few-shot examples,” in
2023 30th Asia-Pacific Softw. Eng. Conf. (APSEC),
Seoul, South Korea, 2023, pp. 151–160. doi:
10.1109/APSEC60848.2023.00025.

14. M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N.
Sundaresan, and A. Svyatkovskiy, “InferFix: End-to-
end program repair with LLMs,” in Proc. 31st ACM
Joint Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/FSE 2023), San Francisco, CA, USA, 2023, pp.
1646–1656. doi: 10.1145/3611643.3613892.

15. J. Hong and S. Ryu, “Type-migrating C-to-Rust
translation using a large language model,” Empirical
Softw. Eng., vol. 30, no. 1, Oct. 2024, Article 3. doi:
10.1007/s10664-024-10573-2.

16. J. Diaz-De-Arcaya, J. López-De-Armentia, G. Zárate,
and A. I. Torre-Bastida, “Towards the self-healing of
infrastructure as code projects using constrained LLM
technologies,” in Proc. 5th ACM/IEEE Int. Workshop
Autom. Program Repair (APR ’24), 2024, pp. 22–25.
doi: 10.1145/3643788.3648014.

17. Z. Yu, M. Ma, C. Zhang, S. Qin, Y. Kang, C.
Bansal, S. Rajmohan, Y. Dang, C. Pei, D. Pei,
Q. Lin, and D. Zhang, “MonitorAssistant: Simpli-
fying cloud service monitoring via large language
models,” in Companion Proc. 32nd ACM Int. Conf.
Found. Softw. Eng. (FSE 2024), 2024, pp. 38–49. doi:
10.1145/3663529.3663826.

18. X. Du, Z. Liu, C. Li, X. Ma, Y. Li, and X. Wang,
“LLM-BRC: A large language model-based bug report
classification framework,” Softw. Qual. J., vol. 32, no.
3, Sep. 2024, doi: 10.1007/s11219-024-09675-3.

19. S. Kang, G. An, and S. Yoo, “A quantitative and
qualitative evaluation of LLM-based explainable fault
localization,” Proc. ACM Softw. Eng., vol. 1, no. FSE,
Jul. 2024, Article 64, pp. 23. doi: 10.1145/3660771.

Marco Vieira is a Professor at the University of North
Carolina at Charlotte (UNC Charlotte), Charlotte, NC,
USA. His research interests include dependability and
security assessment, fault injection, and software test-
ing. Vieira received his Ph.D. in Informatics Engineering
from the University of Coimbra, Portugal. He is Chair of
the IFIP WG 10.4 on Dependable Computing and Fault
Tolerance. Contact him at marco.vieira@charlotte.edu.

November 2024 9


	TRUST AND TRUSTWORTHINESS
	LLMs IN TRUSTWORTHY SOFTWARE ENGINEERING
	Design
	Development
	Deployment
	Assessment

	OPEN CHALLENGES
	LLMs and Established Practices
	Accuracy and Reliability
	Bias Mitigation
	Explainability and Interpretability
	Scalability and Integration
	Standards and Regulations
	Real-Time Adaptability
	Ethics and Privacy

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Marco Vieira


